
ar
X

iv
:c

s/
03

07
02

2v
2

 [
cs

.P
L

]
 2

0
Fe

b
20

04

Under consideration for publication in Theory and Practice of Logic Programming 1

Transformations of Logic Programs

with Goals as Arguments

ALBERTO PETTOROSSI

Dipartimento di Informatica, Sistemi e Produzione,

Università di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy

(e-mail: alberto.pettorossi@uniroma2.it)

MAURIZIO PROIETTI

IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

(e-mail: proietti@iasi.rm.cnr.it)

Abstract

We consider a simple extension of logic programming where variables may range over goals
and goals may be arguments of predicates. In this language we can write logic programs
which use goals as data. We give practical evidence that, by exploiting this capability
when transforming programs, we can improve program efficiency.

We propose a set of program transformation rules which extend the familiar unfolding
and folding rules and allow us to manipulate clauses with goals which occur as argu-
ments of predicates. In order to prove the correctness of these transformation rules, we
formally define the operational semantics of our extended logic programming language.
This semantics is a simple variant of LD-resolution. When suitable conditions are satisfied
this semantics agrees with LD-resolution and, thus, the programs written in our extended
language can be run by ordinary Prolog systems.

Our transformation rules are shown to preserve the operational semantics and termi-
nation.

KEYWORDS: program transformation, unfold/fold transformation rules, higher order
logic programming, continuations

1 Introduction

Program transformation is a very powerful and widely recognized methodology

for deriving programs from specifications. The rules+ strategies approach to pro-

gram transformation was advocated in the 1970s by Burstall and Darlington (1977)

for developing first order functional programs. Since then Burstall and Darlington’s

approach has been followed in a variety of language paradigms, including logical lan-

guages (Tamaki and Sato 1984) and higher order functional languages (Sands 1996).

The distinctive feature of the rules+strategies approach is that it allows us to sepa-

rate the concern of proving the correctness of programs with respect to specifications

from the concern of achieving computational efficiency. Indeed, the correctness of

the derived programs is ensured by the use of semantics preserving transformation

rules, whereas the computational efficiency is achieved through the use of suitable

http://arxiv.org/abs/cs/0307022v2

2 A. Pettorossi and M. Proietti

strategies which guide the application of the rules. The preservation of the seman-

tics is proved once and for all, for some given sets of transformation rules, and

if we restrict ourselves to suitable classes of programs, we can also guarantee the

effectiveness of the strategies for improving efficiency.

In this paper we will argue through some examples, that a simple extension of

logic programming may give extra power to the program transformation method-

ology based on rules and strategies. This extension consists in allowing the use of

variables which range over goals, called goal variables, and the use of goals which

are arguments of predicates, called goal arguments.

In the practice of logic programming the idea of having goal variables and goal ar-

guments is not novel. The reader may look, for instance, at (Sterling and Shapiro 1986;

Warren 1982). Goal variables and goal arguments can be used for expressing the

meaning of logical connectives and for writing programs in a continuation passing

style (Tarau and Boyer 1990; Wand 1980) as the following example shows.

Example 1

The following program P1:

F ∨G ← F

F ∨G ← G

expresses the meaning of the or connective. The following program P2:

p([], Cont)← Cont

p([X |Xs], Cont)← p(Xs , q(X , Cont))

q(0, Cont)← Cont

uses the goal variable Cont which denotes a continuation. The goal p(l , true) suc-

ceeds in P2 iff the list l consists of 0’s only. �

Programs with goal variables and goal arguments, such as P1 and P2 in the above

example, are not allowed by the usual first order syntax of Horn clauses, where

variables cannot occur as atoms and predicate symbols are distinct from function

symbols. Nevertheless, these programs can be run by ordinary Prolog systems whose

operational semantics is based on LD-resolution, that is, SLD-resolution with the

leftmost selection rule. For the concepts of LD-resolution, LD-derivation, and LD-

tree the reader may refer to (Apt 1997)

The extension of logic programming we consider in this paper, allows us to write

programs which use goals as data. This extension turns out to be useful for per-

forming program manipulations which are required during program transformation

and are otherwise impossible. For instance, we will see that by using goal vari-

ables and goal arguments, we are able to perform goal rearrangements (also called

goal reorderings in (Bossi et al. 1996)) which are often required for folding, without

affecting program termination and without increasing nondeterminism.

Goal rearrangement is a long standing issue in logic program transformation.

Indeed, although the unfold/fold transformation rules by Tamaki and Sato (1984)

preserve the least Herbrand model, they may require goal rearrangements and thus,

they may not preserve the operational semantics based on LD-resolution. Moreover,

goal rearrangements may increase nondeterminism by requiring that predicate calls

Transformations of Logic Programs with Goals as Arguments 3

have to be evaluated before their arguments are sufficiently instantiated, and in

many Prolog systems, insufficiently instantiated calls of built-in predicates may

cause errors at run-time. In (Bossi and Cocco 1994) it has been proved that by rul-

ing out goal rearrangements, if some suitable conditions hold, then the unfolding,

folding, and goal replacement transformation rules preserve the operational seman-

tics of logic programs based on LD-resolution and, in particular, these rules pre-

serve universal termination, that is, the finiteness of all LD-derivations (Apt 1997;

Vasak and Potter 1986). But, unfortunately, if we forbid goal rearrangements, many

useful program transformations are no longer possible.

In this paper we will show through some examples that in our simple extension

of logic programming we can restrict goal rearrangements to leftward moves of goal

equalities. We will also show that these moves preserve universal termination and

do not increase nondeterminism, and thus, the deterioration of performance of the

derived program is avoided.

The following simple example illustrates the essential idea of our technique which

is based on the use of goal equalities. More complex examples will be presented in

Sections 2 and 7.

Example 2

Suppose that during program transformation we are required to fold a clause of the

form:

1. p(X)← a(X), b(X), c(X)

by using a clause of the form:

2. q(X)← a(X), c(X)

We can avoid a leftward move of the atom c(X) by introducing, instead, an equality

between a goal variable and a goal, thereby transforming clause 1 into the following

clause:

3. p(X)← a(X), G=c(X), b(X), G

Now we introduce the following predicate q ′ which takes the goal variable G as an

argument:

4. q ′(X ,G)← a(X), G=c(X)

Then we fold clause 3 using clause 4, thereby getting the clause:

5. p(X)← q ′(X ,G), b(X), G

At this point we may continue the program transformation process by transforming

clause 4, which defines the predicate q ′, instead of clause 2, which defines the

predicate q. For instance, we may want to unfold clause 4 w.r.t. the goal c(X)

occurring as an argument of the equality predicate. �

As this example indicates, during program transformation we need to have at our

disposal some transformation rules which can be used when goals occur as argu-

ments. Indeed, in this paper:

(i) we will introduce transformation rules for our logic language which allows goals

as arguments,

4 A. Pettorossi and M. Proietti

(ii) we will show through some examples that the use of these rules makes it pos-

sible to improve efficiency without performing goal rearrangements which increase

nondeterminism, and

(iii) we will prove that, under suitable conditions, our transformation rules are cor-

rect in the sense that they preserve the operational semantics of our logic language

and, in particular, they preserve universal termination.

In order to show our correctness result, we will first define the operational seman-

tics of our logic language with goal arguments and goal variables. This semantics

will be given in terms of ordinary LD-resolution, except for the following two im-

portant cases which we now examine.

The first case occurs when, during the construction of an LD-derivation, we

generate a goal which has an occurrence of an unbound goal variable in the leftmost

position. In this case we say that the LD-derivation gets stuck. This treatment of

unbound goal variables is in accordance with that of most Prolog systems which

halt with error when trying to evaluate a call consisting of an unbound variable.

The second case occurs when we evaluate a goal equality of the form: g1=g2. In

this case we stipulate that g1= g2 succeeds iff g1 is a goal variable which does not

occur in g2 and it gets stuck otherwise. (In particular, for any goal g the evaluation

of the equality g = g gets stuck.) This somewhat restricted rule for the evaluation

of goal equalities is required for the correctness of our transformation rules, as the

following example shows.

Example 3

Let us consider the program Q1:

1. h ← p(q)

2. p(G)← G=q

3. q ← s

where h, p, q, and s are predicate symbols and G is a goal variable. If we unfold

the goal argument q in clause 1 using clause 3, we get the clause:

4. h ← p(s)

and we have the new programQ2 made out of clauses 2, 3, and 4. By using ordinary

LD-resolution and unification, the goal h succeeds in the original programQ1, while

it fails in the derived program Q2, because s does not unify with q. �

This example shows that the set of successes is not preserved by unfolding w.r.t. a

goal argument. Similar incorrectness problems also arise with other transformation

rules, such as folding and goal replacement. These problems come from the fact

that operationally equivalent goals (such as q and s in the above example) are not

syntactically equal.

In contrast, if we consider our restricted rule for the evaluation of goal equalities,

the LD-derivation which starts from the goal h and uses the programQ1, gets stuck

when the goal q= q is selected. Also the LD-derivation which starts from the goal

h and uses the derived program Q2, gets stuck when the goal s = q is selected.

Thus, the unfolding w.r.t. the argument q has preserved the operational semantics

based on LD-resolution with our restricted rule for evaluating goal equalities.

Transformations of Logic Programs with Goals as Arguments 5

In this paper we will consider two forms of correctness for our program trans-

formations: weak correctness and strong correctness. Suppose that we have trans-

formed a program P1 into a program P2 by applying our transformation rules. We

say that this transformation is weakly correct iff, for any ordinary goal, that is, a

goal without occurrences of goal variables and goal arguments, the following two

properties hold: (i) if P1 universally terminates, then P2 universally terminates,

and (ii) if both P1 and P2 universally terminate, then they compute the same set

of most general answer substitutions. The transformation from P1 to P2 is strongly

correct iff (i) it is weakly correct, and (ii) for any ordinary goal, if P2 universally

terminates, then P1 universally terminates.

Thus, when a transformation is weakly correct, the transformed program may

be more defined than the original program in the sense that there may be some

goals which have no semantic value in the original program (that is, either their

evaluation does not terminate or it gets stuck), whereas they have a semantic value

in the transformed program (that is, their evaluation terminates and it does not

get stuck).

This paper is organized as follows. In Section 2 we present an introductory ex-

ample to motivate the language extension we will propose in this paper, and the

transformation rules for this extended language. In Section 3 we give the definition

of the syntax of our extended logic language with goal variables and goal arguments.

In Section 4 we introduce the operational semantics of our extended language.

In Sections 5 and 6 we present the transformation rules and the conditions under

which these rules are either weakly correct or strongly correct. For this purpose it

is crucial that we assume that: (i) the evaluation of any goal variable gets stuck if

that variable is unbound, and (ii) the evaluation of goal equalities is done according

to the restricted rule we mentioned above. We will also show that, if a goal does

not get stuck in a program, and we transform this program by using our rules,

then the given goal does not get stuck in the transformed program. In this case,

as it happens in the examples given in this paper, our operational semantics agrees

with LD-resolution, and we can execute our transformed program by using ordinary

Prolog systems.

In Section 7 we give some more examples of program transformation using our

extended logic language and our transformation rules. We also give practical evi-

dence that these transformations improve program efficiency. In Section 8 we make

some final remarks and we compare our results with related work.

2 A Motivating Example

In order to present an example which motivates the introduction of goal variables

and goal arguments, we begin by recalling a well-known program transformation

strategy, called tupling strategy (Pettorossi and Proietti 1994). Given a program

where some predicate calls require common subcomputations (detected by a suitable

program analysis), the tupling strategy is realized by the following three steps.

6 A. Pettorossi and M. Proietti

The Tupling Strategy

(Step A) We introduce a new predicate defined by a clause, say T , whose body is

the conjunction of the predicate calls with common subcomputations.

(Step B) We derive a program for the newly defined predicate which avoids redun-

dant common subcomputations. This step can be divided into the following three

substeps: (B.1) first, we unfold clause T , (B.2) then, we apply the goal replacement

rule to avoid redundant goals, and (B.3) finally, we fold using clause T .

(Step C) By suitable folding steps using clause T , we express the predicates which

are inefficiently computed by the initial program, in terms of the predicate intro-

duced at Step (A).

A difficulty encountered when applying the tupling strategy is that, in order to apply

the folding rule as indicated at Steps (B) and (C), it is often necessary to rearrange

the atoms in the body of the clauses and, as already discussed in the Introduction,

these rearrangements may affect program termination or increase nondeterminism.

The following example shows that this difficulty in the application of the tupling

strategy can be overcome by introducing goal variables and goal arguments.

Example 4

Let us consider the following program Deepest:

1. deepest(l(N),N)←

2. deepest(t(L,R),X) ← depth(L,DL), depth(R,DR), DL ≥ DR,

deepest(L,X)

3. deepest(t(L,R),X) ← depth(L,DL), depth(R,DR), DL ≤ DR,

deepest(R,X)

4. depth(l(N), 1)←

5. depth(t(L,R),D) ← depth(L,DL), depth(R,DR), max (DL,DR,M),

plus(M , 1,D)

where deepest(T ,X) holds iff T is a binary tree and X is the label of one

of the deepest leaves of T . The two calls depth(L,DL) and deepest(L,X) in

clause 2 may generate common redundant calls of the depth predicate. Indeed,

both depth(t(L1,R1),N) and deepest(t(L1,R1),X) generate two calls of the form

depth(L1,DL) and depth(R1,DR). In accordance with the tupling strategy, we

transform the given program as follows.

(Step A) We introduce the following new predicate:

6. dd(T ,D ,X)← depth(T ,D), deepest(T ,X)

(Step B.1) We apply a few times the unfolding rule, and we derive:

7. dd(l(N), 1,N)←

8. dd(t(L,R),D ,X)← depth(L,DL), depth(R,DR),

max (DL,DR,M), plus(M , 1,D),

depth(L,DL1), depth(R,DR1),

DL1 ≥ DR1, deepest(L,X)

Transformations of Logic Programs with Goals as Arguments 7

9. dd(t(L,R),D ,X)← depth(L,DL), depth(R,DR),

max (DL,DR,M), plus(M , 1,D),

depth(L,DL1), depth(R,DR1),

DL1 ≤ DR1, deepest(R,X)

(Step B.2) Since depth is functional with respect to its first argument, by applying

the goal replacement rule we delete the atoms depth(L,DL1) and depth(R,DR1),

in clauses 8 and 9, and we replace the occurrences of DL1 and DR1 by DL and DR,

respectively, thereby getting the following clauses 10 and 11:

10. dd(t(L,R),D ,X) ← depth(L,DL), depth(R,DR), max(DL,DR,M),

plus(M , 1,D), DL ≥ DR, deepest(L,X)

11. dd(t(L,R),D ,X) ← depth(L,DL), depth(R,DR), max(DL,DR,M),

plus(M , 1,D), DL ≤ DR, deepest(R,X)

(Step B.3) In order to fold clause 10 using clause 6, we move deepest(L,X) imme-

diately to the right of depth(L,DL). Similarly, in the body of clause 11 we move

deepest(R,X) immediately to the right of depth(R,DR). Then, by folding we derive:

12. dd(t(L,R),D ,X) ← dd(L,DL,X), depth(R,DR), max (DL,DR,M),

plus(M , 1,D), DL ≥ DR

13. dd(t(L,R),D ,X) ← depth(L,DL), dd(R,DR,X), max (DL,DR,M),

plus(M , 1,D), DL ≤ DR

(Step C) Finally, we fold clauses 2 and 3 using clause 6, so that to evaluate the

predicates depth and deepest we use the predicate dd , instead. Also for these folding

steps we have to suitably rearrange the order of the atoms. By folding, we derive

the following program Deepest1:

1. deepest(l(N),N)←

14. deepest(t(L,R),D ,X) ← dd(L,DL,X), depth(R,DR), DL ≥ DR

15. deepest(t(L,R),D ,X) ← depth(L,DL), dd(R,DR,X), DL ≤ DR

7. dd(l(N), 1,N)←

12. dd(t(L,R),D ,X) ← dd(L,DL,X), depth(R,DR), max (DL,DR,M),

plus(M , 1,D), DL ≥ DR

13. dd(t(L,R),D ,X) ← depth(L,DL), dd(R,DR,X), max (DL,DR,M),

plus(M , 1,D), DL ≤ DR

In order to evaluate a goal of the form deepest(t ,X), where t is a ground tree and

X is a variable, we may construct an LD-derivation using the program Deepest1

which does not generate redundant calls of depth . This LD-derivation performs

only one traversal of the tree t and has linear length with respect to the size

of t . However, this LD-derivation is constructed in a nondeterministic way, and if

the corresponding LD-tree is traversed in a depth-first manner, like most Prolog

systems do, the program exhibits an inefficient generate-and-test behaviour. Thus,

in practice, the tupling strategy may diminish program efficiency.

The main reason of this decrease of efficiency is that, in order to fold clause 10,

we had to move the atom deepest(L,X) to a position to the left of DL ≥ DR, and

this move forces the evaluation of calls of deepest(L,X) even when DL ≥ DR fails.

(Notice that the move of deepest(R,X) to the left of DL ≤ DR is harmless because

8 A. Pettorossi and M. Proietti

DL ≤ DR is evaluated after the failure of DL ≥ DR and, thus, DL ≤ DR never

fails.) �

In the following example we will present an alternative program derivation which

starts from the same initial program Deepest. In this alternative derivation we will

use our extended logic language which will be formally defined in the following

Section 3. As already mentioned in the Introduction, when writing programs in our

extended language, we may use: (i) the goal equality predicate =, (ii) goal variables

occurring at top level in the body of a clause, and (iii) the disjunction predicate

∨. This alternative program derivation avoids harmful goal rearrangements and

produces an efficient program without redundant subcomputations.

Example 5

Let us consider the program Deepest listed at the beginning of Example 4 consisting

of clauses 1–5. By using disjunction in the body of a clause, clauses 2 and 3 can be

rewritten as follows:

16. deepest(t(L,R),X) ← depth(L,DL), depth(R,DR),

((DL≥DR, deepest(L,X)) ∨ (DL≤DR, deepest(R,X)))

After this initial transformation step the derived program, call it DeepestOr, consists

of clauses 1, 4, 5, and 16.

Now we consider an extension of the tupling strategy which makes use of the

transformation rules for logic programs with goal arguments and goal variables.

These rules will be formally presented in Section 5. We proceed as follows.

(Step A) We introduce the following new predicate g which takes a goal variable G

as an argument:

17. g(T ,D ,X ,G)← depth(T ,D), G=deepest(T ,X)

Notice also that in clause 17 the goal deepest(T ,X) occurs as an argument of the

equality predicate.

(Step B) We derive a set of clauses for the newly defined predicate g as follows.

(Step B.1) We unfold clause 17 w.r.t. depth(T ,D) and we derive:

18. g(l(N), 1,X ,G)← G=deepest(l(N),X)

19. g(t(L,R),D ,X ,G) ← depth(L,DL), depth(R,DR), max (DL,DR,M),

plus(M , 1,D), G=deepest(t(L,R),X)

Now, by unfolding clauses 18 and 19 w.r.t. the atoms with the deepest predicate,

we derive:

20. g(l(N), 1,N , true)←

21. g(t(L,R),D ,X ,G) ← depth(L,DL), depth(R,DR),

max (DL,DR,M), plus(M , 1,D),

G=(depth(L,DL1), depth(R,DR1),

((DL1≥DR1, deepest(L,X)) ∨ (DL1≤DR1, deepest(R,X))))

(Step B.2) We perform two goal replacement steps based on the functionality of

depth, and from clause 21 we derive:

Transformations of Logic Programs with Goals as Arguments 9

22. g(t(L,R),D ,X ,G) ← depth(L,DL), depth(R,DR),

max (DL,DR,M), plus(M , 1,D),

G=((DL≥DR, deepest(L,X)) ∨ (DL≤DR, deepest(R,X)))

(Step B.3) In order to fold clause 22 using clause 17, we first introduce goal equalities

and we then perform suitable leftward moves of those goal equalities. We derive the

following clause:

23. g(t(L,R),D ,X ,G) ← depth(L,DL), GL=deepest(L,X),

depth(R,DR), GR=deepest(R,X),

max (DL,DR,M), plus(M , 1,D),

G=((DL≥DR,GL) ∨ (DL≤DR,GR))

Notice that we can move the goal equality GL = deepest(L,X) to the left of the

test DL≥DR without altering the operational semantics of our program. Indeed,

this goal equality succeeds and binds the goal variable GL to the goal deepest(L,X)

without evaluating it. The goal deepest(L,X) will be evaluated only when GL is

called. A similar remark holds for the goal equality GR= deepest(L,X). Now, by

folding twice clause 23 using clause 17, we get:

24. g(t(L,R),D ,X ,G)← g(L,DL,X ,GL), g(R,DR,X ,GR),

max (DL,DR,M), plus(M , 1,D),

G=((DL≥DR,GL) ∨ (DL≤DR,GR))

(Step C) Now we express the predicate deepest in terms of the new predicate g by

transforming clause 16 as follows: (i) we first replace the two deepest atoms by the

goal variables GL and GR, (ii) we then introduce suitable goal equalities, (iii) we

then suitably move to the left the goal equalities, and (iv) we finally fold using

clause 17. We derive the following clause:

25. deepest(t(L,R),X)← g(L,DL,X ,GL), g(R,DR,X ,GR),

((DL≥DR,GL) ∨ (DL≤DR,GR))

Our final program Deepest2 is as follows:

1. deepest(l(N),N)←

25. deepest(t(L,R),X)← g(L,DL,X ,GL), g(R,DR,X ,GR),

((DL≥DR,GL) ∨ (DL≤DR,GR))

20. g(l(N), 1,N , true)←

24. g(t(L,R),D ,X ,G)←

g(L,DL,X ,GL), g(R,DR,X ,GR),

max (DL,DR,M), plus(M , 1,D),

G=((DL≥DR,GL) ∨ (DL≤DR,GR))

Now, when we evaluate a goal of the form deepest(t ,X), where t is a ground tree

and X is a variable, Deepest2 does not generate redundant calls and it performs

only one traversal of the tree t . Deepest2 is more efficient than Deepest because in

the worst case Deepest2 performs O(n) LD-resolution steps to compute an answer

to deepest(t ,X), where n is the number of nodes of t , while the initial program

Deepest takes O(n2) LD-resolution steps. The program Deepest2 can be run by an

ordinary Prolog system and computer experiments confirm substantial efficiency

improvements with respect to the initial program Deepest (see Section 7.6).

10 A. Pettorossi and M. Proietti

Efficiency improvements, although smaller, are obtained also when comparing

the final program Deepest2 with respect to the intermediate program DeepestOr

which has been obtained from the initial program Deepest by replacing clauses 2

and 3 by clause 16, thereby avoiding the repetition of the common goals in clauses 2

and 3. Indeed, although more efficient than Deepest in the worst case, the program

DeepestOr still takes a quadratic number of LD-resolution steps to compute an

answer to deepest(t ,X). �

In Section 7 we will present more examples of program derivation and we will also

provide some experimental results.

3 The Extended Logic Language with Goals as Arguments

Let us now formally define our extended logic language. Suppose that the following

pairwise disjoint sets are given: (i) individual variables: X ,X1,X2, . . . , (ii) goal vari-

ables: G,G1,G2, . . . , (iii) function symbols (with arity): f , f1, f2, . . . , (iv) primitive

predicate symbols: true, false, =t (denoting equality between terms), =g (denot-

ing equality between goals), and (v) predicate symbols (with arity): p, p1, p2, . . .

Individual and goal variables are collectively called variables, and they are ranged

over by V ,V1,V2, . . . Occasionally, we will feel free to depart from these naming

conventions, if no confusion arises.

Terms : t , t1, t2, . . ., goals : g, g1, g2, . . ., and arguments : u, u1, u2, . . ., have the follow-

ing syntax:

t ::= X | f (t1, . . . , tn)

g ::= G | true | false | t1=t t2 | g1=g g2 | p(u1, . . . , um) | g1 ∧ g2 | g1 ∨ g2

u ::= t | g

The binary operators ∧ (conjunction) and ∨ (disjunction) are assumed to be as-

sociative with neutral elements true and false, respectively. Thus, a goal g is the

same as true ∧ g and g ∧ true. Similarly, g is the same as false ∨ g and g ∨ false.

Goals of the form p(u1, . . . , um) are also called atoms. In the sequel, for reasons of

simplicity, we will write =, instead of =t or =g , and we leave it to the reader to

distinguish between the two equalities according to the context of use. Notice that,

according to our operational semantics (see Section 4), ∨ is commutative, ∧ is not

commutative, =t is symmetric, and =g is not symmetric.

Clauses c, c1, c2, . . . have the following syntax:

c ::= p(V1, . . . ,Vm)← g

where p is a non-primitive predicate symbol and V1, . . . ,Vm are distinct variables.

The atom p(V1, . . . ,Vm) is called the head of the clause and the goal g is called the

body of the clause. A clause of the form: p(V1, . . . ,Vm)← true will also be written

as p(V1, . . . ,Vm)←.

Programs P ,P1,P2, . . . are sets of clauses of the form:

p1(V1, . . . ,Vm1)← g1
...

pk (V1, . . . ,Vmk)← gk

Transformations of Logic Programs with Goals as Arguments 11

where p1, . . . , pk are distinct non-primitive predicate symbols, and every non-

primitive predicate symbol occurring in {g1, . . . , gk} is an element of {p1, . . . , pk}.

Each clause head has distinct variables as arguments. Given a program P and

a non-primitive predicate p occurring in P , the unique clause in P of the form

p(V1, . . . ,Vm)← g, is called the definition of p in P . We say that a predicate p is

defined in a program P iff p has a definition in P .

An ordinary goal is a goal without goal variables or goal arguments. Formally, an

ordinary goal has the following syntax:

g ::= true | false | t1=t t2 | p(t1, . . . , tm) | g1 ∧ g2 | g1 ∨ g2

where t1, t2, . . . , tm are terms. Ordinary programs are programs whose goals are

ordinary goals.

Notes on syntax.

(1) When no confusion arises, we also use comma, instead of ∧, for denoting con-

junction.

(2) The assumption that in our programs clause heads have only variables as argu-

ments is not restrictive, because we may always replace a non-variable argument,

say u, by a variable argument, say V , in the head of a clause, at the expense of

adding the extra equality V =u in the body.

(3) The assumption that in every program there exists at most one clause for each

predicate symbol is not restrictive, because one may use disjunctions in the body

of clauses. In particular, every definite logic program written by using the familiar

syntax (Lloyd 1987), can be rewritten into an equivalent program of our language

by suitable introductions of equalities and ∨ operators in the bodies of clauses.

(4) Our logic language is a typed language in the sense that: (i) every indi-

vidual variable has type term, (ii) every function symbol of arity n has type

termn → term, (iii) true, false, and every goal variable have type bool , (iv.1) =t
has type term × term → bool , (iv.2) =g has type bool × bool → bool , and (v) every

predicate symbol of arity n has a unique type of the form: (term | bool)n → bool .

We assume that all our programs can be uniquely typed according to the above

rules.

4 The Operational Semantics

In this section we define the operational semantics of our extended logic language.

We choose a syntax-directed style of presentation which makes use of deduction

rules. For an elementary presentation of this technique, sometimes called structural

operational semantics or natural semantics, the reader may refer to (Winskel 1993).

Before defining the semantics of our logic language, we recall the following no-

tions. By {V1/u1, . . . ,Vm/um} we denote the substitution of u1, . . . , um for the

variables V1, . . . ,Vm . As usual, we assume that the Vi ’s are all distinct and for

i = 1, . . . ,m, ui is distinct from Vi . By ε we denote the identity substitution. By

ϑ ↾ S we denote the restriction of the substitution ϑ to set S of variables, that

is, ϑ ↾ S = {V/u | V/u ∈ ϑ andV ∈ S}. Given the substitutions ϑ, η1, . . . , ηk , by

ϑ ◦ {η1, . . . , ηk} we denote the set of substitutions {ϑη1, . . . , ϑηk} (where, as usual,

12 A. Pettorossi and M. Proietti

juxtaposition of substitutions denotes composition (Lloyd 1987)). By gϑ we denote

the application of the substitution ϑ to the goal g. By mgu(t1, t2) we denote a

relevant, idempotent, most general unifier of the terms t1 and t2.

The set of all substitutions is denoted by Subst and the set of all finite sub-

sets of Subst is denoted by P(Subst). Given A,B ∈ P(Subst), we say that A

and B are equally general with respect to a goal g iff (i) for every α ∈ A there

exists β ∈ B such that gα is an instance of gβ, and symmetrically, (ii) for ev-

ery β ∈ B there exists α ∈ A such that gβ is an instance of gα. For example,

A = {{X /t}, {X /Y }, {X /Z}} and B = {{X /W }} are equally general with re-

spect to the goal p(X).

Given a set of substitutions A ∈ P(Subst) and a goal g, letmostgen(A, g) denote a

largest subset of {gϑ |ϑ ∈ A} such that for any two goals g1 and g2 inmostgen(A, g),

g1 is not an instance of g2. For example, mostgen({{X /t}, {X /Y}, {X /Z}}, p(X))

= {p(Y)}. Notice that the set denoted by mostgen is not uniquely determined.

However, it can be shown that, whatever choice we make for the set denoted by

mostgen, any two sets of substitutions A and B are equally general with respect

to a goal g iff there exists a bijection ρ from mostgen(A, g) to mostgen(B , g) such

that for any goal h ∈ mostgen(A, g), ρ(h) is a variant of h. In this case we write

mostgen(A, g) ≈ mostgen(B , g).

We use g[u] to denote a goal g in which we have selected an occurrence of its

subconstruct u, where u may be either a term or a goal. By g[] we denote the

goal g[u] without the selected occurrence of its subconstruct u. We say that g[]

is a goal context. For any syntactic construct r , we use vars(r) to denote the set

of variables occurring in r and, for any set {r1, . . . , rm} of syntactic constructs,

we use vars(r1, . . . , rm) to denote the set of variables vars(r1) ∪ . . . ∪ vars(rm). In

particular, given a substitution ϑ, a variable belongs to vars(ϑ) iff it occurs either

in the domain of ϑ or in the range of ϑ. Given two goals g and g1 and a clause c of

the form p(V1, . . . ,Vm) ← g[g1], the local variables of g1 in c are those in the set

vars(g1)− ({V1, . . . ,Vm} ∪ vars(g[])).

Given a program P , we define the semantics of P as a ternary relation P ⊢ g 7→ A,

where g is a goal and A is a finite set of substitutions, meaning that for P and g

all derivations are finite and A is the finite set of answer substitutions which are

computed by these derivations. The relation P ⊢ g 7→ A is defined by the deduction

rules given in Figure 1.

A deduction tree τ for P ⊢ g 7→ A is a tree such that: (i) the root of τ is

P ⊢ g 7→ A, and (ii) for every node n of τ with sons n1, . . . , nk (with k ≥ 0),

there exists an instance of a deduction rule, say r, whose conclusion is n and whose

premises are n1, . . . , nk . We say that n is derived by applying rule r to n1, . . . , nk .

A proof of P ⊢ g 7→ A is a finite deduction tree for P ⊢ g 7→ A where every leaf is

a deduction rule which has no premises.

We say that P ⊢ g 7→ A holds iff there exists a proof of P ⊢ g 7→ A. If P ⊢ g 7→ A

holds and A 6= ∅, then we say that g succeeds in P , written P ⊢ g ↓ true. Otherwise,

if P ⊢ g 7→ ∅ holds, then we say that g fails in P , written P ⊢ g ↓ false . If g

either succeeds or fails in P we say that g terminates in P . We say that a goal g is

stuck iff it is either of the form G ∧ g1, where G is a goal variable, or of the form

Transformations of Logic Programs with Goals as Arguments 13

(tt)
P ⊢ true 7→ {ε}

(ff)
P ⊢ false ∧ g 7→ ∅

(teq1)
P ⊢ (t1= t2) ∧ g 7→ ∅

if t1 and t2 are non-unifiable terms

(teq2)
P ⊢ g mgu(t1, t2) 7→ A

P ⊢ (t1= t2) ∧ g 7→ (mgu(t1, t2)◦A)
if t1 and t2 are unifiable terms

(geq)
P ⊢ g2{G/g1} 7→ A

P ⊢ (G=g1) ∧ g2 7→ ({G/g1}◦A)

if the goal variable G is not in vars(g1)

(at)
P ⊢ g1{V1/u1, . . . ,Vm/um} ∧ g 7→ A

P ⊢ p(u1, . . . , um) ∧ g 7→ A↾S

where p(V1, . . . ,Vm)← g1 is a renamed apart clause of P

and S is vars(p(u1, . . . , um) ∧ g)

(or)
P ⊢ g1 ∧ g 7→ A1 P ⊢ g2 ∧ g 7→ A2

P ⊢ (g1 ∨ g2) ∧ g 7→ (A1 ∪ A2)

Fig. 1. Operational Semantics

(g0=g1)∧g2, where either g0 is a non-variable goal or g0 is a goal variable occurring

in g1. We say that g gets stuck in P iff there exist a set A of substitutions and a

(finite or infinite) deduction tree τ for P ⊢ g 7→ A such that a leaf of τ is of the

form P ⊢ g1 7→ B and g1 is stuck. For instance, the goal (G = p) ∧ (G = q) gets

stuck in any program P . We say that g is safe in P iff g does not get stuck in P .

For every program P and goal g, the three cases: (i) g succeeds in P , (ii) g fails in

P , and (iii) g gets stuck in P , are pairwise mutually exclusive, but not exhaustive.

Indeed, there is a fourth case in which the unique maximal deduction tree with root

P ⊢ g 7→ A is infinite and each of its leaves, if any, is the conclusion of a deduction

rule which has no premises. In this case no A exists such that P ⊢ g 7→ A holds

and g does not get stuck in P .

Notes on semantics.

(1) In our presentation of the deduction rules we have exploited the assumption that

∧ and ∨ are associative operators with neutral elements true and false, respectively.

For instance, we have not introduced the rule
P ⊢ false 7→ ∅

because it is an

instance of rule (ff) for g= true.

(2) Given a program P and a goal g, if there exists a proof for P ⊢ g 7→ A for some

A, then the proof is unique up to isomorphism. More precisely, given two proofs,

say π1 for P ⊢ g 7→ A1 and π2 for P ⊢ g 7→ A2, there exists a bijection ρ from

14 A. Pettorossi and M. Proietti

the nodes of π1 to the nodes of π2 which preserves the application of the deduction

rules and if ρ(P ⊢ g1 7→ B1) = P ⊢ g2 7→ B2 then

(i) g1 is a variant of g2, and

(ii) ∀β1∈B1 ∃β2∈B2 such that g1β1 is a variant of g2β2, and

(iii) ∀β2∈B2 ∃β1∈B1 such that g2β2 is a variant of g1β1.

This property is a consequence of the fact that: (i) for any program P and goal g,

there exists at most one rule instance whose conclusion is of the form P ⊢ g 7→ A

for some A, and (ii) our rules for the operational semantics are deterministic, in the

sense that no choice has to be made when one applies them during the construction

of a proof, apart from the choice of how to compute the most general unifiers and

how to rename apart the clauses.

In particular, any two sets A1 and A2 of answer substitutions for a program

P and a goal g, are related as follows: if P ⊢ g 7→ A1 and P ⊢ g 7→ A2 then

∀α1 ∈A1 ∃α2 ∈A2 gα1 is a variant of gα2 and ∀α2 ∈A2 ∃α1∈ A1 gα2 is a variant

of gα1. Thus, A1 and A2 are equally general with respect to g. The same property

holds also for any two sets of computed answer substitutions which are constructed

by LD-resolution (recall that by LD-resolution we can construct different sets of

computed answer substitutions by choosing different most general unifiers and dif-

ferent variable renamings).

Notice that, if P ⊢ g 7→ A1 and P ⊢ g 7→ A2 hold, then A1 and A2 may

have different cardinality. Indeed, let us consider the program P consisting of the

following clause only:

p(X ,Y ,Z)← (X =Y ∧ Z =Y) ∨ (X =Z ∧ Y =Z)

In this case, since both Z/Y and Y /Z are most general unifiers of Y = Z ,

we have that both P ⊢ p(X ,Y ,Z) 7→ {{X /Y ,Z/Y }, {X /Z ,Y /Z}} and P ⊢

p(X ,Y ,Z) 7→ {{X /Y ,Z/Y }} hold. Notice also that the substitution {X /Y ,Z/Y }

is more general than the substitution {X /Z ,Y /Z} and vice versa.

(3) If P ⊢ g 7→ A and ϑ ∈ A, then the domain of ϑ is a subset of vars(g).

(4) In the presentation of the deduction rules for the ternary relation P ⊢ g 7→ A,

the program P never changes and thus, it could have been omitted. However, the

explicit reference to P is useful for presenting our Correctness Theorem (see The-

orem 2 in Section 6).

(5) We assume that in any relation P ⊢ g 7→ A, the program P and the goal g have

consistent types, that is, the type of every function and predicate symbol should be

the same in P and in g. For instance, if P = {p(G)←} where G is a goal variable,

then P ⊢ p(0) 7→ {ε} does not hold, because in the program P the predicate p has

type bool → bool , while in the goal p(0) the predicate p has type term → bool .

Moreover, for any relation P ⊢ g1 7→ A1 occurring in the proof of P ⊢ g 7→ A, we

have that program P and goal g1 have consistent types.

Now we discuss the relationship between LD-resolution and the operational se-

mantics defined in this section. Apart from the style of presentation (usually LD-

resolution is presented by means of the notions of LD-derivation and LD-tree (Apt 1997;

Lloyd 1987)), LD-resolution differs from our operational semantics only in the treat-

Transformations of Logic Programs with Goals as Arguments 15

ment of goal equality. Indeed, by using LD-resolution, the goal equality g1 = g2 is

evaluated by applying the ordinary unification algorithm also in the case where g1

is not a goal variable or g1 is a goal variable occurring in vars(g2). In contrast,

according to our operational semantics, a goal of the form g1 = g2 is evaluated by

unifying g1 and g2, only if g1 is a variable which does not occur in vars(g2) (see

rule (geq) above).

Thus, if a goal g is safe in P , then the evaluation of g according to our operational

semantics agrees with the one which uses LD-resolution in the following sense: if

g is safe in P , then there exists a set A of answer substitutions such that P ⊢

g 7→ A holds iff: (i) all LD-derivations starting from g and using P are finite

(that is, g universally terminates in P (Apt 1997; Vasak and Potter 1986)), and

(ii) A is the set of the computed answer substitutions obtained by LD-resolution.

Point (i) follows from the fact that in our operational semantics, the evaluation of

a disjunction of goals (see the (or) rule) requires the evaluation of each disjunct.

Thus, in order to compute the relation P ⊢ g 7→ A in the case where g is safe in P ,

we can use any ordinary Prolog system which implements LD-resolution.

Notice that, given a program P and a goal g, if the LD-tree has an infinite LD-

derivation, then no set A of answer substitutions exists such that P ⊢ g 7→ A. In

particular, for the program P = {p(0) ←, p(X) ← p(X)} no A exists such that

P ⊢ p(X) 7→ A, while the set of computed answer substitutions constructed by

LD-resolution for the program P and the goal p(X) is the singleton consisting of

the substitution {X /0} only.

It may also be the case that a goal g is not safe in a program P (thus, there

exists no set A of answer substitutions such that P ⊢ g 7→ A holds) while, by

using LD-resolution, g succeeds or fails in P . For instance, for any program and for

any two distinct nullary predicates p and q, (i) the goal p=p is not safe, while it

succeeds by using LD-resolution and (ii) the goal p=q is not safe, while it fails by

using LD-resolution.

We recall that our interpretation of goal equality is motivated by the fact that

we want the operational semantics to be preserved by program transformations

and, in particular, by unfolding. As already shown in the Introduction, unfortu-

nately, unfolding does not preserve the operational semantics based on ordinary

LD-resolution.

The following Proposition 1 establishes an important property of our operational

semantics. This property is useful for the proof the correctness results in Section 6

(see Theorem 2). The proof of this proposition is similar to the one in the case

of LD-resolution for definite programs (see, for instance, (Lloyd 1987)) and will be

omitted.

Proposition 1

Let P be a program, g be an ordinary goal, and A be a set of substitutions such

that P ⊢ g 7→ A. Then, for all ϑ ∈ Subst , the following hold:

(i) gϑ terminates, that is, either P ⊢ gϑ ↓ true or P ⊢ gϑ ↓ false, and

(ii.1) P ⊢ gϑ ↓ true iff there exists α ∈ A such that gϑ is an instance of gα, and

(ii.2) P ⊢ gϑ ↓ false iff it does not exist α ∈ A such that gϑ is an instance of gα.

16 A. Pettorossi and M. Proietti

Let us conclude this section by introducing the notions of refinement and equivalence

between programs which we will use in Section 6 to state the weak and strong

correctness of the program transformations that can be realized by applying our

transformation rules. These rules are presented in the next section.

Definition 1 (Refinement and Equivalence)

Given two programs P1 and P2, we say that P2 is a refinement of P1, written

P1 ⊑ P2, iff for every ordinary goal g and for every A ∈ P(Subst), if P1 ⊢ g 7→ A

then there exists B ∈ P(Subst) such that:

(1) P2 ⊢ g 7→ B and

(2) A and B are equally general with respect to g.

We say that P1 is equivalent to P2, written P1 ≡ P2, iff P1 ⊑ P2 and P2 ⊑ P1.

Remark 1

Recall that Condition (2) can be written as mostgen(A, g) ≈ mostgen(B , g). In this

sense we will say that if P1 ⊑ P2 and the ordinary goal g terminates in P1, then

the most general answer substitutions for g are the same in P1 and P2, modulo

variable renaming. �

Remark 2

P1 ⊑ P2 implies that, for every ordinary goal g,

- if g succeeds in P1 then g succeeds in P2, and

- if g fails in P1 then g fails in P2. �

Theorem 2 stated in Section 6 shows that, if from program P1 we derive program

P2 by using our transformation rules and suitable conditions hold, then P1 ⊑ P2. In

this case we say that the transformation is weakly correct. If additional conditions

hold, then we may have that P1 ≡ P2 and we say that the transformation is strongly

correct.

In Section 6 we will also show that our transformation rules preserve safety, that

is, if from program P1 we derive program P2 by using the transformation rules and

goal g is safe in P1, then goal g is safe also in P2.

5 The Transformation Rules

In this section we present the transformation rules for our extended logic language.

We assume that starting from an initial program P0 we have constructed the trans-

formation sequence P0, . . . ,Pi (Pettorossi and Proietti 1994; Tamaki and Sato 1984).

By an application of a transformation rule, from program Pi we derive a new pro-

gram Pi+1.

Rule R1 (Definition Introduction)

We derive the new program Pi+1 by adding to program Pi a new clause, called a

definition, of the form:

newp(V1, . . . ,Vm)← g

Transformations of Logic Programs with Goals as Arguments 17

where: (i) newp is a new non-primitive predicate symbol not occurring in any pro-

gram of the sequence P0, . . . ,Pi , (ii) the non-primitive predicate symbols occurring

in g are defined in P0, and (iii) V1, . . . ,Vm are some of (possibly all) the distinct

variables occurring in g.

The set of all definitions introduced during the transformation sequence P0, . . . ,Pi ,

is denoted by Defi . Thus, Def0 = ∅.

Rule R2 (Unfolding)

Let c1: h ← body [p(u1, . . . , um)] be a renamed apart clause in program Pi where

p is a non-primitive predicate symbol. Let d : p(V1, . . . ,Vm) ← g be a clause in

P0 ∪ Defi . By unfolding c1 w.r.t. p(u1, . . . , um) using d we derive the new clause

c2: h ← body [g{V1/u1, . . . ,Vm/um}]. We derive the new program Pi+1 by replacing

in program Pi clause c1 by clause c2.

Rule R3 (Folding)

Let c1: h ← body [gϑ] be a renamed apart clause in program Pi and let d :

p(V1, . . . ,Vm) ← g be a clause in Defi . Suppose that, for every local variable

V of g in d , we have that:

(1) V ϑ is a local variable of gϑ in c1, and

(2) the variable V ϑ does not occur in W ϑ, for any variable W occurring in g

and different from V .

Then, by folding c1 using d we derive the new clause c2: h ← body [p(V1, . . . ,Vm)ϑ].

We derive the new program Pi+1 by replacing in program Pi clause c1 by clause c2.

In order to present the goal replacement rule (see rule R4 below) we introduce

the notion of replacement law. Basically, a replacement law denotes two goals which

can be replaced one for the other in the body of a clause. We have two kinds of

replacement laws: the weak and the strong replacement laws, which ensure weak

and strong correctness, respectively (see the end of this section for an informal

discussion and Section 6 for a formal proof of this fact).

First we need the following definition.

Definition 2 (Depth of a Deduction Tree)

Let τ be a finite deduction tree and let m be the maximal number of applications

of the (at) rule in a root-to-leaf path of τ . Then we say that τ has depth m.

Let π be a proof for P ⊢ g 7→ A, for some program P , goal g, and set A of

substitutions, and let m be the depth of π. If A = ∅ we write P ⊢ g ↓m false;

otherwise, if A 6=∅ we write P ⊢ g ↓m true.

Recall that, given a program P and a goal g, if for some set A of substitutions

there exists a proof for P ⊢ g 7→ A, then the proof is unique up to isomorphism.

In particular, given a proof for P ⊢ g 7→ A1 and a proof for P ⊢ g 7→ A2, they

have the same depth.

Definition 3 (Replacement Laws)

Let P be a program, let g1 and g2 be two goals, and let V be a set of variables.

(i) The relation P ⊢ ∀V (g1 −→ g2) holds iff for every goal context g[] such that

vars(g[]) ∩ vars(g1, g2) ⊆ V , and for every b ∈ {true, false}, we have that:

18 A. Pettorossi and M. Proietti

if P ⊢ g[g1] ↓ b then P ⊢ g[g2] ↓ b. (†)

(ii) The relation P ⊢ ∀V (g1
>
−→ g2), called a weak replacement law, holds iff

for every goal context g[] such that vars(g[]) ∩ vars(g1, g2) ⊆ V , and for every

b ∈ {true, false}, we have that:

if P ⊢ g[g1] ↓m b then P ⊢ g[g2] ↓n b with m≥n. (††)

(iii) The relation P ⊢ ∀V (g1
>
←→ g2), called a strong replacement law, holds iff

P ⊢ ∀V (g1
>
−→ g2) and P ⊢ ∀V (g2 −→ g1).

(iv) We write P ⊢ ∀V (g1
=←→ g2) to mean that the strong replacement laws

P ⊢ ∀V (g1
>
−→ g2) and P ⊢ ∀V (g2

>
−→ g1) hold.

If V = ∅ then P ⊢ ∀V (g1
>
−→ g2) is also written as P ⊢ g1

>
−→ g2. If V =

{V1, . . . ,Vn} then P ⊢ ∀V (g1
>
−→ g2) is also written as P ⊢ ∀V1, . . . ,Vn (g1

>
−→ g2).

If V =vars(g1, g2) then P ⊢ ∀V (g1
>
−→ g2) is also written as P ⊢ ∀ (g1

>
−→ g2).

A few comments on the above Definition 3 are now in order.

(1) In the relation P ⊢ ∀V (g1 −→ g2) we have used the set V of universally

quantified variables as a notational device for indicating that when we replace g1

by g2 in a clause h ← body [g1], the variables in common between h ← body [] and

(g1, g2) are those in V (see the goal replacement rule R4 below). Thus, vars(g1)−V

is the set of the local variables of g1 in h ← body [g1] and vars(g2)−V is the set of

the local variables of g2 in h ← body [g2].

(2) Implication (††) implies Implication (†).

(3) Every strong replacement law is also a weak replacement law.

(4) If P ⊢ ∀V (g1
=←→ g2) then there exists A1 ∈ P(Subst) such that P ⊢ g1 7→ A1

has a proof of depth m iff there exists A2 ∈ P(Subst) such that P ⊢ g2 7→ A2 has

a proof of depth m. Moreover, if both proofs exist, A1=∅ iff A2=∅.

The properties listed in the next proposition follow directly from Definition 3.

Proposition 2

Let P be a program, let g1 and g2 be goals, and let V be a set of variables.

(i) P ⊢ ∀V (g1 −→ g2) holds iff for every goal context g[] such that vars(g[]) ∩

vars(g1, g2) ⊆ V , P ⊢ ∀W (g[g1] −→ g[g2]) holds, where W = V ∪ vars(g[]).

(ii) P ⊢ ∀V (g1 −→ g2) holds iff P ⊢ ∀W (g1 −→ g2) holds, where W = V ∩

vars(g1, g2).

(iii) P ⊢ ∀V (g1 −→ g2) holds iff for every W ⊆ V , P ⊢ ∀W (g1 −→ g2) holds.

(iv) P ⊢ ∀V (g1 −→ g2) holds iff for every substitution ϑ such that vars(ϑ) ∩

vars(g1, g2) ⊆ V , P ⊢ ∀W (g1ϑ −→ g2ϑ) holds, where W = vars(V ϑ).

(v) P ⊢ ∀V (g1 −→ g2) holds iff for every renaming substitution ρ such that

vars(ρ) ∩ V = ∅, P ⊢ ∀V (g1ρ −→ g2ρ) holds.

The properties obtained from (i) – (v) by replacing −→ by
>
−→ are also true.

We will refer to them as Properties (i′) – (v′), respectively.

Transformations of Logic Programs with Goals as Arguments 19

Definition 4

We say that a weak replacement law P ⊢ ∀V (g1
>
−→ g2) (or a strong replacement

law P ⊢ ∀V (g1
>
←→ g2)) preserves safety iff for every goal context g[] such that

vars(g[]) ∩ vars(g1, g2) ⊆ V , we have that:

if g[g1] is safe in P then g[g2] is safe in P .

Rule R4 (Goal Replacement)

Let c1: h ← body [g1] be a clause in program Pi and let g2 be a goal such that:

(i) all non-primitive predicate symbols occurring in g1 or g2 are defined in P0, and

either (ii.1) P0 ⊢ ∀V (g1
>
−→ g2), or (ii.2) P0 ⊢ ∀V (g1

>
←→ g2), where V =

vars(h, body []) ∩ vars(g1, g2).

By goal replacement we derive the new clause c2: h ← body [g2], and we derive the

new program Pi+1 by replacing in program Pi clause c1 by clause c2.

In case (ii.1) we say that the goal replacement is based on a weak replacement law.

In case (ii.2) we say that the goal replacement is based on a strong replacement

law. We say that the goal replacement preserves safety iff it is based on a (weak or

strong) replacement law which preserves safety.

Implication (††) of Definition 3 makes
>
−→ and

>
←→ to be improvement relations

in the sense of (Sands 1996). As stated in Theorem 2 of Section 6, Implication (††)

is required for ensuring the weak correctness of a goal replacement step, while Im-

plication (†) of Definition 3 does not suffice. This fact is illustrated by the following

example.

Example 6

Let us consider the program P1:

1. p ← q

2. q ←

We have that P1 ⊢ q −→ p and thus, Implication (†) holds by taking g1 to be q, g2
to be p, and g[] to be the empty goal context. The replacement of q by p in clause

1 produces the following program P2:

1*. p ← p

2. q ←

This replacement is not an application of rule R4, because Implication (††) does not

hold. (Indeed, we have that the depth of the proof for P1 ⊢ q 7→ {ε} is smaller than

the depth of the proof for P1 ⊢ p 7→ {ε}). The transformation from program P1 to

program P2 is not weakly correct (nor strongly correct), because p succeeds in P1,

while p does not terminate in P2, and thus, it is not the case that P1 ⊑ P2. �

The reader may check that, for any program P , and goals g, g1, g2, and g3, we

have the following replacement laws. It can be shown that these replacement laws

preserve safety.

20 A. Pettorossi and M. Proietti

1. Boolean Laws:

P ⊢ ∀ (g ∧ true
=←→ g) P ⊢ ∀ (g ∧ g

>
−→ g)

P ⊢ ∀ (true ∧ g
=←→ g) P ⊢ ∀ (g ∨ g

=←→ g)

P ⊢ ∀ (true ∨ g
>
−→ true) P ⊢ ∀ (g1 ∨ g2

=←→ g2 ∨ g1)

P ⊢ ∀ (g ∧ false
>
−→ false) P ⊢ ∀ ((g1 ∧ g2) ∨ (g1 ∧ g3)

=←→ g1 ∧ (g2 ∨ g3))

P ⊢ ∀ (false ∧ g
=←→ false) P ⊢ ∀ ((g1 ∧ g2) ∨ (g3 ∧ g2)

=←→ (g1 ∨ g3) ∧ g2)

P ⊢ ∀ (false ∨ g
=←→ g) P ⊢ ∀ ((g1 ∨ g2) ∧ (g1 ∨ g3)

>
−→ g1 ∨ (g2 ∧ g3))

In the following replacement laws 2.1 and 2.2, according to our conventions, V

stands for either an individual variable or a goal variable, and u stands for either a

term or a goal, respectively.

2.1 Introduction and elimination of equalities:

P ⊢ ∀U (g[u] =←→ ((V =u) ∧ g[V])) where U = vars(g[u]) and V 6∈ U .

2.2 Rearrangement of equalities:

P ⊢ ∀U (g[(V =u) ∧ g1]
=←→ ((V =u) ∧ g[g1]))

where U = vars(g[g1], u) and V 6∈ U .

When referring to goal variables, laws 2.1 and 2.2 will also be called ‘Introduction

and elimination of goal equalities’ and ‘Rearrangement of goal equalities’, respec-

tively.

3. Rearrangement of term equalities:

P ⊢ ∀ (g ∧ (t1= t2)
>
−→ (t1= t2) ∧ g)

4. Clark Equality Theory (also called CET, see (Lloyd 1987)):

P ⊢ ∀X (eq1
=←→ eq2) if CET ⊢ ∀X (∃Y eq1 ↔ ∃Z eq2)

where: (i) eq1 and eq2 are goals constructed by using true, false, term equalities,

conjunctions, and disjunctions, and (ii) Y =(vars(eq1)−X) and Z =(vars(eq2)−X).

Notice that, for some program P and for some goals g, g1, g2, and g3, the following

do not hold:

P ⊢ ∀ (true −→ true ∨ g)

P ⊢ ∀ (false −→ g ∧ false)

P ⊢ ∀ ((t1= t2) ∧ g −→ g ∧ (t1= t2))

P ⊢ ∀ (g1 ∨ (g2 ∧ g3) −→ (g1 ∨ g2) ∧ (g1 ∨ g3))

P ⊢ ∀V (g2[g1] −→ g2[G] ∧ (G=g1)) where V =vars(g2[g1]) and G 6∈ V

P ⊢ ∀V (g[(G=g1) ∧ g2] −→ (G=g1) ∧ g[g2])

where V =(vars(g[g2], g1)− {G}) and G ∈ vars(g[], g1)

P ⊢ ∀ (g[(G=g1) ∧ g2] −→ (G=g1) ∧ g[g2]) where G 6∈ vars(g[], g1)

Let us now make some remarks on the goal replacement rule.

In the Weak Correctness part of Theorem 2 (see Section 6) we will prove that if

program P2 is derived from program P1 by an application of the goal replacement

rule based on a weak replacement law, then P2 is a refinement of P1, that is,

P1 ⊑ P2. Thus, there may be some ordinary goal g which either succeeds or fails

in P2, while g does not terminate in P1, as shown by the following example.

Transformations of Logic Programs with Goals as Arguments 21

Example 7

Let us consider the following two programs P1 and P2, where P2 is derived from

P1 by applying the goal replacement rule based on the weak (and not strong)

replacement law P1 ⊢ ∀ (true ∨ g
>
−→ true):

P1: p ← true ∨ q P2: p ← true

q ← q q ← q

We have that p does not terminate in P1 and p succeeds in P2.

Next, let us consider the following programs:

P3: p ← q ∧ false P4: p ← false

q ← q q ← q

where P4 is derived from P3 by a goal replacement rule based on a weak (and

not strong) replacement law P ⊢ ∀ (g ∧ false
>
−→ false). We have that p does not

terminate in P3, while p fails in P4. �

In the Strong Correctness part of Theorem 2 we will prove that if program P2 is

derived from program P1 by an application of the goal replacement rule based on

a strong replacement law, then P1 and P2 are equivalent, that is P1 ≡ P2. Thus, in

particular, for any goal g, g terminates in P1 iff g terminates in P2.

Moreover, in Theorem 3 of Section 6 we will prove that if program P2 is derived

from program P1 by goal replacements which preserve safety, then every goal which

is safe in P1, is safe also in P2.

6 Correctness of Program Transformations

The unrestricted use of our rules for transforming programs may allow the con-

struction of incorrect transformation sequences, as the following example shows.

Example 8

Let us consider the following initial program:

P0: p ← q

q ←

By two definition introduction steps, we get:

P1: p ← q

q ←

newp1← q

newp2← q

By three folding steps, from program P1 we get the final program:

P2: p ← newp1

q ←

newp1← newp2

newp2← newp1

We have that p succeeds in P0, while p does not terminate in P2. �

22 A. Pettorossi and M. Proietti

In this section we will present some conditions which ensure that every transfor-

mation sequence P0, . . . ,Pk constructed by using our rules, is:

(i) weakly correct, in the sense that P0 ∪Defk ⊑ Pk (see Point (1) of Theorem 2),

(ii) strongly correct, in the sense that P0∪Defk ≡ Pk (see Point (2) of Theorem 2),

(iii) preserves safety, in the sense that, for every goal g, if g is safe in P0 ∪ Defk

then g is safe also in Pk (see Theorem 3).

Similarly to other correctness results presented in the literature (Bossi and Cocco 1994;

Pettorossi and Proietti 1994; Sands 1996; Tamaki and Sato 1984), some of the con-

ditions which ensure (weak or strong) correctness, require that the transformation

sequences are constructed by performing suitable unfolding steps before performing

folding steps.

In particular, Theorem 2 below ensures the (weak or strong) correctness of a

given transformation sequence in the case where this sequence is admissible, that

is, it is constructed by performing parallel leftmost unfoldings (see Definition 5) on

all definitions which are used for performing subsequent foldings.

In order to present our correctness results it is convenient to consider admissi-

ble transformation sequences which are ordered, that is, transformation sequences

constructed by:

(i) first, applying the definition introduction rule,

(ii) then, performing parallel leftmost unfoldings of the definitions that are used for

subsequent foldings, and

(iii) finally, performing unfoldings, foldings, and goal replacements in any order.

Thus, an ordered, admissible transformation sequence has all its definition intro-

ductions performed at the beginning, and it can be written in the form P0, . . . ,P0∪

Defk , . . . ,Pk , where Defk is the set of all definitions introduced during the entire

transformation sequence P0, . . . ,P0∪Defk , . . . ,Pk . By Proposition 3 below we may

assume, without loss of generality, that all admissible transformation sequences are

ordered.

In order to prove that an admissible transformation sequence is weakly correct

(see Point (1) of Theorem 2), we proceed as follows.

(i) In Lemma 1 we consider a generic transformation by which we derive a program

NewP from a program P by replacing the bodies of the clauses of P by new bodies.

We show that, if these body replacements can be viewed as goal replacements based

on weak replacement laws, then the transformation from P to NewP preserves

successes and failures, that is,

- if a goal g succeeds in P then g succeeds in NewP , and

- if a goal g fails in P then g fails in NewP .

(ii) Then, in Lemma 2 we prove that in an ordered, admissible transformation

sequence P0, . . . ,P0 ∪ Defk , . . . ,Pk , any application of the unfolding, folding, and

goal replacement rule is an instance of the generic transformation considered in

Lemma 1, that is, it consists in the replacement of the body of a clause by a new

body, and this replacement can be viewed as a goal replacement based on a weak

replacement law.

Transformations of Logic Programs with Goals as Arguments 23

(iii) Thus, by using Lemmata 1 and 2 we get Point (1) of Theorem 1. In particular,

we have that in any admissible transformation sequence P0, . . . ,P0 ∪Defk , . . . ,Pk ,

successes and failures are preserved, that is:

- if a goal g succeeds in P0 ∪Defk then g succeeds in Pk , and

- if a goal g fails in P0 ∪Defk then g fails in Pk .

(iv) Finally, Proposition 1 allows us to infer the preservation of most general answer

substitutions from the preservation of successes and failures. Indeed, by Proposi-

tion 1 and Point (1) of Theorem 1 we prove that if an ordinary goal g succeeds in

P0 ∪ Defk then the set of answer substitutions for g in P0 ∪ Defk and the set of

answer substitutions for g in Pk are equally general.

According to Definition 1, Points (iii) and (iv) mean that P0 ∪Defk ⊑ Pk , that is,

the ordered, admissible transformation sequence P0, . . . ,P0∪Defk , . . . ,Pk is weakly

correct (see Point (1) of Theorem 2).

In order to prove that an admissible transformation sequence is strongly correct

(see Point (2) of Theorem 2), we make the additional hypothesis that all goal

replacements performed during the construction of the transformation sequence

are based on strong replacement laws. Analogously to the proof of weak correctness

which is based on Lemmata 1 and 2, the proof of strong correctness is based on

Lemmata 3 and 4 which we give below. By using these lemmata, we prove Point (2)

of Theorem 1, that is:

- if a goal g succeeds in Pk then g succeeds in P0 ∪Defk , and

- if a goal g fails in Pk then g fails in P0 ∪Defk .

Finally, by Proposition 1 and Theorem 1, we prove that any admissible transfor-

mation sequence in which all goal replacements are based on strong replacement

laws, is strongly correct (see Point (2) of Theorem 2), that is, P0 ∪Defk ≡ Pk .

Now let us formally define the notions of parallel leftmost unfolding of a clause, ad-

missible transformation sequence, and ordered admissible transformation sequence

as follows.

Definition 5

Let c be a clause in a program P . If c is of the form:

p(V1, . . . ,Vm)← (a1 ∧ g1) ∨ . . . ∨ (as ∧ gs)

where a1, . . . , as are atoms with non-primitive predicates, g1, . . . , gs are goals, and

s > 0, then the parallel leftmost unfolding of clause c in program P is the pro-

gram Q obtained from P by applying s times the unfolding rule w.r.t. a1, . . . , as ,

respectively.

If clause c is not of the form indicated in Definition 5 above, then the parallel

leftmost unfolding of c is not defined.

Definition 6

A transformation sequence P0, . . . ,Pk is said to be admissible iff for every h, with

0≤ h < k , if Ph+1 has been obtained from Ph by folding clause c using clause d ,

then there exist i , j , with 0≤ i < j ≤ k , such that d ∈ Pi and Pj is obtained from

Pi by parallel leftmost unfolding of d .

24 A. Pettorossi and M. Proietti

Definition 7

An admissible transformation sequence P0, . . . ,Pk is said to be ordered iff it is of the

form P0, . . . ,Pi , . . . ,Pj , . . . ,Pk , where: (i) the sequence P0, . . . ,Pi is constructed by

applying the definition introduction rule, (ii) the sequence Pi , . . . ,Pj is constructed

by parallel leftmost unfolding of all definitions which have been introduced during

the sequence P0, . . . ,Pi and are used for folding during the sequence Pj , . . . ,Pk ,

and (iii) the definition introduction rule is never applied in the sequence Pj , . . . ,Pk .

Given an ordered, admissible transformation sequence P0, . . . , Pi , . . . ,Pj , . . . ,Pk ,

the set of definitions introduced during P0, . . . ,Pi is the same as the set of definitions

introduced during the entire sequence P0, . . . ,Pk , and thus, in the above Definition 7

we have that Pi is P0 ∪Defk .

An admissible transformation sequence P0, . . . ,Pk which is ordered, is also de-

noted by P0, . . . ,Pi , . . . ,Pj , . . . ,Pk , where we explicitly indicate the program Pi

after the introduction of the definitions, and the program Pj after the parallel

leftmost unfolding steps.

Proposition 3

For any admissible transformation sequence P0, . . . ,Pn there exists an ordered,

admissible transformation sequence P0, . . . ,Pi , . . . , Pj , . . . ,Pk such that Pn = Pk

and Defn = Defk .

Now, in order to prove the correctness of transformation sequences, we state the fol-

lowing Lemmata 1, 2, 3, and 4, whose proofs are given in the Appendix. As already

mentioned, these Lemmata 1, 2, 3, and 4 will allow us to show that, under suitable

conditions, for every admissible transformation sequence P0, . . . ,Pk , (i) successes

and failures are preserved (see Theorem 1 below), and (ii) weak correctness holds

(that is, P0 ∪Defk ⊑ Pk) or strong correctness holds (that is, P0 ∪Defk ≡ Pk) (see

Theorem 2 below).

Lemma 1

Let P and NewP be programs of the form:

P : hd1 ← bd1 NewP : hd1 ← newbd1

...
...

hds ← bds hds ← newbd s

For r = 1, . . . , s , let Vr be vars(hdr) and suppose that P ⊢ ∀Vr (bdr
>
−→ newbdr).

Then, for every goal g and for every b ∈ {true, false}, we have that:

if P ⊢ g ↓m b then NewP ⊢ g ↓n b with m ≥ n.

Lemma 2

Let us consider an ordered, admissible transformation sequence P0, . . . , Pi , . . . ,

Pj , . . . ,Pk , where Pi is P0 ∪Defk .

(i) For h = i , . . . , j−1 and for any pair of clauses c1: hd ← bd in program Ph and

c2: hd ← newbd in program Ph+1, such that c2 is derived from c1 by applying the

unfolding rule, we have that:

Transformations of Logic Programs with Goals as Arguments 25

Pi ⊢ ∀V (bd
>
−→ newbd)

where V = vars(hd). (Notice that the unfolding rule does not change the heads of

the clauses.)

(ii) For h = j , . . . , k−1 and for any pair of clauses c1: hd ← bd in program Ph and

c2: hd ← newbd in program Ph+1, such that c2 is derived from c1 by applying the

unfolding, or folding, or goal replacement rule, we have that:

Pj ⊢ ∀V (bd
>
−→ newbd)

where V = vars(hd). (Notice that the unfolding, folding, and goal replacement

rules do not change the heads of the clauses.)

Lemma 3

Let P and NewP be programs of the form:

P : hd1 ← bd1 NewP : hd1 ← newbd1
...

...

hds ← bds hds ← newbds

For r = 1, . . . , s , let Vr be vars(hdr) and suppose that P ⊢ ∀Vr (newbdr −→ bdr).

Then, for every goal g and for every b ∈ {true, false}, we have that if NewP ⊢ g ↓ b

then P ⊢ g ↓ b.

Notice that Lemma 3 is a partial converse of Lemma 1. These two lemmata im-

ply that if we derive a program NewP from a program P by replacing the bodies

of the clauses of P by new bodies, and these body replacements are goal replace-

ments based on strong replacement laws, then every goal terminates in NewP iff it

terminates in P .

Lemma 4

Let us consider a transformation sequence P0, . . . ,Pk and let Defk be the set of

definitions introduced during that sequence. For h = 0, . . . , k−1 and for any pair

of clauses c1: hd ← bd in program Ph and c2: hd ← newbd in program Ph+1, such

that c2 is derived from c1 by applying the unfolding rule, or the folding rule, or the

goal replacement rule based on strong replacement laws, we have that:

P0 ∪Defk ⊢ ∀V (newbd −→ bd)

where V = vars(hd).

In particular, as a consequence of Lemma 2 and Lemma 4, we have that in any

ordered, admissible transformation sequence the unfolding and folding rules can be

viewed as goal replacements based on strong replacement laws.

The following theorem states that for every admissible transformation sequence

successes and failures are preserved.

Theorem 1 (Preservation of Successes and Failures)
Let P0, . . . ,Pk be an admissible transformation sequence and let Defk be the set

of definitions introduced during that sequence. Then for every goal g and for every

b ∈ {true, false}, we have that:

(1) if P0 ∪Defk ⊢ g ↓m b then Pk ⊢ g ↓n b with m ≥ n, and

(2) if all applications of the goal replacement rule are based on strong replacement

laws and Pk ⊢ g ↓ b, then P0 ∪Defk ⊢ g ↓ b.

26 A. Pettorossi and M. Proietti

Proof of Theorem 1

See Appendix. The proof of (1) is based on Proposition 3 and Lemmata 1 and 2,

and the proof of (2) is based on Proposition 3 and Lemmata 3 and 4.

The following theorem establishes the weak correctness and, under suitable con-

ditions, the strong correctness of admissible transformation sequences.

Theorem 2 (Correctness Theorem)

Let P0, . . . ,Pk be an admissible transformation sequence. Let Defk be the set of

definitions introduced during that sequence. We have that:

(1) (Weak Correctness) P0 ∪ Defk ⊑ Pk , that is, Pk is a refinement of P0 ∪ Defk ,

and

(2) (Strong Correctness) if all applications of the goal replacement rule are based on

strong replacement laws then P0∪Defk ≡ Pk , that is, Pk is equivalent to P0∪Defk .

Proof of Theorem 2

See Appendix. The proof of (1) is based on Proposition 1 and Theorem 1 (Point 1),

and the proof of (2) is based on Proposition 1 and Theorem 1 (Points 1 and 2).

The following two examples show that in the statement of Theorem 2 we cannot

drop the admissibility condition. Indeed, in these examples we construct transfor-

mation sequences which are not admissible and not weakly correct.

Example 9

Let us construct a transformation sequence as follows. The initial program is:

P0: p ← p ∧ q

q ← false

By definition introduction we get:

P1: p ← p ∧ q

q ← false

newp ← false ∧ p

Then we perform the unfolding of newp ← false ∧ p w.r.t. p. (Notice that this is

not a parallel leftmost unfolding.) We get:

P2: p ← p ∧ q

q ← false

newp ← false ∧ p ∧ q

By folding we get the final program:

P3: p ← p ∧ q

q ← false

newp ← newp ∧ q

We have that newp fails in P0 ∪ Def3 (that is, P1), while newp does not terminate

in P3. �

Transformations of Logic Programs with Goals as Arguments 27

Example 10

Let us construct a transformation sequence as follows. The initial program is:

P0: p ← false

q ← true ∨ q

By definition introduction we get:

P1: p ← false

q ← true ∨ q

newp ← p ∨ (p ∧ q)

Then we perform the unfolding of newp ← p ∨ (p ∧ q) w.r.t. q. (Notice that this is

not a parallel leftmost unfolding.) We get:

P2: p ← false

q ← true ∨ q

newp ← false ∨ (p ∧ (true ∨ q))

By goal replacement based on boolean laws we get:

P3: p ← false

q ← true ∨ q

newp ← p ∨ (p ∧ q)

By folding we get the final program:

P4: p ← false

q ← true ∨ q

newp ← newp

We have that newp fails in P0 ∪ Def4 (that is, P1), while newp does not terminate

in P4. �

Finally, the following theorem states that a (possibly not admissible) transfor-

mation sequence preserves safety, if all goal replacements performed during that

sequence preserve safety.

Theorem 3 (Preservation of Safety)

Let P0, . . . ,Pk be a transformation sequence and let Defk be the set of definitions

introduced during that sequence. Let us also assume that all applications of the goal

replacement rule R4 preserve safety. Then, for every goal g, if g is safe in P0 ∪Defk

then g is safe in Pk .

Proof of Theorem 3

See Appendix. The proof is based on Lemmata 5 and 6 given in the Appendix.

We end this section by making some comments about our correctness results.

Let us consider an admissible transformation sequence P0, . . . ,Pk , during which we

introduce the set Defk of definitions. Then, by Point (1) of Theorem 1 program

Pk may be more defined than program P0 ∪ Defk in the sense that there may be

a goal which terminates (i.e., succeeds or fails) in Pk , while it does not terminate

in P0 ∪ Defk . This ‘increase of termination’ is often desirable when transforming

programs and it may be achieved by goal replacements which are not based on

strong replacement laws (see, for instance, Example 7 in Section 5).

28 A. Pettorossi and M. Proietti

Now suppose that during the construction of the admissible transformation se-

quence P0, . . . ,Pk all applications of the goal replacement rule are based on strong

replacement laws. Then, by Theorem 1 we have that for all goals g, g terminates in

P0∪Defk iff g terminates in Pk . However, safety may be not preserved, in the sense

that there may be a goal g which is safe in P0 ∪ Defk (but g neither succeeds nor

fails in P0 ∪Defk) and g is not safe in Pk (or vice versa), as shown by the following

example.

Example 11

Let us consider the following two programs P1 and P2:

P1: p ← p P2: p ← G

Program P2 is derived from P1 by applying the goal replacement rule based on the

strong replacement law P1 ⊢ p
=←→ G, which does not preserve safety. We have

that p is safe, p does not terminate in P1, and p is not safe in P2. Notice that the

replacement law P1 ⊢ p
=←→ G trivially holds because, for any b ∈ {true, false},

P1 ⊢ p ↓ b does not hold and P1 ⊢ G ↓ b does not hold. �

In order to ensure that if g is safe in P1 then g is safe in P2, it is enough to

use replacement laws which preserve safety (see Theorem 3). Indeed, unfolding and

folding always preserve safety (see Lemma 6 in the Appendix).

We have not presented any result which guarantees that if a goal is safe in the

final programPk then it is safe in the programP0∪Defk . This result could have been

achieved by imposing further restrictions on the goal replacement rule. However,

we believe that this ‘inverse preservation of safety’ is not important in practice,

because usually we start from an initial program where all goals of interest are safe

and we want to derive a final program where those goals of interest are still safe. In

particular, if in the transformation sequence P0, . . . ,Pk the initial program P0 is an

ordinary program, then every ordinary goal g is safe in P0 and, by Theorem 3, we

have that g is safe also in Pk . Thus, as discussed in Section 4, we can use ordinary

implementations of LD-resolution to compute the relation Pk |= g 7→ A.

Notice also that, if P0∪Defk ⊑ Pk and an ordinary goal g terminates in P0, then g

has the same most general answer substitutions in P0∪Defk and Pk , modulo variable

renaming (see Point (i) of Remark 1 at the end of Section 4). However, the set of all

answer substitutions may not be preserved, and in particular, there are programs

P1 and P2 such that P1 ⊑ P2 and, for some goal g, we have that P1 ⊢ g 7→ A1

and P2 ⊢ g 7→ A2, where A1 and A2 have different cardinality, as shown by the

following example adapted from (Bossi et al. 1992). A similar property holds if we

assume that P1 ≡ P2, instead of P1 ⊑ P2.

Example 12

Let us consider the following two programs P1 and P2, where P2 is derived from

P1 by applying the goal replacement rule based on the weak replacement law

P ⊢ ∀ (g ∧ g
>
−→ g), which holds for every program P and and goal g:

P1: p(X)← q(X) ∧ q(X) P2: p(X)← q(X)

q(X)← X = f (a,Z) q(X)← X = f (a,Z)

q(X)← X = f (Y , a) q(X)← X = f (Y , a)

Transformations of Logic Programs with Goals as Arguments 29

We have that:

P1 ⊢ p(X) 7→ {{X /f (a,Z)}, {X /f (a, a)}, {X /f (Y , a)}}, and

P2 ⊢ p(X) 7→ {{X /f (a,Z)}, {X /f (Y , a)}}. �

The above example shows that, if during program transformation we want to pre-

serve the set of answer substitutions, then we should not apply goal replacements

based on the replacement law P ⊢ ∀ (g ∧ g
>
−→ g) which, however, may be useful

for avoiding the computation of redundant goals and improving program efficiency.

Another replacement law which is very useful in many examples of program

transformation, is the law which expresses the functionality of a predicate. For

instance, in the Deepest example of Section 2, the depth predicate is functional

with respect to its first argument in the sense that, for every goal context g[], the

following replacement law holds:

Deepest ⊢ ∀ (depth(T ,X) ∧ g[depth(T ,Y)]
>
←→ depth(T ,X) ∧ g[X =Y]).

The following example, similar to Example 12, shows that in general the function-

ality law does not preserve the set of answer substitutions.

Example 13

Let us consider the following two programs P1 and P2, where P2 is derived from

P1 by applying the goal replacement rule based on the (strong) replacement law

P1 ⊢ ∀ (q(X ,Y) ∧ q(X ,Z)
>
←→ q(X ,Y) ∧ Y =Z):

P1: p(X)← q(X ,Y) ∧ q(X ,Z) P2: p(X)← q(X ,Y) ∧ Y =Z

q(f (a,Z), b)← q(f (a,Z), b)←

q(f (Y , a), b)← q(f (Y , a), b)←

As in Example 12, we have that:

P1 ⊢ p(X) 7→ {{X /f (a,Z)}, {X /f (a, a)}, {X /f (Y , a)}} and

P2 ⊢ p(X) 7→ {{X /f (a,Z)}, {X /f (Y , a)}}. �

Finally, notice that Theorem 2 ensures the preservation of most general answer

substitutions for ordinary goals only. Thus, the answer substitutions computed for

goals with occurrences of goal variables, may not be preserved, as shown by the

following example.

Example 14

Let us consider the following two programs P1 and P2, where P2 is derived from

P1 by unfolding clause 1 w.r.t. p using clause 2:

P1: 1. a(G)← (G=p) ∧G P2: 1*. a(G)← (G=q) ∧G

2. p ← q 2. p ← q

3. q ← 3. q ←

We have that P1 ⊢ a(G) 7→ {{G/p}}, and P2 ⊢ a(G) 7→ {{G/q}}. �

30 A. Pettorossi and M. Proietti

7 Program Derivation in the Extended Language

In this section we present some examples which illustrate the use of our transfor-

mation rules. In these examples, by using goal variables and goal arguments, we

introduce and manipulate continuations. For this reason we have measured the im-

provements of program efficiency by running our programs using the BinProlog con-

tinuation passing compiler (Tarau 1996). These run-time improvements have been

reported in Section 7.6. Compilers based on different implementation methodolo-

gies, such as SICStus Prolog, may not give the same improvements. However, it

should be noticed that the efficiency improvements we get, do not come from the

use of continuations, but from the program transformations performed by apply-

ing our transformation rules (see Section 5). Indeed, in BinProlog the continuation

passing style transformation in itself gives no speed-ups.

Let us introduce the following terminology which will be useful in the sequel. We

say that: (i) a clause is in continuation passing style iff its body has no occurrences

of the conjunction operator, and (ii) a program is in continuation passing style iff all

its clauses are in continuation passing style. Thus, every program in continuation

passing style is a binary program in the sense of Tarau and Boyer (1990), that is,

a program with at most one atom in the body of its clauses.

When writing programs in this section we use the following primitive predicates:

=, 6=, ≥, and <. For the derivation of programs in continuation passing style, we

assume that, for each of these predicates there exists a corresponding primitive

predicate with an extra argument denoting a continuation. Let us call these predi-

cates eq
¯
c, diff

¯
c, geq

¯
c, and lt

¯
c, respectively.

We assume that, for every program P , the following strong replacement laws

hold:

P ⊢ ∀ ((X =Y) ∧ C
=←→ eq

¯
c(X ,Y ,C))

P ⊢ ∀ ((M 6=N) ∧ C
=←→ diff

¯
c(M ,N ,C))

P ⊢ ∀ ((M ≥N) ∧ C
=←→ geq

¯
c(M ,N ,C))

P ⊢ ∀ ((M <N) ∧ C
=←→ lt

¯
c(M ,N ,C))

In this section we use the following syntactical conventions:

(1) the conjunction operator ∧ is replaced by comma,

(2) a clause of the form h ← g1∨ g2 is also written as two clauses, namely, h ← g1

and h ← g2, and

(3) a clause of the form h ← (V = u), g where the variable V does not occur in

the argument u, is also written as (h ← g){V /u}.

7.1 Tree Flipping

This example is borrowed from (Jørgensen et al. 1997) where it is used for showing

that conjunctive partial deduction may affect program termination when trans-

forming programs for eliminating multiple traversals of data structures. A similar

problem arises when multiple traversals of data structures are avoided by apply-

ing Tamaki and Sato’s unfold/fold transformation rules (Tamaki and Sato 1984)

Transformations of Logic Programs with Goals as Arguments 31

according to the tupling strategy (see Section 2). In this example by using goal

arguments and introducing continuations, we are able to derive a program in con-

tinuation passing style which eliminates multiple traversals of data structures and,

at the same time, preserves universal termination.

Let us consider the initial program FlipCheck:

1. flipcheck (X ,Y)← flip(X ,Y), check (Y)

2. flip(l(N), l(N))←

3. flip(t(L,N ,R), t(FR,N ,FL))← flip(L,FL), flip(R,FR)

4. check (l(N))← nat(N)

5. check (t(L,N ,R))← nat(N), check (L), check (R)

6. nat(0)←

7. nat(s(N))← nat(N)

where: (i) the term l(N) denotes a leaf with label N and the term t(L,N ,R) denotes

a tree with label N and the two subtrees L and R, (ii) nat(X) holds iff X is a natural

number, (iii) check (X) holds iff all labels in the tree X are natural numbers, and

(iv) flip(X ,Y) holds iff the tree Y can be obtained by flipping all subtrees of the

tree X .

We would like to transform this program so to avoid the double traversal of trees

(see the double occurrence of Y in the body of clause 1). By applying the tupling

strategy (or, equivalently, conjunctive partial deduction), we derive the following

program FlipCheck1:

8. flipcheck (l(N), l(N))← nat(N)

9. flipcheck (t(L,N ,R), t(FR,N ,FL)) ← nat(N),

flipcheck (L,FL), flipcheck (R,FR)

Program FlipCheck1 performs only one traversal of any input tree which is the first

argument of flipcheck . However, as already mentioned, FlipCheck1 does not preserve

termination. Indeed, the goal flipcheck (t(l(N), 0, l(a)),Y) fails in FlipCheck, while

this goal does not terminate in the derived program FlipCheck1.

Now we present a second derivation starting from the same program FlipCheck

and producing a final program FlipCheck2 which: (i) is in continuation passing

style, (ii) traverses the input tree only once, and (iii) preserves termination. During

this second derivation we introduce goal arguments and we make use of the trans-

formation rules introduced in Section 5. The initial step of this derivation is the

introduction of the following new clause:

10. newp(X ,Y ,G,C ,D)← flip(X ,Y), G=(check (Y),C), D

As already mentioned, in this paper we do not illustrate the strategies needed for

guiding the application of our transformation rules and, in particular, we do not

indicate how to construct the new definitions to be introduced, such as clause 10

above. For clause 10 we notice that: (i) by introducing a definition with the goal

equality G=(check (Y), C), instead of the goal check(Y), we will be able to apply

the folding rule by first performing leftward moves of goal equalities, instead of

(possibly incorrect) leftward moves of goals, and (ii) by introducing the continu-

32 A. Pettorossi and M. Proietti

ations C and D , we will avoid the expensive use of the conjunction operator for

constructing goal arguments.

We continue our derivation by unfolding clause 10 w.r.t. flip(X ,Y) and we get:

11. newp(l(N), l(N),G,C ,D)← (G=(check (l(N)),C)), D

12. newp(t(L,N ,R), t(FR,N ,FL),G,C ,D) ← flip(L,FL), flip(R,FR)

(G=(check (t(FR,N ,FL)),C)), D

We then unfold clauses 11 and 12 w.r.t. the check atoms, and after some applications

of the goal replacement rule based on boolean laws and CET, we get:

13. newp(l(N), l(N),G,C ,D)← G=(nat(N),C), D

14. newp(t(L,N ,R), t(FR,N ,FL),G,C ,D) ← flip(L,FL), flip(R,FR),

(G=(nat(N), check (FR), check (FL),C)), D

By introducing and rearranging goal equalities (see laws 2.1 and 2.2, respectively,

in Section 5), we transform clause 14 into:

15. newp(t(L,N ,R), t(FR,N ,FL),G,C ,D)← flip(L,FL), U =(check (FL),C),

flip(R,FR), V =(check (FR),U), (G=(nat(N),V)), D

Now we fold twice clause 15 using clause 10 and we get:

16. newp(t(L,N ,R), t(FR,N ,FL),G,C ,D)←

newp(L,FL,U ,C , newp(R,FR,V ,U , (G=(nat(N),V),D)))

In order to express flipcheck in terms of newp we introduce a goal equality into

clause 1 and we derive:

17. flipcheck (X ,Y)← flip(X ,Y), G=(check (Y), true), G

Then we fold clause 17 using clause 10 and we get:

18. flipcheck (X ,Y)← newp(X ,Y ,G, true,G)

The program we have derived so far consists of clauses 13, 16, and 18. Notice that

clauses 13 and 16 are not in continuation passing style because the conjunction

operator occurs in their bodies. In order to derive clauses in continuation passing

style we introduce the following new definition:

19. nat
¯
c(N ,C)← nat(N), C

By unfolding, folding, and goal replacement steps based on the replacement law

FlipCheck ⊢ ∀ ((X = Y),C =←→ eq
¯
c(X ,Y ,C)), we derive the following final

program FlipCheck2:

18. flipcheck (X ,Y)← newp(X ,Y ,G, true,G)

20. newp(l(N), l(N),G,C ,D)← eq
¯
c(G, nat

¯
c(N ,C),D)

21. newp(t(L,N ,R), t(FR,N ,FL),G,C ,D)←

newp(L,FL,U ,C , newp(R,FR,V ,U ,

eq
¯
c(G, nat

¯
c(N ,V),D)))

22. nat
¯
c(0,C)← C

23. nat
¯
c(s(N),C)← nat

¯
c(N ,C)

Program FlipCheck2 traverses the input tree only once. Moreover, Theorem 1 en-

sures that, for every goal g of the form flipcheck (t1, t2), where t1 and t2 are any

Transformations of Logic Programs with Goals as Arguments 33

two terms, g terminates in FlipCheck iff g terminates in FlipCheck2 (see also Sec-

tion 7.5 for a more detailed discussion of the correctness properties of our program

derivations).

7.2 Summing the Leaves of a Tree

Let us consider the following program TreeSum that, given a binary tree t whose

leaves are labeled by natural numbers, computes the sum of the labels of the leaves

of t .

1. treesum(l(N),N)←

2. treesum(t(L,R),N)← treesum(L,NL), treesum(R,NR), plus(NL,NR,N)

3. plus(0,X ,X)←

4. plus(s(X),Y , s(Z))← plus(X ,Y ,Z)

By using Tamaki and Sato’s transformation rules, from program TreeSum we may

derive a more efficient program with accumulator arguments. In particular, during

this program derivation we introduce the following new predicate:

5. acc
¯
ts(T ,Y ,Z)← treesum(T ,X), plus(X ,Y ,Z)

We also use the associativity of the predicate plus, that is, we use the following

equivalence which holds in the least Herbrand model M (TreeSum) of the given

program TreeSum:

M (TreeSum) |= ∀X 1,X 2,X 3, S (∃I (plus(X 1,X 2, I), plus(I ,X 3, S))↔

∃J (plus(X 1, J , S), plus(X 2,X 3, J)))

During the derivation, we also make suitable goal rearrangements needed for per-

forming foldings that use clause 5. We derive the following program TreeSum1.

6. treesum(l(N),N)←

7. treesum(t(L,R),N)← acc
¯
ts(L,NR,N), treesum(R,NR)

8. acc
¯
ts(l(N),Acc,Z)← plus(N ,Acc,Z)

9. acc
¯
ts(t(L,R),Acc,N)← acc

¯
ts(L,Acc,NewAcc), acc

¯
ts(R,NewAcc,N)

The least Herbrand models of programs TreeSum and TreeSum1 define the same

relation for the predicate treesum. However, the two programs do not have the

same termination behaviour. For instance, the goal treesum(t(l(N), 0),Z) fails in

TreeSum while it does not terminate in TreeSum1.

By introducing goal arguments and using the transformation rules presented in

Section 5, we are able to derive a program which: (i) is in continuation passing

style, (ii) preserves termination, and (iii) is asymptotically more efficient than the

original program TreeSum. Our derivation begins by introducing the following new

clause:

10. gen
¯
ts(T ,Y ,Z ,G,C ,D)← treesum(T ,X), (G=(plus(X ,Y ,Z),C)), D

We unfold clause 10 and we get:

11. gen
¯
ts(l(N),Y ,Z ,G,C ,D)← (G=(plus(N ,Y ,Z),C)), D

12. gen
¯
ts(t(L,R),Y ,Z ,G,C ,D)← treesum(L,LS), treesum(R,RS),

plus(LS ,RS , S), (G=(plus(S ,Y ,Z),C)), D

34 A. Pettorossi and M. Proietti

Now we may exploit the following generalized associativity law for plus:

TreeSum ⊢ ∀V ((plus(X 1,X 2, I), g[plus(I ,X 3, S)])
>
←→

(plus(X 1, J , S), g[plus(X 2,X 3, J)]))

where V = {X 1,X 2,X 3, S} ∪ vars(g[]) and {I , J} ∩ vars(g[]) = ∅. By this law,

from clause 12 we get the following clause:

13. gen
¯
ts(t(L,R),Y ,Z ,G,C ,D)← treesum(L,LS), treesum(R,RS),

plus(LS , S1,Z), (G=(plus(RS ,Y , S1),C)), D

By introducing and rearranging goal equalities (see laws 2.1 and 2.2 in Section 5),

we transform clause 13 into:

14. gen
¯
ts(t(L,R),Y ,Z ,G,C ,D)←

treesum(L,LS), (GL=(plus(LS , S1,Z), G=GR, D)),

treesum(R,RS), (GR=(plus(RS ,Y , S1),C)), GL

In order to derive clauses in continuation passing style we introduce the following

new definitions:

15. ts
¯
c(T ,N ,C)← treesum(T ,N), C

16. plus
¯
c(X ,Y ,Z ,C)← plus(X ,Y ,Z), C

By unfolding clauses 15 and 16 we get:

17. ts
¯
c(l(N),N ,C)← C

18. ts
¯
c(t(L,R),N ,C) ← treesum(L,LN), treesum(R,RN),

plus(LN ,RN ,N), C

19. plus
¯
c(0,X ,X ,C)← C

20. plus
¯
c(s(X),Y , s(Z),C)← plus(X ,Y ,Z), C

By introducing and rearranging goal equalities, we transform clause 18 into:

21. ts
¯
c(t(L,R),N ,C) ← treesum(L,LN), (G = (plus(LN ,RN ,N),C)),

treesum(R,RN), G

By folding steps and goal replacements (based on, among others, the replacement

law TreeSum ⊢ ∀ ((X = Y),C =←→ eq
¯
c(X ,Y ,C))), we get the following final

program TreeSum2:

22. treesum(T ,N)← ts
¯
c(T ,N , true)

18. ts
¯
c(l(N),N ,C)← C

23. ts
¯
c(t(L,R),N ,C)← gen

¯
ts(L,RN ,N ,G,C , ts

¯
c(R,RN ,G))

24. gen
¯
ts(l(N),Y ,Z ,G,C ,D)← eq

¯
c(G, plus

¯
c(N ,Y ,Z ,C),D)

25. gen
¯
ts(t(L,R),Y ,Z ,G,C ,D) ← gen

¯
ts(L, S1,Z ,GL, eq

¯
c(G,GR,D),

gen
¯
ts(R,Y , S1,GR,C ,GL))

19. plus
¯
c(0,X ,X ,C)← C

20. plus
¯
c(s(X),Y , s(Z),C)← plus

¯
c(X ,Y ,Z ,C)

This final program TreeSum2 is more efficient than TreeSum. Indeed, in the worst

case, TreeSum2 takes O(n) steps for solving a goal of the form treesum(t ,N), where

t is a ground tree and sn(0) is the sum of the labels of the leaves of t , while the initial

program TreeSum takes O(n2) steps. Moreover, by our Theorem 1 of Section 6, for

every goal g of the form treesum(t1, t2), where t1 and t2 are any terms, g terminates

in TreeSum iff g terminates in TreeSum2 (see also Section 7.5).

Transformations of Logic Programs with Goals as Arguments 35

7.3 Matching a Regular Expression

Let us consider the following matching problem: given a string S in {0, 1, 2}∗, we

want to find the position N of an occurrence of a substring P of S such that P

is generated by the regular expression 0∗1. The following program RegExprMatch

computes such a position:

1. match(S ,N)← pattern(S), N =0

2. match([C |S],N)← char (C), match(S ,M), plus(s(0),M ,N)

3. pattern([0|S])← pattern(S)

4. pattern([1|S])←

5. char (0)←

6. char (1)←

7. char (2)←

8. plus(0,X ,X)←

9. plus(s(X),Y , s(Z))← plus(X ,Y ,Z)

If we assume the depth-first, left-to-right evaluation strategy of Prolog, the running

time of this program RegExprMatch is O(n2) in the worst case, where n is the

length of the input string. For a goal of the form match(s ,N), where s is a ground

string made out of n 0’s, the program RegExprMatch performs one resolution step

using clause 1 for the call to match, and then n resolution steps using clause 3 for

the successive calls to pattern. When the computation backtracks, for the successive

call of match(s1,N), where s1 is the tail of s , the program RegExprMatch performs

again n−1 resolution steps using clause 3.

By using the transformation rules of Section 5, we now present the derivation of

a new program RegExprMatch1 which: (i) is in continuation passing style, (ii) pre-

serves termination, and (iii) is asymptotically more efficient than the original pro-

gram RegExprMatch. Indeed, program RegExprMatch1 avoids the redundant res-

olution steps performed by RegExprMatch using clause 3. For our derivation we

introduce the following new predicates with goal arguments which are continua-

tions:

10. match
¯
c(S ,N ,C)← match(S ,N), C

11. newp(S ,N ,C1,C2)← (pattern(S), C1) ∨ (match(S ,N), C2)

12. plus
¯
c(X ,Y ,Z ,C)← plus(X ,Y ,Z), C

By unfolding clauses 10, 11, and 12 we get:

13. match
¯
c([0|S],N ,C) ← (pattern(S),N =0,C) ∨

(match(S ,M), plus(s(0),M ,N),C)

14. match
¯
c([1|S],N ,C) ← (N =0,C) ∨

(match(S ,M), plus(s(0),M ,N),C)

15. match
¯
c([2|S],N ,C)← match(S ,M), plus(s(0),M ,N),C

16. newp([0|S],N ,C1,C2) ← (pattern(S),C1) ∨

(pattern(S),N =0,C2) ∨

(match(S ,M), plus(s(0),M ,N),C2)

36 A. Pettorossi and M. Proietti

17. newp([1|S],N ,C1,C2) ← C1 ∨

(N =0,C2) ∨

(match(S ,M), plus(s(0),M ,N),C2)

18. newp([2|S],N ,C1,C2)← match(S ,M), plus(s(0),M ,N),C2

19. plus
¯
c(0,X ,X ,C)← C

20. plus
¯
c(s(X),Y , s(Z),C)← plus(X ,Y ,Z), C

By goal replacement using boolean laws, from clause 16 we get:

21. newp([0|S],N ,C1,C2) ← (pattern(S), (C1 ∨ (N =0,C2))) ∨

(match(S ,M), plus(s(0),M ,N),C2)

By performing folding and goal replacement steps (based on the replacement law

RegExprMatch ⊢ ∀ ((X = Y),C =←→ eq
¯
c(X ,Y ,C)) and other laws), we derive

the following program RegExprMatch1:

22. match(S ,N)← match
¯
c(S ,N , true)

23. match
¯
c([0|S],N ,C)← newp(S ,M , eq

¯
c(N , 0,C), plus

¯
c(s(0),M ,N ,C))

24. match
¯
c([1|S],N ,C)← eq

¯
c(N , 0,C)

25. match
¯
c([1|S],N ,C)← match

¯
c(S ,M , plus

¯
c(s(0),M ,N ,C))

26. match
¯
c([2|S],N ,C)← match

¯
c(S ,M , plus

¯
c(s(0),M ,N ,C))

27. newp([0|S],N ,C1,C2)←

newp(S ,M , (C1 ∨ eq
¯
c(N , 0,C2)), plus

¯
c(s(0),M ,N ,C2))

28. newp([1|S],N ,C1,C2)← C1

29. newp([1|S],N ,C1,C2)← eq
¯
c(N , 0,C2)

30. newp([1|S],N ,C1,C2)← match
¯
c(S ,M , plus

¯
c(s(0),M ,N ,C2))

31. newp([2|S],N ,C1,C2)← match
¯
c(S ,M , plus

¯
c(s(0),M ,N ,C2))

19. plus
¯
c(0,X ,X ,C)← C

32. plus
¯
c(s(X),Y , s(Z),C)← plus

¯
c(X ,Y ,Z ,C)

This program RegExprMatch1 is in continuation passing style, avoids redundant

calls in case of backtracking, and takes O(n) resolution steps in the worst case,

to find an occurrence of a substring of the form 0∗1, where n is the length of the

input string. Moreover, by our Theorem 1 of Section 6, for every goal g of the form

match(t1, t2), where t1 and t2 are any terms, g terminates in RegExprMatch iff g

terminates in RegExprMatch1 (see also Section 7.5).

7.4 Marking maximal elements

Let us consider the following marking problem. We are given: (i) a list L1 of the

form [x0, . . . , xr], where for i=0, . . . , r , xi is a list of integers, and (ii) an integer n

(≥ 0). A list l of s+1 elements will also be denoted by [l [0], . . . , l [s]]. We assume

that for i =0, . . . , r , the list xi has at least n+1 elements (and thus, the element

xi [n] exists) and we denote by m the maximum element of the set {x0[n], . . . , xr [n]}.

From the list L1 we want to compute a new list L2 of the form [y0, . . . , yr] such

that, for i=0, . . . , r , if xi [n]=m then yi [n]=⊤ else yi [n]=xi [n].

For instance, if L1 = [[3, 8,−2, 4], [1, 3], [1, 8, 1]] and n=1, then m=8, that is,

the maximum element in {8, 3}. Thus, L2 = [[3,⊤, 2, 4], [1, 3], [1,⊤, 1]].

Transformations of Logic Programs with Goals as Arguments 37

The following program MaxMark computes the desired list L2 from the list L1

and the value N :

1. mmark (N ,L1,L2)← max
¯
nth(N ,L1, 0,M), mark(N ,M ,L1,L2)

2. max
¯
nth(N , [],M ,M)←

3. max
¯
nth(N , [X |Xs],A,M) ← nth(N ,X ,XN), max (A,XN ,B),

max
¯
nth(N ,Xs,B ,M)

4. nth(0, [H |T],H)←

5. nth(s(N), [H |T],E)← nth(N ,T ,E)

6. mark (N ,M , [], [])←

7. mark (N ,M , [X |Xs], [Y |Ys]) ← mark
¯
nth(N ,M ,X ,Y),

mark(N ,M ,Xs,Ys)

8. mark
¯
nth(0,M , [H 1|T], [H 2|T])← (M =H 1,H 2=⊤)∨ (M 6=H 1,H 2=H 1)

9. mark
¯
nth(s(N),M , [H |T1], [H |T2])← mark

¯
nth(N ,M ,T1,T2)

10. max (X ,Y ,X)← X ≥ Y

11. max (X ,Y ,Y)← X < Y

When running this program, the input list L1 = [x0, . . . , xr] is traversed twice: (i) the

first time L1 is traversed to compute the maximum m of the set {x0[n], . . . , xr [n]}

(see the goalmax
¯
nth(N ,L1, 0,M) in the body of clause 1), and (ii) the second time

L1 is traversed to construct the list L2 by replacing, for i = 0, . . . , r , the element

xi [n] by ⊤ whenever xi [n]=m (see the goal mark(N ,M ,L1,L2)).

Now we use the transformation rules of Section 5 and from program MaxMark

we derive a new program MaxMark1 which: (i) is in continuation passing style,

(ii) preserves termination, and (iii) traverses the list L1 only once.

By the definition introduction rule we introduce the following new predicates

with goal arguments:

12. newp1(N ,L1,L2,A,M ,G,C1,C2) ←

max
¯
nth(N ,L1,A,M), (G=(mark(N ,M ,L1,L2), C1)), C2

13. newp2(N ,X ,M ,Y ,A,B ,G1,G2,C) ←

nth(N ,X ,XN), (G1=(mark
¯
nth(N ,M ,X ,Y),G2)),

max (A,XN ,B), C

14. max
¯
c(X ,Y ,Z ,C)← max (X ,Y ,Z), C

We unfold clauses 12, 13, and 14, and then we move leftwards term equalities (see

law 3 in Section 5 which allows us to rearrange term equalities). We get the following

clauses:

15. newp1(N , [], [],M ,M ,C1,C1,C2) ← C2

16. newp1(N , [X |Xs], [Y |Ys],A,M ,G,C1,C2)←

nth(N ,X ,XN), max (A,XN ,B), max
¯
nth(N ,Xs,B ,M),

(G=(mark
¯
nth(N ,M ,X ,Y), mark(N ,M ,Xs,Ys), C1)),

C2

17. newp2(0, [H 1|T],M , [H 2|T],A,B ,G1,G2,C) ←

(G1=(((M =H 1,H 2=⊤)∨ (M 6=H 1,H 2=H 1)),G2)),

max (A,H 1,B), C

38 A. Pettorossi and M. Proietti

18. newp2(s(N), [H |T1],M , [H |T2],A,B ,G1,G2,C) ←

nth(N ,T1,XN), (G1=(mark
¯
nth(N ,M ,T1,T2),G2)),

max (A,XN ,B), C

19. max
¯
c(X ,Y ,X ,C)← X ≥Y , C

20. max
¯
c(X ,Y ,Y ,C)← X <Y , C

By introducing and rearranging goal equalities, from clause 16 we get:

21. newp1(N , [X |Xs], [Y |Ys],A,M ,G,C1,C2)←

nth(N ,X ,XN), (G1=(mark
¯
nth(N ,M ,X ,Y), G2)),

max (A,XN ,B),

max
¯
nth(N ,Xs,B ,M), (G2=(mark (N ,M ,Xs,Ys), C1)),

(G=G1), C2

Finally, by folding steps and goal replacements based on the replacement laws for

the primitive predicates =, 6=, ≥, and <, we derive the following final program

MaxMark1:

22. mmark (N ,L1,L2)← newp1(N ,L1,L2, 0,M ,G, true,G)

15. newp1(N , [], [],M ,M ,C1,C1,C2) ← C2

23. newp1(N , [X |Xs], [Y |Ys],A,M ,G,C1,C2)←

newp2(N ,X ,M ,Y ,A,B ,G1,G2),

newp1(N ,Xs,Ys,B ,M ,G2,C1, eq
¯
c(G,G1,C2)))

24. newp2(0, [H 1|T],M , [H 2|T],A,B ,G1,G2,C) ←

eq
¯
c(G1, (eq

¯
c(M ,H 1, eq

¯
c(H 2,⊤,G2))∨

diff
¯
c(M ,H 1, eq

¯
c(H 2,H 1,G2))),

max
¯
c(A,H 1,B ,C))

25. newp2(s(N), [H |T1],M , [H |T2],A,B ,G1,G2,C) ←

newp2(N ,T1,M ,T2,A,B ,G1,G2,C)

26. max
¯
c(X ,Y ,X ,C)← geq

¯
c(X ,Y ,C)

27. max
¯
c(X ,Y ,Y ,C)← lt

¯
c(X ,Y ,C)

This final program MaxMark1 is in continuation passing style and traverses the

input list L1 only once. Moreover, by our Theorem 1 of Section 6, for every goal g

of the form mmark(t1, t2, t3), where t1, t2, and t3 are any terms, if g terminates in

MaxMark then g terminates in MaxMark1 (see also Section 7.5).

7.5 Correctness of the Program Derivations

Let us briefly comment on the correctness properties of the program derivations we

have presented in this Section 7.

In all program derivations of Section 7, when using the transformation rules, we

have complied with the restrictions indicated at Point (1) of Theorem 2 (Weak

Correctness). Thus, for every program derivation from an initial program P0 to a

final program Pk , we have that Pk is a refinement of P0 ∪Defk , where Defk is the

set of definitions introduced during the derivation. In particular, for every ordinary

goal g, if g terminates in P0, then g terminates in Pk and the most general answer

substitutions for g computed by P0 are the same as those computed by Pk .

In the examples of Sections 7.1, 7.2, and 7.3 we have also complied with the

Transformations of Logic Programs with Goals as Arguments 39

restrictions of Point (2) of Theorem 2 (Strong Correctness), because all applications

of the goal replacement rule are based on strong replacement laws. Thus, in these

examples we have that Pk is equivalent to P0∪Defk . In particular, for every ordinary

goal g, if g terminates in Pk then g terminates in P0 ∪Defk .

However, in the derivation of Section 7.4 we have not complied with the restric-

tions of Point (2) of Theorem 2. In particular, after unfolding clauses 12, 13, and

14, we have made leftward moves of term equalities by using law 3 of Section 5,

and law 3 is not a strong replacement law. Thus, there may be an ordinary goal

which does not terminate in the initial program MaxMark and terminates in the

final program MaxMark1. Indeed, the goal mmark (0, [H |T], []) does not terminate

in MaxMark and terminates in MaxMark1.

Finally, in all program derivations of this Section 7, we have complied with the

restrictions of Theorem 3 (Preservation of Safety), because all replacement laws we

have applied preserve safety. Thus, since every ordinary goal is safe in the ordinary

initial program P0, we have that every ordinary goal is safe in the final program Pk .

7.6 Experimental Results

In Table 1 below we have reported the speed-ups achieved in the examples presented

in this paper. The speed-up (see Column D) is defined as the ratio between the run-

time of the initial program (see Column A) and the run-time of the derived, final

program (see Column B). In Columns A and B we have also indicated the asymp-

totic worst-case time complexity of the initial and final programs, respectively. For

each program the complexity is measured in terms of the size of the proofs relative

to that program (or, equivalently, the number of LD-resolution steps performed

using that program). The input goal is indicated in Column C. We performed our

measurements by using BinProlog on a SUN workstation. This use is justified by

the fact that every ordinary goal g is safe both in the initial program P0 and in

the final program Pk . Thus, we can use any Prolog system which implements LD-

resolution (and, in particular, the BinProlog system) for computing the relations

P0 ⊢ g 7→ A and Pk ⊢ g 7→ A defined by our operational semantics.

In Column C of Table 1 we have that:

(1) t1 is a random binary tree with 100,000 nodes;

(2) t2 is a random binary tree with 100,000 nodes;

(3) t3 is a random binary tree with 20,000 nodes and each node is labeled by a

numeral of the form sk (0), where 0≤k≤500;

(4) t4 is a random binary tree with 20,000 nodes whose leaves are labeled by nu-

merals of the form sk (0), where 0≤k≤500;

(5) s is a random sequence of integers of the form: {0, 2}500001; and

(6) n1 is 700, l1 is a random list of 1000 lists, and each of these lists consists of 800

integers.

When measuring the speed-ups for the programs Deepest and DeepestOr in

Rows 1 and 2 we have computed the set of all answer substitutions, while for

the programs FlipCheck, TreeSum, RegExprMatch, and MaxMark in Rows 3–6 we

have computed one answer substitution only.

40 A. Pettorossi and M. Proietti

Table 1. Speed-ups of the Final Programs with respect to the Initial Programs

A. Initial Program : B. Final Program : C. Input goal D. Speed-up :a

Asymptotic Complexity Asymptotic Complexity
run-time(A)
run-time(B)

1. Deepest : O(n2)b Deepest2 : O(n) deepest (t1,N) 5.2
2. DeepestOr : O(n2)c Deepest2 : O(n) deepest (t2,N) 2.7

3. FlipCheck : O(n)d FlipCheck2 : O(n) flipcheck (t3,T) 1.0
4. TreeSum : O(n2)e TreeSum2: O(n) treesum(t4,N) 9.2

5. RegExprMatch : O(n2)f RegExprMatch1 : O(n) match(s,N) 1.8
6. MaxMark : O(n)g MaxMark1 : O(n) mmark(n1,l1,L2) 1.8

a run-time(A) denotes the run-time of the program in Column A for the input goal in Column C.
run-time(B) denotes the run-time of the program in Column B for the input goal in Column C.

b n is the number of nodes of the tree t1.
c n is the number of nodes of the tree t2.
d n is the number of nodes of the tree t3. For the goal flipcheck (t3,T), the program FlipCheck

visits the tree t3 twice, while the program FlipCheck2 visits t3 only once.
e n is the sum of the leaves of the tree t4.
f n is the length of the string s.
g n is the sum of the lengths of the lists in l1.

As already mentioned at the end of Section 2, the value of the speed-up relative

to the initial program Deepest (see Row 1) is higher than the value of the speed-up

relative to the initial program DeepestOr (see Row 2), and this is not due to the use

of goals as arguments, but to the introduction of a disjunction, thereby clauses 2

and 3 have been replaced by clause 16.

The absence of speed-up for the final program FlipCheck2 (see Row 3) with re-

spect to the initial program FlipCheck, is caused by the fact that the efficiency

improvements due to the elimination of the double traversal of the input tree t4

are cancelled out by the slowdown due to the introduction of multiple continua-

tion arguments. However, the experimental results for the initial programMaxMark

and the final program MaxMark1 (see Row 6) show that the elimination of double

traversals of data structures may yield a significant speed-up, especially when the

access to the data structure is very costly. Recall that the program MaxMark tra-

verses twice the list l1, and for each list l in the list l1, the program has to access

n1 elements of l . We have verified that the speed-up obtained by eliminating the

double traversal of l1 increases with the value of n1.

8 Final Remarks and Related Work

We have shown that a simple extension of logic programming, where variables may

range over goals and goals may appear as arguments of predicate symbols, can be

very useful for transforming programs and improving their efficiency.

We have presented a set of transformation rules for our extended logic language

and we have shown their correctness with respect to the operational semantics

given in Section 4. In particular, in Section 6 we have shown that, under suit-

Transformations of Logic Programs with Goals as Arguments 41

able conditions, our transformation rules preserve termination (see Theorem 1),

most general answer substitutions (see Theorem 2), and safety (see Theorem 3).

As in (Bossi and Cocco 1994), for our logic programs we consider an operational

semantics based on universal termination (that is, the operational semantics of

a goal is defined iff all LD-derivations starting from that goal are finite). Theo-

rem 2 extends the results presented in (Bossi and Cocco 1994) for definite logic

programs in that: (i) our language is an extension of definite logic programs, and

(ii) our folding rule is more powerful. Indeed, even restricting ourselves to pro-

grams that do not contain goal variables and goal arguments, we allow folding

steps which use clauses whose bodies contain disjunctions, and this is not possible

in (Bossi and Cocco 1994), where for applying the folding rule one is required to

use exactly one clause whose body is a conjunction of atoms. However, one should

notice that the transformations presented in (Bossi and Cocco 1994) preserve all

computed answer substitutions, while ours preserve the most general answer sub-

stitutions only.

Our logic language has some higher order capabilities because goals may occur as

arguments, but these capabilities are limited by the fact that the quantification of

function or predicate variables is not allowed. However, the objective of this paper

is not the design of a new higher order logic language, such as the ones presented

in (Chen et al. 1993; Hill and Gallagher 1998; Nadathur and Miller 1998). Rather,

our aim was to demonstrate the usefulness of some higher order constructs for

deriving efficient logic programs by transformation. Indeed, we have shown that

variables which range over goals are useful in the context of program transformation.

Moreover, the use of these variables may avoid the need for goal rearrangements

which could generate programs that do not preserve termination.

The approach we have proposed in this paper for avoiding incorrect goal re-

arrangements, is complementary to the approach described in (Bossi et al. 1996),

where the authors give sufficient conditions for goal rearrangements to preserve left

termination. (Recall that a program P is said to be left terminating iff all ground

goals universally terminate in P .) Thus, when these sufficient conditions are not

met or their validity cannot be proved, one may apply our technique which avoids

incorrect goal rearrangements by the introduction and the rearrangement of goal

equalities. Indeed, we have proved that the application of our technique preserves

universal termination, and thus, it preserves left termination as well.

The theory we have presented may also be used to give sound semantic foun-

dations to the development of logic programs which use higher order generaliza-

tions and continuations. In (Pettorossi and Proietti 1997; Tarau and Boyer 1990)

and (Pettorossi and Skowron 1987; Wand 1980) the reader may find some examples

of use of these techniques in the case of logic and functional programs, respectively.

We leave for future work the development of suitable strategies for directing the

use of the transformation rules we have proposed in this paper.

42 A. Pettorossi and M. Proietti

Acknowledgements

We would like to thank Michael Leuschel for pointing out an error in a preliminary

version of this paper and for his helpful comments. We also thank the anonymous

referees of the LoPSTr ’99 Workshop, where a preliminary version of this paper

was presented (Pettorossi and Proietti 2000), and the referees of the Theory and

Practice of Logic Programming Journal for their suggestions.

This work has been partially supported by MURST Progetto Cofinanziato ‘Tec-

niche Formali per la Specifica, l’Analisi, la Verifica, la Sintesi e la Trasformazione di

Sistemi Software’ (Italy), and Progetto Coordinato CNR ‘Verifica, Analisi e Trasfor-

mazione dei Programmi Logici’ (Italy).

Appendix

This Appendix contains:

(i) Proposition 4 and its proof,

(ii) the proofs of Lemmata 1, 2, 3, and 4 (based on Propositions 2 and 4),

(iii) Lemmata 5 and 6 and their proofs (based on Proposition 4), and

(iv) the proofs of the main results, that is, (iv.1) the proof of Theorem 1 (based

on Proposition 3, Lemmata 1, 2, 3, and 4), (iv.2) the proof of Theorem 2 (based

on Proposition 1 and Theorem 1), and (iv.3) the proof of Theorem 3 (based on

Lemmata 5 and 6).

For the proofs of Proposition 4 and Lemma 1 given below, we need the following

definition.

Definition 8 (Size and µ-measure of a Deduction Tree)

Let τ be a finite deduction tree. The size of τ is the number of its nodes, and the

µ-measure of τ , denoted µ(τ), is the pair 〈m, s〉, where m is the depth of τ and s

is the size of τ .

The values of the µ-measure can be lexicographically ordered, and we stipulate

that: 〈m1, s1〉 < 〈m2, s2〉 iff either m1<m2 or (m1=m2 and s1<s2).

Proposition 4

Let P be a program, g1, g2 be goals and let V be a set of variables.

(i) P ⊢ ∀V (g1 −→ g2) holds iff for every idempotent substitution ϑ such that

vars(ϑ) ∩ vars(g1, g2) ⊆ V , for every goal g such that vars(g) ∩ vars(g1, g2) ⊆ V ,

and for every b ∈ {true, false}, we have that:

if P ⊢ (g1ϑ ∧ g) ↓ b then P ⊢ (g2ϑ ∧ g) ↓ b.

(ii) P ⊢ ∀V (g1
>
−→ g2) holds iff for every idempotent substitution ϑ such that

vars(ϑ) ∩ vars(g1, g2) ⊆ V , for every goal g such that vars(g) ∩ vars(g1, g2) ⊆ V ,

and for every b ∈ {true, false}, we have that:

if P ⊢ (g1ϑ ∧ g) ↓m b then P ⊢ (g2ϑ ∧ g) ↓n b and m ≥ n.

(iii) The following two properties are equivalent:

(iii.1) for every goal context h[] such that vars(h[]) ∩ vars(g1, g2) ⊆ V ,

if h[g1] is safe in P then h[g2] is safe in P , and

Transformations of Logic Programs with Goals as Arguments 43

(iii.2) for every idempotent substitution ϑ such that vars(ϑ)∩vars(g1, g2) ⊆ V and

for every goal g such that vars(g) ∩ vars(g1, g2) ⊆ V ,

if g1ϑ ∧ g is safe in P then g2ϑ ∧ g is safe in P .

Proof of Proposition 4

(i) only-if part. Let us consider an idempotent substitution ϑ such that vars(ϑ) ∩

vars(g1, g2) ⊆ V . Let ϑ be {U1/u1, . . . ,Uk/uk}. Since ϑ is idempotent we have

that for i = 1, . . . , k , Ui 6∈ ui . Assume that for every goal g such that vars(g) ∩

vars(g1, g2) ⊆ V , and for every b ∈ {true, false}, there exists A1 ∈ P(Subst) such

that P ⊢ (g1ϑ ∧ g) 7→ A1. We have to show that there exists A2 ∈ P(Subst) such

that P ⊢ (g2ϑ ∧ g) 7→ A2 and A1=∅ iff A2=∅.

By suitably renaming the variables of the goal g1, without loss of generality we

may assume that, for i = 1, . . . , k , Ui 6∈ vars(g). Since ϑ is idempotent, by using

rules (teq2) and (geq) we may construct a proof of P ⊢ U1 = u1 ∧ . . . ∧ Uk = uk∧

g1 ∧ g 7→ B1, where B1=(ϑ◦A1). By the hypothesis that P ⊢ ∀V (g1 −→ g2) holds

and the hypotheses that vars(ϑ)∩ vars(g1, g2) ⊆ V and vars(g)∩ vars(g1, g2) ⊆ V ,

we have that there exists B2 ∈ P(Subst) such that P ⊢ U1 = u1 ∧ . . . ∧ Uk = uk∧

g2 ∧ g 7→ B2 has a proof and B1 = ∅ iff B2 = ∅. The only way of constructing

this proof is by using k times the rules (teq2) or (geq) and constructing a proof of

P ⊢ g2ϑ ∧ g 7→ A2, where B2=(ϑ◦A2). Thus, A1=∅ iff B1=∅ iff B2=∅ iff A2=∅.

(i) if part. We show a slightly more general fact than the if part of (i). We assume

that for every idempotent substitution ϑ such that vars(ϑ)∩ vars(g1, g2) ⊆ V , and

for every goal g such that vars(g)∩ vars(g1, g2) ⊆ V , if there exists A1 ∈ P(Subst)

such that P ⊢ (g1ϑ ∧ g) 7→ A1, then there exists A2 ∈ P(Subst) such that P ⊢

(g2ϑ ∧ g) 7→ A2 and A1 = ∅ iff A2 = ∅. Then we show that, for every goal context

h[] and substitution ϑ such that vars(h[]ϑ) ∩ vars(g1, g2) ⊆ V ,

if there exists B1 ∈ P(Subst) such that P ⊢ h[g1]ϑ 7→ B1

then there exists B2 ∈ P(Subst) such that P ⊢ h[g2]ϑ 7→ B2

and B1=∅ iff B2=∅.

We prove our thesis by induction on the measure µ(π) (see Definition 8) of the

proof π of P ⊢ h[g1]ϑ 7→ B1(recall that a proof is a particular finite deduction

tree). We reason by cases on the structure of the goal context h[]. We consider the

following four cases only. The others are similar and we omit them.

- Case 1: h[] is ∧ g3.

Assume that P ⊢ g1ϑ∧g3ϑ 7→ B1. Then, by hypothesis, we get: P ⊢ g2ϑ∧g3ϑ 7→ B2

for some B2 ∈ P(Subst) such that B1=∅ iff B2=∅.

- Case 2: h[] is t1= t2 ∧ g3[].

Assume that there exists a proof π1 of P ⊢ t1ϑ= t2ϑ ∧ g3[g1]ϑ 7→ B1.

If t1ϑ and t2ϑ are not unifiable then, by rule (teq1), B1 is ∅ and there exists a proof

of P ⊢ t1ϑ= t2ϑ ∧ g3[g2]ϑ 7→ ∅.

If t1ϑ and t2ϑ are unifiable then, by rule (teq2), B1 is of the form (mgu(t1ϑ, t2ϑ)◦C1)

for some C1 ∈ P(Subst) and there exists a proof π2 of P ⊢ g3[g1]ϑmgu(t1ϑ, t2ϑ) 7→

C1. Since µ(π2) < µ(π1), by induction hypothesis P ⊢ g3[g2]ϑmgu(t1ϑ, t2ϑ) 7→ C2

has a proof for some C2 ∈ P(Subst) and C1 = ∅ iff C2 = ∅. Thus, by rule (teq2),

44 A. Pettorossi and M. Proietti

there exists B2 ∈ P(Subst) such that P ⊢ t1ϑ= t2ϑ ∧ g3[g2]ϑ 7→ B2 where B2 =

mgu(t1ϑ, t2ϑ) ◦ C2 and B1=∅ iff C1=∅ iff C2=∅ iff B2=∅.

- Case 3: h[] is (G=g3[]) ∧ g4.

Assume that P ⊢ ((G = g3[g1]) ∧ g4)ϑ 7→ B1 has a proof of depth m and size s .

Then, Gϑ is a goal variable not occurring in g3[g1]ϑ, the node P ⊢ (Gϑ=g3[g1]ϑ)∧

g4ϑ 7→ B1 has been obtained by applying rule (geq), B1 is {Gϑ/g3[g1]ϑ}◦C1 for

some C1 ∈ P(Subst), and P ⊢ g4ϑ{Gϑ/g3[g1]ϑ} 7→ C1 has a proof of depth

m and size s − 1. Now, suppose that Gϑ occurs in g4ϑ n times. Thus, also g1

will occur n times in g4ϑ{Gϑ/g3[g1]ϑ}. Since 〈m, s−1〉 < 〈m, s〉, by applying the

induction hypothesis n times, we have that there exists C2 ∈ P(Subst) such that

P ⊢ g4ϑ{Gϑ/g3[g2]ϑ} 7→ C2 has a proof and C1 = ∅ iff C2 = ∅. By using rule

(geq), we can construct a proof of P ⊢ Gϑ = g3[g2]ϑ ∧ g4ϑ 7→ B2, where B2 is

{Gϑ/g3[g2]ϑ}◦C2. Thus, B1=∅ iff C1=∅ iff C2=∅ iff B2=∅.

- Case 4: h[] is p(u1, . . . , ui [], . . . , uk) ∧ g3.

Assume that P ⊢ p(u1ϑ, . . . , ui [g1]ϑ, . . . , ukϑ) ∧ g3ϑ 7→ B1 has a proof of depth m

and size s . Then, in the last step of this proof rule (at) has been used, B1 is of

the form C1 ↾vars(p(u1ϑ, . . . , ui [g1]ϑ, . . . , ukϑ) ∧ g3ϑ) for some C1 ∈ P(Subst), and

P ⊢ body{U1/u1ϑ, . . . ,Ui/ui [g1]ϑ, . . . ,Uk/ukϑ} ∧ g3ϑ 7→ C1 has a proof of depth

m−1 and size s−1, where p(U1, . . . ,Ui , . . . ,Uk)← body is a renamed apart clause

of P . Since 〈m−1, s−1〉 < 〈m, s〉, by induction hypothesis we have that there

exists C2 ∈ P(Subst) such that P ⊢ body{U1/u1ϑ, . . . ,Ui/ui [g2]ϑ, . . . ,Uk/ukϑ} ∧

g3ϑ 7→ C2 has a proof and C1 = ∅ iff C2 = ∅. Thus, by using rule (at), we can

construct a proof of P ⊢ p(u1ϑ, . . . , ui [g2]ϑ, . . . , ukϑ) ∧ g3ϑ 7→ B2, where B2 is

C2 ↾ vars(p(u1ϑ, . . . , ui [g2]ϑ, . . . , ukϑ) ∧ g3ϑ) and B1 = ∅ iff C1 = ∅ iff C2 = ∅ iff

B2=∅.

(ii) The proof is similar to the one of (i) and we omit it.

(iii) Suppose that (iii.1) holds and suppose also that ϑ is an idempotent substitution

such that vars(ϑ)∩vars(g1, g2) ⊆ V , g is a goal such that vars(g)∩vars(g1, g2) ⊆ V ,

and g1ϑ ∧ g is safe in P . We have to prove that g2ϑ ∧ g is safe in P .

Suppose that g2ϑ ∧ g is not safe in P . Then there exist A ∈ P(Subst) and a

deduction tree τ1 for P ⊢ g2ϑ ∧ g 7→ A such that a leaf of τ1 is of the form

P ⊢ g3 7→ B and g3 is stuck. Let ϑ be the substitution {U1/u1, . . . ,Uk/uk} such

that, for i = 1, . . . , k , Ui 6∈ ui . Without loss of generality, we may assume that,

for i = 1, . . . , k , Ui 6∈ vars(g). By using rules (teq2) and (geq), we can construct

a deduction tree τ2 for P ⊢ U1 = u1 ∧ . . . ∧ Uk = uk ∧ g2 ∧ g 7→ A such that

τ2 has P ⊢ g3 7→ B at a leaf. Thus, U1 = u1 ∧ . . . ∧ Uk = uk ∧ g2 ∧ g is not

safe in P . Since vars(ϑ) ∩ vars(g1, g2) ⊆ V and vars(g) ∩ vars(g1, g2) ⊆ V , we

have that vars(U1=u1 ∧ . . . ∧ Uk =uk ∧ g) ∩ vars(g1, g2) ⊆ V and, thus, by (iii.1)

U1=u1∧. . .∧Uk =uk∧g1∧g is not safe in P . None of the goals U1=u1, . . . ,Uk =uk

is stuck and, thus, a descendant node of g1ϑ∧ g is stuck, that is, g1ϑ∧ g is not safe

in P .

The proof that (iii.2) implies (iii.1) can be done by induction on deduction trees

ordered by the µ-measure. We omit this proof.

Transformations of Logic Programs with Goals as Arguments 45

Proof of Lemma 1

Recall that, by definition, for every b ∈ {true, false}, P ⊢ g ↓m b means that there

exists A ∈ P(Subst) such that P ⊢ g 7→ A has a proof of depth m and b= true iff

A 6=∅. We prove the thesis by induction on the µ-measure (see Definition 8) of the

proof of P ⊢ g 7→ A which, by hypothesis, has depth m and size s .

Our induction hypothesis is that, for all 〈m1, s1〉 < 〈m, s〉, for all goals g, and for

all A1 ∈ P(Subst), if P ⊢ g 7→ A1 has a proof of depth m1 and size s1, then there

exists B1 ∈ P(Subst) such that NewP ⊢ g 7→ B1 has a proof of depth n1, with

m1 ≥ n1, and A1 = ∅ iff B1 = ∅. We have to show that there exists B ∈ P(Subst)

such that NewP ⊢ g 7→ B has a proof of depth n, with m ≥ n, and A = ∅ iff

B = ∅. We proceed by cases on the structure of g. We first notice that, since ∧ is

associative with neutral element true, the grammar for generating goals given in

Section 2 can be replaced by the following one:

g ::= G ∧ g1 | true | false ∧ g1 | (t1= t2) ∧ g1 | (g1=g2) ∧ g3 |

p(u1, . . . , um) ∧ g1 | (g1 ∨ g2) ∧ g3

We consider the following two cases only. The others are similar and we omit them.

- Case 1: g is (g1=g2)∧g3. Assume that P ⊢ (g1=g2)∧g3 7→ A has a proof of depth

m and size s . Then, g1 is a goal variable, say G, G 6∈ vars(g2), P ⊢ (G=g2)∧g3 7→

A has been derived by applying rule (geq), and there exists A1 ∈ P(Subst) such

that A=({G/g2} ◦ A1) and P ⊢ g3{G/g2} 7→ A1 has a proof of depth m and size

s − 1. Since 〈m, s−1〉 < 〈m, s〉, by induction hypothesis there exists B1 ∈ P(Subst)

such that NewP ⊢ g3{G/g2} 7→ B1 has a proof of depth n with m ≥ n and

A1= ∅ iff B1 = ∅. By rule (geq), we have that NewP ⊢ (G = g2) ∧ g3 7→ B , where

B = ({G/g2} ◦ B1), has a proof of depth n with m ≥ n. By the definition of the ◦

operator, we have that A=∅ iff A1=∅ iff B1=∅ iff B=∅.

- Case 2: g is p(u1, . . . , um) ∧ g1. Assume that P ⊢ p(u1, . . . , um) ∧ g1 7→ A has

a proof of depth m and size s . Then, P ⊢ p(u1, . . . , um) ∧ g1 7→ A has been

derived by using rule (at), and there exists A1 ∈ P(Subst) such that A = (A1 ↾

vars(p(u1, . . . , uk) ∧ g1)) and P ⊢ bdr{V1/u1, . . . ,Vm/um} ∧ g1 7→ A1 has a proof

of depth m− 1 and size s− 1, where p(V1, . . . ,Vm) ← bdr is a renamed apart

clause of P . Now, by the hypothesis that P ⊢ ∀V1, . . . ,Vm (bdr
>
−→ newbdr), by

the fact that vars({V1/u1, . . . ,Vm/um}) ∩ vars(bdr , newbdr) ⊆ {V1, . . . ,Vm} and

vars(g1) ∩ vars(bd r , newbdr) ⊆ {V1, . . . ,Vm}, and by Proposition 4 (ii), we have

that there exists A2 ∈ P(Subst) such that P ⊢ newbdr{V1/u1, . . . , Vm/um}∧g1 7→

A2 has a proof of depth n1 and size s1, with m−1 ≥ n1 and A1 = ∅ iff A2 = ∅.

Since 〈n1, s1〉 < 〈m, s〉, by induction hypothesis there exists B1 ∈ P(Subst) such

that NewP ⊢ newbdr{V1/u1, . . . , Vm/um} ∧ g1 7→ B1 has a proof of depth n2

with n1 ≥ n2 and A2=∅ iff B1=∅. Since hd r is p(V1, . . . ,Vm), by using rule (at)

we can construct a proof for NewP ⊢ p(u1, . . . , um) ∧ g1 7→ B of depth n = n2+1

where B = (B1 ↾ vars(p(u1, . . . , uk) ∧ g1)). Thus, m ≥ n and, by the definition of

the ↾ operator, A=∅ iff A1=∅ iff A2=∅ iff B1=∅ iff B=∅.

Proof of Lemma 2

(i) Let us consider the transformation sequence Pi , . . . ,Pj . Let us also consider

46 A. Pettorossi and M. Proietti

any index h in {i , . . . , j−1} and any two clauses c1: hd ← bd in program Ph and

c2: hd ← newbd in program Ph+1. Since Pi , . . . ,Pj is constructed by using the

unfolding rule only, we have that:

bd = b[p(u1, . . . , um)] and newbd = b[g{V1/u1, . . . ,Vm/um}]

for some clause p(V1, . . . ,Vm)← g in Pi , some goal context b[], and some m-tuple

of arguments (u1, . . . , um). To prove this lemma we have to show that:

Pi ⊢ ∀V (b[p(u1, . . . , um)]
>
−→ b[g{V1/u1, . . . ,Vm/um}]) (α)

where V = vars(hd). Now, for every clause p(V1, . . . ,Vm)← g in Pi we have that:

Pi ⊢ ∀V1, . . . ,Vm (p(V1, . . . ,Vm)
>
−→ g) (β)

From (β), by Point (iv′) of Proposition 2 we get:

Pi ⊢ ∀W (p(u1, . . . , um)
>
−→ g{V1/u1, . . . ,Vm/um}) (γ)

where W = vars(u1, . . . , um). From (γ), by Point (i′) of Proposition 2 we get:

Pi ⊢ ∀Z (b[p(u1, . . . , um)]
>
−→ b[g{V1/u1, . . . ,Vm/um}]) (δ)

where Z = vars(b[p(u1, . . . , um)]). From (δ), by Points (ii′) and (iii′) of Proposi-

tion 2 we get (α), as desired.

(ii) In order to prove Point (ii) of the thesis, we first show the following property.

Property (A): For every clause d : newp(V1, . . . ,Vm) ← g in Defk which is used

for folding during the construction of the sequence Pj , . . . ,Pk , we have that the

replacement law Pj ⊢ ∀V1, . . . ,Vm (newp(V1, . . . ,Vm) =←→ g) holds.

Property (A) is a consequence of the fact that during the sequence Pi , . . . ,Pj we

have performed the parallel leftmost unfolding of every clause which is used for

folding during Pj , . . . ,Pk .

Now we prove Point (ii) of the thesis by cases with respect to the transformation

rule which is used to derive program Ph+1 from program Ph , for h = j , . . . , k−1.

- Case 1: Ph+1 is derived from Ph by the unfolding rule using a clause which is

among those also used for folding (in a previous transformation step). The thesis

follows from Property (A) and Points (i′), (ii′), (iii′), and (iv′) of Proposition 2.

- Case 2: Ph+1 is derived from Ph by the unfolding rule using a clause c which

is not among those used for folding. Thus, c belongs to P0 because the only way

of introducing in the body of a clause an occurrence of a non-primitive predicate

which is not defined in P0, is by an application of the folding rule. Hence, c belongs

to Pj as well. Now, for every clause c of the form: p(V1, . . . ,Vm) ← g in Pj we

have that:

Pj ⊢ ∀V1, . . . ,Vm (p(V1, . . . ,Vm)
>
−→ g)

The thesis follows from Property (A) and Points (i′), (ii′), (iii′), and (iv′) of Propo-

sition 2.

- Case 3: Ph+1 is derived from Ph by the folding rule. The thesis follows from

Property (A) and Points (i′), (ii′), (iii′), and (iv′) of Proposition 2.

- Case 4: Ph+1 is derived from Ph by the goal replacement rule based on a replace-

ment law of the form P0 ⊢ ∀V (g1
>
−→ g2). The thesis follows from Points (i′), (ii′),

Transformations of Logic Programs with Goals as Arguments 47

and (iii′) of Proposition 2 and the fact that also Pj ⊢ ∀V (g1
>
−→ g2) holds, because

the non-primitive predicates of {g1, g2} are defined in P0, and for each predicate p

defined in P0, the definition of p in P0 is equal to the definition of p in Pj .

Proof of Lemma 3

We assume that there exists A ∈ P(Subst) such that NewP ⊢ g 7→ A has a proof

of size n. We have to show that there exists B ∈ P(Subst) such that P ⊢ g 7→ B

holds, and A= ∅ iff B = ∅. We proceed by induction on n. We assume that, for all

m < n, for all goals h, and for all A1 ∈ P(Subst), if NewP ⊢ h 7→ A1 has a proof

of size m, then P ⊢ h 7→ B1 has a proof for some B1 ∈ P(Subst) such that A1=∅

iff B1=∅. Now we proceed by cases on the structure of g. We consider the following

two cases. The other cases are similar and we omit them.

- Case 1: g is (g1 = g2) ∧ g3. Assume that NewP ⊢ (g1 = g2) ∧ g3 7→ A has a

proof of size n. Then, g1 is a goal variable, say G, G 6∈ vars(g2), and NewP ⊢

(G = g2) ∧ g3 7→ A has been derived by applying rule (geq). Thus, there exists

A1 ∈ P(Subst) such that A is ({G/g2} ◦ A1) and NewP ⊢ g3{G/g2} 7→ A1 has a

proof of size n−1. By induction hypothesis there exists B1 ∈ P(Subst) such that

P ⊢ g3{G/g2} 7→ B1 has a proof and A1 = ∅ iff B1 = ∅. By using rule (geq), we

can construct a proof of P ⊢ (G = g2) ∧ g3 7→ B where B is {G/g2} ◦ B1. By the

definition of the ◦ operator, we have that A=∅ iff A1=∅ iff B1=∅ iff B=∅.

- Case 2: g is p(u1, . . . , um)∧g1. Assume that NewP ⊢ p(u1, . . . , um)∧g1 7→ A has a

proof of size n. Then, NewP ⊢ p(u1, . . . , um)∧g1 7→ A has been derived by applying

rule (at), and there exists a proof of size n − 1 of NewP ⊢ newbdr{V1/u1, . . . ,

Vm/um} ∧ g1 7→ A1 where p(V1, . . . ,Vm) ← newbdr is a renamed apart clause

of NewP and A is (A1 ↾ vars(p(u1, . . . , uk) ∧ g1)). By induction hypothesis there

exists a proof of P ⊢ newbdr{V1/u1, . . . , Vm/um} ∧ g1 7→ B1 such that A1 = ∅

iff B1 = ∅. Now, by the hypothesis that P ⊢ ∀V1, . . . ,Vm (newbdr −→ bdr), by

the fact that vars({V1/u1, . . . ,Vm/um}) ∩ vars(bdr , newbdr) ⊆ {V1, . . . ,Vm} and

vars(g1)∩vars(bdr , newbdr) ⊆ {V1, . . . ,Vm}, and by Proposition 4 (i), we have that

P ⊢ bdr{V1/u1, . . . ,Vm/um} ∧ g1 7→ B2 has a proof for some B2 ∈ P(Subst) such

that B1=∅ iff B2=∅. Since hd r is p(V1, . . . ,Vm), by using rule (at) we can construct

a proof for P ⊢ p(u1, . . . , um) ∧ g1 7→ B where B is (B2 ↾vars(p(u1, . . . , uk) ∧ g1)).

By the definition of the ↾ operator, we have that A=∅ iff A1=∅ iff B1=∅ iff B2=∅

iff B=∅.

Proof of Lemma 4

If Ph+1 is derived from Ph by the unfolding rule using a clause of the form

p(V1, . . . ,Vm)← g in P0 ∪ Defk , then the thesis follows from Points (i), (ii), (iii),

and (iv) of Proposition 2, and the fact that the replacement law P0 ∪ Defk ⊢

∀V1, . . . ,Vm (g −→ p(V1, . . . ,Vm)) holds. Similarly, if Ph+1 is derived from Ph by

the folding rule using a clause of the form newp(V1, . . . ,Vm)← g in Defk , then the

thesis follows from Points (i), (ii), (iii), and (iv) of Proposition 2, and the fact that

the replacement law P0 ∪ Defk ⊢ ∀V1, . . . ,Vm (newp(V1, . . . ,Vm) −→ g) holds.

48 A. Pettorossi and M. Proietti

Finally, if Ph+1 is derived from Ph by the goal replacement rule, then the thesis fol-

lows from the fact that it is based on a strong replacement law and from Points (i),

(ii), and (iii) of Proposition 2.

The following Lemma 5 and Lemma 6 are necessary for proving that a transforma-

tion sequence preserves safety (see Theorem 3).

Lemma 5

Let P and NewP be programs of the form:

P : hd1 ← bd1 NewP : hd1 ← newbd1

...
...

hds ← bds hds ← newbd s

Suppose that for r = 1, . . . , s and for every goal context b[] such that vars(b[]) ∩

vars(bdr , newbdr) ⊆ vars(hdr), we have that if b[bd r] is safe in P then b[newbdr] is

safe in P . Then, for every goal g, if g is safe in P then g is safe in NewP .

Proof of Lemma 5

We assume that g is not safe in NewP and we prove that g is not safe in P .

Since g is not safe in NewP, there exist A ∈ P(Subst) and a deduction tree τ for

NewP ⊢ g 7→ A such that a leaf of τ is of the form NewP ⊢ gstuck 7→ B and

the goal gstuck is stuck. We proceed by induction on the size of τ . We consider the

following two cases only. The others are similar and we omit them.

- Case 1: g is (g1 = g2) ∧ g3. Assume that the deduction tree τ for NewP ⊢

(g1=g2)∧g3 7→ A has size s . If g1 is not a goal variable or it is a goal variable

occurring in g2, then (g1=g2)∧ g3 is not safe in P . Otherwise, g1 is a goal variable,

say G, and G 6∈ vars(g2). Thus, NewP ⊢ (G = g2) ∧ g3 7→ A has been derived by

applying rule (geq), and there exists A1 ∈ P(Subst) such that: (a) the subtree τ1 of

τ rooted at NewP ⊢ g3{G/g2} 7→ A1 has size s−1, and (b) NewP ⊢ gstuck 7→ B is

a leaf of τ1. By induction hypothesis g3{G/g2} is not safe in P and, by rule (geq),

also (G=g2) ∧ g3 is not safe in P .

- Case 2: g is p(u1, . . . , um) ∧ g1. Assume that the deduction tree τ for NewP ⊢

p(u1, . . . , um) ∧ g1 7→ A has size s . Thus, NewP ⊢ p(u1, . . . , um) ∧ g1 7→ A

has been derived by using rule (at), and there exist A′ ∈ P(Subst) and a re-

named apart clause p(V1, . . . ,Vm) ← newbdr of NewP such that: (a) the sub-

tree τ1 of τ rooted at NewP ⊢ newbdr{V1/u1, . . . ,Vm/um} ∧ g1 7→ A′ has

size s − 1 and (b) NewP ⊢ gstuck 7→ B is a leaf of τ1. By induction hypoth-

esis newbdr{V1/u1, . . . ,Vm/um} ∧ g1 is not safe in P . Now, by hypothesis, by

the fact that vars({V1/u1, . . . ,Vm/um}) ∩ vars(bdr , newbdr) ⊆ {V1, . . . ,Vm} and

vars(g1) ∩ vars(bdr , newbdr) ⊆ {V1, . . . ,Vm}, and by Proposition 4 (iii), we have

that bdr{V1/u1, . . . ,Vm/um}∧ g1 is not safe in P . Since p(V1, . . . ,Vm)← bdr is a

renamed apart clause of P , by rule (at), also p(u1, . . . , um)∧g1 is not safe in P .

Transformations of Logic Programs with Goals as Arguments 49

Lemma 6

Let P0, . . . ,Pk be a transformation sequence and let Defk be the set of definitions

introduced during that sequence. For h = 0, . . . , k−1, for any pair of clauses c1:

hd ← bd in program Ph and c2: hd ← newbd in program Ph+1, such that c2 is

derived from c1 by an application of the unfolding rule, or folding rule, or goal

replacement rule which preserves safety, and for every goal context b[] such that

vars(b[]) ∩ vars(bd , newbd) ⊆ vars(hd), we have that:

if b[bd] is safe in P0 ∪Defk then b[newbd] is safe in P0 ∪Defk .

Proof of Lemma 6

First we notice that, for every clause hd0 ← bd0 in P0 ∪ Defk and for every goal

context b[] such that vars(b[]) ∩ vars(bd0) ⊆ vars(hd0), we have the following:

Property (S): b[hd0] is safe in P0 ∪Defk iff b[bd0] is safe in P0 ∪Defk .

Now, take any h = 0, . . . , k −1. We reason by cases on the transformation rule

applied for deriving the clause hd ← newbd in Ph+1 from the clause hd ← bd in

Ph .

If hd ← newbd is derived from hd ← bd by the unfolding rule using a clause

hd0 ← bd0 in P0 ∪ Defk , then for some goal context g[], bd is of the form g[hd0ϑ]

and newbd is of the form g[bd0ϑ]. Then the thesis follows from the only-if part of

Property (S).

Similarly, if hd ← newbd is derived from hd ← bd by the folding rule using a

clause hd0 ← bd0 in P0 ∪ Defk , then for some goal context g[], bd is of the form

g[bd0ϑ] and newbd is of the form g[hd0ϑ]. Then the thesis follows from the if part

of Property (S).

Finally, if hd ← newbd is derived from hd ← bd by the goal replacement rule, then

the thesis follows from the hypothesis that every application of the goal replacement

rule preserves safety.

Proof of Theorem 1 (Preservation of Successes and Failures).

By Proposition 3, without loss of generality we may assume that the admissible

sequence P0, . . . ,Pk is ordered. Let Pj be the program obtained at the end of the

second subsequence of P0, . . . ,Pk , that is, after unfolding every clause in Defk which

is used for folding. Point (1) of this theorem is a consequence of the following two

facts:

(F1) by Lemma 1 and Point (i) of Lemma 2, we have that, for every goal g and for

every b ∈ {true, false}, if P0 ∪Defk ⊢ g ↓m b then Pj ⊢ g ↓n1 b with m ≥ n1,

and

(F2) by Lemma 1 and Point (ii) of Lemma 2, we have that: for every goal g and

for every b ∈ {true, false}, if Pj ⊢ g ↓n1 b then Pk ⊢ g ↓n b with n1 ≥ n.

Point (2) of this theorem is a straightforward consequence of Lemmata 3 and 4.

Proof of Theorem 2 (Correctness Theorem).

(1) First we prove that P0 ∪ Defk ⊑ Pk . Let g be an ordinary goal and let A be

a set of substitutions such that P0 ∪ Defk ⊢ g 7→ A. We have to prove that there

50 A. Pettorossi and M. Proietti

exists B ∈ P(Subst) such that Pk ⊢ g 7→ B and A and B are equally general with

respect to g.

Since P0 ∪ Defk ⊢ g 7→ A, by definition there exists b ∈ {true, false} such that

P0 ∪ Defk ⊢ g ↓ b. By Point (1) of Theorem 1, we have that Pk ⊢ g ↓ b and, thus,

there exists B ∈ P(Subst) such that Pk ⊢ g 7→ B .

In order to prove that A and B are equally general with respect to g, we have to

show that: (a) for every substitution α ∈ A there exists a substitution β ∈ B such

that gα is an instance of gβ, and (b) for every β ∈ B there exists α ∈ A such that

gβ is an instance of gα.

(a) Let α be a substitution in A. From P0 ∪Defk ⊢ g 7→ A, by Proposition 1 (ii.1),

we have that P0 ∪ Defk ⊢ gα ↓ true. Thus, by Point (1) of Theorem 1, we have

that Pk ⊢ gα ↓ true. Since Pk ⊢ g 7→ B holds, by Proposition 1 (ii.1), there exists

a substitution β ∈ B such that gα is an instance of gβ.

(b) Let β be a substitution in B . From Pk ⊢ g 7→ B , by Proposition 1 (ii.1), we have

that Pk ⊢ gβ ↓ true. From P0 ∪Defk ⊢ g 7→ A, by Proposition 1 (i), we have that

either P0 ∪Defk ⊢ gβ ↓ true or P0 ∪Defk ⊢ gβ ↓ false . Now P0 ∪Defk ⊢ gβ ↓ false

is impossible because by Point (1) of Theorem 1, we would have Pk ⊢ gβ ↓ false.

Thus, P0 ∪ Defk ⊢ gβ ↓ true. Since P0 ∪ Defk ⊢ g 7→ A, by Proposition 1 (ii.1),

there exists α ∈ A such that gβ is an instance of gα.

(2) We have to prove that if all applications of the goal replacement rule in the

sequence P0, . . . ,Pk are based on strong replacement laws, then P0 ∪ Defk ≡ Pk .

Since P0 ∪Defk ⊑ Pk has been shown at Point (1) of this proof, it remains to show

that: Pk ⊑ P0 ∪ Defk . The proof is similar to that of Point (1) and it is based on

Point (2) of Theorem 1 and Proposition 1 (ii.1).

Proof of Theorem 3 (Preservation of Safety).

Let hd ← bd be a clause in P0 ∪Defk and let hd ← newbd be the clause in Pk with

the same head. By Lemma 6 we have that, for every goal context b[] such that

vars(b[]) ∩ vars(bd , newbd) ⊆ vars(hd), if b[bd] is safe in P0 ∪Def k then b[newbd]

is safe in P0 ∪ Defk . Then, by Lemma 5, for every goal g, if g is safe in P0 ∪Defk

then g is safe in Pk .

References

Apt, K. R. 1997. From Logic Programming to Prolog. Prentice Hall, London, UK.

Bossi, A. and Cocco, N. 1994. Preserving universal termination through unfold/fold. In
Proceedings ALP ’94. Lecture Notes in Computer Science 850. Springer-Verlag, Berlin,
269–286.

Bossi, A., Cocco, N., and Etalle, S. 1992. Transforming normal programs by replace-
ment. In Proceedings 3rd International Workshop on Meta-Programming in Logic,
Meta ’92, Uppsala, Sweden, A. Pettorossi, Ed. Lecture Notes in Computer Science 649.
Springer-Verlag, Berlin, 265–279.

Bossi, A., Cocco, N., and Etalle, S. 1996. Transforming left-terminating programs:
The reordering problem. In Logic Program Synthesis and Transformation, Proceedings
LoPSTr ’95, Utrecht, The Netherlands, M. Proietti, Ed. Lecture Notes in Computer
Science 1048. Springer, Berlin, 33–45.

Transformations of Logic Programs with Goals as Arguments 51

Burstall, R. M. and Darlington, J. 1977. A transformation system for developing
recursive programs. Journal of the ACM 24, 1 (January), 44–67.

Chen, W., Kifer, M., and Warren, D. S. 1993. HILOG: A foundation for higher-order
logic programming. Journal of Logic Programming 15, 3, 187–230.

Hill, P. M. and Gallagher, J. 1998. Meta-programming in logic programming. In
Handbook of Logic in Artificial Intelligence and Logic Programming, D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, Eds. Vol. 5. Oxford University Press, Oxford, UK,
421–497.

Jørgensen, J., Leuschel, M., and Martens, B. 1997. Conjunctive partial deduction
in practice. In Logic Program Synthesis and Transformation, Proceedings of LoPSTr
’96, Stockholm, Sweden, J. Gallagher, Ed. Lecture Notes in Computer Science 1207.
Springer-Verlag, Berlin, 59–82.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin. Second
Edition.

Nadathur, G. and Miller, D. A. 1998. Higher-order logic programming. In Handbook
of Logic in Artificial Intelligence and Logic Programming, D. M. Gabbay, C. J. Hogger,
and J. A. Robinson, Eds. Vol. 5. Oxford University Press, Oxford, UK, 499–590.

Pettorossi, A. and Proietti, M. 1994. Transformation of logic programs: Foundations
and techniques. Journal of Logic Programming 19,20, 261–320.

Pettorossi, A. and Proietti, M. 1997. Flexible continuations in logic programs via
unfold/fold transformations and goal generalization. In Proceedings of the 2nd ACM
SIGPLAN Workshop on Continuations, January 14, 1997, ENS, Paris (France) 1997,
O. Danvy, Ed. BRICS Notes Series, N6-93-13, Aahrus, Denmark, 9.1–9.22.

Pettorossi, A. and Proietti, M. 2000. Transformation rules for logic programs with
goals as arguments. In Proceedings 9th International Workshop on Logic-based Program
Synthesis and Transformation, LoPSTr ’99, Venezia, Italy, A. Bossi, Ed. Lecture Notes
in Computer Science 1817. Springer, Berlin, 177–196.

Pettorossi, A. and Skowron, A. 1987. Higher order generalization in program deriva-
tion. In International Joint Conference on Theory and Practice of Software Develop-
ment, TAPSOFT ’87. Lecture Notes in Computer Science 250. Springer-Verlag, Berlin,
182–196.

Sands, D. 1996. Total correctness by local improvement in the transformation of func-
tional programs. ACM Toplas 18, 2, 175–234.

Sterling, L. S. and Shapiro, E. 1986. The Art of Prolog. The MIT Press, Cambridge,
Massachusetts.

Tamaki, H. and Sato, T. 1984. Unfold/fold transformation of logic programs. In Pro-
ceedings of the Second International Conference on Logic Programming, S.-Å. Tärnlund,
Ed. Uppsala University, Uppsala, Sweden, 127–138.

Tarau, P. 1996. BinProlog 5.25. User Guide. Technical report, University of Moncton,
Moncton, Canada, E1A 3E9.

Tarau, P. and Boyer, M. 1990. Elementary logic programs. In Proceedings PLILP’90,
P. Deransart and J. Ma luszyński, Eds. Lecture Notes in Computer Science 456. Springer-
Verlag, Berlin, 159–173.

Vasak, T. and Potter, J. 1986. Characterization of terminating logic programs. In
Proceedings of the Third IEEE Int’l Symp. on Logic Programming, Salt Lake City,
Utah. IEEE Comp. Soc. Press, Washington, DC, 140–147.

Wand, M. 1980. Continuation-based program transformation strategies. Journal of the
ACM 27, 1, 164–180.

Warren, D. H. D. 1982. Higher-order extensions to Prolog: are they needed? In Machine
Intelligence, Y.-H. P. J.E. Hayes, D. Michie, Ed. Vol. 10. Ellis Horwood Ltd., Chichester,
441–454.

52 A. Pettorossi and M. Proietti

Winskel, G. 1993. The Formal Semantics of Programming Languages: An Introduction.
The MIT Press, Cambridge, Massachusetts.

	Introduction
	A Motivating Example
	The Extended Logic Language with Goals as Arguments
	The Operational Semantics
	The Transformation Rules
	Correctness of Program Transformations
	Program Derivation in the Extended Language
	Tree Flipping
	Summing the Leaves of a Tree
	Matching a Regular Expression
	Marking maximal elements
	Correctness of the Program Derivations
	Experimental Results

	Final Remarks and Related Work
	References

