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Abstract

Part of the theory of logic programming and nonmonotonic reasoning concerns the study of
fixed-point semantics for these paradigms. Several different semantics have been proposed
during the last two decades, and some have been more successful and acknowledged than
others. The rationales behind those various semantics have been manifold, depending
on one’s point of view, which may be that of a programmer or inspired by commonsense
reasoning, and consequently the constructions which lead to these semantics are technically
very diverse, and the exact relationships between them have not yet been fully understood.
In this paper, we present a conceptually new method, based on level mappings, which
allows to provide uniform characterizations of different semantics for logic programs. We
will display our approach by giving new and uniform characterizations of some of the
major semantics, more particular of the least model semantics for definite programs, of
the Fitting semantics, and of the well-founded semantics. A novel characterization of the
weakly perfect model semantics will also be provided.

KEYWORDS: Level mapping, Fitting semantics, well-founded semantics, least model se-
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1 Introduction

Negation in logic programming differs from the negation of classical logic. Indeed,

the quest for a satisfactory understanding of negation in logic programming is

still inconclusive — although the issue has cooled down a bit recently — and has

proved to be very stimulating for research activities in computational logic, and in

particular amongst knowledge representation and reasoning researchers concerned

with commonsense and nonmonotonic reasoning. During the last two decades,

different interpretations of negation in logic programming have lead to the de-

velopment of a variety of declarative semantics, as they are called. Some early

research efforts for establishing a satisfactory declarative semantics for negation

as failure and its variants, as featured by the resolution-based Prolog family of

logic programming systems, have later on been merged with nonmonotonic frame-

works for commonsense reasoning, culminating recently in the development of so-

called answer set programming systems, like smodels or dlv (Eiter et al. 1997;

Marek and Truszczyński 1999; Lifschitz 2002; Simons et al. 200x).

Systematically, one can understand Fitting’s proposal (Fitting 1985) of a Kripke-

Kleene semantics — also known as Fitting semantics — as a cornerstone which

plays a fundamental rôle both for resolution-based and nonmonotonic reasoning

inspired logic programming. Indeed, his proposal, which is based on a monotonic

semantic operator in Kleene’s strong three-valued logic, has been pursued in both

communities, for example by Kunen (Kunen 1987) for giving a semantics for pure

Prolog, and by Apt and Pedreschi (Apt and Pedreschi 1993) in their fundamen-

tal paper on termination analysis of negation as failure, leading to the notion of

acceptable program. On the other hand, however, Fitting himself (Fitting 1991a;

Fitting 2002), using a bilattice-based approach which was further developed by De-

necker, Marek, and Truszczynski (Denecker et al. 2000), tied his semantics closely

to the major semantics inspired by nonmonotonic reasoning, namely the stable

model semantics due to Gelfond and Lifschitz (Gelfond and Lifschitz 1988), which

is based on a nonmonotonic semantic operator, and the well-founded semantics

due to van Gelder, Ross, and Schlipf (van Gelder et al. 1991), originally defined

using a different monotonic operator in three-valued logic together with a notion

of unfoundedness.

Another fundamental idea which was recognised in both communities was that

of stratification, with the underlying idea of restricting attention to certain kinds

of programs in which recursion through negation is prevented. Apt, Blair, and

Walker (Apt et al. 1988) proposed a variant of resolution suitable for these pro-

grams, while Przymusinski (Przymusinski 1988) and van Gelder (van Gelder 1988)

generalized the notion to local stratification. Przymusinski (Przymusinski 1988) de-

veloped the perfect model semantics for locally stratified programs, and together

with Przymusinska (Przymusinska and Przymusinski 1990) generalized it later to

a three-valued setting as the weakly perfect model semantics.

The semantics mentioned so far are defined and characterized using a variety

of different techniques and constructions, including monotonic and nonmonotonic

semantic operators in two- and three-valued logics, program transformations, level
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mappings, restrictions to suitable subprograms, detection of cyclic dependencies

etc. Relationships between the semantics have been established, but even a simple

comparison of the respective models in restricted cases could be rather tedious. So,

in this paper, we propose a methodology which allows to obtain uniform character-

izations of all semantics previously mentioned, and we believe that it will scale up

well to most semantics based on monotonic operators, and also to some nonmono-

tonic operators, and to extensions of the logic programming paradigm including

disjunctive conclusions and uncertainty. The characterizations will allow immedi-

ate comparison between the semantics, and once obtained we will easily be able

to make some new and interesting observations, including the fact that the well-

founded semantics can formally be understood as a Fitting semantics augmented

with a form of stratification. Indeed we will note that from this novel perspective

the well-founded semantics captures the idea of stratification much better than the

weakly perfect model semantics, thus providing a formal explanation for the historic

fact that the latter has not received as much attention as the former.

The main tool which will be employed for our characterizations is the notion

of level mapping. Level mappings are mappings from Herbrand bases to ordinals,

i.e. they induce orderings on the set of all ground atoms while disallowing infi-

nite descending chains. They have been a technical tool in a variety of contexts,

including termination analysis for resolution-based logic programming as stud-

ied by Bezem (Bezem 1989), Apt and Pedreschi (Apt and Pedreschi 1993), Mar-

chiori (Marchiori 1996), Pedreschi, Ruggieri, and Smaus (Pedreschi et al. 2002),

and others, where they appear naturally since ordinals are well-orderings. They

have been used for defining classes of programs with desirable semantic properties,

e.g. by Apt, Blair, and Walker (Apt et al. 1988), Przymusinski (Przymusinski 1988)

and Cavedon (Cavedon 1991), and they are intertwined with topological inves-

tigations of fixed-point semantics in logic programming, as studied e.g. by Fit-

ting (Fitting 1994; Fitting 2002), and by Hitzler and Seda (Seda 1995; Seda 1997;

Hitzler 2001; Hitzler and Seda 2003b). Level mappings are also relevant to some as-

pects of the study of relationships between logic programming and artificial neural

networks, as studied by Hölldobler, Kalinke, and Störr (Hölldobler et al. 1999) and

by Hitzler and Seda (Hitzler and Seda 2000; Hitzler and Seda 2003a). In our novel

approach to uniform characterizations of different semantics, we will use them as a

technical tool for capturing dependencies between atoms in a program.

The paper is structured as follows. Section 2 contains preliminaries which are

needed to make the paper relatively self-contained. The subsequent sections contain

the announced uniform characterizations of the least model semantics for definite

programs and the stable model semantics in Section 3, of the Fitting semantics in

Section 4, of the well-founded semantics in Section 5, and of the weakly perfect

model semantics in Section 6. Related work will be discussed in Section 7, and we

close with conclusions and a discussion of further work in Section 8.

Part of this paper was presented at the 25th German Conference on Artificial

Intelligence, KI2002, Aachen, Germany, September 2002 (Hitzler and Wendt 2002).
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2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of the

form ∀(A ← A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm ), commonly written as A ←

A1, . . . ,An ,¬B1, . . . ,¬Bm , where A, Ai , and Bj , for i = 1, . . . , n and j = 1, . . . ,m,

are atoms over some given first order language. A is called the head of the clause,

while the remaining atoms make up the body of the clause, and depending on con-

text, a body of a clause will be a set of literals (i.e. atoms or negated atoms) or

the conjunction of these literals. Care will be taken that this identification does not

cause confusion. We allow a body, i.e. a conjunction, to be empty, in which case it

always evaluates to true. A clause with empty body is called a unit clause or a fact.

A clause is called definite, if it contains no negation symbol. A program is called

definite if it consists only of definite clauses. We will usually denote atoms with A

or B , and literals, which may be atoms or negated atoms, by L or K .

Given a logic program P , we can extract from it the components of a first order

language. The corresponding set of ground atoms, i.e. the Herbrand base of the

program, will be denoted by BP . For a subset I ⊆ BP , we set ¬I = {¬A | A ∈

I }. The set of all ground instances of P with respect to BP will be denoted by

ground(P). For I ⊆ BP ∪ ¬BP we say that A is true with respect to (or in) I if

A ∈ I , we say that A is false with respect to (or in) I if ¬A ∈ I , and if neither

is the case, we say that A is undefined with respect to (or in) I . A (three-valued

or partial) interpretation I for P is a subset of BP ∪ ¬BP which is consistent, i.e.

whenever A ∈ I then ¬A 6∈ I . A body, i.e. a conjunction of literals, is true in an

interpretation I if every literal in the body is true in I , it is false in I if one of

its literals is false in I , and otherwise it is undefined in I . For a negative literal

L = ¬A we will find it convenient to write ¬L ∈ I if A ∈ I and say that L is false in

I etc. in this case. By IP we denote the set of all (three-valued) interpretations of

P . It is a complete partial order (cpo) via set-inclusion, i.e. it contains the empty

set as least element, and every ascending chain has a supremum, namely its union.

A model of P is an interpretation I ∈ IP such that for each clause A ← body we

have that body true in I implies A true in I , and body undefined in I implies A

true or undefined in I . A total interpretation is an interpretation I such that no

A ∈ BP is undefined in I .

For an interpretation I and a program P , an I -partial level mapping for P is

a partial mapping l : BP → α with domain dom(l) = {A | A ∈ I or ¬A ∈ I },

where α is some (countable) ordinal. We extend every level mapping to literals by

setting l(¬A) = l(A) for all A ∈ dom(l). A (total) level mapping is a total mapping

l : BP → α for some (countable) ordinal α.

Given a normal logic program P and some I ⊆ BP ∪¬BP , we say that U ⊆ BP is

an unfounded set (of P) with respect to I if each atom A ∈ U satisfies the following

condition: For each clause A ← body in ground(P) (at least) one of the following

holds.
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(Ui) Some (positive or negative) literal in body is false in I .

(Uii) Some (non-negated) atom in body occurs in U .

Given a normal logic program P , we define the following operators on BP ∪¬BP .

TP (I ) is the set of all A ∈ BP such that there exists a clause A← body in ground(P)

such that body is true in I . FP (I ) is the set of all A ∈ BP such that for all clauses

A ← body in ground(P) we have that body is false in I . Both TP and FP map

elements of IP to elements of IP . Now define the operator ΦP : IP → IP by

ΦP (I ) = TP (I ) ∪ ¬FP (I )·

This operator is due to Fitting (Fitting 1985) and is monotonic on the cpo IP ,

hence has a least fixed point by the Tarski fixed-point theorem, and we can obtain

this fixed point by defining, for each monotonic operator F , that F ↑ 0 = ∅, F ↑

(α+ 1) = F (F ↑α) for any ordinal α, and F ↑β =
⋃

γ<β F ↑γ for any limit ordinal

β, and the least fixed point lfp(F ) of F is obtained as F ↑ α for some ordinal α.

The least fixed point of ΦP is called the Kripke-Kleene model or Fitting model of

P , determining the Fitting semantics of P .

Example 2.1

Let P be the program consisting of the two clauses p ← p and q ← ¬r . Then

ΦP ↑1 = {¬r}, and ΦP ↑2 = {q,¬r} = ΦP ↑3 is the Fitting model of P .

Now, for I ⊆ BP ∪¬BP , let UP (I ) be the greatest unfounded set (of P) with re-

spect to I , which always exists due to van Gelder, Ross, and Schlipf (van Gelder et al. 1991).

Finally, define

WP (I ) = TP (I ) ∪ ¬UP (I )

for all I ⊆ BP ∪ ¬BP . The operator WP , which operates on the cpo BP ∪ ¬BP ,

is due to van Gelder et al. (van Gelder et al. 1991) and is monotonic, hence has a

least fixed point by the Tarski fixed-point theorem, as above for ΦP . It turns out

that WP ↑α is in IP for each ordinal α, and so the least fixed point of WP is also

in IP and is called the well-founded model of P , giving the well-founded semantics

of P .

Example 2.2

Let P be the program consisting of the following clauses.

s ← q

q ← ¬p

p ← p

r ← ¬r

Then {p} is the largest unfounded set of P with respect to ∅ and we obtain

WP ↑1 = {¬p},

WP ↑2 = {¬p, q}, and

WP ↑3 = {¬p, q, s}

= WP ↑4·
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Given a program P , we define the operator T+
P on subsets of BP by T+

P (I ) =

TP (I ∪¬(BP \I )). It is well-known that for definite programs this operator is mono-

tonic on the set of all subsets of BP , with respect to subset inclusion. Indeed it is

Scott-continuous (Lloyd 1988; Abramsky and Jung 1994; Stoltenberg-Hansen et al. 1994)

and, via Kleene’s fixed-point theorem, achieves its least fixed point M as the supre-

mum of the iterates T+
P ↑ n for n ∈ N. So M = lfp(T+

P ) = T+
P ↑ ω is the least

two-valued model of P . In turn, we can identify M with the total interpretation

M ∪ ¬(BP \M ), which we will call the definite (partial) model of P .

Example 2.3

Let P be the program consisting of the clauses

p(0) ←

p(s(X )) ← p(X ),

where X denotes a variable and 0 a constant symbol. Write sn(0) for the term

s(· · · s(0) · · ·) in which the symbol s appears n times. Then

T+
P ↑n =

{

p
(

sk (0)
)

| k < n
}

for all n ∈ N and {p(sn(0)) | n ∈ N} is the least two-valued model of P .

In order to avoid confusion, we will use the following terminology: the notion of

interpretation will by default denote consistent subsets of BP ∪ ¬BP , i.e. interpre-

tations in three-valued logic. We will sometimes emphasize this point by using the

notion partial interpretation. By two-valued interpretations we mean subsets of BP .

Given a partial interpretation I , we set I+ = I ∩BP and I− = {A ∈ BP | ¬A ∈ I }.

Each two-valued interpretation I can be identified with the partial interpretation

I ′ = I ∪¬(BP \I ). Both, interpretations and two-valued interpretations, are ordered

by subset inclusion. We note however, that these two orderings differ: If I ⊆ BP ,

for example, then I ′ is always a maximal element in the ordering for partial inter-

pretations, while I is in general not maximal as a two-valued interpretation. The

two orderings correspond to the knowledge- and the truth-ordering due to Fitting

(Fitting 1991a).

There is a semantics using two-valued logic, the stable model semantics due to

Gelfond and Lifschitz (Gelfond and Lifschitz 1988), which is intimately related to

the well-founded semantics. Let P be a normal program, and let M ⊆ BP be a

set of atoms. Then we define P/M to be the (ground) program consisting of all

clauses A← A1, . . . ,An for which there is a clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm

in ground(P) with B1, . . . ,Bm 6∈ M . Since P/M does no longer contain negation,

it has a least two-valued model T+
P/M ↑ω. For any two-valued interpretation I we

can therefore define the operator GLP (I ) = T+
P/I ↑ω, and call M a stable model

of the normal program P if it is a fixed point of the operator GLP , i.e. if M =

GLP (M ) = T+
P/M ↑ω. As it turns out, the operator GLP is in general not monotonic

for normal programs P . However it is antitonic, i.e. whenever I ⊆ J ⊆ BP then

GLP (J ) ⊆ GLP (I ). As a consequence, the operator GL2
P , obtained by applying

GLP twice, is monotonic and hence has a least fixed point LP and a greatest

fixed point GP . Van Gelder (van Gelder 1989) has shown that GLP (LP ) = GP ,
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LP = GLP (GP ), and that LP ∪¬(BP \GP ) coincides with the well-founded model

of P . This is called the alternating fixed point characterization of the well-founded

semantics.

Example 2.4

Consider the program P from Example 2.2. The subprogram Q consisting of the

first three clauses of the program P has stable model M = {s , q}, which can be

verified by noting that Q/M consists of the clauses

s ← q

q ←

p ← p,

and has M as its least two-valued model.

For the program P we obtain

GLP (∅) = {q, s , r},

GLP ({q, s , r}) = {q, s}

= GL2
P ({q, s}), and

GLP (BP ) = ∅·

So LP = {q, s} while GP = {q, s , r}, and LP ∪ ¬(BP \ GP ) = {q, s ,¬p} is the

well-founded model of P .

3 Least and Stable Model Semantics

The most fundamental semantics in logic programming is based on the fact men-

tioned above that the operator T+
P has a least fixed point M = T+

P ↑ω whenever P

is definite. The two-valued interpretation M turns out to be the least two-valued

model of the program, and is therefore canonically the model which should be con-

sidered for definite programs. Our first result characterizes the least model using

level mappings, and serves to convey the main ideas underlying our method. It is a

straightforward result but has, to the best of our knowledge, not been noted before.

Theorem 3.1

Let P be a definite program. Then there is a unique two-valued model M of P

for which there exists a (total) level mapping l : BP → α such that for each atom

A ∈ M there exists a clause A ← A1, . . . ,An in ground(P) with Ai ∈ M and

l(A) > l(Ai) for all i = 1, . . . , n. Furthermore, M is the least two-valued model of

P .

Proof

Let M be the least two-valued model T+
P ↑ω, choose α = ω, and define l : BP → α

by setting l(A) = min{n | A ∈ T+
P ↑(n + 1)}, if A ∈ M , and by setting l(A) = 0, if

A 6∈ M . From the fact that ∅ ⊆ T+
P ↑1 ⊆ . . . ⊆ T+

P ↑n ⊆ . . . ⊆ T+
P ↑ω =

⋃

m T+
P ↑

m, for each n, we see that l is well-defined and that the least model T+
P ↑ω for P

has the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given condition
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for some mapping l : BP → α, then it is easy to show, by induction on l(A), that

A ∈ M implies A ∈ T+
P ↑ (l(A) + 1). This yields that M ⊆ T+

P ↑ω, and hence that

M = T+
P ↑ω by minimality of the model T+

P ↑ω.

Example 3.2

For the program P from Example 2.3 we obtain l(p(sn(0))) = n for the level

mapping l defined in the proof of Theorem 3.1.

The proof of Theorem 3.1 can serve as a blueprint for obtaining characterizations

if the semantics under consideration is based on the least fixed point of a monotonic

operator F , and indeed our results for the Fitting semantics and the well-founded

semantics, Theorems 4.2 and 5.2, together with their proofs, follow this scheme.

In one direction, levels are assigned to atoms A according to the least ordinal α

such that A is not undefined in F ↑ (α + 1), and dependencies between atoms of

some level and atoms of lower levels are captured by the nature of the considered

operator, which will certainly vary from case to case. In Theorem 3.1, the condition

thus obtained suffices for uniquely determining the least model, whereas in other

cases which we will study later, so for the Fitting semantics and the well-founded

semantics, the level mapping conditions will not suffice for unique characterization

of the desired model. However, the desired model will in each case turn out to be

the greatest among all models satisfying the given conditions. So in these cases it

will remain to show, by transfinite induction on the level of some given atom A,

that the truth value assigned to A by any model satisfying the given conditions is

also assigned to A by F ↑ (l(A) + 1), which at the same time proves that lfp(F ) is

the greatest model satisfying the given conditions. For the proof of Theorem 3.1,

the proof method just described can be applied straightforwardly, however for more

sophisticated operators may become technically challenging on the detailed level.

We now turn to the stable model semantics, which in the case of programs with

negation has come to be the major semantics based on two-valued logic. The follow-

ing characterization is in the spirit of our proposal, and is due to Fages (Fages 1994).

It is striking in its similarity to the characterization of the least model for definite

programs in Theorem 3.1. For completeness of our exhibition, we include a proof

of the fact.

Theorem 3.3

Let P be normal. Then a two-valued model M ⊆ BP of P is a stable model of P

if and only if there exists a (total) level mapping l : BP → α such that for each

A ∈ M there exists A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P) with Ai ∈ M ,

Bj 6∈ M , and l(A) > l(Ai) for all i = 1, . . . , n and j = 1, . . . ,m.

Proof

Let M be a stable model of P , i.e. GLP (M ) = T+
P/M ↑ω = M . Then M is the least

model for P/M , hence is also a model for P , and, by Theorem 3.1, satisfies the

required condition with respect to any level mapping l with l(A) = min{n | A ∈

TP/M ↑ (n + 1)} for each A ∈ M . Conversely, let M be a model which satisfies the

condition in the statement of the theorem. Then, for every A ∈ M , there is a clause
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C in ground(P) of the form A ← A1, . . . ,An ,¬B1, . . . ,¬Bk such that the body of

C is true in M and satisfies l(A) > l(Ai) for all i = 1, . . . , n. But then, for every

A ∈ M , there is a clause A ← A1, . . . ,An in P/M whose body is true in M and

such that l(A) > l(Ai) for all i = 1, . . . , n. By Theorem 3.1, this means that M is

the least model for P/M , that is, M = T+
P/M ↑ω = GL(M ).

The proof of Theorem 3.3 just given partly follows the proof scheme discussed

previously, by considering the monotonic operator T+
P/M , which is used for defining

stable models.

Example 3.4

Recall the program P from Example 2.2, and consider the program Q consisting

of the first three clauses of P . We already noted in Example 2.4 that Q has stable

model {s , q}. A corresponding level mapping, as defined in the proof of Theorem

3.3, satisfies l(q) = 0 and l(s) = 1, while l(p) can be an arbitrary value.

4 Fitting Semantics

We next turn to the Fitting semantics. Following the proof scheme which we de-

scribed in Section 3, we expect levels l(A) to be assigned to atoms A such that

l(A) is the least α such that A is not undefined in ΦP ↑(α+ 1). An analysis of the

operator ΦP eventually yields the following conditions.

Definition 4.1

Let P be a normal logic program, I be a model of P , and l be an I -partial level

mapping for P . We say that P satisfies (F) with respect to I and l , if each A ∈

dom(l) satisfies one of the following conditions.

(Fi) A ∈ I and there exists a clause A← L1, . . . ,Ln in ground(P) with Li ∈ I and

l(A) > l(Li) for all i .

(Fii) ¬A ∈ I and for each clause A← L1, . . . ,Ln in ground(P) there exists i with

¬Li ∈ I and l(A) > l(Li).

If A ∈ dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and

l , and similarly if A ∈ dom(l) satisfies (Fii).

We note that condition (Fi) is stronger than the condition used for characterizing

stable models in Theorem 3.3. The proof of the next theorem closely follows our

proof scheme.

Theorem 4.2

Let P be a normal logic program with Fitting model M . Then M is the greatest

model among all models I , for which there exists an I -partial level mapping l for

P such that P satisfies (F) with respect to I and l .
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Proof

Let MP be the Fitting model of P and define the MP -partial level mapping lP as

follows: lP (A) = α, where α is the least ordinal such that A is not undefined in

ΦP ↑ (α + 1). The proof will be established by showing the following facts: (1) P

satisfies (F) with respect to MP and lP . (2) If I is a model of P and l an I -partial

level mapping such that P satisfies (F) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP ) and lP (A) = α. We consider two cases.

(Case i) If A ∈ MP , then A ∈ TP (ΦP ↑α), hence there exists a clause A← body

in ground(P) such that body is true in ΦP ↑α. Thus, for all Li ∈ body we have that

Li ∈ ΦP ↑α, and hence lP (Li) < α and Li ∈ MP for all i . Consequently, A satisfies

(Fi) with respect to MP and lP .

(Case ii) If ¬A ∈ MP , then A ∈ FP (ΦP ↑α), hence for all clauses A ← body in

ground(P) there exists L ∈ body with ¬L ∈ ΦP ↑α and lP (L) < α, hence ¬L ∈ MP .

Consequently, A satisfies (Fii) with respect to MP and lP , and we have established

that fact (1) holds.

(2) We show via transfinite induction on α = l(A), that whenever A ∈ I (respec-

tively, ¬A ∈ I ), then A ∈ ΦP ↑ (α + 1) (respectively, ¬A ∈ ΦP ↑ (α + 1)). For the

base case, note that if l(A) = 0, then A ∈ I implies that A occurs as the head of

a fact in ground(P), hence A ∈ ΦP ↑ 1, and ¬A ∈ I implies that there is no clause

with head A in ground(P), hence ¬A ∈ ΦP ↑ 1. So assume now that the induction

hypothesis holds for all B ∈ BP with l(B) < α. We consider two cases.

(Case i) If A ∈ I , then it satisfies (Fi) with respect to I and l . Hence there is a

clause A← body in ground(P) such that body ⊆ I and l(K ) < α for all K ∈ body.

Hence body ⊆ MP by induction hypothesis, and since MP is a model of P we obtain

A ∈ MP .

(Case ii) If ¬A ∈ I , then A satisfies (Fii) with respect to I and l . Hence for all

clauses A ← body in ground(P) we have that there is K ∈ body with ¬K ∈ I and

l(K ) < α. Hence for all these K we have ¬K ∈ MP by induction hypothesis, and

consequently for all clauses A← body in ground(P) we obtain that body is false in

MP . Since MP = ΦP (MP ) is a fixed point of the ΦP -operator, we obtain ¬A ∈ MP .

This establishes fact (2) and concludes the proof.

Example 4.3

Consider the program P from Example 2.1. Then the level mapping l , as defined

in the proof of Theorem 4.2, satsifies l(r) = 0 and l(q) = 1.

It is interesting to consider the special case where the Fitting model is to-

tal. Programs with this property are called Φ-accessible (Hitzler and Seda 1999;

Hitzler and Seda 2003b), and include e.g. the acceptable programs due to Apt and

Pedreschi (Apt and Pedreschi 1993).

Corollary 4.4

A normal logic program P has a total Fitting model if and only if there is a total

model I of P and a (total) level mapping l for P such that P satisfies (F) with

respect to I and l .
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The result follows immediately as a special case of Theorem 4.2, and is closely

related to results reported in (Hitzler and Seda 1999; Hitzler and Seda 2003b). The

reader familiar with acceptable programs will also note the close relationship be-

tween Corollary 4.4 and the defining conditions for acceptable programs. Indeed,

the theorem due to Apt and Pedreschi (Apt and Pedreschi 1993), which says that

every acceptable program has a total Fitting model, follows without any effort from

our result. It also follows immediately, by comparing Corollary 4.4 and Theorem

3.3, that a total Fitting model is always stable, which is a well-known fact.

5 Well-Founded Semantics

The characterization of the well-founded model again closely follows our proof

scheme. Before discussing this, though, we will take a short detour which will even-

tually reveal a surprising fact about the well-founded semantics: From our new

perspective the well-founded semantics can be understood as a stratified version of

the Fitting semantics.

Let us first recall the definition of a (locally) stratified program, due to Apt, Blair,

Walker, and Przymusinski (Apt et al. 1988; Przymusinski 1988): A normal logic

program is called locally stratified if there exists a (total) level mapping l : BP → α,

for some ordinal α, such that for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in

ground(P) we have that l(A) ≥ l(Ai) and l(A) > l(Bj ) for all i = 1, . . . , n and

j = 1, . . . ,m.

The notion of (locally) stratifed program, as already mentioned in the introduc-

tion, was developed with the idea of preventing recursion through negation, while

allowing recursion through positive dependencies. There exist locally stratified pro-

grams which do not have a total Fitting model and vice versa. Indeed, the program

consisting of the single clause p ← p is locally stratified but p remains undefined in

the Fitting model. Conversely, the program consisting of the two clauses q ← and

q ← ¬q is not locally stratified but its Fitting model assigns to q the truth value

true.

By comparing Definition 4.1 with the definition of locally stratified programs, we

notice that condition (Fii) requires a strict decrease of level between the head and a

literal in the rule, independent of this literal being positive or negative. But, on the

other hand, condition (Fii) imposes no further restrictions on the remaining body

literals, while the notion of local stratification does. These considerations motivate

the substitution of condition (Fii) by the condition (WFii), as given in the following

definition.

Definition 5.1

Let P be a normal logic program, I be a model of P , and l be an I -partial level

mapping for P . We say that P satisfies (WF) with respect to I and l , if each

A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there exists a clause A← L1, . . . ,Ln in ground(P) with Li ∈ I and

l(A) > l(Li) for all i .
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(WFii) ¬A ∈ I and for each clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P) (at

least) one of the following conditions holds:

(WFiia) There exists i ∈ {1, . . . , n} with ¬Ai ∈ I and l(A) ≥ l(Ai).

(WFiib) There exists j ∈ {1, . . . ,m} with Bj ∈ I and l(A) > l(Bj ).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect to I

and l , and similarly if A ∈ dom(l) satisfies (WFii).

We note that conditions (Fi) and (WFi) are identical. Indeed, replacing (WFi)

by a stratified version such as the following seems not satisfactory.

(SFi) A ∈ I and there exists a clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P)

with Ai ,Bj ∈ I , l(A) ≥ l(Ai), and l(A) > l(Bj ) for all i and j .

If we replace condition (WFi) by condition (SFi), then it is not guaranteed that

for any given program there is a greatest model satisfying the desired properties:

Consider the program consisting of the two clauses p ← p and q ← ¬p, and the two

(total) models {p,¬q} and {¬p, q}, which are incomparable, and the level mapping

l with l(p) = 0 and l(q) = 1. A detailed analysis of condition (SFi) in the context

of our approach can be found in (Hitzler 2003).

So, in the light of Theorem 4.2, Definition 5.1 should provide a natural “stratified

version” of the Fitting semantics. And indeed it does, and furthermore, the resulting

semantics coincides with the well-founded semantics, which is a very satisfactory

result. The proof of the fact again follows our proof scheme, but is slightly more

involved due to the necessary treatment of unfounded sets.

Theorem 5.2

Let P be a normal logic program with well-founded model M . Then M is the

greatest model among all models I , for which there exists an I -partial level mapping

l for P such that P satisfies (WF) with respect to I and l .

Proof

Let MP be the well-founded model of P and define the MP -partial level mapping

lP as follows: lP (A) = α, where α is the least ordinal such that A is not undefined

in WP ↑(α+1). The proof will be established by showing the following facts: (1) P

satisfies (WF) with respect to MP and lP . (2) If I is a model of P and l an I -partial

level mapping such that P satisfies (WF) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP ) and lP (A) = α. We consider two cases.

(Case i) If A ∈ MP , then A ∈ TP (WP ↑α), hence there exists a clause A← body

in ground(P) such that body is true in WP ↑α. Thus, for all Li ∈ body we have that

Li ∈ WP ↑α. Hence, lP (Li) < α and Li ∈ MP for all i . Consequently, A satisfies

(WFi) with respect to MP and lP .

(Case ii) If ¬A ∈ MP , then A ∈ UP(WP ↑α), i.e. A is contained in the greatest

unfounded set of P with respect to WP ↑ α. Hence for each clause A ← body in

ground(P), at least one of (Ui) or (Uii) holds for this clause with respect to WP ↑α

and the unfounded set UP (WP ↑ α). If (Ui) holds, then there exists some literal

L ∈ body with ¬L ∈WP ↑α. Hence lP (L) < α and condition (WFiib) holds relative
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to MP and lP if L is an atom, or condition (WFiia) holds relative to MP and lP if L

is a negated atom. On the other hand, if (Uii) holds, then some (non-negated) atom

B in body occurs in UP (WP ↑ α). Hence lP (B) ≤ lP (A) and A satisfies (WFiia)

with respect to MP and lP . Thus we have established that fact (1) holds.

(2) We show via transfinite induction on α = l(A), that whenever A ∈ I (re-

spectively, ¬A ∈ I ), then A ∈WP ↑ (α+ 1) (respectively, ¬A ∈WP ↑ (α + 1)). For

the base case, note that if l(A) = 0, then A ∈ I implies that A occurs as the head

of a fact in ground(P). Hence, A ∈ WP ↑ 1. If ¬A ∈ I , then consider the set U of

all atoms B with l(B) = 0 and ¬B ∈ I . We show that U is an unfounded set of

P with respect to WP ↑ 0, and this suffices since it implies ¬A ∈ WP ↑ 1 by the

fact that A ∈ U . So let C ∈ U and let C ← body be a clause in ground(P). Since

¬C ∈ I , and l(C ) = 0, we have that C satisfies (WFiia) with respect to I and l ,

and so condition (Uii) is satisfied showing that U is an unfounded set of P with

respect to I . Assume now that the induction hypothesis holds for all B ∈ BP with

l(B) < α. We consider two cases.

(Case i) If A ∈ I , then it satisfies (WFi) with respect to I and l . Hence there is a

clause A← body in ground(P) such that body ⊆ I and l(K ) < α for all K ∈ body.

Hence body ⊆WP ↑α, and we obtain A ∈ TP (WP ↑α) as required.

(Case ii) If ¬A ∈ I , consider the set U of all atoms B with l(B) = α and ¬B ∈ I .

We show that U is an unfounded set of P with respect to WP ↑α, and this suffices

since it implies ¬A ∈ WP ↑ (α + 1) by the fact that A ∈ U . So let C ∈ U and

let C ← body be a clause in ground(P). Since ¬C ∈ I , we have that C satisfies

(WFii) with respect to I and l . If there is a literal L ∈ body with ¬L ∈ I and

l(L) < l(C ), then by the induction hypothesis we obtain ¬L ∈WP ↑α, so condition

(Ui) is satisfied for the clause C ← body with respect to WP ↑ α and U . In the

remaining case we have that C satisfies condition (WFiia), and there exists an atom

B ∈ body with ¬B ∈ I and l(B) = l(C ). Hence, B ∈ U showing that condition

(Uii) is satisfied for the clause C ← body with respect to WP ↑α and U . Hence U

is an unfounded set of P with respect to WP ↑α.

Example 5.3

Consider the program P from Example 2.2. With notation from the proof of The-

orem 5.2, we obtain l(p) = 0, l(q) = 1, and l(s) = 2.

As a special case, we consider programs with total well-founded model. The

following corollary follows without effort from Theorem 5.2.

Corollary 5.4

A normal logic program P has a total well-founded model if and only if there is a

total model I of P and a (total) level mapping l such that P satisfies (WF) with

respect to I and l .

As a further example for the application of our proof scheme, we use Theorem

5.2 in order to prove a result by van Gelder (van Gelder 1989) which we mentioned

in the introduction, concerning the alternating fixed-point characterization of the
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well-founded semantics. Let us first introduce some temporary notation, where P

is an arbitrary program.

L0 = ∅

G0 = BP

Lα+1 = GLP (Gα) for any ordinal α

Gα+1 = GLP (Lα) for any ordinal α

Lα =
⋃

β<α Lβ for limit ordinal α

Gα =
⋂

β<α Gβ for limit ordinal α

Since ∅ ⊆ BP , we obtain L0 ⊆ L1 ⊆ G1 ⊆ G0 and, by transfinite induction,

it can easily be shown that Lα ⊆ Lβ ⊆ Gβ ⊆ Gα whenever α ≤ β. In order to

apply our proof scheme, we need to detect a monotonic operator, or at least some

kind of monotonic construction, underlying the alternative fixed-point character-

ization. The assignment (Lα,Gα) 7→ (Lα+1,Gα+1), using the temporary notation

introduced above, will serve for this purpose. The proof of the following theorem is

based on it and our general proof scheme, with modifications where necessary, for

example for accomodating the fact that Gα+1 is not defined using Gα, but rather

Lα, and that we work with the complements BP \Gα instead of the sets Gα.

Theorem 5.5

Let P be a normal program. Then M = LP ∪¬(BP \GP ) is the well-founded model

of P .

Proof

First, we define an M -partial level mapping l . For convenience, we will take as

image set of l , pairs (α, n) of ordinals, where n ≤ ω, with the lexicographic ordering.

This can be done without loss of generality because any set of pairs of ordinals,

lexicographically ordered, is certainly well-ordered and therefore order-isomorphic

to an ordinal. For A ∈ LP , let l(A) be the pair (α, n), where α is the least ordinal

such that A ∈ Lα+1, and n is the least ordinal such that A ∈ TP/Gα
↑ (n + 1). For

B 6∈ GP , let l(B) be the pair (β, ω), where β is the least ordinal such that B 6∈ Gβ+1.

We show next by transfinite induction that P satisfies (WF) with respect to M and

l .

Let A ∈ L1 = TP/BP
↑ ω. Since P/BP consists of exactly all clauses from

ground(P) which contain no negation, we have that A is contained in the least

two-valued model for a definite subprogram of P , namely P/BP , and (WFi) is sat-

isfied by Theorem 3.1. Now let ¬B ∈ ¬(BP \ GP ) be such that B ∈ (BP \ G1) =

BP \ TP/∅ ↑ω. Since P/∅ contains all clauses from ground(P) with all negative lit-

erals removed, we obtain that each clause in ground(P) with head B must contain

a positive body literal C 6∈ G1, which, by definition of l , must have the same level

as B , hence (WFiia) is satisfied.

Assume now that, for some ordinal α, we have shown that A satisfies (WF) with

respect to M and l for all n ≤ ω and all A ∈ BP with l(A) ≤ (α, n).

Let A ∈ Lα+1 \ Lα = TP/Gα
↑ ω \ Lα. Then A ∈ TP/Gα

↑ n \ Lα for some

n ∈ N; note that all (negative) literals which were removed by the Gelfond-Lifschitz
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transformation from clauses with head A have level less than (α, 0). Then the

assertion that A satisfies (WF) with respect to M and l follows again by Theorem

3.1.

Let A ∈ (BP \ Gα+1) ∩ Gα. Then A 6∈ TP/Lα
↑ ω. Now for any clause A ←

A1, . . . ,Ak ,¬B1, . . . ,¬Bm in ground(P), if Bj ∈ Lα for some j , then l(A) > l(Bj ).

Otherwise, since A 6∈ TP/Lα
↑ω, we have that there exists Ai with Ai 6∈ TP/Lα

↑ω,

and hence l(A) ≥ l(Ai), and this suffices.

This finishes the proof that P satisfies (WF) with respect to M and l . It therefore

only remains to show that M is greatest with this property.

So assume that M1 6= M is the greatest model such that P satisfies (WF) with

respect to M1 and some M1-partial level mapping l1.

Assume L ∈ M1 \M and, without loss of generality, let the literal L be chosen

such that l1(L) is minimal. We consider the following two cases.

(Case i) If L = A is an atom, then there exists a clause A ← body in ground(P)

such that l1(L) < l1(A) for all literals L in body, and such that body is true in M1.

Hence, body is true in M and A← body transforms to a clause A← A1, . . . ,An in

P/GP with A1, . . . ,An ∈ LP = TP/GP
↑ω. But this implies A ∈ M , contradicting

A ∈ M1 \M .

(Case ii) If L = ¬A ∈ M1 \M is a negated atom, then ¬A ∈ M1 and A ∈ GP =

TP/LP
↑ω, so A ∈ TP/LP

↑n for some n ∈ N. We show by induction on n that this

leads to a contradiction, to finish the proof.

If A ∈ TP/LP
↑1, then there is a unit clause A← in P/LP , and any corresponding

clause A ← ¬B1, . . . ,¬Bk in ground(P) satisfies B1, . . . ,Bk 6∈ LP . Since ¬A ∈ M1,

we also obtain by Theorem 5.2 that there is i ∈ {1, . . . , k} such that Bi ∈ M1 and

l1(Bi) < l1(A). By minimality of l1(A), we obtain Bi ∈ M , and hence Bi ∈ LP ,

which contradicts Bi 6∈ LP .

Now assume that there is no ¬B ∈ M1 \ M with B ∈ TP/LP
↑ k for any

k < n + 1, and let ¬A ∈ M1 \M with A ∈ TP/LP
↑ (n + 1). Then there is a clause

A← A1, . . . ,Am in P/LP with A1, . . . ,Am ∈ TP/LP
↑n ⊆ GP , and we note that we

cannot have ¬Ai ∈ M1\M for any i ∈ {1, . . . ,m}, by our current induction hypoth-

esis. Furthermore, it is also impossible for ¬Ai to belong to M for any i , otherwise

we would have Ai ∈ BP \GP . Thus, we conclude that we cannot have ¬Ai ∈ M1 for

any i . Moreover, there is a corresponding clause A ← A1, . . . ,Am ,¬B1, . . . ,¬Bm1

in ground(P) with B1, . . . ,Bm1
6∈ LP . Hence, by Theorem 5.2, we know that there

is i ∈ {1, . . . ,m1} such that Bi ∈ M1 and l1(Bi) < l1(A). By minimality of l1(A),

we conclude that Bi ∈ M , so that Bi ∈ LP , and this contradicts Bi 6∈ LP .

Example 5.6

Consider again the program P from Examples 2.2, 2.4, and 5.3. With notation from

the proof of Theorem 5.5 we get l(q) = (1, 0), l(s) = (1, 1), and l(p) = (0, ω).

6 Weakly Perfect Model Semantics

By applying our proof scheme, we have obtained new and uniform characteriza-

tions of the Fitting semantics and the well-founded semantics, and argued that the
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well-founded semantics is a stratified version of the Fitting semantics. Our argumen-

tation is based on the key intuition underlying the notion of stratification, that re-

cursion should be allowed through positive dependencies, but be forbidden through

negative dependencies. As we have seen in Theorem 5.2, the well-founded semantics

provides this for a setting in three-valued logic. Historically, a different semantics,

given by the so-called weakly perfect model associated with each program, was pro-

posed by Przymusinska and Przymusinski (Przymusinska and Przymusinski 1990)

in order to carry over the intuition underlying the notion of stratification to a three-

valued setting. In the following, we will characterize weakly perfect models via level

mappings, in the spirit of our approach. We will thus have obtained uniform char-

acterizations of the Fitting semantics, the well-founded semantics, and the weakly

perfect model semantics, which makes it possible to easily compare them.

Definition 6.1

Let P be a normal logic program, I be a model of P and l be an I -partial level

mapping for P . We say that P satisfies (WS) with respect to I and l , if each

A ∈ dom(l) satisfies one of the following conditions.

(WSi) A ∈ I and there exists a clause A← L1, . . . ,Ln ∈ ground(P) such that Li ∈ I

and l(A) > l(Li) for all i = 1, . . . , n.

(WSii) ¬A ∈ I and for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm ∈ ground(P) (at

least) one of the following three conditions holds.

(WSiia) There exists i such that ¬Ai ∈ I and l(A) > l(Ai).

(WSiib) For all k we have l(A) ≥ l(Ak), for all j we have l(A) > l(Bj ), and

there exists i with ¬Ai ∈ I .

(WSiic) There exists j such that Bj ∈ I and l(A) > l(Bj ).

We observe that the condition (WSii) in the above theorem is more general than

(Fii), and more restrictive than (WFii).

We will see below in Theorem 6.4, that Definition 6.1 captures the weakly perfect

model, in the same way in which Definitions 4.1 and 5.1 capture the Fitting model,

respectively the well-founded model.

In order to proceed with this, we first need to recall the definition of weakly per-

fect models due to Przymusinska and Przymusinski (Przymusinska and Przymusinski 1990),

and we will do this next. For ease of notation, it will be convenient to consider

(countably infinite) propositional programs instead of programs over a first-order

language. This is both common practice and no restriction, because the ground

instantiation ground(P) of a given program P can be understood as a propositional

program which may consist of a countably infinite number of clauses. Let us remark

that our definition below differs slightly from the original one, and we will return to

this point later. It nevertheless leads to exactly the same notion of weakly stratified

program.

Let P be a (countably infinite propositional) normal logic program. An atom

A ∈ BP refers to an atom B ∈ BP if B or ¬B occurs as a body literal in a clause

A ← body in P . A refers negatively to B if ¬B occurs as a body literal in such a

clause. We say that A depends on B if the pair (A,B) is in the transitive closure
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of the relation refers to, and we write this as B ≤ A. We say that A depends

negatively on B if there are C ,D ∈ BP such that C refers negatively to D and the

following hold: (1) C ≤ A or C = A (the latter meaning identity). (2) B ≤ D or

B = D . We write B < A in this case. For A,B ∈ BP , we write A ∼ B if either

A = B , or A and B depend negatively on each other, i.e. if A < B and B < A

both hold. The relation ∼ is an equivalence relation and its equivalence classes are

called components of P . A component is trivial if it consists of a single element A

with A 6< A.

Let C1 and C2 be two components of a program P . We write C1 ≺ C2 if and

only if C1 6= C2 and for all A1 ∈ C1 there is A2 ∈ C2 with A1 < A2. A component

C1 is called minimal if there is no component C2 with C2 ≺ C1.

Given a normal logic program P , the bottom stratum S (P) of P is the union of

all minimal components of P . The bottom layer of P is the subprogram L(P) of P

which consists of all clauses from P with heads belonging to S (P).

Given a (partial) interpretation I of P , we define the reduct of P with respect

to I as the program P/I obtained from P by performing the following reductions.

(1) Remove from P all clauses which contain a body literal L such that ¬L ∈ I or

whose head belongs to I . (2) Remove from all remaining clauses all body literals

L with L ∈ I . (3) Remove from the resulting program all non-unit clauses, whose

heads appear also as unit clauses in the program.

Definition 6.2

The weakly perfect model MP of a program P is defined by transfinite induction

as follows. Let P0 = P and M0 = ∅. For each (countable) ordinal α > 0 such that

programs Pδ and partial interpretations Mδ have already been defined for all δ < α,

let

Nα =
⋃

0<δ<α Mδ,

Pα = P/Nα,

Rα is the set of all atoms which are undefined in Nα

and were eliminated from P by reducing it with respect to Nα,

Sα = S (Pα) , and

Lα = L (Pα) ·

The construction then proceeds with one of the following three cases. (1) If Pα

is empty, then the construction stops and MP = Nα ∪ ¬Rα is the (total) weakly

perfect model of P . (2) If the bottom stratum Sα is empty or if the bottom layer Lα

contains a negative literal, then the construction also stops and MP = Nα ∪¬Rα is

the (partial) weakly perfect model of P . (3) In the remaining case Lα is a definite

program, and we define Mα = H ∪ ¬Rα, where H is the definite (partial) model of

Lα, and the construction continues.

For every α, the set Sα ∪Rα is called the α-th stratum of P and the program Lα

is called the α-th layer of P .

A weakly stratified program is a program with a total weakly perfect model. The

set of its strata is then called its weak stratification.
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Example 6.3

Consider the program P which consists of the following six clauses.

a ← ¬b

b ← c,¬a

b ← c,¬d

c ← b,¬e

d ← e

e ← d

Then N1 = M1 = {¬d ,¬e} and P/N1 consists of the clauses

a ← ¬b

b ← c,¬a

b ← c

c ← b·

Its least component is {a, b, c}. The corresponding bottom layer, which is all

of P/N1, contains a negative literal, so the construction stops and M2 = N1 =

{¬d ,¬e} is the (partial) weakly perfect model of P .

Let us return to the remark made earlier that our definition of weakly perfect

model, as given in Definition 6.2, differs slightly from the version introduced by

Przymusinska and Przymusinski (Przymusinska and Przymusinski 1990). In order

to obtain the original definition, points (2) and (3) of Definition 6.2 have to be

replaced as follows: (2) If the bottom stratum Sα is empty or if the bottom layer

Lα has no least two-valued model, then the construction stops and MP = Nα∪¬Rα

is the (partial) weakly perfect model of P . (3) In the remaining case Lα has a least

two-valued model, and we define Mα = H ∪ ¬Rα, where H is the partial model of

Lα corresponding to its least two-valued model, and the construction continues.

The original definition is more general due to the fact that every definite program

has a least two-valued model. However, while the least two-valued model of a defi-

nite program can be obtained as the least fixed point of the monotonic (and even

Scott-continuous) operatorT+
P , we know of no similar result, or general operator, for

obtaining the least two-valued model, if existent, of progams which are not definite.

The original definition therefore seems to be rather awkward, and indeed, for the

definition of weakly stratified programs (Przymusinska and Przymusinski 1990),

the more general version was dropped in favour of requiring definite layers. So

Definition 6.2 is an adaptation taking the original notion of weakly stratified pro-

gram into account, and appears to be more natural. In the following, the notion of

weakly perfect model will refer to Definition 6.2.

To be pedantic, there is another difference, namely that we have made explicit

the sets Rα of Definition 6.2, which were only implicitly treated in the original

definition. The result is the same.

We show next that Definition 6.1 indeed captures the weakly perfect model. The

proof basically follows our proof scheme, with some alterations, and the monotonic

construction which defines the weakly perfect model serves in place of a monotonic

operator. The technical details of the proof are very involved.
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Theorem 6.4

Let P be a normal logic program with weakly perfect model MP . Then MP is the

greatest model among all models I , for which there exists an I -partial level mapping

l for P such that P satisfies (WS) with respect to I and l .

We prepare the proof of Theorem 6.4 by introducing some notation, which will

make the presentation much more transparent. As for the proof of Theorem 5.5, we

will consider level mappings which map into pairs (β, n) of ordinals, where n ≤ ω.

Let P be a normal logic program with (partial) weakly perfect model MP . Then

define theMP -partial level mapping lP as follows: lP (A) = (β, n), where A ∈ Sβ∪Rβ

and n is least with A ∈ T+
Lβ
↑ (n + 1), if such an n exists, and n = ω otherwise.

We observe that if lP (A) = lP (B) then there exists α with A,B ∈ Sα ∪ Rα, and if

A ∈ Sα ∪ Rα and B ∈ Sβ ∪ Rβ with α < β, then l(A) < l(B).

The following definition is again technical and will help to ease notation and

arguments.

Definition 6.5

Let P and Q be two programs and let I be an interpretation.

1. If C1 = (A← L1, . . . ,Lm) and C2 = (B ← K1, . . . ,Kn) are two clauses, then

we say that C1 subsumes C2, written C1 4 C2, if A = B and {L1, . . . ,Lm} ⊆

{K1, . . . ,Kn}.
2. We say that P subsumes Q , written P 4 Q , if for each clause C1 in P there

exists a clause C2 in Q with C1 4 C2.
3. We say that P subsumes Q model-consistently (with respect to I ), written

P 4I Q , if the following conditions hold. (i) For each clause C1 = (A ←

L1, . . . ,Lm) in P there exists a clause C2 = (B ← K1, . . . ,Kn) in Q with

C1 4 C2 and ({K1, . . . ,Kn} \ {L1, . . . ,Lm}) ⊆ I . (ii) For each clause C2 =

(B ← K1, . . . ,Kn) in Q with {K1, . . . ,Kn} ∈ I and B 6∈ I there exists a

clause C1 in P such that C1 4 C2.

A clause C1 subsumes a clause C2 if both have the same head and the body

of C2 contains at least the body literals of C1, e.g. p ← q subsumes p ← q,¬r .

A program P subsumes a program Q if every clause in P can be generated this

way from a clause in Q , e.g. the program consisting of the two clauses p ← q and

p ← r subsumes the program consisting of p ← q,¬s and p ← r , p. This is also

an example of a model-consistent subsumption with respect to the interpretation

{¬s , p}. Concerning Example 6.3, note that P/N1 4N1
P , which is no coincidence.

Indeed, Definition 6.5 facilitates the proof of Theorem 6.4 by employing the follow-

ing lemma.

Lemma 1

With notation from Definiton 6.2, we have P/Nα 4Nα
P for all α.

Proof

Condition 3(i) of Definition 6.5 holds because every clause in P/Nα is obtained

from a clause in P by deleting body literals which are contained in Nα. Condition

3(ii) holds because for each clause in P with head A 6∈ Nα whose body is true under

Nα, we have that A← is a fact in P/Nα.
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The next lemma establishes the induction step in part (2) of the proof of Theorem

6.4.

Lemma 2

If I is a non-empty model of a (infinite propositional normal) logic program P ′ and

l an I -partial level mapping such that P ′ satisfies (WS) with respect to I and l ,

then the following hold for P = P ′/∅.

1. The bottom stratum S (P) of P is non-empty and consists of trivial components

only.

2. The bottom layer L(P) of P is definite.

3. The definite (partial) model N of L(P) is consistent with I in the following

sense: we have I ′ ⊆ N , where I ′ is the restriction of I to all atoms which are

not undefined in N .

4. P/N satisfies (WS) with respect to I \N and l/N , where l/N is the restriction

of l to the atoms in I \N .

Proof

(a) Assume there exists some component C ⊆ S (P) which is not trivial. Then

there must exist atoms A,B ∈ C with A < B , B < A, and A 6= B . Without loss

of generality, we can assume that A is chosen such that l(A) is minimal. Now let

A′ be any atom occuring in a clause with head A. Then A > B > A ≥ A′, hence

A > A′, and by minimality of the component we must also have A′ > A, and we

obtain that all atoms occuring in clauses with head A must be contained in C . We

consider two cases.

(Case i) If A ∈ I , then there must be a fact A ← in P , since otherwise by

(WSi) we had a clause A ← L1, . . . ,Ln (for some n ≥ 1) with L1, . . . ,Ln ∈ I and

l(A) > l(Li) for all i , contradicting the minimality of l(A). Since P = P ′/∅ we

obtain that A ← is the only clause in P with head A, contradicting the existence

of B 6= A with B < A.

(Case ii) If ¬A ∈ I , and since A was chosen minimal with respect to l , we obtain

that condition (WSiib) must hold for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm

with respect to I and l , and that m = 0. Furthermore, all Ai must be contained in

C , as already noted above, and l(A) ≥ l(Ai) for all i by (WSiib). Also from (Case

i) we obtain that no Ai can be contained in I . We have now established that for

all Ai in the body of any clause with head A, we have l(A) = l(Ai) and ¬Ai ∈ I .

The same argument holds for all clauses with head Ai , for all i , and the argument

repeats. Now from A > B we obtain that there are D ,E ∈ C with A ≥ E (or

A = E ), D ≥ B (or D = B), and E refers negatively to D . As we have just seen,

we obtain ¬E ∈ I and l(E ) = l(A). Since E refers negatively to D , there is a clause

with head E and ¬D contained in the body of this clause. Since (WSii) holds for

this clause, there must be a literal L in the body with level less than l(E ), hence

l(L) < l(A) and L ∈ C which is a contradiction. We thus have established that all

components are trivial.

We show next that the bottom stratum is non-empty. Indeed, let A be an atom

such that l(A) is minimal. We will show that {A} is a component. So assume it is
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not, i.e. that there is B with B < A. Then there exist D1, . . . ,Dk , for some k ∈ N,

such that D1 = A, Dj refers to Dj+1 for all j = 1, . . . , k−1, and Dk refers negatively

to some B ′ with B ′ ≥ B (or B ′ = B).

We show next by induction that for all j = 1, . . . , k the following statements hold:

¬Dj ∈ I , B < Dj , and l(Dj ) = l(A). Indeed note that for j = 1, i.e. Dj = A, we have

that B < Dj = A and l(Dj ) = l(A). Assuming A ∈ I , we obtain by minimality

of l(A) that A ← is the only clause in P = P ′/∅ with head A, contradicting

the existence of B < A. So ¬A ∈ I , and the assertion holds for j = 1. Now

assume the assertion holds some j < k . Then obviously Dj+1 > B . By ¬Dj ∈ I

and l(Dj ) = l(A), we obtain that (WSii) must hold, and by the minimality of

l(A) we infer that (WSiib) must hold and that no clause with head Dj contains

negated atoms. So l(Dj+1) = l(Dj ) = l(A) holds by (WSiib) and minimality of

l(A). Furthermore, the assumption Dj+1 ∈ I can be rejected by the same argument

as for A above, because then Dj+1 ← would be the only clause with head Dj+1,

by minimality of l(Dj+1) = l(A), contradicting B < Dj+1. This concludes the

inductive proof.

Summarizing, we obtain that Dk refers negatively to B ′, and that ¬Dk ∈ I .

But then there is a clause with head Dk and ¬B ′ in its body which satisfies (WSii),

contradicting the minimality of l(Dk) = l(A). This concludes the proof of statement

(a).

(b) According to (Przymusinska and Przymusinski 1990) we have that whenever

all components are trivial, then the bottom layer is definite. So the assertion follows

from (a).

(c) Let A ∈ I ′ be an atom with A 6∈ N , and assume without loss of generality

that A is chosen such that l(A) is minimal with these properties. Then there must

be a clause A← body in P such that all literals in body are true with respect to I ′,

hence with respect to N by minimality of l(A). Thus body is true in N , and since

N is a model of L(P) we obtain A ∈ N , which contradicts our assumption.

Now let A ∈ N be an atom with A 6∈ I ′, and assume without loss of generality

that A is chosen such that n is minimal with A ∈ T+
L(P) ↑ (n + 1). But then there

is a definite clause A ← body in L(P) such that all atoms in body are true with

respect to T+
L(P) ↑n, hence also with respect to I ′, and since I ′ is a model of L(P)

we obtain A ∈ I ′, which contradicts our assumption.

Finally, let ¬A ∈ I ′. Then we cannot have A ∈ N since this implies A ∈ I ′. So

¬A ∈ N since N is a total model of L(P).

(d) From Lemma 1, we know that P/N 4N P . We distinguish two cases.

(Case i) If A ∈ I \ N , then there must exist a clause A ← L1, . . . ,Lk in P such

that Li ∈ I and l(A) > l(Li) for all i . Since it is not possible that A ∈ N , there

must also be a clause in P/N which subsumes A← L1, . . . ,Lk , and which therefore

satisfies (WSi). So A satisfies (WSi).

(Case ii) If ¬A ∈ I \N , then for each clause A ← body1 in P/N there must be

a clause A ← body in P which is subsumed by the former, and since ¬A ∈ I , we

obtain that condition (WSii) must be satisfied by A, and by the clause A← body.

Since reduction with respect to N removes only body literals which are true in N ,

condition (WSii) is still met.
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We can now proceed with the proof.

Proof of Theorem 6.4

The proof will be established by showing the following facts: (1) P satisfies (WS)

with respect to MP and lP . (2) If I is a model of P and l an I -partial level mapping

such that P satisfies (WS) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP ) and lP (A) = (α, n). We consider two cases.

(Case i) If A ∈ MP , then A ∈ T+
Lα
↑ (n + 1). Hence there exists a definite

clause A← A1, . . . ,Ak in Lα with A1, . . . ,Ak ∈ T+
Lα
↑n, so A1, . . . ,Ak ∈ MP with

lP (A) > lP (Ai) for all i . Since P/Nα 4Nα
P by Lemma 1, there must exist a clause

A ← A1, . . . ,Ak ,L1, . . . ,Lm in P with literals L1, . . . ,Lm ∈ Nα ⊆ MP , and we

obtain lP (Lj ) < lP (A) for all j = 1, . . . ,m. So (WSi) holds in this case.

(Case ii) If ¬A ∈ MP , then let A← A1, . . . ,Ak ,¬B1, . . . ,¬Bm be a clause in P ,

noting that (WSii) is trivially satisfied in case no such clause exists. We consider

the following two subcases.

(Subcase ii.a) Assume A is undefined in Nα and was eliminated from P by re-

ducing it with respect to Nα, i.e. A ∈ Rα. Then, in particular, there must be

some ¬Ai ∈ Nα or some Bj ∈ Nα, which yields lP (Ai) < lP (A), respectively

lP (Bj ) < lP (A), and hence one of (WSiia), (WSiic) holds.

(Subcase ii.b) Assume ¬A ∈ H , where H is the definite (partial) model of Lα.

Since P/Nα subsumes P model-consistently with respect to Nα, we obtain that

there must be some Ai with ¬Ai ∈ H , and by definition of lP we obtain lP (A) =

lP (Ai) = (α, ω), and hence also lP (Ai′ ) ≤ lP (Ai) for all i
′ 6= i . Furthermore, since

P/Nα is definite, we obtain that ¬Bj ∈ Nα for all j , hence lP (Bj ) < lP (A) for all

j . So condition (WSiib) is satisfied.

(2) First note that for all models M , N of P with M ⊆ N we have (P/M )/N =

P/(M ∪ N ) = P/N and (P/N )/∅ = P/N .

Let Iα denote I restricted to the atoms which are not undefined in Nα ∪ Rα. It

suffices to show the following: For all α > 0 we have Iα ⊆ Nα∪Rα, and I \MP = ∅.

We next show by induction that if α > 0 is an ordinal, then the following state-

ments hold. (a) The bottom stratum of P/Nα is non-empty and consists of trivial

components only. (b) The bottom layer of P/Nα is definite. (c) Iα ⊆ Nα ∪ Rα. (d)

P/Nα+1 satisfies (WS) with respect to I \Nα+1 and l/Nα+1.

Note first that P satisfies the hypothesis of Lemma 2, hence also its consequences.

So P/N1 = P/∅ satisfies (WS) with respect to I \N1 and l/N1, and by application

of Lemma 2 we obtain that statements (a) and (b) hold. For (c), note that no atom

in R1 can be true in I , because no atom in R1 can appear as head of a clause in P ,

and apply Lemma 2 (c). For (d), apply Lemma 2, noting that P/N2 4N2
P .

For α being a limit ordinal, we can show exactly as in the proof of Lemma 2 (d),

that P satisfies (WS) with respect to I \ Nα and l/Nα. So Lemma 2 is applicable

and statements (a) and (b) follow. For (c), let A ∈ Rα. Then every clause in P with

head A contains a body literal which is false in Nα. By induction hypothesis, this

implies that no clause with head A in P can have a body which is true in I . So

A 6∈ I . Together with Lemma 2 (c), this proves statement (c). For (d), apply again

Lemma 2 (d), noting that P/Nα+1 4Nα+1
P .
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For α = β + 1 being a successor ordinal, we obtain by induction hypothesis that

P/Nβ satisfies the hypothesis of Lemma 2, so again statements (a) and (b) follow

immediately from this lemma, and (c), (d) follow as in the case for α being a limit

ordinal.

It remains to show that I \MP = ∅. Indeed by the transfinite induction argument

just given we obtain that P/MP satisfies (WS) with respect to I \MP and l/MP . If

I \MP is non-empty, then by Lemma 2 the bottom stratum S (P/MP ) is non-empty

and the bottom layer L(P/MP ) is definite with definite (partial) model M . Hence

by definition of the weakly perfect model MP of P we must have that M ⊆ MP

which contradicts the fact that M is the definite model of L(P/MP ). Hence I \MP

must be empty which concludes the proof.

Of independent interest is again the case, where the model in question is total.

We see immediately, for example, in the light of Theorem 3.3, that the model is

then stable.

Corollary 6.6

A normal logic program P is weakly stratified, i.e. has a total weakly perfect model,

if and only if there is a total model I of P and a (total) level mapping l for P such

that P satisfies (WS) with respect to I and l .

We also obtain the following corollary as a trivial consequence of our uniform

characterizations by level mappings.

Corollary 6.7

Let P be a normal logic progam with Fitting model MF, weakly perfect model

MWP, and well-founded model MWF. Then MF ⊆ MWP ⊆ MWF.

Example 6.8

Consider the program P from Example 6.3. Then MF = ∅, MWP = {¬d ,¬e}, and

MWF = {a,¬b,¬c,¬d ,¬e}.

7 Related Work

As already mentioned in the introduction, level mappings have been used for study-

ing semantic aspects of logic programs in a number of different ways. Our presen-

tation suggests a novel application of level mappings, namely for providing uniform

characterizations of different fixed-point semantics for logic programs with nega-

tion. Although we believe our perspective to be new in this general form, there

nevertheless have been results in the literature which are very close in spirit to our

characterizations.

A first noteable example of this is Fages’ characterization of stable models (Fages 1994),

which we have stated in Theorem 3.3. Another result which uses level mappings to

characterize a semantics is by Lifschitz, Przymusinski, Stärk, andMcCain (Lifschitz et al. 1995,

Lemma 3). We briefly compare their characterization of the well-founded semantics

and ours. In fact, this discussion can be based upon two different characterizations

of the least fixed point of a monotonic operator F . On the one hand, this least
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fixed point is of course the least of all fixed points of F , and on the other hand,

this least fixed point is the limit of the sequence of powers (F ↑ α)α, and in this

latter sense is the least iterate of F which is also a fixed point. Our characteri-

zations of definite, Fitting, well-founded, and weakly stratified semantics use the

latter approach, which is reflected in our general proof scheme, which defines level

mappings according to powers, or iterates, of the respective operators. The results

by Fages (Fitting 1994) and Lifschitz et al. (Lifschitz et al. 1995) hinge upon the

former approach, i.e. they are based on the idea of characterizing the fixed points

of an operator — GLP , respectively ΨP (Przymusinski 1989; Bonnier et al. 1991)

— and so the sought fixed point turns out to be the least of those. Consequently,

as can be seen in the proof of Theorem 3.3, the level mapping in Fages’ character-

ization, and likewise in the result by Lifschitz et al., arises only indirectly from the

operator — GLP , respectively ΨP — whose fixed point is sought. Indeed, the level

mapping by Fages is defined according to iterates of TP/I , which is the operator

for obtaining GLP (I ), for any I . The result by Lifschitz et al. is obtained similarly

based on a three-valued operator ΨP .

Unforunately, these characterizations by Fages, in Theorem 3.3, respectively by

Lifschitz et al. (Lifschitz et al. 1995), seem to be applicable only to operators which

are defined by least fixed points of other operators, as is the case for GLP and ΨP ,

and it seems that the approach by Lifschitz et al. is unlikely to scale to other

semantics. For example, we attempted a straightforward characterization of the

Fitting semantics in the spririt of Lifschitz et al. which failed.

On a more technical level, a difference between our result, Theorem 5.2, and

the characterization by Lifschitz et al. (Lifschitz et al. 1995) of the well-founded

semantics is this: In our characterization, the model is described using conditions

on atoms which are true or false (i.e. not undefined) in the well-founded model,

whereas in theirs the conditions are on those atoms which are true or undefined (i.e.

not false) in the well-founded model. The reason for this is that we consider iterates

of WP , where WP ↑ 0 = ∅, while they use the fact that each fixed point of ΨP

is a least fixed point of ΦP/I with respect to the truth ordering on interpretations

(note that in this case P/I denotes a three-valued generalization of the Gelfond-

Lifschitz transformation due to Przymusinski (Przymusinski 1989)). In this ordering

we have ΦP/I ↑ 0 = ¬BP . It is nevertheless nice to note that in the special case of

the well-founded semantics there exist two complementary characterizations using

level mappings.

Since our proposal emphasizes uniformity of characterizations, it is related to

the large body of work on uniform approaches to logic programming semantics, of

which we will discuss two in more detail: the algebraic approach via bilattices due

to Fitting, and the work of Dix.

Bilattice-based semantics has a long tradition in logic programming theory, start-

ing out from the four-valued logic of Belnap (Belnap 1977). The underlying set of

truth values, a four-element lattice, was recognized to admit two ordering relations

which can be interpreted as truth- and knowledge-order. As such it has the structure

of a bilattice, a term due to Ginsberg (Ginsberg 1986), who was the first to note

the importance of bilattices for inference in artificial intelligence (Ginsberg 1992).
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This general approach was imported into logic programming theory by Fitting

(Fitting 1991a). Although multi-valued logics had been used for logic program-

ming semantics before (Fitting 1985), bilattices provided an interesting approach

to semantics as they are capable of incorporating both reasoning about truth and

reasoning about knowledge, and, more technically, because they have nice alge-

braic behaviour. Using this general framework Fitting was able to show interesting

relationships between the stable and the well-founded semantics (Fitting 1991b;

Fitting 1993; Fitting 2002).

Without claiming completeness we note two current developments in the bilattice-

based approach to logic programming: Fitting’s framework has been extended

to an algebraic approach for approximating operators by Denecker, Marek, and

Truszczynski (Denecker et al. 2000). The inspiring starting point of this work was

the noted relationship between the stable model semantics and the well-founded

semantics, the latter approximating the former. The other line of research was pur-

sued mainly by Arieli and Avron (Arieli and Avron 1994; Arieli and Avron 1998;

Arieli 2002), who use bilattices for paraconsistent reasoning in logic programming.

The above outline of the historical development of bilattices in logic programming

theory suggests a similar kind of uniformity as we claim for our approach. The exact

relationship between both approaches, however, is still to be investigated. On the

one hand, bilattices can cope with paraconsistency — an issue of logic programming

and deductive databases, which is becoming more and more important — in a very

convenient way. On the other hand, our approach can deal with semantics based on

multi-valued logics, whose underlying truth structure is not a bilattice. A starting

point for investigations in this direction could be the obvious meeting point of both

theories: the well-founded semantics for which we can provide a characterization

and which is a special case of the general approximation theory of Denecker et al.

(Denecker et al. 2000).

Another very general, and uniform, approach to logic programming pursues a

different point of view, namely logic programming semantics as nonmonotonic in-

ference. The general theory of nonmonotonic inference and a classification of prop-

erties of nonmonotonic operators was developed by Kraus, Lehmann, and Magidor

(Kraus et al. 1990), leading to the notion KLM-axioms for these properties, and de-

veloped further by Makinson (Makinson 1994). These axioms were adopted to the

terminology of logic programming and extended to a general theory of logic pro-

gramming semantics by Dix (Dix 1995a; Dix 1995b). In this framework, different

known semantics are classified according to strong properties — the KLM-axioms

which hold for the semantics – and weak properties — specific properties which

deal with the irregularities of negation-as-failure. As such Dix’ framework is indeed

a general and uniform approach to logic programming, its main focus being on

semantic properties of logic programs. Our approach in turn could be called semi-

syntactic in that definitions that employ level mappings naturally take the structure

of the logic program into account. As in the case of the bilattice-based approaches,

it is not yet completely clear whether these two approaches can be amalgamated

in the sense of a correspondence between properties of level mappings, e.g. strict

or semi-strict descent of the level, etc., on the one hand, and KLM-properties of
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the logic program on the other. However, we believe that it is possible to develop

a proof scheme for nonmonotonic properties of logic programs in the style of the

proof scheme presented in the paper, which can be used to cast semantics based on

monotonic operators into level mapping form.

We finally mention the work by Hitzler and Seda (Hitzler and Seda 1999), which

was the root and starting point for our investigations. This framework aims at the

characterization of program classes, such as (locally) stratified programs (Apt et al. 1988;

Przymusinski 1988), acceptable programs (Apt and Pedreschi 1993), or Φ-accessible

programs (Hitzler and Seda 1999). Such program classes appear naturally whenever

a semantics is not defined for all logic programs. In these cases one tries to char-

acterize those programs, for which the semantics is well-defined or well-behaved.

Their main tool were monotonic operators in three-valued logic, in the spirit of

Fitting’s ΦP , rather than level mappings. With each operator comes a least fixed

point, hence a semantics, and it is easily checked that these semantics can be char-

acterized using our approach, again by straightforward application of our proof

scheme. Indeed, preliminary steps in this direction already led to an independent

proof of a special case of Corollary 6.7 (Hitzler and Seda 2001).

8 Conclusions and Further Work

We have proposed a novel approach for obtaining uniform characterizations of dif-

ferent semantics for logic programs. We have exemplified this by giving new alterna-

tive characterizations of some of the major semantics from the literature. We have

developed and presented a methodology for obtaining characterizations from mono-

tonic semantic operators or related constructions, and a proof scheme for showing

correctness of the obtained characterizations. We consider our contribution to be

fundamental, with potential for extension in many directions.

Our approach employs level mappings as central tool. The uniformity with which

our characterizations were obtained and proven to be correct suggests that our

method should be of wider applicability. In fact, since it builds upon the well-

known Tarski fixed point theorem, it should scale well to most, if not all semantics,

which are defined by means of a monotonic operator. The main contribution of this

paper is thus, that we have developed a novel way of presenting logic programming

semantics in some kind of normal or standard form. This can be used for easy

comparison of semantics with respect to the syntactic structures that can be used

with a certain semantics, i.e. to what extent the semantics is able to ’break up’

positive or negative dependencies or loops between atoms in the program, as in

Corollary 6.7.

However, there are many more requirements which a general and uniform ap-

proach to logic program semantics should eventually be able to meet, including (i)

a better understanding of known semantics, (ii) proof schemes for deriving prop-

erties of semantics, (iii) extendability to new programming constructs, and (iv)

support for designing new semantics for special purposes.

Requirement (i) is met to some extent by our appoach, since it enables easy

comparison of semantics, as discussed earlier. However, in order to meet the other
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requirements, i.e. to set up a meta-theory of level-mapping-based semantics, a lot

of further research is needed. We list some topics to be pursued in the future, some

of which are under current investigation by the authors. There are many proper-

ties which are interesting to know about a certain semantics, depending on one’s

perspective. For the nonmonotonic reasoning aspect of logic programming it would

certainly be interesting to have a proof scheme as flexible and uniform as the one

presented in this paper. Results and proofs in the literature (Fages 1994; Dix 1995a;

Turner 2001) suggest that there is a strong dependency between notions of ordering

on the Herbrand base, as expressed by level mappings, and KLM-properties satis-

fied by a semantics, which constitutes some evidence that a general proof scheme

for proving KLM-properties from level mapping definitions can be developed. Other

interesting properties are e.g. the computational complexity of a semantics, but also

logical characterizations of the behaviour of negation in logic programs, a line of

research initiated by Pearce (Pearce 1997).

For (iii), it would be desirable to extend our characterizations also to disjunc-

tive programs, which could perhaps contribute to the discussion about appropriate

generalizations of semantics of normal logic programs to the disjunctive case.

We finally want to mention that the elegant mathematical framework of level

mapping definitions naturally gives rise to the design of new semantics. However,

at the time being this is only a partial fulfillment of (iv): As long as a meta-theory

for level-mapping-based semantics is missing, one still has to apply conventional

methods for extracting properties of the respective semantics from its definition.
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