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Abstract

Many metainterpreters found in the logic programming literature are nondeterministic in
the sense that the selection of program clauses is not determined. Examples are the familiar
“demo” and “vanilla” metainterpreters. For some applications this nondeterminism is
convenient. In some cases, however, a deterministic metainterpreter, having an explicit
selection of clauses, is needed. Such cases include (1) conversion of or parallelism into
and parallelism for “committed-choice” processors, (2) logic-based, imperative-language
implementation of search strategies, and (3) simulation of bounded-resource reasoning.

Deterministic metainterpreters are difficult to write because the programmer must be
concerned about the set of unifiers of the children of a node in the derivation tree. We argue
that it is both possible and advantageous to write these metainterpreters by reasoning
in terms of object programs converted into a syntactically restricted form that we call
“chain” form, where we can forget about unification, except for unit clauses. We give two
transformations converting logic programs into chain form, one for “moded” programs
(implicit in two existing exhaustive-traversal methods for committed-choice execution),
and one for arbitrary definite programs. As illustrations of our approach we show examples
of the three applications mentioned above.

1 Introduction

Perhaps the most common use of metalogic is the definition and implementation of

metainterpreters (Safra and Shapiro 1986, Abramson and Rogers 1988, Kowalski

1990, Apt and Turini 1995). Many applications of metainterpreters are based on

concise definitions, like that of the “vanilla” metainterpreter, which can be easily

elaborated as required. Other applications, however, have been neglected, possibly

because of employing convoluted definitions. Examples are deterministic metain-

terpreters exhaustively traversing search spaces. Our purpose will be to present a

technique simplifying the design of deterministic metainterpreters. This technique

converts the object program into a form severely restricted in its syntax, thereby

facilitating reasoning about its search space.

Early works exploiting metainterpreters to great advantage are for example Bowen

and Kowalski’s amalgamation of language and metalanguage (Bowen and Kowalski

1982), Sergot’s “query-the-user” facility (Sergot 1982), and Shapiro’s “algorithmic

debugger” (Shapiro 1982). These metainterpreters, just as the familiar vanilla and

http://arxiv.org/abs/cs/0104003v1
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demo metainterpreters, have nondeterministic definitions. Consider for example the

following demo predicate (Kowalski 1990, Kowalski 1995):

demo(T ,P)← axiom(T ,P ← Q), demo(T ,Q)

demo(T ,P ∧Q)← demo(T ,P), demo(T ,Q)

demo(T , true)←

This definition is nondeterministic because it is not determined, in the first clause of

the definition, what axiom in the theory T , having conclusion P , might be needed

to demonstrate P (Kowalski 1995, p. 229).

For some applications this nondeterminism is convenient. For others, however,

a deterministic metainterpreter, having an explicit selection of axioms, is desired.

A problem amenable to deterministic metainterpretation is that of exhaustively

traversing, using a committed-choice processor, the search space generated by a

logic program and a goal (Ueda 1987, Tamaki 1987). Another problem is that

of describing search strategies with logic programs equivalent to flowcharts, like

the programs of (Clark and van Emden 1981). Yet another application is Kowal-

ski’s approach for reconciling reactive and rational agents with bounded-resource

metainterpreters (Kowalski 1995).

It is of course possible to write deterministic metainterpreters for logic programs.

Clark and Gregory were perhaps among the first to publish (Clark and Gregory

1985) one such metainterpreter. We show a slightly modified version of their metain-

terpreter in Fig. 1. The intended meanings of some of the predicates in this metain-

terpreter are as follows. Assume that the set of answer substitutions to the goal hav-

ing A as its only subgoal is {θ1, . . . , θn}. Then the predicate single call set(A,Aθs)

is intended to hold when Aθs is a list of the form [Aθ1, . . . ,Aθn ].

The predicate set(A,Bs,Aθs) is a generalisation of single call set. In this case the

goal Bs, which may have more than one subgoal, is of the form B1 ∧ . . . ∧ Bm ∧

true, and Aθs is of the form [Aθ1, . . . ,Aθn ], where {θ1, . . . , θn} is the set of answer

substitutions for Bs. (Bs terminates by true to simplify the code.)

The predicate all set(ABs ,Aθs), in turn, can be viewed as a generalisation of set,

where ABs is a list of clauses [A1 ← Bs1, . . . ,Am ← Bsm ] and Aθs is of the form

[A1θ1,1, . . . ,A1θ1,n1
, . . . ,Amθm,1, . . . ,Amθm,nm

], where {θi,1, . . . , θi,ni
} is the set of

answer substitutions for Bsi . We refer the reader to (Clark and Gregory 1985) for

a thorough discussion of this metainterpreter.

As exhibited in Fig. 1, the programmer must be concerned about the set of unifiers

of the children of a node in the derivation tree (cf. the term instances predicate).

The reason for this concern, as we will see, is that variables in a logic program

can appear anywhere in a clause. This is an additional difficulty, absent in usual

nondeterministic metainterpreters.

The study of deterministic metainterpreters can be viewed as an attempt to

narrow the “gap” between the “don’t-know” form of logic programming, needed

for user-level applications, and the “don’t-care” form, useful for controlling the

execution of logic programs. Kowalski’s observation (Kowalski 1993) that the FGCS

project had experienced such a gap suggests looking at the work done in connection

with this project.
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Example of object-program representation:

definition(ap( , , ), [ap([ ],L,L)← true,

ap([A|L′],M , [A|N ])← (ap(L′

,M ,N ) ∧ true)

]

)←

Example of goal: ← single call set(ap(X ,Y , [a, b]),Aθs)

Metainterpreter:

single call set(A,Aθs)← definition(A,ABs),

all matches(A,ABs ,ABθs
′),

all set(ABθs
′

,Aθs)

all set([ ], [ ])←

all set([A← Bs|ABs ],Aθs)← set(A,Bs,Aθs1),

all set(ABs,Aθs2),

append(Aθs1,Aθs2,Aθs)

set(A, true, [A])←

set(A,B ∧ Bs,Aθs)← single call set(B ,Bθs),

term instances(B ,Bθs ,A← Bs,ABθs),

all set(ABθs ,Aθs)

all matches(A, [ ], [ ])←

all matches(A, [Aθ ← Bθs |ABs ], [Aθ ← Bθs |ABθs
′])← copy(A,Aθ

′),

unify(Aθ,Aθ
′), !,

all matches(A,ABs ,ABθs
′)

all matches(A, [A′ ← Bs|ABs ],ABs ′)← all matches(A,ABs ,ABs
′)

term instances(B , [ ],C , [ ])←

term instances(B , [Bθ|Bθs ],C , [Cθ|Cθs])← copy(f (B ,C ), f (Bθ
′

,Cθ)),

unify(Bθ,Bθ
′),

term instances(B ,Bθs,C ,Cθs)

Figure 1. A deterministic, exhaustive-traversal metainterpreter for arbitrary definite pro-

grams. For readability, we use a string Xθ as the name of a variable taking as value an

instance of the value of X . Similarly, Xθs is the name of a variable taking as value a list

of instances of the value of X .

First Ueda (Ueda 1987), and then Tamaki (Tamaki 1987), published methods

converting a nondeterministic logic program into a deterministic version. The moti-

vation for developing such methods was that of allowing the execution of or-parallel

programs by committed-choice processors (which are and parallel). Understanding

how these methods work might lead to key ideas for obtaining other deterministic-

evaluation methods. However, the considerable intricacy of these methods is an

obstacle for giving a clear and concise explanation of their central mechanisms.
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Trying to elucidate the principles on which these methods are based, we found an

important common characteristic. Both tend to hide, as it were, certain occurrences

of variables, in a list behaving like a stack. In particular, such occurrences are

those of variables that (1) receive a substitution before a subgoal A is selected

and (2) occur in a subgoal selected after A has succeeded. Variables having such

occurrences are called “pass-on” variables in (Tamaki 1987). Hence, if we consider

programs lacking pass-on variables, a fortiori, these transformations get simplified.

A kind of program lacking pass-on variables is that of “chain” programs, having

clauses of the form:

p(X0,Xn)← q1(X0,X1), q2(X1,X2), . . . , qn(Xn−1,Xn)

(as well as other clauses; we formally define chain programs in Sect. 2). Apparently,

concentrating on chain programs should simplify the task of devising deterministic-

traversal methods in general, and defining deterministic metainterpreters in particu-

lar. We confirm this possibility by deriving in Sect. 2 a deterministic metainterpreter

by reasoning in terms of relational union and composition.

This metainterpreter is more useful once we provide ways of transforming logic

programs that do not have chain form into such a form. The methods of (Ueda

1987) and (Tamaki 1987) can handle “moded” programs, that do not necessar-

ily have chain form. In these programs, each argument place of each predicate is

used either as input (instantiated) or as output (uninstantiated). By comparing the

original methods with their versions simplified to chain programs, we have uncov-

ered a transformation converting moded programs into chain form. In Sect. 3 we

give such a transformation, which is in fact implicit in (Ueda 1987) and (Tamaki

1987). As in the methods of Ueda and Tamaki, we hide pass-on variables in a list

behaving like a stack. (We have previously used this transformation for adapting

parsers for context-free languages obtaining inference systems for moded logic pro-

grams (Rosenblueth 1996, Rosenblueth and Peralta 1998).)

Next, in Sect. 4 we give another transformation, converting arbitrary definite

programs into chain form, inspired by the previous one.

Once we have this more general transformation, we can easily extend, in Sect. 5,

the existing methods for deterministic, exhaustive traversal (Ueda 1987, Tamaki

1987) to handle arbitrary definite programs.

Section 6 shows how to write deterministic metainterpreters for other applica-

tions. First we exhibit a metainterpreter having the same behaviour as that of

Prolog systems. Next we give a bounded-resource metainterpreter.

We will assume some familiarity with logic program transformation through the

unfold/fold rules (Pettorossi and Proietti 1994).

Code appearing throughout the sequel, as well as further examples of programs

converted into chain form, may be found at:

http://leibniz.iimas.unam.mx/~drosenbl/detmeta.
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2 A Deterministic, Exhaustive-Traversal Metainterpreter for Chain

Programs

In this section, we will write a deterministic, exhaustive-traversal metainterpreter

for chain programs by reasoning in terms of relational union and composition.

A chain program can be viewed as defining a system of equations of relational

expressions. Such systems of relational equations have been studied for example

in (Engelfriet 1974, de Bakker and Meertens 1975, Blikle 1977). Our translation

of chain programs into relational equations enables us to regard logical inference

from such programs as the evaluation of relational expressions built from union

and composition. Our chain programs are similar to, but different from, certain

programs occurring in the deductive-database literature under the same name; a

difference is that we allow function symbols other than constants.

For clarity, we will discuss now this metainterpreter assuming that only ground

terms are constructed. However, in Sect. 4 we will observe that with the addition

of variable renaming and full unification (as opposed to matching, i.e. one-way

unification), this metainterpreter is also valid for constructing terms with variables.

2.1 Chain programs as systems of relational equations

We define a chain program as a logic program consisting only of clauses of the form:

p(X0,Xn)← q1(X0,X1), q2(X1,X2), . . . , qn(Xn−1,Xn) n > 0 (1)

or p(t , t ′)← (2)

where the Xi ’s are distinct variables, and t and t ′ are any term. The first argument

place of a predicate will be called its input, and the second argument place its

output. It will be useful to single out a kind of chain program where all answers for

such a program and a goal with a leftmost ground input are ground, assuming a

leftmost computation rule. If var(t ′) ⊆ var(t) in every clause of the form (2), then

the program is called a G-chain program. Here, and throughout the sequel, we use

var(t) to denote the set of variables in expression t .

Clearly, the clause (1) denotes the inclusion:

P ⊇ (Q1 ;Q2 ; . . . ;Qn) (3)

where P , Qi name the relations denoted by p, qi , respectively, and “;” denotes

relational composition.1

Let us define

Pj
··
= Q1 ;Q2 ; . . . ;Qn

if the j -th clause defining the predicate with symbol p has the form (1). If, on the

other hand, the j -th clause defining the predicate with symbol p has the form (2),

then

Pj
··
= {(x,x′) : p(x,x′)← is a ground instance of p(t , t ′)←}

1 The composition of relations P and Q is defined as: P ;Q
··

= {(x , z) : ∃y [(x , y) ∈ P & (y , z) ∈
Q ]}.
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Hence, a chain program denotes a system of relational expressions having an

inclusion of the form

P ⊇ (P1 ∪ P2 ∪ . . . ∪ Pm)

for each largest set of clauses defining a predicate with symbol p. Just as sometimes

the meaning of a logic program is defined as its least Herbrand model, here we are

interested in the least solution of this system. It can be shown that such a solution

is equal to the unique solution of the system obtained by replacing the inclusions

by equalities.

For notational convenience, we will extend relational composition to the case

where the first argument is a set. Let S ⊆ D and R ⊆ D ×D .

S ; R
··
= {z : ∃y[y ∈ S & (y, z ) ∈ R]}

i.e. S ; R denotes the image of S under R. Also, we will sometimes omit the curly

braces in singletons. By I we will denote the identity relation and by ∅ the empty

relation as well as the empty set.

Given an object chain program, we will use X as a metavariable taking as value

a ground term, Xs a set of ground terms, Q a relation denoted by an (object-

level) predicate, Qs compositions Q1 ; . . . ; Qn of relations denoted by predicates,

Pj a relation denoted by a single clause, and Pjs unions P1 ∪ . . . ∪ Pm of relations

denoted each by a single clause.

Computing all answers for a chain program and a goal ← q(x,Z ), where x is

a ground term, translates to evaluating the expression x ; Q , where Q names the

relation denoted by q. During this evaluation, we will have to evaluate relational

expressions of the form:

Xs ;Qs (4)

which represent and branches of the SLD tree.

2.2 A metainterpreter as a relational-expression evaluator

Let us now establish an object-program representation. For simplicity, we use the

ambivalent syntax of (Jiang 1994). If the j -th clause defining a predicate with

symbol p is of the form (1) we will have the following clause at the metalevel:

nonunit(pj , (q1 ; q2 ; . . . ; qn ; I))←

where “;” can be interpreted as a right-associative infix list constructor and I as a

constant. If the j -th clause defining a predicate with symbol p is of the form (2) we

will have:

is unit(pj )← and

unit(pj , t , t
′)←

(The is unit predicate is clearly unnecessary, as could be defined using the unit

predicate, but we will use it for readability.)
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Also, for each largest set of clauses defining a predicate with symbol p we will

have:

defn(p, (p1 ∪ p2 ∪ . . . ∪ pm ∪ ∅))←

where ∪ can be interpreted as a right-associative infix list constructor denoting set

union and ∅ as a constant.

In general, we could have two main evaluation strategies for (4): “termwise” (i.e.

decomposing Xs) and “relationwise” (i.e. decomposing Qs). Here we will concen-

trate on a termwise definition (but see (Rosenblueth 1998) for an application of a

metainterpreter using a relationwise definition).

Consider (4). The predicate a(Xs,Qs,Zs) is intended to hold if Zs is Xs ;Qs. Then

the next two clauses, which constitute a termwise definition of this predicate, follow

from the distributivity of composition over union:

a(∅,Qs, ∅)←

a({X } ∪Xs,Qs,YsZs)← a′(X ,Qs,Ys), a(Xs \ {X },Qs,Zs),

union(Ys,Zs,YsZs)

where a′(X ,Qs,Ys) is meant to hold when Ys is X ;Qs and union(Ys,Zs,YsZs) is

meant to hold when YsZs is Ys ∪ Zs.

We can decompose Qs in the definition of a′, which follows from the definition

of composition:

a′(X , I , {X })←

a′(X , (Q ;Qs),Zs)← b′(X ,Q ,Ys), a(Ys,Qs,Zs)

where b′(X ,Q ,Ys) represents the composition Ys of a single term X with a single

relation Q .

The following clause translates such a composition into the composition of X

with a union Pjs of relations:

b′(X ,Q ,Ys)← defn(Q ,Pjs), c′(X ,Pjs,Ys)

where c′(X ,Pjs,Ys) is intended to hold if Ys is X ; Pjs.

Now we inductively define c′ by decomposing Pjs. This definition of c′, as that

of a, follows from the distributivity of composition over union:

c′(X , ∅, ∅)←

c′(X , {Pj} ∪ Pjs,YsZs)← d ′(X ,Pj,Ys), c′(X ,Pjs \ {Pj},Zs),

union(Ys,Zs,YsZs)

where the predicate d ′(X ,Pj,Ys) is assumed to hold when Ys is X ; Pj, and the

predicate union(Ys,Zs,YsZs) is assumed to hold when YsZs is Ys ∪ Zs.

Next we write a definition of d ′(X ,Pj,Ys). This definition uses an auxiliary

predicate e ′(X ,Pj,Ys) in case Pj represents a unit clause. If, on the other hand, Pj

represents a nonunit clause, then the d ′ predicate uses the (object-level) definition
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of Pj to translate X ; Pj into X ; Qs, so that the previously defined predicate

a′(X ,Qs,Zs) can be used.

d ′(X ,Pj,Ys)← is unit(Pj), e ′(X ,Pj,Ys)

d ′(X ,Pj,Zs)← nonunit(Pj,Qs), a′(X ,Qs,Zs)

It only remains to define e ′(X ,Pj,Ys), intended to hold if Ys is X ; Pj and Pj

represents a unit clause.

e ′(X ,Pj, {Y })← unit(Pj,X ,Y ) (5)

e ′(X ,Pj, ∅)← not(unit(Pj,X , )) (6)

The clause (5) covers the case where X matches the input of the unit clause named

Pj, whereas the clause (6) covers the case where X does not match the input of the

unit clause named Pj.

Finally, we give the complete metainterpreter in a more standard Prolog notation.

In addition, we have approximated set union with list concatenation. (A more

efficiently executable metainterpreter would use difference lists, but for clarity we

prefer ordinary lists.) We will call this the abcde metainterpreter.

a([ ],Qs, [ ])←

a([X |Xs],Qs,YsZs)← a′(X ,Qs,Ys), a(Xs,Qs,Zs),

append(Ys,Zs,YsZs) (7)

a′(X , [ ], [X ])←

a′(X , [Q |Qs],Zs)← b′(X ,Q ,Ys), a(Ys,Qs,Zs) (8)

b′(X ,Q ,Ys)← defn(Q ,Pjs), c′(X ,Pjs,Ys)

c′(X , [ ], [ ])←

c′(X , [Pj|Pjs],YsZs)← d ′(X ,Pj,Ys), c′(X ,Pjs,Zs),

append(Ys,Zs,YsZs) (9)

d ′(X ,Pj,Ys)← is unit(Pj), e ′(X ,Pj,Ys)

d ′(X ,Pj,Zs)← nonunit(Pj,Qs), a′(X ,Qs,Zs) (10)

e ′(X ,Pj, [Y ])← unit(Pj,X ,Y )

e ′(X ,Pj, [ ])← not(unit(Pj,X , ))

3 Conversion of Moded Programs into Chain Form

Having written a deterministic metainterpreter for chain programs, our aim now is

to develop a transformation converting “moded” programs (Apt 1997) into chain



Chain Programs for Writing Deterministic Metainterpreters 9

form. We will derive such a transformation with unfold/fold rules (Pettorossi and

Proietti 1994). This transformation is in fact implicit in two existing methods for

deterministic, exhaustive traversal: the continuation-based (Ueda 1987) and the

stream-based (Tamaki 1987) methods. We have previously used such a transforma-

tion for adapting parsers for context-free grammars obtaining inference systems for

moded logic programs (Rosenblueth 1996, Rosenblueth and Peralta 1998).

A clause

p(t0, t
′
n)← q1(t

′
0, t1), q2(t

′
1, t2), . . . , qn(t

′
n−1, tn) n ≥ 0 (11)

is called moded if:

1. var(t ′i) ⊆ var(t0) ∪ · · · ∪ var(ti), for i = 0, . . . , n; and

2. var(ti) ∩ var(tj ) = ∅, for i , j = 0, . . . , n and i 6= j .

A program is called moded if it consists only of moded clauses.

Condition 1 causes every input to be ground if the input of the initial goal is

also ground and we use a leftmost computation rule. When a subgoal succeeds,

condition 2 causes the constructed term to have an effect only on the input of other

subgoals, thus avoiding speculative bindings. In (Rosenblueth 1996, Rosenblueth

and Peralta 1998) we had a third condition (that each variable occurring in t ′i
occurs only once in t ′i , for i = 0, . . . , n, if n > 0) meant only for simplifying the

transformation. However, as we observe below, it is possible to eliminate such a

condition without excessively elaborating the transformation.

We will use the standard equality theory. Given a program P , this theory consists

of the following axioms:

X = X ←

X = Y ← Y = X

X = Z ← X = Y , Y = Z

{f (X1, . . . ,Xnf
) = f (Y1, . . . ,Ynf

)← X1 = Y1, . . . , Xnf
= Ynf

:

f is a function symbol occurring in P}

{p(X1, . . . ,Xnp
)← X1 = Y1, . . . , Xnp

= Ynp
, p(Y1, . . . ,Ynp

) :

p is a predicate symbol occurring in P}

which are called, reflexivity, symmetry, transitivity, function substitutivity, and

predicate substitutivity, respectively.

One way of obtaining a chain clause from a moded clause would be to resolve first

the moded clause with predicate substitutivity so as to replace each argument of a

subgoal by a variable and then to fold the resulting clause using some new predicates

so as to remove the introduced equations. We will see, however, that such a folding

operation may not always be sound (Gardner and Shepherdson 1992, Tamaki and

Sato 1984).

Consider the following append program used for splitting lists.

s(〈L〉, 〈[ ],L〉)← (12)
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s
︸︷︷︸

p

(〈[A|N ]〉
︸ ︷︷ ︸

t0

, 〈[A|L],M 〉
︸ ︷︷ ︸

t ′1

)← s
︸︷︷︸

q1

(〈N 〉
︸︷︷︸

t ′0

, 〈L,M 〉
︸ ︷︷ ︸

t1

) (13)

We employ angled brackets 〈 〉 instead of ordinary brackets [ ] for grouping input

and output arguments. We do this for clarity.

By predicate substitutivity and symmetry, it is possible to derive from (13):

s(X ,Y )← X = 〈[A|N ]〉 , Y = 〈[A|L],M 〉, X ′ = 〈N 〉 , Y ′ = 〈L,M 〉,

s(X ′,Y ′) (14)

Next, we could fold (14) using the following definitions:

naive h0(X ,X ′) ↔ ∃A ∃N (X = 〈[A|N ]〉 & X ′ = 〈N 〉)

naive h1(Y
′,Y ) ↔ ∃A ∃L ∃M (Y ′ = 〈L,M 〉 & Y = 〈[A|L],M 〉)

In the case of naive h0, this folding operation would replace the subgoals enclosed

in rectangles by the definiendum naive h0(X ,X ′). However, as observed in (Tamaki

and Sato 1984), in general it is incorrect to fold a clause such as (14) using a defini-

tion such as that of naive h0, where a variable like A: (a) appears in atoms replaced

by the definiendum (i.e. X = 〈[A|N ]〉), (b) appears in atoms not replaced by the

definiendum (i.e. Y = 〈[A|L],M 〉), and (c) does not unify with any variable appear-

ing in the definiendum. To see this incorrectness, fold and subsequently unfold (14)

with naive h0, and a generalisation of (14) is obtained.

Note that unlike A in (13), N (which does not cause the incorrectness of Tamaki

and Sato) occurs only in t0 and t ′0. This suggests that a minimal strengthening of

the syntactic conditions defining moded clauses so as to avoid the situation above

would be requiring that all variables of t ′i occur in ti (for i = 0, . . . , n). Hence, we

define a clause in prechain form as:

p̂(s0, s
′
n)← q̂1(s

′
0, s1), q̂2(s

′
1, s2), . . . , q̂n(s

′
n−1, sn) n ≥ 0

where:

1. var(s ′i) ⊆ var(si) for i = 0, . . . , n; and

2. var(si) ∩ var(sj ) = ∅, for i , j = 0, . . . , n and i 6= j .

From a clause in prechain form it is possible to arrive at chain form by first

applying predicate substitutivity and then folding with the completed definitions

of predicates of the form:

hi(si , s
′
i)←

Such foldings satisfy also Gardner and Shepherdson’s stronger condition (Gardner

and Shepherdson 1992) for folding.

We face now the problem of converting a moded clause into prechain form. Recall

first the pass-on variables of the deterministic, exhaustive-traversal methods (Ueda

1987, Tamaki 1987), i.e. variables that receive a substitution before a subgoal B is

selected and occur in a subgoal selected after B has succeeded. Observe next that
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prechain form clauses lack pass-on variables. Finally, note that the fact that these

methods use a stack to hide pass-on variables, suggests that we also use a stack to

achieve prechain form.

Since both chain form and prechain form lack pass-on variables, we could have

chosen prechain form for the object programs of our deterministic metainterpreter.

The resulting metainterpreter, however, would not have been as concise.

In converting a moded clause into prechain form, we will often apply the following

sequence of unfolding steps, which we group in a lemma.

Lemma 1 (Equation introduction)

Let C be a definite clause having an occurrence of a variable X . Then the clause

obtained by replacing that occurrence of X by X ′ and adding the equation X = X ′

is logically implied by C and the standard equality theory for C .

Proof

First, we resolve C with predicate substitutivity as follows. If the occurrence of X

is in the head of C , then we select the subgoal of predicate substitutivity which is

not an equation. Next, we apply symmetry to all equations of the resolvent. The

resulting clause has the form:

p(Y1, . . . ,Yd)← t1 = Y1, . . . , td = Yd , A1, . . . , An

If, on the other hand, the occurrence of X is in a subgoal Ai of C , then we select

such a subgoal. The resulting clause has the form:

A0 ← A1, . . . , Ai−1, t1 = Y1, . . . , td = Yd , p(Y1, . . . ,Yd), Ai+1, . . . , An

In either case, the occurrence of X is in some equation tj = Yj .

Next, we apply function substitutivity to tj = Yj as many times as it is necessary

to make such an occurrence appear at the top level of an equation X = X ′.

Finally, we apply reflexivity to all equations except X = X ′, thus disposing of all

unwanted equations. The resulting clause has the claimed form. Hence the lemma

holds.

Often, we will use equation introduction followed by symmetry, to which we will

also refer as equation introduction.

Example 1

Let us convert (13) first into prechain form and then into chain form. To achieve

prechain form, we will use an auxiliary stack, which we introduce in the following

predicate:

ŝ(〈St,X 〉, 〈St,Y ,Z 〉)← s(〈X 〉, 〈Y ,Z 〉)

We first apply equation introduction to the definition of ŝ:

ŝ(〈St,X 〉, 〈St′,Y ,Z 〉)← St = St′, s(〈X 〉, 〈Y ,Z 〉) (15)

Next, we apply equation introduction to (13).

s(〈[A|N ]〉, 〈[A′|L],M 〉)← A = A′, s(〈N 〉, 〈L,M 〉) (16)
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Subsequently, we resolve (15) and (16) unifying the two underlined atoms.

ŝ(〈St, [A|N ]〉, 〈St′, [A′|L],M 〉)← St = St′ , A = A′ ,

s(〈N 〉, 〈L,M 〉)

Next, we fold using function substitutivity.

ŝ(〈St, [A|N ]〉, 〈St′, [A′|L],M 〉)← [A|St] = [A′|St′] ,

s(〈N 〉, 〈L,M 〉)

Finally, we fold using (15) and systematically rename variables.

ŝ(〈St0, [A0|N0]〉, 〈St1, [A1|L1],M1〉)← ŝ(〈[A0|St0],N0〉, 〈[A1|St1],L1,M1〉)

Once we have prechain form, we can apply predicate substitutivity and symmetry,

and then fold w.r.t. the completed definitions of:

h0(〈St0, [A0|N0]〉, 〈[A0|St0],N0〉)←

h1(〈[A1|St1],L1,M1〉, 〈St1, [A1|L1],M1〉)←

arriving at:

ŝ(X0,X3)← h0(X0,X1), ŝ(X1,X2), h1(X2,X3) (17)

End of example

In (Rosenblueth 1996, Rosenblueth and Peralta 1998) we required that each vari-

able occurring in t ′i occurs only once in t ′i . Note that if there is more than one

occurrence of a variable in t ′1, like in:

r(〈[A|N ]〉, 〈[A|L],M , A 〉)← s(〈N 〉, 〈L,M 〉)

thus violating such a condition, we would have an extra equation after applying

equation introduction twice:

r(〈[A|N ]〉, 〈[A′|L],M ,A′′〉)← A = A′, A = A′′ , s(〈N 〉, 〈L,M 〉)

Note that we do not wish to eliminate A = A′′ with reflexivity, since we would

obtain a clause with a variable occurring both in the input and the output of the

head, preventing us from folding the h’s. However, equations such as this one can

be eliminated by factoring all equations with the same left-hand side. Hence we

have withdrawn such a condition.

This derivation suggests a proof of a theorem relating a moded clause with its

chain form.

Theorem 1

Let C be a moded clause:

p(t0, t
′
n)← q1(t

′
0, t1), q2(t

′
1, t2), . . . , qn(t

′
n−1, tn) n ≥ 0

and let

Πj =
(
var(t0) ∪ · · · ∪ var(tj−1)

)
∩
(
var(t ′j ) ∪ · · · ∪ var(t ′n)

)
j = 0, . . . , n + 1
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Then the clause Ĉ :

p̂(U0,U
′
n)← h0(U0,U

′
0), q̂1(U

′
0,U1), h1(U1,U

′
1), q̂2(U

′
1,U2), . . . ,

q̂n(U
′
n−1,Un), hn(Un ,U

′
n)

is logically implied by C , the standard equality theory for C , the “iff” version of

the function substitutivity axiom for the list-constructor function symbol:

[X |Y ] = [X ′|Y ′]↔ X = X ′ & Y = Y ′

and the completed definitions of:

p̂(〈St|X 〉, 〈St|Y 〉)← p(X ,Y )

q̂j (〈St|X 〉, 〈St|Y 〉)← qj (X ,Y ) j = 1, . . . , n

hj (〈Σj |tj 〉, 〈Σj+1|t
′
j 〉)← j = 0, . . . , n

where Σj is any list of the form [X1,j , . . . ,Xdj ,j |St], such that {X1,j , . . . ,Xdj ,j} = Πj ,

if Πj 6= ∅, and Σj is St if Πj = ∅, for j = 0, . . . , n + 1, and the hj ’s are predicate

symbols not occurring in C .

Proof

First, we apply equation introduction to the definitions of p̂ and the q̂i ’s.

p̂(〈St|X 〉, 〈St′|Y 〉)← St = St′, p(X ,Y ) (18)

q̂j (〈St|X 〉, 〈St
′|Y 〉)← St = St′, qj (X ,Y ) j = 1, . . . , n (19)

Let σi , i = 0, . . . , n, be renaming substitutions (Lloyd 1987, p. 22) for C such

that:

σi
··
= {X /Z : X ∈ var(C ) & Z 6∈

(
var(C ) ∪

⋃

j 6=i

rhs(σj )
)
}

where rhs(σj ) = {Z1, . . . ,Zk} if σj = {X1/Z1, . . . ,Xk/Zk}.

Since the variables in rhs(σi) do not occur in C or in any other σj (i 6= j ), the

application of σi to a variable X renames X uniquely. Hence, we can think of such

an application as the addition of the subscript i to X .

Next, we apply equation introduction to C and rename variables, obtaining:

p(t0σ0, t
′
nσn)← E , q1(t

′
0σ0, t1σ1), q2(t

′
1σ1, t2σ2), . . . , qn(t

′
n−1σn−1, tnσn)

where

E = {Xσi = Xσk : X ∈
(
var(ti) ∩ var(t ′k )

)
& i < k}

Subsequently, we resolve with (18) and rename St and St′.

p̂(〈St0|t0σ0〉, 〈Stn |t
′
nσn〉)← St0 = Stn , E ,

q1(t
′
0σ0, t1σ1), q2(t

′
1σ1, t2σ2), . . . , qn(t

′
n−1σn−1, tnσn)

Let Π
··
=

⋃

j Πj and X ∈ Π (i.e. X occurs in some (and only one) ti and some

t ′k , for i < k). We now define

φ(X ) = i , where X ∈ var(ti)

γ(X ) = max{k : X ∈ var(t ′k )}
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and apply transitivity and factoring, replacing the equations by (up to variable

renaming):

{St0 = St1, St1 = St2, . . . , Stn−1 = Stn} ∪
⋃

X∈Π

EX

where

EX = {Xσφ(X ) = Xσφ(X )+1, Xσφ(X )+1 = Xσφ(X )+2, . . . , Xσγ(X )−1 = Xσγ(X )}

Note that for all j and all X :

X ∈
(
var(ti) ∩ var(t ′k )

)
for some i ≤ j − 1 and some k ≥ j

iff

(Xσj−1 = Xσj ) ∈ EX

Equivalently, for all j and all X :

X ∈
⋃

i≤(j−1), k≥j

(
var(ti) ∩ var(t ′k )

)
iff (Xσj−1 = Xσj ) ∈ EX

Hence,

Πj = {X : (Xσj−1 = Xσj ) ∈ EX }

for j = 0, . . . , n+1, so that we have exactly all equations for constructing the Σj ’s.

Next, we repetitively fold using function substitutivity, and arrive at:

p̂(〈St0|t0θ0〉, 〈Stn |t
′
nθn〉)← Σ1θ0 = Σ1θ1, Σ2θ1 = Σ2θ2, . . . , Σnθn−1 = Σnθn ,

q1(t
′
0θ0, t1θ1), q2(t

′
1θ1, t2θ2), . . . , qn(t

′
n−1θn−1, tnθn)

Prechain form is now obtained by folding with (19):

p̂(〈St0|t0θ0〉, 〈Stn |t
′
nθn〉)← q̂1(〈Σ1θ0|t

′
0θ0〉, 〈Σ1θ1|t1θ1〉),

q̂2(〈Σ2θ1|t
′
1θ1〉, 〈Σ2θ2|t2θ2〉), . . . ,

q̂n(〈Σnθn−1|t
′
n−1θn−1〉, 〈Σnθn |tnθn〉)

Finally, we apply predicate substitutivity and symmetry, and then fold with the

completed definitions of the hi predicates. The resulting clause has the desired

form; hence we conclude that the theorem holds.

Example 2

Let us apply Theorem 1 to the clause (13), of Example 1.

s
︸︷︷︸

p

(〈[A|N ]〉
︸ ︷︷ ︸

t0

, 〈[A|L],M 〉
︸ ︷︷ ︸

t ′1

)← s
︸︷︷︸

q1

(〈N 〉
︸︷︷︸

t ′0

, 〈L,M 〉
︸ ︷︷ ︸

t1

)

Π0 = ∅ ∩
(
var(t ′0) ∪ var(t ′1)

)
= ∅

Π1 = var(t0) ∩ var(t ′1) = {A}

Π2 =
(
var(t0) ∪ var(t1)

)
∩ ∅ = ∅

So, Σ0 = St, Σ1 = [A|St], and Σ2 = St. The resulting clause in chain form is (17).

The definitions of the hi ’s are as before, up to variable renaming.

End of example
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Let P be a moded program. We define P̂ as the program resulting from applying

Theorem 1 to every clause in P in such a way that the hi predicate symbols of a

clause do not occur in any other clause of P̂ .

Theorem 1 associates a chain program P̂ with a moded program P in such a way

that P̂ is a logical consequence of a conservative extension of P . The implication

in the other direction also holds. That P is logically implied by a conservative

extension of P̂ can be seen by first resolving each clause in P̂ having a head with

predicate symbol p̂ with the only-if part of the definition of p̂ and unfolding the

definitions of the hi ’s and the q̂i ’s.

Finally, note that the chain program P̂ of a moded program P is a G-chain

program (i.e. a program such that in every unit clause p(t , t ′)←, var(t ′) ⊆ var(t),

so that all answers for a subgoal with a ground input are ground using a leftmost

computation rule (cf. Sect. 2)).

Example 3

As an example explicitly linking this transformation with the abcde metainter-

preter, we give the object-program representation of the chain form of the clauses (12)

and (13).

defn(ŝ , [ŝ1, ŝ2])←

defn(h0, [h
′
0])←

defn(h1, [h
′
1])←

nonunit(ŝ2, [h0, ŝ , h1])←

unit(ŝ1, 〈St,L〉, 〈St, [ ],L〉)←

unit(h′
0, 〈St, [A|N ]〉, 〈[A|St],N 〉)←

unit(h′
1, 〈[A|St],L,M 〉, 〈St, [A|L],M 〉)←

is unit(ŝ1)← is unit(h′
0)← is unit(h′

1)←

End of example

4 Conversion of Definite Programs into Chain Form

In this section, we will first give a transformation inspired by the previous one,

converting an arbitrary definite program into chain form. Next, we will explain

how to couple the abcde metainterpreter to this “unmoded” transformation.

4.1 Transformation

Roughly, the moded transformation takes a clause with predicates having one input

argument place and one output argument place, disposes of the pass-on variables

(the Πj ’s) by adding a stack, and replaces both arguments of each subgoal by

variables.

Hence, the first apparent obstacle we find in trying to convert an arbitrary, un-

moded clause into chain form, is that arguments of predicates in such a clause do
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not have predetermined input/output roles. The fact that any argument of a pred-

icate may play the role of either input or output suggests treating all arguments

uniformly. One way of doing so and yet have binary predicates could be to replicate

the arguments of each predicate so as to have two copies of each set of arguments:

one copy behaving as a single input (possibly having variables when the subgoal is

selected), and the other copy behaving as a single output. Naturally, we now have

to give up the groundness property of runtime terms, which translates to having to

use full unification instead of matching.

Thus, we can associate with each predicate p(X1, . . . ,Xn), another predicate,

defined as: p̂(〈X1, . . . ,Xn〉, 〈X1, . . . ,Xn〉)← p(X1, . . . ,Xn), which denotes a subset

of the identity relation of the Herbrand universe. But we also have to add the stack,

so that we have: p̂(〈St,X1, . . . ,Xn〉, 〈St,X1, . . . ,Xn〉)← p(X1, . . . ,Xn).

Another decision we have to make is which variables to push onto the stack. In

fact, we could push all variables of the clause, but we will be more economical by

pushing only the variables not occurring in all atoms of the clause.

Example 4

Consider the usual append program:

a([ ],L,L)← (20)

a([A|L],M , [A|N ])← a(L,M ,N ) (21)

First we write the if-part of the definition of â:

â(〈St,X ,Y ,Z 〉, 〈St,X ,Y ,Z 〉)← a(X ,Y ,Z ) (22)

We now apply equation introduction to (22), getting:

â(〈St,X ,Y ,Z 〉, 〈St′,X ′,Y ′,Z ′〉)←

St = St′, X = X ′, Y = Y ′, Z = Z ′,

a(X ′,Y ′,Z ′) (23)

which we will need for a later folding application.

Next, we obtain an instance of (22), to which we apply equation introduction:

â(〈St, [A|L],M , [A|N ]〉, 〈St′, [A′|L′],M ′, [A′|N ′]〉)←

St = St′, A = A′, L = L′, M = M ′, N = N ′,

a([A′|L′],M ′, [A′|N ′]) (24)

Now we resolve (21) with (24) unifying the two underlined atoms, and get:

â(〈St, [A|L],M , [A|N ]〉, 〈St′, [A′|L′],M ′, [A′|N ′]〉)←

St = St′ , A = A′ , L = L′, M = M ′, N = N ′,

a(L′,M ′,N ′)

Subsequently, we fold using function substitutivity.

â(〈St, [A|L],M , [A|N ]〉, 〈St′, [A′|L′],M ′, [A′|N ′]〉)←

[A|St] = [A′|St′] , L = L′ , M = M ′ , N = N ′ ,

a(L′,M ′,N ′)
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Finally, we fold using (23) and systematically rename variables.

â(〈St0, [A0|L0],M0, [A0|N0]〉, 〈St1, [A1|L1],M1, [A1|N1]〉)←

â(〈[A0|St0],L0,M0,N0〉, 〈[A1|St1],L1,M1,N1〉)

We can now apply predicate substitutivity and symmetry, and then fold w.r.t.

the completed definitions of the predicates manipulating the stack, as in the moded

transformation, thus arriving at chain form.

End of example

An arbitrary definite program can be converted into chain form with the following

theorem.

Theorem 2

Let C be a definite clause:

p(t̃0)← q1(t̃1), q2(t̃2), . . . , qn(t̃n) n ≥ 0

and let:

Π =
(
var(t̃0) ∪ · · · ∪ var(t̃n)

)
\
(
var(t̃0) ∩ · · · ∩ var(t̃n)

)

Then the clause C ′:

p̂(U0,U
′
n)← h0(U0,U

′
0), q̂1(U

′
0,U1), h1(U1,U

′
1), q̂2(U

′
1,U2), . . . ,

q̂n(U
′
n−1,Un), hn(Un ,U

′
n)

is logically implied by C , the standard equality theory for C , the “iff” version of

the function substitutivity axiom for the list-constructor function symbol:

[X |Y ] = [X ′|Y ′]↔ X = X ′ & Y = Y ′

and the completed definitions of:

p̂(〈St,X1,0, . . . ,Xr0,0〉, 〈St,X1,0, . . . ,Xr0,0〉)← p(X1,0, . . . ,Xr0,0)

q̂i(〈St,X1,i , . . . ,Xri ,i〉, 〈St,X1,i , . . . ,Xri ,i〉)← qi(X1,i , . . . ,Xri ,i) i = 1, . . . , n

h0(〈St|t̃0〉, 〈Σ|t̃1〉)← (i = 0)

hi(〈Σ|t̃i〉, 〈Σ|t̃i+1〉)← i = 1, . . . , n − 1

hn(〈Σ|t̃n〉, 〈St|t̃0〉)← (i = n)

where Σ is any list of the form [X1, . . . ,Xd |St], such that {X1, . . . ,Xd} = Π, if

Π 6= ∅, and Σ is St if Π = ∅.

Proof

First, we use equation introduction on the definitions of the q̂i ’s.

q̂i(〈St,X1,i , . . . ,Xri ,i〉, 〈St
′,X ′

1,i , . . . ,X
′
ri ,i
〉)← St = St′,

X1,i = X ′
1,i , . . . ,Xri ,i = X ′

ri ,i
,

qi(X
′
1,i , . . . ,X

′
ri ,i

)

i = 1, . . . , n (25)
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Next, we apply equation introduction to C in such a way that no two t̃i ’s have

variables in common, except for t̃0 and t̃n . We obtain:

p(t̃0σn)← E , q1(t̃1σ1), q2(t̃2σ2), . . . , qn(t̃nσn) (26)

where the σj ’s are as in Theorem 1 and

E = {Xσj = Xσk : X ∈
(
var(t̃j ) ∩ var(t̃k )

)
& 0 < j < k < n}

∪ {Xσj = Xσn : X ∈
(

var(t̃j ) ∩
(
var(t̃0) ∪ var(t̃n)

))

& 0 < j < n}

Now, we apply θ to the if-part of the definition of p̂, where θ is the mgu of

p(X1,0, . . . ,Xr0,0) and p(t̃0) and use equation introduction in the resulting instance,

getting (up to variable renaming):

p̂(〈St0|t̃0σ0〉, 〈Stn |t̃0σn〉)← St0 = Stn , F , p(t̃0σn) (27)

where

F = {Xσ0 = Xσn : X ∈ var(t̃0)}

Subsequently, we resolve (26) with (27):

p̂(〈St0|t̃0σ0〉, 〈Stn |t̃0σn〉)← St0 = Stn , F , E ,

q1(t̃1σ1), q2(t̃2σ2), . . . , qn(t̃nσn)

Before folding, we add the following equations, recalling that subgoal addition

preserves soundness:

{Xσ0 = Xσn : X ∈
(
Π \ var(t̃0)

)
}

(Such equations, after applying transitivity, will enable us to have the same Σ in

each subgoal of the resulting clause in prechain form.)

Now we add the equations:

{Xσi−1 = Xσi : X ∈ var(t̃i)} 0 < i ≤ n

(Such equations will enable us to fold w.r.t. (25).)

We now apply transitivity and factoring in such a way that the equations are

replaced by (up to variable renaming):

{St0 = St1, St1 = St2, . . . , Stn−1 = Stn} ∪
⋃

0<i≤n

Gi ∪
⋃

0<i≤n

Hi

where

Gi = {Xσi−1 = Xσi : X ∈ Π}

Hi = {Xσi−1 = Xσi : X ∈ var(t̃i)}

Next, we repetitively fold using function substitutivity and arrive at:

p̂(〈St0|t̃0σ0〉, 〈Stn |t̃0σn〉)← Σσ0 = Σσ1, Σσ1 = Σσ2, . . . , Σσn−1 = Σσn ,

t̃1σ0
∼= t̃1σ1, t̃2σ1

∼= t̃2σ2, . . . , t̃nσn−1
∼= t̃nσn ,

q1(t̃1σ1), q2(t̃2σ2), . . . , qn(t̃nσn)
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where

r̃ ∼= s̃ = {r i = s i : r i is the ith term of r̃ and s i is the ith term of s̃}

Prechain form is now obtained by folding with (25):

p̂(〈St0|t̃0σ0〉, 〈Stn |t̃0σn〉)← q̂1(〈Σσ0|t̃1σ0〉, 〈Σσ1|t̃1σ1〉),

q̂2(〈Σσ1|t̃2σ1〉, 〈Σσ2|t̃2σ2〉), . . . ,

q̂n(〈Σσn−1|t̃nσn−1〉, 〈Σσn |t̃nσn〉)

Finally, we apply predicate substitutivity and symmetry, and then fold with the

completed definitions of the hi predicates. The resulting clause has the desired

form; hence we conclude that the theorem holds.

As in the moded transformation, that P is logically implied by a conservative

extension of P̂ can be seen by unfolding the definitions of the hi ’s and the q̂i ’s.

4.2 A deterministic metainterpreter for arbitrary chain programs

In Sect. 2 we wrote a deterministic metainterpreter assuming that the leftmost

input in every goal of the LD tree (Apt 1997) (i.e. an SLD tree with a leftmost

computation rule) was ground. We will now modify such a metainterpreter so that

it is also correct for LD trees that do not necessarily have this groundness property.

It is possible to handle terms with variables by generalising matching to full uni-

fication. A well-known metainterpreter explicitly using unification is Bowen and

Kowalski’s demo metainterpreter (Bowen and Kowalski 1982). In our case, unifica-

tion for clauses of the form (1) reduces to argument passing so that we need only

incorporate it to the clauses of the form (2). Consider for instance our previous

definition of e ′, which included the clause:

e ′(X ,Pj, [Y ])← unit(Pj,X ,Y )

Following the demo metainterpreter, we would replace this clause by:

e ′(X ,Pj, [Y ])← unit(Pj,X ′,Y ′),

rename(f (X ′,Y ′),X , f (X ′′,Y ′′)),

match(X ,X ′′, Sub),

apply(Y ′′, Sub,Y ) (28)

where

1. rename(Z ,X ,Z ′) holds when Z ′ is the result of renaming the variables in Z

so that they are distinct from the variables in X ,

2. match(X ,X ′′, Sub) holds when Sub is the mgu of X and X ′′, and

3. apply(Y ′′, Sub,Y ) holds when Y is the result of applying Sub to Y ′′.

Prolog provides a way to approximate this effect through the extralogical copy

“predicate”:

e ′(X ,Pj, [Y ])← copy(X ,Xθ), unit(Pj,Xθ,Y ) (29)
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Note that our addition of unification to the abcde metainterpreter occurs at a

single point, unlike the unifiers of the metainterpreter in Fig. 1, which are pervasive

(cf. the variables with a θ in their name).

5 Extending Existing Committed-Choice Traversal Methods to

Arbitrary Definite Programs

This section deals first with a reconstruction and then with an extension of the exist-

ing stream-based (Tamaki 1987) and continuation-based (Ueda 1987) deterministic,

exhaustive-traversal methods. An objective of these methods is that of executing

or-parallel programs in committed-choice processors (which are and parallel).

The existing versions of such methods are restricted to moded programs. Hence,

our reconstruction uses our transformation of moded programs into G-chain form.

The extension modifies such methods so as to make them applicable to arbitrary

definite programs essentially by replacing the moded transformation of Sect. 3 by

the definite transformation of Sect. 4.

We fall short of proposing practical methods because we do not eliminate the

layer of interpretation. One way of eliminating such a layer would be to feed the

metainterpreter and the object program to a general-purpose partial evaluator such

as Mixtus (Sahlin 1993). However, the resulting residual program may be enormous.

Another possibility would be to compile away the layer of interpretation “by hand,”

but we have not done so in the present work.

5.1 Reconstruction

The derivations of both methods start from the abcde metainterpreter. For brevity,

we will omit detailed derivations, and will only indicate how such derivations could

be obtained. Also, instead of using difference lists as the original methods do, we

will employ ordinary lists for clarity.

5.1.1 A chain-program reconstruction of the stream-based method

As observed by Tamaki, programs originally having some degree of and parallelism

may lose such a parallelism if we only capture their or parallelism. He thus treats

clauses with and parallelism in a special way. For simplicity we will not be concerned

with such a special treatment here, and will concentrate on the main component of

this method, that converts or parallelism into and parallelism.

We can obtain programs produced by the stream-based method if we unfold (7)

using (8):

a([X |Xs], [Q |Qs],YsZs)← b′(X ,Q ,Ys), a(Ys,Qs,Ys′),

a(Xs, [Q |Qs],Zs), append(Ys′,Zs,YsZs) (30)

Let us consider first how a chain program is transformed by the stream-based

method. Perhaps the most interesting clause in the program produced by this
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method is a clause associated with each subgoal qi+1(Xi ,Xi+1), which is of the

form:

ki([X |Xs],YsZs)← all qi+1(X ,Ys), ki+1(Ys,Ys
′),

ki(Xs,Zs), append(Ys′,Zs,YsZs) (31)

where all qi+1(x,ys) is intended to hold when ys is the set of answers to

← qi+1(x,Y ). Observe first that all qi+1(x,ys) has the same intended meaning

as b′(x, qi+1,ys). Next, it is easy to obtain (31) from (30) by identifying the ki

predicate with the a predicate. The rest of the clauses resulting from transforming

a chain program are readily obtainable from the abcde metainterpreter.

Consider now an arbitrary moded program. The clause corresponding to (31) in

this case is:

ki(πi , [ti |Xs],YsZs)← all qi+1(t
′
i ,Ys), ki+1(πi+1,Ys,Ys

′),

ki(πi ,Xs,Zs), append(Ys′,Zs,YsZs) (32)

where πj is any term such that var(πj ) = Πj , and Πj is as defined in Theorem 1.

Recall now (30) and an object clause transformed by our moded transformation.

A subgoal with an hi predicate symbol, when partially evaluated with the abcde

metainterpreter, results in a subgoal of the form b′(X , hi ,Ys), which can be easily

unfolded away producing the following clause, similar to (32):

a([〈Σi |ti〉|Xs], [Q |Qs],YsZs)← b′(〈Σi+1|t
′
i〉,Q ,Ys), a(Ys,Qs,Ys′),

a(Xs, [Q |Qs],Zs), append(Ys′,Zs,YsZs) (33)

A difference between (32) and (33) is that the stream-based method uses a parame-

ter πi in the ki predicates for recording the values of the Πi variables, whereas (33)

keeps the Πi variables as part of each term 〈Σi |ti〉. Even with this difference, the

stream-based compiled program and the abcde metainterpreter follow the same

search strategy. By using a separate parameter πi , however, the stream-based

method is more economical because of exploiting the fact that only the hi predicates

may modify the stack: all other predicates hold for relations with an output stack

equal to the input stack. (To see this, observe the stack in the definitions of p̂, q̂i in

Theorem 1.) Hence, we can compute all answers to a goal ← b′(〈Σi+1|t
′
i〉,Q ,Ys),

by first computing all answers to ← b′(t ′i ,Q ,Ws) and then affixing Σi+1 in front of

each such answer, if Q is not an hi predicate:

〈St|t〉 ;Q = St ⋄ (t ;Q) (34)

where X ⋄Xs is the list obtained by concatenating all lists having X affixed in front

of every list in Xs:

X ⋄ [ ] = [ ]

X ⋄ [Y |Ys] = [[X |Y ] |X ⋄Ys]

Let us first rewrite the stream-based clause (32) as:

astream(Σi , [ti |Xs], [Q |Qs],YsZs)← b′(t ′i ,Q ,Ys), astream(Σi+1,Ys,Qs,Ys′),

astream(Σi ,Xs, [Q |Qs],Zs),

append(Ys′,Zs,YsZs) (35)
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where the predicate astream(St ,Xs,Qs,YsZs) is intended to hold iff

(St ⋄Xs) ;Qs = St ⋄YsZs

Hence, (35) asserts that:

Σi ⋄ [ti |Xs] ; (Q ;Qs) ⊇
(
Σi+1 ⋄ (t

′
i ;Q) ;Qs

)
++

(
Σi ⋄Xs ; (Q ;Qs)

)
(36)

Here, and throughout this section, ⋄ binds stronger than “;”, and ++ denotes list

concatenation.

Let us now consider the abcde metainterpreter. For clarity, we rename variables

in (33):

a([〈Σi |ti〉|StXs], [Q |Qs], StYsZs)← b′(〈Σi+1|t
′
i〉,Q , StYs), a(StYs,Qs, StYs′),

a(StXs, [Q |Qs], StZs),

append(StYs′, StZs, StYsZs) (37)

where a(StXs,Qs, StYsZs) holds when StXs ; Qs = StYsZs and the same stack Σi

occurs in front of every element of StXs and StYsZs. Hence, (37) asserts that:

[〈Σi |ti〉|Σi ⋄Xs] ; (Q ;Qs) ⊇
(
(〈Σi+1|t

′
i〉 ;Q) ;Qs

)
++

(
Σi ⋄Xs ; (Q ;Qs)

)
(38)

By the definition of ⋄ and (34), we obtain (36) from (38). (Specifically, by the

recursive equation in the definition of ⋄ we obtain the left-hand side and by (34)

we obtain the right-hand side.)

5.1.2 A chain-program reconstruction of the continuation-based method

Let us now turn our attention to the continuation-based method. Starting also from

the abcde metainterpreter, we use the completed definitions of:

c′a(X ,Pjs,Qs,M )← c′(X ,Pjs,L), a(L,Qs,M ) (39)

d ′a(X ,Pj,Qs,M )← d ′(X ,Pj,L), a(L,Qs,M ) (40)

where Qs acts like a list of “continuations,” and the underlined subgoals indicate a

forthcoming unfolding application.

First we unfold (39) using (9):

c′a(X , [Pj|Pjs],Qs,M )← d ′(X ,Pj,L1), c′(X ,Pjs,L2),

append(L1,L2,L), a(L,Qs,M ) (41)

Using now the identity
(
(X ; P1) ∪ . . . ∪ (X ; Pm)

)
;Qs = (X ; P1 ;Qs) ∪ . . . ∪ (X ; Pm ;Qs)

which follows from the right distributivity of composition over union, we rewrite (41)

as:

c′a(X , [Pj|Pjs],Qs,M )← d ′(X ,Pj,L1), a(L1,Qs,M1) ,

c′(X ,Pjs,L2), a(L2,Qs,M2) ,

append(M1,M2,M ) (42)
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where each rectangle indicates a forthcoming folding application. We can now

fold (42) using the definitions of the d ′a and c′a predicates:

c′a(X , [Pj|Pjs],Qs,M )← d ′a(X ,Pj,Qs,M1),

c′a(X ,Pjs,Qs,M2),

append(M1,M2,M ) (43)

arriving at a clause of the continuation-based metainterpreter.

Another interesting clause is obtained by unfolding (40) using (10):

d ′a(X ,Pj,Qs′,M )← nonunit(Pj,Qs), a′(X ,Qs,L), a(L,Qs′,M )

which we rewrite as:

d ′a(X ,Pj,Qs′,M )← nonunit(Pj,Qs),

append(Qs,Qs′,QsQs′), a′(X ,QsQs′,M )

This step can be justified using the associativity of composition:

(X ;Qs) ;Qs′ = X ; (Qs ;Qs′)

Figure 2 shows the resulting metainterpreter, where we have applied an unfolding

step using the definition of e ′.

a
′(X , [ ], [X ])←

a
′(X , [Q |Qs],Zs)← defn(Q ,Pjs), c

′

a(X ,Pjs,Qs,Zs)

c
′

a(X , [ ],Qs, [ ])←

c
′

a(X , [Pj|Pjs],Qs,YsZs)← d
′

a(X ,Pj,Qs,Ys), c
′

a(X ,Pjs,Qs,Zs),

append(Ys,Zs,YsZs)

d
′

a(X ,Pj,Qs,Zs)← is unit(Pj), unit(Pj,X ,Y ), a
′(Y ,Qs,Zs)

d
′

a(X ,Pj,Qs, [ ])← is unit(Pj), not(unit(Pj,X ,Y ))

d
′

a(X ,Pj,Qs′,Zs)← nonunit(Pj,Qs), append(Qs,Qs′,QsQs′), a
′(X ,QsQs′,Zs)

Figure 2. A continuation-based, deterministic, exhaustive-traversal metainterpreter.

5.2 Unmoded versions of the stream-based and the continuation-based

methods

Having reconstructed the stream- and continuation-based methods through chain

programs, we can now replace the moded transformation by the definite transfor-

mation. However, as in Sect. 4, we must also rename variables when using the unit

predicate with either (28) or (29).
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6 Other Applications

6.1 Prolog as the continuation-based metainterpreter together with the

definite transformation

So far we have designed metainterpreters for performing traversals in committed-

choice processors. Observe that just as committed-choice processors have determi-

nistic bindings, so do standard (deterministic) imperative languages. This suggests

the possibility of using our metainterpreters for describing search strategies in one

such imperative language. In particular, we will see how to obtain an imperative

implementation of Prolog’s search strategy by slightly modifying the continuation-

based metainterpreter of Sect. 5 (Fig. 2).

A difference between our previous metainterpreters and the standard implemen-

tations of Prolog is that whereas we perform exhaustive traversals, Prolog sys-

tems may or may not do so. However, we can easily modify the continuation-based

metainterpreter so as to ask the user whether or not more answers are requested.

Also, note that Prolog systems do not usually remember the answers to a query,

allowing us to eliminate the answer list.

a′(X , [ ], halt)← write(X ), write(’ more? ’), read(n)

a′(X , [ ], cont)←

a′(X , [Q |Qs],HaltCont)← defn(Q ,Pjs), c′a(X ,Pjs,Qs,HaltCont)

c′a(X , [ ],Qs, cont)←

c′a(X , [Pj|Pjs],Qs,HaltCont′)← d ′a(X ,Pj,Qs,HaltCont),

halt cont(X ,Pjs,Qs,HaltCont,HaltCont′)

d ′a(X ,Pj,Qs,HaltCont)← is unit(Pj), unit(Pj,X ,Y ), a′(Y ,Qs,HaltCont)

d ′a(X ,Pj,Qs, cont)← is unit(Pj), not(unit(Pj,X ,Y ))

d ′a(X ,Pj,Qs′,HaltCont)← nonunit(Pj,Qs),

append(Qs,Qs′,QsQs′), a′(X ,QsQs′,HaltCont)

halt cont(X ,Pjs,Qs, halt, halt)←

halt cont(X ,Pjs,Qs, cont,HaltCont)← c′a(X ,Pjs,Qs,HaltCont)

This metainterpreter is meant for constructing ground terms. To obtain a true

(pure) Prolog system, handling terms with variables, we would have to include

variable renaming and unification in a manner similar to that of either (28) or (29).

Deterministic metainterpreters for arbitrary definite programs can be written

directly, without using our transformations, into chain form. (An example is the

metainterpreter in Fig. 1.) The programmer, however, has to be aware of the set

of unifiers of the children of a node in the derivation tree. By contrast, in our

approach the programmer can write a metainterpreter without considering such
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unifiers, except when using the unit predicate, in which case the object clause has

no body, simplifying the treatment of unifiers.

6.2 A bounded-resource metainterpreter

As a final application, we exhibit a bounded-resource metainterpreter. As usual, we

will give a metainterpreter for chain programs. Our transformations of moded and

definite programs into chain form make this metainterpreter applicable to programs

that do not necessarily have chain form.

The next variant of the abcde metainterpreter constructs at most one proof, and

has an extra argument to indicate the amount of resources needed to construct such

a proof.

a′(X , [ ], ans(X ), 0)←

a′(X , [Q |Qs],Z ,R + 1)← defn(Q ,Pjs), c′a(X ,Pjs,Qs,Z ,R)

c′a(X , [ ],Qs, no ans, 0)←

c′a(X , [Pj|Pjs],Qs,Z ,R + S )← d ′a(X ,Pj,Qs,Y ,R),

halt cont(X ,Pjs,Qs,Y ,Z , S )

d ′a(X ,Pj,Qs,Z ,R)← is unit(Pj), unit(Pj,X ,Y ), a′(Y ,Qs,Z ,R)

d ′a(X ,Pj,Qs, no ans, 0)← is unit(Pj), not(unit(Pj,X ,Y ))

d ′a(X ,Pj,Qs′,Z ,R)← nonunit(Pj,Qs),

append(Qs,Qs′,QsQs′), a′(X ,QsQs′,Z ,R)

halt cont(X ,Pjs,Qs, ans(Y ), ans(Y ), 0)←

halt cont(X ,Pjs,Qs, no ans,Z , S )← c′a(X ,Pjs,Qs,Z , S )

This style of writing bounded-resource metainterpreters may be viewed as an alter-

native to that appearing in (Kowalski 1995, Kowalski and Sadri 1996).

7 Concluding Remarks

7.1 Contributions

Some applications of metainterpreters have been neglected, perhaps because of

being based on convoluted definitions. By comparison with the demo predicate,

deterministic metainterpreters, for example, result especially elaborate, since the

programmer must consider the set of unifiers of the children of a node in the deriva-

tion tree. Thus, metainterpreters for (1) converting or parallelism into and par-

allelism (Ueda 1987, Tamaki 1987), (2) describing search-strategies in logic-based,
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state-oriented languages (Clark and van Emden 1981), and (3) simulating bounded-

resource reasoning (Kowalski 1995, Kowalski and Sadri 1996), have not received due

attention.

Compilation methods converting or parallelism into and parallelism have been

developed first by Ueda (Ueda 1987) and then by Tamaki (Tamaki 1987). By study-

ing these methods, we have identified chain programs as important for exhibiting

the essence of such techniques. If we use chain programs as a stepping stone, then

the methods of (Ueda 1987, Tamaki 1987) can be viewed as comprising two parts:

a. conversion of a moded program into chain form, and
b. application of partial deduction to a deterministic metainterpreter for chain

programs.

Our contribution to part (a) consisted first in having extracted from (Ueda 1987,

Tamaki 1987) the implicit transformation that converts a moded program into an

equivalent chain form. Next, by using a generalisation of this transformation, we

have given another, “unmoded” transformation, that converts arbitrary definite

programs into chain form.

To part (b) we contributed by showing how to write deterministic metainter-

preters for chain programs. One such metainterpreter served us first to reconstruct

and then to extend to arbitrary (unmoded) definite programs the existing methods

of (Ueda 1987, Tamaki 1987).

Finally, we observed that deterministic metainterpreters have applications other

than exhaustive traversals. We gave a metainterpreter that follows Prolog’s search

strategy and another one that counts the number of steps in the search for a refu-

tation (as opposed to the number of steps in the refutation).

Our methodology for designing deterministic-traversal methods is then as follows:

1. Write a deterministic metainterpreter for chain programs ignoring unification.
2. Incorporate to the metainterpreter one of the transformations converting ei-

ther moded or unmoded programs into chain form.
3. In case the unmoded transformation was selected, add renaming and unifica-

tion to the metaclauses dealing with the object unit clauses.

We observed that even after adding unification, we need only be concerned about

substitutions at a single point of the chain-program metainterpreter, whereas in a

metainterpreter written directly the unifiers are pervasive (cf. Fig. 1).

7.2 Performance study

We have made a study illustrating how the performance of some programs is de-

graded as a result of transforming such programs into chain form. For this study, we

used SICStus Prolog version 3.7.1, which we ran under RedHat Linux version 6.0.

In this table and the next, the columns labeled A show the data for the source pro-

gram and the columns labeled B show the data for the corresponding transformed

program.

First we exhibit the number of clauses and the program size (measured in bytes

for compiled code).
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program num. clauses program size

A B A B

split (moded append) 2 4 445 1,051

append (for splitting) 2 4 440 1,168

quicksort, ord. lists 7 22 1,405 5,833

quicksort, diff. lists 5 17 1,066 5,871

Now we give the relative execution times (according to SICStus’ profile_data/4)

and the memory requirements for the local and global stacks (according to SICStus’

statistics/0) for splitting a 100-element list into all its prefixes and suffixes and

sorting the reverse of a sorted 100-element list with quicksort programs.

program execution time global+local stacks

A B A B

split (moded append) 26 571 32,760 32,760

append (for splitting) 26 636 32,760 32,760

quicksort, ord. lists 2,360 7,539 147,720 1,310,400

quicksort, diff. lists 2,007 5,788 81,900 1,179,360

7.3 Related work

Our work stemmed from the continuation-based and the stream-based exhaustive-

traversal methods. There are, however, various other publications studying determi-

nistic traversals of search spaces within logic programming (Hirakawa, Chikayama

and Furukawa 1984, Bansal and Sterling 1987, Codish and Shapiro 1987, Lichten-

stein, Codish and Shapiro 1987, Shapiro 1987, Sato and Tamaki 1989b, Mariën and

Demoen 1993). Of these contributions, (Mariën and Demoen 1993) has perhaps the

closest motivation to ours: The authors sketch a reconstruction of the continuation-

based method and give a metainterpreter of their exhaustive-search method (based

on recomputation).

Similarly, there are a number of transformations converting logic programs into

a syntactically restricted form (Sato and Tamaki 1989a, Tarau and Boyer 1990, Ta-

rau 1991). The one in (Sato and Tamaki 1989a) has in common with our work a

connection with the continuation-based exhaustive-traversal method. These trans-

formations differ from ours, however, in producing programs in which every clause

is binary (i.e. has only one atom in the body).

7.4 Future work

We have argued that writing deterministic metainterpreters is advantageous with

our approach because this task amounts to that of describing an evaluation strategy
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for relational expressions of the form:

P = P1 ∪ P2 ∪ . . . ∪ Pm

where each Pi is defined as:

Pi = Q1 ;Q2 ; . . . ;Qn

Evaluation strategies for expressions have a close connection with the implemen-

tation of functional programming languages (Peyton Jones 1987) and rewrite

systems (Dershowitz and Jouannaud 1990). Investigating how different evalua-

tion strategies for these relational expressions lead to different search strategies

for spaces determined by chain programs would be one way of extending our con-

tributions.

During the presentation of our results, we came across the need for eliminating

the layer of interpretation. Our work would have a greater practical impact if it

were combined with an algorithmic elimination of such a layer, without producing

an excessively large residual program.

Chain programs have also proved to be useful in devising (Rosenblueth 1996,

Rosenblueth and Peralta 1998) inference systems derived from context-free parsers,

because we need only consider unification in the treatment of unit clauses and

hence we need only modify the treatment of terminals. Studying other applications

of chain programs where it might be helpful to relegate the role played by unifiers

would be another avenue of research.
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