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Abstract

Abduction, first proposed in the setting of classical loghas been studied with growing interest in
the logic programming area during the last years.

In this paper we studgbduction with penalizatiom the logic programming framework. This
form of abductive reasoning, which has not been previoushyaed in logic programming, turns
out to represent several relevant problems, includinghipéition problems, very naturally. We de-
fine a formal model for abduction with penalization over togrograms, which extends the abduc-
tive framework proposed by Kakas and Mancarella. We addmeswledge representation issues,
encoding a number of problems in our abductive frameworkpdricular, we consider some rel-
evant problems, taken from different domains, ranging fiptimization theory to diagnosis and
planning; their encodings turn out to be simple and elegaatir formalism. We thoroughly analyze
the computational complexity of the main problems arisimghie context of abduction with penal-
ization from logic programs. Finally, we implement a systsupporting the proposed abductive
framework on top of th®LV engine. To this end, we design a translation from abductioblpms
with penalties into logic programs with weak constraint® pYove that this approach is sound and
complete.

KEYWORDSKnowledge Representation, Nonmonotonic Reasoning, étimiy Logic Programs,
Computational Complexity, Stable Models, Optimizationt®ems, Penalization
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1 Introduction

Abduction is an important form of reasoning, first studiedapth by Peirce (1955). Given
the observation of some facts, abduction aims at concluttiegresence of other facts,
from which, together with an underlying theory, the obsdriaets can be explained, i.e.,
deductively derived. Thus, roughly speaking, abductiomamts to an inverse of modus
ponens.

For example, medical diagnosis is a typical abductive neiaggprocess: from the symp-
toms and the medical knowledge, a diagnosis about a posigdase is abduced. Notice
that this form of reasoning is not sound (a diagnosis may dutrto be wrong), and that
in general several abductive explanations (i.e., diags)dse the observed symptoms may
be possible.

It has been recognized that abduction is an important grli@of common-sense reason-
ing, and that abduction has fruitful applications in a nundf@reas such diverse as model-
based diagnosis (Poole 1989), speech recognltion (Holibsak. Stickel 1998), model
checkingl(Buccafurri et al. 1999), maintenance of databizves [Kakas and Mancarella 1990a),
and vision[(Charniak and McDermott 1985).

Most research on abduction concerned abduction from ckslsigic theories. How-
ever, there are several application domains where the Usgiofprogramming to perform
abductive reasoning seems more appropriate and nefural 8Eal. 1997).

For instance, consider the following scenario. Assume ithatSunday and is known
that Fabrizio plays soccer on Sundays if it's not rainingisTiay be represented by the
following theoryT™:

play_soccer < is_sunday A not rains is_sunday <

Now you observe that Fabrizio is not out playing soccer @athe is writing a paper).
Intuitively, from this observation we conclude that it raiti.e, we abduceains), for
otherwise Fabrizio would be out playing soccer. Neverttglender classical inference, the
factrains is not an explanation afot play_soccer, asT U {rains} [~ not play_soccer
(neither can one find any explanation). On the contrary, ibdept the semantics of logic
programming (interpretingot as the nonmonotonic negation operator), then, according
with the intuition, we obtain thatains is an explanation ofiot play_soccer, as it is
entailed byI" U {rains}.
In the context of logic programming, abduction has been firsposed by Kakas and
Mancarellal(1990b) and, during the recent years, the istér¢his subject has been grow-
ing rapidly [Consale et al. 1991; Konolige 1992; Kakas efl&B2]Dung 1991; Denecker and De Schreye 1995;
Sakama and Inoue 2000; Brena 1998; Kakas et al.12000; Denae#idakas 2002; Lin and You 2002).
This is also due to some advantages in dealing with incompi&trmation that this kind of
reasoning has over deduction (Denecker and De Schreyeé [Baea; and Gelfond 1994).
Unlike most of these previous works on abduction in the Iggagramming framework,
in this paper we studwbduction with penalizatiofrom logic programs. This form of
abductive reasoning, well studied in the setting of clad$igics [Eiter and Gottlob 1995),
has not been previously analyzed in logic programming.
Note that dealing with weights or penalties has been reeegnas a very important
feature of knowledge representation systems. In fact, avére very recent Workshop on
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Nonmonotonic Reasoning, Answer Set Programming and Gonst(Dagstuhl, Germany,
2002), many talks and system demonstrations pointed ouatloa of problems arising in
real applications requires the ability to discriminate radiéferent candidate solutions, by
means of some suitable preference relationship. Note lifsistnot just an esthetic issue,
for representing such problems in a more natural and déslanaay. Rather, a proper
use of preferences may have a dramatic impact even on theeffjcof solving these
problems.

In this paper, we define a formal model for abduction with pieation from logic pro-
grams, which extends the abductive framework proposed kg&and Mancarella (1990b).
Roughly, a problem of abduction with penalizatiBrconsists of a logic programi, a set
of hypotheses, a set of observations, and a function thigirssa penalty to each hypothe-
sis. An admissible solution is a set of hypotheses such thalbservations can be derived
from P assuming that these hypotheses are true. Each solutiorightee by the sum of
the penalties associated with its hypotheses. The optiohatiens are those with the min-
imum weight, which are considered more likely to occur, dngstare preferred over other
solutions with higher penalties.

We face knowledge representation issues, by showing howctibd with penaliza-
tion from logic programming can be used for encoding eagityia a natural way relevant
problems belonging to different domains. In particularceasider the classica@ravelling
Salesman Problerftom optimization theory, (a new version of) tist¢rategic Companies
Problem the planning problerBlocks World from artificial intelligence. It is worthwhile
noting that these problems cannot be encoded at all in ({famétee) normal logic pro-
gramming, even under the powerful stable model semantics.

We analyze the computational complexity of the main prolsl@mising in this frame-
work, namely, given a problef® of abduction with penalization over logic programs,

o decide whetheP is consistent, i.e., there exists a solutionfyr

e decide whether a given set of hypotheses is an admissihlésofor P;

e decide whether a given set of hypotheses is an optimal salitr P;

o decide whether a given hypothesiss relevant forP, i.e.,h occurs in some optimal
solution of P;

e decide whether a given hypothegids necessary foP, i.e., h is contained in all
optimal solutions ofP;

e compute an optimal solution G%.

The table in Figur&ll shows the complexity of all these pnoisleboth in the general
case and in the restricted setting where the use of unsthtiggation is forbidden in
the logic program of the abduction problem. Note that a cexipt classC in any entry
of this table means that the corresponding problefi-somplete, that is, we prove both
membership and hardness of the problem for the complexagscl.

An interesting result in this course is that “negation cofioegree” in most cases. That
is, the addition of negation does not cause any further &sere¢o the complexity of the
main abductive reasoning tasks (which remains the same astfdree programs). Thus,
the user can enjoy the knowledge representation power aghonntonic negation without
paying additional costs in terms of computational overh@&&are precisely, it turns out
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that abduction with penalization over general logic proggdhas exactly the same com-
plexity as abduction with penalization over definite Horadhes of classical logics in the
three main computational abductive-reasoning tasks ddegielevancy and necessity of
an hypothesis, and computing an optimal solution). Whilstratified negation brings a
relevant complexity gap in deductive reasoning (fréhto NP for brave reasoning), in
this case, the use of negation does not lead to any incredise aomplexity, as shown in
Figureld.

General programs  Positive or stratified programs

Consistency NP NP
Solution Admissibility NP P
Solution Optimality DY co-NP
Hypothesis Relevancy A¥ A¥
Hypothesis Necessity AL AL
Optimal Solution Computation FPNP FPNP

Fig. 1. Overview of the Complexity Results

We have implemented the proposed framework for abductidh pgnalization over
logic programs as a front-end for tipe Vv system. Our implementation is based on an al-
gorithm that translates an abduction problem with persaitit a logic program with weak
constraintsi(Buccafurri et al. 2000), which is then evadddiyDLV. We prove that our ap-
proach is sound and complete. Our abductive system is blailathe current release of
the DLV system ¢ww.dlvsystem.com), and can be freely retrieved for experiments.
It is worthwhile noting that our rewriting approach can bapied for other ASP systems
with suitable constructs for dealing with weighted prefexes. For instance, our algorithm
can be modified easily in order to compute programs with wditgrals to be evaluated
by the Smodels systern (Simons et al. 2002).

In sum, the main contribution of the paper is the following.

¢ We define a formal model of abduction with penalization oegid programs.

e We carry out a thorough analysis of the complexity of the ncamputational prob-
lems arising in the context of abduction with penalizatiorrdogic programs.

e We address knowledge representation issues, showing hoe gevant problems
can be encoded in our framework in a simple and fully dedizratay.

e We provide an implementation of the proposed abductive éwmonk on top of the
DLV system.

Our work is evidently related to previous studies on sensaarid knowledge represen-
tation aspects of abduction over logic programs. In Se@iome discuss the relationships
of this paper with such previous studies and with some furilated issues.

The rest of the paper is organized as follows. In Sedfion 2reeall the syntax of
(function-free) logic programs and the stable model seimanin Sectiod 13, we define
our model of abduction with penalization from logic progisarand in Sectiohl4 we give
some examples of applications of this form of abduction ffedént domains. In Section
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B, we analyze the computational complexity of the main potd arising in this frame-
work. In Sectio b, we describe our prototype that implemmabtiuction with penalization
from logic programs, and makes it available as a front entl@btystenDLV. SectiorlV is
devoted to related works. Finally, in Sectidn 8, we draw ammatusions.

2 Preliminarieson Logic Programming

We next give the syntax of function-free logic programs,siloly containing nonmono-
tonic negation (negation as failure) and constraints. Thenrecall the stable model se-
mantics (Gelfond and Lifschitz 19B8) for such logic progsam

2.1 Syntax

A term is either a constant or a variabléAn atom has the forma(ts, ..., t,), wherea is
apredicate of arity n andt,, ..., t, are terms. Aiteral is either apositive literal a or a
negative literal not a, wherea is an atom.

A rule r has the form

a:—by,...,bx,n0t byt1,...,no0t by. k>0,m>k
wherea, by, ..., b, are atoms.
Atom a is theheadof r, while the conjunctiof, . . ., by, not by, . .., not by is thebody

of . We denote by (r) the head atom, and byB(r) the set{by, ..., by, not byxy1,...,
not by} of the body literals. Moreovef3*(r) and B~ (r) denote the set of positive and
negative literals occurring if(r), respectively. IfB(r) = 0, i.e.,m = 0, thenr is afact

A strong constrainf(integrity constraint) has the form-L,,...,L,., where eacli;,
1 < i <m,is aliteral; thus, a strong constraint is a rule with empagdh

A (logic) program P is a finite set of rules and constraints. A negation-free g
is called positive program A positive program where no strong constraint occurs is a
constraint-fregprogram.

A term, an atom, a literal, a rule or a progranyisund if no variable appears in it. A
ground program is also calledo@opositionalprogram.

2.2 Stable model semantics

Let P be a program. Thelerbrand Universé/p of P is the set of all constants appearingin
P. TheHerbrand BaseBp of P is the set of all possible ground atoms constructible from
the predicates appearing in the rulesbénd the constants occurringlify (clearly, both
Up andBp are finite). Given a rule occurring in a progran®, aground instancef r is

a rule obtained from by replacing every variabl& in r by o(X), whereo is a mapping
from the variables occurring in to the constants i/p. We denote byround(P) the
(finite) set of all the ground instances of the rules occgrimP. An interpretationfor P

is a subsef of Bp (i.e., it is a set of ground atoms). A positive litera(resp. a negative
literal not a) is true with respect to an interpretatiénf a € I (resp.a ¢ I); otherwise it

1 Note that function symbols are not considered in this paper.
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is false. A ground rule is satisfied(or true) w.r.t. I if its head is true w.r.tI or its body is
false w.r.t.l.

A modelfor P is an interpretatiod/ for P such that every rule € ground(P) is true
w.r.t. M. If P is a positive program and has some model, tRdras a (unique) least model
(i.e., a model included in every model), denoted iy P).

Given a logic progran® and an interpretatioh, theGelfond-Lifschitz transformatioof
P with respect td is the logic progranP! consisting of all rules :—by, . .., b, such that
(1) a:—by,...,bg,n0t bgyy,...,notby, € P and (2)b; ¢ I, forallk <i < m.
Notice thatrot does not occur iP?, i.e., it is a positive program.

An interpretatiory is astable modedf P if it is the least model of its Gelfond-Lifschitz
w.rt. I, i.e., if I = Im(P!) (Gelfond and Lifschitz 1988). The collection of all stable
models ofP is denoted bySM (P) (i.e., SM(P) = {I | I = Im(P!)}).

Example 2.1
Consider the following (ground) prograf

a:—notb. b:—nota. c:—a. c:—b.

The stable models oP are M; = {a,c} and My = {b,c}. Indeed, by definition of
Gelfond-Lifschitz transformation,

PMi—la:— c:—a c:—b}and P ={b:— c:—a, c:—b}
and it can be immediately recognized that( P+) = M; andim(P2) = M,.

We say that an atomdepends on an atogif there is a rule- in P such thap = H(r)
and eitherg € Bt (r) or not ¢ € B~ (r). Let < denote the transitive closure of this
dependency relationship. The progrdfis arecursiveprogram if there are,q € Bp
such thatp < ¢ andq < p. We say thatP is unstratified or that unstratified negation
occurs inP, if there is a ruler in P such thap = H(r), not ¢ € B~ (r), andg = p. A
program where no unstratified negation occurs is calteatified

Observe that every stratified prografhhas at most one stable model. The existence
of a stable model is guaranteed if no strong constraint actuthe stratified program
P. Moreover, every stratified program can be evaluated inrpmtyial time. In particular,
deciding whether there is a stable model, computing such @dmmor deciding whether
some literal is entailed (either bravely or cautiously) bg program are all polynomial-
time feasible tasks.

For a set of atom&’, we denote byacts(X) the set of fact{p. | p € X }. Clearly, for
any programP and set of atoms, all stable models oP U facts(.S) include the atoms in
S.

3 A Modd of Abduction with Penalization

First, we give the formal definition of a problem of abductfoom logic programs under
the stable model semantics, and we provide an example oretliagnosis, that we use
as a running example throughout the paper. Then, we extenfdamework by introducing

the notion of penalization.
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Fig. 2. Computer network/ in Exampld:3.P

Definition 3.1
(ABDUCTION FROM LOGIC PROGRAMS)
A problem of abduction from logic prograniis a triple (H, P, O), whereH is a finite
set of ground atoms calldaypothesesP is a logic program whose rules do not contain
any hypothesis in their heads, a@ids a finite set of ground literals, callebservations
or manifestations
A set of hypotheseS C H is anadmissible solutiofor explanation to P if there exists
a stable modeM of P U facts(S) such thatyo € O, o is true w.r.t. M.
The set of all admissible solutions®is denoted byAdm(P). |

Example 3.2

(NETWORK DIAGNOSIS) Suppose that we are working on machagnd we therefore
know that machina is online) of the computer netwoyX in Figurel2, but we observe ma-
chineeis not reachable frora, even if we are aware thais online. We would like to know
which machines could be offline. This can be easily modetiealir abduction framework
defining a problem of abductioR, = (H, P, O), where the set of hypotheseshis =
{offline(a), offline(b), offline(c),offline(d), offline(e), offline(£f)}, the
set of observations 19 = {not offline(a), not offline(e),not reaches(a,e)}, and
the programP consists of the set of facts encoding the netwgirkis ({connected(X,Y) |
{X,Y} is an edge oV'}), and of the following rules:

reaches(X,X) :— node(X),not offline(X).
reaches(X,Z) :— reaches(X,Y), connected(Y,Z), not offline(Z).

Note that the admissible solutions fBf corresponds to the network configurations that
may explain the observations . In this exampleAdn(P) contains five solutions

S = {offline(f), offline(b)},

Sy = {offline(f), offline(c), offline(d)},

Ss = {offline(f), offline(b), offline(c)},

Sy = {offline(f), offline(b), offline(d)},

S5 = {offline(f), offline(b), offline(c), offline(d)}.
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Note that Definitior:3]1 concerns only the logical propertié¢ the hypotheses, and it
does not take into account any kind of minimality criterid¥e next define the problem
of abduction with penalization, which allows us to make fiabductive reasonings, by
expressing preferences on different sets of hypothesew,dier to single out the most
plausible abductive explanations.

Definition 3.3
(ABDUCTION WITH PENALIZATION FROM LOGIC PROGRAMS)
A problem of abduction with penalizati¢RAP) P is a tuple(H, P, O, ~), where(H, P, O)
is a problem of abduction, angdis a polynomial-time computable function frofh to the
set of non-negative reafthe penalty function)The set of admissible solutions féris the
same as the set of solutions of the embedded abduction prgle P, O), i.e., we define
AdmMP) = Adm((H, P, O)).
For a set of atomsl, let sum. (A) = >, ., 7(h). Then,S is an(optimal) solution(or
explanationfor P if (i) S € Adm(P) and (i) sum. (S) < sum.(S5'), forall S € AdmP).
The set of all (optimal) solutions fd? is denoted byDpt(P). |

Example 3.4
(MINIMUM -CARDINALITY CRITERION) Consider again the network” and the problem
of abductionP; = (H, P,O) in Exampld3R. Again, we want to explain why the online
machinee is not reachable from. However, we do not consider any more plausible all the
explanations provided b§;. Rather, our domain knowledge suggests that it is unlikely
that many machines are offline at the same time, and thus wmetarested in explanations
with the minimum number of offline machines. This problemasily represented by the
problem of abduction with penalizatioh, = (H, P, O,~), whereH, P andO are the
same as irP, and, for eacth € H,y(h) = 1.

Indeed, consider the admissible solutiongefand observe that

sum~(S1) =2, sum~(S2) = sum,(S3) = sum~(Ss) =3, sum(Ss) =4

It follows that.S; is the unique optimal explanation fét,, and in fact corresponds to the
unigue solution of our diagnosis problem with a minimum nemd offline machines.

The following properties of a hypothesis irPAP P are of natural interest with respect
to computing abductive solutions.

Definition 3.5
Let? = (H,P,0,v) be aPAPandh € H. Then,h is relevantfor P if h € S for some
S € Opt(P), andh is necessaryor P if h € S for everyS € Opt(P).

Example 3.6
In exampld=3l¥offline(b), andoffline(f) are therelevant hypotheses; they are also
necessary sincesS; is the only optimal solution.

4 Knowledge Representation

In this section, we show how abduction with penalizatiomfiiogic programming can be
used for encoding easily and in a natural way relevant probeom different domains.
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A nice discussion of how abduction can be used for reprasghtiowledge declara-
tively can be found in[{(Denecker and Kakas 2002), where thitng is also related to
other nonmonotonic reasoning paradigms. It also recatlababduction has been defined
broadly as any form of “inference to the best explanatibaséphson and S.G. Josephson 1994),
wherebestrefers to the fact that usually hypotheses can be compamtding to some
criterion.

In our framework, this optimality criterion is the sum of thenalties associated to the
hypotheses, which has to be minimized.

In particular, in order to represent a problem, we have tatifie

o the hypotheseshat represent all the possible entities that are caredat belong-
ing to solutions;

o for each hypothesis, the penaltyassociated té, that represents the cost of includ-
ing h in a solution;

¢ the logic programP, that encodes a representation of the reality of interedtian
particular, of the way any given set of hypotheses changeséhlity and leads to
some consequences;

¢ the observationor manifestations, that are distinguished logical coneegqes, of-
ten encoding someaesiderataFor any given set of hypothesgs the fact that these
observations are consequences of the logic program {p)usitnesses thatl is a
“good” set of hypotheses, i.e., it encodes a feasible soiftir the problem at hand.

For instance, in the network diagnosis problem describ&kampld3.}4, the hypotheses
are the possible offline machines and the logic prograiis able to determine, for any
given set of offline machines encoding a network status, lwhiachines are unreachable.
In this case, and usually in diagnosis problems, these wéisa@ns are in fact pictures of
the reality of interest: we see that some machines are nohaéde in the network and
that some machines are not offline, and we would like to infiarabductive reasoning,
what are the explanations for such a situation. Moreovehimexample, we are interested
only in solutions that consist of the minimum number of offlimachines, leading to the
observed network status, because they are believed meig tkoccur. This is obtained
easily, by assigning a unitary penalty to each hypothesis.

We next show the encodings of other kind of problems that eamepresented in a
natural way trough abduction with penalization from logiograms, even though they are
quite different from the above simple cause-effect scheme.

For the sake of presentation, we assume in this sectiondb@&tprograms are equipped
with the built-in predicates#, <, >, and +, with the usual meaning. Clearly, for any
given programpP, these predicates may be encoded by suitable finite set<ist tae-
cause we have to deal only with the (finite) set of constantisadlg occurring inP.
Moreover, observe that most available systems for evalgddigic programs — e.gQLV
(Eiter et al. 199€; Leone et al. 2002) asrdodelgNiemela and Simons 1997; Simons et al. 2002)
— provide in fact such operators.

4.1 The Travelling Salesman Problem

An instancel of the Travelling Salesman Problem (TS&9nsists of a number of cities
c1,. - ., cpn, and a functionw that assigns to any pair of citieg c; a positive integer value,
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which represents the cost of travelling frefrto ;. A solution to is a round trip that visits
all cities in sequence and has minimal travelling cost, a@ermutation of 1,...,n such
that the overall cost

is minimum.

Let us see how we can represent this problem in our framewtlitively, any solution
consists of pair of cities encoding a tour of the salesmarnlewhe observations must
witness that this tour is correct, i.e., that all cities aisgted exactly once. Thus, we have a
hypothesis for each pair of cities, c¢;, because any such a pair is candidate for belonging
to the trip of the salesman. The penalty associated to egobthgsis is clearly the cost
of travelling frome; to ¢;, because we want to obtain the minimum-cost tour. Moreover,
for any given trip encoded by a set of hypotheses, the logigiam determines the cities
reached by the salesman, and also whether the salesmaaveiett in a correct way. The
observations are possible consequences of the prograroh whicode that all cities are
visited and no visiting rule has been violated.

Formally, we represent the TSP instantas aPAP P = (H, P,O,~) defined as
follows. The set of hypotheses 8 = {c(i,j) | 1 < i,j < n}, wherec(i,j) en-
codes the fact that the salesman visits gittnmediately after cityi. The penalty function
~v(c(i,j)) = w(i, j) encodes the cost of travelling frofrto j. The cities are encoded
through a set of atom&city(i) | 1 < i < n}. The programP contains the following
rules:

(1) city(i). foreachi, 1<i<n
(2) wvisited(I) :— visited(J),c(J,I).

(3) wvisited(l) :— c(J,1).

(4) missedCity :— city(I),notvisited(I).

(5) badTour :— ¢(I,J),¢c(I,K),J#K.

(6) badTour :— ¢(J,I),c(K,I),J#K.

The observations ai® = {not missedCity,not badTour}.

It is easy to see that every optimal solutiSre Opt(P) corresponds to an optimal tour
and viceversa. The facts (1) 6f encode the cities to be visited. Rule (2) states that a city
i has been visited if the salesman goes to cigfter an already visited city. Rule (3)
concerns the first city that, w.l.o.g., is the first and the &ty of the tour. In particular,
it is considered visited, if it is reached by some other gityvhich is turn forced to be
visited, by the other rule oP. Rule (4) says that there is a missed city if at least one of
the cities has not been visited. AtasadTour, defined by rules (4) and (5), is true if some
city is in two or more connection endpoints or connectiomtptants. The observations
not missedCity, not badTour enforce that admissible solutions correspond to salesman
tours that are complete (no city is missed) and legal (noisitysited twice).

Moreover, since optimal solutions minimize the sum of thermrction costs, abductive
solutions inOpt(P ) correspond one-to-one to the optimal tours.

In (Eiter ef al. 1997), Eiter, Gottlob, and Mannila show tBajunctive Logic Program-
ming (function-free logic programming with disjunctiontine heads and negation in the
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bodies of the rules) is highly expressive. Moreover, thédharg strength the theoretical
analysis of the expressiveness by proving that probleresast in practice like, e.g., the
Travelling Salesman Problem@nd Eigenvector can be programmed in DLP, while they
cannot be expressed by disjunction-free programs. Indeedll that computing an opti-
mal tour is both NP-hard and co-NP-hard. Moreover| in (Pap&giou 1984) it is shown
that deciding whether the cost of an optimal tour is even,elbag deciding whether there
exists a unique optimal tour, arsl’-complete problems. Hence, it is not possible to ex-
press this problem in disjunction-free logic programmiexgn if unstratified negation is
allowed (unless the polynomial hierarchy collapses).

Nevertheless, the logic programs implementing these proklin DLP highlight, in
our opinion, a weakness of the language for the representatioptimization problems.
The programs are very complex and tricky, the language doepnovide a clean and
declarative way to implement these problehiSor a comparison, we report in Appendix
the encoding of this problemin (plain) DLP, asatiéxed in [Eifer et al. 1997).
Evidently, abduction with penalization provides a simplapre compact, and more ele-
gant encoding of TSP. Moreover, note that, using this fornalmduction, even normal
(disjunction-free) programs are sufficient for encodingrsaptimization problems.

4.2 Strategic Companies

We present a new version of terategic companiegroblem (Cadoli et al. 1997). A man-
ager of a holding identifies a set of crucial goods, and shésthase goods to be produced
by the companies controlled by her holding. In order to miistgoal, she can decide to
buy some companies, that is to buy enough shares to get theofittol of these compa-
nies. Note that, in this scenario, each company may own sometity of shares of another
company. Thus, any company may be controlled either dyrgtit is bought by the hold-
ing, or indirectly, through the control over companies thah more thas0% of its shares.
Of course, it is prescribed to minimize the quantity of moepgnt for achieving the goal,
i.e., for buying new companies.

For the sake of simplicity, we will assume that, if a companygan be controlled indi-
rectly, than there are either one or two companies thathegewn more thab0% of the
shares ofX . Thus, controlling these companies is sufficient to takectitérol overX .

We next describe a problem of abduction from logic progranth wenalizationP
whose optimal solutions correspond to the optimal choioeshfe manager. In this case,
the observations are the crucial goods that we want to pmaducile the hypotheses are
the acquisitions of the holding and their associated piesadire the costs of making these
financial operations. The logic program determines, for gimgn set of acquisitions, all
the companies controlled by the holding and all the goodduywed by these companies.

Companies configurations are encoded by the set of akdanket defined as follows:
if a companyy ownsn% of the shares of a companythenshare(x,y,n) belongs to

2 We refer to standard Disjunctive Logic Programming heresiewn in [Buccafurri et al. 2000), the addition
of weak constraintsimplemented in thdLV system [[Eifer et al_2000), is another way to enhance DLP to
naturally express optimization problems.
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Market and if a company: produces a good thenproducedBy(a, x) belongs tdViarket
No more atoms belong to this set.

Then, letP = (H,P,0O,~), where the set of hypothesés = {bought(xy),...,
bought(x,)} encodes the companies that can be bought, and the set ofatisesO =
{produced(y,), ..., produced(y,)} encodes the set of goods to be produced. Moreover,
for each atombought (%) € H, y(bought (X)) is the cost of buying the company The
programP consists of the facts encoding the state of the mafket ( Market) and of the
following rules:

(1) produced(X) :— producedBy(X,Y),controlled(Y).

(2) controlled(X) :— bought(X).

(3) controlled(X) :— share(X,Y,N),controlled(Y),N> 50.
(4) controlled(X) :— share(X,Y,N),share(X,Z,M),

controlled(Y), controlled(Z),M+ N > 50,Y # Z.

40%. =" budweiser
/y k. |
/7
720%

heineken

>
panino N

parmalat
tomatoes

candia

Fig. 3. Strategic Companies

Example 4.1

Consider the following sets of companies and goods:

Companies{ barilla, saiwa, frutto, panino, budweiser, heineken, patat, candia}
Goods { wine, pasta, beer, tomatoes, bread, rhilk

Figurel3 depicts the relationshipsare andproducedBy among companies, and among
products and companies, respectively. A solid arrow fromramanyC to a goodG rep-
resents tha& is produced byC. A dashed arrow from a compardy; to a companyCs
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labelled byn means tha€; ownsn% of the shares of’>. The cost (in millions of dollars)
for buying directly a company is shown below:

barilla 500 saiwa 400 frutto 350 panino 150
budweiser 300 heineken 300 parmalat 300 candia 150

Accordingly, the hypotheses and their respective persadtie

bought(barilla) ~(bought(barilla))= 500
bought(saiwa) ~v(bought(saiwa)) = 400

bought(candia) ~(bought(candia)) = 150.
The set of observations is

O ={produced(pasta), produced(wine), produced(tomatoes),
produced(bread), produced(beer), produced(milk)}

This problem has the only optimal solutish={barilla, frutto, heinekeh, whose cost
is 1150 millions of dollars. Note that all goods@hcan be produced also by buying the set
of companiesS,= {barilla, frutto, saiwa. However, sinceaiwa is more expensive than
heineken, Sy is preferred taSs.

4.3 Blocksworld with penalization

Planning is another scenario where abduction proves to défellia encoding hard prob-
lems in an easy way.

The topic of logic-based languages for planning has regeatleived a renewed great
deal of interest, and many approaches based on answer sattgEsnsituation calculus,
event calculus, and causal knowledge have been proposed,-e-gellGelfond and Lifschitz 1998;
Eiter et al. 20083;_Shanahan 2000; Turner 1999).

We consider here the Blocks World Problem_(Lifschitz 199en a set of block®3
in some initial configuratiorbtart, a desired final configuratiofoal, and a maximum
amount of timelastTime find a sequence of moves leading the blocks from statet,
to stateGoal within the prescribed time bound. Legal moves and confignmatobey the
following rules: A block can be either on the top of anothexdl, or on the table. A block
has at most one block over it, and is said to be clear if themmiblock over it. At each
step (time unit), one or more clear blocks can be moved eithé¢hne table, or on the top of
other blocks. Note that in this version of the Blocks Worldtfem more than one move
can be performed in parallel, at each step. Thus, we additiorequire that a blocl3;
cannot be moved on a blodB; at timeT if also By is moved at timel".

Assume that we want to compute legal sequences of moves <allsd plans — that
leads to the desired final state within thstTimebound and that consists of the minimum
possible number of moves. We next describe a problem of diodufcom logic programs
with penalizatior? whose optimal solutions correspond to such good plans.isrctse,
the observations encode the desired final configurationeule hypotheses correspond to
all possible moves. Since we are interested in minimumtkepkans, we assign a unitary
penalty to each move (hypothesis). Finally, the logic paoghas to determine the state of
the system after each move and detect possible illegal moves



14 S. Perri, F. Scarcello, N. Leone

Consider an instance BWP of the Blocks World Problem.Bet {b;,--- ,b,} be the
set of blocks and, = B U {table} the set of possible locations.

The blocks of BWP are encoded by the set of atdthgks = {block(b,),...,block(by)},
and the initial configuration is encoded by aStdrtcontaining atoms of the foren (b, ¢, 0),
meaning that, at time, the blockb is on the locatiort.

Then, letP = (H, P,0O,~). The set of hypothesdd = {move(b,¢,t) | b € B,{ €
L,0 <t < lastTime} encodes all the possible moves, where an atone (b, /, ) means
that, at timef, the blockb is moved to the locatiof. The set of observation® contains
atoms of the fornon(b, ¢, last Time), encoding the final desired staBoal The penalty
function~ assignsl to each atormove(b, ¢,t) € H. Moreover,P = facts(Blocks) U
facts(Start) U R, whereR is the following set of rules:

on(B,L,T1) :— move(B,L,T),T1=T+ 1. Q)
on(B,L,T1) :— on(B,L,T),T1 =T+ 1,not moved(B,T). (2
moved(B,T) :— move(B,_,T). 3)
:— on(B,L,T),on(B,L1,T),L # L1. 4)
:— on(B1,B,T),on(B2,B,T),B2 # B1,block(B). (5)
:— on(B,B,T). (6)
:— move(B,B1,T),move(B1,L,T). @)
:— move(B,L,T),on(B1,B,T),B # B1. (8)

Note that the strong constraintsihdiscards models encoding invalid states and illegal
moves. For instance, Constraiit 8 says that it is forbiddendve a blockB, if B is not
clear.

Rule[d says that moving a blodk on a locationL at timeT' causesB to be onL at
time T + 1. Rulel2 represents thpertia of blocks, as it asserts that all blocks that are not
moved at some tim& remain in the same position at tirfie+ 1.

It is worthwhile noting that expressing suittertia rulesis an important issue in knowl-
edge representation, and clearly shows the advantagengf lagjic programming, when
nonmotononic negation is needed.

For instance, observe that Rllle 2 is very natural and imtyithanks to the use of nega-
tion in literal not moved(B, T). However, it is not clear how to express this simple rule —
and inertia rules in general — by using classical thecties.

Example 4.2

Consider a Blocks World instance where the initial confitjoreand the final desired state
are shown in figurEl4, and the maximum number of allowed s&@sTherefore, the set
of observations of our abduction problem{ien(a, table, 6), on(b, a, 6), on(c, b, 6),
on(d, c, 6), on(e, d, 6), on(f, e, 6)}. The set of hypotheses contains all the possible
moves, that is

H = {move(a, table, 0), move(a, table, 1), --- , move(f, 4, 6), move(f, e, 6)}

3 In fact, there are some solutions to this problem for intérgsspecial cases, such as settings where all actions
on all fluents can be specified_(Reiter T991). Also[in (McGand Turner 1997), it is defined a nonmonotonic
formalism based on causal laws that is powerful enough tesemt inertia rules (unlike previous approaches
based on inference rules only). A comprehensive discussfidine frame problem can be found in the book
(Shanahan 1997).
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olo|o o.cbl\—nD

Initial Situation Final Situation

Fig. 4. Blocks World

Each move has cost

In this case, the minimum number of moves needed for readhiedinal configu-
ration is six. An optimal solution i§move(a, table, 0), move(b, a, 1), move(c, b, 2),
move(d, c, 3),move(e, d, 4), move(f, e, 5)}. Note that the plan

{move(a, table, 0),move(c, table, 0),move(b, a, 1),
move(c, b, 2),move(d, c, 3),move(e, d, 4),move(f, e, 5)}

though legal, is discarded by the minimality criterion, &ese it consists of seven moves.

Finally, observe that the proposed framework of abductiomflogic programs with
penalties allows us to represent easily different planrtipation strategies. For instance,
assume that each block has a weight, and we want to miniméz#thl effort made for
reaching the goal. Then, it is sufficient to modify the penéinction in thePAP P above
as follows: for each hypothesi®ve(b,?,t), let y(move(b,¢,t)) = w, wherew is the
weight of the bloclk.

5 Computational Complexity

In this section, we study the computational complexity @ thain problems arising in the
framework of abduction with penalization from logic progrs, both in the general case
and when some syntactical restrictions are placed on lagigrams.

5.1 Preliminaries on Complexity Theory

For NP-completeness and complexity theory, the readefdsesl to [Papadimitriou 1994).
The classex?, TIF and Al of the Polynomial Hierarchy (PH) (cf (Stockmeyer 1p87))
are defined as follows:

AP =xF =11 =P andforallk > 1,
AP =P vP = NP%-1 TP = coxP.

In particular, NP = £, coNP = 117", andA} = PNP. HereP® andNP® denote the
classes of problems that are solvable in polynomial time detarministic (resp. nonde-
terministic) Turing machine with an oracle for any problenn the classC. The oracle
replies to a query in unit time, and thus, roughly speakingdets a call to a subroutine
for 7 that is evaluated in unit time. The claBg contains all problems that consist of the
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conjunction of two (independent) problems fraby” andIIZ’, respectively. In particular,
DY is the class of problems that are the conjunction oR&nand a coNP problem.
Notice that for allk > 1,

Sy C Dl € Afyy € 27, € PSPACE,

where each inclusion is widely conjectured to be strict.

We are also interested in the complexity of computing sohsj and thus in classes of
functions. In particular, we consider the cla@RN", which is the class of functions corre-
sponding toP™" (AP), and characterizing the complexity of many relevant ojzition
problems, such as the TSP problem (Papadimitriou[1984;dfagaou 1994). Formally,
this is the class of all functions that can be computed by grmrhial-time deterministic
Turing transducer with an oracle MP. Note that the only difference with the correspond-
ing class of decision problems is that deterministic Tutitagpnsducers are equipped with
an output tape, for writing the result of the computation.

5.2 Complexity Results

Throughout this section, we consider problebhs= (H, P, O, v) such thatP is a ground
program, unless stated otherwise.

Let® = {C4,...,C,} be a CNF propositional formula over variablds, ..., X,,
denoted bywvar(®). With eachX; € wvar(®), 1 < i < r, we associate two atoms
x;,Z; (denoted by lowercase characters), and an auxiliary ate#gned,;, representing
the propositional variabl&;, its negatiomot X;, and the fact that some truth value has
been assigned to it, respectively. Moreover, with eachsdau: ¢, Vv --- V £, in &, we
associate a rule(C) : contr :—negate(¢1), ..., negate(ly,), wherenegate({) = z, if
¢ = X, andnegate(¢) = z, if £ = not X.

Define P(®) as the constraint-free positive program containing thiefahg rules:

mconsistent :—x;, ;. 1<5<r
assigned ; :—x;. 1<5<r
assigned ; :—T;. 1<5<r
allAssigned —assigned, . . ., assigned,..

Let R be any set of rules whose heads are ftgin , {z;, z; }. Note that, for any stable
model M of P(®) U R, allAssigned € M andinconsistent ¢ M hold if and only if,
for eachX € var(®), exactly one atom fronfx, 2} belongs toM . That is,M encodes a
truth-value assignment fdr. Moreover,contr ¢ M only if such a truth-value assignment
satisfies all clauses of the formula In this case, we say thétis satisfied by\/ .

On the other hand, given any truth-value assignmientvar(®) — {true, false}, we
denote byat(T) the set of atomgz | X € wvar(®) andT(X) = truef U{z | X €
var(®) andT (X) = false}. It can be verified easily that, i satisfies®, then P(®) U
facts(at(T)) has a unique stable model that contaaii®\ssignedand contains neither
contrnorinconsistent

The first problem we analyze is the consistency problem. iEtthe problem of deciding
whether &PAPhas some solution.
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Theorem 5.1
Deciding whether #APP = (H, P, O, ) is consistent iNP-complete. Hardness holds
even if P is a constraint-free positive program.

Proof

(Membership. We guess a set of hypothesg#sC H and a set of ground atom, and
then check that (i)/ is a stable model oP U facts(S), and (ii) O is true w.r.t.M. Both
these tasks are clearly feasible in polynomial time, and tha problem is ilNP.

(Hardnes$. We reduce SAT to the consistency problem. ebe a CNF formula and
P(®) its corresponding logic program, as described above. @enshe PAP problem
(H,P(®),0,~), whereH = {z,z | X € var(®)}, O = {not contr, not inconsistent,
allAssigned}, andvy is the constant function O.

Let S be an admissible solution faP, that is, there is a stable mod&l for P(®)
such thallAssignedbelongs toM, and neithercontr nor inconsistenbelongs tolM. As
observed above, this entails thhtis satisfied by the truth-assignment corresponding to
M, and in fact encoded by the set of hypotheSeMoreover, if® is satisfiable, there is
a truth-assignmeri that satisfies it. Then, it is easy to check thatT") is an admissible
solution for P, since the unique stable modelBf®) U facts(at(T)) containsallAssigned
and no atom i conir, inconsistent}. Thus,® is satisfiable if and only i is consistent.
Finally, note thatP can be computed in polynomial time frofn, and thatP does not
contain negation or strong constraintd.]

We next focus on the problem of checking whether a given settafsS is an ad-
missible solution for #APP = (H, P,0,~). Observe that this task is clearly feasible
in polynomial time if P is stratified because in this case the (unique) stable model of
P U facts(S) (if any, remember that strong constraints may occuPjrcan be computed
in polynomial time. It follows that this problem is easieaththe consistency problem in
this restricted setting. However, we next show that it reteAiP-complete, in the general
case.

Theorem 5.2
Deciding whether a set of atoms is an admissible solutioa AP is NP-complete.

Proof

(Membership. Let? = (H, P,0,~) be aPAP andS a set of atoms. We guess a set of
ground atoms\/, and then check that (i) is a stable model oP U facts(.S), and (ii)

O is true w.r.t. M. Both these tasks are clearly feasible in polynomial tinmel #aus the
problem is inNP.

(Hardnes$. We reduce SAT to the admissible solution problem. &die a CNF formula
overvariable§ X1, ..., X, }, andP(®) its corresponding logic program. Consider BA®
problemP = (§), P(®) U G(®), O, ~), whereO = {not contr,not inconsistent}, v is
the constant function 0, ar@(®) contains two rules: :—not z andz :—not x, for each
X € var(®).

Let M be a stable model oP(®) U G(®). Because of the rules i&(®), for each
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pair of atomsz, z occurring in it, eitherz or z belongsM, and hencallAssigned too.
Thus, these atoms encode a truth-assignriefar ®. Moreover, it is easy to check that
contr, inconsistent ¢ M only if this assignment” satisfiesP. On the other hand, l&t’
be a satisfying truth-assignment foy and letM/’ = at(T") U allAssigned U { assigned; |
1 < j <r}.Then,M'is a stable model oP(®), andcontr, inconsistent ¢ M’, that is,
all observations are true w.ri/’.

Therefore ) is an admissible solution faP if and only if ® is satisfiable. Note that
unstratified negation occurs @®(®). [

It turns out that deciding whether a solution is optimal ishoP-hard and cdvP-
hard. However, this problem is not much more difficult thaakpems in these classes, as
we need to solve just aNP and a coNP-problem, independent of each other.

Theorem 5.3
Deciding whether a set of atoms is an optimal solution fBARis D5 -complete.

Proof

(Membership. Let P = (H, P,0,~) be aPAP and letS be a set of atoms. To prove
that S is an optimal solution fofP first check thatS is an admissible solution, and then
check there is no better admissible solution. The formérisafeasible inNP, by Theorem
E2. The latter is feasible in c8P. Indeed, to prove that there is an admissible solution
better thanS, we guess a set of aton$$ C H and a modelM for P, and then check in
polynomial time thatum. (S’) < sum.(S), M is a stable model aP U facts(S"), and
Ois true w.rt.M.

(Hardnes$. Let®; and®, be two CNF formulas, over disjoint sets of variab{e§, , . .., X,.}
and{X/,..., X/}. Deciding whethe®, is satisfiable and, is not satisfiable is &% -
complete problen| (Papadimitriou and Yannakakis 1984) (@, ) be the logic program
associated withb;, andG4(®P,) a set of rules that contains, for eache var(®;), two
rulesz : —not &, s andz : —not x,s. Let P'(®2) be the logic program associated with
d,, but for the atomgontr, inconsistentandallAssigned which are uniformly replaced
in this program bycontr’, inconsistent’, and allAssigned’, respectively. Moreover, let
R be the set containing two ruleg : —not contr,not inconsistent, allAssigned and
ok :—not contr’,not inconsistent’, allAssigned’. Then, defineP(®,, ®;) as thePAP
problem(H, P,O,~), whereP = P(®1) U G4(P1) U P/(P2) UR, H = {s} U {2/, 7 |
X' € var(®2)}, O = {0k}, and the penalty function is defined as followsy(s) = 1
and~(h) = 0, for any other hypothesis € H — {s}.

We claim that®, is satisfiable an@; is not satisfiable if and only if s} is an optimal
solution forP(®4, ®2).

(Only if). Assume thad, is satisfiable and is not satisfiable, and 1% be a satisfying
truth-value assignment fob,. Moreover, letM = {at(T1) U {assigned; | 1 < j <
r}U{s, allAssigned, ok}. Then,M is a stable model aP U facts({s}) and thus{s} is an
admissible solution foP(®,, ®,), and its cost id, asv(s) = 1, by definition. Note that
the only way to reduce the cost(ds by finding a set of hypotheses that do not contain
and is able to derive the observatiofh From the rules inR, this means that we have to
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find a subset of 2/, 7’ | X' € var(®2)}, which encodes a satisfying truth assignment for
®,. However, this is impossible, becauBe s not satisfiable, and thys} is optimal.

(If). Assume tha{ s} is an optimal solution foPP(®4, ®5). Its costisl, because/(s) =
1. Note that any set of hypothes§$ that encodes a satisfying truth-value assignment
for ®; and does not contain is an admissible solution foP(®,, ®,), and has codf.
It follows that @, is not satisfiable, as we assumgd} is an optimal solution. There-
fore, by definition of R, the only way to derive the atom¥ is through the ruleok :
—not contr,not inconsistent, allAssigned. Since{s} is also an admissible solution, we
conclude that there is a stable model that containsallAssigned and no atom from
{inconsistent, contr}. Thatis,M encodes a satisfying truth assignmentégr [

If unstratified negation does not occur in logic programslage a source of complexity,
as checking whether a solution is admissible is easy. In ¥eetshow below that, in this
case, the optimality problem becomesNB-complete.

Theorem 5.4

LetP = (H, P,0O,~) be aPAP, whereP is a stratified program. Deciding whether a set
of atomssS is an optimal solution foP is coNP-complete. Hardness holds everfifis a
constraint-free positive program.

Proof

(Membership. Recall that checking whether a solutiSris admissible is feasible in poly-
nomial time if P is stratified. Thus, we have to check only that there is no asiirlie
solution better tha, and this task is in c¥P, as shown in the proof of Theordmb.3.

(Hardnes$. Let ® be a CNF formulaP(®) its corresponding logic program, aritl be
the set containing two rulesk : —s and ok : —allAssigned. Then, defineP(®) as the
PAP problem(H, P, O, ~), whereP = P(®)UR, H = {s} U{z,z | X € var(®)},
O = {0k, not contr,not inconsistent}, and the penalty function is defined as follows:
~(s) = 1 andvy(h) = 0, for any other hypothesis € H — {s}.

We claim that® is not satisfiable if and only if s} is an optimal solution foP(®).

(Only if). Assumep is not satisfiable. Then, there is no way of choosing a set pbthe-
ses that contains neitheontr norinconsistenand, furthermore, contairsdlAssignedand
henceok, but nots. It follows that the minimum cost for admissible solutioed i More-
over, note thaf{ s} is an admissible solution faP(®), its cost isl, and thus it is also
optimal.

(If). Let {s} be an optimal solution foP(®) and assume, by contradiction, thits
satisfiable. Then there is a set of hypotheSe&s H — {s} that encodes a satisfying truth-
value assignment fob and has codd. However, this contradicts the fact that the solution
{s}, which has cost, is optimal. [

We next determine the complexity of deciding the relevarf@ndypothesis.

Theorem 5.5
Deciding whether an hypothesis is relevant f®A&2 P = (H, P,0,~) is Al’-complete.
Hardness holds even I? is a constraint-free positive program.
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Proof

(Membership. Let P = (H, P,0,v) be aPAP and leth € H be a hypothesis. First
we compute the maximum valueaxthat the functionsum. may return over all sets
H’ C H. Note thamaxis polynomial-time computable frof, because is a polynomial-
time computable function. It follows that its siz@az| = log maz is O(|P|¥), for some
constantt > 0, because the output size of a polynomial-time computabietion is
polynomially-bounded, as well.

Then, by a binary search df,, maz|, we compute the cost of the optimal solutions
for P: at each step of this search, we are given a threshalid we call ariNP oracle to
know whether there exists an admissible solution bedowfter, log max steps at most,
this procedure ends, and we get the vatu€inally, we ask anotheXP oracle whether
there exists an admissible solution containingnd whose cost is Note that the number
of steps and hence the number of oracle calls is polynomittiéninput size, and thus
deciding whetheh is relevant is inAL".

(Hardness). We reduce th&l’-complete problem of deciding whether a TSP instance
1 has a unique optimal tour (Papadimitriou 1984) to the releegproblem for thdPAP
P = (H,~v, P,0), defined below, whose optimal solutions encode, intujiveirs of
optimal tours. The set of hypothesedis= {c(i,7),'(1,7) | 1 < 4,5 < n}U{heq, haig },
wherec(i, j) (resp.,c (4, j)) says that the salesman visits cjtymmediately after cityi,
according to the tour encoded by the atoms with predicatesp.,c’). Moreover, the
special atomg:., andh 45 encode the hypotheses that such a pair of tours represents in
fact a unique optimal tour, or two distinct tours.

For each pair of cities;, ¢;, the penalty functiony encodes the cost function of
travelling frome; to ¢;, that is,y(c(i, 7)) = w(i,5) andv(c'(4, 7)) = w(i, j). Moreover,
for the special atoms, defingh.,) = 1 andy(hgig) = 0.5.

The programP, shown below, is similar to the TSP encoding described iriGed1:

(1)  wisited(I) :— wvisited(J),c(J,I).

(2)  wisited(1) —c(J,1).

(3) badTour —c(I,J),c¢(I,K),J # K.

(4) badTour :—c(J,1),e(K,I),J K.

(1) wisited' (I) :— visited (J),c (J, I)

(2") wisited' (1) — ' (J,1).

(3)  badTour :—c(1,J),d(I,K),J+#K.
4"y  badTour —c(J,I),d(K,I),J#K.
5) U olL,J).¢ (1K), J £ K.

(6) ok = hegq.

(7) ok — hdsza dlff.

The observations a@ = {ok, not badTour} U {wvisited (i), visited' (i) |< i < n}.

Note that every admissible solutias for P encodes two legal tours faf, through
atoms with predicatesandc’. Moreover,S contains eithef., or hq;s, in order to derive
the observatiok. Furthermore, ifS is optimal, then at most one of these special atoms
belongs taS, because one is sufficient to gét. However, if the chosen atom ig;;¢, ok
is derivable only ifdiff is true, i.e., the two encoded tours are different, by ruje (5
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Let ¢,,;» be the cost of an optimal tour df Then, the best admissible solutiSrsuch
thath., € S has cos®t,,;, + 1, because it should contain the hypotheses encoding two
(possibly identical) optimal tours df, and the atonk.,.

We show that there is a unique optimal tour faf and only if k., is a relevant hypoth-
esis forp.

(Only if). Let T be the unique optimal todF for I, and.S the admissible solution faP
such thath., € S and both the atoms with predicat@nd those with predicaté encode
the tourT'. Then,S is an optimal solution, because any admissible solufibthat does
not contairk., should contain both 4, anddiff . SinceT” is the unique optimal tour, any
other legal touffl” has cost,,.;, +1, at least. Henceum., (S”) > tmin+ (tmin+1)+0.5 >
sum~(S). Thus,h., is relevant forP, because belongs to the optimal solutiin

(If). If heq is relevant forP, there is an optimal solutio$i such thati., € S. Recall that
sum~(S) = 2t + 1. Assume by contradiction that there are two distinct oplitoars
T andT’ for I, and letS’ be an admissible solution such that: its atoms with predgat
c and¢’ encode the distinct touts andT”, and bothdiff andhg; belong toS’. Then,
sum~(S") = 2tmin + 0.5 < sum,(S), a contradiction.

Finally, note thatP is constraint-free positive program, and bdthand its ground in-
stantiation can be computed in polynomial time from theanse/. [

Not surprisingly, the necessity problem has the same codtples the relevance prob-
lem.

Theorem 5.6
Deciding whether an hypothesis is necessary f#RP = (H, P, O, ) is AY-complete.
Hardness holds even I? is a constraint-free positive program.

Proof

(Membership. LetP = (H, P,0,~) be aPAPand leth € H be a hypothesis. We compute
the cost of the optimal solutions foP, as shown in the proof of Theordmb.5. Finally, we
ask anNP oracle whether there exists an admissible solution whosei€a and does not
containh. If the answer is no, theh is a necessary hypothesis. Clearly, even in this case,
a polynomial number of calls tNP oracle suffices, and thus the problem isNf .

(Hardness). Lef be a TSP instance arfd the PAP defined in the proof of Theorel.5.
Note that the same reasoning as in the above proof shows Heet a unique optimal tour
if and only if k.4 is a necessary hypothesis fBr [

Theorem 5.7
Computing an optimal solution forRAPP = (H, P,0,~) is FPN"-complete. Hardness
holds even ifP is a constraint-free positive program.

Proof

(Membership. Let M be a deterministic Turing transduc#f with oracles inNP that
act as follows. FirstM checks inNP whetherP is consistent, as shown in the proof
of TheorenTR1L. If this not the case, thé halts and writes on its output tape some
special symbol encoding the fact thatis inconsistent. Otherwiséy/ computes with a
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polynomial number of steps the valueof the optimal solutions fof?, as shown in the
proof of TheoreniL2]5. Now, consider the following ora€legiven a set of hypothesés
decide whether there is an admissible solutiorffarhose cost ig. Itis easy to see th&?
is in NP (we describe a very similar proof in the membership part efgtoof of Theorem
E2).

The transduceM maintains in its worktape (the encoding of) a set of hypathés
which is initialized with@). Then, for each hypothesésc H, M calls the oracle& with
input.S U {h}. If the answer is yes, thel writesh on the output tape and addéido the
setS. Otherwise,S is not changed, andff proceeds with the next candidate hypothesis. It
follows that, aftel H| of these steps, the output tape encodes an optimal solutiBn o

(Hardnes$. Immediately follows from our encoding of the TSP probldmwn in Section
B, and the fact that this problemBE®~ -complete[(Papadimitriou 1994).]

6 Implementation Issues

In this section, we describe the implementation of a systgpparting our formal model
of abduction with penalties over logic programs. The systeas been implemented as a
front-end for theDLV system. Our implementation is based on a translation frooh su
abduction problems to logic programs with weak constrgatecafurri et al. 2000), that
we show to be both sound and complete. We next describe thigeanttire of the prototype.
We then briefly recall Logic Programming with Weak Consttsifthe target language of
our translation), define precisely our translation aldgwnitand prove its correctness.

6.1 Architecture

Figurel® shows the architecture of the new abduction frantfer theDLV system, which
implements the framework of abduction with penalizaticnirlogic programs, and is al-
ready incorporated in the current releaseb¥ (available at th®LV homepag@gww . dlvsystem. com).

. Stable Models
gt:\ﬂ;’ﬁtil:n — DLV System — To
9 Abductive Solutions

Fig. 5. System Architecture

A problem of abduction iDLV consists of three separate files encoding the hypotheses,

the observations, and the logic program. The first two filegehextensions hyp and

. obs, respectively, while no special extension is required fierfogic-program file. The
abduction with penalization front-end is enabled throughdption-FDmincost. In this
case, from the three files above, the Abduction-Rewritinglai® builds a logic program
with weak constraints, and rubLV for computing a best modeall of this logic program.
Then, the Stable-Models-to-Abductive-Solutions modutesets an optimal solution from

the modelM.
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For instance, consider the network problem in Exarfiplk 318,assume that the facts
encoding the hypotheses are stored in thenffdework . hyp , the facts encoding the ob-
servations are stored in the filet work . obs, and the logic program is stored in the file
netwok.dl. Then, the user may obtain an optimal solution for this peobby running:

dlv -FDmincost network.dl network.hyp network.obs

By adding option-wct race the system prints also the (possibly not optimal) solutions
that are found during the computation. This option is usifprovide some solution to the
user as soon as possible. Note that the “quality” of the mwigtincreases monotonically
(i.e., the cost decreases), and the system gradually aqpes&y optimal solutions.

Note that the current release deals with integer penaltibs bowever, it can be ex-
tended easily to real penalties.

6.2 Logic Programming with Weak Constraints

We first provide an informal description of the Ranguage by examples, and we then
supply a formal definition of the syntax and semantics of LP

6.2.1 LP* by Examples

Consider the problem SCHEDULING, consisting in the schiedubf course examina-
tions. We want to assign course exams to time slots in suchyatves no couple of ex-
ams are assigned to the same time slot if the correspondinge®have some student in
common — we call such courses “incompatible”. Supposingttiere are three time slots
available,ts;, ts, andtss, we express the problem in L'Pby the following program
Psch:

r1: assign(X,ts;) :— course(X),not assign(X, ts,),not assign(X, tss).
ro: assign(X,ts,) :— course(X),not assign(X, ts;),not assign(X, tss).
rg: assign(X,tss) :— course(X),not assign(X, ts;),not assign(X, ts,).
s1: :—assign(X,S),assign(Y,S), commonStudents(X,Y,N).

Here we assumed that the courses and the pair of coursesamtimgn students are
specified by input facts with predicateurse andcommonStudents, respectively. In par-
ticular, commonSudents(a, b, k) means that there ate > 0 students who should attend
both course and course. Rulesry, r, andrs say that each course is assigned to one of the
three time slots sy, ts, Or tss; the strong constrain expresses that no two courses with
some student in common can be assigned to the same timengl@néral, the presence of
strong constraints modifies the semantics of a program lmardisg all models which do
not satisfy some of them. Clearly, it may happen that no mealdfies all constraints. For
instance, in a specific instance of above problem, thereddmeiho way to assign courses
to time slots without having some overlapping between ingatible courses. In this case,
the problem does not admit any solution. However, in req| liine is often satisfied with
an approximate solution, in which constraints are satisfi@anuch as possible. In this
light, the problem at hand can be restated as follows (APPBOMEDULING): “assign
courses to time slots trying to avoid overlapping coursegngestudents in common.” In
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order to express this problem we introduce the notiowedkconstraint, as shown by the
following programpP,_.1:

r1: assign(X,ts;) :— course(X),not assign(X, tsy)not assign(X, tss).
ro: assign(X,tsy) :— course(X),not assign(X, ts;)not assign(X, tss).
r3: assign(X,tss) :— course(X),not assign(X, ts;)not assign(X, tsa).
wy @~ assign(X,S),assign(Y,S), commonStudents(X,Y,N).

From a syntactical point of view, a weak constraint is likerarsg one where the impli-
cation symbol: — is replaced by~. The semantics of weak constraints minimizes the
number of violated instances of constraints. An informaldiag of the above weak con-
straintw; is: “preferably do not assign the coursksindy to the same time slot if they are
incompatible”. Note that the above two prografs;, and P, .., have exactly the same
preferred models if all incompatible courses can be asdigmdifferent time slots (i.e., if
the problem admits an “exact” solution).

In general, the informal meaning of a weak constraint, sa., is “try to falsify B” or
“B is preferably false”, etc. Weak constraints are very powddr capturing the concept
of “preference” in commonsense reasoning.

Since preferences may have, in real life, different “impode”, weak constraints in
LP¥ can be supplied with different weights, as welFor instance, consider the course
scheduling problem: if overlapping is unavoidable, it wbhbk useful to schedule courses
by trying to reduce the overlapping “as much as possible’,the number of students
having some courses in common should be minimized. We canalfity represent this
problem (SCHEDULING WITH WEIGHTS) by the following program,_s.x:

r1: assign(X,ts;) :— course(X),not assign(X, tsy)not assign(X, tss).
ro: assign(X,tsy) :— course(X),not assign(X, ts;)not assign(X, tss).
rg: assign(X,tss) :— course(X),not assign(X,ts;)not assign(X, tss).

wy : :~ assign(X,S),assign(Y,S), commonStudents(X,Y,N). [N :]

The preferred models (calldpbst modelsof the above program are the assignments of
courses to time slots that minimize the total number of “lGsttures.

6.2.2 Syntax and Semantics
A weak constrainhas the form

i~ Ly, Ly W]

where eaclL;, 1 < i <m, is a literal andv is a term that represents theight® In
a ground (or instantiated) weak constraintis a nonnegative integer. If the weigltis
omitted, then its value is 1, by default.

4 Note that weights are meaningless for strong constraiimse sl of themmustbe satisfied.

5 In their general form, weak constraints are labelled bygdait £], wherew is a weight and is a priority level.
However, in this paper we are not interested in prioritied we thus describe a simplified setting, where we
only deal with weights.
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An LP" programP is a finite set of rules and constraints (strong and weald). dbes
not contain weak constraints, it is calleth@rmallogic program.

Informally, the semantics of an L“PprogramP is given by the stable models of the set
of the rules ofP satisfying all strong constraints and minimizing the sunweights of
violated weak constraints.

Let R, S, andWW be the set of ground instances of rules, strong constraintsweak
constraints of an LP programP, respectively. Acandidate modedf P is a stable model
of R which satisfies all strong constraints§n A weak constraint is satisfied in/ if some
literal of c is false w.r.t.I.

We are interested in those candidate models that minimzeutm of weights of vio-
lated weak constraints. More precisely, given a candidaieah\/ and a progranP, we
introduce an objective functioH» (M), defined as:

Hp(M) = Z weight(c)
ce Violatedil
where Violatedy, = { ¢ € W | cis a weak constraint violated by/ } and weight (c)
denotes the weight of the weak constrainf candidate modelM of P is abest modebf
P if Hp (M) is the minimum over all candidate models of P.
As an example, consider the following progrdm

a:— c,notb. i~ a,c. [1:]

c. i~ b. [2]

b :— c,not a. i~ a. 1]
i~ b,c. [1:]

The stable models for the set. a:— c,notb. b:— c,not a.} of ground rules of this
example areHp, (M;) = {a,c} andHp, (M2) = {b,c}, they are also the candidate
models, since there is no strong constraint. In this cige(M;) = 2, andHp, (Msz) = 3.
So M, is preferred oven/, (M7 is a best model of).

6.3 From Abduction with Penalization to Logic Programming with Weak Constraints

Our implementation of abduction from logic programs witmakzation is based on the
algorithm shown in Figurgl6, which transformsPAP P into a logic program LP(P)
whose stable models correspond one-to-one to abductivgaod of P.

We illustrate this algorithm by an example.

Example 6.1

Consider again thbletwork Diagnosiproblem described in ExamdIeB.2. The translation
algorithm constructs an L'Pprogram@. First, Q is initialized with the logic program

P. Therefore, after Step 12 consists of the set of facts encoding the network and of the
following rules:

reaches(X, X) :— node(X),not offline(X).
reaches(X, Z) :— reaches(X, Y), connected(Y,Z), not offline(Z).

Then, in the loop 3-5, the following groups of rules and weakstraints are added t0.
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Input: A PAPP=(H, P,0,).
Output: A logic program with weak constraints L'RP).

Function AbductionToLP* (P : PAP) : LP¥
var i, j: Integer;
Q:LPY;
begin
(1) Q=r;
(2) LetH = (hi,...,hn);
(3) fori:=1ltondo

(4) add toQ the following three clauses
(4.a) h; :—_sol(i) .
(4.b) _sol(i) :—not _nsol(i) .

nsol(i) :—not _sol(i) .
(4C) i~ h]_ [’Y(hl) ]
(5) end_for
(6) LetO={o1,...,0m};
(7) forj:=1tomdo

(8) if o; is a positive literal &”

9) then add toQ the constraint——a .
(10) else (x o; is a negative literal“ a” *)
(12) add toQ the constraint—a .

(12) end_for

(13) return Q;

end

Fig. 6. Translating #APP into a logic program LP(P)

Input: A stable modelM of LP* (P), whereP is (H, P, O, 7).
Output: A solution of P.

Function ModelToAbductiveSolutiom{/ : AtomsSet): AtomsSet
var S : AtomsSet
begin
return H N M,
end

Fig. 7. Extracting a solution dP from a stable model of LP(P)

At Step 4.a:

offline(a) :—_so0l(1). offline(b):—_sol(2). --- offline(f) :—_sol(6).
At Step 4.b:

_sol(1) :—not msol(1). _sol(2):—not nsol(2). --- _sol(6):—not nsol(6).

msol(1) i—not _sol(1). _nsol(2):—not sol(2). --- _nsol(6):—not _sol(6).
At Step 4.c:

i~ offline(a). [y(offline(a)) :]
i~ offline(b). [y(offline(b)) :]

i~ offline(f). [y(offline(f)) :]
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The above rules select a set of hypotheses as a candidatiersohnd the weak con-
straints are weighted according to the hypotheses penaltiais, weak constraints allow
us to compute the abductive solutions minimizing the surh@htypotheses penalties, that
is, the optimal solutions.

Finally, to take into account the observations, the follogvconstraints are added &@
in the loop 7-12:

:— not offline(a).
:— not offline(e).
:— not reaches(a, e).
This group of (strong) constraints is added}an order to discard stable models that do
not entail the observations.
Note that, since in this example all observations are pesiiierals, Step 11 is never
executed.

The logic program LP(P) computed by this algorithm is then evaluated by the/
kernel, which computes its stable models. For each maddbund by the kernel, the
ModelToAbductiveSolution function (shown in Figurk 7) slled in order to extract the
abductive solution corresponding 1a.

The next theorem states that our strategy is sound and cteampta the sake of presen-
tation, its proof is reported in Appendix Appendix A.

Theorem 6.2

(Soundnegdg~or each best modéll of LP* (P), there exists an optimal solutioh for P
such thatM N H = A.

(Completenegs-or each optimal solutiod of P, there exists a best modél of LP*(P)
such thatM N H = A.

7 Related Work

Our work s evidently related to previous studies on sensamtd knowledge representation
aspects of abduction over logic prograins (Kakas and Maladr@90b[ Lifschitz and Turner 19b4;
Kakas et al. 2000; Denecker and De Schreye [1998; Lin and Y6E)2that faced the main

issues concerning this form of non-monotonic reasonirgiding detailed discussions on

how such a formalism may be used effectively for knowledgeasentation — for a nice

survey, see (Denecker and Kakas 2002).

However, all these works concerning abduction from logiegoams do not deal with
penalties. The present paper focuses on this kind of ah@utasoning from logic pro-
grams, and our computational complexity analysis extendsamplements the previous
studies on the complexity of abductive reasoning tdskefmnd Gottlob 1995 Eiter ef al. 1997).

The optimality criterion we use in this paper for identifgithe best solutions (or expla-
nations) is the minimization of the sum of the penalties eisged to the chosen hypothe-
ses. Note that this is not the only way of preferring some atidisolutions over others. In
fact, the traditional approach, also considered in the albosntioned papers, is to look for
minimal solutions (according to standard set-containné&imbm our complexity results
and from the results presented(in (Eifer ef al. 1997), ibfedl that the (set) minimal expla-
nation criterion is more expensive than the one based ortgdrom the computational
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point of view. Moreover, this kind of weighted preferences lbeen recognized as a very
important feature in real applications. Indeed, in manyesashere quantitative informa-

tion plays an importantrole, using penalties can be mongrakthan using plain atoms and

then studying some clever program such that minimal saist@rrespond to the intended
best solutions. As a counterpart, if necessary, in the nahemplanations framework we

can represent some problems belonging to high complexassek that cannot be repre-
sented in the penalties framework. It follows that the twprapches are not comparable,
and the choice should depend on the kind of problem we hawa\e.s

Another possible variation concerns the semantics forclpgograms, which should
not be necessarily the stable model semantics. For instamd®@ereira et al. 1991), a
form of hypothetical reasoning is based on the well-foundenhantics. In some pro-
posals, the semantics is naturally associated to a patiagtimality criterion, as for
(Inoue and Sakama 1999), where the authors consider péatiprograms under the pre-
ferred answer set semantics.

A similar optimization criterion is proposed for the logicograms with consistency-
restoring rules (cr-rules) described in (Balduccini andf& 2003). Such rules may con-
tain preferences and are used for making a give programstensiif no answer set can
be found. Firing some of these rules and hence deriving seomesafrom their heads cor-
responds in some way to the hypotheses selection in abductineworks. Indeed, the
semantics of this language is based on a transformatioreafitten program with cr-rules
into abductive programs.

Such optimization criteria induce partial orders amongisohs, while we have a total
order, determined by the sum of penalties. We always havenihenum cost and the
solutions with this cost constitute the equivalence cldssptimal solutions. Note that
even these frameworks are incomparable with our approaddan penalties, and which
approach is better just depends on the application onegeesstied in.

Since we provide also an implementation of the proposeddveark, our paper is also
related to previous work on abductive logic programmindesys [Van Nuffelen and Kakas 2001;
Kakas et al. 2001). More links to systems and to some infageapplications of abduction-
based frameworks to real-world problems can be found at 8iepagel(Toni 2003).

We remark that we are not proposing an algorithm for solviptineizations problems.
Rather, our approach is very general and aims at the repegiggnof problems, even of
optimization problems, in an easy and natural way throughctimbination of abduction,
logic programming, and penalties. It is worthwhile notihgttour rewriting procedure into
logic programs with weak constraints (or similar kind of ilmgrograms) is just a way
for having a ready-to-use implementation of our languagexploiting existing systems,
suchadDLV (Eiter et al. 199€; [eone et al. 2002)amodel{Niemela and Simons 1997,
Simons et al. 2002). Differently, operations research isgletely focused on finding so-
lutions to optimization problems, regardless of repres@omal issue. In this respect, it is
worthwhile noting that, in principle, one can also use téghes borrowed from operations
research for computing our abductive solutions (e.g., lrygLisiteger programming).

A second pointis that in the operations research field onérdalgorithms specifically
designed for solving, e.g., only TSP instances, or even smiye particular TSP instances
(Guiin-and Punnen 20D2). It follows that our general apgndaaot in competition with
operations research algorithms. Rather, such technicarede exploited profitably for
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computing abductive solutions, if we know that the programder consideration are used
for representing some restricted class of problems.

8 Conclusion

We have defined a formal model for abduction with penalirafrom logic programs.

We have shown that the proposed formalism is highly expressid it allows to encode
relevant problems in an elegant and natural way. We havéutigranalyzed the compu-
tational complexity of the main problems arising in this abiive framework. The com-
plexity analysis shows an interesting property of the fdisna “negation comes for free”
in most cases, that is, the addition of negation does notecamg further increase to the
complexity of the abductive reasoning tasks (which is threesas for positive programs).
Consequently, the user can enjoy the knowledge represaniawer of nonmonotonic
negation without paying high costs in terms of computationarhead.

We have also implemented the proposed language on top @flttiesystem. The im-
plemented system is already included in the curmnt distribution, and can be freely
retrieved fronDLV homepag@ww .dlvsystem. com for experiments.

It is worthwhile noting that our system is not intended to lspecialized tool for solving
optimization problems. Rather, it is to be seen as a gengstdm for solving knowledge-
based problems in a fully declarative way. The main strenfthe system is its high-level
language, which, by combining logic programming with thevpo of cost-based abduc-
tion, allows us to encode many knowledge-based problemsimgle and natural way. Ev-
idently, our system cannot compete with special purposaittgns for, e.g., the Travelling
Salesman Problem; but it could be used for experimenting menhmonotonic declarative
languages. Preliminary results of experiments onfta@elling Salesman Probleand on
the Strategic Companies Problefsee Sectiohl4) show that the system can solve also in-
stances of a practical interest (with more than 100 compdaieStrategic Companies and
30 cities for Travelling Salesman).
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Appendix A Proof of Theorem[g.2

In this appendix, we prove that the rewriting approach dbedrin Sectiofil6 is sound and
complete.

First, we recall an important result on theodularityproperty of logic programs under
the stable model semantics, provedin (Eiter et al. 11997).

Let P, andP; be two logic programs. We say thBt potentially uses?; (P > P) iff
each predicate that occurs in some rule heathadoes not occur i, .

Moreover, given a set of atome and a progranP, we denote byl |p the set of all
atoms fromM that occur inP, i.e.,M|p = M N Bp.

Proposition Appendix A.1
(Eiter et al. 19917) Le? = P; U P, be a logic program such th&: potentially uses; .
Then,

(i) foreveryM € SM(P), M|p, € SM(Py);

(i) SM(P) = Upresmr(py) SM (P2 U facts(M)).

Lemmal
Let P = P, U P, be a logic program such th&t= P, U P, andP, > P;. Then, for every
M € SM(P), M|p, is a stable model foP, U facts(M|p, N Bp,).

Proof

From Propositioff Appendix Al1 (ii), it follows that thereists M, € SM (P;) such that
M € SM(Py U facts(My)). We claim thatM; = M |p, .

(M; C M|p,). Immediately follows from the fact that/; C M, becausé/ € SM (P> U
facts(My)).

(M|p, € My). Suppose by contradiction that there exists an ators M such that
a € M|p, buta ¢ M. It follows thata is not defined inP; and thus there exists some
ruler of P, havinga in its head. However, this is impossible, as we assumed®hat P, .
Contradiction.
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Thus, M is a stable model of; U facts(M|p,). Let A = M|p, N Bp, and X =
M]|p, — A; whence facts(M|p,) = facts(A) U facts(X). Note thatX contains all and
only the atoms of\/ not occurring inP,. Therefore, it is easy to see thet— X is a stable
model for P, U (facts(M|p,) — facts(X)), which is equal toP, U facts(A). Moreover,
observe thafl — X = M]|p,, and thus we gedl |p, € SM (P, U facts(A)). O

For the sake of presentation, we assume hereafter agNrRproblemP = (H, P, O, )
is fixed, and let LP'(P) = P U Py, U Pys be the program computed by the function
AbductionToLP (P), whereP,,, is the set of rules and weak constraints obtained by ap-
plying steps (3)-(5), and®,;, is the set of strong constraints obtained by applying steps
(1)-(12).

Lemma 2
For each stable modal of LP"(P),

(a) there exists an admissible solutidrfor P such that\ N H = A, and
(b) sum(A) = Hp(M).

Proof
(Part a). To show that\/ N H is an admissible solution fg? we have to prove that there
exists a stable moddl/’ of P U facts(M N H) such thatVo € O, o is true w.r.tM’.

Let M’ = M|p. Note thatM’ is the set of literals obtained frod¥ by eliminating all
the literals with predicate symbool and_nsol, i.e. M’ is the set of literals without all
atoms which were introduced by the translation algorithm.

Note thatP potentially usesP;,,,. Thus, from Lemm&l1)M |p is a stable model for
PU facts(C), whereC = M|p,, N Bp and henc&€ = M N H, because only hypothesis
atoms fromP,,,, occur inBp.

Finally, observe that each observatior(ns true w.r.tM’. Indeed, sincé/ is a stable
model for LPY(P), all the constraints contained |,,s must be satisfied by/. More-
over,M andM’ coincide on all atoms occurring in these constraints. Thlispnstraints
contained inP,;,s are satisfied by/’, too.

(Part b). By construction of LP(P), all weak constraints occurring in this program in-
volve hypotheses dP. In particular, observe that any weak constrainth  [y(h) :] is
violated by M iff h belongs toM. SinceA = M N H, h belongs toA, as well, and its
penalty is equal to the weight of the weak constraint. Itk thatsum., (4) = Hp(M).

O

Lemma 3
For each admissible solutiof of P,

(a) there exists a stable mod#l of LP* (P) such thatM N H = A, and
(b) Hp(M) = sum(A).
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Proof
(Part a). By Definition[31, there exists a stable modél = M"” U A of P U facts(A),
whereM” N A = (), such thatyo € O, o is true w.r.t.M.

Let My = {-sol(i) | hi € A} U{nsol(j) | h; ¢ A}.

Moreover, letP’ = P U facts(My U A). Note thatP’ can also be written as the union
of the programs® U facts(A) andfacts(Mp). Since these two programs are completely
disjoint, i.e., the intersection of their Herbrand basethésempty set, then the union of
their stable model3/’ and My, sayM, is a stable model of’.

Now, consider the prograr® U Py,,,, and observe thaP > Py, and that\M/y U A
is a stable model foP,,,,. Then, by Propositiof Appendix A.1, any stable model of the
programP’ is a stable model aP U Py,,,. Thus, in particularM = M’ U My is a stable
model of P U P,p,.

Moreover, it is easy to see that all constraint®jp, are satisfied by/, and thusM €
SM(LP*(P)), too. Finally, M can be written ad/” U AU My, andhencd/ N H = A
holds, by definitions of\/” and M.

(Part b).Let h be any hypothesis belonging tband hence contributing to the cost of this
solution. Note that LP(P) contains the weak constraint . [y(h) :], weighted byy(h)
and violated by, ash € M. Itfollows thatHp (M) = sum~(A). O

Theorenl G2

(Soundnegdg~or each best modéll of LP* (P), there exists an optimal solutiot for P
such thatM N H = A.

(Completenegs-or each optimal solutiod of P, there exists a best modéf of LP*(P)
such thatM N H = A.

Proof
(Soundness).et M be a best model of LP(P). From LemmdRA = M N H is an
admissible solution foP, andsum. (A) = Hp(M). It remains to show thad is optimal.
By contradiction, assume thdtis not optimal. Then, there exists an admissible solution
A’ for P such thatsum.(A") < sum.(A). By virtue of LemmdB, we have that there
exists a stable mod@éll’ for LP*(P) such that\/’ N H = A’ andHp (M') = sum-(A’).
However, this contradicts the hypothesis thats a best model for LP(P).
(Completeness).et A be an optimal solution foP. By virtue of LemmdB, there exists
a stable modeM for LP*(P) such thatM N H = A andHp (M) = sum.(A). We have
to show that}/ is a best model.
Assume that\/ is not a best model. Then, there exists a stable maflefor LPY (P)
such thati{p(M') < Hp(M). By LemmaR, there exists an admissible solutitinfor
P such thatM’ N H = A" andsum,(A") = Hp(M'). However, this contradicts the
hypothesis thatl is an optimal solution fo?. [

Appendix B A Logic Program for the Travelling Salesman Problem

In this section we describe how to represent the Travellialgs$nan Problem in logic
programming.
Suppose that the cities are encoded by a set of afatisy(i) | 1 < i < n} and that
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the intercity traveling costs are stored in a relation, j, v) wherev = w(i, j). In abuse of
notation, we simply refer to the numbeof cities (which is provided by an input relation)
by itself.

The following programr; computes legal tours and their costs in its stable models:

1) T(1,3) VI, J) o(1,3,.).

(2) - T(1,J),T(I,K),J #K.

(3) - T(1,X),T(J,K), I # J.

4) Visited(l) T(J,1).

(5) visited(I):— T(J,I),visited(J).

(6) :— not visited(I), city(I).

(7) P_Value(1,X):— T(1,J),C(1, J,X).

(8) P_Value(X,X):— P_Value(k-1,Y),T(X,I),C(X,I,Z2),X=Y+ Z.
(9) Cost(x) :— P_Value(n, x).

The first claus guesses a tour, whe&(&, J) intuitively means that thé-th stop of the
tour is city J andT(I, J) that it's not. By the minimality of a stable model, exactlyeoof
T(I,J) andT(I, J)is true init, for eachl and.J such thatl < I, J < n; in all other cases,
both are false.

The subsequent clauses (2)—(6) check that the guess isrpegeh stop has attached
at most one city, each city can be attached to at most oneatojpevery stop must have
attached some city. The rules (7)—(9) compute the cost ofliksen tour, which is given
by the (unique) ator@ost (X) contained in the model.

It holds that the stable models of correspond one-to-one to the legal tours.

To reach our goal, we have to eliminate from them those wh&hat correspond to
optimal tours. That s, we have to eliminate all tofirsuch that there exists a tofif which
has lower cost. This is performed by a logic program, whicsidadly tests all choices for
a tour7” and rules out each choice that is not a cheaper tour, whiahdisated by a
propositional atoiotCheaper. The following program, which is similar te,, generates
all possible choices fdf”:

(1) T(1,3) Vv T(I,J):—c(I,3,.).

(2" NotCheaper :—T'(I, J), T'(I,K), J # K.

(3" NotCheaper :—T'(I,K),T'(J,K), I # J.

(4" NotChosen Stop(I,1) :—T/(I,1).

(5" NotChosen Stop(I, J) :—T/(I, J), NotChosen Stop(I,J- 1).
(6" NotCheaper :—NotChosen Stop(I,n).

(7" cnt(1,1).

(8" cnt(K+1,J) :—ent(K, I),T/(I,J),J # 1.

(9" NotCheaper :—cnt(K,I),T'(I,1),K # n.

(10" P_value'(1,X):—T'(1,J),C(1, J,X).

(11 P_Value'(K,X) :—P_Value'(K-1,Y),T'(X,I),c(X,I,2),X =Y+ Z.
(12" Cost/(X) :—P_Value'(n, X).

The predicates’, T/, P_Value’ andCost’ have the role of the predicat@sT, P_Value
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and Cost in ;. Since we do not allow negation, the test that for each stopyahas
been chosen (rulegl)—(6) in 7;) has to be implemented differently (rulé$)—(9') ).
NotChosen Stop(I, J) tells whether no city< J has been chosen for stdp Thus, if
NotChosen Stop(I,n) is true, then no city has been chosen for stppnd the choice for
T’ does not correspond to a legal tour.

The minimal models of1’)—(12’) which do not contaiflotCheaper correspond one-
to-one to all legal tours. By adding the following rule, eaftthem is eliminated which
does not have smaller cost than the tour giverrby

(13')  NotCheaper :— Cost(X),Cost’(Y),X <.

Thus, if for a legal toufr, each choice fot’ leads to the derivation dfotCheaper, then
T is an optimal tour.
For the desired program, we add the following rules:

(14" :— not NotCheaper.
(15")  P(X4,...,Xn) :— NotCheaper.

for any predicat® that occurs in a rule head ¢f')—(12") exceptNotCheaper. The first
rule enforces thallotCheaper must be contained in the stable model; consequently, it
must be derivable. The other rules derive the maximal eidarfer each predicate if
NotCheaper is true, which is a trivial model fof1')—(12"). In fact, it is for some given
tour T the only model if no choice for’ leads to a tour with cost smaller than the cost of
T; otherwise, there exists another model, which does notdolbtCheaper.

Let w2 be the program consisting of the rul@s)—(15"). Then, it holds that the stable
models ofr = 7 U o on any instance of TSP correspond to the optimal t&urs.
particular, the optimal cost value, describeddagt (X), is contained in each stable model.
Thus, the programr computes on any instance of TSP under the possibility (akasel
certainty) stable model semanticsdast the cost of an optimal tour.

6 Here, we suppose that the provided univets®f the database storing the instance is sufficiently large fo
computing the tour values.
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