
ar
X

iv
:c

s/
03

11
02

2v
1

 [
cs

.L
O

]
 1

7
N

ov
 2

00
3

Under consideration for publication in Theory and Practice of Logic Programming 1

Temporalized logics and automata

for time granularity

MASSIMO FRANCESCHET

Department of Sciences, University of Chieti-Pescara, Italy

(e-mail: francesc@sci.unich.it)

ANGELO MONTANARI

Department of Mathematics and Computer Science, University of Udine, Italy

(e-mail: montana@dimi.uniud.it)

submitted 18 March 2002; revised 14 January 2003; accepted 5 September 2003

Abstract

The ability of providing and relating temporal representations at different ‘grain levels’
of the same reality is an important research theme in computer science and a major re-
quirement for many applications, including formal specification and verification, temporal
databases, data mining, problem solving, and natural language understanding. In particu-
lar, the addition of a granularity dimension to a temporal logic makes it possible to specify
in a concise way reactive systems whose behaviour can be naturally modeled with respect
to a (possibly infinite) set of differently-grained temporal domains.

Suitable extensions of the monadic second-order theory of k successors have been pro-
posed in the literature to capture the notion of time granularity. In this paper, we provide
the monadic second-order theories of downward unbounded layered structures, which are
infinitely refinable structures consisting of a coarsest domain and an infinite number of
finer and finer domains, and of upward unbounded layered structures, which consist of a
finest domain and an infinite number of coarser and coarser domains, with expressively
complete and elementarily decidable temporal logic counterparts.

We obtain such a result in two steps. First, we define a new class of combined au-
tomata, called temporalized automata, which can be proved to be the automata-theoretic
counterpart of temporalized logics, and show that relevant properties, such as closure un-
der Boolean operations, decidability, and expressive equivalence with respect to temporal
logics, transfer from component automata to temporalized ones. Then, we exploit the cor-
respondence between temporalized logics and automata to reduce the task of finding the
temporal logic counterparts of the given theories of time granularity to the easier one of
finding temporalized automata counterparts of them.

1 Introduction

Time granularity is an important, but not always well-understood, research theme in

computer science. To acquaint the reader with the basics of the subject, we start the

paper with a gentle introduction to research on time granularity. In Section 1.1, we

briefly illustrate the intersection of research on time granularity with different areas

of computer science, ranging from system specification and verification to natural

language understanding, and we give a high-level view of the logical approach to

http://arxiv.org/abs/cs/0311022v1

2 Massimo Franceschet and Angelo Montanari

the problem of representing and reasoning about time granularity that we follow

in the paper. In Section 1.2, we focus on the topics addressed in the paper, and

we outline its main contributions. In Section 1.3, we show that the considered

topics present interesting connections with a number of issues relevant to various

research directions in computer science logic, including real-time logics, interval

logics, and combined logics. We conclude the introduction by a short description of

the organization of the rest of the paper.

1.1 Representing and reasoning about time granularity

The ability of providing and relating temporal representations at different ‘grain

levels’ of the same reality is an important research theme in various fields of com-

puter science, including formal specification and verification, temporal databases,

data mining, problem solving, and natural language understanding. As for formal

specifications , there exists a large class of reactive systems whose components have

dynamic behavior regulated by very different time constants (granular reactive sys-

tems). A good specification language must enable one to specify and verify the

components of a granular reactive system and their interactions in a simple and

intuitively clear way (Ciapessoni et al. 1993; Corsetti et al. 1991; Corsetti et al.

1991; Fiadeiro and Maibaum 1994; Lamport 1985; Montanari et al. 2002; Monta-

nari et al. 1999; Montanari et al. 2000; Montanari and Policriti 1996). As for tempo-

ral databases , the common way to represent temporal information is to timestamp

either attributes (attribute timestamping) or tuples/objects (tuple-timestamping).

Timestamping is performed taking time values over some fixed granularity. How-

ever, it may happen that differently-grained timestamps are associated with differ-

ent data. This is the case, for instance, when information is collected from distinct

sources which are not under the same control. Moreover, users and application pro-

grams may require the flexibility of viewing and querying temporal data at different

time granularities. To guarantee consistency either the data must be converted into

a uniform granularity-independent representation or temporal database operations

must be generalized to cope with data associated with different temporal domains.

In both cases, a precise semantics for time granularity is needed (Bettini et al.

1997; Chandra et al. 1994; Combi and Pozzi 2001; Dyreson and Snodgrass 1995;

Jajodia et al. 1993; Jajodia et al. 1995; Montanari and Pernici 1993; Ning et al.

2002; Niezette and Stevenne 1993; Segev and Chandra 1993; Wijsen 1998; Wijsen

1999). With regard to data mining, a huge amount of data is collected every day

in the form of event-time sequences. These sequences represent valuable sources of

information, not only for what is explicitly recorded, but also for deriving implicit

information and predicting the future behavior of the monitored process. This lat-

ter activity requires an analysis of the frequency of certain events, the discovery

of their regularity, and the identification of sets of events that are linked by par-

ticular temporal relationships. Such frequencies, regularity, and relationships are

often expressed in terms of multiple granularities, and thus analysis and discovery

tools must be able to cope with them (Agrawal and Srikant 1995; Bettini et al.

1998; Bettini et al. 1996b; Dreyer et al. 1994; Mannila et al. 1995). With regard

Temporalized logics and automata for time granularity 3

15314313312311310393837363534333231303

7262524232221202

31211101

1000

Fig. 1. The 2-refinable 4-layered structure.

to problem solving, several problems in scheduling, planning, and diagnosis can

be formulated as temporal constraint satisfaction problems provided with a time

granularity dimension. Variables are used to represent events occurring at different

time granularities and constraints are used to represent temporal relations between

events (Bettini et al. 1996a; Cukierman and Delgrande 1998; Euzenat 1995; Lad-

kin 1987; Montanari et al. 1992; Mota and Robertson 1996; Poesio and Brachman

1991; Shahar 1996). Finally, shifts in the temporal perspective are common in nat-

ural language communication, and thus the ability of supporting and relating a

variety of temporal models, at different grain sizes, is a relevant feature for the task

of natural language processing (Blackburn and Bos 2003; Foster et al. 1986; Fum

et al. 1989; Kamp and Schiehlen 2001).

According to a commonly accepted perspective, any time granularity can be

viewed as the partitioning of a temporal domain in groups of elements, where each

group is perceived as an indivisible unit (a granule). A representation formalism

can then use these granules to provide facts, actions or events with a temporal

qualification, at the appropriate abstraction level. However, adding the concept of

time granularity to a formalism does not merely mean that one can use different

temporal units to represent temporal quantities in a unique flat model, but it in-

volves semantic issues related to the problem of assigning a proper meaning to the

association of statements with the different temporal domains of a layered model

and of switching from one domain to a coarser/finer one.

Different approaches to represent and to reason about time granularity have been

proposed in the literature. In the following, we introduce the distinctive features of

the logical approach to time granularity1. In the logical setting, the different time

granularities and their interconnections are represented by means of mathematical

structures, called layered structures. A layered structure consists of a possibly infi-

nite set of related differently-grained temporal domains. Such a structure identifies

the relevant temporal domains and defines the relations between time points belong-

ing to different domains. Suitable operators make it possible to move horizontally

within a given temporal domain (displacement operators), and to move vertically

across temporal domains (projection operators). Both classical and temporal logics

1 In (Franceschet and Montanari 2002) we analyze alternative approaches to time granularity,
developed in the context of temporal databases, and we compare them with the logical one.

4 Massimo Franceschet and Angelo Montanari

00 10

01 11 21 31

02 12 22 32 42 52 62 72

143133 15312311310393837363534333231303

Fig. 2. The 2-refinable downward unbounded layered structure.

can be interpreted over the layered structure. Logical formulas allow one to spec-

ify properties involving different time granularities in a single formula by mixing

displacement and projection operators. Algorithms are provided to verify whether

a given formula is consistent (satisfiability checking) as well as to check whether a

given formula is satisfied in a particular structure (model checking). The logical ap-

proach to represent time granularity has been mostly applied in the field of formal

specification and verification of concurrent systems. An application of time granu-

larity logics to the specification of a supervisor that automates the activities of a

high voltage station, devoted to the end user distribution of the energy generated

by power plants, has been accomplished in collaboration with Automation Research

Center of the Electricity Board of Italy (ENEL). A short account of this work has

been given in (Ciapessoni et al. 1993). Logics for time granularity have also been

applied to the specification of real-time monitoring systems (Corsetti et al. 1991),

mobile systems (Franceschet et al. 2000), and therapy plans in clinical medicine

(Combi et al. 2002).

A systematic logical framework for time granularity, based on a many-level view

of temporal structures, with matching logics and decidability results, has been pro-

posed in (Montanari 1996; Montanari and Policriti 1996; Montanari et al. 1999) and

later extended in (Franceschet 2002; Franceschet and Montanari 2001a; Franceschet

and Montanari 2001b; Franceschet and Montanari 2003). Layered structures with

exactly n ≥ 1 temporal domains such that each time point can be refined into

k ≥ 2 time points of the immediately finer temporal domain, if any, are called

k-refinable n-layered structures (n-LSs for short, see Figure 1). They have been

investigated in (Montanari and Policriti 1996), where a classical second-order lan-

guage, with second-order quantification restricted to monadic predicates, has been

interpreted over them. The language includes a total order < and k projection func-

tions ↓0, . . . , ↓k−1 over the layered temporal universe such that, for every point x,

↓0(x), . . . , ↓k−1(x) are the k elements of the immediately finer temporal domain,

if any, into which x is refined. The satisfiability problem for the monadic second-

order language over n-LSs has been proved to be decidable by using a reduction to

the emptiness problem for Büchi sequence automata. Unfortunately, the decision

procedure has a nonelementary complexity.

Layered structures with an infinite number of temporal domains, ω-layered struc-

Temporalized logics and automata for time granularity 5

15014013012011010090807060504030201000

01 11 21 31 41 51 61 71

02 12 22 32

1303

04

Fig. 3. The 2-refinable upward unbounded layered structure.

tures, have been studied in (Montanari et al. 1999). In particular, the authors

investigated k-refinable downward unbounded layered structures (DULSs), that is,

ω-layered structures consisting of a coarsest domain together with an infinite num-

ber of finer and finer domains (see Figure 2), and k-refinable upward unbounded

layered structures (UULSs), that is, ω-layered structures consisting of a finest tem-

poral domain together with an infinite number of coarser and coarser domains (see

Figure 3). A classical monadic second-order language, including a total order <

and k projection functions ↓0, . . . , ↓k−1, has been interpreted over both UULSs and

DULSs. The decidability of the monadic second-order theories of UULSs and DULSs

has been proved by reducing the satisfiability problem to the emptiness problem for

systolic and Rabin tree automata, respectively. In both cases the decision procedure

has a nonelementary complexity.

1.2 Our contributions

Monadic logics for time granularity are quite expressive, but, unfortunately, they

have few computational appealing: their decision problem is indeed nonelementary.

This roughly means that it is possible to algorithmically check satisfiability, but the

complexity of the algorithm grows very rapidly and cannot be bounded. Moreover,

the corresponding automata (Büchi sequence automata for the theory of finitely-

layered structures, Rabin tree automata for downward unbounded structures, and

systolic tree automata for upward unbounded ones) do not directly work over lay-

ered structures, but rather over collapsed structures into which layered structures

can be encoded. Hence, they are not natural and intuitive tools to specify and check

properties of time granularity.

In this paper, we follow a different approach. Taking inspiration from combina-

tion methods for temporal logics, we start by studying how to combine automata

in such a way that properties of the components are inherited by the combination.

Then, we reinterpret layered structures as combined structures. This intuition re-

veals to be the keystone of our endeavor. Indeed, it allows us to define combined

temporal logics and combined automata over layered structures, and to study their

expressive power and computational properties by taking advantage of the transfer

6 Massimo Franceschet and Angelo Montanari

Monadic
Theories

(Temporalized)
Logics

(Temporalized)
Automata

✲✛

❅
❅
❅
❅❅❘

■ �
�

�
��✠

✒

?

Fig. 4. From monadic theories to (temporalized) logics via (temporalized) automata.

theorems for combined logics and combined automata. The outcome is appealing:

the resulting combined temporal logics and automata directly work over layered

structures. Moreover, they are expressively equivalent to monadic languages, and

they are elementarily decidable.

Finding the temporal logic counterpart of monadic theories is a difficult task, in-

volving a nonelementary blow up in the length of formulas. Ehrenfeucht games have

been successfully exploited to deal with such a correspondence problem for first-

order monadic theories (Immerman and Kozen 1989) and well-behaved fragments of

second-order ones, e.g. the path fragment of the monadic second-order theory of infi-

nite binary trees (Hafer and Thomas 1987). As for the theories of time granularity,

by means of suitable applications of Ehrenfeucht games, we obtained an expres-

sively complete and elementarily decidable combined temporal logic counterpart of

the path fragment of the monadic second-order theory of DULSs (Franceschet and

Montanari 2003), while Montanari et al. extended Kamp’s theorem to deal with the

first-order fragment of the theory of UULSs (Montanari et al. 2002). Unfortunately,

these techniques produce rather involved proofs and do not naturally lift to the full

second-order case.

In this paper, instead of trying to establish a direct correspondence between

monadic second-order theories for time granularity and temporal logics, we con-

nect them via automata (cf. Figure 4). Firstly, we define a new class of combined

automata, called temporalized automata, which can be proved to be the automata-

theoretic counterpart of temporalized logics, and show that relevant properties,

such as closure under Boolean operations, decidability, and expressive equivalence

with respect to temporal logics, transfer from component automata to temporalized

ones. Then, on the basis of the established correspondence between temporalized

logics and automata, we reduce the task of finding a temporal logic counterpart of

the monadic second-order theories of DULSs and UULSs to the easier one of finding

a temporalized automata counterpart of them. The mapping of monadic formulas

into automata (the difficult direction) can indeed greatly benefit from automata

closure properties.

Temporalized logics and automata for time granularity 7

As a by-product, the alternative characterization of temporalized logics for time

granularity as temporalized automata allows one to reduce logical problems to au-

tomata ones. As it is well-known in the area of automated system specification and

verification, such a reduction presents several advantages, including the possibility

of using automata for both system modeling and specification, and the possibility

of checking the system on-the-fly (a detailed account of these advantages can be

found in (Franceschet and Montanari 2001b)).

1.3 Related fields

The original motivation of our research was the design of a temporal logic embed-

ding the notion of time granularity, suitable for the specification of complex concur-

rent systems whose components evolve according to different time units. However,

we soon established a fruitful complementary point of view on time granularity: it

can be regarded as a powerful setting to investigate the definability of meaningful

timing properties over a single time domain. Moreover, layered structures and log-

ics provide an interesting embedding framework for flat real-time structures and

logics, as well as there exists a natural link between structures and theories of time

granularity and those developed for representing and reasoning about time inter-

vals. Finally, there are significant similarities between the problems we encountered

in studying time granularity, and those addressed by current research on combin-

ing logics, theories, and structures. In the following, we briefly explain all these

connections.

Granular reactive systems. As pointed out above, we were originally motivated by

the design of a temporal logic embedding the notion of time granularity suitable

for the specification of granular reactive systems. A reactive system is a concurrent

program that maintains and interaction with the external environment and that

ideally runs forever. Temporal logic has been successfully used for modeling and

analyzing the behavior of reactive systems (Emerson 1990). It supports semantic

model checking, which can be used to check specifications against system behav-

iors; it also supports pure syntactic deduction, which may be used to verify the

consistency of specifications. Finite-state automata, such as Büchi sequence au-

tomata and Rabin tree automata (Thomas 1990), have been proved very useful in

order to provide clean and asymptotically optimal satisfiability and model checking

algorithms for temporal logics (Kupferman et al. 2000; Vardi and Wolper 1994)

as well as to cope with the state explosion problem that frightens concurrent sys-

tem verification (Courcoubetis et al. 1991; Jard and Jeron 1989; Vardi and Wolper

1986).

A granular reactive systems is a reactive system whose components have dynamic

behaviours regulated by very different time constants (Montanari 1996). As an ex-

ample, consider a pondage power station consisting of a reservoir, with filling and

emptying times of days or weeks, generator units, possibly changing state in a few

seconds, and electronic control devices, evolving in microseconds or even less. A

complete specification of the power station must include the description of these

8 Massimo Franceschet and Angelo Montanari

components and of their interactions. A natural description of the temporal evolu-

tion of the reservoir state will probably use days: “During rainy weeks, the level of

the reservoir increases 1 meter a day”, while the description of the control devices

behaviour may use microseconds: “When an alarm comes from the level sensors,

send an acknowledge signal in 50 microseconds”. We say that systems of such a

type have different time granularities. It is somewhat unnatural, and sometimes

impossible, to compel the specifier to use a unique time granularity, microseconds

in the previous example, to describe the behaviour of all the components. A good

language must indeed allow the specifier to easily describe all simple and intuitively

clear facts (naturalness of the notation). Hence, a specification language for gran-

ular reactive systems must support different time granularities to allow one (i) to

maintain the specifications of the dynamics of differently-grained components as

separate as possible (modular specifications), (ii) to differentiate the refinement de-

gree of the specifications of different system components (flexible specifications),

and (iii) to write complex specifications in an incremental way by refining higher-

level predicates associated with a given time granularity in terms of more detailed

ones at a finer granularity (incremental specifications).

Definability of meaningful timing properties. Time granularity can be viewed not

only as an important feature of a representation language, but also as a formal

tool to investigate the definability of meaningful timing properties, such as density

and exponential grow/decay, over a single time domain (Montanari et al. 1999).

In this respect, the number of layers (single vs. multiple, finite vs. infinite) of the

underlying temporal structure, as well as the nature of their interconnections, play

a major role: certain timing properties can be expressed using a single layer; others

using a finite number of layers; others only exploiting an infinite number of layers.

For instance, temporal logics over binary 2-layered structures suffice to deal with

conditions like “P holds at all even times of a given temporal domain” that can-

not be expressed using flat propositional temporal logics (Wolper 1983). Moreover,

temporal logics over ω-layered structures allow one to express relevant properties of

infinite sequences of states over a single temporal domain that cannot be captured

by using flat or n-layered temporal logics. For instance, temporal logics over k-

refinable UULSs allow one to express conditions like “P holds at all time points ki,

for all natural numbers i, of a given temporal domain”, which cannot be expressed

by using either propositional or quantified temporal logics over a finite number of

layers, while temporal logics over DULSs allow one to constrain a given property

to hold true ‘densely’ over a given time interval.

On the relationship with real-time logics. Layered structures and logics can be re-

garded as an embedding framework for flat real-time structures and logics. A real-

time system is a reactive system with well-defined fixed-time constraints. Systems

that control scientific experiments, industrial control systems, automobile-engine

fuel-injection systems, and weapon systems are examples of real-time systems. Ex-

amples of quantitative timing properties relevant to real-time systems are periodic-

ity, bounded responsiveness, and timing delays. Logics for real-time systems, called

Temporalized logics and automata for time granularity 9

real-time logics, are interpreted over timed state sequences, that is, state sequences

in which every state is associated with a time instant.

Montanari et al. showed that the second-order theory of timed state sequences

can be properly embedded into the second-order theory of binary UULSs as well as

into the second-order theory of binary DULSs (Montanari et al. 2000). The increase

in expressive power of the embedding frameworks makes it possible to express and

check additional timing properties of real-time systems, which cannot be dealt with

by the classical theory. For instance, in the theory of timed state sequences, saying

that a state s holds true at time i can be meant to be an abstraction of the fact that

state s can be arbitrarily placed in the time interval [i, i+ 1). The stratification of

domains in layered structures naturally supports such an interval interpretation and

gives means for reducing the uncertainty involved in the abstraction process. For

instance, it allows on to say that a state s belongs to the first (respectively, second)

half of the time interval [i, i+1). More generally, the embedding of real-time logics

into the granularity framework allows one to deal with temporal indistinguisha-

bility of states (two or more states associated with the same time) and temporal

gaps between states (a nonempty time interval between the time associated to two

contiguous states). Temporal indistinguishability and temporal gaps can indeed be

interpreted as phenomena due to the fact that real-time logics lack the ability to

express properties at the right (finer) level of granularity: distinct states, associated

with the same time, can always be ordered at the right level of granularity; simi-

larly, time gaps represent intervals in which a state cannot be specified at a finer

level of granularity. A finite number of layers is obviously not sufficient to capture

timed state sequences: it is not possible to fix a priori any bound on the granularity

that a domain must have to allow one to temporally order a given set of states, and

thus we need to have an infinite number of temporal domains at our disposal.

On the relationship with interval logics. As pointed out in (Montanari 1996), there

exists a natural link between structures and theories of time granularity and those

developed for representing and reasoning about time intervals. Differently-grained

temporal domains can indeed be interpreted as different ways of partitioning a

given discrete/dense time axis into consecutive disjoint intervals. According to this

interpretation, every time point can be viewed as a suitable interval over the time

axis and projection implements an intervals-subintervals mapping. More precisely,

let us define direct constituents of a time point x, belonging to a given domain, the

time points of the immediately finer domain into which x can be refined, if any,

and indirect constituents the time points into which the direct constituents of x can

be directly or indirectly refined, if any. The mapping of a given time point into its

direct or indirect constituents can be viewed as a mapping of a given time interval

into (a specific subset of) its subintervals.

The existence of such a natural correspondence between interval and granularity

structures hints at the possibility of defining a similar connection at the level of

the corresponding theories. For instance, according to such a connection, temporal

logics over DULSs allow one to constrain a given property to hold true densely over

a given time interval, where P densely holds over a time interval w if P holds over w

10 Massimo Franceschet and Angelo Montanari

and there exists a direct constituent of w over which P densely holds. In particular,

establishing a connection between structures and logics for time granularity and

those for time intervals would allow one to transfer decidability results from the

granularity setting to the interval one. As a matter of fact, most interval temporal

logics, including Moszkowski’s Interval Temporal Logic (ITL) (Moszkowski 1983),

Halpern and Shoham’s Modal Logic of Time Intervals (HS) (Halpern and Shoham

1991), Venema’s CDT Logic (Venema 1991), and Chaochen and Hansen’s Neigh-

borhood Logic (NL) (Zhou and Hansen 1998), are highly undecidable. Decidable

fragments of these logics have been obtained by imposing severe restrictions on

their expressive power, e.g., the locality constraint in (Moszkowski 1983).

Preliminary results can be found in (Montanari et al. 2002), where the authors

propose a new interval temporal logic, called Split Logic (SL for short), which is

equipped with operators borrowed from HS and CDT, but is interpreted over spe-

cific interval structures, called split-frames . The distinctive feature of a split-frame

is that there is at most one way to chop an interval into two adjacent subintervals,

and consequently it does not possess all the intervals. They prove the decidability of

SL with respect to particular classes of split-frames which can be put in correspon-

dence with the first-order fragments of the monadic theories of time granularity.

In particular, discrete split-frames with maximal intervals correspond to finitely

layered structures, discrete split-frames (with unbounded intervals) can be mapped

into upward unbounded layered structures, and dense split-frames with maximal

intervals can be encoded into downward unbounded layered structures.

The combining logic perspective. There are significant similarities between the prob-

lems we addressed in the time granularity setting and those dealt with by current

research on logics that model changing contexts and perspectives. The design of

these types of logics is emerging as a relevant research topic in the broader area

of combination of logics, theories, and structures, at the intersection of logic with

artificial intelligence, computer science, and computational linguistics (Gabbay and

de Rijke 2000). The reason is that application domains often require rather com-

plex hybrid description and specification languages, while theoretical results and

implementable algorithms are at hand only for simple basic components (Gabbay

et al. 2003). As for granular reactive systems, their operational behavior can be

naturally described as a suitable combination of temporal evolutions (sequences of

component states) and temporal refinements (mapping of a component state into

a finite sequence of states belonging to a finer component). According to such a

point of view, the model describing the operational behavior of the system and the

specification language can be obtained by combining simpler models and languages,

respectively, and model checking/satisfiability procedures for combined logics can

be used.

From the above discussion, it turns out that the time granularity framework is

expressive and flexible enough to be used to investigate many interesting topics

not explicitly related to time granularity. The aim of this paper is to deepen our

understanding of time granularity. The rest of the paper is organized as follows.

Temporalized logics and automata for time granularity 11

In Section 2, we introduce temporalized automata and we show that relevant logi-

cal properties, such as closure under Boolean operations and decidability, transfer

from component automata to temporalized ones; furthermore, we prove that tem-

poralized automata are as expressive as temporalized logics. In Section 3 we exploit

temporalized automata to find the temporal logic counterparts of the given theories

of time granularity. Temporalized automata for the theories of DULSs and UULSs

are obtained as combinations of Büchi and Rabin automata and of Büchi and finite

tree automata, respectively. As a matter of fact, unlike the case of DULSs, the com-

bined model we use to encode an UULS differs from that of pure temporalization

since the innermost submodels are not independent from the outermost top-level

model. In Section 4, we apply temporalized logics to a real-world case study. Con-

clusive remarks provide an assessment of the work done and outline some future

research directions.

2 Temporalized logics and automata

In this section we recall the definition of temporalization and we define temporal-

ized automata2. Moreover, we prove the equivalence of temporalized automata and

temporalized logics. We will take into consideration the following well-known tem-

poral logics: Propositional Linear Temporal Logic (PLTL), Quantified Linear Tem-

poral Logic (QLTL), Existentially Quantified Linear Temporal Logic (EQLTL), Di-

rected Computational Tree Logic (CTL∗
k), Quantified Directed Computational Tree

Logic (QCTL∗
k), and Existentially Quantified Directed Computational Tree Logic

(EQCTL∗
k); moreover, we will take advantage of the following well-known finite-

state automata classes: Büchi sequence automata, Rabin tree automata, finite tree

automata.

Let P = {P,Q, . . .} be a set of proposition letters. We consider temporal logics

over the set of propositional letters P . Given a temporal logic T, we use LT and

KT to denote the language and the set of models of T, respectively. Furthermore,

we write OP(T) to denote the set of temporal operators of T.

Temporalization is a simple form of logic combination that embeds one component

logic into the other (Finger and Gabbay 1992). Let T be a temporal logic and L

an arbitrary logic. For the sake of simplicity, we constrain L to be an extension of

propositional logic. We partition the set of L-formulas into Boolean combinations

BCL and monolithic formulas MLL: α belongs to BCL if its outermost operator

is a Boolean connective; otherwise it belongs to MLL. We assume that OP(T) ∩

OP(L) = ∅.

Definition 2.1

(Temporalization – Syntax)

The language LT(L) of the temporalization T(L) of L by means of T over the set of

2 We assume the reader to be familiar with basic concepts of modal and temporal logics, and au-
tomata. If this is not the case, comprehensive surveys are given in (Emerson 1990) and (Thomas
1990), respectively.

12 Massimo Franceschet and Angelo Montanari

proposition letters P is obtained by taking the set of formation rules of LT and by

replacing the atomic formation rule: “every proposition letter P ∈ P is a formula”

by the rule: “every monolithic formula α ∈ LL is a formula”. ✷

As an example, let T1 and T2 be two temporal logics, and let {F1,G1} (resp.

{F2,G2}) be the temporal operators of T1 (resp. T2). The formula F1G2p is a

T1(T2)-formula, while the formula F1G2p ↔ G2F1p is not.

A model for T(L) is a triple (W,R, g), where (W,R) is a frame for T and g :

W → KL a total function mapping worlds in W to models for L.

Definition 2.2

(Temporalization – Semantics)

Given a modelM = (W,R, g) and a state w ∈W , the semantics of the temporalized

logic T(L) is obtained by taking the set of semantic clauses of T and by replacing

the clause for proposition letters: “M, w |= P if and only if P ∈ V (w), whenever

P ∈ P” by the clause: “M, w |= α if and only if g(w) |=L α, whenever α ∈MLL”.

✷

Hereafter, we will restrict our attention to temporalized logics such that both the

embedding and the embedded logics are temporal logics.

We now introduce a new class of combined automata, called temporalized au-

tomata, which can be viewed as the automata-theoretic counterpart of temporal-

ized logics, and show that relevant properties, such as closure under Boolean op-

erations, decidability, and expressive equivalence with respect to temporal logics,

transfer from component automata to temporalized ones. We first define automata

and prove results over sequence structures; then, we generalize definitions and re-

sults to tree structures (as a matter of fact, we believe that our machinery can

actually be extended to cope with more general structures, such as graphs). We

will use the following general definition of sequence automata. Let Σ = {a, b, . . .}

be a finite alphabet and let S(Σ) be the set of Σ-labeled infinite sequences, that

is, structures of the form (N, <, V), where (N, <) is the set of natural numbers,

together with the usual ordering relation, and V : N → Σ is a valuation function

mapping natural numbers into symbols in Σ.

Definition 2.3

(Sequence automata)

A sequence automaton A over Σ consists of (i) a Labeled Transition System (Q, q0,∆,

M,Ω), where Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ×Q

is a transition relation, Ω is a finite alphabet, and M ⊆ Q × Ω is a labeling of

states, and (ii) an acceptance condition AC. Given a Σ-labeled infinite sequence

w = (N, <, V), a run of A on w is a function σ : N → Q such that σ(0) = q0 and

(σ(i), V (i), σ(i+ 1)) ∈ ∆, for every i ≥ 0. The automaton A accepts w if there is a

run σ of A on w such that AC(σ), i.e., the acceptance condition holds on σ. The

language accepted by A, denoted by L(A), is the set of Σ-labeled infinite sequences

accepted by A. ✷

Temporalized logics and automata for time granularity 13

A class of sequence automata A is a set of automata that share the acceptance

condition AC (we do not explicitly specify the acceptance condition for sequence

automata since, as we will see, all the achieved results do not rest on any specific

acceptance condition). An example of a class of sequence automata is the class of

Büchi automata.

Example 2.4

(Büchi automata)

A Büchi automaton is a sequence automaton A = (Q, q0,∆,M,Ω) such that Ω =

{final}. We call final a state q such that (q, final) ∈M . The acceptance condition

for A states that A accepts a Σ-labeled infinite sequence w if and only if there is a

run σ of A on w such that some final state occurs infinitely often in σ. ✷

Temporalized automata over sequence structures can be defined as follows. Let

A2 be a class of sequence automata which accept sequences in S(Σ); moreover, let

Γ(Σ) be a finite alphabet whose symbols A,B, . . . denote automata in A2, and let

A1 be a class of sequence automata which accept (Γ(Σ)-labeled infinite) sequences

in S(Γ(Σ)). Given A1 and A2 as above, we define a class of temporalized automata

A1(A2) that combine the two component classes of automata in a suitable way.

Let S(S(Σ)) be the set of infinite sequences of Σ-labeled infinite sequences, that

is, temporalized models (N, <, g) where g : N → S(Σ) is a total function map-

ping elements of N into sequences in S(Σ). Automata in A1(A2) accept objects in

S(S(Σ)). The class of temporalized automata A1(A2) is formally defined as follows.

Definition 2.5

(Temporalized automata)

A temporalized automaton A over Γ(Σ) is a quintuple (Q, q0,∆,M,Ω) as for se-

quence automata (Definition 2.3). The combined acceptance condition for A is de-

fined as follows. Given w = (N, <, g) ∈ S(S(Σ)), a run of A on w is function

σ : N → Q such that σ(0) = q0 and, for every i ≥ 0, (σ(i), B, σ(i + 1)) ∈ ∆ for

some B ∈ Γ(Σ) such that g(i) ∈ L(B). The automaton A accepts w if there exists

a run σ of A on w such that AC(σ), where AC is the acceptance condition of A1.

The language recognized by A, denoted by L(A), is the set of elements in S(S(Σ))

accepted by A. ✷

Given a temporalized automaton A ∈ A1(A2), we denote by A↑ the automaton

in A1 with the same labeling transition system as A and with the acceptance

condition of A1. While A accepts in S(S(Σ)), its abstraction A↑ recognizes in

S(Γ(Σ)). Moreover, given an automaton A ∈ A1, we denote by A↓ the automa-

ton in A1(A2) with the same labeling transition system as A and with the com-

bined acceptance condition of A1(A2). While A accepts in S(Γ(Σ)), its concretiza-

tion A↓ recognizes in S(S(Σ)). Taking advantage of these notions, the combined

acceptance condition for temporalized automata can be rewritten as follows. Let

w = (N, <, g) ∈ S(S(Σ)). A temporalized automaton A accepts w if and only if

there exists v = (N, <, V) ∈ S(Γ(Σ)) such that v ∈ L(A↑) and, for every i ∈ N,

14 Massimo Franceschet and Angelo Montanari

g(i) ∈ L(V (i)). In the following, we will often use this alternative, but equivalent,

formulation of the combined acceptance condition for temporalized automata.

We now show that relevant logical properties transfer from component automata

to temporalized ones. The following notation will be used to express the relation-

ships between automata and temporal logics. We write A → T to denote the fact

that every automaton A in A can be converted into a formula ϕA in T such that

L(A) = M(ϕA), where M(ϕA) is the set of models of ϕA. Conversely, we write

T → A to denote the fact that every formula ϕ in T can be converted into an

equivalent automaton in A. Finally, A ⇆ T stands for A → T and T → A. The

transfer problem for temporalized automata can be stated as follows. Assuming that

the automata classes A1 and A2 enjoy a given logical property, does A1(A2) enjoy

that property? We investigate the transfer problem with respect to the following

properties of automata:

1. (Effective) closure under Boolean operations (union, intersection, and com-

plementation): if A1 and A2 are (effectively) closed under Boolean operations,

is A1(A2) (effectively) closed under Boolean operations?

2. Decidability: if A1 and A2 are decidable, is A1(A2) decidable?

3. Expressive equivalence with respect to temporal logic: if A1 ⇆ T1 and A2 ⇆

T2, does A1(A2) ⇆ T1(T2)?

The following lemma plays a crucial role. It shows that every temporalized au-

tomaton is equivalent to a temporalized automaton whose transitions are labeled

with automata that form a partition of the set S(Σ) of Σ-labeled sequences. Hence,

different labels of the ‘partitioned automaton’ correspond to (automata accepting)

disjoint sets of Σ-labeled sequences. Moreover, the partitioned automaton can be

effectively constructed from the original one. We will see that a similar partition

lemma holds for temporalized logics (cf. Lemma 2.9 below).

Lemma 2.6

(Partition lemma for temporalized automata)

Let A be a temporalized automaton in A1(A2). If A2 is closed under Boolean

operations (union, intersection, and complementation), then there exists a finite

alphabet Γ′(Σ) ⊆ A2 and a temporalized automatonA′ over Γ′(Σ) such that L(A) =

L(A′) and the set {L(X) | X ∈ Γ′(Σ)} is a partition of S(Σ). Moreover, if A2 is

effectively closed under Boolean operations and it is decidable, then A′ can be

effectively computed from A.

Proof

To construct Γ′(Σ) and A′ we proceed as follows. Let A = (Q, q0,∆,M,Ω) be a

temporalized automaton over Γ(Σ) = {X1, . . . Xn} ⊆ A2 . For every 1 ≤ i ≤ n

and j ∈ {0, 1}, let Xj
i = Xi for j = 0 and Xj

i = S(Σ) \ Xi for j = 1. Given

(j1, . . . , jn) ∈ {0, 1}n, let Cap(j1,...,jn) =
⋂n

i=1X
ji
i . We define Γ1(Σ) as the set of

all and only Cap(j1,...,jn) such that (j1, . . . , jn) ∈ {0, 1}n. Since A2 is closed under

Boolean operations, Γ1(Σ) ⊆ A2. Moreover, let Γ2(Σ) = {X ∈ Γ1(Σ) | L(X) 6= ∅}.

We set Γ′(Σ) = Γ2(Σ), and, for 1 ≤ i ≤ n, Γ′
i(Σ) = {X ∈ Γ′(Σ) | X ∩ Xi 6= ∅}.

Temporalized logics and automata for time granularity 15

Note that {L(X) | X ∈ Γ′(Σ)} is a partition of S(Σ). Moreover, for every 1 ≤

i ≤ n, {L(X) | X ∈ Γ′
i(Σ)} is a partition of L(Xi). We define the temporalized

automaton A′ = (Q, q0,∆
′,M,Ω) over Γ′(Σ), where ∆′ contains all and only the

triples (q1, X, q2) ∈ Q × Γ′(Σ) × Q such that X ∈ Γ′
i(Σ) and (q1, Xi, q2) ∈ ∆ for

some 1 ≤ i ≤ n. It is not difficult to see that L(A) = L(A′).

We now prove the first transfer theorem: closure under Boolean operations trans-

fers from component automata to temporalized ones.

Theorem 2.7

(Transfer of closure under Boolean operations)

Closure under Boolean operations (union, intersection, and complementation) trans-

fers from component automata to temporalized ones: given two classesA1 and A2 of

automata which are (effectively) closed under Boolean operations, the class A1(A2)

of temporalized automata is (effectively) closed under Boolean operations.

Proof

Let X,Y ∈ A1(A2).

Union We must provide an automaton A ∈ A1(A2) that recognizes the language

L(X) ∪ L(Y). Define A = (X↑ ∪ Y ↑)↓. We show that L(A) = L(X) ∪ L(Y). Let

x = (N, <, g) ∈ L(A). Hence, there is y = (N, <, V) ∈ L(A↑) = L(X↑ ∪ Y ↑) =

L(X↑) ∪ L(Y ↑) such that, for every i ∈ N, g(i) ∈ L(V (i)). Suppose y ∈ L(X↑). It

follows that x ∈ L(X). Hence x ∈ L(X)∪L(Y). Similarly if y ∈ L(Y ↑). Conversely,

suppose that x = (N, <, g) ∈ L(X) ∪ L(Y). If x ∈ L(X), then there is y = (N, <

, V) ∈ L(X↑) such that, for every i ∈ N, g(i) ∈ L(V (i)). Hence, y ∈ L(X↑) ∪

L(Y ↑) = L(X↑ ∪ Y ↑) = L(A↑). It follows that x ∈ L(A). Similarly if x ∈ L(Y).

Complementation We must provide an automaton A ∈ A1(A2) that recognizes

the language S(S(Σ)) \L(X). Given Lemma 2.6, we may assume that {L(Z) | Z ∈

Γ(Σ)} forms a partition of S(Σ). We define A = (S(Γ(Σ)) \ X↑)↓. We show that

L(A) = S(S(Σ)) \ L(X). Let x = (N, <, g) ∈ L(A). Hence, there exists y = (N, <

, V) ∈ L(A↑) = S(Γ(Σ))\L(X↑) such that, for every i ∈ N, g(i) ∈ L(V (i)). Suppose,

by contradiction, that x ∈ L(X). It follows that there exists z = (N, <, V ′) ∈ L(X↑)

such that, for every i ∈ N, g(i) ∈ L(V ′(i)). Hence, for every i ∈ N, g(i) ∈ L(V (i))∩

L(V ′(i)). Since, for every i ∈ N, L(V (i))∩L(V ′(i)) = ∅ whenever V (i) 6= V ′(i), we

conclude that V (i) = V ′(i). Hence V = V ′ and thus y = z. This is a contradiction

since y and z belong to disjoint sets. It follows that x ∈ S(S(Σ)) \ L(X).

We now prove the opposite direction. Let x = (N, <, g) ∈ S(S(Σ)) \ L(X). It

follows that, for every y = (N, <, V) ∈ L(X↑), there exists i ∈ N such that g(i) 6∈

L(V (i)). Suppose, by contradiction, that x ∈ S(S(Σ)) \ L(A). It follows that, for

every z = (N, <, V) ∈ L(A↑) = S(Γ(Σ))\L(X↑), there exists i ∈ N such that g(i) 6∈

L(V (i)). We can conclude that, for every v = (N, <, V) ∈ S(Γ(Σ)), there exists

i ∈ N such that g(i) 6∈ L(V (i)). This is a contradiction: since {L(Z) | Z ∈ Γ(Σ)}

forms a partition of S(Σ), for every i ∈ N, there is Yi ∈ Γ(Σ) such that g(i) ∈ L(Yi).

We have that (N, <, V ′), with V ′(i) = Yi, is an element of S(Γ(Σ)) and, for every

i ∈ N, g(i) ∈ L(V ′(i)). We conclude that x ∈ L(A).

16 Massimo Franceschet and Angelo Montanari

Intersection It follows from closure under union and complementation using

De Morgan’s laws.

It is worth noticing that if A = (X↑∩Y ↑)↓, then L(A) ⊆ L(X)∩L(Y), while the

opposite inclusion L(X)∩L(Y) ⊆ L(A) does not hold in general. We give a simple

counterexample. Let Γ(Σ) = {B,C}, X↑ be the automaton accepting sequences

starting with the symbol B, and Y ↑ be the automaton accepting strings starting

with the symbol C. Then, L(X↑ ∩ Y ↑) = ∅ and hence L(A) = ∅. Let Σ = {a, b},

B be the automaton accepting sequences with an odd number of symbols a, and

C be the automaton recognizing sequences with a prime number of symbols a.

L(X)∩L(Y) contains, for instance, a combined structure starting with a sequence

with exactly 13 occurrences of symbol a, and hence it is not empty.

We now focus on the problem of establishing whether decidability transfers from

component automata to temporalized ones. Given A ∈ A1(A2), it is easy to see

that a sufficient condition for L(A) = ∅ is that L(A↑) = ∅. However, this condition

is not necessary, since L(A) = ∅ may depend on the fact that some A2-automata

labeling A accept the empty language. However, if we know that A is labeled with

A2-automata recognizing non-empty languages, then the condition L(A↑) = ∅ is

both necessary and sufficient for L(A) = ∅. In the following theorem, we take

advantage of these considerations to devise an algorithm that checks emptiness for

temporalized automata.

Theorem 2.8

(Transfer of decidability)

Decidability transfers from component automata to temporalized ones: given two

decidable classes of automata A1 and A2, the class A1(A2) of temporalized au-

tomata is decidable.

Proof

Let A be a temporalized automaton in A1(A2). We describe an algorithm that

returns 1 if L(A) = ∅ and 0 otherwise.

Step 1 Verify whether L(A↑) = ∅ using the algorithm that checks emptiness for

A1. If L(A
↑) = ∅, then return 1.

Step 2 For every X ∈ Γ(Σ), if L(X) = ∅ (this test can be performed by exploiting

the algorithm that checks emptiness for A2), then remove every transition of the

form (q1, X, q2) from the transition relation of A.

Step 3 Let B be the temporalized automaton obtained from A after Step 2. Check,

using the emptiness algorithm for A1, whether L(B↑) = ∅. If L(B↑) = ∅, then

return 1, else return 0.

The algorithm always terminates returning either 1 or 0. We prove that the

algorithm returns 1 if and only if L(A) = ∅. Suppose that the algorithm returns 1.

If L(A↑) = ∅, then L(A) = ∅. Suppose now that L(A↑) 6= ∅ and L(B↑) = ∅. Note

that L(A) = L(B), since B is obtained from A by cutting off automata accepting the

empty language. Assume, by contradiction, that there is x ∈ L(A). Since L(A) =

Temporalized logics and automata for time granularity 17

L(B), we have that x ∈ L(B). Hence L(B) in not empty. Since L(B↑) = ∅, we have

that L(B) is empty which is a contradiction. Hence L(A) = ∅. Suppose now that the

algorithm returns 0. Then L(B↑) contains at least one element, say x = (N, <, V).

Since B uses only non-empty A2-automata as alphabet symbols, we have that, for

every i ∈ N, L(V (i)) 6= ∅. Hence y = (N, <, g), with g such that, for every i ∈ N,

g(i) equals to some element of L(V (i)), is an element of L(A). Hence L(A) 6= ∅

Finally, we consider the problem of establishing whether expressive equivalence

with respect to temporal logics transfers from component automata to temporalized

ones. We first state a partition lemma for temporalized logics. The proof is similar

to the one of Lemma 2.6, and thus omitted.

Lemma 2.9

(Partition Lemma for temporalized logics)

Let ϕ be a temporalized formula of T1(T2) and α1, . . . , αn be the maximal T2-

formulas of ϕ. Then, there exists a finite set Λ of T2-formulas such that:

1. the set {M(α) | α ∈ Λ} is a partition of
⋃n

i=1 M(αi), and

2. the formula ϕ′ obtained by replacing every T2-formula αi in ϕ with∨
{α | α ∈ Λ and M(α) ∩M(αi) 6= ∅} is equivalent to ϕ, i.e., M(ϕ) =

M(ϕ′).

The following theorem shows that expressive equivalence with respect to temporal

logics transfers from component automata to temporalized ones.

Theorem 2.10

(Transfer of expressive equivalence w.r.t. temporal logic)

Expressive equivalence w.r.t. temporal logic transfers from component automata

to temporalized ones: if A1 ⇆ T1 A2 ⇆ T2, and A2 is closed under Boolean

operations, then A1(A2) ⇆ T1(T2).

Proof

We first prove that A1(A2) → T1(T2). Let A ∈ A1(A2) be a temporalized au-

tomaton over Γ(Σ) = {X1, . . . , Xn} ⊆ A2. We have to find a temporalized formula

ϕA ∈ T1(T2) such that L(A) = M(ϕA). Since A2 is closed under Boolean opera-

tions, by exploiting Lemma 2.6, we may assume that {L(X1), . . . ,L(Xn)} partitions

S(Σ). Since A1 → T1, there exists a translation τ1 from A1-automata to T1-

formulas such that, for every X ∈ A1, L(X) = M(τ1(X)). Let ϕA↑ = τ1(A
↑). The

formula ϕA↑ uses proposition letters in {PX1
, . . . , PXn

}. Moreover, since A2 → T2,

there exists a translation σ1 from A2-automata to T2-formulas such that, for every

X ∈ A2, L(X) = M(σ1(X)). For every 1 ≤ i ≤ n, let ϕXi
= σ1(Xi). For every

proposition letter PXi
appearing in ϕA↑ , replace PXi

by ϕXi
in ϕA↑ . Let ϕA be

the resulting formula. It is immediate to see that ϕA ∈ T1(T2). We prove that

L(A) = M(ϕA).

(⊆) Let x = (N, <, g) ∈ L(A). This implies that there exists x↑ = (N, <, V) ∈

S(Γ(Σ)) such that x↑ ∈ L(A↑) and, for every i ∈ N, g(i) ∈ L(V (i)). Since L(A↑) =

M(ϕA↑), we have that x↑ ∈ M(ϕA↑). We prove that, for every i ∈ N and j ∈

18 Massimo Franceschet and Angelo Montanari

{1, . . . , n}, x↑, i |= PXj
if and only if x, i |= ϕXj

. Let i ∈ N and j ∈ {1, . . . , n}. We

know that x↑, i |= PXj
if and only if V (i) = Xj . We first prove that V (i) = Xj

if and only if g(i) ∈ L(Xj). The left to right direction immediately follows since

g(i) ∈ L(V (i)). We prove the right to left direction by contradiction. Suppose

g(i) ∈ L(Xj) and V (i) = Xk 6= Xj . Hence g(i) ∈ L(V (i)) = L(Xk) and thus

g(i) ∈ L(Xj) ∩ L(Xk), which is a contradiction, since L(Xj) ∩ L(Xk) = ∅. Hence

V (i) = Xj . Finally, we have that g(i) ∈ L(Xj) if and only if g(i) ∈ M(ϕXj
) if

and only if x, i |= ϕXj
. Summing up, we have that x↑ ∈ M(ϕA↑) and, for every

i ∈ N and j ∈ {1, . . . , n}, x↑, i |= PXj
if and only if x, i |= ϕXj

. It follows that

x ∈ M(ϕA).

(⊇) Let x = (N, <, g) ∈ M(ϕA). We define x↑ = (N, <, V) ∈ S(Γ(Σ)) in such a

way that, for every i ∈ N, V (i) = Xj if and only if g(i) ∈ M(ϕXj
) = L(Xj). Notice

that V (i) is always and univocally defined, since {L(X1), . . . ,L(Xn)} partitions

S(Σ). We prove that, for every i ∈ N and j ∈ {1, . . . , n}, we have that x↑, i |= PXj

if and only if x, i |= ϕXj
. Let i ∈ N and j ∈ {1, . . . , n}. We know that x↑, i |= PXj

if and only if V (i) = Xj . We first prove that V (i) = Xj if and only if g(i) ∈ L(Xj).

The left to right direction immediately follows by definition of x↑.The right to left

direction follows since L(Xj) ∩ L(Xk) = ∅ whenever k 6= j. Finally, g(i) ∈ L(Xj)

if and only if g(i) ∈ M(ϕXj
) if and only if x, i |= ϕXj

. Summing up, we have

that x↑ ∈ M(ϕA↑) = L(A↑) and, for every i ∈ N, g(i) ∈ M(ϕXj
) = M(ϕV (i)) =

L(V (i)). Therefore, x ∈ L(A).

We now prove that T1(T2) → A1(A2). Let ϕ ∈ T1(T2) be a temporalized formula.

We have to find a temporalized automaton Aϕ ∈ A1(A2) such that M(ϕ) = L(Aϕ).

Let α1, . . . , αn be the maximal T2-formulas of ϕ. By exploiting Lemma 2.9, we may

assume that there exists a finite set Λ of T2-formulas such that the set {M(α) | α ∈

Λ} forms a partition of
⋃n

i=1 M(αi), and every maximal T2-formula αi in ϕ has

the form
∨
{α | α ∈ Λ and M(α) ∩M(αi) 6= ∅}.

Let ϕ↑ be the formula obtained from ϕ by replacing every T2-formula α ∈ Λ

appearing in ϕ with proposition letter Pα and by adding to the resulting for-

mula the conjunct Pβ ∨ ¬Pβ , where β is the T2-formula ¬
∨n

i=1 αi. Let Q =

{Pα | α ∈ Λ ∪ {β}} be the set of proposition letters of ϕ↑. Since T1 → A1, there ex-

ists a translation τ2 from T1-formulas to A1-automata such that, for every ψ ∈ T1,

M(ψ) = L(τ2(ψ)). Let Aϕ↑ = τ2(ϕ
↑). The automaton Aϕ↑ labels its transitions

with symbols in 2Q. Moreover, since T2 → A2, there exists a translation σ2 from

T2-formulas to A2-automata such that, for every ψ ∈ T2, M(ψ) = L(σ2(ψ)). For

every α ∈ Λ ∪ {β}, let Aα = σ2(α). Finally, let Aϕ be the automaton obtained

by replacing every label X ⊆ Q on a transition of Aϕ↑ with the A2-automaton⋂
Pα∈X Aα = σ2(

∧
Pα∈X α). We have that Aϕ ∈ A1(A2) and L(Aϕ) = M(ϕ). The

proof is similar to the case L(A) = M(ϕA). Notice that to prove this direction we

did not use the hypothesis of closure under Boolean operations of A2.

The following corollary shows that, whenever T1 → A1 and T2 → A2, the

decidability problem for T1(T2) can be reduced to the decidability problems for

A1 and A2.

Temporalized logics and automata for time granularity 19

Corollary 2.11

If T1 → A1, T2 → A2, and both A1 and A2 are decidable, then T1(T2) is decid-

able.

Theorems 2.7, 2.8 and 2.10 hold for automata that operate on finite sequences

as well; moreover, they can be immediately generalized to automata on finite and

infinite trees (definitions of all these classes of automata can be found in (Thomas

1990)). They remain valid for automata on temporalized structures that mix se-

quences and trees.

Corollary 2.11 allows one to prove the decidability of many temporalized log-

ics. For instance, it is well-known that QLTL (and all its fragments) over infinite

sequences can be embedded into Büchi sequence automata, QCTL∗
k (and all its frag-

ments) over infinite k-ary trees can be embedded into Rabin k-ary tree automata,

and both Büchi sequence and Rabin k-ary tree automata are decidable. Moreover,

QLTL (and all its fragments) over finite sequences can be embedded into finite

sequence automata, QCTL∗
k (and all its fragments) over finite k-ary trees can be

embedded into finite k-ary tree automata, and both finite sequence and finite k-ary

tree automata are decidable. From Corollary 2.11, it follows that any temporalized

logic T1(T2), where T1 and T2 are (fragments of) QLTL or QCTL∗
k, interpreted

over either finite or infinite sequence or tree structures, are decidable. As a matter

of fact, the decidability of PLTL(PLTL) over infinite sequences of infinite sequences

was already proved in (Finger and Gabbay 1992) following a different approach.

3 Temporalized logics and automata for time granularity

In the following, we use temporalized automata to find the (combined) temporal

logic counterparts of the monadic second-order theories of downward and upward

layered structures. Both results rest on an alternative view of DULSs and UULSs

as infinite sequences of k-ary trees of a suitable form. More precisely, DULSs can be

viewed as infinite sequences of infinite k-ary trees, while UULSs can be interpreted

as infinite sequences of finite increasing k-ary trees. In Section 3.1 we provide the

monadic second-order theory of DULSs with an expressively complete and elemen-

tarily decidable temporalized logic counterpart by exploiting a temporalization of

Büchi and Rabin automata. Then, in Section 3.2, we define a suitable combina-

tion of Büchi and finite tree automata and use it to obtain a combined temporal

logic which is both elementarily decidable and expressively complete with respect

to the monadic second-order theory of UULSs. It is worth remarking that, unlike

the case of DULSs, the combined model we use to encode an UULS differs from

that of temporalization since the innermost submodels are not independent from

the outermost top-level model.

The monadic second-order language for time granularity MSOP [<, (↓i)
k−1
i=0] is

defined as follows.

Definition 3.1

(Monadic second-order language)

Let MSOP [<, (↓i)
k−1
i=0] be the second-order language with equality built up as fol-

20 Massimo Franceschet and Angelo Montanari

lows: (i) atomic formulas are of the forms x = y, x < y, ↓i (x) = y, x ∈ X and

x ∈ P , where 0 ≤ i ≤ k − 1, x, y are individual variables, X is a set variable, and

P ∈ P ; (ii) formulas are built up starting from atomic formulas by means of the

Boolean connectives ¬ and ∧, and the quantifier ∃ ranging over both individual

and set variables. ✷

We interpret MSOP [<, (↓i)
k−1
i=0] over DULSs and UULSs. For all i ≥ 0, let T i =

{ji | j ≥ 0}. A P-labeled k-refinable DULS is a tuple 〈
⋃

i≥0 T
i, (↓i)

k−1
i=0 , <, (P)P∈P〉.

Part of a 2-refinable DULS is depicted in Figure 2. A DULS can be viewed as an

infinite sequence of complete k-ary infinite trees, each one rooted at a point of T 0.

The sets in {T i}i≥0 are the layers of the trees, ↓i is a projection function such that

↓i (ab) = cd if and only if d = b + 1 and c = a · k + i, with i = 0, . . . , k − 1, <

is a total ordering over
⋃

i≥0 T
i given by the preorder (root-left-right) visit of the

nodes (for elements belonging to the same tree) and by the total linear ordering of

trees (for elements belonging to different trees), and, for all P ∈ P , P is the set of

points in
⋃

i≥0 T
i labeled with letter P . A P-labeled k-refinable UULS is a tuple

〈
⋃

i≥0 T
i, (↓i)

k−1
i=0 , <, (P)P∈P〉. Part of a 2-refinable UULS is depicted in Figure 3.

An UULS can be viewed as a k-ary infinite tree generated from the leaves. The

sets in {T i}i≥0 represent the layers of the tree, ↓i is a projection function such

that ↓i (a0) = ⊥, for all a, and ↓i (ab) = cd if and only if b > 0, b = d + 1 and

c = a · k + i, with i = 0, . . . , k − 1, < is the total ordering of
⋃

i≥0 T
i given by

the inorder (left-root-right) visit of the nodes, and, for all P ∈ P , P is the set of

points in
⋃

i≥0 T
i labeled with letter P . Given a formula ϕ ∈ MSOP [<, (↓i)

k−1
i=0], we

denote by M(ϕ) the set of models of ϕ.

For technical reasons, it is convenient to work with a different, but equivalent,

monadic second-order logic over DULSs that replaces the total ordering < by two

partial orderings <1 and <2 defined as follows. Let t be a DULS. According to the

interpretation of DULSs as tree sequences, we define x <1 y if and only if x is the

root of some tree ti of t, y is the root of some tree tj of t, and i < j over natural

numbers. Moreover, x <2 y if and only if y is different from x and y belongs to

the tree rooted at x. In a similar way, it is convenient to work with a different, but

equivalent, monadic second-order logic over UULSs that replaces the total ordering

< with a partial ordering <pre such that x <pre y if and only if y is different from

x and y belongs to the tree rooted at x.

3.1 Downward unbounded layered structures

We start with a formalization of the alternative characterization of DULSs as suit-

able tree sequences given above. Let Tk(P) be the set of P-labeled infinite k-ary

trees. Let S(Tk(P)) be the set of infinite sequences of P-labeled infinite k-ary trees,

that is, temporalized models (N, <, g) where g : N → Tk(P). P-labeled DULSs

correspond to tree sequences in S(Tk(P)), and vice versa. On the one hand, P-

labeled DULS t can be viewed as an infinite sequence of P-labeled infinite k-ary

trees, whose i-th tree, denoted by ti, is the P-labeled tree rooted at the i-th point i0
of the coarsest domain T 0 of t (cf. Figure 5). Such a sequence can be represented as

Temporalized logics and automata for time granularity 21

r

r r✟✟✟✟

❍❍❍❍

r r r r�
�

�
�

❅
❅

❅
❅

r r r r r r r r✁
✁

✁
✁

✁
✁

✁
✁

❆
❆

❆
❆

❆
❆

❆
❆

✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆
. .

t0 t1
r

r r✟✟✟✟

❍❍❍❍

r r r r

...

...

...

...

�
�

�
�

❅
❅

❅
❅

r r r r r r r r✁
✁

✁
✁

✁
✁

✁
✁

❆
❆

❆
❆

❆
❆

❆
❆

✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆
. ...

Fig. 5. A tree sequence.

the temporalized model (N, <, g) ∈ S(Tk(P)) such that, for every i ∈ N, g(i) = ti.

On the other hand, it is immediate to reinterpret infinite sequences of P-labeled

infinite k-ary trees in terms of P-labeled DULSs.

Such a correspondence between DULSs and temporalized models enables us to

use temporalized logics T1(T2), where T1 is a linear time logic and T2 is a branch-

ing time logic, to express properties of DULSs. Furthermore, taking advantage of

the correspondence between temporalized logic and automata, we can equivalently

use temporalized automata A1(A2) over DULSs, where A1 is a class of sequence

automata and A2 is a class of tree automata. In the following, we will focus on

the class B(Rk) of temporalized automata embedding Rabin k-ary tree automata

into Büchi sequence automata. We call automata in this class infinite tree sequence

automata. Since both B and Rk are effectively closed under Boolean operations

and decidable, Theorems 2.7 and 2.8 allow us to conclude that the class B(Rk)

of infinite tree sequence automata is effectively closed under Boolean operations

and decidable as well. The complexity of the emptiness problem for infinite tree

sequence automata is given by the following theorem.

Theorem 3.2

(Complexity of infinite tree sequence automata)

The emptiness problem for infinite tree sequence automata is decidable in polyno-

mial time in the number of states, and exponential time in the number of accepting

pairs.

Proof

For any given A ∈ B(Rk), let n be the number of states of A and N (resp. M) be

the maximum number of states (resp. accepting pairs) of a Rabin tree automaton

labeling transitions in A. The emptiness of Büchi sequence automata can be checked

in polynomial time in the number of states, while the emptiness of Rabin tree au-

tomata can be verified in polynomial time in the number of states, and exponential

time in the number of accepting pairs. By applying the algorithm used to test the

emptiness of temporalized automata in the proof of Theorem 2.8, we have that the

complexity of checking whether A accepts the empty language is polynomial in n

and N , and exponential in M .

The following theorem relates infinite tree sequence automata to the monadic

second-order theory of DULSs.

22 Massimo Franceschet and Angelo Montanari

Theorem 3.3

(Expressiveness of infinite tree sequence automata)

Infinite tree sequence automata are as expressive as the monadic second-order the-

ory of DULSs.

Proof

The proof can be accomplished following a proof strategy that closely resembles

those adopted to prove classical results in the field, such as, for instance, the proof

of Büchi’s Theorem (cf. (Thomas 1990)). We split it in two parts:

(a) we first show that, for every automaton A ∈ B(Rk) over Γ(Σ), there exists

a formula ϕA ∈ MSOPΣ
[<1, <2, (↓i)

k−1
i=0] over PΣ = {Pa | a ∈ Σ} such that

L(A) = M(ϕA);
(b) then, we show that, for every formula ϕ ∈ MSOP [<1, <2, (↓i)

k−1
i=0] over P , there

exists an automaton Aϕ ∈ B(Rk) over some Γ(2P) such that M(ϕ) = L(Aϕ).

We first introduce some auxiliary predicates that can be easily defined in the

monadic second-order logic over DULSs. Let +1 be a binary predicate such that

+1(x, y) if and only if x and y belong to the coarsest domain and y is the immediate

successor of x. We will write x + 1 ∈ X for ∃y(+1(x, y) ∧ y ∈ X). Moreover, let

T0(x) be a shorthand for “x belongs to the coarsest domain”, 00 ∈ X be a shorthand

for “the first element of the coarsest domain belongs to X”, and Path(X, x) be a

shorthand for the formula stating that “X is a path rooted at x”.

Let us prove part (a) for k = 2. The generalization to k > 2 is straightforward. Let

A = (Q, q0,∆, F) be a B(R2)-automaton over Γ(Σ) (finite subset of R2) accepting

tree sequences in S(T2(Σ)). We produce a sentence ϕA ∈ MSOPΣ
[<1, <2, ↓0, ↓1],

that involves monadic predicates in PΣ = {Pa | a ∈ Σ} and is interpreted over

S(T2(Σ)), such that L(A) = M(ϕA). We assume Q = {0, . . .m} and q0 = 0. For

every Z ∈ Γ(Σ), let Z = (QZ , q
0
Z ,∆Z ,ΓZ) over Σ, with QZ = {0, . . .mZ}, q0Z = 0,

and ΓZ = {(LZ
i , U

Z
i) | 1 ≤ i ≤ rZ}.

The MSOPΣ
[<1, <2, ↓0, ↓1]-sentence ϕA that corresponds to the automaton A

basically encodes the combined acceptance condition for B(R2)-automata. The out-

ermost part of the sentence expresses the existence of an accepting run over the

coarsest layer of the tree sequence for the Büchi sequence automaton A↑. For all

i ∈ Q, the second-order variable Xi denotes the set of positions of the run which

are associated with the state i, while, for all Z ∈ Γ(Σ) the monadic predicate QZ

denotes the set of positions of the run that are labeled with the Rabin tree au-

tomaton Z. The innermost part RAC(x, Z) captures the existence of an accepting

run over the tree rooted at x for the Rabin tree automaton Z. For i ∈ QZ , the

second-order variable Yi denotes the set of positions of the run that are associated

with state i. The sentence ϕA is defined as follows:

(∃QZ)Z∈Γ(Σ)(∃Xi)
m
i=0(

∧m
i=0 ∀x(x ∈ Xi → T0(x))∧∧

Z∈Γ(Σ) ∀x(x ∈ QZ → T0(x)) ∧ 00 ∈ X0 ∧
∧

i6=j ¬∃y(y ∈ Xi ∧ y ∈ Xj)∧

∀x(T0(x) →
∨

(i,Z,j)∈∆(x ∈ Xi ∧ x ∈ QZ ∧ x+ 1 ∈ Xj))∧∨
i∈F ∀x(T0(x) → ∃y(T0(y) ∧ x <1 y ∧ y ∈ Xi))∧∧
Z∈Γ(Σ) ∀x(x ∈ QZ → RAC(x, Z)),

Temporalized logics and automata for time granularity 23

where RAC(x, Z) stands for:

(∃Yi)
mZ

i=0(
∧mZ

i=0 ∀y(y ∈ Yi → x ≤2 y) ∧ x ∈ Y0 ∧
∧

i6=j ¬∃y(y ∈ Yi ∧ y ∈ Yj)∧

∀y(x ≤2 y →
∨

(i,a,j0,j1)∈∆Z
(y ∈ Yi ∧ y ∈ Pa ∧ ↓0 (y) ∈ Yj0 ∧ ↓1 (y) ∈ Yj1))∧

∀W (Path(W,x) →
∨rZ

i=0(
∧

j∈LZ
i
∃u(u ∈W ∧ ∀v(v ∈W ∧ u <2 v → v 6∈ Yj))∧∨

j∈UZ
i
∀u(u ∈W → ∃v(v ∈W ∧ u <2 v ∧ v ∈ Yj))))).

We now prove part (b). Let P = {P1, . . . Pn}. To simplify things, we prove

our result for the theory MSOP [<1, <2, (↓i)
k−1
i=0 ,+1] which can be easily shown

to be equivalent to MSOP [<1, <2, (↓i)
k−1
i=0]. Given a formula ϕ ∈ MSOP [<1, <2, (↓i

)k−1
i=0 ,+1], that involves monadic predicates in P and is interpreted over P-labeled

tree sequences in S(Tk(P)), we build an automaton Aϕ ∈ B(Rk) over some Γ(2P)

and accepting in S(Tk(P)) such that L(Aϕ) = M(ϕ).

As a first step, we show that the ordering relations <1 and <2 can actually be

removed without reducing the expressiveness. We replace x <1 y by

T0(x) ∧ T0(y) ∧ ∀X(x+ 1 ∈ X ∧ ∀z(z ∈ X → z + 1 ∈ X) → y ∈ X)),

and x <2 y by

∀X(

k−1∧

i=0

↓i (x) ∈ X ∧ ∀z(z ∈ X →
k−1∧

i=0

↓i (z) ∈ X) → y ∈ X).

Hence, MSOP [<1, <2, (↓i)
k−1
i=0 ,+1] is as expressive as MSOP [(↓i)

k−1
i=0 ,+1]. Next,

we introduce an expressively equivalent variant of MSOP [(↓i)
k−1
i=0 ,+1], denoted by

MSO[(↓i)
k−1
i=0 ,+1], which uses free set variables Xi in place of predicate symbols Pi

and is interpreted over {0, 1}n-labeled tree sequences in S(Tk({0, 1}n)). The idea is

to encode a set X ⊆ P with the string i1 . . . in ∈ {0, 1}n such that, for j = 1, . . . , n,

ij = 1 if and only if Pj ∈ X . We now reduce MSO[(↓i)
k−1
i=0 ,+1] to a simpler for-

malism MSO0[(↓i)
k−1
i=0 ,+1], where only second-order variables Xi occur and atomic

formulas are of the forms Xi ⊆ Xj (Xi is a subset of Xj), Projm(Xi, Xj), with

m = 0, . . . , k − 1 (Xi and Xj are the singletons {x} and {y}, respectively, and

↓m (x) = y), and Succ(Xi, Xj) (Xi and Xj are the singletons {x} and {y}, respec-

tively, and x + 1 = y). This step is performed as in the proof of Büchi’s Theorem.

Finally, given a MSO0[(↓i)
k−1
i=0 ,+1]-formula ϕ(X1, . . . , Xn), we prove, by induction

on the structural complexity of ϕ, that there exists a temporalized automaton Aϕ

accepting in S(Tk({0, 1}
n)) such that M(ϕ) = L(Aϕ). A corresponding automaton

accepting in S(Tk(P)) can be obtained in the obvious way. As for atomic formulas,

let αi,j be the Rabin tree automaton over {0, 1}n for Xi ⊆ Xj. The temporalized

automaton for Xi ⊆ Xj is depicted in Figure 6 (top). Moreover, let ζ be the Ra-

bin tree automaton over {0, 1}n that accepts the singleton set containing a tree

labeled with 0n everywhere, and let αm
i,j be the Rabin tree automaton over {0, 1}n

for Projm(Xi, Xj). The temporalized automaton for Projm(Xi, Xj) is depicted in

Figure 6 (middle). Finally, let αi be the Rabin tree automaton over {0, 1}n that

accepts the singleton set containing a tree labeled with 0i−110n−i at the root, and

labeled with 0n elsewhere. The combined automaton for Succ(Xi, Xj) is depicted

in Figure 6 (bottom). The induction step immediately follows from the closure of

24 Massimo Franceschet and Angelo Montanari

α n

i,j

ζ ζ

α
i α

j

ζ ζ

i,jα

Fig. 6. Temporalized automata for atomic formulas.

B(Rk) automata under Boolean operations and projection. Closure under Boolean

operations has been already shown; closure under projection can be argued as fol-

lows: given a B(Rk)-automaton A, the corresponding projected B(Rk)-automaton

is obtained by simply projecting every Rabin automaton that labels some transition

of A.

We can exploit infinite tree sequence automata to provide the (full) second-order

theory of DULSs with an expressively complete and elementarily decidable temporal

logic counterpart. First of all, it is well-known that B ⇆ QLTL and B ⇆ EQLTL,

as well as Rk ⇆ QCTL∗
k and Rk ⇆ EQCTL∗

k (Emerson 1990). Since Rabin tree

automata are closed under Boolean operations, Theorem 2.10 allows us to conclude

that both QLTL(QCTL∗
k) ⇆ B(Rk) and EQLTL(EQCTL∗

k) ⇆ B(Rk)
3. By apply-

ing Theorem 3.3, we have that both QLTL(QCTL∗
k) ⇆ MSOP [<1, <2, (↓i)

k−1
i=0] and

EQLTL(EQCTL∗
k) ⇆ MSOP [<1, <2, (↓i)

k−1
i=0]. Such a result is summarized by the

following theorem.

Theorem 3.4

(Expressiveness of QLTL(QCTL∗
k) and EQLTL(EQCTL∗

k))

QLTL(QCTL∗
k) and EQLTL(EQCTL∗

k) are as expressive as MSOP [<1, <2, (↓i)
k−1
i=0],

when interpreted over DULSs.

Furthermore, since MSOP [<1, <2, (↓i)
k−1
i=0] is decidable, both QLTL(QCTL∗

k) and

EQLTL(EQCTL∗
k) are decidable. The next theorem shows that EQLTL(EQCTL∗

k)

is elementarily decidable.

3 It is worth pointing out that the application of the partition step of Theorem 2.10 to temporal
formulas in EQCTL∗

k
generates formulas of the form ¬∃Q1 . . . ∃Qnϕ, where ϕ is a CTL∗

k
-formula,

which do not belong to the language of EQCTL∗

k
, because such a language is not closed under

negation. Nevertheless, formulas of the form ¬∃Q1 . . . ∃Qnϕ can be embedded into Rabin tree
automata as well. The Rabin tree automaton for ¬∃Q1 . . . ∃Qnϕ can indeed be obtained by
taking the complementation of the projection, with respect to Q1, . . . Qn, of the Rabin tree
automaton for ϕ.

Temporalized logics and automata for time granularity 25

Theorem 3.5

(Complexity of EQLTL(EQCTL∗
k))

The satisfiability problem for EQLTL(EQCTL∗
k) over DULSs is in ELEMENTARY.

Proof

EQLTL(EQCTL∗
k) can be decided by embedding it into B(Rk) automata (such

an embedding can be accomplished following the approach outlined in the proof

of Theorem 2.10). EQLTL can be elementarily embedded into Büchi sequence au-

tomata. Indeed, given an EQLTL-formula ∃Q1 . . . ∃Qnϕ, the PLTL-formula ϕ can

be converted into a Büchi sequence automaton Aϕ of size O(2|ϕ|). A Büchi sequence

automaton for ∃Q1 . . .∃Qnϕ can be obtained by taking the projection of Aϕ with

respect to letters Q1, . . . , Qn, that is, by deleting letters Q1, . . . , Qn from the tran-

sitions of Aϕ. The size of the resulting automaton is O(2|ϕ|). Similarly, EQCTL∗
k

formulas can be embedded into Rabin tree automata with a doubly exponential

number of states and a singly exponential number of accepting pairs in the length

of the formula. In particular, as already pointed out, a Rabin tree automaton for

formulas of the form ¬∃Q1 . . . ∃Qnϕ, which are generated by applying the partition

step of Theorem 2.10 to EQCTL∗
k formulas, can be obtained by taking the comple-

mentation of the projection, with respect to Q1, . . . Qn, of the Rabin tree automaton

for ϕ. The resulting automaton has elementary size. Hence, any EQLTL(EQCTL∗
k)

formula can be converted into an equivalent B(Rk) automaton of elementary size.

Since B(Rk) automata are elementarily decidable, we have the thesis.

We conclude the section by giving some examples of meaningful timing properties

that can be expressed in (fragments of) EQLTL(EQCTL∗
k) interpreted over DULSs.

As a first example, consider the property ‘P densely holds at some node x’ meaning

that there exists a path rooted at x such that P holds at each node of the path

(notice that such a property implies that, for every i ≥ 0, there exists y ∈↓i (x)

such that P holds at y, where, for i ≥ 0, ↓i (x) is the i-th layer of the tree rooted

at x, but not vice versa). This property can be expressed in PLTL(CTL∗
k) by the

formula:

✸EFEGP.

As another example, the property ‘P holds at the origin of every layer’ (or, equiv-

alently, ‘P holds along the leftmost path of the first tree of the sequence’) can be

expressed in PLTL(CTL∗
k) as follows:

E(P ∧ GX0P).

As a third example, the property ‘P holds everywhere on every even tree’ can be

encoded in EQLTL(CTL∗
k) as follows:

∃Q(Q ∧ ©¬Q ∧ ✷(Q ↔ © © Q) ∧ ✷(Q → AGP)).

Notice that such a property cannot be expressed in PLTL(CTL∗
k), since, as it is well-

known, PLTL cannot express the property ‘P holds on every even point’ (Wolper

1983). As a last example, the property ‘P holds everywhere on every even layer’

26 Massimo Franceschet and Angelo Montanari

r r r r

r r r

�
�

�
�

❅
❅

❅
❅r r r r

� �❅ ❅r r r r

. . .
00 01 02 03

10 11 12

20 30 21 31

40 50 60 70

Fig. 7. Mapping an UULS into an increasing tree sequence.

can be encoded in PLTL(EQCTL∗
k) as follows:

✷∃Q(Q ∧ AX¬Q ∧ AG(Q ↔ AXAXQ) ∧ AG(Q → P)).

Notice that also this property cannot be expressed in PLTL(CTL∗
k).

Unfortunately, things are not always that easy. As an example, the property

‘P holds at exactly one node’ can be easily encoded in (the first-order fragment

of) MSOP [<1, <2, (↓i)
k−1
i=0] by the formula: ∃x(x ∈ P ∧ ∀y(y 6= x → y 6∈ P)),

while it is not easy at all to express it in EQLTL(EQCTL∗
k). Moreover, since

MSOP [<1, <2, (↓i)
k−1
i=0] is nonelementarily decidable, while EQLTL(EQCTL∗

k) is el-

ementarily decidable, the translation τ of MSOP [<1, <2, (↓i)
k−1
i=0] formulas into

EQLTL(EQCTL∗
k) formulas is nonelementary. This means that, for every n ∈ N,

there exists an MSOP [<1, <2, (↓i)
k−1
i=0]-formula ϕ such that the length of τ(ϕ) is

greater than κ(n, |ϕ|) (an exponential tower of height n).

3.2 Upward unbounded layered structures

We start by giving an alternative characterization of UULSs in terms of tree se-

quences. To this end, we need to introduce the notions of almost k-ary tree and of

increasing tree sequence. An almost k-ary finite tree is a complete finite tree whose

root has exactly k−1 sons 0, . . . , k−2, each of them is the root of a complete finite

k-ary tree. Let Hk(P) be the set of P-labeled almost k-ary finite trees. A P-labeled

increasing k-ary tree sequence (ITS, for short) is a tree sequence such that, for every

i ∈ N, the i-th tree of the sequence is a P-labeled almost k-ary tree of height i (cf.

Figure 7). A P-labeled ITS can be represented as a temporalized model (N, <, g)

such that, for every i ∈ N, g(i) is the i-th tree of the sequence. Let ITSk(P) be the

set of P-labeled k-ary ITSs. It is worth noting that ITSk(P) is not the class Hk(P

of temporalized models embedding almost k-ary finite trees into infinite sequences:

an increasing tree sequence is a particular sequence of almost k-ary finite trees,

but a sequence of almost k-ary finite trees is not necessary increasing, and thus

ITSk(P) (S(Hk(P)).

It is not difficult to show that a P-labeled UULS corresponds to a P-labeled

ITS, and vice versa. As already pointed out, an UULS can be viewed as an infinite

complete k-ary tree generated from the leaves. The corresponding tree sequence

Temporalized logics and automata for time granularity 27

can be obtained starting from the first point of the finest layer of the UULS and

climbing up along the leftmost path of the structure. The i-th tree in the sequence

is obtained by taking the tree rooted at the i-th point of the leftmost path, and by

deleting from it the subtree rooted at the leftmost son of its root. More precisely, let

t be a k-ary UULS. For every node x in t, we define tx to be the finite complete k-

ary tree rooted at x. For every i ≥ 0, let t̂0i be the almost k-ary finite tree obtained

from t0i by deleting, whenever i > 0, the subtree t0i−1
from it. The ITS (N, <, g)

associated with the UULS t is obtained by defining, for every i ≥ 0, g(i) = t̂0i . The

embedding of a binary UULS into a binary ITS is depicted in Figure 7. Similarly,

ITSs can be reinterpreted in terms of UULSs.

On the basis of such a correspondence between UULSs and ITSs, we can use

temporalized logics T1(T2), where T1 is a linear time logic and T2 is a branching

time logic, to express properties of UULSs. More precisely, we interpret T1(T2)

over S(Hk(P)), but, since we are interested in increasing tree sequences, we study

the logical properties of T1(T2), such as expressiveness and decidability, with re-

spect to the proper subset ITSk(P). Temporalized automata A1(A2) over UULSs

can be defined in a similar way. Once again, we consider automata in A1(A2) ac-

cepting in S(Hk(Σ)), but, since we are interested in increasing tree sequences, we

study the relevant properties of A1(A2), such as closure under Boolean operations,

expressiveness, and decidability, with respect to the proper subset ITSk(Σ). In the

following, we will focus on the class B(Ck) of temporalized automata embedding

almost k-ary finite tree automata into Büchi sequence automata. We call automata

in B(Ck) finite tree sequence automata.

Since both B and Ck are effectively closed under Boolean operations and decid-

able, Theorems 2.7 and 2.8 allows us to conclude that B(Ck) is effectively closed

under Boolean operations and decidable. We show that B(Ck)-automata are closed

under Boolean operations over the set ITSk(Σ) as well. Let A,B ∈ B(Ck). We show

that:

• there exists C ∈ B(Ck) such that

L(C) ∩ ITSk(Σ) = ITSk(Σ) \ L(A) (complementation);

• there exists C ∈ B(Ck) such that

L(C) ∩ ITSk(Σ) = (L(A) ∪ L(B)) ∩ ITSk(Σ) (union);

• there exists C ∈ B(Ck) such that

L(C) ∩ ITSk(Σ) = (L(A) ∩ L(B)) ∩ ITSk(Σ) (intersection).

As it can be easily checked, it suffices to set C = A in case of complementation,

C = A ∪B in the case of union, and C = A ∩B in the case of intersection.

The following theorem relates finite tree sequence automata to the monadic

second-order theory of UULSs.

Theorem 3.6

28 Massimo Franceschet and Angelo Montanari

(Expressiveness of finite tree sequence automata)

Finite tree sequence automata are as expressive as the monadic second-order theory

of UULSs.

Proof

The proof is quite similar to that of Theorem 3.3, and thus we only sketch its main

steps. We split the proof in two parts:

(a) we first show that, for every automaton A ∈ B(Ck) over Γ(Σ), there exists

a formula ϕA ∈ MSOPΣ
[<, (↓i)

k−1
i=0] over PΣ = {Pa | a ∈ Σ} such that L(A) ∩

ITSk(Σ) = M(ϕA);

(b) then we show that, for every formula ϕ ∈ MSOP [<, (↓i)
k−1
i=0], there exists an

automaton Aϕ ∈ B(Ck) over some Γ(2P) such that M(ϕ) = L(Aϕ) ∩ ITSk(P).

The embedding of automata into formulas is performed by encoding the com-

bined acceptance condition for B(Ck)-automata into MSOP [<, (↓i)
k−1
i=0]. The Büchi

acceptance condition have to be implemented over the leftmost path of the struc-

ture, and the finite tree automata acceptance condition have to be constrained to

hold over almost k-ary trees rooted at nodes in the leftmost path of the structure.

The embedding of formulas into automata takes advantage of the closure properties

of B(Ck)-automata over UULSs.

We can exploit finite tree sequence automata to provide the (full) second-order

theory of UULSs with an expressively complete temporal logic counterpart. We

know that B ⇆ QLTL and B ⇆ EQLTL, and that Ck ⇆ QCTL∗
k and Ck ⇆

EQCTL∗
k. Since almost k-ary finite tree automata are closed under Boolean oper-

ations, Theorem 2.10 allows us to conclude that that QLTL(QCTL∗
k) ⇆ B(Ck)

and EQLTL(EQCTL∗
k) ⇆ B(Ck) over infinite sequences of almost k-ary finite

trees. Since increasing k-ary tree sequences are infinite sequences of almost k-ary

trees, the above equivalences hold over increasing k-ary tree sequences as well.

From Theorem 3.6, we have that QLTL(QCTL∗
k) ⇆ MSOP [<pre, (↓i)

k−1
i=0] and

EQLTL(EQCTL∗
k) ⇆ MSOP [<pre, (↓i)

k−1
i=0]. Such a result is summarized by the

following theorem.

Theorem 3.7

(Expressiveness of QLTL(QCTL∗
k) and EQLTL(EQCTL∗

k))

QLTL(QCTL∗
k) and EQLTL(EQCTL∗

k) are as expressive as MSOP [<pre, (↓i)
k−1
i=0],

when interpreted over UULSs.

The (nonelementary) decidability of QLTL(QCTL∗
k) and EQLTL(EQCTL∗

k) im-

mediately follows from that of MSOP [<pre, (↓i)
k−1
i=0] over UULSs. A natural ques-

tion arises at this point: is EQLTL(EQCTL∗
k) elementary decidable as in the case of

DULSs? In order to answer this question, we study the decidability and complexity

of the emptiness problem for finite tree sequence automata over increasing k-ary

tree sequences. Such a problem can be formulated as follows: given an automaton

A ∈ B(Ck), is there an increasing k-ary tree sequence accepted by A? (Equivalently,

does L(A) ∩ ITSk(Σ) 6= ∅?) The (nonelementary) decidability of such a problem

Temporalized logics and automata for time granularity 29

immediately follows from Theorem 3.6, since, given an automaton A, we can build

an equivalent monadic formula ϕA and check its satisfiability over UULSs. In the

following, we give a necessary and sufficient condition that solves the problem in

elementary time.

Let A = (Q, q0,∆, F) be an automaton in B(Ck) over the alphabet Γ(Σ) (finite

subset of Ck). Clearly, L(A) 6= ∅ is necessary for L(A) ∩ ITSk(Σ) 6= ∅. However,

it is not sufficient. By definition of combined acceptance condition for A, we have

that L(A) 6= ∅ if and only if there is a finite sequence q0, q1, . . . qm of distinct states

in Q, a finite sequence X0, X1, . . .Xm of Ck-automata and j ∈ {0, . . .m} such that:

1. ∆(qi, Xi, qi+1), for every i = 0, . . .m− 1, and ∆(qm, Xm, qj);

2. qj ∈ F ;

3. L(Xi) 6= ∅, for every i = 0, . . .m

To obtain a necessary and sufficient condition for L(A) ∩ ITSk(Σ) 6= ∅, we have

to strengthen condition (3) as follows. Let T i
k(Σ) be the set of almost k-ary finite

trees of height i:

3’. (3’a) L(Xi)∩T i
k(Σ) 6= ∅, for every i = 0, . . . j−1, and (3’b) L(Xi)∩T

i+y·l
k (Σ) 6=

∅, for every i = j, . . .m and y ≥ 0, where l = m− j + 1.

The conjunction of conditions (1,2,3’) is a necessary and sufficient condition for

L(A) ∩ ITSk(Σ) 6= ∅. We show that conditions (1,2,3’) are elementarily decidable.

Clearly, there are elementarily many runs in A satisfying conditions (1,2). The

following nontrivial Lemma 3.8 shows that condition 3’ is elementarily decidable.

Lemma 3.8

Let X be a almost k-ary finite tree automaton, and a, l ≥ 0. Then, the problem

L(X) ∩ T a+y·l
k (Σ) 6= ∅, for every y ≥ 0, is elementarily decidable.

Proof

Let X = (Q, q0,∆, F) over Γ(Σ). If l = 0, then the problem reduces to checking

L(X) ∩ T a
k (Σ) 6= ∅, for some a ≥ 0. For every a ≥ 0, the set T a

k is finite and

hence regular. Since almost k-ary finite tree automata are elementarily closed under

Boolean operations and elementarily decidable, we conclude that in this case the

condition is elementarily effective.

Suppose now l > 0. For the sake of simplicity, we first give the proof for finite

sequence automata, and then we discuss how to modify it to cope with the case of

almost k-ary finite tree automata. Hence, let X be a finite sequence automaton. We

have to give an elementarily effective procedure that checks whether X recognizes

at least one sequence of length a, at least one of length a+ l, at least one of length

a + 2l, and so on. Without loss of generality, we may assume that the set of final

states of X is the singleton containing qfin ∈ Q. Hence, the problem reduces to

check, for every y ≥ 0, the existence of a path from q0 to qfin of length a+ y · l in

the state-transition graph associated with X . We thus need to solve the following

problem of Graph Theory, which we call the Periodic Path Problem (PPP for short):

30 Massimo Franceschet and Angelo Montanari

Given a finite directed graph G = (N,E), two nodes q1, q2 ∈ N , and two natural
numbers a, l ≥ 0, the question is: for every y ≥ 0, is there a path in G from q1 to q2 of
length a+ y · l?

In the following, we further reduce the PPP to a problem of Number Theory. Let

Πq1,q2(G) be the set of paths from q1 to q2 in the graph G. Given π ∈ Πq1,q2(G), we

denote by π	 the path obtained by eliminating cyclic subpaths from π. That is, if π

is acyclic, then π	 = π. Else, if π = αq′βq′γ, then π	 = α	q′γ	. Let ∼q1,q2 be the

relation on Πq1,q2(G) such that π1 ∼q1,q2 π2 if and only if π	
1 = π	

2 . Note that ∼q1,q2

is an equivalence relation of finite index. For every equivalence class [π]∼q1,q2
, we

need a formula expressing the length of a generic path in the class. Note that every

path in [π]∼q1,q2
differs from any other path in the same class only for the presence

of some cyclic subpaths. More precisely, let µ be the shortest path in [π]∼q1,q2
, let

C1, . . . Cn be the cycles intersecting π, and let w1, . . . wn be their respective lengths.

Note that µ does not cycle through any Ci. Every path in [π]∼q1,q2
starts from q1,

cycles an arbitrary number of times (possibly zero) through every Ci, and reaches

q2. It is easy to see that the length of an arbitrary path σ ∈ [π]∼q1,q2
is given by

the parametric formula:

|σ| = |µ|+
n∑

i=1

xi · wi,

where xi ≥ 0 in the number of times the path σ cycles through Ci.

Let [π1]∼q1,q2
, . . . , [πm]∼q1,q2

be the equivalence classes of ∼q1,q2 . For every j =

1, . . .m, let µj be the shortest path in [πj]∼q1,q2
, let Cj

1 , . . . C
j
n be the the cycles

intersecting πj , and let wj
1, . . . w

j
n be their respective lengths. Moreover, let

Yj = {y ≥ 0 | ∃x1, . . . xn ≥ 0 (|µj |+
n∑

i=1

xi · w
j
i = a+ y · l)}.

The PPP reduces to the following problem of Number Theory:

Do the sets Y1, . . . Ym cover the natural numbers? That is, does
⋃m

j=1
Yj = N?

We now solve the latter problem. Let wi ≥ 0, for i = 1, . . . n. We are interested

in the form of the set S = {
∑n

i=1 xi · wi | xi ≥ 0}. Let W = (w1, . . . wn) and let

d = GCD(W) (the greatest common divisor of {w1, . . . , wn}). We distinguish the

cases d = 1 and d 6= 1. If d = 1, then it is easy to see that:

S = E ∪ {j | j ≥ k},

where E is a finite set of exceptions such that max(E) < k, and k = (wr − 1) ·

(ws − 1), with wr = min(W) (the minimum of {w1, . . . wn}) and ws = min(W \

wr). If d 6= 1, then consider the set S′ = {
∑n

i=1 xi · wi/d | xi ≥ 0}. Clearly,

GCD(w1/d, . . . wn/d) = 1 and hence, as above, S′ = E′ ∪ {j | j ≥ k′} for some

finite set E′ and some k′ ∈ N. Therefore, in this case,

S = E′ · d ∪ {j | j ≥ k′ · d ∧ d DIV j},

where d DIV j means that d is a divisor of j.

Temporalized logics and automata for time granularity 31

Summing up, in any case, the set S can be described as follows:

S = E ∪ {k + j · d | j ∈ N},

for some finite (computable) set E, some (computable) k ∈ N, and d = GCD(W).

In other words, the set S is the union of a finite and computable set of exceptions

and an arithmetic progression.

Now we consider the equation
∑n

i=1 xi · wi = y · l. Our aim is to describe the

set Y = {y ≥ 0 | ∃x1, . . . xn ≥ 0 (
∑n

i=1 xi · wi = y · l)} in a similar way. Let

e = GCD(d, l), l = l′ · e and d = d′ · e. We have that:

y ∈ Y iff

y · l ∈ S iff

y · l ∈ E ∨ y · l ≥ k ∧ d DIV y · l iff

y · l ∈ E ∨ y ≥ ⌈k/l⌉ ∧ d′ · e DIV y · l′ · e iff

y · l ∈ E ∨ y ≥ ⌈k/l⌉ ∧ d′ DIV y

Therefore, the set Y is the union of a finite and computable set and an arithmetic

progression, i.e.,

Y = E′ ∪ {k′ + j · d′ | j ∈ N},

for some finite (computable) set E′, some (computable) k′ ∈ N, and d′ = d/GCD(d,

l). The set Y = {y ≥ 0 | ∃x1, . . . xn ≥ 0 (
∑n

i=1 xi · wi = a+ y · l)}, with a ∈ N, can

be described in the same way.

We have shown that, for i = 1, . . . ,m, every Yi has the form Ei∪{ki+y·di | y ≥ 0}

for some finite Ei, and some ki, di ∈ N. We now give a solution to the problem⋃m
i=1 Yi = N. Let kr = min{k1, . . . , km} and D = LCM(d1, . . . , dm) (the least

common multiple of {d1, . . . , dm}). The algorithm works as follows: for every k < kr,

we check whether k ∈ Yi for some i = 1, . . . ,m. If this is not the case, the problem

has no solution. Otherwise, we verify whether, for every j = 0, . . . , D−1, kr+j ∈ Yi
for some i = 1, . . . ,m. If this is the case, then we have a solution, otherwise, there

is no solution. Note that a solution can be described in terms of an ultimately

periodic word w = uvω, with u, v ∈ {1, . . .m}∗, such that, for every i ≥ 0, w(i) = j

means that a path from q1 to q2 in the graph G belongs to the j-th equivalence

class [πj]∼q1,q2
.

The above algorithm solves the periodic path problem in doubly exponential time

in the number n of nodes of the graph G. The number of equivalence classes of the

relation ∼q1,q2 over the set of paths from q1 to q2 in G may be exponential in n.

Thus, we have m sets Y1, . . . , Ym, each one associated with a relevant equivalence

class, and m = O(2n). Every set Yi can be represented in polynomial time as

Ei ∪ {ki + y · di | y ≥ 0} for some finite Ei, and some ki, di ∈ N. Note that the

cardinality of Ei is bounded by ki, ki = O(n2), and di = O(n). The final step

of the procedure makes k0 + D membership tests with respect to some set Yi,

where k0 = min{d1, . . . dm}, and D = LCM(d1, . . . dm). Each test is performed

in O(1). Moreover, D is bounded by d0
m, where d0 = max{d1, . . . dm}, and hence

D = O(22
n

). Hence, the procedure works in doubly exponential time.

The general case of finite trees is similar. Let X be a finite almost k-ary tree

automaton. A path from q1 to q2 corresponds to a run of X such that the run tree

32 Massimo Franceschet and Angelo Montanari

is complete and k-ary, the root of the run tree is labeled with state q1 and the leaves

of the run tree are labeled with state q2. A cycle is a path from q to q. The problem

is to find, for every y ≥ 0, a path from the initial state q0 to the final state qfin of

length a+ y · l. The rest of the proof follows the same reasoning path of the proof

for sequence automata.

From Lemma 3.8, it follows that, given a B(Ck)-automaton A, we have an algo-

rithm to solve the problem L(A) ∩ ITSk(Σ) 6= ∅ in doubly exponential time in the

size of A.

Theorem 3.9

The emptiness problem for finite tree sequence automata over UULSs is in 2EXP-

TIME.

Since EQLTL(EQCTL∗
k) formulas can be elementarily converted into B(Ck) au-

tomata, we have the desired result.

Theorem 3.10

(Complexity of EQLTL(EQCTL∗
k))

The satisfiability problem for EQLTL(EQCTL∗
k) over UULSs is in ELEMENTARY.

We conclude the section by giving some examples of meaningful timing properties

that can be expressed in (fragments of) EQLTL(EQCTL∗
k) interpreted over UULSs.

As a first example, consider the property ‘P holds at every point of the finest layer

T 0 whose distance from the origin of the layer 00 is a power of two (10, 20, 40, 80,

and so on)’ over a binary UULS. Such a property can be expressed in PLTL(CTL∗
k)

as follows:

©✷EX1G((Xtrue → X0true) ∧ (¬Xtrue → P)).

Notice that the property ‘P holds on every point 2i, with i ∈ N’ cannot be expressed

in QLTL. As a second example, the property ‘P holds on every even point of the

leftmost path’ can be expressed in EQLTL(CTL∗
k) as follows:

∃Q(Q ∧ ©¬Q ∧ ✷(Q ↔ © © Q) ∧ ✷(Q → P)).

As already pointed out, this property cannot be expressed in PLTL(CTL∗
k), since

PLTL cannot express the property ‘P holds on every even point’ (Wolper 1983).

As in the case of DULSs, there are some natural properties of UULSs that cannot

be easily captured in EQLTL(EQCTL∗
k). As an example, it is not easy to express

the property ‘P holds on every even point of the finest domain T 0’.

4 The specification of a high voltage station

In this section, we exemplify the concrete use of temporalized logics as specifica-

tion formalisms by providing (an excerpt of) the specification of a supervisor that

automates the activities of a High Voltage (HV) station devoted to the end user dis-

tribution of energy generated by power plants (Montanari 1996). We first show how

relevant timing properties of such a system can be expressed in monadic second-

order languages, and then we give their simpler temporalized logic formulations.

Temporalized logics and automata for time granularity 33

Each HV station is composed of bays, connecting generation units to the distribu-

tion line. A bay consists of circuit breakers and insulators. They are both switches,

but an expensive circuit breaker can interrupt current in a very short time (50

millisecond or even less), while a cheap insulator is not able to interrupt a flowing

current and it has a switching time of a few seconds. Let us consider a simple HV

station consisting of two bars b1 and b2 connected to different power units, a dis-

tribution line l, and two bays pb (parallel bay) and lb (line bay). The parallel bay

shorts circuit between the two bars b1 and b2. It consists of two insulators ip1 and

ip2, and one circuit breaker cbp. It is in the state closed if all its switches are

closed; otherwise it is open. The line bay connects the distribution line with either

the first bar or the second one. It consists of three insulators ilb1, ilb2, and il1,

and one circuit breaker cbl. It is in the state closed on b1 if ilb1, cbl, and il1

are closed, and in the state closed on b2 if ilb2, cbl, and il1 are closed.

We focus on the specification of the change of the bar connected to the line from

b1 to b2. The supervisor starts its operation by closing the parallel bay, an action

that takes about 10 seconds ; then, it first closes the insulator ilb2, an action that

takes about 5 seconds and then it opens the insulator ilb1, and action that takes

5 seconds as well; finally, it opens the parallel bay, an action that takes other 10

seconds. To model the behavior of the system, we use the predicates change b1 b2,

change b2 b1, close pb, open pb, close ilb1, open ilb1, close ilb2, and so on

to denote the corresponding commands sent by the supervisor to the various devices.

Furthermore, for every system action we identify the time granularity with respect

to which it can be considered as an instantaneous action. The change of the bar

takes about 30 seconds, opening and closing the parallel bay 10 seconds, switching

insulators 5 seconds, and switching circuit breakers 50 milliseconds. Accordingly,

we assume a 4-layered structure whose 4 layers correspond to the 4 involved time

granularities, namely, 30secs, 10secs, 5secs, and 50millisecs (in (Franceschet

and Montanari 2003) we show how to tailor temporal logics for time granularity

over downward unbounded layered structures to deal with n-layered structures).

In the monadic second-order language, the change of the bar is described by the

following formula, which specifies the sequence of actions taken by the supervisor:

∀x. (T 30secs(x) ∧ change b1 b2(x) → ∃y1. ↓0(x) = y1 ∧ close pb(y1)∧

∃y2. +110secs(y1, y2)∧

∃y3. ↓0(y2) = y3 ∧ close ilb2(y3)∧

∃y4. +15secs(y3, y4) ∧ open ilb1(y4)∧

∃y5. +15secs(y4, y5)∧

∃y6. ↓0(y6) = y5 ∧ open pb(y6)),

where the definable predicate +1g(x, y) states that both x and y belong to the layer

g and y is the successor x with respect to g. Such a condition can be expressed in

temporalized logic in a much more compact and readable way:

G(change b1 b2 → EX0close pb ∧ EX1X0close ilb2∧

EX1X1open ilb1 ∧ EX2open pb)

34 Massimo Franceschet and Angelo Montanari

As for the compound operation close pb, let us assume that the supervisor starts

in parallel the closure of the circuit breaker, which is completed in 50 milliseconds,

and of the first insulator, that takes about 5 seconds; then, once the first insulator is

closed, it closes the second one. Such an operation can be specified by the following

classical formula:

∀x. (T 10secs(x) ∧ close pb(x) → ∃y1. ↓0(x) = y1 ∧ close ip1(y1)∧

∃y2. ↓0(y1, y2) ∧ close cbp(y2)∧

∃y3. +15secs(y1, y3) ∧ close ip2(y3),

while its temporalized version is structured as follows:

G((EX0close pb → EX0(EX0(close ip1 ∧ X0close cpb) ∧ EX1close ip2))∧

(EX1close pb → EX1(EX0(close ip1 ∧ X0close cpb) ∧ EX1close ip2))∧

(EX2close pb → EX2(EX0(close ip1 ∧ X0close cpb) ∧ EX1close ip2))).

5 Conclusions and future work

In this paper, we provided the monadic second-order theories of DULSs and UULSs

with expressively complete and elementarily decidable temporal logic counterparts.

To this end, we defined temporalized automata, which can be seen as the automaton-

theoretic counterpart of temporalized logics, and showed that relevant properties,

such as closure under Boolean operations, decidability, and expressive equivalence

with respect to temporal logics, transfer from component automata to temporalized

ones. Then, we exploited temporalized automata to successfully solve the problem

of finding the temporal logic counterparts of the given theories of time granularity.

As a matter of fact, some forms of automaton combination, which differ from

temporalization in various respects, have been proposed in the literature to increase

the expressive power of temporal logics. As an example, extensions of PLTL with

connectives defined by means of finite automata over ω-strings are investigated

in (Vardi and Wolper 1994). To gain the expressive power of the full monadic

second-order theory of (ω,<), Vardi and Wolper’s Extended Temporal Logic (ETL)

replaces the until operator of PLTL by an infinite bunch of automata connectives,

that is, ETL allows formulas to occur as arguments of an automaton connective

(as many formulas as the symbols of the automaton alphabet are). Given the well-

known correspondence between formulas and automata, the application of automata

connectives to formulas can be viewed as a form of automata combination. An

extension of CTL∗ that substitutes ETL operators for PLTL ones is given in (Dam

1994). However, the switch from PLTL to ETL does not involve any change in

the domain of interpretation (ω-structures in the first case, binary trees in the

latter). On the contrary, in the case of temporalized automata/logics, component

automata/temporal logics refer to different temporal structures, and thus their

combination is paired with a combination of the underlying temporal structures.

We are developing our research on temporalized logics and automata for time

granularity in various directions. First of all, we are trying to improve the complex-

Temporalized logics and automata for time granularity 35

ity bound for the satisfiability problem for EQLTL(EQCTL∗
k) over UULSs. Second,

we are investigating the relationships between temporalized and classical automata.

On the one hand, the languages recognized by temporalized automata are struc-

turally different from those recognized by classical automata, e.g., Büchi(Büchi)

automata recognize infinite strings of infinite strings. On the other hand, this fact

does not imply that language problems for temporalized automata cannot be re-

duced to the corresponding problems for classical automata. As an example, the

emptiness problem for Büchi(Büchi) automata can actually be reduced to the

emptiness problem for Büchi automata. We are exploring the possibility of defining

similar reductions for more complex temporalized automata. Finally, we are explor-

ing the possibility of extending our correspondence results to other forms of logic

combination, such as independent combination and join (Gabbay et al. 2003).

Acknowledgements

We would like to thank the anonymous reviewers for their comments and criticisms,

that helped us to improve the paper, as well as Johan van Benthem, Ahmed Boua-

jjani, Marcelo Finger, Valentin Goranko, Maarten de Rijke, and Wolfgang Thomas

for their positive feedback on the work reported in the paper. Thanks also to Pietro

Corvaia, Alberto Policriti, and Franca Rinaldi for the useful discussions about the

proof of Lemma 3.8.

References

Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. In Proceedings of the
International Conference on Data Engineering. IEEE Computer Society Press, 3–14.

Bettini, C., Brodsky, A., Jajodia, S., and Wang, X. S. 1997. Logical design for
temporal databases with multiple granularities. ACM Transactions on Database Sys-
tems 22, 2, 115–170.

Bettini, C., Jajodia, S., Lin, J., and Wang, X. S. 1998. Discovering frequent event
patterns with multiple granularities in time sequences. IEEE Transactions on Knowledge
and Data Engineering 10, 2, 222–237.

Bettini, C., Jajodia, S., and Wang, X. 1996a. A general framework and reasoning
models for time granularity. In Proceedings of the International Workshop on Temporal
Representation and Reasoning. IEEE Computer Society Press, 104–111.

Bettini, C., Jajodia, S., and Wang, X. S. 1996b. Testing complex temporal relation-
ships involving multiple granularities and its application to data mining. In Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems. Vol. 15. ACM Press, 68–78.

Blackburn, P. and Bos, J. 2003. Representation and Inference for Natural Language.
Studies in Logic, Language, and Information. CSLI Press. Forthcoming.

Chandra, R., Segev, A., and Stonebraker, M. 1994. Implementing calendars and
temporal rules in next generation databases. In Proceedings of the International Con-
ference on Data Engineering. IEEE Computer Society Press, Houston, TX, 264–273.

Ciapessoni, E., Corsetti, E., Montanari, A., and San Pietro, P. 1993. Embedding
time granularity in a logical specification language for synchronous real-time systems.
Science of Computer Programming 20, 141–171.

36 Massimo Franceschet and Angelo Montanari

Combi, C., Franceschet, M., and Peron, A. 2002. A logical approach to represent
and reason about calendars. In Proceedings of the International Symposium on Temporal
Representation and Reasoning. IEEE Computer Society Press, 134–140.

Combi, C. and Pozzi, G. 2001. A temporal data model managing intervals with different
granularities and indeterminacy from natural language sentences. The VLDB Journal 9,
294–311.

Corsetti, E., Crivelli, E., Mandrioli, D., Montanari, A., Morzenti, A., Pietro,
P. S., and Ratto, E. 1991. Dealing with different time scales in formal specifications.
In Proceedings of the International Workshop on Software Specification and Design.
IEEE Computer Society Press, 92–101.

Corsetti, E., Montanari, A., and Ratto, E. 1991. Dealing with different time gran-
ularities in formal specifications of real-time systems. The Journal of Real-Time Sys-
tems 3, 191–215.

Courcoubetis, C., Vardi, M., Wolper, P., and Yannakakis, M. 1991. Memory effi-
cient algorithms for the verification of temporal properties. In Proceedings of Computer-
Aided Verification. Lecture Notes in Computer Science, vol. 531. Springer, Berlin, Ger-
many, 233–242.

Cukierman, D. and Delgrande, J. 1998. Expressing time intervals and repetition
within a formalization of calendars. Computational Intelligence 14, 4, 563–597.

Dam, M. 1994. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. Theoretical
Computer Science 126, 77–96.

Dreyer, W., Dittrich, A. K., and Schmidt, D. 1994. Research perspectives for time
series management systems. SIGMOD Record 23, 1, 10–15.

Dyreson, C. E. and Snodgrass, R. T. 1995. Temporal granularity. In The TSQL2
Temporal Query Language, R. T. Snodgrass, Ed. Kluwer Academic Press, 347–385.

Emerson, E. 1990. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Vol. B, J. van Leeuwen, Ed. Elsevier Science Publishers B.V., 995–1072.

Euzenat, J. 1995. An algebraic approach for granularity in qualitative space and time
representation. In Proceedings of the International Joint Conference on Artificial Intel-
ligence. Morgan Kaufmann, 894–900.

Fiadeiro, J. L. and Maibaum, T. 1994. Sometimes ”tomorrow” is ”sometime”: Action
refinement in a temporal logic of objects. In Proceedings of the International Conference
on Temporal Logic. Lectures Notes on Artificial Intelligence, vol. 827. Springer, 48–66.

Finger, M. and Gabbay, D. M. 1992. Adding a temporal dimension to a logic system.
Journal of Logic Language and Information 1, 203–233.

Foster, D., Leban, B., and McDonald, D. 1986. A representation for collections of
temporal intervals. In Proceedings of the National Conference on Artificial Intelligence.
367–371.

Franceschet, M. 2002. Dividing and conquering the layered land. Ph.D. thesis, Depart-
ment of Mathematics and Computer Science, University of Udine.

Franceschet, M. and Montanari, A. 2001a. A combined approach to temporal logics
for time granularity. In Proceedings of the International Workshop on Methods for
Modalities (M4M).

Franceschet, M. and Montanari, A. 2001b. Towards an automata-theoretic coun-
terpart of combined temporal logics. In Proceedings of the International Workshop on
Verification and Computational Logic. 55–74.

Franceschet, M. and Montanari, A. 2002. Time granularities in databases, data
mining, and temporal reasoning, by Bettini, Jajodia, and Wang (book review). The
Computer Journal 45, 6, 683–685.

Temporalized logics and automata for time granularity 37

Franceschet, M. and Montanari, A. 2003. Branching within time: an expressively
complete and elementarily decidable temporal logic for time granularity. Research on
Language and Computation 1, 3-4, 229–263.

Franceschet, M., Montanari, A., and de Rijke, M. 2000. Model checking for com-
bined logics. In Proceedings of the International Conference on Temporal Logic. 65–73.

Fum, D., Guida, G., Montanari, A., and Tasso, C. 1989. Using levels and viewpoints
in text representation. In Proceedings of the International Conference on Artificial
Intelligence and Information-Control Systems of Robots. 37–44.

Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. 2003. Many-
dimensional modal logics: theory and applications. Studies in Logic and the Foundations
of Mathematics, vol. 148. Elsevier.

Gabbay, D. M. and de Rijke, M., Eds. 2000. Frontiers of Combining Systems 2. Studies
in Logic and Computation, vol. 7. Research Studies Press/Wiley.

Hafer, T. and Thomas, W. 1987. Computation tree logic CTL* and path quantifiers in
the monadic theory of the binary tree. In Proceedings of the International Colloquium
on Automata, Languages and Programming. Lecture Notes in Computer Science, vol.
267. Springer, Karlsruhe, Germany, 269–279.

Halpern, J. Y. and Shoham, Y. 1991. A propositional modal logic of time intervals.
Journal of the ACM 38, 4, 935–962.

Immerman, N. and Kozen, D. 1989. Definability with bounded number of bound vari-
ables. Information and Computation 83, 2, 121–139.

Jajodia, S., Litwin, W., andWiederhold, G. 1993. Integrating temporal data in a het-
erogeneous environment. In Temporal Databases: Theory, Design and Implementation,
A. Tansel et al., Ed. Database Systems and Applications Series, Benjamin/Cummings
Pub. Co., Redwood City, CA, 563–579.

Jajodia, S., Subrahmanian, V. S., and Wang, X. S. 1995. Temporal modules: An
approach toward federated temporal databases. Information Sciences 82, 103–128.

Jard, C. and Jeron, T. 1989. On-line model checking for finite linear temporal logic
specifications. In Proceedings of the Workshop on Automatic Verification Methods for
Finite State Systems. Lecture Notes in Computer Science, vol. 407. Springer, 189–196.

Kamp, H. and Schiehlen, M. 2001. Temporal location in natural language. In How to
say when it happens, H. Kamp and U. Reyle, Eds. Max Niemeyer Verlag.

Kupferman, O., Vardi, M. Y., and Wolper, P. 2000. An automata-theoretic approach
to branching-time model checking. Journal of the ACM 47, 2, 312–360.

Ladkin, P. 1987. The completeness of a natural system for reasoning with time intervals.
In Proceedings of the International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 462–467.

Lamport, L. 1985. On interprocess communication. Tech. Rep. 8, SRC, Palo Alto, CA.

Mannila, H., Toivonen, H., and Verkamo, A. I. 1995. Discovering Frequent Episodes
in Sequences. In Proceedings of the International Conference on Knowledge Discovery
and Data Mining. AAAI Press, Montreal, Canada.

Montanari, A. 1996. Metric and Layered Temporal Logic for Time Granularity. ILLC
Dissertation Series 1996-02, ILLC, University of Amsterdam, The Netherlands.

Montanari, A., Maim, E., Ciapessoni, E., and Ratto, E. 1992. Dealing with time
granularity in the event calculus. In Proceedings of the International Conference on fifth
Generation Computer Systems. 702–712.

Montanari, A. and Pernici, B. 1993. Temporal reasoning. In Temporal Databases,
A. Tansel et al., Ed. Database Systems and Applications Series. Benjamin/Cummings
Pub. Co., Redwood City, CA, 534–562.

38 Massimo Franceschet and Angelo Montanari

Montanari, A., Peron, A., and Policriti, A. 1999. Decidable theories of ω-layered
metric temporal structures. Logic Journal of the IGPL 7, 1, 79–102.

Montanari, A., Peron, A., and Policriti, A. 2000. The taming (timing) of the states.
Logic Journal of the IGPL 8, 5, 681–699.

Montanari, A., Peron, A., and Policriti, A. 2002. Extending Kamp’s theorem to
model time granularity. Journal of Logic and Computation 12, 641–677.

Montanari, A. and Policriti, A. 1996. Decidability results for metric and layered
temporal logics. Notre Dame Journal of Formal Logic 37, 260–282.

Montanari, A., Sciavicco, G., and Vitacolonna, N. 2002. Decidability of interval
temporal logics over split-frames via granularity. In Proceedings of the European Con-
ference on Logic in Artificial Intelligence. Lectures Notes on Artificial Intelligence, vol.
2424. Springer, Berlin, 259–270.

Moszkowski, B. 1983. Reasoning about digital circuits. Ph.D. thesis, Department of
Computer Science, University of Stanford.

Mota, E. and Robertson, D. 1996. Representing interaction of agents at different time
granularities. In Proceedings of the International Workshop on Temporal Representation
and Reasoning. IEEE Computer Society Press, 72–79.

Niezette, M. and Stevenne, J. 1993. An efficient symbolic representation of periodic
time. In Proceeding of the International Conference on Information and Knowledge
Management. Lecture Notes in Computer Science, vol. 752. Springer, 161–168.

Ning, P., Jajodia, S., and Wang, X. S. 2002. An algebraic representation of calendars.
Annals of Mathematics and Artificial Intelligence 36, 5–38.

Poesio, M. and Brachman, R. J. 1991. Metric constraints for maintaining appoint-
ments: Dates and repeated activities. In Proceedings of the National Conference on
Artificial Intelligence. MIT Press, 253–259.

Segev, A. and Chandra, R. 1993. A data model for time-series analysis. In Advanced
Database Systems. Lecture Notes in Computer Science 759, 191–212.

Shahar, Y. 1996. Dynamic temporal interpretation contexts for temporal abstraction. In
Proceedings of the International Workshop on Temporal Representation and Reasoning.
IEEE Computer Society Press, 64–71.

Thomas, W. 1990. Automata on infinite objects. In Handbook of Theoretical Computer
Science, Vol. B, J. van Leeuwen, Ed. Elsevier Science Publishers, 133–191.

Vardi, M. Y. and Wolper, P. 1986. An automata-theoretic approach to automatic
program verification. In Proceedings of the Symposium on Logic in Computer Science.
IEEE Computer Society Press, Washington, D.C., USA, 332–345.

Vardi, M. Y. andWolper, P. 1994. Reasoning about infinite computations. Information
and Computation 115, 1, 1–37.

Venema, Y. 1991. A modal logic for chopping intervals. Journal of Logic and Computa-
tion 1, 4, 453–476.

Wijsen, J. 1998. Reasoning about qualitative trends in databases. Information Sys-
tems 23, 7, 469–493.

Wijsen, J. 1999. Temporal FDs on complex objects. ACM Transactions on Database
Systems 24, 1, 127–176.

Wolper, P. 1983. Temporal logic can be more expressive. Information and Con-
trol 56, 1/2, 72–99.

Zhou, C. and Hansen, M. R. 1998. An adequate first order interval logic. In Composi-
tionality: the Significant Difference, W. de Roever, H. Langmaak, and A. Pnueli, Eds.
Lecture Notes in Computer Science, vol. 1536. 584–608.

