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Abstract

We study the properties of input-consuming derivations of moded logic

programs. Input-consuming derivations can be used to model the behavior

of logic programs using dynamic scheduling and employing constructs such

as delay declarations.

We consider the class of nicely-moded programs and queries. We show

that for these programs a weak version of the well-known switching lemma

holds also for input-consuming derivations. Furthermore, we show that,

under suitable conditions, there exists an algebraic characterization of

termination of input-consuming derivations.

1 Introduction

Most of the recent logic programming languages provide the possibility of em-
ploying dynamic scheduling, i.e., a runtime mechanism determining which atoms
in a query are selectable and which ones are not. In fact, dynamic scheduling has
proven to be useful in a number of applications; among other things, it allows
one to model coroutining, as shown in [Nai92, HL94], and parallel executions,
as shown in [Nai88].

Let us use the following simple examples to show how dynamic scheduling
can be enforced by using delay declarations and how it can prevent nontermi-
nation and unnecessary computations. Consider the program APPEND

app([ ],Ys,Ys).

app([H|Xs],Ys,[H|Zs]) ← app(Xs,Ys,Zs).
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together with the query

Q1 := app(Xs,[5,6],Ys), app([1,2],[3,4],Xs).

In this query, if we select and resolve the leftmost atom, we could easily have
to face one of the following two problems. First, the possibility of nontermi-
nation: This is the case if we repeatedly resolve the leftmost atom against the
second clause. The second problem is that of inefficiency. If, for instance, in
Q1 we resolve the leftmost atom against the first clause, we obtain the query
app([1,2],[3,4],[ ]). This will eventually fail, yielding to (unnecessary)
backtracking. Notice that if one employs the rightmost selection rule, Q1 would
terminate with success and without backtracking. Basically, the problem when
selecting app(Xs,[5,6],Ys), is that we do not know which clause we should
use for resolving it, and the only practical way for getting to know this is by
waiting until the outermost functor of Xs is known: If it is the empty list [ ]

we know that we should use the first clause, if it is the list-constructor symbol
we know that we should use the second clause, if it is something else again, we
know then that the query fails. Notice that the same problems arise for the
query

Q2 := app([1,2],[3,4],Xs), app(Xs,[5,6],Ys).

if the rightmost selection rule is considered.
This shows the usefulness of a mechanism for preventing the selection of

those atoms which are not sufficiently instantiated. Such a mechanism is in fact
offered by most modern languages: In GHC [Ued88] programs are augmented
with guards in order to control the selection of atoms dynamically. Moded
Flat GHC [UM94] uses an extra condition on the input positions, which is
extremely similar to the concept of input-consuming derivation step we refer to
the sequel: The resolution of an atom with a definition must not instantiate the
input arguments of the resolved atom. On the other hand, Gödel [HL94] and
ECLiPSe [WNS97] use delay declarations, and SICStus Prolog [SIC97] employs
block declarations (which are a special kind of delay declarations). Both delay
and block declarations check the partial instantiation of some arguments of
calls. For instance, the standard delay declaration for APPEND is

d1 := delay app(Ls, , ) until nonvar(Ls).

This declaration forbids the selection of an atom of the form app(s, t, u) unless
s is a non-variable term, which is precisely what we need in order to run the
queries Q1 or Q2 efficiently.

The adoption of dynamic scheduling has the disadvantage that various pro-
gram properties that have been proven for logic and pure Prolog programs do
not apply any longer.

The goal of our research is the study of termination properties. This is mo-
tivated by the fact that most of the literature on termination of logic programs
(see De Schreye and Decorte [DD94] for a survey on this subject) assumes the
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standard Prolog selection rule, i.e., the leftmost one. Notable exceptions are
Bezem [Bez93] and Cavedon [Cav89] who provide results for all selection rules.
There are only few authors who tackled the specific problem of verifying the
termination of logic programs with dynamic scheduling. Namely, Apt and Luit-
jes [AL95], Marchiori and Teusink [MT95] and Smaus [Sma99b]. We compare
our results with the ones in [AL95, MT95, Sma99b] in the concluding section.

Another feature of logic programs which does not hold in presence of dy-
namic scheduling is the well-known switching lemma, which is, for instance, at
the base of the result on the independence of the selection rule. In this paper we
show that – under certain conditions – a weak form of the well-known switching
lemma holds.

In order to recuperate at least part of the declarative reading of logic pro-
gramming, we follow here the same approach to dynamic scheduling as [Sma99b]
and we substitute the use of delay declarations by the restriction to input-
consuming derivations. The definition of input-consuming derivation is done
in two phases. First we give the program a mode, that is, we partition the
positions of each atom into input and output positions. Then, in presence of
modes, input-consuming derivation steps are precisely those in which the input
arguments of the selected atom will not be instantiated by the unification with
the clause’s head. If in a query no atom is resolvable via an input-consuming
derivation step and a failure does not arise then we have a deadlock situation1.

For example, the standard mode for the program APPEND reported above,
when used for concatenating two lists, is app(In,In,Out). Notice that in this
case the delay declaration d1 serves precisely the purpose of guaranteeing that if
an atom of the form app(s, t,X) (with X being a variable) is selectable and unifi-
able with a clause head, then the resulting derivation step is input-consuming.

It is also worth remarking that, as a large body of literature shows, the
vast majority of “usual” programs are actually moded and are, in a well-defined
sense consistent wrt. to their modes (e.g., well-moded, nicely-moded, simply-
moded, etc.); see for example [AP94b, AM94], or more simply, the tables of
programs we report in Section 7, or consider for instance the logic programming
language Mercury [SHC96], which requires that its programs are moded (and
well-moded).

Contributions of this paper

In this paper we study some properties of input-consuming derivations.
In the first place we show that, if we restrict ourselves to programs and

queries which are nicely-moded, then a weak form of the well-known switching
lemma holds.

Furthermore, we study the termination properties of input-consuming deriva-
tions. For this we define the class of input terminating programs which characteri-
zes programs whose input-consuming derivations starting in a nicely-moded

1As we discuss in Section 3.2, this notion of deadlock differs, in some way, from the usual
one, which is given in the case of programs employing delay declarations.
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query are finite. In order to prove that a program is input terminating, we use
the concept of quasi recurrent program (similar to, but noticeably less restric-
tive than the concept of semi-recurrent program introduced in [AP94a]). We
show that if P is nicely-moded and quasi recurrent then all its input-consuming
derivations starting from a nicely-moded query terminate.

Furthermore, we demonstrate that under mild additional constraints (namely,
simply-modedness and input-recurrency) the above condition is both sufficient
and necessary for ensuring that all input-consuming derivations starting from a
nicely-moded query terminate.

This approach generalizes the method described in [Sma99b] in two ways:
First because we also provide conditions which are both necessary and sufficient,
and secondly because we do not require programs and queries to be well-moded;
we only assume that they are nicely-moded. This is actually crucial: When
programs and queries are well-moded, derivations cannot deadlock. Thus, as
opposed to [Sma99b], our results capture also termination by deadlock. For
instance, we can easily prove that the query app(X,Y, Z) terminates. A more
detailed comparison is presented in the concluding section.

We also show that the results presented in this paper can be extended to
programs and queries which are permutation nicely- or simply-moded, [SHK98].

To evaluate the practicality of the results we present, we consider the pro-
grams from various well-known collections, and we check whether they satisfy
the conditions of our main theorem.

The paper is organized as follows. Section 2 contains some preliminary nota-
tions and definitions. In Section 3 input-consuming derivations are introduced
and some properties of them are proven. In Section 4 we prove that, for nicely-
moded input-consuming programs, a left switching lemma holds. In Section
5 a method for proving input termination of programs is presented, first in a
non-modular way, then for modular programs. In Section 6 we show that this
method is necessary for the class of simply-moded and input-recursive programs.
Section 7 discusses the applicability of our results through simple examples of
programs and reports the results obtained by applying our method to various
benchmarks. Finally, Section 8 concludes the paper.

2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results
of logic programs [Apt90, Apt97, Llo87].

2.1 Terms and Substitutions

Let T be the set of terms built on a finite set of data constructors C and a
denumerable set of variable symbols V . A substitution θ is a mapping from V
to T such that Dom(θ) = {X | θ(X) 6= X} is finite. For any syntactic object
o, we denote by Var(o) the set of variables occurring in o. A syntactic object
is linear if every variable occurs in it at most once. We denote by ǫ the empty
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substitution. The composition θσ of the substitutions θ and σ is defined as the
functional composition, i.e., θσ(X) = σ(θ(X)). We consider the pre-ordering ≤
(more general than) on substitutions such that θ ≤ σ iff there exists γ such that
θγ = σ. The result of the application of a substitution θ to a term t is said an
instance of t and it is denoted by tθ. We also consider the pre-ordering ≤ (more
general than) on terms such that t ≤ t′ iff there exists θ such that tθ = t′. We
denote by ≈ the associated equivalence relation (variance). A substitution θ is
a unifier of terms t and t′ iff tθ = t′θ. We denote by mgu(t, t′) any most general
unifier (mgu, in short) of t and t′. An mgu θ of terms t and t′ is called relevant
iff Var(θ) ⊆ Var(t) ∪ Var(t′).

2.2 Programs and Derivations

Let P be a finite set of predicate symbols. An atom is an object of the form
p(t1, . . . , tn) where p ∈ P is an n-ary predicate symbol and t1, . . . , tn ∈ T . Given
an atom A, we denote by Rel(A) the predicate symbol of A. A query is a finite,
possibly empty, sequence of atoms A1, . . . , Am. The empty query is denoted
by �. Following the convention adopted in [Apt97], we use bold characters to
denote queries. A clause is a formula H ← B where H is an atom (the head)
and B is a query (the body). When B is empty, H ← B is written H ← and is
called a unit clause. A program is a finite set of clauses. We denote atoms by
A,B,H, . . . , queries by Q,A,B,C, . . . , clauses by c, d, . . . , and programs by P .

Computations are constructed as sequences of “basic” steps. Consider a
non-empty query A, B,C and a clause c. Let H ← B be a variant of c variable
disjoint from A, B,C. Let B and H unify with mgu θ. The query (A,B,C)θ
is called a resolvent of A, B,C and c with selected atom B and mgu θ. A
derivation step is denoted by

A, B,C
θ

=⇒P,c (A,B,C)θ

The clause H ← B is called its input clause. The atom B is called the selected
atom of A, B,C.

If P is clear from the context or c is irrelevant then we drop the reference
to them. A derivation is obtained by iterating derivation steps. A maximal
sequence

δ := Q0
θ1=⇒P,c1 Q1

θ2=⇒P,c2 · · ·Qn

θn+1

=⇒P,cn+1
Qn+1 · · ·

is called a derivation of P ∪ {Q0} provided that for every step the standardiza-
tion apart condition holds, i.e., the input clause employed is variable disjoint
from the initial query Q0 and from the substitutions and the input clauses used
at earlier steps.

Derivations can be finite or infinite. If δ := Q0
θ1=⇒P,c1 · · ·

θn=⇒P,cn Qn is a

finite prefix of a derivation, also denoted δ := Q0
θ
7−→ Qn with θ = θ1 · · · θn,

we say that δ is a partial derivation and θ is a partial computed answer substi-
tution of P ∪ {Q0}. If δ is maximal and ends with the empty query then θ is

5



called computed answer substitution (c.a.s., for short). The length of a (partial)
derivation δ, denoted by len(δ), is the number of derivation steps in δ.

The following definition of B-step is due to Smaus [Sma99a].

Definition 1 (B-step) Let A, B,C
θ

=⇒ (A,B,C)θ be a derivation step. We
say that each atom in Bθ is a direct descendant of B, and for each atom E
in (A,C), Eθ is a direct descendant of E. We say that E is a descendant of
F if the pair (E,F ) is in the reflexive, transitive closure of the relation is a

direct descendant of. Consider a derivation Q0
θ1=⇒ · · ·

θi=⇒ Qi · · ·
θj
=⇒ Qj

θj+1

=⇒

Qj+1 · · ·. We say that Qj

θj+1

=⇒ Qj+1 · · · is a B-step if B is a subquery of Qi and
the selected atom in Qj is a descendant of an atom in B.

3 Modes and Input-Consuming Derivations

In this section we introduce the concept of input-consuming derivation which is
strictly related to the notion of mode; we discuss the relations between input-
consuming derivations and programs using delay declarations; we recall the
notion of nicely-moded program and state some properties.

3.1 Input-Consuming Derivations

Let us first recall the notion of mode. A mode is a function that labels as input
or output the positions of each predicate in order to indicate how the arguments
of a predicate should be used.

Definition 2 (Mode) Consider an n-ary predicate symbol p. A mode for p is
a function mp from {1, . . . , n} to {In,Out}.

If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p
(wrt. mp). We assume that each predicate symbol has a unique mode associated
to it; multiple modes may be obtained by simply renaming the predicates.

If Q is a query, we denote by In(Q) (resp. Out(Q)) the sequence of terms
filling in the input (resp. output) positions of predicates in Q. Moreover, when
writing an atom as p(s, t), we are indicating with s the sequence of terms filling
in the input positions of p and with t the sequence of terms filling in the output
positions of p.

The notion of input-consuming derivation was introduced in [Sma99b] and
is defined as follows.

Definition 3 (Input-Consuming)

• An atom p(s, t) is called input-consuming resolvable wrt. a clause c :=
p(u,v)← Q and a substitution θ iff θ = mgu(p(s, t), p(u,v)) and s = sθ.
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• A derivation step

A, B,C
θ

=⇒c (A,B,C)θ

is called input-consuming iff the selected atom B is input-consuming re-
solvable wrt. the input clause c and the substitution θ.

• A derivation is called input-consuming iff all its derivation steps are input-
consuming.

The following lemma states that we are allowed to restrict our attention to
input-consuming derivations with relevant mgu’s.

Lemma 4 Let p(s, t) and p(u,v) be two atoms. If there exists an mgu θ of
p(s, t) and p(u,v) such that sθ = s, then there exists a relevant mgu ϑ of p(s, t)
and p(u,v) such that sϑ = s.

Proof. Since p(s, t) and p(u,v) are unifiable, there exists a relevant mgu θrel of
them (cfr. [Apt97], Theorem 2.16). Now, θrel is a renaming of θ. Thus sθrel is a
variant of s. Then there exists a renaming ρ such that Dom(ρ) ⊆ Var(s, t,u,v)
and sθrelρ = s. Now, take ϑ = θrelρ. �

From now on, we assume that all mgu’s used in the input-consuming deriva-
tion steps are relevant.

Example 5 Consider the program REVERSE with accumulator in the modes de-
fined below.

mode reverse(In, Out).

mode reverse acc(In,Out,In)

reverse(Xs,Ys) ← reverse acc(Xs,Ys,[ ]).

reverse acc([ ],Ys,Ys).

reverse acc([X|Xs],Ys,Zs) ← reverse acc(Xs,Ys,[X|Zs]).

The derivation δ of REVERSE∪ {reverse([X1, X2], Zs)} depicted below is input-
consuming.

δ := reverse([X1, X2], Zs)⇒ reverse acc([X1, X2], Zs, [ ])⇒
reverse acc([X2], Zs, [X1])⇒ reverse acc([ ], Zs, [X2, X1])⇒ �.

3.2 Input-Consuming vs. Delay Declarations

Delay declarations are by far the most popular mechanism for implementing
dynamic scheduling. However, being a non-logical mechanism, they are difficult
to model and there are few proposals concerning their semantics [Mar97] and
[FGMP97].

An alternative approach to dynamic scheduling, which is much more declar-
ative in nature, has been proposed by Smaus [Sma99b]. It consists in the use
of input-consuming derivations.
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There is a main difference between the concept of delay declaration and
the one of input-consuming derivation: While in the first case only the atom
selectability is controlled, in the second one both the atom and the clause se-
lectability are affected. In fact, in presence of delay declarations, if an atom is
selectable then it can be resolved with respect to any program clause (provided
it unifies with its head); on the contrary, in an input-consuming derivation, if
an atom is selectable then it is input-consuming resolvable wrt. some, but not
necessarily all, program clauses, i.e, only a restricted class of clauses can be used
for resolution.

Also the concept of deadlock has to be understood in two different ways. For
programs using delay declarations a deadlock situation occurs when no atom in
a query satisfies the delay declarations (i.e., no atom is selectable), while for
input-consuming derivations a deadlock occurs when no atom in a query is
resolvable via an input-consuming derivation step and the derivation does not
fail, i.e., there is some atom in the query which unifies with a clause head but
the unification is not input-consuming.

In spite of these differences, in many situations there is a strict relation be-
tween programs using delay declarations and input-consuming derivations. This
relation is studied by Smaus in his PhD thesis [Sma99a]. More precisely, Smaus
proves a result that relates block declarations and input-consuming derivations.
A block declaration is a special case of delay declaration and it is used to de-
clare that certain arguments of an atom must be non-variable when the atom
is selected for resolution. In Chapter 7 of [Sma99a], Smaus shows that block
declarations can be used to ensure that derivations are input-consuming. In
force of this result and of practical experience, we might claim that in most
“usual” moded programs using them, delay declarations are employed precisely
for ensuring the input-consumedness of the derivations.

In fact, delay declarations are generally employed to guarantee that the
interpreter will not use an “inappropriate” clause for resolving an atom (the
other, perhaps less prominent, use of delay declarations is to ensure absence of
runtime errors, but we do not address this issue in this paper). This is achieved
by preventing the selection of an atom until a certain degree of instantiation
is reached. This degree of instantiation ensures then that the atom is unifiable
only with the heads of the “appropriate” clauses. In presence of modes, we
can reasonably assume that this degree of instantiation is the one of the input
positions, which are the ones carrying the information. Now, it is easy to see
that a derivation step involving a clause c is input-consuming iff no further
instantiation of the input positions of the resolved atom could prevent it from
being resolvable with c. Therefore c must belong to the set of “appropriate”
clauses for resolving it. Thus, the concepts of input-consuming derivation and
of delay declarations are often employed for ensuring the same properties.

3.3 Nicely-Moded Programs

In the sequel of the paper we will restrict ourselves to programs and queries
which are nicely-moded. In this section we report the definition of this concept
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together with some basic important properties of nicely-moded programs.

Definition 6 (Nicely-Moded)

• A query Q := p1(s1, t1), . . . , pn(sn, tn) is nicely-moded if t1, . . . , tn is a
linear sequence of terms and for all i ∈ {1, . . . , n}

Var(si) ∩
n⋃

j=i

Var(tj) = ∅.

• A clause c = p(s0, t0)← Q is nicely-moded if Q is nicely-moded and

Var(s0) ∩
n⋃

j=1

Var(tj) = ∅.

In particular, every unit clause is nicely-moded.

• A program P is nicely-moded if all of its clauses are nicely-moded.

Note that a one-atom query p(s, t) is nicely-moded if and only if t is linear
and Var(s) ∩Var(t) = ∅.

Example 7

• The program APPEND in the modes app(In,In,Out) is nicely-moded.

• The program REVERSE with accumulator in the modes depicted in Exam-
ple 5 is nicely-moded.

• The following program MERGE is nicely-moded.

mode merge(In,In,Out).

merge(Xs,[ ],Xs).

merge([ ],Xs,Xs).

merge([X|Xs],[Y|Ys],[Y|Zs]) ← Y < X, merge([X|Xs],Ys,Zs).

merge([X|Xs],[Y|Ys],[X|Zs]) ← Y > X, merge(Xs,[Y|Ys],Zs).

merge([X|Xs],[X|Ys],[X|Zs]) ← merge(Xs,[X|Ys],Zs).

The following result is due to Smaus [Sma99a], and states that the class of
programs and queries we are considering is persistent under resolution.

Lemma 8 Every resolvent of a nicely-moded query Q and a nicely-moded clause
c, where the derivation step is input-consuming and Var(Q) ∩ Var(c) = ∅, is
nicely-moded.

The following Remark, also in [Sma99a], is an immediate consequence of the
definition of input-consuming derivation step and the fact that the mgu’s we
consider are relevant.

Remark 9 Let the program P and the query Q := A, p(s, t),C be nicely-moded.

If A, p(s, t),C
θ

=⇒ (A,B,C)θ is an input-consuming derivation step with se-
lected atom p(s, t), then Aθ = A.

9



4 The Left Switching Lemma

The switching lemma (see for instance [Apt97], Lemma 3.32) is a well-known
result which allows one to prove the independence of the computed answer
substitutions from the selection rule.

In the case of logic programs using dynamic scheduling, the switching lemma
does not hold any longer. For example, in program APPEND reported in the
introduction (together with the delay declaration d1) we have that the rightmost
atom of Q2 is selectable only after the leftmost one has been resolved; i.e., the
switching lemma cannot be applied.

Nevertheless we can show that, for input-consuming derivations of nicely-
moded programs, a weak version of the switching lemma still holds. Intuitively,
we show that we can switch the selection of two atoms whenever this results in
a left to right selection. For this reason, we call it left switching lemma.

First, we need one technical result, stating that the only variables of a query
that can be “affected” in an input-consuming derivation process are those occur-
ring in some output positions. Intuitively, this means that if the input arguments
of a call are not “sufficiently instantiated” then it is delayed until it allows for an
input-consuming derivation step (if it is not the case then a deadlock situation
will arise).

Lemma 10 Let the program P and the query Q be nicely-moded. Let δ :=

Q
θ
7−→ Q′ be a partial input-consuming derivation of P ∪ {Q}. Then, for all

x ∈ Var(Q) and x 6∈ Var(Out(Q)), xθ = x.

Proof. Let us first establish the following claim.

Claim 11 Let z and w be two variable disjoint sequences of terms such that
w is linear and θ = mgu(z,w). If s1 and s2 are two variable disjoint terms
occurring in z then s1θ and s2θ are variable disjoint terms.

Proof. The result follows from Lemmata 11.4 and 11.5 in [AP94a]. �

We proceed with the proof of the lemma by induction on len(δ).
Base Case. Let len(δ) = 0. In this case Q = Q′ and the result follows

trivially.
Induction step. Let len(δ) > 0. Suppose that Q := A, p(s, t),C and

δ := A, p(s, t),C
θ1=⇒ (A,B,C)θ1

θ27−→ Q′

where p(s, t) is the selected atom of Q, c := p(u,v) ← B is the input clause
used in the first derivation step, θ1 is a relevant mgu of p(s, t) and p(u,v) and
θ = θ1θ2.

Let x ∈ Var(A, p(s, t),C) and x 6∈ Var(Out(A, p(s, t),C)). We first show that

xθ1 = x (1)

We distinguish two cases.
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(a) x ∈ Var(s). In this case, property (1) follows from the hypothesis that
δ is input-consuming.

(b) x 6∈ Var(s). Since x ∈ Var(A, p(s, t),C), by standardization apart, we
have that x 6∈ Var(p(u,v)). Moreover, since x 6∈ Var(Out(A, p(s, t),C)), it also
holds that x 6∈ Var(p(s, t)). Then, property (1) follows from relevance of θ1.

Now we show that
xθ2 = x (2)

Again, we distinguish two cases:
(c) x 6∈ Var((A,B,C)θ1). In this case, because of the standardization apart

condition, x will never occur in (A,B,C)θ1
θ27−→ Q′. Hence, x 6∈ Dom(θ2) and

xθ2 = x.
(d) x ∈ Var((A,B,C)θ1). In this case, in order to prove (2) we show

that x 6∈ Var(Out((A,B,C)θ1)). The result then follows by the inductive
hypothesis.

From the standardization apart, relevance of θ1 and the fact that the first
derivation step is input-consuming, it follows that Dom(θ1)∩Var(Q) ⊆ Var(t).

From the hypothesis that Q is nicely-moded, Var(t)∩Var(Out(A,C)) = ∅.
Hence, Var(Out(A,C))θ1 = Var(Out(A,C)). Since x 6∈ Var(Out(A,C)), this
proves that x 6∈ Var(Out((A,C)θ1)).

It remains to be proven that x 6∈ Var(Out(Bθ1). We distinguish two cases.
(d1) x 6∈ Var(s). Since x 6∈ Var(p(s, t)), the fact that x 6∈ Var(Out(Bθ1)

follows immediately by standardization apart condition and relevance of θ1.
(d2) x ∈ Var(s). By known results (see [Apt97], Corollary 2.25), there exists

two relevant mgu σ1 and σ2 such that

• θ1 = σ1σ2,

• σ1 = mgu(s,u),

• σ2 = mgu(tσ1,vσ1).

From relevance of σ1 and the fact that, by nicely-modedness of Q, Var(s) ∩
Var(t) = ∅, we have that tσ1 = t, and by the standardization apart condition
Var(t)∩Var (vσ1) = ∅. Now by nicely-modedness of c, Var(u)∩Var (Out(B)) =
∅. Since σ1 is relevant and by the standardization apart condition it follows that

Var(uσ1) ∩Var(Out(Bσ1)) = ∅ (3)

The proof proceeds now by contradiction. Suppose that x ∈ Var(Out(Bσ1σ2)).
Since by hypothesis x ∈ Var(s), and s = uσ1σ2, we have that Var(uσ1σ2) ∩
Var(Out(Bσ1σ2)) 6= ∅. By (3), this means that there exist two distinct variables
z1 and z2 in Var(σ2) such that z1 ∈ Var(Out(Bσ1)), z2 ∈ Var(uσ1) and

Var(z1σ2) ∩ Var(z2σ2) 6= ∅ (4)

Since, by the standardization apart condition and relevance of the mgu’s, Var(σ2)
⊆ Var(vσ1) ∪ Var(t) and (Var(Out(Bσ1)) ∪ Var(uσ1)) ∩ Var(t) = ∅, we have
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that z1 and z2 are two disjoint subterms of vσ1. Since σ2 = mgu(t,vσ1), t is
linear and disjoint from vσ1, (4) contradicts Claim 11. �

The following corollary is an immediate consequence of the above lemma
and the definition of nicely-moded program.

Corollary 12 Let the program P and the one-atom query A be nicely-moded.

Let δ := A
θ
7−→ Q′ be a partial input-consuming derivation of P ∪ {A}. Then,

for all x ∈ Var(In(A)), xθ = x.

Next is the main result of this section, showing that for input-consuming
nicely-moded programs one half of the well-known switching lemma holds.

Lemma 13 (Left-Switching) Let the program P and the query Q0 be nicely-
moded. Let δ be a partial input-consuming derivation of P ∪ {Q0} of the form

δ := Q0
θ1=⇒c1 Q1 · · ·Qn

θn+1

=⇒cn+1
Qn+1

θn+2

=⇒cn+2
Qn+2

where

• Qn is a query of the form A, B,C, D,E,

• Qn+1 is a resolvent of Qn and cn+1 wrt. D,

• Qn+2 is a resolvent of Qn+1 and cn+2 wrt. Bθn+1.

Then, there exist Q′
n+1, θ

′
n+1, θ

′
n+2 and a derivation δ′ such that

θn+1θn+2 = θ′n+1θ
′
n+2

and

δ′ := Q0
θ1=⇒c1 Q1 · · ·Qn

θ′

n+1

=⇒cn+2
Q′

n+1

θ′

n+2

=⇒cn+1
Qn+2

where δ′ is input-consuming and

• δ and δ′ coincide up to the resolvent Qn,

• Q′
n+1 is a resolvent of Qn and cn+2 wrt. B,

• Qn+2 is a resolvent of Q′
n+1 and cn+1 wrt. Dθ′n+1,

• δ and δ′ coincide after the resolvent Qn+2.

Proof. Let B := p(s, t), D := q(u,v), cn+1 := q(u′,v′) ← D and cn+2 :=
p(s′, t′)← B. Hence, θn+1 = mgu(q(u,v), q(u′,v′)) and

uθn+1 = u, since δ is input-consuming. (5)

By (5) and the fact that Qn is nicely-moded and θn+1 is relevant, we have that
p(s, t)θn+1 = p(s, t). Then, θn+2 = mgu(p(s, t)θn+1, p(s

′, t′)) = mgu(p(s, t), p(s′, t′))
and

sθn+2 = s, since δ is input-consuming. (6)

12



Moreover,2

θn+1θn+2 = mgu{p(s, t) = p(s′, t′), q(u,v) = q(u′,v′)} = θn+2θ
′
n+2 (7)

where

θ′n+2 = mgu(q(u,v)θn+2, q(u
′,v′)θn+2) = mgu(q(u,v)θn+2, q(u

′,v′)).

We construct the derivation δ′ as follows.

δ′ := Q0
θ1=⇒c1 Q1 · · ·Qn

θ′

n+1

=⇒cn+2
Q′

n+1

θ′

n+2

=⇒cn+1
Qn+2

where
θ′n+1 = θn+2 (8)

By (6), Qn

θ′

n+1

=⇒cn+2
Q′

n+1 is an input-consuming derivation step. Observe now
that

uθ′n+1θ
′
n+2 = uθn+2θ

′
n+2, (by (8))

= uθn+1θn+2, (by (7))
= uθn+2, (by (5))
= uθ′n+1, (by (8)).

This proves that Q′
n+1

θ′

n+2

=⇒cn+1
Q′

n+2 is an input-consuming derivation step. �

This result shows that it is always possible to proceed left-to-right to resolve
the selected atoms. Notice that this is different than saying that the leftmost
atom of a query is always resolvable: It can very well be the case that the
leftmost atom is suspended and the one next to it is resolvable. However, if the
leftmost atom of a query is not resolvable then we can state that the derivation
will not succeed, i.e., either it ends by deadlock, or by failure or it is infinite.

It is important to notice that if we drop the nicely-modedness condition the
above lemma would not hold any longer. For instance, it does not apply to the
query Q1 of the introduction which is not nicely-moded. In fact, the leftmost
atom of Q1 is resolvable only after the rightmost one has been resolved at least
once.

The following immediate corollary will be used in the sequel.

Corollary 14 Let the program P and the query Q := A,B be nicely-moded.
Suppose that

δ := A,B
θ
7−→ C1,C2

that is a partial input-consuming derivation of P ∪ {Q} where C1 and C2 are
obtained by partially resolving A and B, respectively. Then there exists a partial
input-consuming derivation

δ′ := A,B
θ17−→ C1,Bθ1

θ27−→ C1,C2

where all the A-steps are performed in the prefix A,B
θ17−→ C1,Bθ1 and θ =

θ1θ2.

2We use the notation mgu(E) to denote the mgu of a set of equations E, see [Apt97].
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5 Termination

In this section we study the termination of input-consuming derivations. To
this end we refine the ideas of Bezem [Bez93] and Cavedon [Cav89] who studied
the termination of logic programs in a very strong sense, namely with respect to
all selection rules, and of Smaus [Sma99b] who characterized terminating input-
consuming derivations of programs which are both well and nicely-moded.

5.1 Input Terminating Programs

We first introduce the key notion of this section.

Definition 15 (Input Termination) A program is called input terminating
iff all its input-consuming derivations started in a nicely-moded query are finite.

The method we use in order to prove that a program is input terminating
is based on the following concept of moded level mapping due to Etalle et al.
[EBC99].

Definition 16 (Moded Level Mapping) Let P be a program and BE
P be the

extended Herbrand base3 for the language associated with P . A function | | is a
moded level mapping for P iff:

• it is a function | | : BE
P → N from atoms to natural numbers;

• for any t and u, |p(s, t)| = |p(s,u)|.

For A ∈ BE
P , |A| is the level of A.

The condition |p(s, t)| = |p(s,u)| states that the level of an atom is inde-
pendent from the terms in its output positions. There is actually a small yet
important difference between this definition and the one in [EBC99]: In [EBC99]
the level mapping is defined on ground atoms only. Indeed, in [EBC99] only
well-moded atoms are considered, i.e., atoms with ground terms in the input
positions. Here, instead, we are considering nicely-moded atoms whose input
positions can be filled in by (possibly) non-ground terms.

Example 17 Let us denote by TSize(t) the term size of a term t, that is the
number of function and constant symbols that occur in t.

• A moded level mapping for the program APPEND reported in the introduction
is as follows:

|app(xs,ys,zs)|=TSize(xs).

3The extended Herbrand base of P is the set of equivalence classes of all (possibly non-
ground) atoms, modulo renaming, whose predicate symbol appears in P . As usual, an atom
is identified with its equivalence class.
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• A moded level mapping for the program REVERSE with accumulator of Ex-
ample 5 is the following:

|reverse(xs,ys)|= TSize(xs)
|reverse acc(xs,ys,zs)|=TSize(xs).

5.2 Quasi Recurrency

In order to give a sufficient condition for termination, we are going to employ
a generalization of the concept of recurrent and of semi-recurrent program. The
first notion (which in the case of normal programs, i.e., programs with negation,
coincides with the one of acyclic program) was introduced in [Bez93, AB91]
and independently in [Cav91] in order to prove universal termination for all
selection rules together with other properties of logic programs. Later, Apt
and Pedreschi [AP94a] provided the new definition of semi-recurrent program,
which is equivalent to the one of recurrent program, but it is easier to verify in
an automatic fashion. In order to proceed, we need a preliminary definition.

Definition 18 Let P be a program, p and q be relations. We say that p refers
to q in P iff there is a clause in P with p in the head and q in the body. We
say that p depends on q and write p ⊒ q in P iff (p, q) is in the reflexive and
transitive closure of the relation refers to.

According to the above definition, p ≃ q ≡ p ⊑ q ∧ p ⊒ q means that p and
q are mutually recursive, and p ⊐ q ≡ p ⊒ q ∧ p 6≃ q means that p calls q as a
subprogram. Notice that ⊐ is a well-founded ordering.

Finally, we can provide the key concept we are going to use in order to prove
input termination.

Definition 19 (Quasi Recurrency) Let P be a program and | | :BE
P → N be

a moded level mapping.

• A clause of P is called quasi recurrent with respect to | | if for every
instance of it, H ← A, B,C

if Rel(H) ≃ Rel(B) then |H | > |B|. (9)

• A program P is called quasi recurrent with respect to | | if all its clauses
are. P is called quasi recurrent if it is quasi recurrent wrt. some moded
level mapping | | : BE

P → N.

The notion of quasi recurrent program differs from the concepts of recurrent
and of semi-recurrent program in two ways. First, we require that |H | > |B|
only for those body atoms which mutually depend on Rel(H); in contrast, both
the concept of recurrent and of semi-recurrent program require that |H | > |B|
(|H | ≥ |B| in the case of semi-recurrency) also for the atoms for which Rel(H) 6≃
Rel(B). Secondly, every instance of a program clause is considered, not only
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ground instances as in the case of (semi-)recurrent programs. This allows us
to treat directly any nicely-moded query without introducing the concept of
boundedness [AP94a] or cover as in [MT95].

It is worthwhile noticing that this concept almost coincides with the one
of ICD-acceptable program introduced and used in [Sma99b]. We decided to
use a different name because we believe that referring to the word acceptable
might lead to confusion: The concept of acceptable program was introduced
by Apt and Pedreschi [AP93, AP94a] in order to prove termination of logic
programs using the left-to-right selection rule. The crucial difference between
recurrency and acceptability lies in the fact that the latter relies on a model M ;
this allows condition (9) to be checked only for those body atoms which are in
a way “reachable” wrt. M . Hence, every recurrent program is acceptable but
not vice-versa. As an aside, Marchiori and Teusink [MT95] introduce the notion
of delay recurrent program although their concept is based on the presence of
a model M . Our definition does not rely on a model, and so it is much more
related to the notion of recurrent than the one of acceptable program.

We can now state our first basic result on termination, in the case of non-
modular programs.

Theorem 20 Let P be a nicely-moded program. If P is quasi recurrent then P
is input terminating.

Proof. It will be obtained from the proof of Theorem 24 by setting R = ∅. �

Example 21 Consider the program MERGE defined in Example 7. Let | | be the
moded level mapping for MERGE defined by

|merge(xs,ys,zs)| = TSize(xs) + TSize(ys).

It is easy to prove that MERGE is quasi recurrent wrt. the moded level mapping
above. By Theorem 20, all input-consuming derivations of MERGE started with
a query merge(s, t, u), where u is linear and variable disjoint from s and t, are
terminating.

5.3 Modular Termination

This section contains a generalization of Theorem 20 to the modular case, as
well as the complete proofs for it. The following lemma is a crucial one.

Lemma 22 Let the program P and the query Q := A1, . . . , An be nicely-moded.
Suppose that there exists an infinite input-consuming derivation δ of P ∪ {Q}.
Then, there exist an index i ∈ {1, . . . , n} and substitution θ such that

1. there exists an input-consuming derivation δ′ of P ∪ {Q} of the form

δ′ := A1, . . . , An
θ
7−→ C, (Ai, . . . , An)θ 7−→ · · ·

2. there exists an infinite input-consuming derivation of P ∪ {Aiθ}.
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Proof. Let δ := A1, . . . , An 7−→ · · · be an infinite input-consuming derivation
of P ∪ {Q}. Then δ contains an infinite number of Ak-steps for some k ∈
{1, . . . , n}. Let i be the minimum of such k. Hence δ contains a finite number
of Aj -steps for j ∈ {1, . . . , i− 1} and there exists C and D such that

δ := A1, . . . , An
ϑ
7−→ C,D 7−→ · · ·

where A1, . . . , An
ϑ
7−→ C,D is a finite prefix of δ which comprises all the Aj-

steps of δ for j ∈ {1, . . . , i− 1} and C is the subquery of C,D consisting of the
atoms resulting from some Aj-step (j ∈ {1, . . . , i− 1}). By Corollary 14, there
exists an infinite input-consuming derivation δ′ such that

δ′ := A1, . . . , An
θ
7−→ C, (Ai, . . . , An)θ

θ′

7−→ C,D 7−→ · · ·

where ϑ = θθ′. This proves (i).

Now, let δ′′ := C, (Ai, . . . , An)θ
θ′

7−→ C,D 7−→ · · ·. Note that in δ′′ the atoms
of C will never be selected and, by Remark 9, will never be instantiated. Let
δ′′′ be obtained from δ′′ by omitting the prefix C in each query. Hence δ′′′ is
an infinite input-consuming derivation of P ∪ {(Ai, . . . , An)θ} where an infinite
number of Aiθ-steps are performed. Again, By Remark 9, for every finite prefix
of δ′′′ of the form

Aiθ, (Ai+1, . . . , An)θ
σ17−→ D1,D2

σ2=⇒ D′
1,D

′
2

where D1 and D2 are obtained by partially resolving Aiθ and (Ai+1, . . . , An)θ,

respectively, and D1,D2
σ2=⇒ D′

1,D
′
2 is an Aj-step for some j ∈ {i + 1, . . . , n},

we have that D′
1 = D1. Hence, from the hypothesis that there is an infinite

number ofAiθ-steps in δ′′, it follows that there exists an infinite input-consuming
derivation of P ∪ {Aiθ}. This proves (ii). �

The importance of the above lemma is shown by the following corollary of
it, which will allow us to concentrate on queries containing only one atom.

Corollary 23 Let P be a nicely-moded program. P is input terminating iff for
each nicely-moded one-atom query A all input-consuming derivations of P ∪ {A}
are finite.

We can now state the main result of this section. Here and in what follows we
say that a relation p is defined in the program P if p occurs in a head of a clause
of P , and that P extends the program R if no relation defined in P occurs in R.

Theorem 24 Let P and R be two programs such that P extends R. Suppose
that

• R is input terminating,

• P is nicely-moded and quasi recurrent wrt. a moded level mapping | | :
BE
P → N.
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Then P ∪R is input terminating.

Proof. First, for each predicate symbol p, we define depP (p) to be the number
of predicate symbols it depends on. More formally, depP (p) is defined as the
cardinality of the set {q| q is defined in P and p ⊒ q}. Clearly, depP (p) is
always finite. Further, it is immediate to see that if p ≃ q then depP (p) =
depP (q) and that if p ⊐ q then depP (p) > depP (q).

We can now prove our theorem. By Corollary 23, it is sufficient to prove
that for any nicely-moded one-atom query A, all input-consuming derivations
of P ∪ {A} are finite.

First notice that if A is defined in R then the result follows immediately
from the hypothesis that R is input terminating and that P is an extension of
R. So we can assume that A is defined in P .

For the purpose of deriving a contradiction, assume that δ is an infinite
input-consuming derivation of (P ∪R) ∪ {A} such that A is defined in P . Then

δ := A
θ1=⇒ (B1, . . . , Bn)θ1

θ2=⇒ · · ·

where H ← B1, . . . , Bn is the input clause used in the first derivation step
and θ1 = mgu(A,H). Clearly, (B1, . . . , Bn)θ1 has an infinite input-consuming
derivation in P ∪R. By Lemma 22, for some i ∈ {1, . . . , n} and for some
substitution θ2,

1. there exists an infinite input-consuming derivation of (P ∪R) ∪ {A} of the
form

A
θ1=⇒ (B1, . . . , Bn)θ1

θ27−→ C, (Bi, . . . , Bn)θ1θ2 · · · ;

2. there exists an infinite input-consuming derivation of P ∪ {Biθ1θ2}.

Notice also that Biθ1θ2 is nicely-moded. Let now θ = θ1θ2. Note that Hθ ←
(B1, . . . , Bn)θ is an instance of a clause of P .

We show that (2) cannot hold. This is done by induction on 〈depP (Rel(A)), |A|〉
wrt. the ordering ≻ defined by: 〈m,n〉 ≻ 〈m′, n′〉 iff either m > m′ or m = m′

and n > n′.
Base. Let depP (Rel(A)) = 0 (|A| is arbitrary). In this case, A does not

depend on any predicate symbol of P , thus all the Bi as well as all the atoms
occurring in its descendents in any input-consuming derivation are defined in
R. The hypothesis that R is input terminating contradicts (2) above.

Induction step. We distinguish two cases:

1. Rel(H) ⊐ Rel(Bi),

2. Rel(H) ≃ Rel(Bi).

In case (a) we have that depP (Rel(A)) = depP (Rel(Hθ)) > depP (Rel(Biθ)).
So, 〈depP (Rel(A)), |A|〉 = 〈depP (Rel(Hθ)), |Hθ|〉 ≻ 〈depP (Rel(Biθ)), |Biθ|〉.
In case (b), from the hypothesis that P is quasi recurrent wrt. | |, it follows that
|Hθ| > |Biθ|.
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Consider now the partial input-consuming derivationA
θ
7−→ C, (Bi, . . . , Bn)θ.

By Corollary 12 and the fact that | | is a moded level mapping, it follows that
|A| = |Aθ| = |Hθ|. Therefore, 〈depP (Rel(A)), |A|〉 = 〈depP (Rel(Hθ)), |Hθ|〉 ≻
〈depP (Rel(Biθ)), |Biθ|〉. In both cases, the contradiction follows by the induc-
tive hypothesis. �

Example 25 The program FLATTEN using difference-lists is nicely-moded with
respect to the modes described below, provided that one replaces “\” by “,”, as
we have done here.

mode flatten(In,Out).

mode flatten dl(In,Out,In).

mode constant(In).

mode 6=(In,In).

flatten(Xs,Ys) ← flatten dl(Xs,Ys,[ ]).

flatten dl([ ],Ys,Ys).

flatten dl(X,[X|Xs],Xs) ← constant(X), X 6= [ ].

flatten dl([X|Xs],Ys,Zs) ← flatten dl(Xs,Y1s,Zs),

flatten dl(X,Ys,Y1s).

Consider the moded level mapping for FLATTEN defined by

|flatten(xs,ys)| = TSize(xs)
|flatten dl(xs,ys,zs)| = TSize(xs).

It is easy to see that the program FLATTEN is quasi recurrent wrt. the moded level
mapping above. Hence, all input-consuming derivations of program FLATTEN

started with a query flatten(s,t), where t is linear and variable disjoint from
s, are terminating.

6 Termination: A Necessary Condition

Theorem 20 provides a sufficient condition for termination. The condition is
not necessary, as demonstrated by the following simple example.

mode p(In,Out).

p(X,a) ← p(X,b).

p(X,b).

This program is clearly input terminating, however it is not quasi recurrent. If
it was, we would have that |p(X, a)| > |p(X, b)|, for some moded level mapping
| | (otherwise the first clause would not be quasi recurrent). On the other hand,
since p(X, a) and p(X, b) differ only for the terms filling in their output positions,
by definition of moded level mapping, |p(X, a)| = |p(X, b)|. Hence, we have a
contradiction.
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Nevertheless, as shown by other works, e.g., [Bez93, AP93, EBC99], it is
important to be able to give a characterization of termination, i.e., a condition
which is necessary and sufficient to ensure termination. To this purpose is
dedicated this section.

6.1 Simply-Moded Programs

As demonstrated by the example above, in order to provide a necessary condi-
tion for termination we need to further restrict the class of programs we consider.
The first problem is that we should rule out those situations in which termina-
tion is guaranteed by the instantiation of the output positions of some selected
atom, as it happens in the above example. For this we restrict to simply-moded
programs which are nicely-moded programs with the additional condition that
the output arguments of clause bodies are variables.

Definition 26 (Simply-Moded)

• A query Q (resp., a clause c = H ← Q) is simply-moded if it is nicely-
moded and Out(Q) is a linear sequence of variables.

• A program P is simply-moded iff all of its clauses are simply-moded.

It is important to notice that most programs are simply-moded (see the
mini-survey at the end of [AP93]) and that often non simply-moded programs
can naturally be transformed into simply-moded ones.

Example 27

• The programs REVERSE of Example 5, MERGE of Example 7 and FLATTEN

of Example 25 are all simply-moded.

• Consider the program LAST which extends REVERSE:

mode last(In,Out).

last(Ls,E)← reverse(Ls,[E| ]).

This program is not simply-moded since the argument filling in the output
position in the body of the first clause is not a variable. However, it can
be transformed into a simply-moded one as follows:

mode last(In,Out).

mode selectfirst(In,Out).

last(Ls,E)← reverse(Ls,Rs), selectfirst(Rs,E).

selectfirst([E| ],E).

The following lemma, which is an immediate consequence of Lemma 30 in
[AL95], shows the persistence of the notion of simply-modedness.

Lemma 28 Every resolvent of a simply-moded query Q and a simply-moded
clause c, where the derivation step is input-consuming and Var(Q)∩Var (c) = ∅,
is simply-moded.
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6.2 Input-Recursive Programs

Unfortunately, the restriction to simply-moded programs alone is not sufficient
to extend Theorem 20 by a necessary condition. Consider for instance the
following program QUICKSORT:

mode qs(In,Out).

mode part(In,In,Out,Out).

mode app(In,In,Out).

qs([ ],[ ]).

c1 := qs([X|Xs],Ys) ← part(X,Xs,Littles,Bigs),

qs(Littles,Ls),

qs(Bigs,Bs),

app(Ls,[X|Bs],Ys).

part(X,[ ],[ ],[ ]).

part(X,[Y|Xs],[Y|Ls],Bs) ← X>Y, part(X,Xs,Ls,Bs).

part(X,[Y|Xs],Ls,[Y|Bs]) ← X<=Y, part(X,Xs,Ls,Bs).

This program is simply-moded and input terminating4. However it is not
quasi recurrent. Indeed, there exist no moded level mapping | | such that, for ev-
ery variable-instance, |qs([X|Xs], Ys)| > |qs(Littles, Ls)| and |qs([X|Xs], Ys)| >
|qs(Bigs, Bs)|. This is due to the fact that, in clause c1 there is no direct link
between the input arguments of the recursive calls and those of the clause head.
This motivates the following definition of input-recursive programs.

Definition 29 (Input-Recursive) Let P be a program.

• A clause H ← A, B,C of P is called input-recursive if

if Rel(H) ≃ Rel(B) then Var(In(B)) ⊆ Var(In(H)).

• A program P is called input-recursive if all its clauses are.

Thus, we say that a clause is input-recursive if the set of variables occurring
in the arguments filling in the input positions of each recursive call in the clause
body is a subset of the set of variables occurring in the arguments filling in
the input positions of the clause head. Input-recursive programs have strong
similarities with primitive recursive functions.

Example 30

• The programs APPEND of the introduction, REVERSE of Example 5 and
MERGE of Example 7 are all input-recursive.

4Provided that one models the built-in predicates > and <= as being defined by (an infinite
number of) ground facts of the form >(m,n) and <=(m,n). The problem here is that the
definition of input-consuming derivation does not consider the presence of built-ins.
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• The program FLATTEN of Example 25 is not input-recursive. This is due
to the presence of the fresh variable Y1s in a body atom of the last clause.

• QUICKSORT, is not input-recursive. In particular, clause c1 is not input-
recursive.

6.3 Characterizing Input Terminating Programs

We can now prove that by restricting ourselves to input-recursive and simply-
moded programs, the condition of Theorem 20 is also a necessary one.

To prove this, we follow the approach of Apt and Pedreschi when character-
izing terminating programs [AP94a]. First we introduce the notion of IC-tree
that corresponds to the notion of S-tree in [AP94a] and provides us with a rep-
resentation for all input-consuming derivations of a program P with a query Q,
then we define a level mapping which associates to every atom A the number
of nodes of a given IC-tree and finally we prove that P is quasi recurrent wrt.
such a level mapping.

Definition 31 (IC-tree) An IC-tree for P ∪ {Q} is a tree whose nodes are
labelled with queries such that

• its branches are input-consuming derivations of P ∪ {Q},

• every node Q has exactly one descendant for every atom A of Q and every
clause c from P such that A is input-consuming resolvable wrt. c. This
descendant is a resolvent of Q and c wrt. A.

In this tree, a node’s children consist of all its resolvents, “modulo renaming”,
via an input-consuming derivation step wrt. all the possible choices of a program
clause and a selected atom.

Lemma 32 (IC-tree 1) An IC-tree for P∪{Q} is finite iff all input-consuming
derivations of P ∪ {Q} are finite.

Proof. By definition, the IC-trees are finitely branching. The claim now follows
by König’s Lemma. �

Notice that if an IC-tree for P ∪{Q} is finite then all the IC-trees for P ∪{Q}
are finite.

For a program P and a query Q, we denote by nodes icP (Q) the number of
nodes in an IC-tree for P ∪ {Q}. The following properties of IC-trees will be
needed.

Lemma 33 (IC-tree 2) Let P be a program, Q be a query and T be a finite
IC-tree for P ∪ {Q}. Then

(i) for all non-root nodes Q′ in T , nodes icP (Q′) < nodes icP (Q),

(ii) for all atoms A of Q, nodes icP (A) ≤ nodes icP (Q).
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Proof. Immediate by Definition 31 of IC-tree. �

We can now prove the desired result.

Theorem 34 Let P be a simply-moded and input-recursive program. If P is
input terminating then P is quasi recurrent.

Proof. We show that there exists a moded level mapping | | for P such that P
is quasi recurrent wrt. | |.

Given an atom A, we denote with A∗ an atom obtained from A by replacing
the terms filling in its output positions with fresh distinct variables. Clearly,
we have that A∗ is simply-moded. Then we define the following moded level
mapping for P :

|A| = nodes icP (A∗).

Notice that, the level |A| of an atom A is independent from the terms filling in
its output positions, i.e., | | is a moded level mapping. Moreover, since P is input
terminating and A∗ is simply-moded (in particular, it is nicely-moded), all the
input-consuming derivations of P ∪ {A∗} are finite. Therefore, by Lemma 32,
nodes icP (A∗) is defined (and finite), and thus |A| is defined (and finite) for every
atom A.

We now prove that P is quasi recurrent wrt. | |.
Let c : H ← A, B,C be a clause of P andHθ ← Aθ,Bθ,Cθ be an instance of

c (for some substitution θ). We show that if Rel(H) ≃ Rel(B) then |Hθ| > |Bθ|.
Let H = p(s, t). Hence, (Hθ)∗ = p(sθ,x) where x is a sequence of fresh

distinct variables. Consider a variant c′ : H ′ ← A′, B′,C′ of c variable disjoint
from (Hθ)∗. Let ρ be a renaming such that c′ = cρ. Clearly, (Hθ)∗ and H ′

unify. Let µ = mgu((Hθ)∗, H ′) = mgu((Hθ)∗, Hρ) = mgu(p(sθ,x), p(s, t)ρ).
By properties of substitutions (see [Apt97]), since x consists of fresh variables,
there exists two relevant mgu σ1 and σ2 such that

• σ1 = mgu(sθ, sρ),

• σ2 = mgu(xσ1, tρσ1).

Since sρ ≤ sθ, we can assume that Dom(σ1) ⊆ Var(sρ). Because of standardi-
zation apart, since x consists of fresh variables, xσ1 = x and thus σ2 =
mgu(x, tρσ1). Since x is a sequence of variables, we can also assume that
Dom(σ2) ⊆ Var(x). Therefore Dom(µ) ⊆ Var(Out((Hθ)∗)) ∪ Var(In(Hρ)).
Moreover, since (A′, B′,C′)µ = (A, B,C)ρµ, we have that

(Hθ)∗
µ

=⇒ (A, B,C)ρµ

is an input-consuming derivation step, i.e., (A, B,C)ρµ is a descendant of (Hθ)∗

in an IC-tree for P ∪ {(Hθ)∗}.
By definition of µ, sθ = sρµ; hence

(ρµ)|In(H) = θ|s. (10)
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Let now B = p(u,v). By (10) and the hypothesis that c is input-recursive,
that is Var(In(B)) ⊆ Var(In(H)) = Var(s), it follows that

uρµ = u(ρµ)|In(H) = uθ|s = uθ. (11)

Moreover, since c′ is simply-moded, In(Hρ)∩Out(Bρ) = ∅. Hence, by definition
of µ and standardization apart, Dom(µ) ∩Out(Bρ) = ∅, i.e.,

vρµ = vρ. (12)

Therefore, by (11) and (12), Bρµ = p(u,v)ρµ = p(uθ,vρ) = (Bθ)∗, i.e.,

Bρµ = (Bθ)∗. (13)

Hence,

|Hθ| = nodes icP ((Hθ)∗) by definition of | |
> nodes icP ((A, B,C)ρµ) by Lemma 33 (i)

≥ nodes icP (Bρµ) by Lemma 33 (ii)

= nodes icP ((Bθ)∗) by (13)
= |Bθ| by definition of | |.

�

7 Applicability

This section is intended to show through some examples the applicability of our
results. Then, programs from various well-known collections are analyzed.

7.1 Examples

It is worth noticing that, since the definition of input-consuming derivation
is independent from the textual order of the atoms in the clause bodies, the
results we have provided (Theorems 20, 24 and 34) hold also in the case that
programs and queries are permutation nicely- (or simply-) moded [SHK98], that
is programs and queries which would be nicely- (or simply-) moded after a
permutation of the atoms in the bodies. Therefore, for instance, we can apply
Theorems 20 and 24 to the program FLATTEN as it is presented in [Apt97] (except
for the replacement of “\” with “,”), i.e.,

flatten(Xs,Ys) ← flatten dl(Xs,Ys,[ ]).

flatten dl([ ],Ys,Ys).

flatten dl(X,[X|Xs],Xs) ← constant(X), X 6= [ ].

flatten dl([X|Xs],Ys,Zs) ← flatten dl(X,Ys,Y1s),

flatten dl(Xs,Y1s,Zs).

where the atoms in the body of the last clause are permuted with respect to the
version of Example 25.
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Let us consider again the program APPEND of the introduction with its natural
delay declaration:

mode app(In,In,Out)

app([ ],Ys,Ys).

app([H|Xs],Ys,[H|Zs]) ← app(Xs,Ys,Zs).

delay app(Xs, , ) until nonvar(Xs).

Let Q be the set of one-atom queries of the form app(s,t,Z) where s and
t are any terms and Z is a variable disjoint from s and t. Observe that Q
is closed under resolution: Each resolvent in a derivation starting in a query
from Q is still a query from Q. Moreover, because of the presence of the delay
declaration, only atoms whose first argument is a non-variable term are allowed
to be selected. Thus, selectable atoms have the form app(s,t,Z) where

(1) s is a non-variable term,

(2) t is any term and Z is a variable disjoint from s and t.

Any derivation of APPEND starting in a query of Q is similar to an input-
consuming one. This follows from the fact that for any selectable atom A
and clause’s head H , there exists a mgu θ which does not affect the input
arguments of A. In fact, let A be a selectable atom of Q. If A unifies with
the head of the first clause then, by (1), s is the empty list [ ] and θ =
mgu(A,H) = {Ys/t, Z/t}. Otherwise, If A unifies with the head of the second
clause then, by (1), s is a term of the form [s1|s2] and θ = mgu(A,H) =
{H/s1, Xs/s2, Ys/t, Z/[s1|Zs]}. By (2) it follows that, in both cases, sθ = s and
tθ = t, i.e., θ does not affect the input arguments of A.

Moreover, it is easy to check that APPEND is quasi recurrent wrt. the moded
level mapping depicted in Example 17. Since it is nicely-moded, by applying
Theorem 20 it follows that it is input terminating. By the arguments above, we
can conclude that all the derivations of APPEND in presence of the delay decla-
ration d1 and starting in a (permutation) nicely-moded query are finite. Hence,
in particular, we can state that all the derivations of APPEND starting in the
query Q1 of the introduction, which is not nicely-moded but it is permutation
nicely-moded, are finite.

7.2 Benchmarks

In order to assess the applicability of our results, we have looked into four
collections of logic programs, and we have checked those programs against the
three classes of programs: (permutation) nicely-moded, input terminating and
quasi recurrent programs. The results are reported in Tables 1 to 4. These
tables clearly show that our results apply to the large majority of the programs
considered.

In Table 1 the programs from Apt’s collection are considered, see [Apt97].
The programs from the DPPD’s collection, maintained by Leuschel and available
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at the URL: http://dsse.ecs.soton.ac.uk/∼mal/systems/dppd.html, are referred
to in Table 2. Table 3 considers various programs from Lindenstrauss’s collection
(see the URL: http://www.cs.huji.ac.il/∼naomil). Finally, in Table 4 one finds
the (almost complete) list of programs by F. Bueno, M. Garcia de la Banda and
M. Hermenegildo that can be found at the URL: http://www.clip.dia.fi.upm.es.

For each program we specify the name and the modes of the main proce-
dure. Then we report whether or not the program is (permutation) nicely-
moded (NM), input terminating (IT), and quasi recurrent (QR). Notice that
for programs which are not input terminating, because of Theorem 20, it does
not make sense to check whether or not they are quasi recurrent. For this rea-
son, we leave blank the cells in the column QR corresponding to non-input
terminating programs.

Finally, Table 5 reports the list of programs from previous tables which have
been found to be input terminating but not quasi recurrent. For these programs,
the notion of quasi recurrency does not provide an exact characterization of
input termination. In particular, Theorem 34 does not apply. In order to
understand which of the hypothesis of the theorem does not hold, we report
in Table 5 whether or not these programs are simply-moded (SM) and input-
recursive (IR).

8 Conclusion and Related Works

In this paper we studied the properties of input-consuming derivations of nicely-
moded programs.

This study is motivated by the widespread use of programs using dynamic
scheduling controlled by delay declarations. In fact, as we have motivated in
Section 3.2, we believe that in most practical programs employing delay decla-
rations these constructs are used for guaranteeing that the derivation steps are
input-consuming.

In the first place, we showed that for nicely-moded programs a weak version
of the well-known switching lemma holds: If, given a query (A, B,C, D,E),
D is selected before B in an input-consuming derivation, then the two resolu-
tion steps can be interchanged while maintaining that the derivation is input-
consuming.

Secondly, we presented a method for proving termination of programs and
queries which are (permutation) nicely-moded. We also showed a result charac-
terizing a class of input terminating programs.

In the literature, the paper most related to the present one is certainly
[Sma99b]. Our results strictly generalize those in [Sma99b] in the fact that we
drop the condition that programs and queries have to be well-moded. This is
particularly important in the formulation of the queries. For instance, in the
program FLATTEN of Example 25, our results show that every input-consuming
derivation starting in a query of the form flatten(t, s) terminates provided that
t is linear and disjoint from s, while the results of [Sma99b] apply only if t is
a ground term. Note that well-moded queries (in well-moded programs) never
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terminate by deadlock, since the leftmost atom of each resolvent is ground in
its input positions and hence selectable. This does not hold for nicely-moded
queries which might deadlock. Our method allows us thus to cope also with this
more difficult situation: For instance we can prove that all derivations of APPEND
starting in app(X, Y, Z) are terminating. In practice the result of [Sma99b] iden-
tify a class of programs and queries which is both terminating and deadlock free.
While deadlock is clearly an undesirable situation, there are various reasons why
one might want to prove termination independently from the absence of dead-
lock: In the first place, one might want to prove absence of deadlock using a
different tool than by employing well-moded programs. Secondly, in some situa-
tions absence of deadlock might be difficult or impossible to prove, like in a mod-
ular context in which the code of some module is not known, hence not analyz-
able: consider for instance the query generator 1(X1s), generator 2(X2s),

append(X1s,X2s,Zs)., where the generators are defined in different modules;
our results allow us to demonstrate that if the generators terminate, then the
above query terminates. On the other hand, one cannot determine whether it
is deadlock free unless one has a more precise specification of the generators.
Thirdly, it is well-known that one of the goals of dynamic scheduling is pre-
cisely enforcing termination; in this respect a deadlock can be regarded as the
situation in which “all else failed”. Our system allows us to check how effective
dynamic scheduling is in enforcing termination.

Concluding our comparison with [Sma99b], for the class of (permutation)
simply-moded and input-recursive programs, we provide an exact characteriza-
tion of input termination. A similar result is not present in [Sma99b].

Apt and Luitjes [AL95] have also tackled the problem of the termination of
programs in presence of dynamic scheduling. The techniques employed in it are
based on determinacy checks and the presence of successful derivations, thus
are completely different from ours. It is nevertheless worth mentioning that
[AL95] reports a special ad-hoc theorem, in order to prove that, if u is linear
and disjoint from s then the query app(s, t, u) terminates. This is reported in
order to show the difficulties one encounters in proving termination in presence
of dynamic scheduling. Now, under the further (mild) additional condition that
u be disjoint from t, the termination of app(s, t, u) is a direct consequence of
our main result.

Another related paper is the one by Marchiori and Teusink [MT95]. However,
Marchiori and Teusink make a strong restriction on the selection rule, which has
to be local ; this restriction actually forbids any form of coroutining. Moreover,
[MT95] allows only safe delay declarations; we do not report here the definition
of safe delay declaration, we just say that it is rather restrictive: For instance,
the delay declaration we have used for APPEND is not safe (a safe one would
be delay app(X, , ) until list(X)). Actually, their requirements go beyond
ensuring that derivations are input-consuming.

Applicability and effectiveness of our results have been demonstrated by
matching our main definitions against the programs of four public program
lists. These benchmarks showed that most of the considered programs are nicely-
moded (for a suitable mode) and quasi recurrent (wrt. a suitable level mapping).
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Table 1: Programs from Apt’s Collection

NM IT QR NM IT QR
app(In, , ) yes yes yes ordered(In) yes yes yes
app( , ,In) yes yes yes overlap( ,In) yes yes yes
app(Out,In,Out) yes no overlap(In,Out) yes no
append3(In,In,In,Out) yes yes yes perm( ,In) yes yes yes
color map(In,Out) yes no perm(In,Out) yes no
color map(Out,In) yes no qsort(In, ) yes yes no
color map(In,In) yes yes yes qsort(Out,In) yes no
dcsolve(In, ) yes no reverse(In, ) yes yes yes
even(In) yes yes yes reverse(Out,In) yes no
fold(In,In,Out) yes yes yes select( ,In, ) yes yes yes
list(In) yes yes yes select( , ,In) yes yes yes
lte(In, ) yes yes yes select(In,Out,Out) yes no
lte( ,In) yes yes yes subset(In,In) yes yes yes
map(In, ) yes yes yes subset (In,Out) yes no
map( ,In) yes yes yes subset (Out,In) yes no
member( ,In) yes yes yes sum( ,In, ) yes yes yes
member(In,Out) yes no sum( , ,In) yes yes yes
mergesort(In, ) yes yes no sum(In,Out,Out) yes no
mergesort(Out,In) yes no type(In,In,Out) no yes no
mergesort variant( , ,In) yes yes yes type(In,Out,Out) no no

Table 2: Programs from DPPD’s Collection

NM IT QR NM IT QR
applast(In,In,Out) yes yes yes match app(In,Out) yes no
applast(Out, , ) yes no max lenth(In,Out,Out) yes yes yes
applast( ,Out, ) yes no memo solve(In,Out) yes yes no
contains( ,In) yes yes yes power(In,In,In,Out) yes yes yes
contains(In,Out) yes no prune(In, ) yes yes yes
depth(In,In) yes yes yes prune( ,In) yes yes yes
depth(In,Out) yes yes no relative (In, ) yes no
depth(Out,In) yes no relative( ,In) yes no
duplicate(In,Out) yes yes yes rev acc(In,In,Out) yes yes yes
duplicate(Out,In) yes yes yes rotate(In, ) yes yes yes
flipflip(In,Out) yes yes yes rotate( ,In) yes yes yes
flipflip(Out,In) yes yes yes solve( , , ) yes no
generate(In,In,Out) yes no ssupply(In,In,Out) yes yes yes
liftsolve(In,Out) yes no trace(In,In,Out) yes yes yes
liftsolve(Out,In) yes no transpose( ,In) yes yes yes
liftsolve(In,In) yes yes yes transpose(In,Out) yes no
match app( ,In) yes yes yes unify(In,In,Out) yes no
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Table 3: Programs from Lindenstrauss’s Collection

NM IT QR NM IT QR
ack(In,In, ) yes yes no least(In, ) yes yes yes
concatenate(In, , ) yes yes yes least( ,In) yes yes yes
concatenate( , ,In) yes yes yes normal form(In, ) yes no
concatenate( ,In, ) yes no normal form( ,In) yes no
descendant(In, ) yes no queens( ,Out) yes yes no
descendant( ,In) yes no queens( ,In) yes yes yes
deep(In, ) yes yes yes poss(In) yes yes yes
deep(Out, ) yes no poss(Out) yes no
credit(In, ) yes yes yes rewrite(In, ) yes yes yes
credit( ,In) yes yes yes rewrite( ,In) yes yes yes
holds( ,Out) yes no transform( , , ,Out) yes no
holds( ,In) yes yes yes transform( , , , In) yes yes yes
huffman(In, ) yes yes no twoleast(In, ) yes yes yes
huffman( ,In) yes no twoleast( ,In) yes yes yes

Table 4: Programs from Hermenegildo’s Collection

NM IT QR
aiakl.pl init vars(In,In,Out,Out) yes yes yes
ann.pl analyze all(In,Out) yes yes yes
bid.pl bid(In,Out,Out,Out) yes yes yes
boyer.pl tautology(In) yes no
browse.pl investigate(In,Out) yes yes yes
fib.pl fib(In,Out) yes no
fib add.pl fib(In,Out) yes yes yes
hanoiapp.pl shanoi(In,In,In,In,Out) yes no
hanoiapp suc.pl shanoi(In,In,In,In,Out) yes yes yes
mmatrix.pl mmultiply(In,In,Out) yes yes yes
occur.pl occurall(In,In,Out) yes yes yes
peephole.pl peephole opt(In,Out) yes yes yes
progeom.pl pds(In,Out) yes yes yes
rdtok.pl read tokens(In,Out) yes no
read.pl parse(In,Out) yes no
serialize.pl serialize(In,Out) yes yes no
tak.pl tak(In,In,In,Out) yes no
tictactoe.pl play(In) yes no
warplan.pl plans(In,In) yes no
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Table 5: Input terminatining but non-quasi recurrent Programs

SM IR
mergesort(In, ) yes no
qsort(In, ) yes no
type(In,In,Out) no no
depth(In,Out) yes no
memo solve(In,Out) no no
ack(In,In, ) yes no
huffman(In, ) no no
queens( ,Out) no no
serialize(In,Out) no no
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