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Abstract

The non-classical, nonmonotonic inference relation associated with the answer set seman-
tics for logic programs gives rise to a relationship of strong equivalence between logical
programs that can be verified in 3-valued Gödel logic, G3, the strongest non-classical in-
termediate propositional logic (Lifschitz, Pearce and Valverde, 2001). In this paper we will
show that KC (the logic obtained by adding axiom ¬A ∨ ¬¬A to intuitionistic logic), is
the weakest intermediate logic for which strongly equivalent logic programs, in a language
allowing negations, are logically equivalent.
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1 Introduction

In logic programming certain fragments of first-order logic are given a computa-

tional meaning. The first and best known example of such a fragment is that of the

Horn clauses, quantifier-free formulas of the form B or
∧

Ai → B, where the Ai and

B are atomic formulas, the basis for the programming language Prolog (Kowalski,

1974). A logic program is a finite set of such formulas (called rules).

A logic program Π in the language L can be interpreted in first-order logic as a

set of sentences in L, by taking the universal closure ∀~xR of each of the rules R

in Π. An alternative method of eliminating the free variables in the rules, is the

substitution of ground terms, i.e. terms built from the constants and functions in

L. The set of ground terms of L, the Herbrand Universe of L, may be used as the

domain for models of theories in L, the Herbrand models. Replacing each R by

the set of all possible substitutions with ground terms, Π is now replaced by a set

of quantifier-free sentences in ΠH in L. The rationale behind this is given by the

following well-known fact (for a proof see for example (Doets, 1994)).

Fact 1

Let Π be a set of universal sentences. The following are equivalent:

1. Π has a model

http://arxiv.org/abs/cs/0206005v1
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2. Π has a Herbrand model

3. ΠH is satisfiable in propositional logic

In this paper we are interested in logic programs as (possibly infinite) sets of

propositional formulas. In general, our program rules may include negations and

disjunctions and hence the results in this paper extend to disjunctive logic pro-

gramming as well.

We will denote a fragment of the language of propositional logic by enumerating

between square brackets the connectives and constants that are allowed in formulas

of the fragment. So [∧,¬] will denote the set of formulas built from atomic for-

mulas, using only conjunction and negation. And [∧,∨,⊥,⊤] will be the fragment

of formulas built with conjunction and disjunction from atomic formulas and the

constants ⊥ and ⊤.

As long as we remain in classical propositional logic, a model w for a program Π

can be identified by the set of atoms X valid in w, in our notation w = 〈X〉.

In logic programming one is interested in constructing a most ’general’ model

for a program Π (in the language L based on the Herbrand Universe of L). Such a

’most general’ model should not identify terms, for example, unless such an identity

is implied by Π. For the propositional analogue of programs with Horn clauses as

rules, the minimal Herbrand model is such a ’most general’ model.

In propositional logic an obvious candidate for the most general model of Π is

the intersection of all sets of atoms X such that 〈X〉 |= Π (i.e., Π is true in the

valuation that makes exactly the atoms in X true). For programs with Horn clauses

as rules this works fine as can be seen from the following fact.

Fact 2

Let Π ⊆ {A → B | A,B ∈ [∧,⊥,⊤]} and X =
⋂

{Y | 〈Y 〉 |= Π}. Then 〈X〉 |= Π.

Although the above fact introduces a fragment slightly richer than the language

of Horn clauses, it is still easy to prove.

A simple example, like p ∨ q, shows that there may not be a unique minimal

model for Π if disjunctions are allowed in the rules of Π. And even more serious

problems arise for the notion of most general model, when negations in the head or

body of rules of Π are allowed.

Several solutions have been proposed for the semantics of logic programs with

disjunctions and negations. The answer set (or ’stable model’) semantics we use

in this paper was introduced by Gelfond and Lifschitz in (Gelfond and Lifschitz,

1988). The main idea1 is that X is an answer set of Π if 〈X〉 |= ΠX where ΠX is the

program that arises if we replace all negations ¬A in Π by either ⊥ or ⊤ according

to whether 〈X〉 |= A or not, and that X is minimal in this respect. The behavior

of negation in this semantics resembles that of the negation as failure (or negation

by default) in many Prolog implementations.

We define a logic L to be sound for stable models or sound for stable inference if,

whenever Π ⊢L A, then the answer sets for Π∪{A} are the same as for Π. Classical

1 A more precise definition will be given in the sequel.
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propositional logic, CPL, turns out to be too strong to have this property. For

example, the program ¬¬p does not have answer sets at all, whereas ¬¬p ⊢CPL p

and {¬¬p, p} has {p} as its answer set.

Logics weaker than classical logic CPL can give a solution to this problem, in

particular intermediate logics, i.e. logics derived from intuitionistic propositional

logic IPL by adding axioms that are valid in CPL, do provide a sound basis for

stable inference. David Pearce used in (Pearce, 1997) 3-valued Gödel logic G3 to

prove logic programs strongly equivalent. The notion of strong equivalence of logic

programs was introduced in (Lifschitz, Pearce and Valverde, 2001). Logic programs

Π1 and Π2 are said to be strongly equivalent in the sense of stable model semantics

if for every logic program Π, Π1 ∪ Π and Π2 ∪ Π have the same answer sets. For

programs in the language {A → B | A,B ∈ [∧,∨,¬]} it was shown in (Lifschitz,

Pearce and Valverde, 2001) that Π1 and Π2 are strongly equivalent precisely if they

are equivalent in G3.

As pointed out in (Lifschitz, Pearce and Valverde, 2001), the notion of strong

equivalence may be of interest in showing that a part of a program can be replaced

by a simpler equivalent part, without affecting the behavior of the whole program

or its extensions. Replacing nonclassical, nonmonotonic stable inference by a well-

understood monotonic intermediate logic like G3, will simplify the verification of

such strong equivalence between logic programs. The logic G3, also known as the

Smetanich logic of here-and-there, is the intermediate logic whose models are based

on the partially ordered frame 〈h, t〉 with h ≤ t ((Pearce, 1997), (Chagrov and

Zakharyaschev, 1997), and see section 2).

In this paper we will consider the problem of the ’weakest’ intermediate logic

L for which provable equivalence is the same as strong equivalence in the sense of

stable models. In other words, which L has the property that logic programs Π1∪Π

and Π2 ∪ Π have the same answer sets for all Π iff Π1 and Π2 are equivalent in L,

but this property does not hold for any strictly weaker logic. Note that this will

depend on the language one allows for the programs. Our main result is that for

programs in the language {A → B | A,B ∈ [∧,∨,¬]} the weakest intermediate logic

for which equivalence of programs equals strong equivalence on stable models is the

logic KC, axiomatized by adding axiom ¬A∨¬¬A to IPL. This logic (also known

as Jankov’s logic or the logic of the weak law of excluded middle) was introduced in

(Jankov, 1968).

Our main result remains true if we restrict the language of programs to {A →

B | A,B ∈ [∨,¬]} or {A → B | A,B ∈ [∧,¬]}. But in the language {A → B |

A,B ∈ [∧,∨,⊥,⊤]} strong equivalence of programs coincides with equivalence in

IPL itself.

Let us note that G3 is easier to implement than KC. This is witnessed by the

fact that satisfiability in G3 is NP and satisfiability in KC is PSPACE. However,

in many particular cases it is easy to see that certain formulas are not derivable

in KC whereas this is a complex matter for G3. This point also shows up when

one wants to prove that the disjunctive rule p ∨ q is not strongly equivalent to any

nondisjunctive rule. It is not clear how this could be done using the characterization

of strong equivalence as provable equivalence in G3 since ∨ is definable from the
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other connectives in G3. But with our characterization of strong equivalence as

provable equivalence in KC it is a rather simple corollary which we will prove at

the end of the paper.
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2 Preliminaries

In the language of propositional logic formulas are built from atoms (plus possibly

constants ⊤ and ⊥) using ∧,∨,→, ¬. Fragments of propositional logic are obtained

by restricting the use of atoms, constants and/or the use of the connectives.

The Kripke semantics in this paper is fairly standard.

Definition 3

A Kripke frame 〈W,≤〉 is a set of worlds (or nodes) W with a partial ordering ≤. A

model M will be such a frame together with a function atom(w) mapping each world

w ∈ W to a set of atomic formulas, such that if w ≤ v then atom(w) ⊆ atom(v).

Note that Kripke models are not necessarily rooted. A maximal world w ∈ W

(i.e. such that for all v ∈ W , w ≤ v implies v = w) will be called a terminal node

of W (or M).

For the language of propositional logic the interpretation in a world w of a model

M (by which we mean w ∈ W if M = 〈W,≤〉) is given by the usual rules.

Definition 4

w |=M A (A is true in M at w) is defined by recursion on the length of A.

1. w |=M p ⇔ p ∈ atom(w),

2. w |=M A ∧B ⇔ w |=M A and w |=M B,

3. w |=M A ∨B ⇔ w |=M A or w |=M B,

4. w |=M A → B ⇔ ∀v ≥ w (v 6|=M A or v |=M B).

5. w |=M ⊤,

6. w 6|=M ⊥,

If it is clear from the context which model is meant in w |=M A, we will omit

the subscript (and simply write w |= A). If T is a set of formulas and w a world

in a Kripke model M , then w |= T iff w |= A for all A ∈ T . We will write M |= A

(or M |= T ) if for all w in M it is true that w |= A (or w |= T ). A well-known

fact about Kripke models is that if w |= A and w ≤ v then v |= A, which is true

for atomic formulas A by the monotonicity of the function atom but extends to all

formulas A.
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Intuitionistic propositional logic (IPL) is sound and complete for the set of finite

Kripke models. Thus, ⊢IPL A iff M |= A for each finite M .

Classical propositional logic (CPL) is sound and complete for the set of Kripke

models where the partial ordering is identity. Hence, a classical model consists of a

world w that may be identified with atom(w), the set of atomic formulas valid in

w. If atom(w) = X we will denote w |= A by 〈X〉 |= A. In the case where w is a

node in a Kripke model M , 〈w〉 will denote the classical world with the same set

of atoms as the node w (so 〈w〉 = 〈atom(w)〉).

An intermediate logic is a logic obtained by adding formulas valid in CPL, to

IPL as schemes.

3-valued Gödel logic G3 can be defined as the logic sound and complete for

models based on the frame 〈{h, t},≤〉 with h ≤ t (in a short notation: 〈h, t〉).

We will call these models here-and-there models. G3 traditionally is introduced by

giving the (3-valued) truth tables for the connectives. The three values correspond

in the context of Kripke models of course to the three sets of nodes that a formula

can be true in: ∅, {t}, {h, t}. Alternatively G3 may be obtained by adding e.g. one

of the following axioms to IPL:

1. (¬A → B) → (((B → A) → B) → B)

2. (A ↔ B) ∨ (A ↔ C) ∨ (A ↔ D) ∨ (B ↔ C) ∨ (B ↔ D) ∨ (C ↔ D)

3. A ∨ (A → B) ∨ ¬B

4. (((A → (((B → C) → B) → B)) → A) → A) ∧ (¬A ∨ ¬¬A)

 Lukasiewicz ( Lukasiewicz, 1938) seems to have been the first to axiomatize G3,

using axiom 1. The second axiom is Gödel’s (Gödel, 1932) formula expressing that

there are only three truth values. The third is a simplified version of Hosoi’s axiom

A∨¬A∨ (A → B)∨ (B → C) (Hosoi, 1966). The last axiom is a combination of the

iterated Peirce formula (the substitution of the Peirce formula ((B → C) → B) →

B for B in ((A → B) → A) → A ) and the axiom for KC (see below), together

expressing that the logic will be complete with respect to frames of maximal depth 2

and a single terminal node. Clearly ¬A∨¬¬A can also easily be derived from 3 (take

B = ¬A and use that A → ¬A and ¬A are equivalent and A ∨ ¬¬A is equivalent

to ¬¬A) or the other axioms. For more details see (Chagrov and Zakharyaschev,

1997).

We will use the notation 〈Y,X〉 for the Kripke model 〈h, t〉, with X = atom(t)

and Y = atom(h).

The intermediate logic KC is given by the rules and axioms of intuitionistic

propositional logic IPL plus the axiom ¬A∨¬¬A. KC is sound and complete with

respect to the finite (rooted) Kripke models with a single terminal node ((Jankov,

1968), see (Chagrov and Zakharyaschev, 1997)).

The Kripke models of G3 are a special kind of KC-Kripke models, hence by the

soundness and completeness theorems for G3 and KC, provability (from a set of

formulas T ) in KC implies provability (from T ) in G3: T ⊢KC A implies T ⊢G3 A.
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3 Answer sets and stable models

In this section we recall some of the definitions and results from (Gelfond and

Lifschitz, 1988) and (Lifschitz, Tang and Turner, 1999) for programs in the language

{A → B | A,B ∈ [∧,∨,¬]}. As in (Lifschitz, Pearce and Valverde, 2001) our

language allows more complex rules than the usual A1 ∧ . . . ∧ Am ∧ ¬Am+1 . . . ∧

¬An → B1 ∨ . . .∨Bk (conjunctions, disjunctions and negations can be nested). We

will try to state and prove the results for as large a class of formulas as possible.

We will start with some results for programs in the language {A → B | A,B ∈

[∧,∨,⊥,⊤]}. Examples of rules in this language are: p (i.e. ⊤ → p), p∧q∨r → p∧r

and p → ⊥. Note that also negations of formulas A in [∧,∨] are allowed, as rules,

if ¬A is written as A → ⊥.

Definition 5

Let Π be a program in {A → B | A,B ∈ [∧,∨,⊥,⊤]}. A set of atoms X is an

answer set of Π if for all Y ⊆ X it is true that 〈Y 〉 |= Π ⇔ Y = X .

A program in {A → B | A,B ∈ [∧,∨,⊥,⊤]} may have several answer sets (like

for example the program p ∨ q) and (logically) different programs may have the

same answer sets (for example p → q and q → p both have the empty set as their

only answer set).

Definition 6

Programs Π1 and Π2 in L are called strongly equivalent (in L) if for every program

Π in L the programs Π1 ∪ Π and Π2 ∪ Π have the same answer sets.

Logic programs in {A → B | A,B ∈ [∧,∨,⊥,⊤]} are strongly equivalent if and

only if (viewed as sets of propositional formulas) they are equivalent in classical

propositional logic.

Theorem 7

Let L = {A → B | A,B ∈ [∧,∨,⊥,⊤]} and let Π1 and Π2 be programs in L. Π1

and Π2 are strongly equivalent if they are equivalent in CPL, i.e. Π1 ≡CPL Π2.

Proof

First assume Π1 ≡CPL Π2 and let X be an answer set for Π1 ∪Π. Then for Y ⊆ X

with 〈Y 〉 |= Π2 ∪ Π we may infer that 〈Y 〉 |= Π1 ∪ Π and hence Y = X . Which

proves X is also an answer set for Π2 ∪ Π. Likewise, every answer set for Π2 ∪ Π

can be proven to be an answer set for Π1 ∪ Π and hence Π1 and Π2 are strongly

equivalent.

For the other direction, let 〈X〉 |= Π1 and let Π = X . Observe that X is an

answer set for Π1 ∪ Π and, as Π2 is strongly equivalent to Π1, X is also an answer

set for Π2 ∪ Π. Which proves 〈X〉 |= Π2. Likewise, every model of Π2 will be a

model of Π1, which proves Π1 ≡CPL Π2.

For a more general treatment of negations in logic programs the following reduc-

tion of a program was introduced in (Gelfond and Lifschitz, 1988),(Lifschitz, Tang

and Turner, 1999).

Definition 8
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Let X be a set of atomic formulas and A a formula. AX is defined recursively as:

pX = p if p is atomic

(A ◦B)X = AX ◦BX for ◦ ∈ {∧,∨,→}

(¬A)X =

{

⊥ if 〈X〉 |= A

⊤ otherwise

For a program Π ⊆ {A → B | A,B ∈ [∧,∨,¬]} the reduction ΠX will be a

program in {A → B | A,B ∈ [∧,∨,⊥,⊤]}.

Definition 9

Let Π ⊆ {A → B | A,B ∈ [∧,∨,¬]}. A set X of atomic formulas is called an answer

set for Π if for all Y ⊆ X we have 〈Y 〉 |= ΠX ⇔ Y = X .

If we restrict the language to {A → B | A,B ∈ [∧,∨,⊥,⊤]}, we have ΠX = Π

and definition 9 coincides with definition 5.

To find a theorem similar to theorem 7 for strong equivalence in {A → B | A,B ∈

[∧,∨,¬]}, we will use the characterization of answer sets in (Pearce, 1997), based

on Kripke models for the intermediate logic G3.

The following lemma is not only useful in this case but also will have applications

in the next section. Recall that for a world w in a Kripke model M , 〈w〉 denotes

the classical model 〈atom(w)〉.

Lemma 10

Let w be a node in a Kripke model M . For A,B ∈ [∧,∨,⊥,⊤], w |= A iff 〈w〉 |= A

and, if w |= A → B then 〈w〉 |= A → B.

Proof

First we prove for A ∈ [∧,∨,⊥,⊤] that w |= A iff 〈w〉 |= A. If A is atomic, ⊥ or

⊤, this is obvious. By induction on the complexity of A, the proof for the cases of

conjunction and disjunction is straightforward.

For the second part of the proof, let both A and B be in [∧,∨,⊥,⊤]. If 〈w〉 6|= A →

B then 〈w〉 |= A and 〈w〉 6|= B. By the first part of the lemma then w 6|= A → B.

As an immediate consequence of lemma 10 we have the following lemma for

models of G3.

Lemma 11

For A,B ∈ [∧,∨,⊥,⊤], 〈Y,X〉 |= A → B iff 〈X〉 |= A → B and 〈Y 〉 |= A → B

Proof

Assume 〈Y,X〉 |= A → B. By lemma 10 we may conclude that 〈X〉 |= A → B and

〈Y 〉 |= A → B.

For the other direction, assume 〈X〉 |= A → B and 〈Y 〉 |= A → B. If 〈Y,X〉 |= A,

then 〈Y 〉 |= A and hence 〈Y 〉 |= B, which implies 〈Y,X〉 |= B, so 〈Y,X〉 |= A → B.

On the other hand if 〈Y,X〉 6|= A then 〈X〉 |= A → B immediately implies 〈Y,X〉 |=

A → B.

The next lemma is true for all propositional formulas.
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Lemma 12

For all sets of atoms X and Y such that Y ⊆ X it is true that 〈Y,X〉 |= A ⇔ 〈Y,X〉 |=

AX .

Proof

Observe that 〈Y,X〉 |= ¬A ⇔ 〈X〉 6|= A. As a consequence we have 〈Y,X〉 |=

¬A ⇔ (¬A)X = ⊤ ⇔ 〈Y,X〉 |= (¬A)X . Hence for all A it is true that

〈Y,X〉 |= ¬A↔(¬A)X . This implies, using the definition 8, that for all A ∈ [∧,∨,→

,¬] it is true that 〈Y,X〉 |= A↔AX , from which the lemma immediately follows.

Theorem 13, theorem 14 and corollary 15 restate the main result of (Lifschitz,

Pearce and Valverde, 2001).

Theorem 13

Let Π ⊆ {A → B | A,B ∈ [∧,∨,¬]} and X a set of atomic formulas. X is an an

answer set of Π if and only if for all Y ⊆ X it is true that 〈Y,X〉 |= Π ⇔ X = Y .

Theorem 14

Let Π1 and Π2 be programs in {A → B | A,B ∈ [∧,∨,¬]}. Π1 and Π2 are strongly

equivalent if and only if they are equivalent in G3, i.e. Π1 ≡G3 Π2.

Corollary 15

Let Π1 and Π2 be programs in {A → B | A,B ∈ [∧,∨,¬]}. Π1 and Π2 are strongly

equivalent if and only if for all Π ⊆ {p → q | p atomic or p = ⊤, q atomic}, Π1 ∪ Π

and Π2 ∪ Π have the same answer sets.

According to the corollary above, the notion of strong equivalence of logic pro-

grams may depend on the language for the programs Π1 and Π2, but in all sublan-

guages L of {A → B | A,B ∈ [∧,∨,¬]}, we may use theorem 14, as long as rules of

the form p → q (with p and q atomic) are in L.

4 Stable inference in intermediate logics

The previous section linked strong equivalence of logic programs in stable inference

with equivalence in CPL (for programs without negations in the head or the body

of the rules) or in G3. In this section we will determine for several fragments of

propositional logic the weakest intermediate logic for which equivalence of programs

is implied by strong equivalence in stable inference.

For the fragment {A → B | A,B ∈ [∧,∨,⊥,⊤]} we have the following lemma.

Lemma 16

Let L = {A → B | A,B ∈ [∧,∨,⊥,⊤]} and T ⊆ L, C ∈ L. Then T ⊢CPL

C ⇔ T ⊢IPL C.

Proof
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The direction from IPL to CPL is trivial. So let us assume T ⊢CPL C. Let M be

a Kripke model and w a node in M such that w |= T . Using lemma 10 we may

conclude 〈w〉 |= T and hence 〈w〉 |= C. Again, use lemma 10 to prove w |= C. This

proves that T implies C in Kripke models in general and hence T ⊢IPL C.

Corollary 17

Let L = {A → B | A,B ∈ [∧,∨,⊥,⊤]} and Π1,Π2 ⊆ L. Then Π1 and Π2 are

strongly equivalent in L iff Π1 ≡IPL Π2.

Proof

Is an immediate consequence of theorem 7 and lemma 16.

Strong equivalence between programs in the language {A → B | A,B ∈ [∧,∨,¬]}

will not be the same as equivalence in IPL, as for example ¬p ∨ ¬¬p is strongly

equivalent to ⊤ (it is a derivable formula in G3) and is not derivable in IPL. The

intermediate logic KC, which has ¬A ∨ ¬¬A as its axiom, will, in the following,

turn out to be the weakest intermediate logic for which equivalence of programs is

implied by strong equivalence in answer set semantics.

Lemma 18

Let L = {A → B | A,B ∈ [∧,∨,¬]}, T ⊆ L and C ∈ L. Then T ⊢KC C ⇔ T ⊢G3

C.

Proof

Again the direction from KC to G3 is trivial. For the other direction, let T 6⊢ KCA →

B (where A,B ∈ [∧,∨,¬]). Then for some Kripke model M with a single terminal

(i.e. maximal) node t, there is a w ∈ M such that w |= T,w |= A and w 6|= B. We

will prove that for the G3-model 〈w, t〉 we have for all formulas C ∈ [∧,∨,¬] that

w |= C ⇔ 〈w, t〉 |= C and for C,D ∈ [∧,∨,¬] that w |= C → D ⇒ 〈w, t〉 |=

C → D. As a consequence, 〈w, t〉 |= T, 〈w, t〉 |= A and 〈w, t〉 6|= B, which proves

T 6⊢
G3

A → B.

The proof that for C ∈ [∧,∨,¬] we have w |= C ⇔ 〈w, t〉 |= C is by structural

induction. For atomic formulas it is obvious and the cases for conjunctions and

disjunctions are trivial. For the case of negation, observe that w |= ¬C ⇔ t 6|= C,

and t 6|= C ⇔ 〈t〉 6|= C ⇔ 〈w, t〉 |= ¬C.

Now let C,D ∈ [∧,∨,¬] and w |= C → D. Since w ≤ t, 〈t〉 |= C → D. So, if w 6|=

C, we have (by the above part of the proof) 〈w, t〉 6|= C and hence 〈w, t〉 |= C → D.

On the other hand, if w |= C, then also w |= D and by the above part of the proof,

also 〈w, t〉 |= C → D. Which proves that w |= C → D implies 〈w, t〉 |= C → D.

Corollary 19

Let L = {A → B | A,B ∈ [∧,∨,¬]} and Π1,Π2 ⊆ L. Then Π1 and Π2 are strongly

equivalent in L iff Π1 ≡KC Π2.

Corollary 20

KC is the weakest intermediate logic L such that Π1,Π2 ⊆ {A → B | A,B ∈

[∧,∨,¬]} are strongly equivalent iff Π1 ≡L Π2.
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Proof

Note that the KC axiom ¬A ∨ ¬¬A can be expressed in the language {A → B |

A,B ∈ [∧,∨,¬]}.

That KC is the weakest intermediate logic for strong equivalence in almost any

language with negation (where negation is taken to be a negation by default and

strong equivalence defined according to the answer set semantics) can be seen from

the following corollary.

Corollary 21

Let L = {A → B | A,B ∈ [¬]} and Π1,Π2 ⊆ L. Then Π1 and Π2 are strongly

equivalent in L iff Π1 ≡KC Π2.

Proof

KC can alternatively be axiomatized as IPL plus ((¬A → B) ∧ (¬¬A → B) → B.

In one direction this is clear from the fact that this axiom immediately follows from

¬A ∨ ¬¬A, for the other direction substitute ¬A ∨ ¬¬A for B in the axiom, and

¬A ∨ ¬¬A follows. So, the programs {q} and {¬p → q,¬¬p → q} are strongly

equivalent and any logic making such programs equivalent will be as strong as KC.

As a consequence also strong equivalence in for example {A → B | A,B ∈ [∧,¬]}

and {A → B | A,B ∈ [∨,¬]} will coincide with equivalence in KC.

Even if we restrict the language further, allowing in the body only atoms or

negated atoms and in the head only atoms (apart from simple statements of atoms

and negation of atoms), KC is still the weakest intermediate logic L such that

equivalence of programs in L corresponds with strong equivalence.

In logic programming the programs in this restricted language are known as

normal programs and have historically been most important. Most Prolog imple-

mentations of negation by default are restricted to this kind of programs, often

called general programs in this context (see (Doets, 1994)).

Definition 22

A normal logic program is a finite set of rules
∧

li → p, where the li are literals (so

either atomic or a negation of an atomic formula) and p is atomic.

First we will prove that an alternative axiomatization of KC, in the language of

normal programs, is possible.

Lemma 23

A ∧ C → D,¬A → B,¬C → B ⊢KC ¬D → B.

Proof

Of course, this can be automatically checked in a tableau system as in (Avellone et

al., 1999), but let us do it from scratch. By KC we have ¬A or ¬¬A. If ¬A, B and

hence ¬D → B, is immediate from ¬A → B. So, we can assume ¬¬A. Similarly,

we can assume ¬¬C. By IPL, ¬¬(A ∧C) follows. Again by IPL, A ∧C → D now

implies ¬¬D, from which again ¬D → B.
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Let L be the set of formulas coding normal logic programs. As derivability in

KC implies derivability in G3, we can use lemma 23 to prove that Π1 = {p ∧ r →

s,¬p → q,¬r → q} and Π2 = {p ∧ r → s,¬p → q,¬r → q,¬s → q} are strongly

equivalent programs in L.

On the other hand it is easily seen that for each intermediate logic L that proves

Π1 and Π2 equivalent, we have A ∧ C → D,¬A → B,¬C → B ⊢L ¬D → B. The

following lemma shows that such an L has to contain KC.

Lemma 24

If L is the intermediate logic with, apart from the axioms of IPL, the axiom (A ∧

C → D) ∧ (¬A → B) ∧ (¬C → B) → (¬D → B), then L is equivalent with KC.

Proof

That ⊢L A implies ⊢KC A is a simple consequence of lemma 23. For the other

direction, let A := p, B := ¬p∨¬¬p, C := ¬p and D := ⊥ in (A∧C → D)∧(¬A →

B)∧(¬C → B) → (¬D → B). All the antecedents as well as ¬D are then derivable,

so ¬p ∨ ¬¬p follows.

The result of the above discussion is summarized in the next corollary.

Corollary 25

Let Π1 and Π2 be normal logical programs. Then Π1 and Π2 are strongly equivalent

iff Π1 ≡KC Π2. Moreover, KC is the weakest intermediate logic for which provable

equivalence in the logic and strong equivalence of normal logic programs coincide.

Proof

The first part immediately follows by corollary 19. Lemma 24 implies that KC is

the weakest intermediate logic for which equivalent normal programs are strongly

equivalent.

Corollary 26

No program in the language {A → B | A,B ∈ [∧,¬]} is strongly equivalent to the

program {p ∨ q}.

Proof

Recall that KC is sound and complete with respect to the finite Kripke models

with a single terminal node.

Let the model M be as pictured below, where atom(t) = {p, q}, atom(u) = {p},

atom(v) = {q} and atom(w) = ∅.

t

t

❅
❅❅

❅
❅❅

t t

�
��

�
��
t p, q

u p v q

w

Clearly u |= p ∨ q and v |= p ∨ q, but w 6|= p ∨ q. By induction on the complexity

of formulas A ∈ [∧,→,¬] one easily proves that

w |= A ⇔ u |= A and v |= A
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Hence if Π ⊆ {A → B | A,B ∈ [∧,¬]} and Π ≡KC {p∨q}, we would have u |= Π,

v |= Π, which would imply w |= Π, a contradiction.

Observe that the type of model we need for the proof above is not a G3 model (not

of the form 〈h, t〉). In fact, in the full language of G3 we can define disjunction using

p ∨ q = ((p → q) → q) ∧ ((q → p) → p). The simple proof that this is not possible

(in G3) if one restricts the language of the programs to {A → B | A,B ∈ [∧,¬]}

indicates that the proof of certain properties of answer set programs may benefit

from a detour in the logic KC.
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