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Abstract

λProlog is known to be well-suited for expressing and implementing logics and inference
systems. We show that lemmas and definitions in such logics can be implemented with a
great economy of expression. We encode a higher-order logic using an encoding that maps
both terms and types of the object logic (higher-order logic) to terms of the metalanguage
(λProlog). We discuss both the Terzo and Teyjus implementations of λProlog. We also
encode the same logic in Twelf and compare the features of these two metalanguages for
our purposes.

1 Introduction

It has long been the goal of mathematicians to minimize the set of assumptions

and axioms in their systems. Implementers of theorem provers use this principle:

they use a logic with as few inference rules as possible, and prove lemmas outside

the core logic in preference to adding new inference rules. In applications of logic

to computer security – such as proof-carrying code (Nec97) and distributed authen-

tication frameworks (AF99a) – the implementation of the core logic is inside the

trusted code base (TCB), while proofs need not be in the TCB because they can

be checked.

Two aspects of the core logic are in the TCB: a set of logical connectives and

inference rules, and a program in some underlying programming language that

implements proof checking – that is, interpreting the inference rules and matching

them against a theorem and its proof.

Definitions and lemmas are essential in constructing proofs of reasonable size and

clarity. A proof system should have machinery for checking lemmas, and applying

lemmas and definitions, in the checking of proofs. This machinery also is within

the TCB; see Figure 1. Many theorem provers support definitions and lemmas

and provide a variety of advanced features designed to help with tasks such as

organizing definitions and lemmas into libraries, keeping track of dependencies, and

providing modularization; in our work we are particularly concerned with separating
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Figure 1. Lemma machinery is inside the TCB.

that part of the machinery necessary for proof checking (i.e., in the TCB) from

the programming-environment support that is used in proof development. This

separation was particularly important for a proof-carrying code system we built

initially in λProlog (AF00). In this paper we will demonstrate a definition/lemma

implementation that is about three dozen lines of code.

The λProlog language (NM88) has several features that allow concise and clean

implementation of logics, proof checkers, and theorem provers (Fel93). In a previ-

ous paper (AF99b), we presented a lemma and definition mechanism implemented

in λProlog. In this paper, we extend that work and describe it more fully. We

present the lemma mechanism and a generalization of our definition mechanism,

again implemented in λProlog. Since we now have more experience using the Twelf

system (Pfe91; PS99), we include a detailed comparison of the Twelf and λProlog

versions of the encoding of our logic, lemmas, and definitions. An important purpose

of this paper is to show which language features allow a small TCB and efficient

representation of proofs. We also give a comparison of programming issues that are

important to our proof-carrying code application.

Although the lemma and definition mechanism is general, we illustrate it using an

implementation of higher-order logic. We call this logic the object logic to distinguish

it from the metalogic implemented by λProlog or Twelf. Our object logic is not

polymorphic, but our lemma and definition mechanisms are polymorphic in the

sense that they can express properties that hold at any type of the object logic.

The symmetry of equality, for example, is one such lemma we will encounter.

2 Encoding a higher-order logic

The λProlog version of the clauses we present use the syntax of the Terzo implemen-

tation (Wic99). We also discuss the Teyjus implementation (NM99) and compare

the two for our purposes. Terzo is interpreted and provides more flexibility, but

Teyjus has a compiler in which our code runs much more efficiently.
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λProlog is a higher-order logic programming language which extends Prolog in

essentially two ways. First, it replaces first-order terms with the more expressive

simply-typed λ-terms; λProlog implementations generally extend simple types to

include ML-style prenex polymorphism (DM82; NP92). Second, it permits impli-

cation and universal quantification (over objects of any type) in goal formulas.

We introduce types and constants using kind and type declarations, respectively.

For example, a new primitive type t and a new constant f of type t → t → t are

declared as follows.

kind t type.

type f t -> t -> t.

Capital letters in type declarations denote type variables and are used in polymor-

phic types. In program goals and clauses, λ-abstraction is written using backslash

\ as an infix operator. Capitalized tokens not bound by λ-abstraction denote free

variables. All other unbound tokens denote constants. Universal quantification is

written using the constant pi in conjunction with a λ-abstraction (e.g., pi X\

represents universal quantification over variable X). The symbols comma and =>

represent conjunction and implication. The symbol :- denotes the converse of =>

and is used to write the top-level implication in clauses. The type o is the type of

clauses and goals of λProlog. We usually omit universal quantifiers at the top level

in definite clauses, and assume implicit quantification over all free variables.

We will encode a natural deduction proof system for our higher-order object

logic. (In our earlier work (AF99b), we implemented a sequent calculus version.)

We implement a proof checker for this logic that is similar to the one described by

Felty (Fel93). Program 2 contains the type declarations used in our encoding.

We introduce three primitive types: tp for object-level types, tm for object-level

terms (including formulas) and pf for proofs in the object logic.

We introduce constants for the object-level type constructors. The main type

constructor for our object language is the arrow constructor taking two types as

arguments. We also include objects of type tp to represent base types, such as form

and intty.

To represent formulas, we introduce constants such as imp to represent implica-

tion in the object logic, and eq which takes two terms and a type and is used to

represent equality at any type. We use infix notation for the type arrow and binary

logical connectives. The binding strength of each infix operator is declared using

an infix declaration. The constant forall represents universal quantification. It

takes a type representing the type of the bound variable and a functional argument,

which allows object-level binding of variables by quantifiers to be defined in terms

of meta-level λ-abstraction. An example of its use is the following formula, which

expresses the commutativity of equality for integers:

forall intty (X\ forall intty (Y\ (eq intty X Y) imp (eq intty Y X))).

The parser uses the usual rule for the syntactic extent of a lambda, so this expression

is equivalent to

forall intty X\ forall intty Y\ eq intty X Y imp eq intty Y X.
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kind tp type.

kind tm type.

kind pf type.

type form tp.

type intty tp.

type arrow tp -> tp -> tp. infixr arrow 8.

type pair tp -> tp -> tp.

type eq tp -> tm -> tm -> tm.

type imp tm -> tm -> tm. infixr imp 7.

type forall tp -> (tm -> tm) -> tm.

type false tm.

type lam (tm -> tm) -> tm.

type app tp -> tm -> tm -> tm.

type mkpair tm -> tm -> tm.

type fst tp -> tm -> tm.

type snd tp -> tm -> tm.

type hastype tm -> tp -> o.

type proves pf -> tm -> o.

type assump o -> o.

type refl pf.

type beta pf.

type fstpair pf.

type sndpair pf.

type surjpair pf.

type congr tp -> tm -> tm -> (tm -> tm) -> pf -> pf -> pf.

type imp_i (pf -> pf) -> pf.

type imp_e tm -> pf -> pf -> pf.

type forall_i (tm -> pf) -> pf.

type forall_e tp -> (tm -> tm) -> pf -> tm -> pf.

Program 2. Type declarations for core logic.

This use of higher-order data structures is called higher-order abstract syntax (PE88);

with it, we don’t need to describe the mechanics of substitution explicitly in the

object logic (Fel93).

To represent terms, we introduce the app and lam constants for application and

abstraction, as well as constants for pairing and projections. The app constructor

takes three arguments. The second argument is a term of functional type and the

third argument is the term it is applied to. The first argument is the type of the

argument to the function. The lam constant has a type, which like forall, uses

meta-level abstraction to represent object-level binding.

The constants at the end of Program 2 are used to build terms representing

proofs. We call these constants as well as any other terms whose type ends in “->

pf” proof constructors.

Programs 2 and 3 together implement a full proof checker for our object logic.
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hastype (eq T X Y) form :- hastype X T, hastype Y T.

hastype (A imp B) form :- hastype A form, hastype B form.

hastype (forall T A) form :- pi x\ (hastype x T => hastype (A x) form).

hastype false form.

hastype (lam F) (T1 arrow T2) :- pi x\ (hastype x T1 => hastype (F x) T2).

hastype (app T1 F X) T2 :- hastype F (T1 arrow T2), hastype X T1.

hastype (mkpair X Y) (pair T1 T2) :- hastype X T1, hastype Y T2.

hastype (fst T2 X) T1 :- hastype X (pair T1 T2).

hastype (snd T1 X) T2 :- hastype X (pair T1 T2).

proves Q A :- assump (proves Q A).

proves refl (eq T X X).

proves beta (eq T2 (app T1 (lam F) X) (F X)).

proves fstpair (eq T1 (fst T2 (mkpair X Y)) X).

proves sndpair (eq T2 (snd T1 (mkpair X Y)) Y).

proves surjpair (eq (pair T1 T2) (mkpair (fst T2 Z) (snd T1 Z)) Z).

proves (congr T X Z H P1 P2) (H X) :-

hastype X T, hastype Z T,

proves P1 (eq T X Z), proves P2 (H Z).

proves (imp_i Q) (A imp B) :-

pi p\ (assump (proves p A) => proves (Q p) B).

proves (imp_e A Q1 Q2) B :-

hastype A form, proves Q1 (A imp B), proves Q2 A.

proves (forall_i Q) (forall T A) :-

pi y\ (hastype y T => proves (Q y) (A y)).

proves (forall_e T A Q X) (A X) :-

pi x\ (hastype x T => hastype (A x) form),

hastype X T,

proves Q (forall T A).

Program 3. Inference rules of the core logic.

Program 3 implements both typechecking and inference rules. The last four clauses

of Program 3 implement the introduction and elimination rules for implication and

universal quantification, which are given in Figure 4. We do not include inference

(A)
B

⊃ -I
A ⊃ B

A A ⊃ B
⊃ -E

B

(y : τ )
[y/x]A

∀τ -I
∀τxA

∀τxA t : τ
∀τ -E

[t/x]A

The ∀-I rule has the proviso that the variable y cannot appear free in ∀τxA, or
in any assumption on which the deduction of [y/x]A depends.

Figure 4. Natural Deduction Inference Rules

rules for the other logical connectives. Instead, we define them in terms of existing

connectives using our definition mechanism described later. The remaining clauses

for the proves predicate implement inference rules for equality. Typechecking for

terms is implemented by the hastype clauses. Proof checking is implemented by
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the proves clauses. A goal of the form (proves P A) should be run only after A is

typechecked, i.e., a proper check has the form (hastype A form, proves P A).

To implement the discharge of assumptions in the implication introduction rule,

we use implication and universal quantification in λProlog goals. The goal (D =>

G) adds clause D to the λProlog clause database, attempts to solve G, and then

(upon either the success or failure of G) removes D from the clause database. The

goal (pi y\(G y)) introduces a new constant c with the same type as y, replaces

y with c, and attempts to solve the goal (G c). For example, consider the goal

proves (imp_i q\q) (a imp a)

where a is a propositional constant (a constant of type form); then λProlog will

execute the (instantiated) body of the imp i clause

pi p\ (assump (proves p a) => proves ((q\q) p) a)

This generates a new constant c, and adds (assump (proves c a) to the database;

then the subgoal (proves ((q\q) c) a), which is β-equivalent to (proves c a),

matches the first clause for the proves predicate. The subgoal (assump (proves

c a)) is generated and this goal matches our dynamically added clause. We have

chosen to use the assump predicate for adding atomic clauses to the program. This

is not necessary, but we find it useful to distinguish between adding atomic clauses

and adding non-atomic clauses, which we will see later. Note that the typechecking

clauses for forall and lam use meta-level implication and universal quantification

in a manner similar to the proves clause for the ⊃-I rule.

It is important to show that our encoding of higher-order logic in λProlog is

adequate. To do so, we must show that a formula has a natural deduction proof

if and only if its representation as a term has an associated proof term that can

be checked using the inference rules of Program 3. The encoding we use is similar

to the encoding of higher-order logic in the Logical Framework (HHP93) and the

proof of adequacy of our encoding is similar to the one discussed there. The main

difference between the two encodings is the types of the logical connectives. For

example, in their encoding, imp is given type tm and the fact that it is a connective

which takes two formulas as arguments is expressed using object level types; the

hastype clause is

hastype imp (form arrow form arrow form).

An implication must then be expressed using the app constructor, e.g., (app (app

imp A) B). We found that this encoding of the connectives quickly became cum-

bersome and our encoding was more readable. On the other hand, our encoding is

not as economical as the one we used previously (AF99b). There we represented

object-level types as meta-level types, which allowed us to eliminate all the hastype

clauses and subgoals. The types of our object logic, however, did not match up well

with the types of λProlog, which forced certain limitations in the implementation of

our proof-carrying code system. (See Appel and Felty (AF99b) for further analysis.)

The encoding in the current paper seems to be the best compromise.
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proves

(forall_i I\ (forall_i J\ (imp_i Q\

(congr intty I J (eq intty J) Q refl))))

(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).

Theorem 5. ∀int I ∀int J ((I =int J) ⊃ (J =int I)).

3 Lemmas

In mathematics the use of lemmas can make a proof more readable by structuring

the proof, especially when the lemma corresponds to some intuitive property. For

automated proof checking (in contrast to automated or traditional theorem proving)

this use of lemmas is not essential, because the computer doesn’t need to understand

the proof in order to check it. But lemmas can also reduce the size of a proof (and

therefore the time required for proof checking): when a lemma is used multiple times

it acts as a kind of “subroutine.” This is particularly important in applications like

proof-carrying code where proofs are transmitted over networks to clients who check

them. We first present an example which we use to illustrate our lemma mechanism

in λProlog (Section 3.1), and then present this mechanism as we’d implement it

in Terzo (Section 3.2). We then explain the modifications required to meet the

extra restrictions imposed by Teyjus (Section 3.3). We end this section with some

optimizations that are important for keeping proofs that use lemmas as small as

possible (Section 3.4) and then with some more examples (Section 3.5).

3.1 An example

Theorem 5 shows the use of our core logic to express a simple proof checking goal.

The proof of this lemma uses the ∀-I rule as well as congruence and reflexivity of

equality. Its proof can be checked as a successful λProlog query to our core logic

in Programs 2 and 3. Alternatively, we may want to prove it using the following

general lemma about symmetry of equality at any type.

A : τ B : τ B =τ A
A =τ B

The proof of this lemma can be checked as the following λProlog query.

pi T\ pi A\ pi B\ pi P\

(hastype A T, hastype B T, proves P (eq T B A)) =>

proves (congr T B A (eq T A) P refl) (eq T A B).

This query introduces an arbitrary P, adds the typing clauses (hastype A T) and

(hastype B T), and the assumption (proves P (eq T B A)) to the set of clauses,

then checks the proof of congruence using these facts. The syntax F => G means

exactly the same as G :- F , so we could just as well write this query as

pi T\ pi A\ pi B\ pi P\

(proves (congr T B A (eq T A) P refl) (eq T A B) :-

hastype A T, hastype B T, proves P (eq T B A)).
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type lemma_pf (A -> o) -> A -> (A -> pf) -> pf.

proves (lemma_pf Inference LemmaProof RestProof) C :-

Inference LemmaProof,

pi Name\ ((Inference Name) => (proves (RestProof Name) C)).

Program 6. The lemma pf proof constructor.

Now, suppose we abstract the proof (roughly, congr T B A (eq T A) P refl)

from this query.

(Inference = (PCon\ pi T\ pi A\ pi B\ pi P\

proves (PCon T A B P) (eq T A B) :-

hastype A T, hastype B T, proves P (eq T B A)),

Proof = (T\A\B\P\ congr T B A (eq T A) P refl),

Query = (Inference Proof),

Query).

The solution of this query proceeds in four steps: the variable Inference is unified

with a λ-term; Proof is unified with a λ-term; Query is unified with the application

of Inference to Proof (which is a term β-equivalent to the query of the previous

paragraph), and finally Query is solved as a goal (checking the proof of the lemma).

Once we know that the lemma is valid, we can make a new λProlog atom symm

to stand for its proof, and we can prove some other theorem in a context where the

clause (Inference symm) is in the clause database; remember that (Inference

symm) is β-equivalent to

pi T\ pi A\ pi B\ pi P\

(proves (symm T A B P) (eq T A B) :-

hastype A T, hastype B T, proves P (eq T B A)).

This series of transformations starting with a proof checking subgoal has led us

to a clause that looks remarkably like an inference rule. With this clause in the

database, we can use the new proof constructor symm just as if it were primitive.

Instead of adding new clauses like this to our proof checker, which would increase

the size of our TCB, we show how to put such lemmas inside proofs.

3.2 Lemmas in proofs

In the example in the previous section, symm is a new constant, but when lemmas

are proved and put inside proofs dynamically, we can instead “make a new atom”

by simply pi-binding it. This leads to the recipe for lemmas shown in Program 6,

which is the heart of our lemma mechanism. (We will improve it slightly in the

next section.) This program introduces a constructor lemma pf for storing lem-

mas in proofs. This constructor takes three arguments: (1) a derived inference rule

Inference (of type A -> o) parameterized by a proof constructor (of type A), (2) a

term LemmaProof of type A representing a proof of the lemma built from core-logic

proof constructors (or using other lemmas), and (3) a proof of the main theorem
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proves

(lemma_pf

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm T A B P) (eq T A B) :-

hastype A T, hastype B T, proves P (eq T B A))

(T\A\B\P\ (congr T B A (eq T A) P refl))

(symm\ (forall_i I\ (forall_i J\ (imp_i Q\ (symm intty J I Q))))))

(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).

Theorem 7. Modification of Theorem 5 to use a lemma.

RestProof that is parameterized by a proof constructor (of type A). Operationally,

this clause first executes (Inference LemmaProof) as a query, to check the proof

of the lemma itself; then it pi-binds Name in the lemma, adds it as a new clause, and

runs RestProof (which is parameterized on the lemma proof constructor) applied

to Name.

The terms Inference and Proof from the example in Section 3.1 illustrate the

form of the terms which will appear as the first two arguments to lemma pf. Theo-

rem 7 illustrates the use of lemma pf in an example; this theorem is a modification

of Theorem 5 that uses the symm lemma.

3.3 Lemmas in Teyjus

If we restrict ourselves to the Terzo implementation of λProlog, then meta-level

formulas can occur inside proofs using any of the λProlog connectives. But if we

want to be able to use Teyjus as well, we must make one more change. The Teyjus

system does not allow => or :- to appear in arguments of predicates. Thus the term

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm T A B P) (eq T A B) :-

hastype A T, hastype B T, proves P (eq T B A))

occurring in the symm lemma in Theorem 7 cannot appear directly as the first

argument to lemma pf. Teyjus also does not allow variables to appear at the head

of the left of an implication. These restrictions come from the theory underlying

λProlog (MNPS91); without the latter one, a runtime check is needed to insure

that every dynamically created goal is an acceptable one.

We can avoid putting :- inside arguments of predicates by writing the above

term as

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm T A B P) (eq T A B) <<==

hastype A T, hastype B T, proves P (eq T B A))

where <<== is a new infix operator of type o -> o. But this, in turn, means that

the subgoal (Inference LemmaProof) of the lemma pf clause in Program 6 will

no longer check the lemma, since <<== has no operational meaning. To handle

such goals, we add the three constants declared at the beginning of Program 8,

which introduce both forward and backward implication arrows, and a new atomic
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type ==>> o -> o -> o. infixr ==>> 4.

type <<== o -> o -> o. infixl <<== 0.

type cl o -> o.

(D ==>> G) :- (cl D) => G.

(G <<== D) :- (cl D) => G.

type backchain o -> o -> o.

proves P A :- cl Cl, backchain (proves P A) Cl.

hastype X T :- cl Cl, backchain (hastype X T) Cl.

assump G :- cl Cl, backchain (assump G) Cl.

backchain G G.

backchain G (pi D) :- backchain G (D X).

backchain G (A,B) :- backchain G A; backchain G B.

backchain G (H <<== G1) :- backchain G H, G1.

backchain G (G1 ==>> H) :- backchain G H, G1.

Program 8. An interpreter for dynamic clauses.

predicate cl of type o -> o, and we introduce the two clauses that follow these

declarations to interpret our new arrows as λProlog implication. Note that although

it would have been more direct, we did not add:

(D ==>> G) :- D => G.

because of the Teyjus restriction mentioned above that variables cannot appear

at the head of the left of an implication. The use of the cl “wrapper” solves the

problem created by this restriction, but requires us to implement an interpreter to

handle clauses of the form (cl A). The remaining clauses in Program 8 implement

this interpreter.

Since the type of (Inference Proof) is o, the term Inference might conceiv-

ably contain subterms which are λProlog clauses. Of course, in Teyjus these clauses

will not contain :- or =>, but they may contain <<== and ==>>, which get inter-

preted via the clauses of Program 8. They could also, for example, contain any other

λProlog code including input/output operations. Executing (Inference Proof)

cannot lead to unsoundness – if the resulting proof checks, it is still valid. But

there are some contexts where we wish to restrict the kind of program that can

occur inside a proof and be run when the proof is checked. For example, in a proof-

carrying-code system, the code consumer might not want proof checking to cause

λProlog to execute code that accesses private local resources.

To limit the kind and amount of execution possible in the executable part of

a lemma, we introduce the valid clause predicate of type o -> o (Program 9).

A clause is valid if it contains pi, comma, <<==, ==>>, proves, hastype, assump,

and nothing else. Of course, a proves or assump clause contains subexpressions of

type pf and tm, and a hastype clause has subexpressions of type tm and tp, so

all the constants in proofs, terms, and types of our object logic are also permitted.
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valid_clause (pi C) :- pi X\ valid_clause (C X).

valid_clause (A,B) :- valid_clause A, valid_clause B.

valid_clause (A <<== B) :- valid_clause A, valid_clause B.

valid_clause (A ==>> B) :- valid_clause A, valid_clause B.

valid_clause (proves Q A).

valid_clause (hastype X T).

valid_clause (assump (proves Q A)).

Program 9. Valid clauses.

proves (lemma_pf Inference LemmaProof RestProof) C :-

pi Name\ (valid_clause (Inference Name)),

Inference LemmaProof,

pi Name\ (cl (Inference Name) => (proves (RestProof Name) C)).

Program 10. The clause for lemmas in Teyjus.

Absent from this list are λProlog input/output (such as print) and the semicolon

(backtracking search).

The valid clause restriction is the reason that we only need new clauses for

the proves, hastype, and assump predicates in Program 8. We must add at least

these three because they are used for checking nodes in a proof that require using

the clauses added dynamically via the cl predicate. Including no other predicates

in the valid clause definition guarantees that we need no other new clauses with

cl subgoals.

Because of the introduction of <<==, ==>>, and valid clause, we modify the

clause in Program 6 for checking lemmas. The new clause is shown in Program 10.

The first subgoal is new; it pi-binds Name and checks to see if the new lemma

applied to Name is valid. The only other modification is in the last subgoal, which

adds the lemma as a new clause via the cl predicate. Since all lemmas will be added

via cl, the only way to use them is via the proves clause in Program 8. Using that

clause, the (cl Cl) subgoal looks up the lemmas that have been added, one at

a time, and tries them out via the backchain predicate. This predicate processes

the clauses in a manner similar to the λProlog language itself. In Terzo, using this

interpreter is less efficient than the direct implementation in Program 6. In Teyjus,

the interpreter is required, but when compiled, the code runs faster than either

Terzo version.

In summary, our technique allows lemmas to be contained within the proof. We

do not need to install new “global” lemmas into the proof checker. The dynamic

scoping also means that the lemmas of one proof cannot interfere with the lemmas of

another, even if they have the same names. This machinery uses several interesting

features of λProlog:

Polymorphism. The type of the lemma pf constructor uses polymorphism to indi-

cate that proof constructors introduced for lemmas can have different types.
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Meta-level formulas as terms. Lemmas such as symmetry of equality occur inside

proofs as an argument to the lemma pf constructor in the following form.

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm T A B P) (eq T A B) <<==

hastype A T, hastype B T, proves P (eq T B A))

It is just a data structure (parameterized by Symm); it does not “execute” anything,

in spite of the fact that it contains the λProlog quantifier pi and our new connective

<<==. This gives us the freedom to write lemmas using syntax very similar to that

used for writing primitive inference rules. Handling the new constants for <<== and

==>> is easy enough operationally. However, it is an inconvenience for the user, who

must use different syntax in lemmas than in inference rules. This inconvenience is

avoided in Terzo.

Dynamically constructed goals. When the clause from Program 10 for the lemma pf

proof constructor checks the proof of a lemma by executing the goal (Inference

LemmaProof), we are executing a goal that is built from a run-time-constructed

data structure. Inference will be instantiated with terms such as the one above

representing the symmetry lemma. It is only when such a term is applied to its

proof and thus appears in “goal position” that it becomes the current subgoal on

the execution stack.

Dynamically constructed clauses. When, having successfully checked the proof of a

lemma, the lemma pf clause executes

cl (Inference Name) => (proves (RestProof Name) C)

it is adding a dynamically constructed clause to the λProlog database.

Although it is not the case for Terzo or Teyjus, if a metalanguage were to pro-

hibit all terms having o in their types as arguments to a predicate, it would still be

possible to implement lemmas using our approach. Appendix A illustrates by show-

ing an interpreter which extends Program 8 to handle this extra restriction. New

constants must be introduced not only for implication but also for every meta-level

connective. Note that when meta-level formulas are not allowed, there is no possi-

bility for dynamically created goals or clauses. Twelf for example, does not allow

meta-level formulas as terms and is also not polymorphic, and thus the approach

described in this section cannot be used, but the approach of Appendix A could.

Instead, as we will see in Section 6, Twelf provides alternative features which we

can use to implement lemmas.

3.4 Some optimizations for implementing lemmas

The Symm proof constructor in Theorem 7 is a bit unwieldy, since it requires T, A,

and B as arguments. We can imagine writing a primitive inference rule

proves (symm P) (eq T A B) :-

hastype A T, hastype B T, P proves (eq T B A).
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type elam (A -> pf) -> pf.

type extract tm -> pf -> pf.

type extractGoal o -> pf -> pf.

proves (elam Q) A :- proves (Q B) A.

proves (extract A P) A :- proves P A.

proves (extractGoal G P) A :- valid_clause G, G, proves P A.

Program 11. Proof constructors for implicit arguments of lemmas.

proves

(lemma_pf

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm P) (eq T A B) <<==

hastype A T, hastype B T, proves P (eq T B A))

(P\ elam T\ elam A\ elam B\

(extract (eq T A B) (congr T B A (eq T A) P refl)))

(symm\ (forall_i I\ (forall_i J\ (imp_i Q\ (symm Q))))))

(forall intty I\ forall intty J\ (eq intty I J imp eq intty J I)).

Theorem 12. ∀int I ∀int J ((I =int J) ⊃ (J =int I)).

using the principle that the proof checker doesn’t need to be told T, A, and B inside

the proof term, since they can be found in the formula to be checked. Then, in

Theorem 7, (Symm intty J I Q) would be (Symm Q).

Therefore we add three new proof constructors—elam, extract, and extract-

Goal—as shown in Program 11. These can be used in the following stereotyped

way to extract components of the formula to be proved. First bind variables with

elam, then match the target formula with extract. Theorem 12 is a modification

of Theorem 7 that makes use of these constructors.

Note that we could eliminate the hastype subgoals from our new version of the

symm lemma because we know them to be redundant as long as (eq T A B) was

already typechecked. The reason for keeping them is that the second subgoal of the

clause in Program 10 would fail without them; the proof checking of the lemma

requires these hastype assumptions. In encoding our core logic, it was possible to

eliminate all such redundant subgoals. The fact that such a shortcut is not possible

in lemmas causes a tradeoff; by keeping such lemmas out of the TCB and putting

them in proofs, we are forcing the proof checker to do more work. There seems to

be no easy way to avoid this redundant work, though some ad-hoc optimizations

to proof checking might be possible.

The extractGoal proof constructor asks the checker to run λProlog code to

help construct the proof. Its implementation uses valid clause to restrict what

kinds of λProlog code can be run. Note, however, that valid clause does not al-

ways eliminate code that loops and so its current implementation cannot guarantee

termination. A stricter valid clause would be necessary to achieve this.

The extractGoal proof constructor was useful for handling assumptions in the

sequent calculus version of our object logic (AF99b); for natural deduction, the
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proves

(lemma_pf

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm P) (eq T A B) <<==

hastype A T, hastype B T, proves P (eq T B A))

(P\ elam T\ elam A\ elam B\

(extract (eq T A B) (congr T B A (eq T A) P refl)))

(symm\

(lemma_pf

(Trans\ pi T\ pi A\ pi B\ pi C\ pi Q1\ pi Q2\

proves (Trans C Q1 Q2) (eq T A B) <<==

hastype A T, hastype B T, hastype C T,

proves Q1 (eq T A C), proves Q2 (eq T C B))

(C\Q1\Q2\ elam A\ elam B\ elam T\

(extract (eq T A B) (congr T B C (eq T A) (symm Q2) Q1)))

(trans\ (forall_i I\ forall_i J\ forall_i K\

(imp_i Q1\ (imp_i Q2\ (trans J (symm Q1) Q2))))))))

(forall intty I\ forall intty J\ forall intty K\

(eq intty J I imp eq intty J K imp eq intty I K))).

Theorem 13. ∀int I, J,K ((J =int I) ⊃ (J =int K) ⊃ (I =int K)).

same need does not arise in the implementation of our core logic, but extractGoal

is useful for implementing more complex lemmas. Although we have not done so,

it would be interesting to further explore the possibility of creating more compact

proofs by leaving out information that can be computed easily via code given as

arguments to extractGoal.

3.5 More examples

As another example of the use of lemmas, we can of course use one lemma in the

proof of another, as shown by Theorem 13. The proof of the trans lemma expressing

transitivity of equality uses the symm lemma.

The symm lemma is naturally polymorphic: it can express the idea that (a =int

3) ⊃ (3 =int a) just as well as (f =int→int λx.3) ⊃ (λx.3 =int→int f). Theorem 14

illustrates part of a proof which contains two lemmas whose proofs use symm at

different types. In our previous work (AF99b), because we represented object-level

types as meta-level types, we were unable to allow polymorphism in lemmas at

all. To do so would have required a metalanguage with more general non-prenex

polymorphism. To handle Theorem 14 required two copies of the symm lemma, one

at each type.

In principle, we do not need lemmas at all. Instead, we can replace each subproof

of the form (lemma pf I L R) with the term (R L), which replaces each use of

a lemma with its proof. This approach, however, adds undesirable complexity to

proofs. But, using this fact it should be straightforward to prove the correspondence

between proofs with the lemma pf constructor and proofs without, which would

directly extend soundness and adequacy results to our system with lemmas.
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(lemma_pf

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm P) (eq T A B) <<==

hastype A T, hastype B T, proves P (eq T B A))

(P\ elam T\ elam A\ elam B\

(extract (eq T A B) (congr T B A (eq T A) P refl)))

(symm\

(lemma_pf

(Poly1\ proves Poly1

(forall (intty arrow intty) f\ forall (intty arrow intty) g\

(eq (intty arrow intty) f g) imp (eq (intty arrow intty) g f)))

(forall_i f\ (forall_i g\ (imp_i q\ (symm q))))

(poly1\

(lemma_pf

(Poly2\ proves Poly2

(forall (intty arrow intty) f\ forall intty x\

(eq intty (app intty f x) x) imp (eq intty x (app intty f x))))

(forall_i f\ (forall_i x\ (imp_i q\ (symm q))))

(poly2\ ...))))))

Theorem 14. Proof with lemmas: ∀int→int f, g ((f =int→int g) ⊃ (g =int→int f))

and ∀int→int f ∀int x ((f(x) =int x) ⊃ (x =int f(x))).

4 Definitions

Definitions are another important mechanism for structuring proofs to increase

clarity and reduce size. If some property (of a base-type object, or of a higher-order

object such as a predicate) can be expressed as a logical formula, then we allow the

introduction of an abbreviation to stand for that formula.

We start by presenting a motivating example (Section 4.1), which leads us to our

definition mechanism in λProlog (Section 4.2). We also discuss two simpler versions

of our definition mechanism (Sections 4.3 and 4.4), which allow us to have a smaller

TCB, but which require more work to use.

4.1 A motivating example

We can express the fact that f is an associative function by the formula

∀τ X,Y, Z (f X (f Y Z) =τ f (f X Y )Z).

This will only be a valid expression if f has type τ → τ → τ . Putting this formula

in λProlog notation and expressing the type constraint on f , we get the following

provable λProlog typechecking goal.

pi F\ pi T\

(pi X\ pi Y\ hastype X T => hastype Y T => hastype (F X Y) T) =>

hastype (forall T X\ forall T Y\ forall T Z\

eq T (F X (F Y Z)) (F (F X Y) Z)) form.

To make this into a definition, the first step is to associate some name, say assoc,

with the definition body (which is the first argument of the last hastype above).
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We associate a name to a body of a definition in the same way we associated a new

proof constructor with the proof it stood for. If we follow exactly the pattern of the

symm lemma introduced at the beginning of Section 3, we abstract out the body of

the definition and obtain the following query.

(TypeInf = (assoc\ pi F\ pi T\

hastype (assoc F T) form <<==

pi X\ pi Y\ (hastype X T ==>>

hastype Y T ==>> hastype (F X Y) T)),

Def = (F\T\ (forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z)))),

Query = (TypeInf Def),

Query)

TypeInf is the typechecking query above with => replaced by ==>> or <<==, and

the abstraction assoc replacing the body of the definition. Def contains the body

abstracted with respect to the function F and type T and (TypeInf Def) is exactly

the typechecking subgoal above (except for the use of ==>> and <<==). If all we

wanted was a typechecking lemma to typecheck expressions of the form given by

Def, then we could use our lemma mechanism directly.

(lemma_pf

(Assoc\ pi F\ pi T\

hastype (Assoc F T) form <<==

pi X\ pi Y\ (hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))

(F\T\ (forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z))))

(assoc\ ...

This example shows that we can have typechecking lemmas in addition to proof

checking lemmas. It also motivates our definition mechanism shown next, which we

obtain by adding the ability to replace a name with the expression it represents

and vice versa.

4.2 Implementing definitions

We introduce a new proof constructor def pf and a new proof term def to rep-

resent equality between a name and its definition. This definition mechanism is

implemented by the clauses in Program 15. The arguments to def pf are similar

to the arguments to lemma pf, but also include one more for the type of the body

of the definition (after it is applied to all its arguments). In the clause for proof

checking def pf nodes, the first two subgoals are similar to lemma pf nodes. Here,

they check that the typechecking clause is valid and that Term (the body of the

definition) is correctly typed. The third clause computes the clause for expressing

definitional equality using the def to eqclause program. The fourth subgoal for

proof checking definitions adds both the typechecking clause and the equality clause

before checking the rest of the proof.
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type def_pf tp -> (A -> o) -> A -> (A -> pf) -> pf.

type def pf.

type def_to_eqclause tp -> A -> A -> o -> o.

def_to_eqclause T DName Def (pi Clause) :-

pi x\ (def_to_eqclause T (DName x) (Def x) (Clause x)).

def_to_eqclause T DName Def (proves def (eq T DName Def)).

proves (def_pf T TypeInf Term RestProof) C :-

pi Name\

(valid_clause (TypeInf Name),

TypeInf Term,

def_to_eqclause T Name Term (EqClause Name),

cl (TypeInf Name) => cl (EqClause Name) => (proves (RestProof Name) C)).

Program 15. Machinery for definitions.

Like ML, λProlog has parametric polymorphism (in the syntactic sense). But un-

like ML, λProlog does not have the parametricity property. A polymorphic function

can examine the structure of its argument. We illustrate with a simple example: a

function that tells the arity (number of function arguments) of an arbitrary value.

type arity A -> int -> o.

arity F N :- arity (F X) N1, N is N1 + 1.

arity X 0.

The first clause can only be used when F is a function; the second clause matches any

value. The def to eqclause clauses uses this exact feature of λProlog’s polymor-

phism. It first uses the meta-level type of Def to apply Def to as many arguments

as possible. The first clause introduces new variables to serve as these arguments.

Once it is applied to all of its arguments, the second clause forms the equality

clause using the type, the name, and the body of the definition. For our example,

the computed clause is

EqClause = (assoc\ (pi F\ pi T\

proves def (eq form (assoc F T)

(forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z)))))).

To ensure that there is only one solution to the arity predicate above and like-

wise the def to eqclause predicate in Program 15, we could have used the logic

programming cut (!) operator at the end of the first clause for each predicate. We

have omitted it here because def to eqclause is only be used in our proof checker,

which is written to avoid the need for backtracking.

To use definitions in proofs we introduce two new lemmas: def i to replace a for-

mula with the definition that stands for it (or viewed in terms of backward proof,

to replace a defined name with the term it stands for), and def e to expand a defi-

nition in the forward direction during proof construction. Their proofs are shown in

Program 16. Theorem 17 shows a proof using definitions. In this proof, f is a func-
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(lemma_pf

(Def_i\ pi T\ pi Name\ pi B\ pi P\ pi Q1\ pi Q2\

proves (Def_i T Name B P Q1 Q2) (P Name) <<==

proves Q1 (eq T Name B),

hastype Name T, hastype B T,

proves Q2 (P B))

(T\Name\B\P\Q1\Q2\ (congr T Name B P Q1 Q2))

(def_i\

(lemma_pf

(Def_e\ pi T\ pi Name\ pi B\ pi P\ pi Q1\ pi Q2\

proves (Def_e T Name B P Q1 Q2) (P B) <<==

proves Q1 (eq T Name B),

hastype Name T, hastype B T,

proves Q2 (P Name))

(T\Name\B\P\Q1\Q2\ (congr T B Name P

(congr T Name B (eq T B) Q1 refl) Q2))

(def_e\...

Program 16. Lemmas for folding and unfolding definitions.

tion symbol and t is a type, and the theorem is represented as a λProlog subgoal

with a top-level implication, where the right hand side is a proves subgoal and the

left hand side specifies the typing information about f which must hold in order for

the proof in the proves subgoal to be valid. The proof (the first argument to the

proves predicate) contains a series of four lemmas which we have already seen, fol-

lowed by the definition of associativity, followed by a fifth lemma about associativity

(assoc inst), followed by the main body of the proof. The def i lemma is used

in the main body of the proof. In general, proof checking using the def i lemma

means that the proof being checked must match the term (Def i T Name B P Q1

Q2), which is the first argument (the proof term) of the head of the proves clause

implementing the def i lemma in Program 16. This match determines the terms

matching P and Name. The formula being proved must be a formula that matches

the term (P Name), which is the second argument of the head of the proves clause

implementing the def i lemma in Program 16. Here Name is not always simply a

variable name, but is actually the definition name applied to all of its arguments

to form a term of type tm. In our example, assoc has type

(tm -> tm -> tm) -> tp -> tm.

At the point that proof checking of the body of the proof uses the def i lemma,

the formula to be checked is (assoc f t). The term that corresponds to (P Name)

in this example is (x\x)(assoc f t), which matches this formula. Proof checking

proceeds by finding a proof of the goal of the form

(proves Q1 (eq form (assoc f t) B))

which is proved simply by matching with the λProlog equality assumption added

when the assoc definition was processed by the proves clause for def pf. Next, the

two typechecking subgoals of the def i clause are solved. Solving the first, (hastype

(assoc f t) form), requires using the λProlog type inference assumption which
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pi f\ pi t\

(pi x\ pi y\ hastype x t => hastype y t => hastype (f x y) t) =>

(proves

(lemma_pf ... symm\

(lemma_pf ... trans\

(lemma_pf ... def_i\

(lemma_pf ... def_e\

(def_pf form

(Assoc\ pi F\ pi T\

hastype (Assoc F T) form <<==

pi X\ pi Y\

(hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))

(F\T\ (forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z))))

(assoc\

(lemma_pf

(Assoc_inst\ pi F\ pi T\ pi A\ pi B\ pi C\ pi Q\

proves (Assoc_inst F Q) (eq T (F A (F B C)) (F (F A B) C)) <<==

hastype A T, hastype B T, hastype C T,

pi X\ pi Y\ (hastype X T ==>> hastype Y T ==>> hastype (F X Y) T),

proves Q (assoc F T))

(F\Q\

(elam T\ elam A\ elam B\ elam C\

(extract (eq T (F A (F B C)) (F (F A B) C))

(forall_e T (Z\ (eq T (F A (F B Z)) (F (F A B) Z)))

(forall_e T (Y\ (forall T Z\ (eq T (F A (F Y Z)) (F (F A Y) Z))))

(forall_e T (X\ (forall T Y\ (forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z)))))

(def_e form (assoc F T)

(forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z))) (x\x) def Q) A) B) C))))

(assoc_inst\

(imp_i q1\ (forall_i a\ (imp_e (assoc f t)

(imp_i q2\ (trans (f (f a a) (f a a))

(assoc_inst f q2) (assoc_inst f q2)))

(def_i form (assoc f t)

(forall t a\ forall t b\ forall t c\

(eq t (f a (f b c)) (f (f a b) c))) (x\x) def q1))))))))))))

((forall t a\ forall t b\ forall t c\

eq t (f a (f b c)) (f (f a b) c)) imp

(forall t a\ eq t (f a (f a (f a a))) (f (f (f a a) a) a))))

Theorem 17. (∀a, b, c fa(fbc) = f(fab)c) ⊃ ∀a fa(fa(faa)) = f(f(faa)a)a.

was also added when the assoc definition was processed by the proves clause for

def pf. Finally, the rest of the proof, is checked via the subgoal of the form (proves

Q2 (P B)), where the formula to be checked has the definition name replaced by

its body.

The def e lemma is used in the proof of the assoc inst lemma. Its use in proof

checking is similar to def i. The main difference is that the formula to be checked

must match the term (P B), i.e., the formula contains an instance or instances
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(def_pf form

(And\ pi A\ pi B\

hastype (And A B) form <<==

hastype A form, hastype B form)

(A\B\ (forall form C\ ((A imp B imp C) imp C)))

(and\ ...

Program 18. Definition of logical conjunction in the object logic.

of the body of the definition, and in the subgoal to be checked, the body of the

definition is replaced with the name of the definition.

As another example of definitions, Program 18 shows the definition of logical con-

junction for the object logic using the def pf proof constructor. Other connectives

such as disjunction, negation, and existential quantification can also be defined,

and the rules for introduction and elimination of these connectives can be proved

as lemmas.

4.3 An alternative implementation of definitions

The new primitives and clauses in Program 15 provide a convenient way of in-

corporating definitions, but actually are not needed at all. Instead, for each new

definition, it is possible to introduce a special lemma to handle that definition.

These special lemmas are quite complex and we do not want to require the user to

come up with them. For illustration, Theorem 19 shows the part of the proof that

replaces the def pf node in Theorem 17. This part of the proof includes the special-

ized lemma, called Define Assoc, and shows that it is used immediately after it is

defined. The bound variable assoc represents the name for the new definition, and

the bound variable q represents a proof of equality between the definition name and

its body. The new proof contains no use of the def pf or def proof constructors.

Occurrences of def in Theorem 17 are replaced with q. This change, although not

shown in Theorem 19, is the only other change required to obtain the complete

alternate proof. We omit a detailed explanation of the Define Assoc lemma and

simply note that it is fairly complex and increases the size of this example proof.

Also, this lemma is similar in structure to the simpler define lemma described

below in Section 4.4

Additional programming can make this alternative way of incorporating defini-

tions easier to use. In particular, it is possible to write a program to transform

proofs that use def pf and def to proofs that use only specialized lemmas such as

the one in Theorem 19. Such a program would allow us to remove Program 15 from

the TCB.

4.4 Handling atomic definitions

For the special class of defined terms that have meta-level type tm, which we call

atomic definitions, it is easy to eliminate the need for def pf and def because it
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...

(lemma_pf ... def_e\

(lemma_pf

(Define_Assoc\ pi Q\ pi B\

proves (Define_Assoc Q) B <<==

pi d\ pi q\

(pi F\ pi T\

(proves q (eq form (d F T)

(forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z))))))

==>>

(pi F\ pi T\ hastype (d F T) form <<==

pi X\ pi Y\ hastype X T ==>> hastype Y T ==>>

hastype (F X Y) T)

==>> proves (Q d q) B)

(Q\ (Q (F\T\ (forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z)))) refl))

(define_assoc\

(define_assoc

(assoc\q\

(lemma_pf

(Assoc_inst\ ...

Theorem 19. Alternate proof of Theorem 17.

is possible to include one new general lemma that replaces them. For example, we

can express associativity of integers as the following term

lam F\ forall intty X\ forall intty Y\ forall intty Z\

eq intty (app intty (app intty F X) (app intty (app intty F Y) Z))

(app intty (app F intty (app intty (app intty F X) Y)) Z)))

where F has meta-type tm and object type (intty arrow intty arrow intty),

and the app constructor is used to apply F to its arguments. If we specialize The-

orem 17 to integers, Theorem 20 shows the part of the proof of this new theorem

that replaces what is shown in Theorem 19. The parts of the proof not shown are

similar to Theorems 17 and 19, but modified to use the new type of the bound

variable f, which has the same type as the bound F in the definition.

In general, to check a proof using the define lemma, which has the following

form

(define T Term (Name\ EqProof\ (RestProof Name EqProof)))

the system interprets the “pi d” within the define lemma to create a new atom d

to stand for the Name. The new atom q is also introduced to stand for a proof that

the name is equal to the body of the definition, and (proves q (eq T d Term))

is added to the clause database. Finally, β-conversion substitutes d for Name and q

for EqProof within RestProof and the resulting proof is checked.

In proof checking the new proof, instead of subproofs of the form

(proves def (eq form (assoc f t) B))
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...

(lemma_pf ... def_e\

(lemma_pf

(Define\ pi T\ pi F\ pi Q\ pi B\

proves (Define T F Q) B <<==

hastype F T,

pi d\ pi q\ (hastype d T ==>>

proves q (eq T d F) ==>> proves (Q d q) B))

(T\F\P\ (P F refl))

(define\

(define ((intty arrow intty arrow intty) arrow form)

(lam F\ forall intty X\ forall intty Y\ forall intty Z\

eq intty (app intty (app intty F X) (app intty (app intty F Y) Z))

(app intty (app intty F (app intty (app intty F X) Y)) Z)))

(assoc\q\

(lemma_pf

(Assoc_inst\ ...

Theorem 20. Alternate proof of Theorem 17 specialized to integers.

that would be generated by proof checking Thereom 17, or subproofs of the form

(proves q (eq form (assoc f t) B))

that would be generated by proof checking Thereom 19, in Theorem 20 we have

subproofs of the form

(proves q (eq ((intty arrow intty arrow intty) arrow form) assoc B))

where q here is the name of the proof term introduced inside the define proof

node.

In general, having a single define lemma that can be used by all atomic defini-

tions is simpler, but the atomic forms of definitions are larger and harder to read.

In the case of assoc, the atomic version is three lines, while the original version

is one line long. In our previous work (AF99b), having to choose between the ver-

sion of assoc that used app and the one that didn’t was not an issue, since there

were no app and lam constructors. Instead application and abstraction were en-

coded directly using application and abstraction at the meta-level. Also, there was

no reason to include a separate def pf proof constructor; the define lemma was

sufficient for introducing all definitions. Although this allowed a simpler version of

definitions, we were unable to allow polymorphism in definitions, which is desirable

in definitions for the same reason it is desirable in lemmas. Our previous encoding

also did not allow definitions for object-level types. For example, in the domain of

proof-carrying code, we have declarations like this one

hastype has_mltype

((exp arrow form) arrow (exp arrow exp) arrow exp arrow

((exp arrow form) arrow (exp arrow exp) arrow exp arrow

form) arrow form.

Types like this arise because we encode types of the programming language we are

reasoning about (in this case ML) as predicates which themselves take predicates
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type def_lemma A -> (A -> o) -> A -> o.

type def_definition tp -> A -> (A -> o) -> A -> o.

type symm pf -> pf.

def_lemma symm

(Symm\ pi T\ pi A\ pi B\ pi P\

proves (Symm P) (eq T A B) <<==

hastype A T, hastype B T, proves P (eq T B A))

(P\ elam A\ elam B\ elam T\

(extract (eq T A B) (congr T B A (eq T A) P refl))).

type assoc (tm -> tm -> tm) -> tp -> tm.

def_definition form assoc

(Assoc\ pi F\ pi T\

hastype (Assoc F T) form <<==

pi X\ pi Y\

(hastype X T ==>> hastype Y T ==>> hastype (F X Y) T))

(F\T\ (forall T X\ forall T Y\ forall T Z\

(eq T (F X (F Y Z)) (F (F X Y) Z)))).

Program 21. Storing lemmas and definitions.

as arguments. In our new version, it is possible to handle definitions at meta-type

tp; we would need a new proof constructor and a new proof checking clause similar

to the one for the def pf proof constructor in Program 15. Adding type definitions

would also require adding reasoning about equality of types into our typechecking

clauses.

5 Programming with lemmas and definitions

The lemma and definition mechanisms provide ways to store lemmas and definitions

inside proofs. Packaging proofs in this way makes it straightforward to communi-

cate proofs, and keeps the proof checking machinery (the TCB) simple, which is

important for our proof-carrying code application. Thus far, all the λProlog code

in Programs 2, 3, 6, 8, 9, 10, 11, and 15 is inside the TCB. A good environment

for building proofs is also essential, and this part of the code can be outside the

TCB. We don’t have to be as careful because we know that any proofs we build in

our theorem proving environment have to be checkable by the proof checking code

presented so far.

As we build a library of lemmas and definitions, we clearly don’t want to store

every lemma and definition inside every proof that uses them. Instead, for lemmas

that have general applicability like symm, we would like to store them each once and

allow them to be used in other proofs as needed. To do so, we provide predicates for

stating each definition and lemma. To use these predicates, we must introduce new

constants for definition and lemma names. Program 21 contains the declarations of

these new predicates, and two examples which use them. λProlog’s polymorphism is

used in these predicates. The first argument to def lemma is the lemma name, and

the next two arguments correspond to the Inference and LemmaProof arguments
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type done_def A -> o.

type done_lemma A -> o.

type check_lem A -> o.

type check_lem_aux B -> A -> (A -> o) -> A -> o.

check_lem Name :-

def_definition T DName Inference Def,

not (done_def DName), !,

def_to_eqclause T DName Def EqClause,

done_def DName => cl (Inference DName) => cl EqClause => check_lem Name.

check_lem Name :-

def_lemma LName Inference LemmaProof,

check_lem_aux Name LName Inference LemmaProof.

check_lem_aux Name Name Inference LemmaProof :- !,

pi name\ (valid_clause (Inference name)),

(Inference LemmaProof).

check_lem_aux Name LName Inference LemmaProof :- !,

not (done_lemma LName), !,

done_lemma LName => cl (Inference LName) => check_lem Name.

Program 22. Checking a proof which uses stored lemmas and definitions.

to the lemma pf constructor. The arguments to def definition are the definition

name (the second argument) and arguments that correspond to the first three

arguments of the def pf constructor (arguments 1, 3, and 4 here).

Then we can write programs to manipulate these lemmas and definitions in var-

ious ways. For example, if we want to package a proof as a single term with all

the definitions and lemmas it depends on inside it, we must write a program to

do so. The resulting proof should not contain any constants like symm and assoc;

instead lemma and definition names must be bound variables inside occurrences of

the lemma pf and def pf proof constructors. We do not present the “packaging”

program here, but instead present a simpler program that illustrates some of the

programming techniques required for manipulating lemmas and definitions stored

in this way. Program 22 contains a program for checking a proof. It doesn’t check

the lemmas that the proof depends on, but could be easily modified to do so. The

trick of using Prolog cut (!) along with the predicates done def and done lemma

allows us to process a list of clauses in the order they appear in the database. The

first clause for check lem looks for the next definition and each time it finds a new

one, it adds the corresponding typechecking clause and equality clause. The second

check lem clause is used once all definitions have been added. It finds the next

lemma and uses check lem aux to see if the next lemma is the one that should be

checked. If so, the proof is checked; if not, the proof checking clause for the lemma

is added to the database and check lem is called to process the next lemma.
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6 Encoding the core logic in Twelf

The Logical Framework (LF) (HHP93) is another example of a metalanguage in

which it is possible to encode a wide variety of logics. The Twelf system (PS99) is an

implementation of LF which provides logic programming capabilities, many of which

are similar to λProlog. In this section, we compare the encoding of our core logic

in λProlog to a corresponding encoding in Twelf, discuss lemmas and definitions in

Twelf, and compare the programming environments of these two languages.

6.1 The core logic in Twelf

LF is a λ-calculus with dependent types. A dependent type in LF has the structure

{x : A}B where A and B are types and x is a variable of type A bound in this

expression. The type B may contain occurrences of x. This structure represents a

“functional type.” If f is a function of this type, and N is a term of type A, then

fN (f applied to N) has the type [N/x]B, which represents the type B where all

occurrences of x are replaced by N . Thus the argument type is A and the result

type depends on the value input to the function. If x doesn’t occur in B, this type

is often abbreviated using the usual type arrow: A → B.

The extra expressiveness of dependent types allows object-level types to be ex-

pressed more directly, eliminating the need for any typechecking clauses like the

hastype clauses of Program 3. The Twelf constructor declarations in Program 23

illustrate the use of dependent types for encoding our object logic. Felty and

Miller (FM90) show how to transform an LF object logic into an encoding in a

higher-order logic which is a sublogic of the one implemented by λProlog. The dis-

cussion in this section is informal, but in Appendix B, we use this transformation

to provide a formal basis for comparing our two encodings.

Although typechecking clauses are not needed here, the proof checking operation

is more complicated in Twelf since it requires type reconstruction for dependent

types.

6.2 Lemmas and definitions in Twelf

Twelf has its own built-in definition mechanism, which can be used for both lemmas

and definitions in the object logic. Program 24 contains a Twelf version of the

definition of assoc and the symm lemma. The abbrev directive is required in some

definitions for technical reasons, which we do not describe here. There are three

parts to a definition: a constant naming the definition, its type, and its body (an

LF term). A lemma is similar and contains its name, the formula representing the

statement of the lemma (which is a type in LF), and the proof (an LF term).

In Twelf, a proof is simply a series of declarations and definitions, where the last

one is the statement and proof of the main theorem. This proof possibly depends

on the lemmas and definitions that come before it. Each definition in the sequence

has the form mentioned above: a name, a type, and the term which the name

abbreviates when it appears in subsequent declarations. The declarations defining

the logical constants and primitive inference rules shown in Program 23 (which each
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tp : type.

tm : tp -> type.

form : tp.

pf : tm form -> type.

intty : tp.

arrow : tp -> tp -> tp. %infix right 14 arrow.

pair : tp -> tp -> tp.

eq : tm T -> tm T -> tm form.

imp : tm form -> tm form -> tm form. %infix right 10 imp.

forall : (tm T -> tm form) -> tm form.

false : tm form.

lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).

app : tm (T1 arrow T2) -> tm T1 -> tm T2.

mkpair : tm T1 -> tm T2 -> tm (pair T1 T2).

fst : tm (pair T1 T2) -> tm T1.

snd : tm (pair T1 T2) -> tm T2.

refl : pf (eq X X).

beta : pf (eq (app (lam F) X) (F X)).

fstpair : pf (eq (fst (mkpair X Y)) X).

sndpair : pf (eq (snd (mkpair X Y)) Y).

surjpair : pf (eq (mkpair (fst Z) (snd Z)) Z).

congr : {H: tm T -> tm form}

pf (eq X Z) -> pf (H Z) -> pf (H X).

imp_i : (pf A -> pf B) -> pf (A imp B).

imp_e : pf (A imp B) -> pf A -> pf B.

forall_i : ({y:tm T}pf (A y)) -> pf (forall A).

forall_e : pf (forall A) -> {y:tm T}pf (A y).

Program 23. Core logic in Twelf.

%abbrev

assoc : (tm T -> tm T -> tm T) -> tm form =

[f:(tm T -> tm T -> tm T)]

(forall [a:tm T] forall [b:tm T] forall [c:tm T]

(eq (f a (f b c)) (f (f a b) c))).

symm: pf (eq X Y) -> pf (eq Y X) =

[q:pf (eq X Y)] (congr ([z:tm T] (eq Y z)) q refl).

Program 24. Example lemmas and definitions in Twelf.

have a type but no defining term) are at the beginning of the sequence. In Twelf,

we cannot package up a lemma and its proof, or a definition and its body, along

with the rest of the proof, in the same way we did in λProlog. The reason for this

is that we cannot introduce a lemma pf or def pf constructor because they require

polymorphism at the meta-level, which Twelf does not have.
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In our λProlog version, we discussed naming each lemma and definition, including

one copy of each in a library, and using it whenever needed. We then presented a

program which was able to check the proof of a theorem, assuming that lemmas and

definitions were organized in this way. In Twelf, we don’t need a special program for

checking proofs of lemmas. One of the central meta-operations of Twelf is to read

in a series of declarations and definitions, and check each one as it is encountered.

Proofs are fully checked by this operation.

In Twelf, other kinds of operations on proofs are limited. Many proof transfor-

mations that we can implement in λProlog are not programmable in Twelf either

because they require polymorphism or because they require manipulation of meta-

level formulas. Manipulation of meta-level formulas is not possible in Twelf because

it requires quantification over such formulas (i.e., quantification over types contain-

ing type), which is not allowed.

7 Other issues

Although we have focussed on the lemma and definition mechanisms in λProlog

and Twelf, other aspects of the metalanguage are also relevant to our needs for

proof generation and checking.

7.1 Arithmetic

For our application, proof-carrying code, we wish to prove theorems about machine

instructions that add, subtract, and multiply; and about load/store instructions

that add offsets to registers. Therefore we require some rudimentary integer arith-

metic in our logic.

Some logical frameworks have powerful arithmetic primitives, such as the ability

to solve linear programs (Nec98) or to handle general arithmetic constraints (JL87).

For example, Twelf provides a complete theory of the rationals, implemented using

linear programming (Vir99). On the one hand, linear programming is a powerful

and general proof technique, although it can increase the complexity of the TCB.

On the other hand, synthesizing arithmetic from scratch is not easy. We have also

experimented with arithmetic in λProlog where we use the is predicate to provide

some automatic simplifications.

7.2 Representing proof terms

Parameterizable data structures with higher-order unification modulo β-equivalence

provide an expressive way of representing formulas, predicates, and proofs. We make

heavy use of higher-order data structures with both direct sharing and sharing

modulo β-reduction. The implementation of the metalanguage must preserve this

sharing; otherwise our proof terms will blow up in size.

Any logic programming system is likely to implement sharing of terms obtained

by copying multiple pointers to the same subterm. In Terzo, this can be seen as the

implementation of a reduction algorithm described by Wadsworth (Wad71). But
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we require even more sharing. The similar terms obtained by applying a λ-term

to different arguments should retain as much sharing as possible. Therefore some

intelligent implementation of higher-order terms within the metalanguage—such as

Teyjus’s use of explicit substitutions (NW90; NW98)—seems essential.

7.3 Programming the prover

In this paper, we have concentrated on an encoding of the logic used for proof check-

ing, and discussed some operations on proofs. But of course, we will also need to

construct proofs. For the proof-carrying code application, we need an automatic the-

orem prover to prove the safety of programs. For implementing this prover, we have

found that the Prolog-style control primitives (such as the cut (!) operator and the

is predicate), which are also available in λProlog, are quite important. λProlog also

provides an environment for implementing tactic-style interactive provers (Fel93).

This kind of prover is useful for proving the lemmas that are used by the automatic

prover.

Twelf does not have many control primitives; in fact, implementation of control

primitives does not fit well into the Twelf system design. We have begun to exper-

iment with an operator in Twelf similar to Prolog cut, to see if it will allow us to

implement the automatic prover in the same way as in λProlog. There is also no

support for building interactive provers in Twelf, so proofs of lemmas used by the

automatic prover must be constructed by hand.

8 Conclusion

The logical frameworks discussed in this paper are promising vehicles for proof-

carrying code, or in general where it is desired to keep the proof checker as small

and simple as possible. We have proposed a representation for lemmas and defi-

nitions that should help keep proofs small and well-structured, and each of these

frameworks has features that are useful in implementing, or implementing efficiently,

our machinery.

We have found the conciseness of the encoding in Twelf to be particularly con-

venient, and because of that, we have used Twelf for extensive proof development

in our proof-carrying code application. As programming with proofs becomes more

important in the next phases of our system, λProlog will have more advantages.

We are currently investigating ways to combine the use of the two metalanguages.

The translation discussed in Appendix B will serve as the foundation for this com-

bination.

A A full interpreter for proof checking

To write a full interpreter, we extend Program 8 in Section 3.3 by introducing a

new type goal and connectives which build terms of this type. In particular, we

now give <<== and ==>> the type goal -> goal -> goal. We also introduce a new

constant ^^ for conjunction having the same type as the implication constructors.
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kind goal type.

type ==>> goal -> goal -> goal. infixr ==>> 4.

type <<== goal -> goal -> goal. infixl <<== 0.

type ^^ goal -> goal -> goal. infixl ^^ 3.

type all (A -> goal) -> goal.

type cl goal -> o.

type backchain goal -> goal -> o.

type solveg goal -> o.

type proves pf -> form -> goal.

type assume form -> goal.

type valid_clause goal -> goal.

solveg (all G) :- pi x\ (solveg (G x)).

solveg (G1 ^^ G2) :- solveg G1, solveg G2.

solveg (D ==>> G) :- (cl D) => solveg G.

solveg (G <<== D) :- (cl D) => solveg G.

solveg G :- cl D, backchain G D.

backchain G G.

backchain G (all D) :- backchain G (D X).

backchain G (A ^^ B) :- backchain G A; backchain G B.

backchain G (H <<== G1) :- backchain G H, solveg G1.

backchain G (G1 ==>> H) :- backchain G H, solveg G1.

Program A1. A full interpreter.

Finally, we introduce all for universal quantification having type (A -> goal)

-> goal. In addition, we change the type of backchain to goal -> goal -> o,

and modify the clauses for the comma and pi to use the new constants. In the

backchain clauses for <<== and ==>> in Program 8, the goal G1 which appears

as an argument inside the head of the clause also appears as a goal in the body

of the clause. In the full interpreter, we cannot do this. G1 no longer has type o;

it has type goal and is constructed using the new connectives. Instead, we replace

G1 with (solveg G1) and implement the solveg predicate to handle the solving

of goals. The new code for solveg and the modified code for backchain is in

Program A1. In order to use this interpreter to solve goals of the form (proves

P A), the proves predicate must be a constructor for terms of type goal, and

the meta-level goal presented to λProlog must have the form (solveg (proves P

A)). Similarly, inference rules must also be represented as objects of type goal and

wrapped inside cl to form λProlog clauses. Several examples of clauses for inference

rules are given in Program A2 to illustrate. The last clause is the new clause for

handling lemmas in this setting. Note that in this version, valid clause constructs

objects of type goal; thus all the clauses for valid clause must also be wrapped

in cl.
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cl (proves Q A <<== assump (proves Q A)).

cl (proves (imp_i Q) (A imp B) <<==

all p\ (assump (proves p A) ==>> proves (Q p) B)).

cl (proves (forall_i Q) (forall T A) <<==

all y\ (hastype y T ==>> proves (Q y) (A y))).

cl (proves (lemma_pf Inference LemmaProof RestProof) C <<==

all Name\

(valid_clause (Inference Name) ^^

Inference LemmaProof ^^

(Inference Name) ==>> (proves (RestProof Name) C))).

Program A2. Clauses used by the full interpreter.

B Comparison of the core logic in Twelf and λProlog

As stated, the transformation in Felty and Miller (FM90) can provide a formal basis

for comparing our two encodings. In order to perform this transformation, we must

consider a “full” LF encoding, which does not take advantage of the abbreviations

that Twelf allows. Just as the full LF encoding can be improved by using Twelf’s

abbreviations, the λProlog program that results from the transformation can be

improved by making several optimizations. We discuss how the encoding presented

in Programs 2 and 3 can be viewed as the application of the transformation, followed

by performing several such optimizations.

In both λProlog and Twelf, all tokens in a clause or declaration beginning with

uppercase letters are implicitly bound by universal quantifiers at the outermost

level. In Twelf, this implicit quantification is important for providing an encoding

of the object logic that is readable and usable. To see why, consider the surjpair

rule, which uses the mkpair, fst, and snd constants. We can make the outermost

quantification explicit in Twelf, resulting in the declarations:

mkpair : {T1:tp}{T2:tp}tm T1 -> tm T2 -> tm (pair T1 T2).

fst : {T1:tp}{T2:tp}tm (pair T1 T2) -> tm T1.

snd : {T1:tp}{T2:tp}tm (pair T1 T2) -> tm T2.

surjpair :

{T1:tp}{T2:tp}{Z:tm (pair T1 T2)}

pf (eq (pair T1 T2) (mkpair T1 T2 (fst T1 T2 Z) (snd T1 T2 Z)) Z).

This version of surjpair is quite a bit bigger than the one in Program 23. Explicitly

including T1 and T2 means that mkpair, fst, and snd each take two extra type

arguments, while surjpair takes three. Terms containing these constants must

then take extra arguments which in this example causes redundancy in the type

of surjpair because the same types appear many times. Implicit quantifiers make

the encoding easier to read and work with. In fact, in the version we used in our

experiments, the fact that app could be represented as a binary constructor without

loss of information allowed us to replace the app constant with an infix symbol,

resulting in encoded terms that were syntactically even closer to the terms they

represented. We cannot make app in the λProlog encoding infix because it takes

three arguments. (We discuss why it must take three arguments below.)
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kind ltp type.

kind ltm type.

type ltype ltp -> o.

type hasltype ltm -> ltp -> o.

type well_typed ltm -> ltp -> o.

type tp ltp.

type tm ltm -> ltp.

type form ltm.

type pf ltm -> ltp.

type intty ltm.

type arrow ltm -> ltm -> ltm. infixr arrow 8.

type lam ltm -> ltm -> (ltm -> ltm) -> ltm.

type app ltm -> ltm -> ltm -> ltm -> ltm.

type eq ltm -> ltm -> ltm -> ltm.

type imp ltm -> ltm -> ltm. infixr imp 7.

type forall ltm -> (ltm -> ltm) -> ltm.

type false ltm.

type refl ltm -> ltm -> ltm.

type beta ltm -> ltm -> (ltm -> ltm) -> ltm -> ltm.

type congr ltm -> ltm -> ltm -> (ltm -> ltm) ->

ltm -> ltm -> ltm.

type imp_i ltm -> ltm -> (ltm -> ltm) -> ltm.

type imp_e ltm -> ltm -> ltm -> ltm -> ltm.

type forall_i ltm -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.

type forall_e ltm -> (ltm -> ltm) -> ltm -> ltm -> ltm.

Program B1. Type declarations for transformation of Twelf to λProlog.

The explicit quantifiers that we have left out in Program 23 are those that Twelf

can easily reconstruct. Because of this reconstruction, however, a Twelf typechecker

(proof checker) has to work harder than it would if we used an explicit version.

These encodings illustrate a tradeoff we encounter in proof and term size versus

complexity of the proof checker. Reducing the proof size forces the checker (the

TCB) to become more complex.

When considering the formal transformation, we start from a modified version

of Program 23 that makes all quantifiers explicit. To illustrate, we apply the trans-

formation to all of the declarations in the Twelf encoding except for the constants

and inference rules for pairing. Applying the transformation to these declarations,

we get the λProlog type declarations and clauses in Programs B 1 and B 2. Before

discussing the details, it is already possible to see some of the similarities between

the Twelf and λProlog encodings, and between the λProlog encoding resulting from

the transformation and the one in Programs 2 and 3. For example, in Twelf the full

version of the congr rule is
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well_typed M A :- ltype A, hasltype M A.

ltype tp.

ltype (tm T) :- hasltype T tp.

ltype (pf A) :- hasltype A (tm form).

hasltype intty tp.

hasltype form tp.

hasltype (T1 arrow T2) tp :- hasltype T1 tp, hasltype T2 tp.

hasltype (lam T1 T2 F) (tm (T1 arrow T2)) :- hasltype T1 tp, hasltype T2 tp,

pi x\ (hasltype x (tm T1) => hasltype (F x) (tm T2)).

hasltype (app T1 T2 F X) (tm T2) :- hasltype T1 tp, hasltype T2 tp,

hasltype F (tm (T1 arrow T2)), hasltype X (tm T1).

hasltype (eq T X Y) (tm form) :-

hasltype T tp, hasltype X (tm T), hasltype Y (tm T).

hasltype (A imp B) (tm form) :- hasltype A (tm form), hasltype B (tm form).

hasltype (forall T A) (tm form) :- hasltype T tp,

pi x\ (hasltype x (tm T) => hasltype (A x) (tm form)).

hasltype false (tm form).

hasltype (refl T X) (pf (eq T X X)) :- hasltype T tp, hasltype X (tm T).

hasltype (beta T1 T2 F X) (pf (eq T2 (app T1 T2 (lam T1 T2 F) X) (F X))) :-

hasltype T1 tp, hasltype T2 tp,

pi x\ (hasltype x (tm T1) => hasltype (F x) (tm T2)).

hasltype (congr T X Z H P1 P2) (pf (H X)) :-

hasltype T tp, hasltype X (tm T), hasltype Z (tm T),

pi x\ (hasltype x (tm T) => hasltype (H x) (tm form)),

hasltype P1 (pf (eq T X Z)), hasltype P2 (pf (H Z)).

hasltype (imp_i A B Q) (pf (A imp B)) :-

hasltype A (tm form), hasltype B (tm form).

pi p\ (hasltype p (pf A) => hasltype (Q p) (pf B)).

hasltype (imp_e A B Q1 Q2) (pf B) :-

hasltype A (tm form), hasltype B (tm form),

hasltype Q1 (pf (A imp B)), hasltype Q2 (pf A).

hasltype (forall_i T A Q) (pf (forall T A)) :- hasltype T tp,

pi y\ (hasltype y (tm T) => hasltype (A y) (tm form)),

pi y\ (hasltype y (tm T) => hasltype (Q y) (pf (A y))).

hasltype (forall_e T A Q Y) (pf (A Y)) :- hasltype T tp,

pi y\ (hasltype y (tm T) => hasltype (A y) (tm form)),

hasltype Q (pf (forall T A)), hasltype Y (tm T).

Program B2. Transformation of Twelf declarations to λProlog clauses.

congr : {T:tp}{X:tm T}{Z:tm T}{H:tm T -> tm form}

pf (eq X Z) -> pf (H Z) -> pf (H X).

The congr proof constructor takes 6 arguments (T, X, Z, H, and two subproofs).

In the λProlog version of congr in Programs B 1 and B 2, congr also takes 6

arguments (4 terms and 2 subproofs) though their types are different from the LF

version. Also, in our original λProlog encoding (Program 3), the congr clause has

4 subgoals, while in the new one (Program B2) there are 6; it is easy to see the
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correspondence between 4 of them in the two encodings. Note that in the version

in Program 3, two of them are typechecking subgoals and two are proof checking

subgoals. In Twelf, typechecking and proof checking are unified, so all subgoals in

the Twelf version are Twelf typechecking goals; in our example some of them check

terms whose types have the form (tm A), while others check terms whose types

have the form (pf A).

In LF, there are several kinds of assertions. The two that are important for the

formal transformation are: “A is a type” and “term M has type A”. Two λProlog

types ltp and ltm introduced in Program B1 are used to encode LF types and

terms. The λProlog predicates ltype and hasltype are introduced to express the

two assertions, respectively. The first assertion is important for transforming the

three declarations in Program 23 that end in “type.” They declare constants that

are used to create LF types, which correspond to λProlog formulas (terms of type

o). The second assertion is used for the rest. In order for an assertion of the second

kind to hold, it must also be the case that A is a type. For this reason, the λProlog

predicate well typed is included (Program B1) and has one clause (Program B2).

The declarations and clause discussed so far are necessary no matter what Twelf

encoding we begin with. The remaining declarations and clauses in Programs B 1

and B 2 are specific to our particular object logic. For each Twelf declaration in

Program 23 that we consider, there is one type declaration in Program B1 and one

clause in Program B2.

The first change we make to the λProlog code in Programs B 1 and B2 to get

closer to an optimized version involves the well typed clause. Consider the first

subgoal of this clause, an ltype subgoal. Note that for our particular encoding,

there are three clauses for the ltype predicate. They correspond to the three kinds

of objects in the encoding of the object logic: types, terms, and proofs. In solving an

ltype subgoal, at most one clause will ever apply at any point depending on which

of three forms the argument has. This observation permits us to replace well typed

with the following three clauses which cover every case.

well_typed T tp :- ltype tp, hasltype T tp.

well_typed M (tm T) :- ltype (tm T), hasltype M (tm T).

well_typed M (pf A) :- ltype (pf A), hasltype M (pf A).

In the first clause, we can eliminate the ltype subgoal because it is always provable.

In the second and third clauses, we can replace the ltype subgoal with the corre-

sponding subgoal from the body of the only ltype clause that applies, to obtain

the clauses below.

well_typed T tp :- hasltype T tp.

well_typed M (tm T) :- hasltype T tp, hasltype M (tm T).

well_typed M (pf A) :- hasltype A (tm form), hasltype M (pf A).

Now, we no longer have a need for the ltype clauses and can eliminate them.

Although hasltype is sufficient for representing any LF assertion of the form

“term M has type A,” in our encoding it is useful to distinguish three ways in

which it is used. This fact leads to our second modification of Programs B1 and B 2.
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kind ltp type.

kind ltm type.

type istype ltm -> o.

type hastype ltm -> ltp -> o.

type proves ltm -> ltp -> o.

type well_typed ltm -> ltp -> o.

type tp ltp.

type tm ltm -> ltp.

type pf ltm -> ltp.

type arrow ltm -> ltm -> ltm. infixr arrow 8.

type forall ltm -> (ltm -> ltm) -> ltm.

type forall_i ltm -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.

well_typed T tp :- istype T.

well_typed M (tm T) :- istype T, hastype M (tm T).

well_typed M (pf A) :- hastype A (tm form), proves M (pf A).

istype (T1 arrow T2) :- istype T1, istype T2.

hastype (forall T A) (tm form) :- istype T,

pi x\ (hastype x (tm T) => hastype (A x) (tm form)).

proves (forall_i T A Q) (pf (forall T A)) :- istype T,

pi y\ (hastype y (tm T) => hastype (A y) (tm form)),

pi y\ (hastype y (tm T) => proves (Q y) (pf (A y))).

Program B3. Modification of selected λProlog declarations and clauses from Pro-

grams B1 and B 2.

The second argument to hasltype always has one of the following forms: tp, (tm

T), or (pf A). Using this fact, we replace hasltype with three predicates: istype,

hastype, and proves. Since the second argument to istype always is tp, we can

eliminate this argument altogether so that istype has type ltm -> o. Program B3

illustrates the modifications discussed so far on a subset of the hasltype clauses in

Program B2, which include only those for arrow, forall, and forall i.

Looking back at Program 23, note the types of the four constants that are used to

construct terms of type tp. There are no dependent types here; they are all simple

types, which could be transformed directly to λProlog types. This fact leads to our

third modification. Instead of transforming all Twelf terms and types to λProlog

terms as is done by the transformation, we transform types with no dependen-

cies directly to λProlog types, thus allowing the λProlog typechecker to do more

typechecking work automatically. This direct transformation gives us the λProlog

declarations

kind tp type.

type form tp.

type intty tp.
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kind ltp type.

kind ltm type.

kind tp type.

type hastype ltm -> ltp -> o.

type proves ltm -> ltp -> o.

type well_typed ltm -> ltp -> o.

type tm tp -> ltp.

type pf ltm -> ltp.

type arrow tp -> tp -> tp. infixr arrow 8.

type forall tp -> (ltm -> ltm) -> ltm.

type forall_i tp -> (ltm -> ltm) -> (ltm -> ltm) -> ltm.

well_typed M (pf A) :- hastype A (tm form), proves M (pf A).

hastype (forall T A) (tm form) :-

pi x\ (hastype x (tm T) => hastype (A x) (tm form)).

proves (forall_i T A Q) (pf (forall T A)) :-

pi y\ (hastype y (tm T) => hastype (A y) (tm form)),

pi y\ (hastype y (tm T) => proves (Q y) (pf (A y))).

Program B4. Modification of Program B3.

type arrow tp -> tp -> tp.

type pair tp -> tp -> tp.

This change forces several other changes. The type of tm must be changed to tp ->

ltp. The well typed clause for tp is no longer necessary. The istype predicate and

all of the clauses for it can be removed; all istype subgoals in other clauses can be

eliminated. The well typed clause for tm can also be eliminated since checking for

well-typedness amounts to simply using the hastype predicate. In the types of all

of the constants, wherever there appears a term T of type ltm such that T represents

an object-logic type, the type of T must be changed to tp. Program B4 illustrates

these changes on the subset of declarations and clauses from Program B3. Note

that the types of forall and forall i are changed to reflect the fact that the first

argument T has type tp.

Our fourth modification to the λProlog code allows the λProlog type system to

make further useful distinctions for our particular object logic. We introduced the

hastype and proves predicate for the cases when the second argument to our old

hasltype had the forms (tm T) and form (pf A), respectively. We can further

simplify these clauses by eliminating the tm and pf constants. Simply eliminating

them means we must change the types of the second argument to these predicates

appropriately,

type hastype ltm -> tp -> o.

type proves ltm -> ltm -> o.
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kind tp type.

kind tm type.

kind pf type.

type hastype tm -> tp -> o.

type proves pf -> tm -> o.

type well_typed pf -> tm -> o.

type form tp.

type intty tp.

type arrow tp -> tp -> tp. infixr arrow 8.

type lam tp -> tp -> (tm -> tm) -> tm.

type app tp -> tp -> tm -> tm -> tm.

type eq tp -> tm -> tm -> tm.

type imp tm -> tm -> tm. infixr imp 7.

type forall tp -> (tm -> tm) -> tm.

type false tm.

type refl tp -> tm -> pf.

type beta tp -> tp -> (tm -> tm) -> tm -> pf.

type congr tp -> tm -> tm -> (tm -> tm) -> pf -> pf -> pf.

type imp_i tm -> tm -> (pf -> pf) -> pf.

type imp_e tm -> tm -> pf -> pf -> pf.

type forall_i tp -> (tm -> tm) -> (tm -> pf) -> pf.

type forall_e tp -> (tm -> tm) -> pf -> tm -> pf.

Program B5. Modified version of Program B1.

but we can go a step further than that. Notice that after removing tm and pf,

terms appear as the first argument to hastype and types as the second, and that

proofs appear as the first argument to the proves predicate and formulas, which

are a subset of the terms, appear as the second. To make these distinctions in the

program, we reintroduce the constants tm and pf, but this time as λProlog types

which replace ltm.

kind tm type.

kind pf type.

type hastype tm -> tp -> o.

type proves pf -> tm -> o.

After making all the changes discussed so far to the types and clauses in Pro-

grams B 1 and B2, we obtain the somewhat simpler versions in Programs B 5

and B6. Note that tm and pf no longer appear in clauses (Program B6), and

instead appear in types (Program B5). Also note the new type and clause for

well typed as compared to what they were in Program B4.

The types and clauses in Programs B5 and B 6 are now quite close to those of

Programs 2 and 3 in Section 2. The remaining changes are optimizations that can

be best illustrated if we view the λProlog code as a proof checker. In particular,

for any subgoal of the form (proves P A), we assume the proof and the formula
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well_typed M A :- hastype A form, proves M A.

hastype (lam T1 T2 F) (T1 arrow T2) :-

pi x\ (hastype x T1 => hastype (F x) T2).

hastype (app T1 T2 F X) T2 :- hastype F (T1 arrow T2), hastype X T1.

hastype (eq T X Y) form :- hastype X T, hastype Y T.

hastype (A imp B) form :- hastype A form, hastype B form.

hastype (forall T A) form :- pi x\ (hastype x T => hastype (A x) form).

hastype false form.

proves (refl T X) (eq T X X) :- hastype X T.

proves (beta T1 T2 F X) (eq T2 (app T1 T2 (lam T1 T2 F) X) (F X)) :-

pi x\ (hastype x T1 => hastype (F x) T2).

proves (congr T X Z H P1 P2) (H X) :-

hastype X T, hastype Z T, pi x\ (hastype x T => hastype (H x) form),

proves P1 (eq T X Z), proves P2 (H Z).

proves (imp_i A B Q) (A imp B) :- hastype A form, hastype B form.

pi p\ (proves p A => proves (Q p) B).

proves (imp_e A B Q1 Q2) B :- hastype A form, hastype B form,

proves Q1 (A imp B), proves Q2 A.

proves (forall_i T A Q) (forall T A) :-

pi y\ (hastype y T => hastype (A y) form).

pi y\ (hastype y T => proves (Q y) (A y)).

proves (forall_e T A Q Y) (A Y) :-

pi y\ (hastype y T => hastype (A y) form),

proves Q (forall T A), hastype Y T.

Program B6. Modified version of Program B2.

are given at the outset (no logical variables) and that the subgoal (hastype A

form) will be asked first (e.g., via the well typed predicate). With this in mind,

by looking at some of the clauses for the proves predicate, we find two kinds of

redundancy. Consider, for example, the clause for refl. The arguments T and X

appear in both the proof and the formula. Assuming that a formula and proof are

always paired together, any arguments that appear in the formula do not have to

be repeated in the proof. Thus we can remove both arguments to refl. Also, since

we assume that the formula has already been typechecked, the hastype subgoal is

redundant and can be eliminated. Thus we achieve the simple form for the refl

rule as it appears in Program 3.

Next consider the clause for imp e. Since B is the formula whose proof is to be

checked, we don’t need an extra copy among the arguments to imp e. We also don’t

need to typecheck B since this has been done via the initial call to well typed. If

we are to guarantee correct typing of the formula in any proves subgoal generated

during proof checking, then we need to keep hastype subgoals for any formula that

does not appear as a subformula of the formula in the head of the clause. In the

imp e clause, the goal (hastype A form) is asked before (proves Q2 A) and this

hastype subgoal cannot be removed. These changes lead to the imp e clause in

Program 3.

Analogously, we can examine the hastype clauses and remove redundant argu-
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ments from terms. For example, in the case of app, the type T2 can be removed

because it appears as the second argument to hastype. We must keep T1 if we want

to preserve the property that proof checking will not introduce logic variables.

Note that when comparing Program B6 to Program 3, in the proves clause for

congr, no arguments are removed from the proof term in either case, even though

H and X appear in the second argument to proves. The reason is that backchaining

on this clause requires higher-order matching, for which there can be more than one

solution. One further criteria that we place on our proof checker is that it cannot

backtrack. Thus we must include H and X explicitly in the proof term to prevent

the possibility that when backchaining on this clause, a backtrack point is created

by unification. We can, however, eliminate the typechecking subgoal for H because

its well-typedness follows from the fact that (H X) has type form and X has type

T. Eliminating this subgoal from the clause in Program B6 gives us the clause in

Program 3.

After making analogous changes to all of the clauses in Program B6, the only

remaining difference in Program 3 is the use of assump to identify assumptions

added during proof checking, which as stated earlier, is not necessary, but is useful

for various programming tasks in our proof-carrying code system.

Note that in making changes to the λProlog code, we have been careful not to

complicate proof checking by requiring any more power from λProlog than was

needed to execute the code obtained directly from the transformation. The same

is not true for the Twelf code. As stated earlier, the version that used abbrevia-

tions (Program 23) needs more type reconstruction power than the version with all

arguments explicitly included.

In summary, using the formal correspondence has provided a principled way to

arrive at the versions of the encodings of the object logic in Twelf (Program 23)

and λProlog (Program 3) that we have compared. The main differences are (1)

the Twelf encoding is more concise because dependent types eliminate the need for

explicit typechecking subgoals, and (2) in λProlog, unlike Twelf, proof checking of

the optimized version of the encoding is no more complex than proof checking the

original.
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