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Abstract

We provide a semantic framework for preference handling in answer set programming. To this end,
we introduce preference preserving consequence operators. The resulting fixpoint characterizations
provide us with a uniform semantic framework for characterizing preference handling in existing ap-
proaches. Although our approach is extensible to other semantics by means of an alternating fixpoint
theory, we focus here on the elaboration of preferences under answer set semantics. Alternatively, we
show how these approaches can be characterized by the concept of order preservation. These uniform
semantic characterizations provide us with new insights about inter-relationships and moreover about
ways of implementation.

KEYWORDS: answer set programming, preferences, priorities

1 Introduction

Preferences constitute a very natural and effective way of resolving indeterminate situ-
ations. For example, in scheduling not all deadlines may be simultaneously satisfiable, and
in configuration various goals may not be simultaneously met. In legal reasoning, laws
may apply in different situations, but laws may also conflict with each other. In fact, while
logical preference handling constitutes already an indispensable means for legal reasoning
systems (cf. Gordon (1993) and Prakken (1997)), it is also advancing in other application
areas such as intelligent agents and e-commerce (Grosof, 1999) and the resolution of
grammatical ambiguities (Cui and Swift, 2002). The growing interest in preferences is also
reflected by the large number of proposals in logic programming (Sakama and Inoue, 1996;
Brewka, 1996; Gelfond and Son, 1997; Zhang and Foo, 1997; Grosof, 1997; Brewka and
Eiter, 1999; Delgrande et al., 2000b; Wang et al., 2000). A common approach is to employ
meta-formalisms for characterizing “preferred answer sets”. This has led to a diversity
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of approaches that are hardly comparable due to considerably different ways of formal
characterization. Hence, there is no homogeneous account of preference.

We address this shortcoming by proposing a uniform semantical framework for extended
logic programming with preferences. To be precise, we develop an (alternating) fixpoint
theory for so-called ordered logic programs (also, prioritized logic programs). An ordered
logic program is an extended logic program whose rules are subject to a strict partial order.
In analogy to standard logic programming, such a program is then interpreted by means of
an associated fixpoint operator. We start by elaborating upon a specific approach to pref-
erence handling that avoids some problems of related approaches. We also show how the
approaches of Brewka and Eiter (2000) and Delgrande et al. (2000b) can be captured within
our framework. As a result, we obtain that the investigated approaches yield an increasing
number of answer sets depending on how “tight” they integrate preferences. For obtaining
a complementary perspective, we also provide characterizations in terms of the property
of order preservation, originally defined in Delgrande et al. (2000b) for distinguishing
“preferred” from “non-preferred” answer sets. Moreover, we show how these approaches
can be implemented by the compilation techniques developed in Delgrande et al. (2000b).
As well, we show that all these different preferred answer set semantics correspond to the
perfect model semantics on stratified programs. We deal with approaches whose preferred
answer sets semantics amounts to a selection function on the standard answer sets of an
ordered logic program. In view of our interest in compiling these approaches into ordinary
logic programs, we moreover limit our investigation to those guaranteeing polynomial
translations. This excludes approach like those in Rintanen (1995) and Zhang and Foo
(1997) that step outside the complexity class of the underlying logic programming frame-
work. This applies also to the approach in Sakama and Inoue (1996), where preferences
on literals are investigated. While the approach of Gelfond and Son (1997) remains within
NP, it advocates strategies that are non-selective (as discussed in section 5). Approaches
that can be addressed within this framework include those in Baader and Hollunder (1993)
and Brewka (1994) that were originally proposed for default logic.

The paper is organized as follows. Once section 2 has provided formal preliminaries, we
begin in section 3 by elaborating upon our initial semantics for ordered logic programs.
Afterwards, we show in section 4 how this semantics has to be modified to account for the
two other aforementioned approaches.

2 Definitions and notation

We assume a basic familiarity with alternative semantics of logic programming (Lifschitz,
1996). An extended logic program is a finite set of rules of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln, (1)

where n � m � 0, and each Li (0 � i � n) is a literal, i.e. either an atom A or the negation
¬A of A. The set of all literals is denoted by Lit . Given a rule r as in (1), we let head (r)

denote the head, L0, of r and body(r) the body, {L1, . . . , Lm, not Lm+1, . . . , not Ln}, of r.
Further, let body+(r) = {L1, . . . , Lm} and body−(r) = {Lm+1, . . . , Ln}. A program is called
basic if body−(r) = ∅ for all its rules; it is called normal if it contains no classical negation
symbol ¬. The reduct of a rule r is defined as r+ = head (r)← body+(r); the reduct, ΠX ,
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of a program Π relative to a set X of literals is defined by

ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}.

A set of literals X is closed under a basic program Π iff for any r ∈ Π, head (r) ∈ X

whenever body+(r) ⊆ X. We say that X is logically closed iff it is either consistent (i.e.
it does not contain both a literal A and its negation ¬A) or equals Lit . The smallest set of
literals which is both logically closed and closed under a basic program Π is denoted by
Cn(Π). With these formalities at hand, we can define answer set semantics for extended
logic programs: A set X of literals is an answer set of a program Π iff Cn(ΠX) = X.
For the rest of this paper, we concentrate on consistent answer sets. For capturing other
semantics, Cn(ΠX) is sometimes regarded as an operator CΠ(X). The anti-monotonicity
of CΠ implies that C2

Π is monotonic. As shown in van Gelder (1993), different semantics
are obtained by distinguishing different groups of (alternating) fixpoints of C2

Π(X).
Alternative inductive characterizations for the operators Cn and CΠ can be obtained by

appeal to immediate consequence operators (Lloyd, 1987). Let Π be a basic program and
X a set of literals. The immediate consequence operator TΠ is defined as follows:

TΠX = {head (r) | r ∈ Π and body(r) ⊆ X}

if X is consistent, and TΠX = Lit otherwise. Iterated applications of TΠ are written as
T

j
Π for j � 0, where T 0

ΠX = X and T i
ΠX = TΠT

i−1
Π X for i � 1. It is well-known that

Cn(Π) =
⋃

i�0 T
i
Π∅, for any basic program Π. Also, for any answer set X of program Π,

it holds that X =
⋃

i�0 T
i
ΠX∅. A reduction from extended to basic programs is avoidable

with an extended operator: Let Π be an extended program and X and Y be sets of literals.
The extended immediate consequence operator TΠ,Y is defined as follows:

TΠ,Y X = {head (r) | r ∈ Π, body+(r) ⊆ X, and body−(r) ∩ Y = ∅} (2)

if X is consistent, and TΠ,Y X = Lit otherwise. Iterated applications of TΠ,Y are written
as those of TΠ. Clearly, we have TΠ,∅X = TΠX for any basic program Π and TΠ,Y X =

TΠY X for any extended program Π. Accordingly, we have for any answer set X of program
Π that X =

⋃
i�0 T

i
Π,X∅. Finally, for dealing with the individual rules in (2), we rely on

the notion of activeness: Let X,Y ⊆ Lit be two sets of literals in a program Π. A rule r

in Π is active wrt the pair (X,Y ), if body+(r) ⊆ X and body−(r) ∩ Y = ∅. Alternatively,
we thus have that TΠ,Y X = {head (r) | r ∈ Π is active wrt (X,Y )}.

Finally, an ordered logic program is simply a pair (Π, <), where Π is an extended logic
program and < ⊆ Π ×Π is an irreflexive and transitive relation. Given, r1, r2 ∈ Π, the
relation r1 < r2 is meant to express that r2 has higher priority than r1. Programs associated
with such an external ordering are also referred to as statically ordered programs, as
opposed to dynamically ordered programs whose order relation is expressed through a
special-purpose predicate within the program.

3 Preferred fixpoints

We elaborate upon a semantics for ordered logic program that allows us to distinguish the
“preferred” answer sets of a program (Π, <) by means of fixpoint equations. That is, a set
of literals X is a preferred answer set of (Π, <), if it satisfies the equation C(Π,<)(X) = X

for some operator C(Π,<). In view of the classical approach described above, this makes us



572 T. Schaub and K. Wang

investigate semantics that interpret preferences as inducing selection functions on the set
of standard answer sets of the underlying non-ordered program Π.

Answer sets are defined via a reduction of extended logic programs to basic programs.
Controlling such a reduction by means of preferences is difficult since all conflicts are
simultaneously resolved when turning Π into ΠX . Furthermore, we argue that conflict
resolution must be addressed among the original rules in order to account for blockage
between rules. In fact, once the negative body body−(r) is eliminated there is no way to
detect whether head (r′) ∈ body−(r) holds in case of r < r′. Our idea is thus to characterize
preferred answer sets by an inductive development that agrees with the given ordering. In
terms of a standard answer set X, this means that we favor its formal characterization as
X =

⋃
i�0 T

i
Π,X∅ over X = Cn(ΠX). This leads us to the following definition.

Definition 1
Let (Π, <) be an ordered logic program and let X and Y be sets of literals.

We define the set of immediate consequences of X with respect to (Π, <) and Y as

T(Π,<),Y X =




head (r)

∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (X,Y ) and
II . there is no rule r′ ∈ Π with r < r′

such that
(a) r′ is active wrt (Y ,X) and
(b) head (r′) �∈ X




if X is consistent, andT(Π,<),Y X = Lit otherwise.

Note thatT(Π,<),Y is a refinement of its classical counterpart TΠ,Y in (2). The idea behind
Condition II is to apply a rule r only if the “question of applicability” has been settled for
all higher-ranked rules r′. Let us illustrate this in terms of iterated applications ofT(Π,<),Y .
In this case, X accumulates conclusions, while Y comprises the putative answer set. Then,
the “question of applicability” is considered to be settled for a higher ranked rule r′

• if the prerequisites of r′ will never be derivable, viz. body+(r′) �⊆ Y , or
• if r′ is defeated by what has been derived so far, viz. body−(r) ∩X �= ∅, or
• if r′ or another rule with the same head have already applied, viz. head (r′) ∈ X.

The first two conditions show why activeness of r′ is stipulated wrt (Y ,X), as opposed to
(X,Y ) in Condition I. The last condition serves two purposes: First, it detects whether the
higher ranked rule r′ has applied and, second, it suspends the preference r < r′ whenever
the head of the higher ranked has already been derived by another rule. This suspension of
preference constitutes a distinguishing feature of the approach at hand.

As with TΠ,Y , iterated applications of T(Π,<),Y are written as Tj
(Π,<),Y for j � 0,

whereT0
(Π,<),Y X =X andTi

(Π,<),Y X =T(Π,<),YTi−1
(Π,<),Y X for i� 1. The counterpart of

operator CΠ for ordered programs is then defined as follows.

Definition 2
Let (Π, <) be an ordered logic program and let X be a set of literals. We defineC(Π,<)(X) =⋃

i�0Ti
(Π,<),X∅.

Clearly, C(Π,<) is a refinement of CΠ. The difference is that C(Π,<) obtains consequences
directly from Π and Y , while CΠ (normally) draws them by appeal to Cn after reducing
Π to ΠY . All this allows us to define preferred answer sets as fixpoints of C(Π,<).
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Definition 3

Let (Π, <) be an ordered logic program and let X be a set of literals. We define X as a
preferred answer set of (Π, <) iff C(Π,<)(X) = X.

For illustration, consider the following ordered logic program (Π3, <):

r1 : ¬f ← p, not f

r2 : w ← b, not ¬w
r3 : f ← w, not ¬f

r4 : b ← p

r5 : p ←
r2 < r1 (3)

Observe that Π3 admits two answer sets: X = {p, b,¬f, w} and X ′ = {p, b, f, w}. As
argued in Baader and Hollunder (1993), X is preferred to X ′. To see this, observe that

T0
(Π3 ,<),X∅ = ∅ T0

(Π3 ,<),X ′ ∅ = ∅
T1

(Π3 ,<),X∅ = {p} T1
(Π3 ,<),X ′ ∅ = {p}

T2
(Π3 ,<),X∅ = {p, b,¬f} T2

(Π3 ,<),X ′ ∅ = {p, b}
T3

(Π3 ,<),X∅ = {p, b,¬f, w} T3
(Π3 ,<),X ′ ∅ = T2

(Π3 ,<),X ′ ∅
T4

(Π3 ,<),X∅ = T3
(Π3 ,<),X∅ = X �= X ′

(4)

We thus get C(Π3 ,<)(X) = X, while C(Π3 ,<)(X
′) = {p, b} �= X ′. Note that w cannot be

included intoT3
(Π3 ,<),X ′ ∅ since r1 is active wrt (X ′,T2

(Π3 ,<),X ′ ∅) and r1 is preferred to r2.
It is important to see that preferences may sometimes be too strong and deny the ex-

istence of preferred answer sets although standard ones exist. This is because preferences
impose additional dependencies among rules that must be respected by the resulting answer
sets. This is nicely illustrated by programs Π5 = {r1, r2} and Π′5 = {r′1, r′2}, respectively:

r1 = a ← b

r2 = b ←
r′1 = a ← not b

r′2 = b ← (5)

Observe that in Π5 rule r1 depends r2, while in Π′5 rule r′1 is defeated by r′2. But despite
the fact that Π5 has answer set X = {a, b} and Π′5 has answer set X ′ = {b}, we obtain no
preferred answer set after imposing preferences r2 < r1 and r′2 <′ r′1, respectively. To see
this, observe that T0

(Π5 ,<),X∅ = T1
(Π5 ,<),X∅ = ∅ �= X andT0

(Π′5 ,<
′),X ′ ∅ = T1

(Π′5 ,<
′),X ′ ∅ =

∅ �= X ′. In both cases, the preferred rules r1 and r′1, respectively, are (initially) inapplicable:
a ← b is not active wrt (∅, {a, b}) and a ← not b is not active wrt (∅, {b}). And the
application of the second rule b ← is inhibited by Condition II: In the case ofT1

(Π5 ,<),X∅,
rule a ← b is active wrt ({a, b}, ∅); informally, X puts the construction on the false front
that b will eventually be derivable. In the case ofT1

(Π5 ,<),X∅, rule a ← not b is active wrt
({b}, ∅). This is due to the conception that a higher-ranked rule can never be defeated by a
lower-ranked one.

Formal elaboration. We start with the basic properties of our consequence operator:

Theorem 1

Let (Π, <) be an ordered program and let X and Y be sets of literals. Then, we have:

1. T(Π,<),Y X ⊆ TΠ,Y X.

2. T(Π,∅),Y X = TΠ,Y X.
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For i = 1, 2, let Xi and Yi be sets of literals and <i ⊆ Π ×Π be strict partial orders.

3. If X1 ⊆ X2, thenT(Π,<),Y X1 ⊆ T(Π,<),Y X2.
4. If Y1 ⊆ Y2, thenT(Π,<),Y2

X ⊆ T(Π,<),Y1
X.

5. If <1 ⊆ <2, thenT(Π,<2),Y X ⊆ T(Π,<1),Y X.

The next results show how our fixpoint operator relates to its classical counterpart.

Theorem 2
Let (Π, <) be an ordered program and let X be a set of literals. Then, we have:

1. C(Π,<)(X) ⊆ CΠ(X).
2. C(Π,<)(X) = CΠ(X), if X ⊆ C(Π,<)(X).
3. C(Π,∅)(X) = CΠ(X).

We obtain the following two corollaries.

Corollary 3
Let (Π, <) be an ordered logic program and X a set of literals. If X is a preferred answer
set of (Π, <), then X is an answer set of Π.

Our strategy thus implements a selection function among the standard answer sets of the
underlying program. This selection is neutral in the absence of preferences, as shown next.

Corollary 4
Let Π be a logic program and X a set of literals. Then, X is a preferred answer set of (Π, ∅)
iff X is an answer set of Π.

Of interest in view of an alternating fixpoint theory is that C(Π,<) enjoys anti-
monotonicity:

Theorem 5
Let (Π, <) be an ordered logic program and X1, X2 sets of literals. If X1 ⊆ X2, then
C(Π,<)(X2) ⊆ C(Π,<)(X1).

We next show that for any answer set X of a program Π, there is an ordering < on the
rules of Π such that X is the unique preferred answer set of (Π, <).

Theorem 6
Let Π be a logic program and X an answer set of Π. Then, there is a strict partial order <
such that X is the unique preferred answer set of the ordered program (Π, <).

Our last result shows that a total order selects at most one standard answer set.

Theorem 7
Let (Π,	) be an ordered logic program and	 be a total order. Then, (Π,	) has zero or
one preferred answer set.

Relationship to perfect model semantics. Any sensible semantics for logic programming
should yield, in one fashion or other, the smallest Herbrand model Cn(Π) whenever Π is a
basic program. A similar consensus seems to exist regarding the perfect model semantics of
stratified normal programs (Apt et al., 1987; Przymusinski, 1988). Interestingly, stratified
programs can be associated with a rule ordering in a canonical way. We now show that our
semantics corresponds to the perfect model semantics on stratified normal programs.

A normal logic program Π is stratified, if Π has a partition, called stratification, Π =

Π1 ∪ . . . ∪Πn such that the following conditions are satisfied for i, j ∈ {1, . . . , n}:
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1. Πi ∩Πj = ∅ for i �= j;

2. body+(r) ∩ (
⋃n

k=i+1 head (Πk)) = ∅ and body−(r) ∩ (
⋃n

k=i head (Πk)) = ∅ for all
r ∈ Πi.

That is, whenever a rule r belongs to Πi, the atoms in body+(r) can only appear in the
heads of

⋃i
k=1 Πk, while the atoms in body−(r) can only appear in the heads of

⋃i−1
k=1 Πk.

A stratification somehow reflects an intrinsic order among the rules of a program. In a
certain sense, rules in lower levels are preferred over rules in higher levels, insofar as rules
in lower levels should be considered before rules in higher levels. Accordingly, the intuition
behind the perfect model of a stratified program is to gradually derive atoms, starting from
the most preferred rules. Specifically, one first applies the rules in Π1, resulting in a set of
atoms X1; then one applies the rules in Π2 relative to the atoms in X1; and so on.

Formally, the perfect model semantics of a stratified logic program Π = Π1 ∪ . . . ∪Πn

is recursively defined for 0 < i < n as follows (Apt et al., 1987; Przymusinski, 1988):

1. X0 = ∅.
2. Xi+1 =

⋃
j�0 T

j
Πi+1 ,Xi

Xi.

The perfect model X� of Π is then defined as X� = Xn.
Let Π be a stratified logic program and Π = Π1 ∪ . . . ∪ Πn be a stratification of Π. A

natural priority relation <s on Π can be defined as follows:

For any r1, r2 ∈ Π, we define r1 <s r2 iff r1 ∈ Πi and r2 ∈ Πj such that j < i.

That is, r2 is preferred to r1 if the level of r2 is lower than that of r1. We obtain thus an
ordered logic program (Π, <s) for any stratified logic program Π with a fixed stratification.

Theorem 8

Let X� be the perfect model of stratified logic program Π and let <s be an order induced
by some stratification of Π. Then, we have

1. X� = C(Π,<s)(X
�).

2. If X ⊆ C(Π,<s)(X), then X� = X.

These results imply the following.

Corollary 9

Let X� be the perfect model of stratified logic program Π and let <s be an order induced
by some stratification of Π. Then, (Π, <s) has the unique preferred answer set X�.

Interestingly, both programs Π5 as well as Π′5 are stratifiable. None of the induced
orderings, however, contains the respective preference ordering imposed in (5). In fact,
this provides an easy criterion for the existence of (unique) preferred answer sets.

Corollary 10

Let X� be the perfect model of stratified logic program Π and let <s be an order induced
by some stratification of Π. Let (Π, <) be an ordered logic program such that < ⊆ <s.
Then, (Π, <) has the unique preferred answer set X�.
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Implementation through compilation. A translation of ordered logic programs to stand-
ard programs is developed in Delgrande et al. (2000b). Although the employed strategy
(cf. section 4) differs from that put forward in the previous section, it turns out that the
computation of preferred answer sets can be accomplished by means of this translation
technique in a rather straightforward way. In the framework of Delgrande et al. (2000b),
preferences are expressed within the program via a predicate symbol ≺. A logic program
over a propositional language L is said to be dynamically ordered iff L contains the
following pairwise disjoint categories: (i) a set N of terms serving as names for rules;
(ii) a set At of atoms; and (iii) a set At≺ of preference atoms s≺ t, where s, t ∈ N are
names. For a program Π, we need a bijective function n(·) assigning a name n(r) ∈ N to
each rule r ∈ Π. We sometimes write nr instead of n(r). An atom nr ≺ nr′ ∈ At≺ amounts
to asserting that r < r′ holds. A (statically) ordered program (Π, <) can thus be captured
by programs containing preference atoms only among their facts; it is then expressed by
the program Π ∪ {(nr ≺ nr′ )← | r < r′}.

Given r < r′, one wants to ensure that r′ is considered before r (cf. Condition II in
Definition 2). For this purpose, one needs to be able to detect when a rule has been applied
or when a rule is defeated. For detecting blockage, a new atom bl(nr) is introduced for each
r in Π. Similarly, an atom ap(nr) is introduced to indicate that a rule has been applied. For
controlling application of rule r the atom ok(nr) is introduced. Informally, one concludes
that it is ok to apply a rule just if it is ok with respect to every <-greater rule; for such a
<-greater rule r′, this will be the case just when r′ is known to be blocked or applied.

More formally, given a dynamically ordered program Π overL, letL+ be the language
obtained fromL by adding, for each r, r′ ∈ Π, new pairwise distinct propositional atoms
ap(nr), bl(nr), ok(nr), and rdy(nr, nr′ ). Then, the translation � maps an ordered program
Π overL into a standard program �(Π) overL+ in the following way.

Definition 4

Let Π = {r1, . . . , rk} be a dynamically ordered logic program over L. Then, the logic
program �(Π) over L+ is defined as �(Π) =

⋃
r∈Πτ(r), where τ(r) consists of the

following rules, for L+ ∈ body+(r), L− ∈ body−(r), and r′, r′′ ∈ Π :

a1(r) = head (r) ← ap(nr)

a2(r) = ap(nr) ← ok(nr), body(r)

b1(r, L
+) = bl(nr) ← ok(nr), not L+

b2(r, L
−) = bl(nr) ← ok(nr), L

−

c1(r) = ok(nr) ← rdy(nr, nr1 ), . . . , rdy(nr, nrk )

c2(r, r
′) = rdy(nr, nr′ ) ← not (nr ≺ nr′)

c3(r, r
′) = rdy(nr, nr′ ) ← (nr ≺ nr′ ), ap(nr′)

c4(r, r
′) = rdy(nr, nr′ ) ← (nr ≺ nr′ ), bl(nr′)

c5(r, r
′) = rdy(nr, nr′ ) ← (nr ≺ nr′ ), head (r′)

t(r, r′, r′′) = nr ≺ nr′′ ← nr ≺ nr′ , nr′ ≺ nr′′

as(r, r′) = ¬(nr′ ≺ nr) ← nr ≺ nr′

We write �(Π, <) rather than �(Π′), whenever Π′ is the dynamically ordered program
capturing (Π, <). The first four rules of τ(r) express applicability and blocking conditions
of the original rules. For each rule r ∈ Π, we obtain two rules, a1(r) and a2(r), along with n
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rules of the form b1(r, L
+) and m rules of the form b2(r, L

−), where n and m are the numbers
of the literals in body+(r) and body−(r), respectively. The second group of rules encodes
the strategy for handling preferences. The first of these rules, c1(r), “quantifies” over the
rules in Π. This is necessary when dealing with dynamic preferences since preferences
may vary depending on the corresponding answer set. The four rules ci(r, r

′) for i = 2.5

specify the pairwise dependency of rules in view of the given preference ordering: For
any pair of rules r, r′, we derive rdy(nr, nr′) whenever nr ≺ nr′ fails to hold, or otherwise
whenever either ap(nr′) or bl(nr′) is true, or whenever head (r′) has already been derived.
This allows us to derive ok(nr), indicating that r may potentially be applied whenever we
have for all r′ with nr ≺ nr′ that r′ has been applied or cannot be applied.

It is instructive to observe how close this specification of ok(·) and rdy(·, ·) is to Condi-
tion II in Definition 1. In fact, given a fixed r ∈ Π, Condition II can be read as follows.

II . for every r′ ∈ Π with r < r′ either
(a) r′ is not active wrt (Y ,X) or
(b) head (r′) ∈ X

The quantification over all rules r′ ∈Π with r < r′ is accomplished by means of c1(r)

(along with c2(r, r
′)). By definition, r′ is not active wrt (Y ,X)1 if either body+(r) �⊆ Y or

body−(r)∩X �= ∅, both of which are detected by rule c4(r, r
′). The condition head (r′) ∈ X

is reflected by c3(r, r
′) and c5(r, r

′). While the former captures the case where head (r′)

was supplied by r′ itself,2 the latter accounts additionally for the case where head (r′) was
supplied by another rule than r′.

The next result shows that translation � is a realization of operator C.

Theorem 11
Let (Π, <) be an ordered logic program over L and let X ⊆{head (r) | r∈Π} be a
consistent set of literals. Then, there is some set of literals Y overL+ where X = Y ∩L
such that C(Π,<)(X) = C�(Π,<)(Y ) ∩L.

Note that the fixpoints of C(Π,<) constitute a special case the previous theorem.

Theorem 12
Let (Π, <) be an ordered logic program over L and let X and Y be consistent sets of
literals. Then, we have that

1. if C(Π,<)(X) = X, then there is an answer set Y of �(Π, <) such that X = Y ∩L;
2. if Y is an answer set of �(Π, <), then C(Π,<)(Y ∩L) = Y ∩L.

4 Other strategies (and characterizations)

We now show how the approaches of Delgrande et al. (2000b) and Brewka and Eiter (1999;
2000) can be captured within our framework. Also, we take up a complementary charac-
terization provided in Delgrande et al. (2000b) to obtain another insightful perspective on

1 Recall that X is supposed to contain the set of conclusions that have been derived so far, while Y provides the
putative answer set.

2 Strictly speaking rule c3(r, r′) is subsumed by c5(r, r
′); nonetheless we keep both for conceptual clarity in view

of similar translations presented in section 4.
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the three approaches. For clarity, we add the letter “W” to all concepts from section 3.
Accordingly we add “D” and “B”, respectively, when dealing with the two aforementioned
approaches.

Characterizing D-preference. In Delgrande et al. (2000b), the selection of preferred an-
swer sets is characterized in terms of the underlying set of generating rules: The set ΓΠX

of all generating rules of a(n answer) set X of literals from program Π is given by

ΓΠX = {r ∈ Π | body+(r) ⊆ X and body−(r) ∩X = ∅}.

The property distinguishing preferred answer sets from ordinary ones is referred to as
order preservation, and is defined in the following way.

Definition 5

Let (Π, <) be an ordered program and let X be an answer set of Π. Then, X is called
<D-preserving, if there exists an enumeration 〈ri〉i∈I of ΓΠX such that for every i, j ∈ I

we have that:

1. body+(ri) ⊆ {head (rj) | j < i}; and
2. if ri < rj , then j < i; and
3. if ri < r′ and r′ ∈ Π \ ΓΠX, then

(a) body+(r′) �⊆ Xor

(b) body−(r′) ∩ {head (rj) | j < i} �= ∅.

We often refer to <D-preserving answer sets as D-preferred answer sets.
Condition 1 makes the property of groundedness3 explicit. Although any standard an-

swer set enjoys this property, we will see that its interaction with preferences varies with
the strategy. Condition 2 stipulates that 〈ri〉i∈I is compatible with <, a property invariant
to all of the considered approaches. Lastly, Condition 3 is comparable with Condition II in
Definition 1; it guarantees that rules can never be blocked by lower-ranked rules.

Roughly speaking, an order preserving enumeration of the set of generating rules re-
flects the sequence of successive rule applications leading to some preferred answer set.
For instance, the preferred answer set X = {p, b,¬f, w} of Example (3) can be generated
by the two order preserving sequences 〈r5, r4, r1, r2〉 and 〈r5, r1, r4, r2〉. Intuitively, both
enumerations are order preserving since they reflect the fact that r1 is treated before r2. 4

Although there is another grounded enumeration generating X, namely 〈r5, r4, r2, r1〉, it is
not order preserving since it violates Condition 2. The same applies to the only grounded
enumeration 〈r5, r4, r2, r3〉 that allows to generate the second standard answer set of Π3; it
violates Condition 3b. Consequently, X is the only <D-preserving answer set of (Π3, <).

We are now ready to provide a fixpoint definition for D-preference. For this purpose, we
assume a bijective mapping rule(·) among rule heads and rules, that is, rule(head (r)) = r;
accordingly, rule({head (r) | r ∈ R}) = R. Such mappings can be defined in a bijective
way by distinguishing different occurrences of literals.

3 This term is borrowed from the literature on default logic (cf. Konolige (1988) and Schwind (1990)).
4 Note that both enumerations are compatible with the iteration throughTi

(Π3 ,<),X∅ for i = 0..4.
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Definition 6
Let (Π, <) be an ordered logic program and let X and Y be sets of literals. We define the
set of immediate D-consequences of X with respect to (Π, <) and Y as

TD
(Π,<),Y X =




head (r)

∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (X,Y ) and
II . there is no rule r′ ∈ Π with r < r′

such that
(a) r′ is active wrt (Y ,X) and
(b) r′ �∈ rule(X)




if X is consistent, andTD
(Π,<),Y X = Lit otherwise.

The distinguishing feature between this definition and Definition 1 manifests itself in IIb.
While D-preference requires that a higher-ranked rule has effectively applied, W-preference
contents itself with the presence of the head of the rule, no matter whether this was supplied
by the rule itself.

Defining iterated applications of TD
(Π,<),Y in analogy to those of T(Π,<),Y , we may

capture D-preference by means of a fixpoint operator in the following way.

Definition 7
Let (Π, <) be an ordered logic program and let X be a set of literals. We defineCD

(Π,<)(X) =⋃
i�0(TD)i(Π,<),X∅.

A similar elaboration of CD
(Π,<) as done with CW

(Π,<) in section 3 yields identical formal
properties; in particular, CD

(Π,<) also enjoys anti-monotonicity.
The aforementioned difference is nicely illustrated by extending the programs in (5) by

rule a← , yielding (Π6, <) and (Π′6, <
′), respectively:

r1 = a ← b

r2 = b ←
r3 = a ←

r2 < r1

r′1 = a ← not b

r′2 = b ←
r′3 = a ←

r′2 <
′ r′1

(6)

While in both cases the single standard answer set is W-preferred, neither of them is
D-preferred. Let us illustrate this in terms of the iterated applications of TW

(Π6 ,<),X and
TD

(Π6 ,<),X , where X = {a, b} is the standard answer set of Π6: At first, both operators allow
for applying rule a ← , resulting in {a}. As with TW

(Π5 ,<),X in (5), however, operator
TD

(Π6 ,<),X does not allow for applying r2 at the next stage, unless r1 is inactive. This
requirement is now dropped by TW

(Π6 ,<),X , since the head of r1 has already been derived
through r3. In such a case, the original preference is ignored, which enables the application
of r2. In this way, we obtain the W-preferred answer set X = {a, b}. The analogous behavior
is observed on (Π′6, <

′).
As W-preferred answer sets, D-preferred ones coincide with the perfect model on strati-

fied programs.

Theorem 13
Let X� be the perfect model of stratified logic program Π and let <s be an order induced
by some stratification of Π. Then , (Π, <s) has the unique D-preferred answer set X�.
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The subtle difference between D- and W-preference is also reflected in the resulting
compilation. Given the same prerequisites as in Definition 4, the logic program �D(Π)

overL+ is defined as �D(Π) = �W(Π) \ {c5(r, r
′) | r, r′ ∈ Π}.

Hence, in terms of this compilation technique, the distinguishing feature between D-
and W-preference manifests itself in the usage of rule c5(r, r

′) : rdy(nr, nr′ ) ← (nr ≺ nr′),

head (r′). While W-preference allows for suspending a preference whenever the head of
the preferred rule was derived, D-preference stipulates the application of the preferred
rule itself. This is reflected by the fact that the translation �D merely uses rule c3(r, r

′) :

rdy(nr, nr′ ) ← (nr ≺ nr′), ap(nr′) to enforce that the preferred rule itself has been applied.
This demonstrates once more how closely the compilation technique follows the specific-
ation given in the fixpoint operation.

As shown in Delgrande et al. (2000b), a set of literals X is a <D-preserving answer set
of a program Π iff X = Y ∩L for some answer set Y of �D(Π, <). This result naturally
extends to the fixpoint operator CD

(Π,<), as shown in the following result.

Theorem 14
Let (Π, <) be an ordered logic program over L and let X be a consistent set of literals.
Then, the following propositions are equivalent:

1. CD
(Π,<)(X) = X.

2. X = Y ∩L for some answer set Y of �D(Π, <).
3. X is a <D-preserving answer set of Π.

While the last result dealt with effective answer sets, the next one shows that applying
CD

(Π,<) is equivalent to the application of CΠ′ to the translated program Π′ = �D(Π, <).

Theorem 15
Let (Π, <) be an ordered logic program over L and let X ⊆ {head (r) | r ∈ Π} be a
consistent set of literals. Then, there is some set of literals Y overL+ where X = Y ∩L
such that CD

(Π,<)(X) = C�D(Π,<)(Y ) ∩L.

Characterizing W-preference (alternatively). We now briefly elaborate upon a character-
ization of W-preference in terms of order preservation. This is interesting because order
preservation provides an alternative perspective on the formation of answer sets. In con-
trast to the previous fixpoint characterizations, order preservation furnishes an account of
preferred answer sets in terms of the underlying generating rules. While an immediate
consequence operator provides a rather rule-centered and thus local characterization, order
preservation gives a more global and less procedural view on an entire construction. In
particular, the underlying sequence nicely reflects the interaction of its properties. In fact,
we see below that different approaches distinguish themselves by a different degree of
interaction between groundedness and preferences.

Definition 8
Let (Π, <) be an ordered program and let X be an answer set of Π. Then, X is called
<W-preserving, if there exists an enumeration 〈ri〉i∈I of ΓΠX such that for every i, j ∈ I

we have that:

1. (a) body+(ri) ⊆ {head (rj) | j < i} or
(b) head (ri) ∈ {head (rj) | j < i}; and
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2. if ri < rj , then j < i; and
3. if ri < r′ and r′ ∈ Π \ ΓΠX, then

(a) body+(r′) �⊆ X or

(b) body−(r′) ∩ {head (rj) | j < i} �= ∅ or

(c) head (r′) ∈ {head (rj) | j < i}.

The primary difference between this concept of order preservation and the one for
D-preference is clearly the weaker notion of groundedness. While D-preference makes
no compromise when enforcing rule dependencies induced by preference, W-preference
“smoothes” their integration with those induced by groundedness and defeat relationships:
First, regarding rules in ΓΠX (via Condition 1b) and second concerning rules in Π \ ΓΠX

(via Condition 3c). The rest of the definition is identical to Definition 5.
This “smoothed” integration of preferences with groundedness and defeat dependencies

is nicely illustrated by programs (Π6, <) and (Π′6, <). Regarding Π6, we observe that
there is no enumeration of ΓΠX satisfying both Condition 1a and 2. Rather it is Condi-
tion 1b that weakens the interaction between both conditions by tolerating enumeration
〈r3, r2, r1〉. A similar observation can be made regarding Π′6, where, in contrast to Π6, the
preferred rule r′1 does not belong to ΓΠX. We observe that there is no enumeration of ΓΠX

satisfying both Condition 2 and 3a/b. Now, it is Condition 3c that weakens the interaction
between both conditions by tolerating enumeration 〈r′3, r′2〉. In fact, the two examples show
that both Condition 1b as well as 3c function as exceptions to conditions 1a and 3a/b,
respectively. In this way, W-preference imposes the same requirements as D-preference,
unless the head of the rule in focus has already been derived by other means.

Finally, we have the following summarizing result.

Theorem 16
Let (Π, <) be an ordered logic program over L and let X be a consistent set of literals.
Then, the following propositions are equivalent.

1. CW
(Π,<)(X) = X;

2. X = Y ∩L for some answer set Y of �W(Π, <);
3. X is a <W-preserving answer set of Π.

Characterizing B-preference. Another approach to preference is proposed in Brewka and
Eiter (1999). This approach differs in two ways from the previous ones. First, the construc-
tion of answer sets is separated from verifying preferences. Interestingly, this verification
is done on the basis of the prerequisite-free program obtained from the original one by
“evaluating” body+(r) for each rule r wrt the separately constructed (standard) answer set.
Secondly, rules that may lead to counter-intuitive results are explicitly removed. This is
spelled out in Brewka and Eiter (2000), where the following filter is defined:

EX(Π) = Π \ {r ∈ Π | head (r) ∈ X, body−(r) ∩X �= ∅} (7)

Accordingly, we define EX(Π, <) = (EX(Π), < ∩ (EX(Π)× EX(Π)) ).
We begin with a formal account of B-preferred answer sets. In this approach, partially

ordered programs are reduced to totally ordered ones: A fully ordered logic program is
an ordered logic program (Π,	) where 	 is a total ordering. The case of arbitrarily
ordered programs is reduced to this restricted case: Let (Π, <) be an ordered logic program
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and let X be a set of literals. Then, X is a B-preferred answer set of (Π, <) iff X is a B-
preferred answer set of some fully ordered logic program (Π,	) such that < ⊆ 	.

The construction of B-preferred answer sets relies on an operator, defined for prerequisite-
free programs, comprising only rules r with body+(r) = ∅.

Definition 9

Let (Π,	) be a fully ordered prerequisite-free logic program, let 〈ri〉i∈I be an enumeration
of Π according to	, and let X be a set of literals. Then,B(Π,	)(X) is the smallest logically
closed set of literals containing

⋃
i∈I Xi, where Xj = ∅ for j �∈ I and

Xi =

{
Xi−1 if body−(ri) ∩Xi−1 �= ∅
Xi−1 ∪ {head (ri)} otherwise.

This construction is unique insofar that for any such program (Π,	), there is at most
one standard answer set X of Π such that BEX (Π,	)(X) = X. Accordingly, this set is used
for defining the B-preferred answer set of a prerequisite-free logic program:

Definition 10

Let (Π,	) be a fully ordered prerequisite-free logic program and let X be a set of literals.
Then, X is the B-preferred answer set of (Π,	) iff BEX (Π,	)(X) = X.

The reduction of (Π,	) to EX(Π,	) removes from the above construction all rules
whose heads are in X but which are defeated by X. This is illustrated in Brewka and Eiter
(2000) through the following example:

r1 = a ← not b,

r2 = ¬a ← not a,

r3 = a ← not ¬a,
r4 = b ← not ¬b,

{rj < ri | i < j} . (8)

Program Π8 = {r1, . . . , r4} has two answer sets, {a, b} and {¬a, b}. The application of
operator B relies on sequence 〈r1, r2, r3, r4〉. Now, consider the processes induced by
BEX (Π8 ,<)(X) and B(Π8 ,<)(X) for X = {a, b}, respectively:

BEX (Π8 ,<)(X) : X1 = {} X2 = {¬a} X3 = {¬a} X4 = {¬a, b}
B(Π8 ,<)(X) : X ′1 = {a} X ′2 = {a} X ′3 = {a} X ′4 = {a, b}

Thus, without filtering by EX , we get {a, b} as a B-preferred answer set. As argued in
Brewka and Eiter (2000), such an answer set does not preserve priorities because r2 is
defeated in {a, b} by applying a rule which is less preferred than r2, namely r3. The above
program has therefore no B-preferred answer set.

The next definition accounts for the general case by reducing it to the prerequisite-free
one. For checking whether an answer set X is B-preferred, the prerequisites of the rules are
evaluated wrt X. For this purpose, we define r− = head (r)← body−(r) for a rule r.

Definition 11

Let (Π,	) be a fully ordered logic program and X a set of literals. The logic program
(ΠX,	X) is obtained from (Π,	) as follows:

1. ΠX = {r− | r ∈ Π and body+(r) ⊆ X};
2. for any r′1, r

′
2 ∈ ΠX , r′1 	X r′2 iff r1 	 r2 where ri = max	{r ∈ Π | r− = r′i}.
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In other words, ΠX is obtained from Π by first eliminating every rule r ∈ Π such that
body+(r) �⊆ X, and then substituting all remaining rules r by r−.

In general, B-preferred answer sets are then defined as follows.

Definition 12
Let (Π,	) be a fully ordered logic program and X a set of literals. Then, X is a B-preferred
answer set of (Π,	), if

1. X is a (standard) answer set of Π, and
2. X is a B-preferred answer set of (ΠX,	X).

The distinguishing example of this approach is given by program (Π9, <):

r1 = b ← a, not ¬b
r2 = ¬b ← not b

r3 = a ← not ¬a

with {rj < ri | i < j} . (9)

Program Π9 = {r1, r2, r3} has two standard answer sets: X1 = {a, b} and X2 = {a,¬b}.
Both (Π9)X1

as well as (Π9)X2
turn r1 into b← not ¬b while leaving r2 and r3 unaffected.

Clearly, EXi
(Π9, <) = (Π9, <) for i = 1, 2. Also, we obtain that B(Π9 ,<)(X1) = X1, that

is, X1 is a B-preferred answer set. In contrast to this, X2 is not B-preferred. To to see this,
observe that B(Π9 ,<)(X2) = X1 �= X2. That is, B(Π9 ,<)(X2) reproduces X1 rather than X2.
In fact, while X1 is the only B-preferred set, neither X1 nor X2 is W- or D-preferred (see
below).

We note that B-preference disagrees with W- and D-preference on Example (3). In fact,
both answer sets of program (Π3, <) are B-preferred, while only {p, b,¬f, w} is W- and
D-preferred. To shed some light on these differences, we start by providing a fixpoint
characterization of B-preference:

Definition 13
Let (Π, <) be an ordered logic program and let X and Y be sets of literals. We define the
set of immediate consequences of X with respect to (Π, <) and Y as

TB
(Π,<),Y X =




head (r)

∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt (Y , Y ) and
II . there is no rule r′ ∈ Π with r < r′

such that
(a) r′ is active wrt (Y ,X) and
(b) head (r′) �∈ X




if X is consistent, andTB
(Π,<),Y X = Lit otherwise.

The difference between this operator5 and its predecessors manifests itself in Condi-
tion I, where activeness is tested wrt (Y , Y ) instead of (X,Y ), as in Definition 1 and 4. In
fact, in Example (9) it is the (unprovability of the) prerequisite a of the highest-ranked rule
r1 that makes the construction of W- or D-preferred answer sets break down (cf. Definition 1
and 4). This is avoided with B-preference because once answer set {a, b} is provided,
preferences are enforced wrt the program obtained by replacing r1 with b← not ¬b.

5 We have refrained from integrating (7) to keep the fixpoint operator comparable to its predecessors. This is
taken care of in Theorem 19. We note, however, that an integration of (7) would only affect Condition II.



584 T. Schaub and K. Wang

With an analogous definition of iterated applications ofTB
(Π,<),Y X as above, we obtain

the following characterization of B-preference:

Definition 14
Let (Π, <) be an ordered logic program and let X be a set of literals.

We define CB
(Π,<)(X) =

⋃
i�0(TB)i(Π,<),X∅.

Unlike above, CB
(Π,<) is not anti-monotonic. This is related to the fact that the “answer

set property” of a set is verified separately (cf. Definition 12). We have the following result.

Theorem 17
Let (Π, <) be an ordered logic program overL and let X be an answer set of Π. Then, we
have that X is B-preferred iff CB

EX (Π,<)(X) = X.

As with D- and W-preference, B-preference gives the perfect model on stratified pro-
grams.

Theorem 18
Let X� be the perfect model of stratified logic program Π and let <s be an order induced
by some stratification of Π. Then, (Π, <s) has the unique B-preferred answer set X�.

Alternatively, B-preference can also be captured by appeal to order preservation:

Definition 15
Let (Π, <) be an ordered program and let X be an answer set of Π. Then, X is called
<B-preserving, if there exists an enumeration 〈ri〉i∈I of ΓΠX such that, for every i, j ∈ I ,
we have that:

1. if ri < rj , then j < i; and
2. if ri < r′ and r′ ∈ Π \ ΓΠX, then

(a) body+(r′) �⊆ X or

(b) body−(r′) ∩ {head (rj) | j < i} �= ∅ or

(c) head (r′) ∈ X.

This definition differs in two ways from its predecessors. First, it drops any requirement
on groundedness. This corresponds to using (Y , Y ) instead of (X,Y ) in Definition 13.
Hence, groundedness is fully disconnected from order preservation. For example, the B-
preferred answer set {a, b} of (Π9, <) is associated with the <B-preserving sequence 〈r1, r2〉,
while the standard answer set is generated by the grounded sequence 〈r2, r1〉. Secondly,
Condition 2c is more relaxed than in Definition 8. That is, any rule r′ whose head is in X

(as opposed to {head (rj) | j < i}) is taken as “applied”. Also, Condition 2c integrates the
filter in (7).6 For illustration, consider Example (6) extended by r3 < r2:

r1 = a ← not b

r2 = b ←
r3 = a ←

r3 < r2 < r1 (10)

While this program has no D- or W-preferred answer set, it has a B-preferred one: {a, b}
generated by 〈r2, r3〉. The critical rule r1 is handled by 2c. As a net result, Condition 2 is
weaker than its counterpart in Definition 8. We have the following summarizing result.

6 Condition body−(r′) ∩X �= ∅ in (7) is obsolete because r′ �∈ ΓΠX.
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Theorem 19
Let (Π, <) be an ordered logic program overL and let X be a consistent answer set of Π.
Then, the following propositions are equivalent:

1. X is B-preferred;
2. CB

EX (Π,<)(X) = X;
3. X is a <B-preserving answer set of Π;
4. X = Y ∩L for some answer set Y of �B(Π, <)

(where �B is defined in (Delgrande et al. (2000a)).

Unlike Theorems 14 and 16, the last result stipulates that X must be an answer set of Π.
This requirement can only be dropped in case 4, while all other cases rely on this property.

Relationships. First, we observe that all three approaches treat the blockage of (higher-
ranked) rules in the same way. That is, a rule r′ is found to be blocked if either its prerequis-
ites in body+(r′) are never derivable or if some member of body−(r′) has been derived by
higher-ranked or unrelated rules. This is reflected by the identity of conditions IIa and 2a/b
in all three approaches, respectively. Although this is arguably a sensible strategy, it leads
to the loss of preferred answer sets on programs like (Π′5, <

′).
The difference between D- and W-preference can be directly read off Definition 1 and 4;

it manifests itself in Condition IIb and leads to the following relationships.

Theorem 20
Let (Π, <) be an ordered logic program such that for r, r′ ∈ Π we have that r �= r′ implies
head (r) �= head (r′). Let X be a set of literals. Then, X is a D-preferred answer set of
(Π, <) iff X is a W-preferred answer set of (Π, <).

The considered programs deny the suspension of preferences under W-preference,
because all rule heads are derivable in a unique way. We have the following general result.

Theorem 21
Every D-preferred answer set is W-preferred.

Example (6) shows that the converse does not hold.
Interestingly, a similar relationship is obtained between W- and B-preference. In fact,

Definition 15 can be interpreted as a weakening of Definition 8 by dropping the condition
on groundedness and weakening Condition 2 (via 2c). We thus obtain the following result.

Theorem 22
Every W-preferred answer set is B-preferred.

Example (9) shows that the converse does not hold. LetAS(Π) = {X | CΠ(X) = X}
andASP (Π, <) = {X ∈ AS(Π) | X is P -preferred} for P = W, D, B. Then, we obtain
the following summarizing result.

Theorem 23
Let (Π, <) be an ordered logic program. Then, we have

ASD(Π, <) ⊆ ASW(Π, <) ⊆ ASB(Π, <) ⊆ AS(Π)
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This hierarchy is primarily induced by a decreasing interaction between groundedness
and preference. While D-preference requires the full compatibility of both concepts, this in-
teraction is already weakened in W-preference, before it is fully abandoned in B-preference.
This is nicely reflected by the evolution of the condition on groundedness in
Definitions 5, 8 and 15. Notably, groundedness as such is not the ultimate distinguishing
factor, as demonstrated by the fact that prerequisite-free programs do not necessarily lead
to the same preferred answer sets, as witnessed in (6) and (10). Rather it is the degree of
integration of preferences within the standard reasoning process that makes the difference.

Taking together Theorems 9, 13 and 18, we obtain the following result.

Theorem 24
Let X� be the perfect model of stratified logic program Π and let <s be an order induced
by some stratification of Π. Let (Π, <) be an ordered logic program such that < ⊆ <s.
Then, we haveASD(Π, <) =ASW(Π, <) =ASB(Π, <) =AS(Π) = {X�}.

5 Discussion and related work

Up to now, we have been dealing with static preferences only. In fact, all fixpoint charac-
terizations are also amenable to dynamically ordered programs, as introduced in section 4.
To see this, consider Definition 1 along with a dynamically ordered program Π and sets of
literals X,Y over a language extended by preference atoms At≺. Then, the corresponding
preferred answer sets are definable by substituting “r < r′” by “(r≺ r′) ∈ Y ” in defini-
tions 1, 6 and 13, respectively. That is, instead of drawing preference information from the
external order <, we simply consult the initial context, expressed by Y . In this way, the
preferred answer sets of Π can be given by the fixpoints of an operator CΠ.

Also, we have concentrated so far on preferred answer sets semantics that amount to
selection functions on the standard answer sets of the underlying program. Another strategy
is advocated in Gelfond and Son (1997), where the preference d1 < d2 “stops the appli-
cation of default d2 if defaults d1 and d2 are in conflict with each other and the default d1

is applicable” (Gelfond and Son, 1997). In contrast to B-, D-, and W-preference this allows
for exclusively concluding ¬p from program ({r1, r2}, <):

r1 = p ← r2 = ¬p ← r1 < r2

This approach amounts to B-preference on certain “hierarchically” structured programs
(Gelfond and Son, 1997). A modification of the previous compilation techniques for this
strategy is discussed in Delgrande and Schaub (2000). Although conceptually different,
one finds similar strategies when dealing with inheritance, update and/or dynamic logic
programs (Buccafurri et al., 2002; Eiter et al., 2000; Alferes et al., 1998), respectively.

While all of the aformentioned approaches remain within the same complexity class,
other approaches step up in the polynomial hierarchy (Rintanen, 1995; Sakama and Inoue,
1996; Zhang and Foo, 1997). Among them, preferences on literals are investigated in
Sakama and Inoue (1996). In contrast to these approaches, so-called courteous logic pro-
grams (Grosof, 1997) step down the polynomial hierarchy into P . Due to the restriction
to acyclic positive logic programs a courteous answer set can be computed in O(n2) time.
Other preference-based approaches that exclude negation as failure include Dimopoulos



A semantic framework for preference handling in answer set programming 587

and Kakas (1995), Pradhan and Minker (1996) and You et al. (2001), as well as the
framework of defeasible logics (Nute, 1987; Nute, 1994). A comparision of the latter with
preferred well-founded semantics (as defined in Brewka (1996)) can be found in Brewka
(2001).

In a companion paper, we exploit our fixpoint operators for defining regular and well-
founded semantics for ordered logic programs within an alternating fixpoint theory.7 This
yields a surprising yet negative result insofar as these operators turn out to be too weak
in the setting of well-founded semantics. We address this by defining a parameterizable
framework for preferred well-founded semantics, summarized in Schaub and Wang (2002).

6 Conclusion

The notion of preference seems to be pervasive in logic programming when it comes to
knowledge representation. This is reflected by numerous approaches that aim at enhan-
cing logic programming with preferences in order to improve knowledge representation
capacities. Despite the large variety of approaches, however, only very little attention has
been paid to their structural differences and sameness, finally leading to solid semantical
underpinnings. In particular, there were up to now only few attempts to characterize one
approach in terms of another one. The lack of this kind of investigation is clearly due to
the high diversity of existing approaches.

This work is a first step towards a systematic account to logic programming with prefer-
ences. To this end, we employ fixpoint operators following the tradition of logic program-
ming. We elaborated upon three different approaches that were originally defined in rather
heterogenous ways. We obtained three alternative yet uniform ways of characterizing pre-
ferred answer sets (in terms of fixpoints, order preservation, and an axiomatic account). The
underlying uniformity provided us with a deeper understanding of how and which answer
sets are preferred in each approach. This has led to a clarification of their relationships
and subtle differences. On the one hand, we revealed that the investigated approaches yield
an increasing number of answer sets depending on how tight they connect preference to
groundedness. On the other hand, we demonstrated how closely the compilation technique
developed in Delgrande et al. (2000b) follows the specification given in the fixpoint op-
eration. Also, we have shown that all considered answer sets semantics correspond to the
perfect models semantics whenever the underlying ordering stratifies the program.

We started by formally developing a specific approach to preferred answer sets semantics
that is situated “between” the approaches of Delgrande et al. (2000b) and that of Brewka
and Eiter (1999). This approach can be seen as a refinement of the former approach in that it
allows to suspend preferences whenever the result of applying a preferred rule has already
been derived. This feature avoids the overly strict prescriptive approach to preferences
pursued in Delgrande et al. (2000b), which may lead to the loss of answer sets.

7 Proofs

Proof 1 It can be directly verified from the definition ofT(Π,<),Y . �

7 This material was removed from this paper due to space restrictions.
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Proof 2
1. C(Π,<)(X) ⊆ CP (X): Since C(Π,<)(X) =

⋃
i�0Ti

(Π,<),X∅ and CΠ(X) = T i
ΠX∅, we

need only to prove thatTi
(Π,<),X∅ ⊆ T i

Π,X∅ for i � 0 by using induction on i.

Base For i = 0, it is obvious thatT0
(Π,<),X∅ = ∅ ⊆ T 0

Π,X∅.
Step Assume that Ti

(Π,<),X∅ ⊆ T i
Π,X∅, we want to show that Ti+1

(Π,<),X∅ ⊆ T i+1
Π,X∅.

In fact, if L ∈ Ti+1
(Π,<),X∅, then, by Definition 1, there is a rule r in Π such that L =

head (r), body+(r) ⊆ Ti
(Π,<),X∅ and body−(r)∩X = ∅. By induction assumption,

body+(r) ⊆ T i
Π,X∅. Since the rule L ← body+(r) is in the reduct program PX ,

L ∈ T i+1
Π,X∅.

2. CP (X) ⊆ C(Π,<)(X) if X ⊆ C(Π,<)(X): For simplicity, we denote Ti = T i
Π,X∅ and

Xi = TΠ
(<,X),∅ for i � 0. It suffices to prove T i

Π,X∅ ⊆ C(Π,<)(X) for k � 0 by using
induction on k. That is, for each i � 0, there is ni � 0 such that Ti ⊆ Xni

Base If k = 1, it is obvious that T 0
Π,X∅ = ∅ ⊆ X0.

Step Assume that Ti ⊆ Xni . We want to show Ti+1 ⊆ Xni+1
. Let a ∈ Ti+1, then

there is a rule r ∈ Γ with head (r) = a, body+(r) ⊆ Ti and body−(r) ∩ X = ∅.
By the induction assumption, r is active wrt (Xni , X). We claim that there will
be no rule r′ such that both of Condition I and II hold wrt (Xni , X). Otherwise,
suppose that there is a rule r′ such that head (r′) �∈ Xni , r < r′ and r′ is active wrt
(X,Xni ). Without loss of generality, there is no rule r′′ such that head (r′′) �∈ Xni ,
r < r′′ < r′ and r′′ is active wrt (X,Xni ). Since X ⊆ C(Π,<)(X), there be a number
n � ni such that r′ is active wrt (Xn,X). By the assumption of r′′, it should be that
head (r′′) ∈ Xn. A contradiction. Therefore, head (r) ∈ Xni+1.

3. If < is empty, then the condition II in Definition 1 is automatically satisfied because,
for any rule r ∈ Π, there is no rule r′ that is preferred to r. This implies that
Ti

(Π,<),X∅ = T i
Π,X∅ for any i � 0. Therefore, C(Π,<)(X) = CP (X). �

Proof 5 If X ⊆ X ′, it is a direct induction on i to show thatTi
(Π,<),X ′ ∅ ⊆ Ti

(Π,<),X∅. �

Proof 6
If Π has no consistent answer set, the conclusion is obvious. Thus, we assume that X is
consistent. First, we can easily generalize the notion of generating rules as follows: For
any two sets Y1 and Y2 of literals, set Γ(Y1, Y2) = {head (r) ← body+(r) | body+(r) ⊆
Y1, body−(r) ∩ Y2 = ∅}.

Since X is an answer set of Π, we have X =CΠ(X) =
⋃

i�0 T
i
Π,X∅. Let Γ0 = Γ(TΠX∅, X)

and Γk+1 = Γ(Tk
ΠX∅, X) − Γk for k � 1. Define a total order 	X on Π such that the

following requirements are satisfied:

1. r′ 	X r for any r ∈ Γk and r′ ∈ Γk+1, k = 0, 1, . . . .

2. If r ∈ ∪n�0Γn and r′ �∈ ∪n�0Γn, then r′ 	X r.

Since Γk ∩Γk′ �= ∅ for n �= n′, such an ordering exists. Denote Xi =Ti
(Π,	X ),X∅. We need

only to prove the following two propositions P1 and P2:

P1 X is a prioritized answer set of (Π,	X): Since CP (X) = X, it suffices to prove that
C(Π,<)(X) = CP (X). Firstly, by Theorem 2, C(Π,<)(X) ⊆ CP (X). For the opposite in-
clusion, we note that CP (X) = head (∪k�0Γk)), where head (∪k�0Γk)) = {head (r) | r ∈
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∪k�0Γk}. Hence, we need only to prove that head (Γk) ⊆ C(Π,<)(X) for any k � 0 by
using induction on k.

Base For k = 0, without loss of generality, suppose that Γ0 = {r1, . . . , rt} and rt 	X

· · · 	X r1. We use second induction to show that head (ri) ∈ CP (X) for 1 � i � t.

Base For i = 1, since there is no rule r′ with r1 	X r′, head (r1) ∈ X1.

Step Assume that head (ri) ∈ Xi, then head (ri+1) ∈ Xi+1. Thus head (Γ0) ⊆ Xt.

Step Assume that head (Γk) ⊆ C(Π,<)(X). Then head (Γk) ∈ Xmk
for some mk > 0. Let

Γk+1 = {r1, . . . , ru} and ru 	X · · · 	X r1. Then, similar to the case of k = 0, we
have that head (ri) ∈ Xmk+i for i = 1, . . . , u.
Thus, head (Γk) ⊆ C(Π,<)(X) for any k � 0.

This implies that CP (X) ⊆ C(Π,<)(X). Therefore, C(Π,<)(X) = X.
P2 If X ′ is an answer set of Π such that X ′ �= X, then X ′ is not a prioritized answer set

of (Π,	X): First note that X \ X ′ �= ∅ and X ′ \ X �= ∅. We assert that there is literal
l ∈ X \ X ′ such that l �∈ C(Π,<)(X

′): otherwise, X \ X ′ ⊆ C(Π,<)(X
′). We can choose

t � 0 and a literal l0 ∈ X \ X ′ such that X ′t ⊆ X ∩ X ′ and l0 ∈ X ′t+1. Then there is a
rule r such that head (r) = l0, body+(r) ⊆ X ′t and body−(r) ∩X ′ = ∅. This will implies
that l ∈ CΠX′ (X ′), i. e. l ∈ X ′, contradiction. Therefore, we have shown that there is
a rule r in Π such that head (r) ∈ X and head (r) �∈ C(Π,<)(X

′). For each l′ ∈ X ′ \ X
and each rule r′ such that head (r′) = l′, we have r′ 	X r. Thus, we know that l′ �∈
C(Π,<)(X

′). This means that X ′ �= C(Π,<)(X
′) and thus, X ′ is not a prioritized answer set

of (Π,	X). �

Proof 7
On the contrary, suppose that (Π, <) has two distinct prioritized answer sets X and X ′.
Since X \ X ′ �= ∅ and X ′ \ X �= ∅, there are literals l and l′ such that l ∈ X \ X ′ and
l′ ∈ X ′ \ X. Without loss of generality, assume thatTi

(Π,<),X∅ =Ti
(Π,<),X ′ ∅ for i � n but

l ∈ Tn+1
(Π,<),X∅ and l′ ∈ Tn+1

(Π,<),X ′ ∅. This means that there are two rules r and r′ such that
head (r) = l, head (r′) = l′, r and r′ satisfy the two conditions I and II in Definition 1
at stage n with respect to X and X ′, respectively. We observe two obvious facts: F1. r′ is
active wrt (X,Tn

(Π,<),X∅); and F2. r is active wrt (X ′,Tn
(Π,<),X ′ ∅). By F1, we have r′ 	 r.

Similarly, by F2, it should be r 	 r′, contradiction. Therefore, (Π,	) has the unique
prioritized answer sets. �

Proof 8
1. X� = Mt is a prioritized answer set of (Π, <s): X� = C(Π,<s)(X

�).

(a) C(Π,<s)(X
�) ⊆ X�: we show thatTi

(Π,<s),X�∅ ⊆ X� by using induction on i.

Base For i = 0,T0
(Π,<s),X�∅ = ∅ ⊆ X� is obvious.

Step Assume thatTi
(Π,<s),X�∅ ⊆ X�. If p ∈ Ti+1

(Π,<s),X�∅, then there is a rule r

in Π such that p = head(r), body+(r) ⊆ Ti
(Π,<s),X�∅ and body−(r)∩X� = ∅.

By induction assumption, body+(r) ⊆ X�. If r ∈ Πj , then body+(r) ⊆ Mj

and body−(r) ∩Mj−1 = ∅. Therefore, p ∈ X�. That is,Ti+1
(Π,<s),X�∅ ⊆ X�.

(b) X� ⊆ C(Π,<s)(X
�): we show that Mi ⊆ C(Π,<s)(X

�) for 0 � i � t.

Base For i = 1, it is obvious since M0 = ∅.
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Step If we have shown Mi ⊆ C(Π,<s)(X
�), we want to show that Mi+1 ⊆

C(Π,<s)(X
�). We again use second induction on k to prove that if p ∈

Tk
Πi+1 ,Mi

Mi, then p ∈ C(Π,<s)(X
�):

Base For k = 1, i.e. p ∈ T 1
Πi+1 ,Mi

Mi, if p �∈ Mi, then there is a rule r in
Πi+1 such that p = head(r), body+(r) = ∅ and body−(r) ∩Mi = ∅. Then
body−(r) ∩X� = ∅.
By the first induction assumption, Mi ⊆ Tj0

(Π,<s),X�∅ for some j0. If there
are j > 0 and a rule r′ such that r <s r′ and r′ is active with respect to
(X�,Tj

(Π,<s),X�∅) and head(r′) �∈Tj
(Π,<s),X�∅. Then, body+(r′)⊆X� and

body−(r′)∩ Tj
(Π,<s),X�∅= ∅. We assert that j � j0. Otherwise, if j >

j0, body−(r′) ∩ Tj
(Π,<s),X�∅ = ∅ ⇒ body−(r′) ∩ Tj0

(Π,<s),X�∅ = ∅ ⇒
body−(r′) ∩Mi = ∅ ⇒ body−(r′) ∩X� = ∅. Therefore, head(r′) ∈Mi ⊆
Tj

(Π,<s),X�∅, a contradiction. Thus, when j > j0, there will be no rule in

Π that prevents r to be included inTj
(Π,<s),X�∅. Thus, p ∈ C(Π,<s)(X

�).

Step Assume that p ∈ C(Π,<s)(X
�) if p ∈ Tk

Πi+1 ,Mi
Mi. Suppose that p ∈

Tk+1
Πi+1 ,Mi

Mi but p �∈ Mi, then there is a rule r in Πi+1 such that p = head(r),
body+(r) ⊆ Tk

Πi+1 ,Mi
∅ and body−(r) ∩ Mi = ∅. Then body+(r) ⊆ Mi ⊆

Tj0
(Π,<s),X�∅ for some j0 and body−(r) ∩ X� = ∅. Similar to the proof of the

case k = 1, we can also prove that p ∈ C(Π,<s)(X
�).

2. If X = C(Π,<s)(X), then X is a preferred answer set of (Π, <s). By Corollary 3,
X is also an answer set of Π. However, Π has the unique answer set X� and thus
X = X�. �

Proof 9
By Theorem 8 (1), the perfect model X� is a preferred answer set. On the other hand, since
each preferred answer set X is also a standard answer set. In particular, for the stratified
program Π, it has the unique answer set X�. Therefore, X = X�. �

Proof 11
Let (Π, <) be an ordered logic program overL and X a consistent set of literals overL.

“⊆”-part Define8

Y = {head (r) | r ∈ rule(C�(Π,<)(Y ))}
∪ {ap(nr) | r ∈ rule(C�(Π,<)(Y ))} ∪ {bl(nr) | r �∈ rule(C�(Π,<)(Y ))}
∪ {ok(nr) | r ∈ Π} ∪ {rdy(nr, nr′ ) | r, r′ ∈ Π}

Clearly, we have X = Y ∩ L. By definition, we have C(Π,<)(X) =
⋃

i�0Ti
(Π,<),X∅ and

C�(Π,<)(Y ) = Cn(�(Π, <)Y ).
In view of this, we show by induction thatTi

(Π,<),X∅ ⊆ Cn(�(Π, <)Y ) for i � 0. To be
precise, we show for every r ∈ Π by nested induction that head (r) ∈ Ti

(Π,<),X∅ implies
head (r) ∈ Cn(�(Π, <)Y ) and moreover, for every r′ ∈ Π, that if r < r′ then bl(nr′) ∈
Cn(�(Π, <)Y ) or ap(nr′) ∈ Cn(�(Π, <)Y ) or head (nr′) ∈ Cn(�(Π, <)Y ).

8 As defined in Section 4, rule(·) is a bijective mapping between rule heads and rules.
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i = 0 By definition,T0
(Π,<),X∅ = ∅ ⊆ Cn(�(Π, <)Y ).

i > 0 Consider r ∈ Π such that head (r)∈Ti+1
(Π,<),X∅. By definition, we have that r is

active wrt (Ti
(Π,<),X∅, X). That is,

1. body+(r)⊆Ti
(Π,<),X∅. By the induction hypothesis, we get body+(r)⊆

Cn(�(Π, <)Y ).
2. body−(r) ∩X = ∅. By definition of Y , this implies body−(r) ∩ Y = ∅.

Furthermore, this implies that a2(r)
+ = ap(nr)← ok(nr), body+(r) ∈ �(Π, <)Y .

We proceed by induction on <.

Base Suppose r is maximal with respect to <. We can show the following lemma.

Lemma 7.1
If r ∈ Π is maximal with respect to <, then ok(nr) ∈ Cn(�(Π, <)Y ).

Given that we have just shown in 1 and 2 that body+(r) ⊆ Cn(�(Π, <)Y ) and a2(r)
+ ∈

�(Π, <)Y , Lemma 7.1 and the fact that Cn(�(Π, <)Y ) is closed under �(Π, <)Y im-
ply that ap(nr)∈Cn(�(Π, <)Y ). Analogously, we get head (r)∈Cn(�(Π, <)Y ) due to
a1(r)

+ ∈ �(Π, <)Y . We have thus shown that {head (r), ap(nr)} ⊆ Cn(�(Π, <)Y ).
Step We start by showing the following auxiliary result.

Lemma 7.2
Given the induction hypothesis, we have ok(nr′ ) ∈ Cn(�(Π, <)Y ).

Proof 7.2
Consider r′′ ∈ Π such that r′<r′′. By the induction hypothesis, we have either bl(nr′′ ) ∈
Cn(�(Π, <)Y ) or ap(nr′′) ∈ Cn(�(Π, <)Y ) or head (nr′′) ∈ Cn(�(Π, <)Y ). Clearly,
we have (nr′ ≺ nr′′ ) ∈ Cn(�(Π, <)Y ) iff r′<r′′. Hence, whenever r′<r′′, we obtain
rdy(nr′ , nr′′ ) ∈ Cn(�(Π, <)Y ) by means of c3(r

′, r′′)+, c4(r
′, r′′)+, or c5(r

′, r′′)+ (all of
which belong to �(Π, <)Y ). Similarly, we get rdy(nr′ , nr′′) ∈ Cn(�(Π, <)Y ), whenever
r′ �<r′′ from c2(r

′, r′′)+. Lastly, we obtain ok(nr′)∈Cn(�(Π, <)Y ) via c1(r
′)+ ∈

�(Π, <)Y . �

For all rules r′ with r < r′, we have that either

1. r′ is not active wrt (X,Ti
(Π,<),X∅). That is, we have that either

(a) body+(r) �⊆ X. By definition of Y , this implies body+(r) �⊆ Y .
By definition, b1(r

′, L+)
+

= bl(nr′) ← ok(nr′) ∈ �(Π, <)Y for some L+ ∈
body+(r) such that L+ �∈ Y . By Lemma 7.2, we have ok(nr′) ∈ Cn(�(Π, <)Y ).
Given that Cn(�(Π, <)Y ) is closed under �(Π, <)Y , we get that bl(nr′) ∈
Cn(�(Π, <)Y ).

(b) body−(r) ∩ Ti
(Π,<),X∅ �= ∅. By the induction hypothesis, this implies that

body−(r) ∩ Cn(�(Π, <)Y ) �= ∅.
Therefore, b2(r, L

−)+ = bl(nr) ← ok(nr), L
− ∈ �(Π, <)Y for some L− ∈

body−(r) ∩ Cn(�(Π, <)Y ). In analogy to 1a, this allows us to conclude that
bl(nr′ ) ∈ Cn(�(Π, <)Y ).

In both cases, we conclude bl(nr′) ∈ Cn(�(Π, <)Y ). By the induction assumption,
head (r′) ∈ Cn(�(Π, <)Y ).



592 T. Schaub and K. Wang

We have thus shown that either bl(nr′) ∈ Cn(�(Π, <)Y ) or head (r′) ∈ Cn(�(Π, <)Y )

for all r′ such that r < r′.
In analogy to what we have shown in the proof of Lemma 7.2, we can now show that
ok(nr) ∈ Cn(�(Π, <)Y ).
In analogy to the base case, we may then conclude {head (r), ap(nr)} ⊆ Cn(�(Π, <)Y ).

“⊇”-part We have X = Y ∩L. By definition, we have C�(Π,<)(Y ) = Cn(�(Π, <)Y ) and
moreover that Cn(�(Π, <)Y ) =

⋃
i�0 T

i
�(Π,<)Y

∅. Given this, we show by induction that

(T i
�(Π,<)Y

∅ ∩L) ⊆ C(Π,<)(X) for i � 0.

i = 0 By definition, T 0
�(Π,<)Y

∅ = ∅ ⊆ C(Π,<)(X).

i > 0 Consider r ∈ Π such that head (r) ∈ (T i+1
�(Π,<)Y

∅ ∩ L). In view of �(Π, <)Y , this

implies that ap(nr) ∈ (T i
�(Π,<)Y

∅ ∩ L) and thus a2(r)
+ ∈ �(Π, <)Y . The latter implies

that body−(r) ∩ Y = ∅, whence body−(r) ∩ X = ∅ because of X = Y ∩L. The former
implies that body+(r)∪{ok(nr)} ⊆ T i−1

�(Π,<)Y
∅. By the induction hypothesis, we obtain that

body+(r) ⊆ C(Π,<)(X). Consequently, r is active wrt (C(Π,<)(X), X).
Suppose there is some r′ ∈ Π with r < r′ such that

1. r′ is active wrt (X,C(Π,<)(X)). That is,

(a) body+(r) ⊆ X and

(b) body−(r) ∩ C(Π,<)(X) = ∅.

2. head (r′) �∈ C(Π,<)(X).

By the induction hypothesis, we obtain from 2 that head (r′) �∈ T
j

�(Π,<)Y
∅ for j � i.

Clearly, we have (nr′ ≺ nr′′)∈T i
�(Π,<)Y

∅ for i� 1 iff r′ < r′′. Moreover, ok(nr)∈
T i−1

�(Π,<)Y
∅ implies (see above) rdy(nr, nr′′ ) ∈ T i−2

�(Π,<)Y
∅ for all r′′ ∈ Π. This and the fact

that head (r′) �∈ T
j

�(Π,<)Y
∅ for j � i implies that bl(nr′) ∈ T i−3

�(Π,<)Y
∅.

This makes us distinguish the following two cases.

1. If bl(nr′) is provided by b1(r
′, L+), then there is some L+ ∈ body+(r′) such that

L+ �∈ Y . Given that X = Y ∩L, this contradicts 11.
2. If bl(nr′) is provided by b2(r

′, L−), then there is some L− ∈ body−(r′) such that
L− ∈ T i−4

�(Π,<)Y
∅. By the induction hypothesis, we obtain that L− ∈ C(Π,<)(X). A

contradiction to 11.

So, given that r is active wrt (C(Π,<)(X), X) and that there is no r′ ∈ Π such that r < r′

satisfying 11, 11, and 2, we have that head (r) ∈ T(Π,<),X(C(Π,<)(X)). That is, head (r) ∈
C(Π,<)(X). �

Proof 12 It follows from Lemma 7.7 and Lemma 7.8. �

Proof 13 Similar to the proof of Theorem 8. �

By Theorem 4.8 in (Delgrande et al., 2003), it suffices to show the following Lemma 7.4.
Before doing this, we first present a definition. Given a statically ordered logic program
(Π, <) and a set X of literals, set Xi = (TD)i(Π,<),X∅ for i � 0.
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Definition 16
Let (Π, <) be a statically ordered logic program and r be a rule in Π. X and Xi(i � 1) are
as above. We say another rule r′ is a D-preventer of r in the context (X,Xi) if (1) r < r′

and (2) r′ is active wrt (X,Xi) and r′ �∈ rule(Xi).

Lemma 7.3
Let (Π, <) be a statically ordered logic program and X a set of literals withCD

(Π,<)(X) = X.
Then, for any r ∈ ΓΠX, there exists a number i such that r ∈ rule(Xi).

The intuition behind this lemma is that each D-preventer of a rule in ΓΠX is a “temporary”
one if CD

(Π,<)(X) = X.

Proof 7.3
On the contrary, suppose that there is a rule r ∈ ΓΠX such that r �∈ rule(Xi) for any i.
Without loss of generality, assume that there is no such rule that is preferred than r.

Since r ∈ ΓΠX and X = ∪∞i=1Xi, r will become active wrt (Xt,X) at some stage
t � 0. Therefore, it must be the case that there is a D-preventer r′ satisfying r′ ∈ ΓΠX.
This implies that r < r′ and r′ ∈ ΓΠX but r′ �∈ rule(Xi) for any i, contradiction to our
assumption on r. Thus, the lemma is proven. �

Lemma 7.4
Let (Π, <) be a statically ordered logic program and X a set of literals. Then X is a <D-
preserving answer set of Π if and only if X is a set of literals with CD

(Π,<)(X) = X.

Proof 7.4
Without loss of generality, assume that rule(Xi) = {ri1, . . . , rini} for i � 1.

if part Let CD
(Π,<)(X) = X. By Lemma 7.3, ΓΠX = ∪∞i=1rule(Xi). This means that the

sequence ∆: 〈r11, . . . , r1n1
, r21, . . . , r2n2

, . . .〉 is an enumeration of ΓΠX.
It suffices to prove that this sequence of rules in ∆ is <D-preserving with respect to X.
We need to justify the two conditions of <D-sequence are satisfied by ∆:

C1 For each ri ∈ rule(Xt) where t > 0, then ri is active wrt (Xt−1, X). This implies that
body+(ri) ⊆ {head (rj) | j < i}.

C2 if r < r′, then r′ is prior to r in ∆: notice that, since X = ∪∞i=1Xi, if a rule is active
wrt (Xi,X) then it is also active wrt (X,Xi). Thus, by Definition 1, r and r′ can not be
in the same section rule(Xs). If C2 is not satisfied by ∆, then there are two rules, say r

and r′, such that r < r′ but r is prior to r′ in ∆. Without loss of generality, assume that
r ∈ rule(Xi) and r′ ∈ rule(Xj) but i < j. Then r′ should prevent r to be included in
rule(Xi), which means r �∈ rule(Xi), contradiction. Therefore, C2 holds.

C3 if ri < r′ and r′ ∈ Π \ ΓΠX, then body+(r′) �⊆ X or r′ is defeated by the set
{head (rj) | j < i}: Assume that ri ∈ rule(Xt), then r′ �∈ rule(Xt). On the contrary,
assume that body+(r′) ⊆ X and r′ is not defeated by the set {head (rj) | j < i}, then r′ is
not defeated by Xt−1 because Xt−1 ⊆ {head (rj) | j < i}. Thus, r′ is active wrt (X,Xt−1)

and r′ �∈ rule(Xt−1). This means that r′ is a D-preventer of ri in the context (X,Xt−1) and
thus, ri �∈ rule(Xt), contradiction. That is, body+(r′) �⊆ X or r′ is defeated by the set
{head (rj) | j < i}.
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only-if part Assume that X is a <D-preserving answer set of Π, then there is a grounded
enumeration 〈ri〉i∈I of ΓΠX such that, for every i, j ∈ I , we have that:

1. if ri < rj , then j < i; and
2. if ri < r′ and r′ ∈ Π \ ΓΠX, then either (a) body+(r′) �⊆ X or (b) body−(r′) ∩
{head (rj) | j < i} �= ∅.

A set ∆̄ of rules is discrete if there is no pair of rules r and r′ in ∆̄ s. t. r < r′.
We define recursively a sequence of sets of rules as follows.
Define ∆̄1 as the largest section of 〈ri〉i∈I satisfying the following conditions:

1. ∆̄1 is discrete;
2. r1 ∈ ∆̄1;
3. body(r) = ∅ for any r ∈ ∆̄1.

Suppose that ∆̄i is well-defined and rmi
is the last rule of ∆̄i, we define ∆̄i+1 as the largest

section of 〈ri〉i∈I satisfying the following conditions:

1. ∆̄i+1 is discrete;
2. rmi+1 ∈ ∆̄i+1;
3. body(r) ⊆ {head(r′) | r′ ∈ ∪ij=0∆̄j} for any r ∈ ∆̄i+1.
4. disjoint with ∪ij=0∆̄j .

Denote X̄i = {head(r) | r ∈ ∪ij=0∆̄j}. Then we have the following fact:
if r ∈ ∆̄i+1 such that X̄i−1 |= body+(r) and no rule r′ ∈ ∆̄i with r < r′, then we can

move r from ∆̄i+1 to ∆̄i, the resulting sequence of rules still is <D-preserving.
Without loss of generality, assume that our sequence 〈∆̄i〉 is fully transformed by the

above transformation. Since ∪∞i=0X̄i = X, we can prove ∪∞i=0Xi = X by proving X̄i = Xi

for every i ∈ I . Thus, it suffices to prove ∆̄i = rule(Xi) for every i ∈ I . We use induction
on i:

Base ∆̄0 = rule(X0) = ∅.
Step Assume that ∆̄i = rule(Xi), we want to prove ∆̄i+1 = rule(Xi+1).

∆̄i+1 ⊆ rule(Xi+1): For any rt ∈ ∆̄i+1, by the condition 3 in the construction of ∆̄i+1, rt
is active wrt (Xi,X). And for any r′ such that rt < r′ and r′ is active wrt (X,Xi) then
body+(r′) ⊆ X and r′ is not defeated by Xi. By induction, ∪k<thead(rk) ⊆ Xi = X̄i, thus
r′ is not defeated by ∪k<thead(rk). By Definition 5, it should be the case that r′ ∈ ΓΠX,
which implies that r′ ∈ ∆̄i = rule(Xi). Therefore, r′ is not a D-preventer of rt. That is,
rt ∈ rule(Xi+1).
rule(Xi+1) ⊆ ∆̄i+1: For r ∈ rule(Xi+1), we claim that r ∈ ∆̄i+1. Otherwise, there would
exist t > i + 1 such that r ∈ ∆̄t. Notice that, by induction assumption, body+(r) ⊆ Xi.
Thus, it must be the case that there is at least one rule r′ ∈ ∪t−1

j=i+1rule(Xj) such that
r′ < r. But r′ is active wrt (X,Xi+1), which contradicts to r ∈ rule(Xi+1). Therefore,
rule(Xi+1) ⊆ ∆̄i+1. �

Proof 15 Similar to the proof of Theorem 11. �

Proof 16 It follows from the following Lemma 7.7 and Theorem 12. �
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Lemma 7.5
Let (Π, <) be an ordered logic program over L and let Y be a consistent answer set of
TW

((,Π),, <). Denote X = Y ∩L. Then, we have for any r ∈ Π:

1. ok(nr) ∈ Y ; and
2. ap(nr) ∈ Y iff bl(nr) �∈ Y .

Proof 7.5
We prove the two propositions by parallel induction on ordering <.

Base Let r be a maximal element of <.

1. By assumption, r �< r′ for any r′ ∈ Π. This implies that rdy(nr, nr′ ) ∈ Y for any
r′ ∈ Π. Thus, ok(nr) ∈ Y .

2. There are two possible cases:

• body(r) is satisfied by X: Since a2(r) ∈ �(Π, <)Y , we have ap(nr) ∈ Y .
• body(r) is not satisfied by X: The body of at least one of b1(r, L

+) and b2(r, L
−)

is satisfied by Y , thus bl(nr) ∈ �(Π, <)Y .

Step

1. Consider r ∈ Π. Assume that ok(nr′) ∈ Y and either ap(nr′) ∈ Y or bl(nr′ ) ∈ Y for
all r′ with r < r′. In analogy to the base case, we have rdy(nr, nr′ ) ∈ Y for all r′ ∈ Π

with r �< r′.
For r′ with r < r′, by the induction assumption, we have either ap(nr′) ∈ Y or
bl(nr′ ) ∈ Y . Hence the body of at least one of c3(r, r

′) and c4(r, r
′) is satisfied by Y .

This implies rdy(nr, nr′ ) ∈ Y .
So, we have proved that rdy(nr, nr′ ) ∈ Y for any r′ ∈ Π. Thus, ok(nr) ∈ Y .

2. Analogous to the base case. �

Given a statically ordered logic program (Π, <) and a set X of literals, set Xi =

(TW)i(Π,<),X∅ for i � 0 and ugr(Xi) = {r ∈ ΓΠX \ ugr(Xi−1) | either r applied in pro-
ducing Xi \Xi−1 or head (r) ∈ Xi−1} for i > 0. Intuitively, ugr(Xi) is the set of the gener-
ating rules that are used at stage i.

Definition 17
Let (Π, <) be a statically ordered logic program and r be a rule in Π. X and Xi(i � 0) are
as above. We say another rule r′ is a W-preventer of r in the context (X,Xi) if the following
conditions are satisfied:

1. r < r′ and
2. r′ is active wrt (X,Xi) and head (r′) �∈ Xi.

Lemma 7.6
Let (Π, <) be a statically ordered logic program and X a set of literals withCW

(Π,<)(X) = X.
Then, for any r ∈ ΓΠX, there exists a number i such that r ∈ ugr(Xi).

The intuition behind this lemma is that each W-preventer of a rule in ΓΠX is a “temporary”
one if CW

(Π,<)(X) = X.
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Proof 7.6

On the contrary, suppose that there is a rule r ∈ ΓΠX such that r �∈ ugr(Xi) for any
i. Without loss of generality, assume that there is no such rule that is preferred than r.
Since r ∈ ΓΠX and X = ∪∞i=1Xi, r will become active wrt (Xt,X) at some stage t � 0.
Therefore, it must be the case that there is a W-preventer r′ satisfying r′ ∈ ΓΠX. This
implies that r < r′ and r′ ∈ ΓΠX but r′ �∈ ugr(Xi) for any i, contradiction to our
assumption on r. Thus, the lemma is proven. �

Lemma 7.7

Let (Π, <) be a statically ordered logic program and X a set of literals. Then X is a <W-
preserving answer set of Π if and only if X is a set of literals with CW

(Π,<)(X) = X.

Proof 7.7

Without loss of generality, assume that ugr(Xi) = {ri1, . . . , rini} for i � 1.

if part Let CW
(Π,<)(X) = X. By Lemma 7.6, ΓΠX = ∪∞i=1ugr(Xi). This means that the

sequence ∆: 〈r11, . . . , r1n1
, r21, . . . , r2n2

, . . .〉 is an enumeration of ΓΠX. It suffices to prove
that this sequence is <W-preserving with respect to X.

We need to justify that the three conditions of <W-sequence are satisfied by ∆:

C1 For each ri ∈ ∆, either ri is active wrt (Xt,X) or head (ri) ∈ Xt for some t > 0. Thus,
Condition 1 in Definition 8 is satisfied.

C2 If r < r′, then r′ is prior to r in ∆: Notice that X = ∪∞i=1Xi, if a rule is active wrt
(Xi,X) then it is also active wrt (X,Xi). Thus, by Definition 1, r and r′ cannot be in the
same section ugr(Xs).
If C2 is not satisfied by ∆, then there are two rules, say r and r′, such that r < r′ but r
is prior to r′ in ∆. Without loss of generality, assume that r ∈ ugr(Xi) and r′ ∈ ugr(Xj)

but i < j. Then r′ should prevent r to be included in ugr(Xi), which means r �∈ ugr(Xi),
contradiction. Therefore, C2 holds.

C3 On the contrary, suppose that Condition 3 in Definition 8 is not satisfied. That is, there
are two rules ri and r′ such that ri < r′, r′ ∈ Π \ ΓΠX and the following items hold:

1. body+(r′) ⊆ X,
2. r′ is not defeated by the set {head (rj) | j < i},
3. head (r′) �∈ {head (rj) | j < i}.

Without loss of generality, assume that ri ∈ ugr(Xt), then r′ is not defeated by Xt−1

because Xt−1 ⊆ {head (rj) | j < i}. Thus, r′ is active wrt (X,Xt−1) and r′ �∈ ugr(Xt−1).
This means that r′ is a W-preventer of ri in the context (X,Xt−1) and thus, ri �∈ ugr(Xt),
contradiction.

only-if part Assume that X is a <W-preserving answer set of Π, then there is a grounded
enumeration 〈ri〉i∈I of ΓΠX such that the three conditions in Definition 8 are all satisfied.

A set ∆̄ of rules is discrete if there is no pair of rules r and r′ in ∆̄ such that r < r′. We
define recursively a sequence of sets of rules as follows.
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Define ∆̄1 as the largest section of 〈ri〉i∈I satisfying the following conditions:

1. ∆̄1 is discrete;
2. r1 ∈ ∆̄1;
3. body(r) = ∅ for any r ∈ ∆̄1.

Suppose that ∆̄i is well-defined and rmi
is the last rule of ∆̄i, we define ∆̄i+1 as the largest

section of 〈ri〉i∈I satisfying the following conditions:

1. ∆̄i+1 is discrete;
2. rmi+1 ∈ ∆̄i+1;
3. Either body(r) ⊆ {head (r′) | r′ ∈ ∪ij=0∆̄j} or head (r) ∈ {head (r′) | r′ ∈ ∪ij=0∆̄j}

for any r ∈ ∆̄i+1.
4. Disjoint with ∪ij=0∆̄j .

Denote X̄i = {head (r) | r ∈ ∪ij=0∆̄j}. Then we observe the following fact:
If r ∈ ∆̄i+1 such that body+(r) is satisfied by X̄i−1 and no rule r′ ∈ ∆̄i with r < r′, then

we can move r from ∆̄i+1 to ∆̄i, the resulting sequence of rules is still <W-preserving.
Without loss of generality, assume that our sequence 〈∆̄i〉 is fully transformed by the

above transformation. Since ∪∞i=0X̄i = X, we can prove ∪∞i=0Xi = X by proving X̄i = Xi

for every i ∈ I . Thus, it suffices to prove ∆̄i = ugr(Xi) for every i ∈ I . We use induction
on i:

Base ∆̄0 = ugr(X0) = ∅.

Step Assume that ∆̄i = ugr(Xi), we want to prove ∆̄i+1 = ugr(Xi+1).

1. ∆̄i+1 ⊆ ugr(Xi+1): For any rt ∈ ∆̄i+1, by the condition 3 in the construction of ∆̄i+1,
either rt is active wrt (Xi,X) or head (rt) ∈ Xi. If head (rt) ∈ Xi, it is obvious that
r ∈ ugr(Xi+1). Thus, we assume that rt is active wrt (Xi,X). For any r′ such that
rt < r′ and r′ is active wrt (X,Xi) then body+(r′) ⊆ X and r′ is not defeated by
Xi. By induction, ∪k<thead (rk) ⊆ Xi = X̄i, thus r′ is not defeated by ∪k<thead (rk).
By Definition 8, it should be the case that r′ ∈ ΓΠX, which implies that r′ ∈ ∆̄i =

ugr(Xi). Therefore, r′ is not a W-preventer of rt in the context of (Xi,X). That is,
rt ∈ ugr(Xi+1).

2. ugr(Xi+1) ⊆ ∆̄i+1: For r ∈ ugr(Xi+1), we claim that r ∈ ∆̄i+1. Otherwise, there
would exist t > i + 1 such that r ∈ ∆̄t. Notice that, by induction assumption,
body+(r) ⊆ Xi (Note that head (r) ∈ Xi is impossible because we assume that
r ∈ ∆̄t and t > i + 1). Thus, it must be the case that there is at least one rule
r′ ∈ ∪t−1

j=i+1ugr(Xj) such that r′ < r. But r′ is active wrt (X,Xi+1), which contradicts
to r ∈ ugr(Xi+1). Therefore, ugr(Xi+1) ⊆ ∆̄i+1. �

Lemma 7.8
Let (Π, <) be an ordered logic program over L and let X and Y be consistent sets of
literals. Then, we have that

1. if X is a <W-preserving answer set of Π, then there is some answer set Y of �W(Π, <)

such that X = Y ∩L;
2. if Y is an answer set of �W(Π, <), then X is a <W-preserving.
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Proof 7.8
1 Let X be a <W-preserving answer set of Π. Define

Y = {head (r) | r ∈ ΓΠX}
∪ {ap(nr) | r ∈ ΓΠX} ∪ {bl(nr) | r �∈ ΓΠX}
∪ {ok(nr) | r ∈ Π} ∪ {rdy(nr, nr′ ) | r, r′ ∈ Π}
∪ {nr ≺ nr′ | r < r′} ∪ {¬(nr ≺ nr′) | r �< r′}

Notice that L ∈ X iff L ∈ Y . We want to show that Y = Cn(�(Π, <)Y ) by two steps:

“⊇”-part For any s ∈ TW(Π, <), if s+ ∈ �(Π, <)Y and body+(s) ⊆ Y , we need to prove
head (s) ∈ Y by cases.

Case 1 a1(r) : head (r)← ap(nr). Since a1(r) = a1(r)
+, a1(r) ∈ �(Π, <)Y . If ap(nr) ∈

Y , then r ∈ ΓΠX. This implies head (r) ∈ Y .
Case 2 a2(r) : ap(nr)← ok(nr), body(r). If ok(nr) ∈ Y , body+(r) ⊆ Y and body−(r)∩

Y = ∅, then body+(r) ⊆ X and body−(r)∩X = ∅. This implies that r ∈ ΓΠX and thus
ap(nr) ∈ Y .

Case 3 b1(r, L
+) : bl(nr)← ok(nr), not L+. If ok(nr) ∈ Y and L+ �∈ Y , then L+ �∈ X.

That is, r �∈ ΓΠX and thus bl(r) ∈ Y .
Case 4 b2(r, L

−) : bl(nr) ← ok(nr), L
−. If ok(nr) ∈ Y and L− ∈ Y , then L− ∈ X.

That is, r �∈ ΓΠX and thus bl(r) ∈ Y .
Case 5 For the rest of rules in TW(Π, <), we trivially have that head (s) ∈ Y whenever

s+ ∈ �(Π, <)Y and body+(s) ⊆ Y .

“⊆”-part Since X is a <W-preserving answer set of Π, there is an enumeration 〈ri〉i∈I
of ΓΠX satisfying all conditions in Definition 8. This enumeration can be extended to an
enumeration of Π as follows:

For any r �∈ ΓΠX, let ri be the first rule that blocks r and rj be the last rule s. t. r < rj .
Then we insert r immediately after rmax{i,j}. For simplicity, the extended enumeration is still
denoted 〈ri〉i∈I . Obviously, this enumeration has the following property by Definition 8.

Lemma 7.9
Let 〈ri〉i∈I be the enumeration for Π defined as above. If ri < rj , then j < i.

For each ri ∈ Π, we define Yi as follows:

{head (ri), ap(nri ) | ri ∈ ΓΠX, i ∈ I} ∪ {bl(nri ) | ri �∈ ΓΠX, i ∈ I}
∪ {ok(nri) | i ∈ I} ∪ {rdy(nri , nrj ) | i, j ∈ I}
∪ {nr ≺ nr′ | r < r′} ∪ {¬(nr ≺ nr′) | r �< r′}.

We prove Yi ⊆ Cn(T(Π)Y ) by using induction on i.

Base Consider r0 ∈ Π. Given that X is consistent, we have r0 �< r for all r ∈ Π by
Definition 8(3). Thus, ¬(nr0 ≺ nr) ∈ Y for all r ∈ Π. Consequently,

c2(r0, r)
+ : rdy(nr0 , nr)← ∈ �(Π, <)Y for all r ∈ Π.

This implies rdy(nr0 , nr) ∈ Cn(�(Π, <)Y ) for all r ∈ Π.
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Let Π = {r0, r1, . . . , rk}. Since

c1(r0) = c1(r0)
+ : ok(nr0 )← rdy(nr0 , nr1 ), . . . , rdy(nr0 , nrk ) ∈ �(Π, <)Y , (11)

thus ok(nr0 ) ∈ Cn(�(Π, <)Y ). We distinguish two cases.

Case 1 If r0 ∈ ΓΠX, we have body+(r0) = ∅ by Definition 8(1), and body−(r0)∩X =

∅ which also implies body−(r0) ∩ Y = ∅. Thus

a2(r0) = a2(r0)
+ : ap(nr0 )← ok(nr0 ) ∈ �(Π, <)Y . (12)

Accordingly, we obtain ap(nr0 ) ∈ Cn(�(Π, <)Y ) by ok(nr0 ) ∈ Cn(�(Π, <)Y ).
Furthermore, from

a1(r0) = a1(r0)
+ : head (nr0 )← ap(nr0 ) ∈ �(Π, <)Y , (13)

we obtain head (r0) ∈ Cn(�(Π, <)Y ).
Case 2 If r0 ∈ Π \ ΓΠX, we must have body+(r0) �⊆ X by Definition 8. That is,

body+(r0) �⊆ Y . Then, there is some L+ ∈ body+(r0) with L+ �∈ X. We also have
L+ �∈ Y . Therefore,

b1(r0, L
+) = b1(r0, L

+)
+

: bl(nr0 )← ok(nr0 ) ∈ �(Π, <)Y . (14)

Since we have shown above that ok(nr0 ) ∈ Cn(�(Π, <)Y ), we obtain

bl(nr0 ) ∈ Cn(�(Π, <)Y ).

Step Assume that Yj ⊆ �(Π, <)Y for all j < i, we show Yi ⊆ �(Π, <)Y by cases.

• rdy(nri , nrj ) ∈ Cn(�(Π, <)Y ):
If ri < rj , then nri ≺ nrj ∈ Y and j < i by Lemma 7.9.
By the induction assumption, either ap(nrj )∈Cn(�(Π, <)Y ) or bl(nrj )∈
Cn(�(Π, <)Y ). Since c3(ri, rj), c4(ri, rj) are in �(Π, <)Y , we have

rdy(nri , nrj ) ∈ Cn(�(Π, <)Y ) whenever ri < rj .

If ri �< rj , then ¬(nri ≺ nrj ) ∈ Y and thus

c2(ri, rj)
+ : rdy(nri , nrj )← ∈ �(Π, <)Y .

Consequently, for all j ∈ I , rdy(nri , nrj ) ∈ Cn(�(Π, <)Y ).
• ok(nri ) ∈ Cn(�(Π, <)Y ): It is obtained directly by c1(ri)

+ = c1(ri)∈Cn(�(Π, <)Y ).

• If ri ∈ ΓΠX, then {ap(ri), head (ri)} ⊆ Cn(�(Π, <)Y ).

By Definition 8, body+(ri) ⊆ {head (rj) | rj ∈ ΓΠX, j < i}
or head (ri) ∈ {head (rj) | rj ∈ ΓΠX, j < i}. By the induction assumption,
body+(ri) ⊆ Cn(�(Π, <)Y ). Also, ri ∈ ΓΠX implies body−(ri) ∩ X = ∅. Thus
body−(ri) ∩ Y = ∅.
This means that

a2(ri) = a2(ri)
+ : ap(nri)← ok(nri ), body+(ri) ∈ �(Π, <)Y . (15)

As shown above, ok(nri ) ∈ Cn(�(Π, <)Y ). Therefore, ap(nri ) ∈ Cn(�(Π, <)Y ).
Accordingly, we obtain head (ri) ∈ Cn(�(Π, <)Y ) due to a1(ri)

+ ∈ �(Π, <)Y .

• If ri ∈ Π \ ΓΠX, bl(nri ) ∈ Cn(�(Π, <)Y ): We consider three possibilities.
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1. body+(ri) �⊆ X: then there is some L+ ∈ body+(ri) with L+ �∈ X.
Also, L+ �∈ Y . Thus,

b1(ri, L
+) = b1(ri, L

+)
+

: bl(nri )← ok(nri) ∈ �(Π, <)Y . (16)

By ok(nri ) ∈ Cn(�(Π, <)Y ), we have bl(nri ) ∈ Cn(�(Π, <)Y ).
2. body−(r) ∩ {head (rj) | rj ∈ ΓΠX, j < i} �= ∅: then there is some L− ∈

body−(ri) with L− ∈ {head (rj) | rj ∈ ΓΠX, j < i}. That is, L− = head (rj)

for some rj ∈ ΓΠX with j < i. With the induction hypothesis, we then obtain
L− ∈ Cn(�(Π, <)Y ). Since ok(nri ) ∈ Cn(�(Π, <)Y ), we obtain bl(nri) ∈
Cn(�(Π, <)Y ).

3. head (ri) ∈ {head (rj) | rj ∈ ΓΠX, j < i}: this is obtained directly by the
induction assumption.

2 Let Y be a consistent answer set of TW(Π, <) and X = Y ∩ L. To prove that X is a
<W-preserving answer set of Π, it suffices to prove that the following two propositions P1

and P2:

P1 X is an answer set of Π: that is, Cn(ΠX) = X.

1. Cn(ΠX) ⊆ X: Let r ∈ Π s. t. body+(r) ⊆ X and body−(r) ∩X = ∅.
Then body+(r) ⊆ Y and body−(r) ∩ Y = ∅. By Lemma 7.5, ok(nr) ∈ Y and
thus a2(r)

+ ∈ �(Π, <)Y . Since Y is closed under �(Π, <)Y , ap(nr) ∈ Y and thus
head (r) ∈ Y . This means head (r) ∈ X.

2. X ⊆ Cn(ΠX): Since X = Y ∩L = (∪i�0T
i
�(Π,<)Y

∅ ∩L, we need only to show by
induction on i that, for i � 0,

(
T i

�(Π,<)Y
∅ ∩L

)
⊆ Cn(ΠX). (17)

Base It is obvious that T 0
�(Π,<)Y

∅ = ∅.
Step Assume that (17) holds for i, we want to prove (17) holds for i + 1.

If L ∈ T i+1
�(Π,<)Y

∅, then there is a rule r ∈ Π s. t. head (r) = L, a1(r)
+, a2(r)

+ ∈
�(Π, <)Y and {ap(nr), ok(nr)}∪body+(r) ⊆ T i

�(Π,<)Y
∅. This also means body−(r)∩

Y = ∅. By the induction assumption, body+(r) ∈ Cn(ΠX). Together with body−(r)∩
X = ∅, we have r ∈ ΠX and thus head (r) ∈ Cn(ΠX). Therefore, X = Cn(ΠX).

P2 X is <W-preserving: Since Y is a standard answer set of TW(Π, <), there is a grounded
enumeration 〈sk〉k∈K Induction of ΓTW(Π)Y . Define 〈ri〉i∈I as the enumeration obtained
from 〈sk〉k∈K by

• deleting all rules apart from those of form a2(r), b1(r, L
+), b2(r, L

−);
• replacing each rule of form a2(r), b1(r, L

+), b2(r, L
−) by r;

• removing duplicates9 by increasing i.

for r ∈ Π and L+ ∈ body+(r), L− ∈ body−(r).

9 Duplicates can only occur if a rule is blocked in multiple ways.
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We justify that the sequence 〈ri〉i∈I satisfies the conditions in Definition 8:

1. Since 〈sk〉k∈K is grounded, Condition 1 is satisfied.
2. If ri < rj , we want to show j < i. Since rdy(ni, nj)∈Y , at least one of a2(rj),

b1(rj , L
+), b2(rj , L

−) appears before any of a2(ri), b1(ri, L
+), b2(ri, L

−). Thus, j < i.
3. Let ri < r′ and r′ ∈ Π \ ΓΠX. Suppose that body+(r)⊆X and head (r) �∈
{head (rk) | k < i}. Since body−(r) ∩ X �= ∅, there is some L− ∈ body−(r) s. t.
L− ∈X. Then L− ∈Y . Without loss of generality, let L− is included in Y through
rule sk0

. Furthermore, we can assume that there is no k′ < k0 such that sk′ is
before sk0

, head (sk′ ) ∈ body−(r) and head (sk′ ) ∈ X. Since ok(ri) ∈ Y , we have
rdy(ni, nr′ ). This implies, bl(nr′)∈Y and b2(ri, L

−) appears before a2(r) in 〈sk〉k∈K .
Thus, L− ∈ {head (rk) | k < i}. �

Proof 17 See the proof of Theorem 19. �

Proof 18 Similar to Proof 8. �

Proof 19
Throughout the proofs for Theorem 19, the set Xi for any i � 0 is defined as in Definition 9.
By the definition of EX(Π, <), we observe the following facts:

F1 X is a standard answer set of (Π, <) iff X is a standard answer set of EX(Π, <).
F2 X is a <B-preserving answer set of (Π, <) iff X is a <B-preserving answer set of
EX(Π, <).

F3 X is a standard answer set of �B(Π, <) iff X is a standard answer set of �(EX(Π, <)).

Having the above facts, we can assume that (Π, <) = EX(Π, <). Thus, we need only to
prove the following Lemma 7.10 and Lemma 7.14. �

Given a statically ordered logic program (Π, <) and a set X of literals, set Xi =

(TB)i(Π,<),X∅ for i � 0.

Lemma 7.10
Let (Π, <) be a statically ordered logic program overL and let X be an answer set of Π.
Then, the following propositions are equivalent.

1. X is a B-preferred answer set of (Π, <);
2. C′′(ΠX ,<X )(X) = X.

To prove Lemma 7.10, some preparations are in order.

Definition 18
Let (Π, <) = 〈r1, r2, . . . , rn〉 be a totally ordered logic program, where ri+1 < ri for each i,
and let X be a set of literals.

We define

X̄0 = ∅ and for i � 0

X̄i+1 = X̄i ∪




head (ri+1)

∣∣∣∣∣∣∣∣∣∣

(1) ri+1 is active wrt (X,X) and
(2) there is no rule r′ ∈ Π with ri+1 < r′

such that
(a) r′ is active wrt (X, X̄i) and
(b) head (r′) �∈ X̄




Then, D(Π,<)(X) =
⋃

i�0 X̄i if
⋃

i�0 X̄i is consistent. Otherwise, D(Π,<)(X) = Lit.
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If we want to stress that X̄i is for ordering <, we will also write it as X̄
<
i . We assume the

same notation for Xi.

Lemma 7.11
Let (Π, <) be an ordered logic program. X̄i for i � 0 is given as above and Π is prerequisite-
free. Then Xi = X̄ki for some non-decreasing sequence {ki}i�0 with 0 � k1 � · · · �
ki � · · ·.

Proof 7.11
Without loss of generality, assume that X̄0 = · · · = X̄k1

, X̄k1+1 = · · · = X̄k2
, . . . . Then by

a simple induction on i, we can directly prove that

X0 = X̄0, X1 = X̄k1+1, . . . , Xi = X̄ki+1, . . . . �

Lemma 7.12
The conclusion of Lemma 7.10 is correct for ordered logic program (Π, <) if Π is
prerequisite-free and < is total.

Proof 7.12
Since Π is prerequisite-free, we have that ΠX = Π. By Lemma 7.11, it is enough to prove
that X = ∪X̄i iff X = ∪Xi (see Definition 9). For simplicity, we say a rule r is applicable
wrt (X, X̄i) (only in this proof) if r satisfies the conditions in the definition of X̄i+1.

if part If X = ∪X̄i, we want to prove that X = ∪Xi. It suffices to show that X̄i = Xi hold
for all i � 0. We use induction on i � 0:

Base X̄0 = X0 = ∅.
Step Assume that X̄i−1 = Xi−1, we need to show that X̄i = Xi.

1. X̄i ⊆ Xi:
If X̄i = X̄i−1, the inclusion follows from the induction assumption;
If X̄i �= X̄i−1, then ri is applicable wrt (X, X̄i−1).
Thus, ri is not defeated by X by Definition 18.

2. Xi ⊆ X̄i: If Xi = Xi−1, the inclusion follows from the induction assumption; Let
Xi �= Xi−1, that is, head(ri) ∈ Xi. Then we can assert that head(ri) ∈ X̄i.
Otherwise, if head(ri) �∈ X̄i, there will be two possible cases because Π is
prerequisite-free:

• ri is not active wrt (X,X): then there exists a literal l ∈ body−(ri) such that
l ∈ X. On the other hand, since head (ri) ∈ Xi, ri is not defeated by Xi−1 =

X̄i−1, so we have l �∈ X̄i−1. This implies that there exists t � i such that
l ∈ X̄t \ X̄i−1. Thus, l = head(rt) and rt < ri. Notice that ri is active wrt
(X,Xi−1) = (X, X̄i−1) and head(ri) �∈ X, thus ri is active wrt (X, X̄t−1) and
head(ri) �∈ X̄t−1. This implies that ri is a preventer of rt. Therefore, head(rt) �∈
X̄t and so by X = ∪X̄i, head(rt) �∈ X̄, contradiction.

• There is a rule r′ ∈ Π with ri < r′ such that r′ is active wrt (X, X̄i−1) and
head (r′) �∈ X. Since there are only a finite number of rules in Π which are
preferred over ri, so this case is impossible.

Combining the two cases, we have Xi+1 ⊆ X̄i+1. Thus, Xi = X̄i for all i � 0.
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only-if part Suppose that X = ∪Xi and X is an answer set of Π, we want to prove that

X = ∪X̄i :

1. We prove X̄i ⊆ X by using induction on i.

Base X̄0 = ∅ ⊆ X.
Step Assume that X̄i ⊆ X. If head(ri+1) ∈ X̄i+1, then ri+1 is not defeated by X and

thus not defeated by Xi. Thus head(ri+1) ∈ Xi+1.

2. X ⊆ ∪X̄i: it is sufficient to show that Xi ⊆ X̄i by using induction on i.

Base X0 = ∅ = X̄0.
Step Assume that Xk ⊆ X̄k for k � i, then we claim that X̄i = Xi. On the contrary,

assume that head(ri+1) ∈ Xi+1 \ X̄i+1. From X = ∪ Xi, we have head(ri+1)∈X.
Notice that X is an answer set of Π, so we can further assume that ri+1 is active
wrt (X,X). Therefore, head(ri+1) �∈ X̄i+1 implies that there is a number t �
i such that rt is active wrt (X, X̄i) but head(rt) �∈ X̄i. Thus, rt is active wrt
(X,Xt−1) by induction. This forces head(rt) ∈ X and rt is not active wrt (X,X),
contradiction. �

Lemma 7.13
The conclusion of Lemma 7.10 is correct for ordered logic program (Π, <) if Π is
prerequisite-free and < is a partial ordering.

Proof 7.13
if part Suppose that X is an answer set of Π and X = ∪X̄<

i .
Let <t be any total ordering on Π satisfying the following three conditions:

1. If r < r′ then r <t r
′; and

2. If r and r′ are unrelated wrt < two rules and they are applied in producing X̄i and X̄j

respectively (i < j), then r′ <t r.
3. If

• r is active wrt (X,X) and
• r′ is active wrt (X, X̄i) with head(r′) �∈ X̄i for some i and
• r and r′ are unrelated wrt <,

then r′ <t r.

Notice that the above total ordering <t exists. We want to prove that X = ∪X̄<t

i . By the
condition (3) above, there will be no new preventer in (Π, <t) for any rule r though there
may be more rules that are preferred than r. Thus, ∪X̄<t

i = ∪X̄<
i . That is, X = ∪X̄<t

i .
Since <t is a total ordering, X = ∪X<t

i . Therefore, X is a BE-preferred answer set of
(Π, <).

only-if part Suppose that X is a BE-preferred answer set of (Π, <), then there is a total
ordering <t such that X = ∪X<t

i . By Lemma 15, X = ∪X̄<t

i . We want to prove that
∪X̄<t

i = ∪X̄<
i : On the contrary, assume that this is not true. Then ∪X̄<t

i ⊂ ∪X̄
<
i . That is,

there is a rule r ∈ Π such that head(r) �∈ ∪X̄<t

i = X but r is active wrt (X,X). On the
other hand, since X is an answer set of Π, head(r) ∈ X, contradiction. Therefore, X =

∪X̄<
i . �
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Proof 7.10
If Π is transformed into EX(Π), then Π may be performed two kinds of transformations:

1. Deleting every rule having prerequisite l such that l ∈ X: this kind of rule can be
neither active wrt (X,X) nor a preventer of another rule because it is not active wrt
(X, X̄i) for any i � 0.

2. Removing from each remaining rule r all prerequisites.

Suppose that r is changed into r′ by this transformation. Then

• r is active wrt (X,X) iff r′ is active wrt (X,X);
• r is a preventer in (Π, <) iff r′ is a preventer in EX(Π), <).

By Lemma 7.13, Lemma 7.10 is proven. �

Lemma 7.14
Let (Π, <) be a statically ordered logic program overL and let X be an answer set of Π.
Then X satisfies the Brewka/Eiter criterion for Π (or equivalently for EX(Π)) according
to (Brewka and Eiter, 1999) if and only if X is a <B-preserving answer set of Π.

To prove this theorem, the following result given in (Brewka and Eiter, 1999) is required.

Lemma 7.15
Let (Π, <) be a statically ordered logic program overL and let X be an answer set of Π.
Then X is a B-preferred answer set if and only if, for each rule r ∈ Π with body+(r) ⊆ X

and head(r) �∈ X, there is a rule r′ ∈ ΓΠX such that r < r′ and head(r′) ∈ body−(r).

Proof 7.14
if part Let X be a <B-preserving answer set of Π.

Assume that X is not a B-preferred answer set, by Lemma 7.15, then there is a rule
r ∈ Π such that the followings hold:

1. body+(r) ⊆ X;
2. head(r) �∈ X and
3. For any rule r′ ∈ ΓΠX with r < r′, head(r′) does not defeat r.

Then, head(r′) �∈ body−(r). Thus r′ ∈ Π \ ΓΠX. This contradict to the Condition 2 in
Definition 15. Therefore, X is a B-preferred answer set of Π.

only-if part Suppose that X is a B-preferred answer set of Π. Then X is also a B-preferred
answer set of (Π, <′) where <′ is a total ordering and compatible with <. Notice that the
ordering <′ actually determines an enumeration 〈ri〉i∈I of ΓΠX such that ri <′ rj if j < i.
Thus, this enumeration of ΓΠX obviously satisfies the condition 1 in Definition 15.

We prove the Condition 2 is also be satisfied. Let ri < r′ and r′ ∈ Π \ ΓΠX. Suppose
that body+(r′) ⊆ X and head(r′) �∈ X. By Lemma 7.15, there is a rule rj ∈ ΓΠX such that
r′ < rj and head(rj) ∈ body−(r′). Thus, the Condition 2 is satisfied. �

Proof 20
Under the assumption of the theorem, we can see that TD

(Π,<),Y X = TW
(Π,<),Y X for any

sets X and Y of literals, which implies CD
(Π,<)(X) = CW

(Π,<)(X) for any set X of literals.
Thus, the conclusion is obtained by Theorem 14. �
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Proof 21
By comparing Condition II(b) in Definition 1 and 6, we get

TD
(Π,<),Y X ⊆ (TB)(Π,<),Y X.

This means CD
(Π,<)(X) ⊆ C(Π,<)(X). If X is a D-preferred answer set of (Π, <), it follows

from Theorem 14 that CD
(Π,<)(X) = X. Thus, X ⊆ C(Π,<)(X). On the other hand, since

a D-preferred answer set is also a standard answer set, we have C(Π,<)(X) ⊆ CΠX = X.

Therefore, X = C(Π,<)(X). �

Proof 22
By comparing Condition I in Definition 1 and 13, we get

(TB)(Π,<),Y X ⊆ TB
(Π,<),Y X.

This means C(Π,<)(X) ⊆ CB
(Π,<)(X). If X is a W-preferred answer set of (Π, <), then

X = C(Π,<)(X). Thus, X ⊆ CB
(Π,<)(X). On the other hand, since X is also a standard

answer set, we have CB
(Π,<)(X) ⊆ CΠX = X. Therefore, X = C(Π,<)(X). �

Proof 23 It follows directly from Theorem 21 and 22. �

Proof 24
By Theorem 13, the ordered program (Π, <s) has the unique D-preferred answer set X�.
Since < ⊆ <s, X� is also a D-preferred answer set of (Π, <). On the other hand, each
stratified logic program has the unique answer set (the perfect model), ie.AS(Π) = {X�}.
By Theorem 23, we arrive at the conclusion of Theorem 24. �
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