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Abstract

Abduction, first proposed in the setting of classical logics, has been studied with growing interest in
the logic programming area during the last years.

In this paper we studyabduction with penalizationin the logic programming framework. This
form of abductive reasoning, which has not been previously analyzed in logic programming, turns
out to represent several relevant problems, including optimization problems, very naturally. We de-
fine a formal model for abduction with penalization over logic programs, which extends the abduc-
tive framework proposed by Kakas and Mancarella. We addressknowledge representation issues,
encoding a number of problems in our abductive framework. Inparticular, we consider some rel-
evant problems, taken from different domains, ranging fromoptimization theory to diagnosis and
planning; their encodings turn out to be simple and elegant in our formalism. We thoroughly analyze
the computational complexity of the main problems arising in the context of abduction with penal-
ization from logic programs. Finally, we implement a systemsupporting the proposed abductive
framework on top of theDLV engine. To this end, we design a translation from abduction problems
with penalties into logic programs with weak constraints. We prove that this approach is sound and
complete.

KEYWORDS: Knowledge Representation, Nonmonotonic Reasoning, Abduction, Logic Programs,
Computational Complexity, Stable Models, Optimization Problems, Penalization
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1 Introduction

Abduction is an important form of reasoning, first studied indepth by Peirce (1955). Given
the observation of some facts, abduction aims at concludingthe presence of other facts,
from which, together with an underlying theory, the observed facts can be explained, i.e.,
deductively derived. Thus, roughly speaking, abduction amounts to an inverse of modus
ponens.

For example, medical diagnosis is a typical abductive reasoning process: from the symp-
toms and the medical knowledge, a diagnosis about a possibledisease is abduced. Notice
that this form of reasoning is not sound (a diagnosis may turnout to be wrong), and that
in general several abductive explanations (i.e., diagnoses) for the observed symptoms may
be possible.

It has been recognized that abduction is an important principle of common-sense reason-
ing, and that abduction has fruitful applications in a number of areas such diverse as model-
based diagnosis (Poole 1989), speech recognition (Hobbs and M. E. Stickel 1993), model
checking (Buccafurri et al. 1999), maintenance of databaseviews (Kakas and Mancarella 1990a),
and vision (Charniak and McDermott 1985).

Most research on abduction concerned abduction from classical logic theories. How-
ever, there are several application domains where the use oflogic programming to perform
abductive reasoning seems more appropriate and natural (Eiter et al. 1997).

For instance, consider the following scenario. Assume thatit is Sunday and is known
that Fabrizio plays soccer on Sundays if it’s not raining. This may be represented by the
following theoryT :

play soccer← is sunday ∧ not rains is sunday ←

Now you observe that Fabrizio is not out playing soccer (rather, he is writing a paper).
Intuitively, from this observation we conclude that it rains (i.e, we abducerains), for
otherwise Fabrizio would be out playing soccer. Nevertheless, under classical inference, the
fact rains is not an explanation ofnot play soccer, asT ∪ {rains} 6|= not play soccer

(neither can one find any explanation). On the contrary, if weadopt the semantics of logic
programming (interpretingnot as the nonmonotonic negation operator), then, according
with the intuition, we obtain thatrains is an explanation ofnot play soccer, as it is
entailed byT ∪ {rains}.

In the context of logic programming, abduction has been firstproposed by Kakas and
Mancarella (1990b) and, during the recent years, the interest in this subject has been grow-
ing rapidly (Console et al. 1991; Konolige 1992; Kakas et al.1992; Dung 1991; Denecker and De Schreye 1995;
Sakama and Inoue 2000; Brena 1998; Kakas et al. 2000; Denecker and Kakas 2002; Lin and You 2002).
This is also due to some advantages in dealing with incomplete information that this kind of
reasoning has over deduction (Denecker and De Schreye 1995;Baral and Gelfond 1994).

Unlike most of these previous works on abduction in the logicprogramming framework,
in this paper we studyabduction with penalizationfrom logic programs. This form of
abductive reasoning, well studied in the setting of classical logics (Eiter and Gottlob 1995),
has not been previously analyzed in logic programming.

Note that dealing with weights or penalties has been recognized as a very important
feature of knowledge representation systems. In fact, evenat the very recent Workshop on
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Nonmonotonic Reasoning, Answer Set Programming and Constraints (Dagstuhl, Germany,
2002), many talks and system demonstrations pointed out that a lot of problems arising in
real applications requires the ability to discriminate over different candidate solutions, by
means of some suitable preference relationship. Note that this is not just an esthetic issue,
for representing such problems in a more natural and declarative way. Rather, a proper
use of preferences may have a dramatic impact even on the efficiency of solving these
problems.

In this paper, we define a formal model for abduction with penalization from logic pro-
grams, which extends the abductive framework proposed by Kakas and Mancarella (1990b).
Roughly, a problem of abduction with penalizationP consists of a logic programP , a set
of hypotheses, a set of observations, and a function that assigns a penalty to each hypothe-
sis. An admissible solution is a set of hypotheses such that all observations can be derived
from P assuming that these hypotheses are true. Each solution is weighted by the sum of
the penalties associated with its hypotheses. The optimal solutions are those with the min-
imum weight, which are considered more likely to occur, and thus are preferred over other
solutions with higher penalties.

We face knowledge representation issues, by showing how abduction with penaliza-
tion from logic programming can be used for encoding easily and in a natural way relevant
problems belonging to different domains. In particular, weconsider the classicalTravelling
Salesman Problemfrom optimization theory, (a new version of) theStrategic Companies
Problem, the planning problemBlocks World, from artificial intelligence. It is worthwhile
noting that these problems cannot be encoded at all in (function-free) normal logic pro-
gramming, even under the powerful stable model semantics.

We analyze the computational complexity of the main problems arising in this frame-
work, namely, given a problemP of abduction with penalization over logic programs,

• decide whetherP is consistent, i.e., there exists a solution forP ;
• decide whether a given set of hypotheses is an admissible solution forP ;
• decide whether a given set of hypotheses is an optimal solution forP ;
• decide whether a given hypothesish is relevant forP , i.e.,h occurs in some optimal

solution ofP ;
• decide whether a given hypothesish is necessary forP , i.e.,h is contained in all

optimal solutions ofP ;
• compute an optimal solution ofP .

The table in Figure 1 shows the complexity of all these problems, both in the general
case and in the restricted setting where the use of unstratified negation is forbidden in
the logic program of the abduction problem. Note that a complexity classC in any entry
of this table means that the corresponding problem isC-complete, that is, we prove both
membership and hardness of the problem for the complexity classC.

An interesting result in this course is that “negation comesfor free” in most cases. That
is, the addition of negation does not cause any further increase to the complexity of the
main abductive reasoning tasks (which remains the same as for not-free programs). Thus,
the user can enjoy the knowledge representation power of nonmonotonic negation without
paying additional costs in terms of computational overhead. More precisely, it turns out
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that abduction with penalization over general logic programs has exactly the same com-
plexity as abduction with penalization over definite Horn theories of classical logics in the
three main computational abductive-reasoning tasks (deciding relevancy and necessity of
an hypothesis, and computing an optimal solution). While unstratified negation brings a
relevant complexity gap in deductive reasoning (fromP to NP for brave reasoning), in
this case, the use of negation does not lead to any increase inthe complexity, as shown in
Figure 1.

General programs Positive or stratified programs

Consistency NP NP
Solution Admissibility NP P
Solution Optimality DP

2 co-NP

Hypothesis Relevancy ∆P
2 ∆P

2

Hypothesis Necessity ∆P
2 ∆P

2

Optimal Solution Computation FPNP FPNP

Fig. 1. Overview of the Complexity Results

We have implemented the proposed framework for abduction with penalization over
logic programs as a front-end for theDLV system. Our implementation is based on an al-
gorithm that translates an abduction problem with penalties into a logic program with weak
constraints (Buccafurri et al. 2000), which is then evaluated byDLV. We prove that our ap-
proach is sound and complete. Our abductive system is available in the current release of
the DLV system (www.dlvsystem.com), and can be freely retrieved for experiments.
It is worthwhile noting that our rewriting approach can be adapted for other ASP systems
with suitable constructs for dealing with weighted preferences. For instance, our algorithm
can be modified easily in order to compute programs with weight literals to be evaluated
by the Smodels system (Simons et al. 2002).

In sum, the main contribution of the paper is the following.

• We define a formal model of abduction with penalization over logic programs.
• We carry out a thorough analysis of the complexity of the maincomputational prob-

lems arising in the context of abduction with penalization over logic programs.
• We address knowledge representation issues, showing how some relevant problems

can be encoded in our framework in a simple and fully declarative way.
• We provide an implementation of the proposed abductive framework on top of the

DLV system.

Our work is evidently related to previous studies on semantic and knowledge represen-
tation aspects of abduction over logic programs. In Section7, we discuss the relationships
of this paper with such previous studies and with some further related issues.

The rest of the paper is organized as follows. In Section 2, werecall the syntax of
(function-free) logic programs and the stable model semantics. In Section 3, we define
our model of abduction with penalization from logic programs, and in Section 4 we give
some examples of applications of this form of abduction in different domains. In Section
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5, we analyze the computational complexity of the main problems arising in this frame-
work. In Section 6, we describe our prototype that implements abduction with penalization
from logic programs, and makes it available as a front end of the systemDLV. Section 7 is
devoted to related works. Finally, in Section 8, we draw our conclusions.

2 Preliminaries on Logic Programming

We next give the syntax of function-free logic programs, possibly containing nonmono-
tonic negation (negation as failure) and constraints. Then, we recall the stable model se-
mantics (Gelfond and Lifschitz 1988) for such logic programs.

2.1 Syntax

A term is either a constant or a variable1. An atom has the forma(t1, ..., tn), wherea is
apredicate of arityn andt1, ..., tn are terms. Aliteral is either apositive literal a or a
negative literal not a, wherea is an atom.

A rule r has the form

a :−b1, . . . , bk, not bk+1, . . . , not bm. k ≥ 0, m ≥ k

wherea, b1, . . . , bm are atoms.
Atoma is theheadof r, while the conjunctionb1, . . . , bk, not bk+1, . . . , not bm is thebody
of r. We denote byH(r) the head atoma, and byB(r) the set{b1, . . . , bk, not bk+1, . . . ,

not bm} of the body literals. Moreover,B+(r) andB−(r) denote the set of positive and
negative literals occurring inB(r), respectively. IfB(r) = ∅, i.e.,m = 0, thenr is afact.

A strong constraint(integrity constraint) has the form:−L1, . . . , Lm., where eachLi,
1 ≤ i ≤ m , is a literal; thus, a strong constraint is a rule with empty head.

A (logic) programP is a finite set of rules and constraints. A negation-free program
is calledpositive program. A positive program where no strong constraint occurs is a
constraint-freeprogram.

A term, an atom, a literal, a rule or a program isground if no variable appears in it. A
ground program is also called apropositionalprogram.

2.2 Stable model semantics

LetP be a program. TheHerbrand UniverseUP of P is the set of all constants appearing in
P . TheHerbrand BaseBP of P is the set of all possible ground atoms constructible from
the predicates appearing in the rules ofP and the constants occurring inUP (clearly, both
UP andBP are finite). Given a ruler occurring in a programP , aground instanceof r is
a rule obtained fromr by replacing every variableX in r by σ(X), whereσ is a mapping
from the variables occurring inr to the constants inUP . We denote byground(P ) the
(finite) set of all the ground instances of the rules occurring in P . An interpretationfor P
is a subsetI of BP (i.e., it is a set of ground atoms). A positive literala (resp. a negative
literal not a) is true with respect to an interpretationI if a ∈ I (resp.a /∈ I); otherwise it

1 Note that function symbols are not considered in this paper.
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is false. A ground ruler is satisfied(or true) w.r.t. I if its head is true w.r.t.I or its body is
false w.r.t.I.

A modelfor P is an interpretationM for P such that every ruler ∈ ground(P) is true
w.r.t.M . If P is a positive program and has some model, thenP has a (unique) least model
(i.e., a model included in every model), denoted bylm(P ).

Given a logic programP and an interpretationI, theGelfond-Lifschitz transformationof
P with respect toI is the logic programP I consisting of all rulesa :−b1, . . . , bk such that
(1) a :−b1, . . . , bk, not bk+1, . . . , not bm ∈ P and (2) bi /∈ I, for all k < i ≤ m.

Notice thatnot does not occur inP I , i.e., it is a positive program.
An interpretationI is astable modelof P if it is the least model of its Gelfond-Lifschitz

w.r.t. I, i.e., if I = lm(P I) (Gelfond and Lifschitz 1988). The collection of all stable
models ofP is denoted bySM (P ) (i.e.,SM (P ) = {I | I = lm(P I)}).

Example 2.1
Consider the following (ground) programP :

a :−not b . b :−not a . c :−a . c :−b .

The stable models ofP areM1 = {a, c} andM2 = {b, c}. Indeed, by definition of
Gelfond-Lifschitz transformation,

PM1 = { a :−, c :−a, c :−b } and PM2 = { b :−, c :−a, c :−b }

and it can be immediately recognized thatlm(PM1) = M1 andlm(PM2) = M2.

We say that an atomp depends on an atomq if there is a ruler in P such thatp = H(r)

and eitherq ∈ B+(r) or not q ∈ B−(r). Let � denote the transitive closure of this
dependency relationship. The programP is a recursiveprogram if there arep, q ∈ BP

such thatp � q andq � p. We say thatP is unstratified, or that unstratified negation
occurs inP , if there is a ruler in P such thatp = H(r), not q ∈ B−(r), andq � p. A
program where no unstratified negation occurs is calledstratified.

Observe that every stratified programP has at most one stable model. The existence
of a stable model is guaranteed if no strong constraint occurs in the stratified program
P . Moreover, every stratified program can be evaluated in polynomial time. In particular,
deciding whether there is a stable model, computing such a model, or deciding whether
some literal is entailed (either bravely or cautiously) by the program are all polynomial-
time feasible tasks.

For a set of atomsX , we denote byfacts(X) the set of facts{p. | p ∈ X}. Clearly, for
any programP and set of atomsS, all stable models ofP ∪ facts(S) include the atoms in
S.

3 A Model of Abduction with Penalization

First, we give the formal definition of a problem of abductionfrom logic programs under
the stable model semantics, and we provide an example on network diagnosis, that we use
as a running example throughout the paper. Then, we extend this framework by introducing
the notion of penalization.
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Fig. 2. Computer networkN in Example 3.2

Definition 3.1
(ABDUCTION FROM LOGIC PROGRAMS)
A problem of abduction from logic programsP is a triple〈H,P,O〉, whereH is a finite
set of ground atoms calledhypotheses, P is a logic program whose rules do not contain
any hypothesis in their heads, andO is a finite set of ground literals, calledobservations,
or manifestations.

A set of hypothesesS ⊆ H is anadmissible solution(or explanation) toP if there exists
a stable modelM of P ∪ facts(S) such that,∀o ∈ O, o is true w.r.t.M .

The set of all admissible solutions toP is denoted byAdm(P).

Example 3.2
(NETWORK DIAGNOSIS) Suppose that we are working on machinea (and we therefore
know that machinea is online) of the computer networkN in Figure 2, but we observe ma-
chinee is not reachable froma, even if we are aware thate is online. We would like to know
which machines could be offline. This can be easily modelled in our abduction framework
defining a problem of abductionP1 = 〈H,P,O〉, where the set of hypotheses isH =

{offline(a), offline(b), offline(c), offline(d), offline(e), offline(f)}, the
set of observations isO = {not offline(a), not offline(e), not reaches(a, e)}, and
the programP consists of the set of facts encoding the network,facts({connected(X, Y) |

{X,Y } is an edge ofN}), and of the following rules:

reaches(X, X) :− node(X), not offline(X).

reaches(X, Z) :− reaches(X, Y), connected(Y, Z), not offline(Z).

Note that the admissible solutions forP1 corresponds to the network configurations that
may explain the observations inO. In this example,Adm(P) contains five solutions

S1 = {offline(f), offline(b)},

S2 = {offline(f), offline(c), offline(d)},

S3 = {offline(f), offline(b), offline(c)},

S4 = {offline(f), offline(b), offline(d)},

S5 = {offline(f), offline(b), offline(c), offline(d)}.
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Note that Definition 3.1 concerns only the logical properties of the hypotheses, and it
does not take into account any kind of minimality criterion.We next define the problem
of abduction with penalization, which allows us to make finerabductive reasonings, by
expressing preferences on different sets of hypotheses, inorder to single out the most
plausible abductive explanations.

Definition 3.3
(ABDUCTION WITH PENALIZATION FROM LOGIC PROGRAMS)
A problem of abduction with penalization(PAP) P is a tuple〈H,P,O, γ〉, where〈H,P,O〉

is a problem of abduction, andγ is a polynomial-time computable function fromH to the
set of non-negative reals(the penalty function). The set of admissible solutions forP is the
same as the set of solutions of the embedded abduction problem 〈H,P,O〉, i.e., we define
Adm(P) = Adm(〈H,P,O〉).

For a set of atomsA, let sumγ(A) =
∑

h∈A γ(h). Then,S is an(optimal) solution(or
explanation) forP if (i) S ∈ Adm(P) and (ii)sumγ(S) ≤ sumγ(S

′), for allS′ ∈ Adm(P).
The set of all (optimal) solutions forP is denoted byOpt(P).

Example 3.4
(M INIMUM -CARDINALITY CRITERION) Consider again the networkN and the problem
of abductionP1 = 〈H,P,O〉 in Example 3.2. Again, we want to explain why the online
machinee is not reachable froma. However, we do not consider any more plausible all the
explanations provided byP1. Rather, our domain knowledge suggests that it is unlikely
that many machines are offline at the same time, and thus we areinterested in explanations
with the minimum number of offline machines. This problem is easily represented by the
problem of abduction with penalizationP2 = 〈H,P,O, γ〉, whereH , P andO are the
same as inP1, and, for eachh ∈ H , γ(h) = 1.

Indeed, consider the admissible solutions ofP2 and observe that

sumγ(S1) = 2, sumγ(S2) = sumγ(S3) = sumγ(S4) = 3, sumγ(S5) = 4

It follows thatS1 is the unique optimal explanation forP2, and in fact corresponds to the
unique solution of our diagnosis problem with a minimum number of offline machines.

The following properties of a hypothesis in aPAPP are of natural interest with respect
to computing abductive solutions.

Definition 3.5
Let P = 〈H,P,O, γ〉 be aPAPandh ∈ H . Then,h is relevantfor P if h ∈ S for some
S ∈ Opt(P), andh is necessaryfor P if h ∈ S for everyS ∈ Opt(P).

Example 3.6
In example 3.4,offline(b), andoffline(f) are therelevant hypotheses; they are also
necessary sinceS1 is the only optimal solution.

4 Knowledge Representation

In this section, we show how abduction with penalization from logic programming can be
used for encoding easily and in a natural way relevant problems from different domains.
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A nice discussion of how abduction can be used for representing knowledge declara-
tively can be found in (Denecker and Kakas 2002), where this setting is also related to
other nonmonotonic reasoning paradigms. It also recalled that abduction has been defined
broadly as any form of “inference to the best explanation” (Josephson and S.G. Josephson 1994),
wherebestrefers to the fact that usually hypotheses can be compared according to some
criterion.

In our framework, this optimality criterion is the sum of thepenalties associated to the
hypotheses, which has to be minimized.

In particular, in order to represent a problem, we have to identify:

• the hypotheses, that represent all the possible entities that are candidates for belong-
ing to solutions;
• for each hypothesish, the penaltyassociated toh, that represents the cost of includ-

ing h in a solution;
• the logic programP , that encodes a representation of the reality of interest and, in

particular, of the way any given set of hypotheses changes this reality and leads to
some consequences;
• the observations, or manifestations, that are distinguished logical consequences, of-

ten encoding somedesiderata. For any given set of hypothesesH , the fact that these
observations are consequences of the logic program (plusH) witnesses thatH is a
“good” set of hypotheses, i.e., it encodes a feasible solution for the problem at hand.

For instance, in the network diagnosis problem described inExample 3.4, the hypotheses
are the possible offline machines and the logic programP is able to determine, for any
given set of offline machines encoding a network status, which machines are unreachable.
In this case, and usually in diagnosis problems, these observations are in fact pictures of
the reality of interest: we see that some machines are not reachable in the network and
that some machines are not offline, and we would like to infer,via abductive reasoning,
what are the explanations for such a situation. Moreover, inthis example, we are interested
only in solutions that consist of the minimum number of offline machines, leading to the
observed network status, because they are believed more likely to occur. This is obtained
easily, by assigning a unitary penalty to each hypothesis.

We next show the encodings of other kind of problems that can be represented in a
natural way trough abduction with penalization from logic programs, even though they are
quite different from the above simple cause-effect scheme.

For the sake of presentation, we assume in this section that logic programs are equipped
with the built-in predicates6=, <, >, and+, with the usual meaning. Clearly, for any
given programP , these predicates may be encoded by suitable finite sets of facts, be-
cause we have to deal only with the (finite) set of constants actually occurring inP .
Moreover, observe that most available systems for evaluating logic programs – e.g.,DLV

(Eiter et al. 1998; Leone et al. 2002) andsmodels(Niemelä and Simons 1997; Simons et al. 2002)
– provide in fact such operators.

4.1 The Travelling Salesman Problem

An instanceI of the Travelling Salesman Problem (TSP)consists of a number of cities
c1, . . . , cn, and a functionw that assigns to any pair of citiesci, cj a positive integer value,
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which represents the cost of travelling fromci to cj . A solution toI is a round trip that visits
all cities in sequence and has minimal travelling cost, i.e., a permutationτ of 1, . . . , n such
that the overall cost

w(τ) =

n−1∑

i=1

w(τ(i), τ(i + 1)) + w(τ(n), τ(1))

is minimum.
Let us see how we can represent this problem in our framework.Intuitively, any solution

consists of pair of cities encoding a tour of the salesman, while the observations must
witness that this tour is correct, i.e., that all cities are visited exactly once. Thus, we have a
hypothesis for each pair of citiesci, cj , because any such a pair is candidate for belonging
to the trip of the salesman. The penalty associated to each hypothesis is clearly the cost
of travelling fromci to cj , because we want to obtain the minimum-cost tour. Moreover,
for any given trip encoded by a set of hypotheses, the logic program determines the cities
reached by the salesman, and also whether the salesman has travelled in a correct way. The
observations are possible consequences of the program, which encode that all cities are
visited and no visiting rule has been violated.

Formally, we represent the TSP instanceI as aPAP P = 〈H,P,O, γ〉 defined as
follows. The set of hypotheses isH = {c(i, j) | 1 ≤ i, j ≤ n}, wherec(i, j) en-
codes the fact that the salesman visits cityj immediately after cityi. The penalty function
γ(c(i, j)) = w(i, j) encodes the cost of travelling fromi to j. The cities are encoded
through a set of atoms{city(i) | 1 ≤ i ≤ n}. The programP contains the following
rules:

(1) city(i). for eachi, 1 ≤ i ≤ n

(2) visited(I) :− visited(J), c(J, I).

(3) visited(1) :− c(J, 1).

(4) missedCity :− city(I), not visited(I).

(5) badTour :− c(I, J), c(I, K), J 6= K.

(6) badTour :− c(J, I), c(K, I), J 6= K.

The observations areO = {not missedCity, not badTour}.
It is easy to see that every optimal solutionS ∈ Opt(P) corresponds to an optimal tour

and viceversa. The facts (1) ofP encode the cities to be visited. Rule (2) states that a city
i has been visited if the salesman goes to cityi after an already visited cityj. Rule (3)
concerns the first city that, w.l.o.g., is the first and the last city of the tour. In particular,
it is considered visited, if it is reached by some other cityj, which is turn forced to be
visited, by the other rule ofP . Rule (4) says that there is a missed city if at least one of
the cities has not been visited. AtombadTour, defined by rules (4) and (5), is true if some
city is in two or more connection endpoints or connection startpoints. The observations
not missedCity, not badTour enforce that admissible solutions correspond to salesman
tours that are complete (no city is missed) and legal (no cityis visited twice).

Moreover, since optimal solutions minimize the sum of the connection costs, abductive
solutions inOpt(P ) correspond one-to-one to the optimal tours.

In (Eiter et al. 1997), Eiter, Gottlob, and Mannila show thatDisjunctive Logic Program-
ming (function-free logic programming with disjunction inthe heads and negation in the
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bodies of the rules) is highly expressive. Moreover, the authors strength the theoretical
analysis of the expressiveness by proving that problems relevant in practice like, e.g., the
Travelling Salesman ProblemandEigenvector, can be programmed in DLP, while they
cannot be expressed by disjunction-free programs. Indeed,recall that computing an opti-
mal tour is both NP-hard and co-NP-hard. Moreover, in (Papadimitriou 1984) it is shown
that deciding whether the cost of an optimal tour is even, as well as deciding whether there
exists a unique optimal tour, are∆P

2 -complete problems. Hence, it is not possible to ex-
press this problem in disjunction-free logic programming,even if unstratified negation is
allowed (unless the polynomial hierarchy collapses).

Nevertheless, the logic programs implementing these problems in DLP highlight, in
our opinion, a weakness of the language for the representation of optimization problems.
The programs are very complex and tricky, the language does not provide a clean and
declarative way to implement these problems.2 For a comparison, we report in Appendix
Appendix B the encoding of this problem in (plain) DLP, as described in (Eiter et al. 1997).
Evidently, abduction with penalization provides a simpler, more compact, and more ele-
gant encoding of TSP. Moreover, note that, using this form ofabduction, even normal
(disjunction-free) programs are sufficient for encoding such optimization problems.

4.2 Strategic Companies

We present a new version of thestrategic companiesproblem (Cadoli et al. 1997). A man-
ager of a holding identifies a set of crucial goods, and she wants these goods to be produced
by the companies controlled by her holding. In order to meet this goal, she can decide to
buy some companies, that is to buy enough shares to get the full control of these compa-
nies. Note that, in this scenario, each company may own some quantity of shares of another
company. Thus, any company may be controlled either directly, if it is bought by the hold-
ing, or indirectly, through the control over companies thatown more than50% of its shares.
Of course, it is prescribed to minimize the quantity of moneyspent for achieving the goal,
i.e., for buying new companies.

For the sake of simplicity, we will assume that, if a companyX can be controlled indi-
rectly, than there are either one or two companies that together own more than50% of the
shares ofX . Thus, controlling these companies is sufficient to take thecontrol overX .

We next describe a problem of abduction from logic programs with penalizationP
whose optimal solutions correspond to the optimal choices for the manager. In this case,
the observations are the crucial goods that we want to produce, while the hypotheses are
the acquisitions of the holding and their associated penalties are the costs of making these
financial operations. The logic program determines, for anygiven set of acquisitions, all
the companies controlled by the holding and all the goods produced by these companies.

Companies configurations are encoded by the set of atomsMarket defined as follows:
if a companyy ownsn% of the shares of a companyx thenshare(x, y, n) belongs to

2 We refer to standard Disjunctive Logic Programming here. Asshown in (Buccafurri et al. 2000), the addition
of weak constraints, implemented in theDLV system (Eiter et al. 2000), is another way to enhance DLP to
naturally express optimization problems.



12 S. Perri, F. Scarcello, N. Leone

Market, and if a companyx produces a gooda thenproducedBy(a, x) belongs toMarket.
No more atoms belong to this set.

Then, letP = 〈H,P,O, γ〉, where the set of hypothesesH = {bought(x1), . . . ,
bought(xn)} encodes the companies that can be bought, and the set of observationsO =

{produced(y1), . . . , produced(yn)} encodes the set of goods to be produced. Moreover,
for each atombought(x̄) ∈ H , γ(bought(x̄)) is the cost of buying the companȳx. The
programP consists of the facts encoding the state of the marketfacts(Market) and of the
following rules:

(1) produced(X) :− producedBy(X, Y), controlled(Y).

(2) controlled(X) :− bought(X).

(3) controlled(X) :− share(X, Y, N), controlled(Y), N> 50.

(4) controlled(X) :− share(X, Y, N), share(X, Z, M),

controlled(Y), controlled(Z), M+ N > 50, Y 6= Z.

Fig. 3. Strategic Companies

Example 4.1

Consider the following sets of companies and goods:
Companies={ barilla, saiwa, frutto, panino, budweiser, heineken, parmalat, candia}
Goods= { wine, pasta, beer, tomatoes, bread, milk}.
Figure 3 depicts the relationshipsshare andproducedBy among companies, and among
products and companies, respectively. A solid arrow from a companyC to a goodG rep-
resents thatG is produced byC. A dashed arrow from a companyC1 to a companyC2
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labelled byn means thatC1 ownsn% of the shares ofC2. The cost (in millions of dollars)
for buying directly a company is shown below:

barilla 500 saiwa 400 frutto 350 panino 150

budweiser 300 heineken 300 parmalat 300 candia 150

Accordingly, the hypotheses and their respective penalties are

bought(barilla) γ(bought(barilla)) = 500

bought(saiwa) γ(bought(saiwa)) = 400

· · ·

bought(candia) γ(bought(candia)) = 150.

The set of observations is

O ={produced(pasta), produced(wine), produced(tomatoes),

produced(bread), produced(beer), produced(milk)}

This problem has the only optimal solutionS1={barilla, frutto, heineken}, whose cost
is 1150 millions of dollars. Note that all goods inG can be produced also by buying the set
of companiesS2= {barilla, frutto, saiwa}. However, sincesaiwa is more expensive than
heineken, S1 is preferred toS2.

4.3 Blocks world with penalization

Planning is another scenario where abduction proves to be useful in encoding hard prob-
lems in an easy way.

The topic of logic-based languages for planning has recently received a renewed great
deal of interest, and many approaches based on answer set semantics, situation calculus,
event calculus, and causal knowledge have been proposed — see, e.g., (Gelfond and Lifschitz 1998;
Eiter et al. 2003; Shanahan 2000; Turner 1999).

We consider here the Blocks World Problem (Lifschitz 1999):given a set of blocksB
in some initial configurationStart , a desired final configurationGoal , and a maximum
amount of timelastTime, find a sequence of moves leading the blocks from stateStart ,
to stateGoal within the prescribed time bound. Legal moves and configurations obey the
following rules: A block can be either on the top of another block, or on the table. A block
has at most one block over it, and is said to be clear if there isno block over it. At each
step (time unit), one or more clear blocks can be moved eitheron the table, or on the top of
other blocks. Note that in this version of the Blocks World Problem more than one move
can be performed in parallel, at each step. Thus, we additionally require that a blockB1

cannot be moved on a blockB2 at timeT if alsoB2 is moved at timeT .
Assume that we want to compute legal sequences of moves – alsocalled plans – that

leads to the desired final state within thelastTimebound and that consists of the minimum
possible number of moves. We next describe a problem of abduction from logic programs
with penalizationP whose optimal solutions correspond to such good plans. In this case,
the observations encode the desired final configuration, while the hypotheses correspond to
all possible moves. Since we are interested in minimum-length plans, we assign a unitary
penalty to each move (hypothesis). Finally, the logic program has to determine the state of
the system after each move and detect possible illegal moves.



14 S. Perri, F. Scarcello, N. Leone

Consider an instance BWP of the Blocks World Problem. LetB = {b1, · · · , bn} be the
set of blocks andL = B ∪ {table} the set of possible locations.

The blocks of BWP are encoded by the set of atomsBlocks = {block(b1), . . . , block(bn)},
and the initial configuration is encoded by a setStartcontaining atoms of the formon(b, ℓ, 0),
meaning that, at time0, the blockb is on the locationℓ.

Then, letP = 〈H,P,O, γ〉. The set of hypothesesH = {move(b, ℓ, t) | b ∈ B, ℓ ∈

L, 0 ≤ t < lastTime} encodes all the possible moves, where an atommove(b̄, ℓ̄, t̄) means
that, at timēt, the blockb̄ is moved to the location̄ℓ. The set of observationsO contains
atoms of the formon(b, ℓ, lastTime), encoding the final desired stateGoal. The penalty
functionγ assigns1 to each atommove(b, ℓ, t) ∈ H . Moreover,P = facts(Blocks) ∪

facts(Start) ∪R, whereR is the following set of rules:

on(B, L, T1) :− move(B, L, T), T1 = T+ 1. (1)
on(B, L, T1) :− on(B, L, T), T1 = T+ 1, not moved(B, T). (2)
moved(B, T) :− move(B, , T). (3)

:− on(B, L, T), on(B, L1, T), L 6= L1. (4)
:− on(B1, B, T), on(B2, B, T), B2 6= B1, block(B). (5)
:− on(B, B, T). (6)
:− move(B, B1, T), move(B1, L, T). (7)
:− move(B, L, T), on(B1, B, T), B 6= B1. (8)

Note that the strong constraints inR discards models encoding invalid states and illegal
moves. For instance, Constraint 8 says that it is forbidden to move a blockB, if B is not
clear.

Rule 1 says that moving a blockB on a locationL at timeT causesB to be onL at
timeT + 1. Rule 2 represents theinertia of blocks, as it asserts that all blocks that are not
moved at some timeT remain in the same position at timeT + 1.

It is worthwhile noting that expressing suchinertia rulesis an important issue in knowl-
edge representation, and clearly shows the advantage of using logic programming, when
nonmotononic negation is needed.

For instance, observe that Rule 2 is very natural and intuitive, thanks to the use of nega-
tion in literal not moved(B, T). However, it is not clear how to express this simple rule –
and inertia rules in general – by using classical theories.3

Example 4.2
Consider a Blocks World instance where the initial configuration and the final desired state
are shown in figure 4, and the maximum number of allowed steps is 6. Therefore, the set
of observations of our abduction problem is{on(a, table, 6), on(b, a, 6), on(c, b, 6),
on(d, c, 6), on(e, d, 6), on(f, e, 6)}. The set of hypotheses contains all the possible
moves, that is

H = {move(a, table, 0), move(a, table, 1), · · · , move(f, d, 6), move(f, e, 6)}

3 In fact, there are some solutions to this problem for interesting special cases, such as settings where all actions
on all fluents can be specified (Reiter 1991). Also, in (McCainand Turner 1997), it is defined a nonmonotonic
formalism based on causal laws that is powerful enough to represent inertia rules (unlike previous approaches
based on inference rules only). A comprehensive discussionof the frame problem can be found in the book
(Shanahan 1997).
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Fig. 4. Blocks World

Each move has cost1.
In this case, the minimum number of moves needed for reachingthe final configu-

ration is six. An optimal solution is{move(a, table, 0), move(b, a, 1), move(c, b, 2),
move(d, c, 3), move(e, d, 4), move(f, e, 5)}. Note that the plan

{move(a, table, 0), move(c, table, 0), move(b, a, 1),

move(c, b, 2), move(d, c, 3), move(e, d, 4), move(f, e, 5)}

though legal, is discarded by the minimality criterion, because it consists of seven moves.

Finally, observe that the proposed framework of abduction from logic programs with
penalties allows us to represent easily different plan-optimization strategies. For instance,
assume that each block has a weight, and we want to minimize the total effort made for
reaching the goal. Then, it is sufficient to modify the penalty function in thePAPP above
as follows: for each hypothesismove(b, ℓ, t), let γ(move(b, ℓ, t)) = w, wherew is the
weight of the blockb.

5 Computational Complexity

In this section, we study the computational complexity of the main problems arising in the
framework of abduction with penalization from logic programs, both in the general case
and when some syntactical restrictions are placed on logic programs.

5.1 Preliminaries on Complexity Theory

For NP-completeness and complexity theory, the reader is referred to (Papadimitriou 1994).
The classesΣP

k ,Π
P
k and∆P

k of the Polynomial Hierarchy (PH) (cf. (Stockmeyer 1987))
are defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P and for allk ≥ 1,

∆P
k = PΣP

k−1 , ΣP
k = NPΣP

k−1 , ΠP
k = co-ΣP

k .

In particular,NP = ΣP
1 , co-NP = ΠP

1 , and∆P
2 = PNP. HerePC andNPC denote the

classes of problems that are solvable in polynomial time on adeterministic (resp. nonde-
terministic) Turing machine with an oracle for any problemπ in the classC. The oracle
replies to a query in unit time, and thus, roughly speaking, models a call to a subroutine
for π that is evaluated in unit time. The classDP

k contains all problems that consist of the
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conjunction of two (independent) problems fromΣP
k andΠP

k , respectively. In particular,
DP

2 is the class of problems that are the conjunction of anNP and a co-NP problem.
Notice that for allk ≥ 1,

ΣP
k ⊆ DP

k+1 ⊆ ∆P
k+1 ⊆ ΣP

k+1 ⊆ PSPACE,

where each inclusion is widely conjectured to be strict.
We are also interested in the complexity of computing solutions, and thus in classes of

functions. In particular, we consider the classFPNP, which is the class of functions corre-
sponding toPNP (∆P

2 ), and characterizing the complexity of many relevant optimization
problems, such as the TSP problem (Papadimitriou 1984; Papadimitriou 1994). Formally,
this is the class of all functions that can be computed by a polynomial-time deterministic
Turing transducer with an oracle inNP. Note that the only difference with the correspond-
ing class of decision problems is that deterministic Turingtransducers are equipped with
an output tape, for writing the result of the computation.

5.2 Complexity Results

Throughout this section, we consider problemsP = 〈H,P,O, γ〉 such thatP is a ground
program, unless stated otherwise.

Let Φ = {C1, . . . , Cn} be a CNF propositional formula over variablesX1, . . . , Xr,
denoted byvar(Φ). With eachXi ∈ var(Φ), 1 ≤ i ≤ r, we associate two atoms
xi, x̄i (denoted by lowercase characters), and an auxiliary atomassigned i, representing
the propositional variableXi, its negationnot Xi, and the fact that some truth value has
been assigned to it, respectively. Moreover, with each clauseC : ℓ1 ∨ · · · ∨ ℓm in Φ, we
associate a ruler(C) : contr :−negate(ℓ1), . . . , negate(ℓm), wherenegate(ℓ) = x̄, if
ℓ = X , andnegate(ℓ) = x, if ℓ = not X .

DefineP (Φ) as the constraint-free positive program containing the following rules:

r(Ci). 1 ≤ i ≤ n

inconsistent :−xj , x̄j . 1 ≤ j ≤ r

assigned j :−xj . 1 ≤ j ≤ r

assigned j :−x̄j . 1 ≤ j ≤ r

allAssigned :−assigned1, . . . , assignedr.

Let R be any set of rules whose heads are from
⋃r

i=1{xi, x̄i}. Note that, for any stable
modelM of P (Φ) ∪ R, allAssigned ∈ M and inconsistent /∈ M hold if and only if,
for eachX ∈ var(Φ), exactly one atom from{x, x̄} belongs toM . That is,M encodes a
truth-value assignment forΦ. Moreover,contr /∈M only if such a truth-value assignment
satisfies all clauses of the formulaΦ. In this case, we say thatΦ is satisfied byM .

On the other hand, given any truth-value assignmentT : var(Φ) → {true, false}, we
denote byat(T ) the set of atoms{x | X ∈ var (Φ) andT (X) = true} ∪ {x̄ | X ∈

var(Φ) andT (X) = false}. It can be verified easily that, ifT satisfiesΦ, thenP (Φ) ∪

facts(at(T )) has a unique stable model that containsallAssignedand contains neither
contrnor inconsistent.

The first problem we analyze is the consistency problem. Thatis the problem of deciding
whether aPAPhas some solution.
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Theorem 5.1
Deciding whether aPAPP = 〈H,P,O, γ〉 is consistent isNP-complete. Hardness holds
even ifP is a constraint-free positive program.

Proof
(Membership). We guess a set of hypothesesS ⊆ H and a set of ground atomsM , and
then check that (i)M is a stable model ofP ∪ facts(S), and (ii)O is true w.r.t.M . Both
these tasks are clearly feasible in polynomial time, and thus the problem is inNP.

(Hardness). We reduce SAT to the consistency problem. LetΦ be a CNF formula and
P (Φ) its corresponding logic program, as described above. Consider thePAP problem
〈H,P (Φ), O, γ〉, whereH = {x, x̄ | X ∈ var (Φ)}, O = {not contr , not inconsistent ,

allAssigned}, andγ is the constant function 0.
Let S be an admissible solution forP , that is, there is a stable modelM for P (Φ)

such thatallAssignedbelongs toM , and neithercontr nor inconsistentbelongs toM . As
observed above, this entails thatΦ is satisfied by the truth-assignment corresponding to
M , and in fact encoded by the set of hypothesesS. Moreover, ifΦ is satisfiable, there is
a truth-assignmentT that satisfies it. Then, it is easy to check thatat(T ) is an admissible
solution forP , since the unique stable model ofP (Φ)∪ facts(at(T )) containsallAssigned
and no atom in{contr , inconsistent}. Thus,Φ is satisfiable if and only ifP is consistent.
Finally, note thatP can be computed in polynomial time fromΦ, and thatP does not
contain negation or strong constraints.

We next focus on the problem of checking whether a given set ofatomsS is an ad-
missible solution for aPAPP = 〈H,P,O, γ〉. Observe that this task is clearly feasible
in polynomial time ifP is stratified, because in this case the (unique) stable model of
P ∪ facts(S) (if any, remember that strong constraints may occur inP ) can be computed
in polynomial time. It follows that this problem is easier than the consistency problem in
this restricted setting. However, we next show that it remainsNP-complete, in the general
case.

Theorem 5.2
Deciding whether a set of atoms is an admissible solution foraPAP isNP-complete.

Proof
(Membership). LetP = 〈H,P,O, γ〉 be aPAP andS a set of atoms. We guess a set of
ground atomsM , and then check that (i)M is a stable model ofP ∪ facts(S), and (ii)
O is true w.r.t.M . Both these tasks are clearly feasible in polynomial time, and thus the
problem is inNP.

(Hardness). We reduce SAT to the admissible solution problem. LetΦ be a CNF formula
over variables{X1, . . . , Xr}, andP (Φ) its corresponding logic program. Consider thePAP
problemP = 〈∅, P (Φ) ∪ G(Φ), O, γ〉, whereO = {not contr , not inconsistent}, γ is
the constant function 0, andG(Φ) contains two rulesx :−not x̄ andx̄ :−not x, for each
X ∈ var (Φ).

Let M be a stable model ofP (Φ) ∪ G(Φ). Because of the rules inG(Φ), for each
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pair of atomsx, x̄ occurring in it, eitherx or x̄ belongsM , and henceallAssigned, too.
Thus, these atoms encode a truth-assignmentT for Φ. Moreover, it is easy to check that
contr , inconsistent /∈ M only if this assignmentT satisfiesΦ. On the other hand, letT ′

be a satisfying truth-assignment forΦ, and letM ′ = at(T ′)∪ allAssigned ∪{assigned j |

1 ≤ j ≤ r}. Then,M ′ is a stable model ofP (Φ), andcontr , inconsistent /∈ M ′, that is,
all observations are true w.r.t.M ′.

Therefore,∅ is an admissible solution forP if and only if Φ is satisfiable. Note that
unstratified negation occurs inG(Φ).

It turns out that deciding whether a solution is optimal is both NP-hard and co-NP-
hard. However, this problem is not much more difficult than problems in these classes, as
we need to solve just anNP and a co-NP-problem, independent of each other.

Theorem 5.3

Deciding whether a set of atoms is an optimal solution for aPAP isDP
2 -complete.

Proof

(Membership). Let P = 〈H,P,O, γ〉 be aPAP and letS be a set of atoms. To prove
thatS is an optimal solution forP first check thatS is an admissible solution, and then
check there is no better admissible solution. The former task is feasible inNP, by Theorem
5.2. The latter is feasible in co-NP. Indeed, to prove that there is an admissible solution
better thanS, we guess a set of atomsS′ ⊆ H and a modelM for P , and then check in
polynomial time thatsumγ(S

′) < sumγ(S), M is a stable model ofP ∪ facts(S′), and
O is true w.r.t.M .

(Hardness). LetΦ1 andΦ2 be two CNF formulas, over disjoint sets of variables{X1, . . . , Xr}

and{X ′
1, . . . , X

′
v}. Deciding whetherΦ1 is satisfiable andΦ2 is not satisfiable is aDP

2 -
complete problem (Papadimitriou and Yannakakis 1984). LetP (Φ1) be the logic program
associated withΦ1, andGs(Φ1) a set of rules that contains, for eachx ∈ var (Φ1), two
rulesx :−not x̄, s and x̄ :−not x, s. Let P ′(Φ2) be the logic program associated with
Φ2, but for the atomscontr, inconsistent, andallAssigned, which are uniformly replaced
in this program bycontr ′, inconsistent ′, andallAssigned ′, respectively. Moreover, let
R be the set containing two rulesok :−not contr , not inconsistent , allAssigned and
ok :−not contr ′, not inconsistent ′, allAssigned ′. Then, defineP (Φ1,Φ2) as thePAP
problem〈H,P,O, γ〉, whereP = P (Φ1) ∪ Gs(Φ1) ∪ P ′(Φ2) ∪ R, H = {s} ∪ {x′, x̄′ |

X ′ ∈ var (Φ2)}, O = {ok}, and the penalty functionγ is defined as follows:γ(s) = 1

andγ(h) = 0, for any other hypothesish ∈ H − {s}.
We claim thatΦ1 is satisfiable andΦ2 is not satisfiable if and only if{s} is an optimal

solution forP (Φ1,Φ2).
(Only if). Assume thatΦ1 is satisfiable andΦ2 is not satisfiable, and letT1 be a satisfying

truth-value assignment forΦ1. Moreover, letM = {at(T1) ∪ {assigned j | 1 ≤ j ≤

r}∪{s, allAssigned , ok}. Then,M is a stable model ofP ∪ facts({s}) and thus{s} is an
admissible solution forP (Φ1,Φ2), and its cost is1, asγ(s) = 1, by definition. Note that
the only way to reduce the cost to0 is by finding a set of hypotheses that do not contains,
and is able to derive the observationok. From the rules inR, this means that we have to
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find a subset of{x′, x̄′ | X ′ ∈ var(Φ2)}, which encodes a satisfying truth assignment for
Φ2. However, this is impossible, becauseΦ2 is not satisfiable, and thus{s} is optimal.

(If). Assume that{s} is an optimal solution forP (Φ1,Φ2). Its cost is1, becauseγ(s) =
1. Note that any set of hypothesesS′ that encodes a satisfying truth-value assignment
for Φ2 and does not contains is an admissible solution forP (Φ1,Φ2), and has cost0.
It follows that Φ2 is not satisfiable, as we assumed{s} is an optimal solution. There-
fore, by definition ofR, the only way to derive the atomok is through the ruleok :

−not contr , not inconsistent , allAssigned . Since{s} is also an admissible solution, we
conclude that there is a stable modelM that containsallAssigned, and no atom from
{inconsistent , contr}. That is,M encodes a satisfying truth assignment forΦ1.

If unstratified negation does not occur in logic programs, welose a source of complexity,
as checking whether a solution is admissible is easy. In fact, we show below that, in this
case, the optimality problem becomes co-NP-complete.

Theorem 5.4
Let P = 〈H,P,O, γ〉 be aPAP, whereP is a stratified program. Deciding whether a set
of atomsS is an optimal solution forP is co-NP-complete. Hardness holds even ifP is a
constraint-free positive program.

Proof
(Membership). Recall that checking whether a solutionS is admissible is feasible in poly-
nomial time if P is stratified. Thus, we have to check only that there is no admissible
solution better thanS, and this task is in co-NP, as shown in the proof of Theorem 5.3.

(Hardness). Let Φ be a CNF formula,P (Φ) its corresponding logic program, andR be
the set containing two rulesok :−s andok :−allAssigned . Then, defineP (Φ) as the
PAP problem〈H,P,O, γ〉, whereP = P (Φ) ∪ R, H = {s} ∪ {x, x̄ | X ∈ var (Φ)},
O = {ok , not contr , not inconsistent}, and the penalty functionγ is defined as follows:
γ(s) = 1 andγ(h) = 0, for any other hypothesish ∈ H − {s}.

We claim thatΦ is not satisfiable if and only if{s} is an optimal solution forP (Φ).
(Only if). Assumeφ is not satisfiable. Then, there is no way of choosing a set of hypothe-

ses that contains neithercontrnor inconsistentand, furthermore, containsallAssignedand
henceok, but nots. It follows that the minimum cost for admissible solutions is 1. More-
over, note that{s} is an admissible solution forP (Φ), its cost is1, and thus it is also
optimal.

(If). Let {s} be an optimal solution forP (Φ) and assume, by contradiction, thatΦ is
satisfiable. Then there is a set of hypothesesS ⊆ H − {s} that encodes a satisfying truth-
value assignment forΦ and has cost0. However, this contradicts the fact that the solution
{s}, which has cost1, is optimal.

We next determine the complexity of deciding the relevance of an hypothesis.

Theorem 5.5
Deciding whether an hypothesis is relevant for aPAPP = 〈H,P,O, γ〉 is ∆P

2 -complete.
Hardness holds even ifP is a constraint-free positive program.
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Proof
(Membership). Let P = 〈H,P,O, γ〉 be aPAP and leth ∈ H be a hypothesis. First
we compute the maximum valuemax that the functionsumγ may return over all sets
H ′ ⊆ H . Note thatmaxis polynomial-time computable fromP , becauseγ is a polynomial-
time computable function. It follows that its size|max | = logmax is O(|P|k), for some
constantk ≥ 0, because the output size of a polynomial-time computable function is
polynomially-bounded, as well.

Then, by a binary search on[0,max ], we compute the costc of the optimal solutions
for P : at each step of this search, we are given a thresholds and we call anNP oracle to
know whether there exists an admissible solution belows. After, logmax steps at most,
this procedure ends, and we get the valuec. Finally, we ask anotherNP oracle whether
there exists an admissible solution containingh and whose cost isc. Note that the number
of steps and hence the number of oracle calls is polynomial inthe input size, and thus
deciding whetherh is relevant is in∆P

2 .

(Hardness). We reduce the∆P
2 -complete problem of deciding whether a TSP instance

I has a unique optimal tour (Papadimitriou 1984) to the relevance problem for thePAP
P = 〈H, γ, P,O〉, defined below, whose optimal solutions encode, intuitively, pairs of
optimal tours. The set of hypotheses isH = {c(i, j), c′(i, j) | 1 ≤ i, j ≤ n}∪{heq, hdiff },
wherec(i, j) (resp.,c′(i, j)) says that the salesman visits cityj immediately after cityi,
according to the tour encoded by the atoms with predicatec (resp.,c′). Moreover, the
special atomsheq andhdiff encode the hypotheses that such a pair of tours represents in
fact a unique optimal tour, or two distinct tours.

For each pair of citiesci, cj , the penalty functionγ encodes the cost functionw of
travelling fromci to cj , that is,γ(c(i, j)) = w(i, j) andγ(c′(i, j)) = w(i, j). Moreover,
for the special atoms, defineγ(heq) = 1 andγ(hdiff ) = 0.5.

The programP , shown below, is similar to the TSP encoding described in Section 4.1:

(1) visited(I) :− visited(J), c(J, I).

(2) visited(1) :− c(J, 1).

(3) badTour :− c(I, J), c(I,K), J 6= K.

(4) badTour :− c(J, I), c(K, I), J 6= K.

(1′) visited′(I) :− visited′(J), c′(J, I).

(2′) visited′(1) :− c′(J, 1).

(3′) badTour :− c′(I, J), c′(I,K), J 6= K.

(4′) badTour :− c′(J, I), c′(K, I), J 6= K.

(5) diff :− c(I, J), c′(I,K), J 6= K.

(6) ok :− heq.

(7) ok :− hdiff , diff .

The observations areO = {ok , not badTour} ∪ {visited(i), visited ′(i) |≤ i ≤ n}.
Note that every admissible solutionS for P encodes two legal tours forI, through

atoms with predicatesc andc′. Moreover,S contains eitherheq or hdiff , in order to derive
the observationok . Furthermore, ifS is optimal, then at most one of these special atoms
belongs toS, because one is sufficient to getok . However, if the chosen atom ishdiff , ok
is derivable only ifdiff is true, i.e., the two encoded tours are different, by rule (5).
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Let tmin be the cost of an optimal tour ofI. Then, the best admissible solutionS such
thatheq ∈ S has cost2tmin + 1, because it should contain the hypotheses encoding two
(possibly identical) optimal tours ofI, and the atomheq.

We show that there is a unique optimal tour forI if and only if heq is a relevant hypoth-
esis forP .

(Only if). LetT be the unique optimal tourT for I, andS the admissible solution forP
such thatheq ∈ S and both the atoms with predicatec and those with predicatec′ encode
the tourT . Then,S is an optimal solution, because any admissible solutionS′ that does
not containheq should contain bothhdiff anddiff . SinceT is the unique optimal tour, any
other legal tourT ′ has costtmin+1, at least. Hence,sumγ(S

′) ≥ tmin+(tmin+1)+0.5 >

sumγ(S). Thus,heq is relevant forP , because belongs to the optimal solutionS.
(If ). If heq is relevant forP , there is an optimal solutionS such thatheq ∈ S. Recall that

sumγ(S) = 2tmin + 1. Assume by contradiction that there are two distinct optimal tours
T andT ′ for I, and letS′ be an admissible solution such that: its atoms with predicates
c andc′ encode the distinct toursT andT ′, and bothdiff andhdiff belong toS′. Then,
sumγ(S

′) = 2tmin + 0.5 < sumγ(S), a contradiction.
Finally, note thatP is constraint-free positive program, and bothP and its ground in-

stantiation can be computed in polynomial time from the instanceI.

Not surprisingly, the necessity problem has the same complexity as the relevance prob-
lem.

Theorem 5.6
Deciding whether an hypothesis is necessary for aPAPP = 〈H,P,O, γ〉 is∆P

2 -complete.
Hardness holds even ifP is a constraint-free positive program.

Proof
(Membership). LetP = 〈H,P,O, γ〉 be aPAPand leth ∈ H be a hypothesis. We compute
the costc of the optimal solutions forP , as shown in the proof of Theorem 5.5. Finally, we
ask anNP oracle whether there exists an admissible solution whose cost isc, and does not
containh. If the answer is no, thenh is a necessary hypothesis. Clearly, even in this case,
a polynomial number of calls toNP oracle suffices, and thus the problem is in∆P

2 .

(Hardness). LetI be a TSP instance andP thePAPdefined in the proof of Theorem 5.5.
Note that the same reasoning as in the above proof shows thatI has a unique optimal tour
if and only if heq is a necessary hypothesis forP .

Theorem 5.7
Computing an optimal solution for aPAPP = 〈H,P,O, γ〉 is FPNP-complete. Hardness
holds even ifP is a constraint-free positive program.

Proof
(Membership). Let M be a deterministic Turing transducerM with oracles inNP that
act as follows. First,M checks inNP whetherP is consistent, as shown in the proof
of Theorem 5.1. If this not the case, thenM halts and writes on its output tape some
special symbol encoding the fact thatP is inconsistent. Otherwise,M computes with a
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polynomial number of steps the valuec of the optimal solutions forP , as shown in the
proof of Theorem 5.5. Now, consider the following oracleO: given a set of hypothesesS,
decide whether there is an admissible solution forP whose cost isc. It is easy to see thatO
is inNP (we describe a very similar proof in the membership part of the proof of Theorem
5.2).

The transducerM maintains in its worktape (the encoding of) a set of hypothesesS,
which is initialized with∅. Then, for each hypothesesh ∈ H , M calls the oracleO with
inputS ∪ {h}. If the answer is yes, thenM writesh on the output tape and addsh to the
setS. Otherwise,S is not changed, andM proceeds with the next candidate hypothesis. It
follows that, after|H | of these steps, the output tape encodes an optimal solution of P .

(Hardness). Immediately follows from our encoding of the TSP problem shown in Section
4.1, and the fact that this problem isFPNP-complete (Papadimitriou 1994).

6 Implementation Issues

In this section, we describe the implementation of a system supporting our formal model
of abduction with penalties over logic programs. The systemhas been implemented as a
front-end for theDLV system. Our implementation is based on a translation from such
abduction problems to logic programs with weak constraints(Buccafurri et al. 2000), that
we show to be both sound and complete. We next describe the architecture of the prototype.
We then briefly recall Logic Programming with Weak Constraints (the target language of
our translation), define precisely our translation algorithm and prove its correctness.

6.1 Architecture

Figure 5 shows the architecture of the new abduction front-end for theDLV system, which
implements the framework of abduction with penalization from logic programs, and is al-
ready incorporated in the current release ofDLV (available at theDLV homepagewww.dlvsystem.com).

Fig. 5. System Architecture

A problem of abduction inDLV consists of three separate files encoding the hypotheses,
the observations, and the logic program. The first two files have extensions.hyp and
.obs, respectively, while no special extension is required for the logic-program file. The
abduction with penalization front-end is enabled through the option-FDmincost. In this
case, from the three files above, the Abduction-Rewriting module builds a logic program
with weak constraints, and runDLV for computing a best modelM of this logic program.
Then, the Stable-Models-to-Abductive-Solutions module extracts an optimal solution from
the modelM .

www.dlvsystem.com
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For instance, consider the network problem in Example 3.2, and assume that the facts
encoding the hypotheses are stored in the filenetwork.hyp , the facts encoding the ob-
servations are stored in the filenetwork.obs, and the logic program is stored in the file
netwok.dl. Then, the user may obtain an optimal solution for this problem by running:
dlv -FDmincost network.dl network.hyp network.obs

By adding option-wctrace the system prints also the (possibly not optimal) solutions
that are found during the computation. This option is usefulto provide some solution to the
user as soon as possible. Note that the “quality” of the solutions increases monotonically
(i.e., the cost decreases), and the system gradually converges to optimal solutions.

Note that the current release deals with integer penalties only; however, it can be ex-
tended easily to real penalties.

6.2 Logic Programming with Weak Constraints

We first provide an informal description of the LPw language by examples, and we then
supply a formal definition of the syntax and semantics of LPw.

6.2.1 LPw by Examples

Consider the problem SCHEDULING, consisting in the scheduling of course examina-
tions. We want to assign course exams to time slots in such a way that no couple of ex-
ams are assigned to the same time slot if the corresponding courses have some student in
common – we call such courses “incompatible”. Supposing that there are three time slots
available,ts1, ts2 andts3, we express the problem in LPw by the following program
Psch:

r1 : assign(X, ts1) :− course(X), not assign(X, ts2), not assign(X, ts3).

r2 : assign(X, ts2) :− course(X), not assign(X, ts1), not assign(X, ts3).

r3 : assign(X, ts3) :− course(X), not assign(X, ts1), not assign(X, ts2).

s1 : :− assign(X, S), assign(Y, S), commonStudents(X, Y, N).

Here we assumed that the courses and the pair of courses with common students are
specified by input facts with predicatecourse andcommonStudents, respectively. In par-
ticular,commonSudents(a, b, k) means that there arek > 0 students who should attend
both coursea and courseb. Rulesr1, r2 andr3 say that each course is assigned to one of the
three time slotsts1, ts2 orts3; the strong constraints1 expresses that no two courses with
some student in common can be assigned to the same time slot. In general, the presence of
strong constraints modifies the semantics of a program by discarding all models which do
not satisfy some of them. Clearly, it may happen that no modelsatisfies all constraints. For
instance, in a specific instance of above problem, there could be no way to assign courses
to time slots without having some overlapping between incompatible courses. In this case,
the problem does not admit any solution. However, in real life, one is often satisfied with
an approximate solution, in which constraints are satisfiedas much as possible. In this
light, the problem at hand can be restated as follows (APPROXSCHEDULING): “assign
courses to time slots trying to avoid overlapping courses having students in common.” In
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order to express this problem we introduce the notion ofweakconstraint, as shown by the
following programPa sch:

r1 : assign(X, ts1) :− course(X), not assign(X, ts2)not assign(X, ts3).

r2 : assign(X, ts2) :− course(X), not assign(X, ts1)not assign(X, ts3).

r3 : assign(X, ts3) :− course(X), not assign(X, ts1)not assign(X, ts2).

w1 : :∼ assign(X, S), assign(Y, S), commonStudents(X, Y,N).

From a syntactical point of view, a weak constraint is like a strong one where the impli-
cation symbol:− is replaced by:∼. The semantics of weak constraints minimizes the
number of violated instances of constraints. An informal reading of the above weak con-
straintw1 is: “preferably, do not assign the coursesX andY to the same time slot if they are
incompatible”. Note that the above two programsPsch andPa sch have exactly the same
preferred models if all incompatible courses can be assigned to different time slots (i.e., if
the problem admits an “exact” solution).

In general, the informal meaning of a weak constraint, say,:∼ B., is “try to falsify B” or
“B is preferably false”, etc. Weak constraints are very powerful for capturing the concept
of “preference” in commonsense reasoning.

Since preferences may have, in real life, different “importance”, weak constraints in
LPw can be supplied with different weights, as well.4 For instance, consider the course
scheduling problem: if overlapping is unavoidable, it would be useful to schedule courses
by trying to reduce the overlapping “as much as possible”, i.e. the number of students
having some courses in common should be minimized. We can formally represent this
problem (SCHEDULING WITH WEIGHTS) by the following programPw sch:

r1 : assign(X, ts1) :− course(X), not assign(X, ts2)not assign(X, ts3).

r2 : assign(X, ts2) :− course(X), not assign(X, ts1)not assign(X, ts3).

r3 : assign(X, ts3) :− course(X), not assign(X, ts1)not assign(X, ts2).

w1 : :∼ assign(X, S), assign(Y, S), commonStudents(X, Y,N). [N :]

The preferred models (calledbest models) of the above program are the assignments of
courses to time slots that minimize the total number of “lost” lectures.

6.2.2 Syntax and Semantics

A weak constrainthas the form

:∼ L1, · · · , Lm. [w :]

where eachLi, 1 ≤ i ≤ m, is a literal andw is a term that represents theweight.5 In
a ground (or instantiated) weak constraint,w is a nonnegative integer. If the weightw is
omitted, then its value is 1, by default.

4 Note that weights are meaningless for strong constraints, since all of themmustbe satisfied.
5 In their general form, weak constraints are labelled by pairs [w : ℓ], wherew is a weight andℓ is a priority level.

However, in this paper we are not interested in priorities and we thus describe a simplified setting, where we
only deal with weights.
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An LPw programP is a finite set of rules and constraints (strong and weak). IfP does
not contain weak constraints, it is called anormal logic program.

Informally, the semantics of an LPw programP is given by the stable models of the set
of the rules ofP satisfying all strong constraints and minimizing the sum ofweights of
violated weak constraints.

Let R, S, andW be the set of ground instances of rules, strong constraints,and weak
constraints of an LPw programP , respectively. Acandidate modelof P is a stable model
of R which satisfies all strong constraints inS. A weak constraintc is satisfied inI if some
literal of c is false w.r.t.I.

We are interested in those candidate models that minimize the sum of weights of vio-
lated weak constraints. More precisely, given a candidate modelM and a programP , we
introduce an objective functionHP(M), defined as:

HP(M) =
∑

c∈ViolatedP
M

weight(c)

whereViolatedP
M = { c ∈ W | c is a weak constraint violated byM } andweight(c)

denotes the weight of the weak constraintc. A candidate modelM of P is abest modelof
P ifHP(M) is the minimum over all candidate models of P.

As an example, consider the following programPs:

a :− c, not b. :∼ a, c. [1 :]

c. :∼ b. [2 :]

b :− c, not a. :∼ a. [1 :]

:∼ b, c. [1 :]

The stable models for the set{ c. a :− c, not b. b :− c, not a.} of ground rules of this
example areHPs

(M1) = {a, c} andHPs
(M2) = {b, c}, they are also the candidate

models, since there is no strong constraint. In this case,HPs
(M1) = 2, andHPs

(M2) = 3.
SoM1 is preferred overM2 (M1 is a best model ofPs).

6.3 From Abduction with Penalization to Logic Programming with Weak Constraints

Our implementation of abduction from logic programs with penalization is based on the
algorithm shown in Figure 6, which transforms aPAPP into a logic program LPw(P)
whose stable models correspond one-to-one to abductive solutions ofP .

We illustrate this algorithm by an example.

Example 6.1
Consider again theNetwork Diagnosisproblem described in Example 3.2. The translation
algorithm constructs an LPw programQ. First,Q is initialized with the logic program
P . Therefore, after Step 1,Q consists of the set of facts encoding the network and of the
following rules:

reaches(X, X) :− node(X), not offline(X).
reaches(X, Z) :− reaches(X, Y), connected(Y, Z), not offline(Z).

Then, in the loop 3-5, the following groups of rules and weak constraints are added toQ.
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Input: A PAPP=〈H,P,O, γ〉.
Output: A logic program with weak constraints LPw(P).

Function AbductionToLPw(P : PAP) : LPw

var i, j: Integer;
Q : LPw;

begin
(1) Q:= P ;
(2) LetH = 〈h1, . . . , hn〉;
(3) for i := 1 to n do
(4) add toQ the following three clauses

(4.a) hi :− sol(i) .
(4.b) sol(i) :−not nsol(i) .

nsol(i) :−not sol(i) .
(4.c) :∼ hi [γ(hi) :].

(5) end for
(6) LetO = {o1, . . . , om};
(7) for j := 1 to m do
(8) if oj is a positive literal “a”
(9) then add toQ the constraint:−¬ a .

(10) else (∗ oj is a negative literal “¬ a” ∗)
(11) add toQ the constraint:−a .

(12) end for
(13) return Q;
end

Fig. 6. Translating aPAPP into a logic program LPw(P)

Input: A stable modelM of LPw(P), whereP is 〈H,P,O, γ〉.
Output: A solution ofP .

Function ModelToAbductiveSolution(M : AtomsSet ): AtomsSet
var S : AtomsSet;
begin

return H ∩M ;
end

Fig. 7. Extracting a solution ofP from a stable model of LPw(P)

At Step 4.a:

offline(a) :− sol(1). offline(b) :− sol(2). · · · offline(f) :− sol(6).

At Step 4.b:

sol(1) :−not nsol(1). sol(2) :−not nsol(2). · · · sol(6) :−not nsol(6).
nsol(1) :−not sol(1). nsol(2) :−not sol(2). · · · nsol(6) :−not sol(6).

At Step 4.c:
:∼ offline(a). [γ(offline(a)) :]
:∼ offline(b). [γ(offline(b)) :]
· · ·
:∼ offline(f). [γ(offline(f)) :]
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The above rules select a set of hypotheses as a candidate solution, and the weak con-
straints are weighted according to the hypotheses penalties. Thus, weak constraints allow
us to compute the abductive solutions minimizing the sum of the hypotheses penalties, that
is, the optimal solutions.

Finally, to take into account the observations, the following constraints are added toQ
in the loop 7-12:

:− not offline(a).
:− not offline(e).
:− not reaches(a, e).

This group of (strong) constraints is added toQ in order to discard stable models that do
not entail the observations.

Note that, since in this example all observations are positive literals, Step 11 is never
executed.

The logic program LPw(P) computed by this algorithm is then evaluated by theDLV

kernel, which computes its stable models. For each modelM found by the kernel, the
ModelToAbductiveSolution function (shown in Figure 7) is called in order to extract the
abductive solution corresponding toM .

The next theorem states that our strategy is sound and complete. For the sake of presen-
tation, its proof is reported in Appendix Appendix A.

Theorem 6.2
(Soundness) For each best modelM of LPw(P), there exists an optimal solutionA for P
such thatM ∩H = A.
(Completeness) For each optimal solutionA of P , there exists a best modelM of LPw(P)

such thatM ∩H = A.

7 Related Work

Our work is evidently related to previous studies on semantic and knowledge representation
aspects of abduction over logic programs (Kakas and Mancarella 1990b; Lifschitz and Turner 1994;
Kakas et al. 2000; Denecker and De Schreye 1998; Lin and You 2002), that faced the main
issues concerning this form of non-monotonic reasoning, including detailed discussions on
how such a formalism may be used effectively for knowledge representation – for a nice
survey, see (Denecker and Kakas 2002).

However, all these works concerning abduction from logic programs do not deal with
penalties. The present paper focuses on this kind of abductive reasoning from logic pro-
grams, and our computational complexity analysis extends and complements the previous
studies on the complexity of abductive reasoning tasks (Eiter and Gottlob 1995; Eiter et al. 1997).

The optimality criterion we use in this paper for identifying the best solutions (or expla-
nations) is the minimization of the sum of the penalties associated to the chosen hypothe-
ses. Note that this is not the only way of preferring some abductive solutions over others. In
fact, the traditional approach, also considered in the above mentioned papers, is to look for
minimal solutions (according to standard set-containment). From our complexity results
and from the results presented in (Eiter et al. 1997), it follows that the (set) minimal expla-
nation criterion is more expensive than the one based on penalties, from the computational
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point of view. Moreover, this kind of weighted preferences has been recognized as a very
important feature in real applications. Indeed, in many cases where quantitative informa-
tion plays an important role, using penalties can be more natural than using plain atoms and
then studying some clever program such that minimal solutions correspond to the intended
best solutions. As a counterpart, if necessary, in the minimal-explanations framework we
can represent some problems belonging to high complexity classes that cannot be repre-
sented in the penalties framework. It follows that the two approaches are not comparable,
and the choice should depend on the kind of problem we have to solve.

Another possible variation concerns the semantics for logic programs, which should
not be necessarily the stable model semantics. For instance, in (Pereira et al. 1991), a
form of hypothetical reasoning is based on the well-foundedsemantics. In some pro-
posals, the semantics is naturally associated to a particular optimality criterion, as for
(Inoue and Sakama 1999), where the authors consider prioritized programs under the pre-
ferred answer set semantics.

A similar optimization criterion is proposed for the logic programs with consistency-
restoring rules (cr-rules) described in (Balduccini and Gelfond 2003). Such rules may con-
tain preferences and are used for making a give program consistent, if no answer set can
be found. Firing some of these rules and hence deriving some atoms from their heads cor-
responds in some way to the hypotheses selection in abductive frameworks. Indeed, the
semantics of this language is based on a transformation of the given program with cr-rules
into abductive programs.

Such optimization criteria induce partial orders among solutions, while we have a total
order, determined by the sum of penalties. We always have theminimum cost and the
solutions with this cost constitute the equivalence class of optimal solutions. Note that
even these frameworks are incomparable with our approach based on penalties, and which
approach is better just depends on the application one is interested in.

Since we provide also an implementation of the proposed framework, our paper is also
related to previous work on abductive logic programmingsystems (Van Nuffelen and Kakas 2001;
Kakas et al. 2001). More links to systems and to some interesting applications of abduction-
based frameworks to real-world problems can be found at the web page (Toni 2003).

We remark that we are not proposing an algorithm for solving optimizations problems.
Rather, our approach is very general and aims at the representation of problems, even of
optimization problems, in an easy and natural way through the combination of abduction,
logic programming, and penalties. It is worthwhile noting that our rewriting procedure into
logic programs with weak constraints (or similar kind of logic programs) is just a way
for having a ready-to-use implementation of our language, by exploiting existing systems,
such asDLV (Eiter et al. 1998; Leone et al. 2002) orsmodels(Niemelä and Simons 1997;
Simons et al. 2002). Differently, operations research is completely focused on finding so-
lutions to optimization problems, regardless of representational issue. In this respect, it is
worthwhile noting that, in principle, one can also use techniques borrowed from operations
research for computing our abductive solutions (e.g., by using integer programming).

A second point is that in the operations research field one canfind algorithms specifically
designed for solving, e.g., only TSP instances, or even onlysome particular TSP instances
(Gutin and Punnen 2002). It follows that our general approach is not in competition with
operations research algorithms. Rather, such techniques can be exploited profitably for
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computing abductive solutions, if we know that the programsunder consideration are used
for representing some restricted class of problems.

8 Conclusion

We have defined a formal model for abduction with penalization from logic programs.
We have shown that the proposed formalism is highly expressive and it allows to encode
relevant problems in an elegant and natural way. We have carefully analyzed the compu-
tational complexity of the main problems arising in this abductive framework. The com-
plexity analysis shows an interesting property of the formalism: “negation comes for free”
in most cases, that is, the addition of negation does not cause any further increase to the
complexity of the abductive reasoning tasks (which is the same as for positive programs).
Consequently, the user can enjoy the knowledge representation power of nonmonotonic
negation without paying high costs in terms of computational overhead.

We have also implemented the proposed language on top of theDLV system. The im-
plemented system is already included in the currentDLV distribution, and can be freely
retrieved fromDLV homepagewww.dlvsystem.com for experiments.

It is worthwhile noting that our system is not intended to be aspecialized tool for solving
optimization problems. Rather, it is to be seen as a general system for solving knowledge-
based problems in a fully declarative way. The main strengthof the system is its high-level
language, which, by combining logic programming with the power of cost-based abduc-
tion, allows us to encode many knowledge-based problems in asimple and natural way. Ev-
idently, our system cannot compete with special purpose algorithms for, e.g., the Travelling
Salesman Problem; but it could be used for experimenting with nonmonotonic declarative
languages. Preliminary results of experiments on theTravelling Salesman Problemand on
theStrategic Companies Problem(see Section 4) show that the system can solve also in-
stances of a practical interest (with more than 100 companies for Strategic Companies and
30 cities for Travelling Salesman).
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Appendix A Proof of Theorem 6.2

In this appendix, we prove that the rewriting approach described in Section 6 is sound and
complete.

First, we recall an important result on themodularityproperty of logic programs under
the stable model semantics, proved in (Eiter et al. 1997).

LetP1 andP2 be two logic programs. We say thatP2 potentially usesP1 (P2 ✄ P1) iff
each predicate that occurs in some rule head ofP2 does not occur inP1.

Moreover, given a set of atomsM and a programP , we denote byM |P the set of all
atoms fromM that occur inP , i.e.,M |P = M ∩BP .

Proposition Appendix A.1
(Eiter et al. 1997) LetP = P1 ∪ P2 be a logic program such thatP2 potentially usesP1.
Then,

(i) for everyM ∈ SM (P ), M |P1
∈ SM (P1);

(ii) SM (P ) =
⋃

M∈SM (P1)
SM (P2 ∪ facts(M)).

Lemma 1
LetP = P1 ∪P2 be a logic program such thatP = P1 ∪ P2 andP2 ✄P1. Then, for every
M ∈ SM (P ), M |P2

is a stable model forP2 ∪ facts(M |P1
∩BP2

).

Proof
From Proposition Appendix A.1 (ii), it follows that there existsM1 ∈ SM (P1) such that
M ∈ SM (P2 ∪ facts(M1)). We claim thatM1 = M |P1

.
(M1 ⊆M |P1

). Immediately follows from the fact thatM1 ⊆M , becauseM ∈ SM (P2 ∪

facts(M1)).
(M |P1

⊆ M1). Suppose by contradiction that there exists an atoma ∈ M such that
a ∈ M |P1

but a /∈ M1. It follows thata is not defined inP1 and thus there exists some
ruler of P2 havinga in its head. However, this is impossible, as we assumed thatP2 ✄P1.
Contradiction.

http://www-lp.doc.ic.ac.uk/UserPages/staff/ft/Abduction.html
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Thus,M is a stable model ofP2 ∪ facts(M |P1
). Let A = M |P1

∩ BP2
andX =

M |P1
− A; whence,facts(M |P1

) = facts(A) ∪ facts(X). Note thatX contains all and
only the atoms ofM not occurring inP2. Therefore, it is easy to see thatM −X is a stable
model forP2 ∪ (facts(M |P1

) − facts(X)), which is equal toP2 ∪ facts(A). Moreover,
observe thatM −X = M |P2

, and thus we getM |P2
∈ SM (P2 ∪ facts(A)).

For the sake of presentation, we assume hereafter a givenPAPproblemP = 〈H,P,O, γ〉

is fixed, and let LPw(P) = P ∪ Phyp ∪ Pobs be the program computed by the function
AbductionToLPw(P), wherePhyp is the set of rules and weak constraints obtained by ap-
plying steps (3)-(5), andPobs is the set of strong constraints obtained by applying steps
(7)-(12).

Lemma 2

For each stable modelM of LPw(P),

(a) there exists an admissible solutionA for P such thatM ∩H = A, and

(b) sumγ(A) = HP(M).

Proof

(Part a).To show thatM ∩H is an admissible solution forP we have to prove that there
exists a stable modelM ′ of P ∪ facts(M ∩H) such that,∀o ∈ O, o is true w.r.tM ′.

Let M ′ = M |P . Note thatM ′ is the set of literals obtained fromM by eliminating all
the literals with predicate symbolsol and nsol, i.e.M ′ is the set of literals without all
atoms which were introduced by the translation algorithm.

Note thatP potentially usesPhyp. Thus, from Lemma 1,M |P is a stable model for
P ∪ facts(C), whereC = M |Phyp

∩BP and henceC = M ∩H , because only hypothesis
atoms fromPhyp occur inBP .

Finally, observe that each observation inO is true w.r.tM ′. Indeed, sinceM is a stable
model for LPw(P), all the constraints contained inP |obs must be satisfied byM . More-
over,M andM ′ coincide on all atoms occurring in these constraints. Thus,all constraints
contained inPobs are satisfied byM ′, too.
(Part b). By construction of LPw(P), all weak constraints occurring in this program in-
volve hypotheses ofP . In particular, observe that any weak constraint:∼ h [γ(h) :] is
violated byM iff h belongs toM . SinceA = M ∩ H , h belongs toA, as well, and its
penalty is equal to the weight of the weak constraint. It follows thatsumγ(A) = HP(M).

Lemma 3

For each admissible solutionA of P ,

(a) there exists a stable modelM of LPw(P) such thatM ∩H = A, and

(b) HP(M) = sumγ(A).
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Proof
(Part a). By Definition 3.1, there exists a stable modelM ′ = M ′′ ∪ A of P ∪ facts(A),
whereM ′′ ∩A = ∅, such that,∀o ∈ O, o is true w.r.t.M .

LetMH = { sol(i) | hi ∈ A} ∪ { nsol(j) | hj /∈ A}.
Moreover, letP ′ = P ∪ facts(MH ∪ A). Note thatP ′ can also be written as the union

of the programsP ∪ facts(A) andfacts(MH). Since these two programs are completely
disjoint, i.e., the intersection of their Herbrand bases isthe empty set, then the union of
their stable modelsM ′ andMH , sayM , is a stable model ofP ′.

Now, consider the programP ∪ Phyp, and observe thatP ✄ Phyp, and thatMH ∪ A

is a stable model forPhyp. Then, by Proposition Appendix A.1, any stable model of the
programP ′ is a stable model ofP ∪ Phyp. Thus, in particular,M = M ′ ∪MH is a stable
model ofP ∪ Phyp.

Moreover, it is easy to see that all constraints inPobs are satisfied byM , and thusM ∈
SM (LPw(P)), too. Finally,M can be written asM ′′ ∪ A ∪MH , and henceM ∩H = A

holds, by definitions ofM ′′ andMH .
(Part b).Let h be any hypothesis belonging toA and hence contributing to the cost of this
solution. Note that LPw(P) contains the weak constraint:∼ h [γ(h) :], weighted byγ(h)
and violated byM , ash ∈M . It follows thatHP(M) = sumγ(A).

Theorem 6.2
(Soundness) For each best modelM of LPw(P), there exists an optimal solutionA for P
such thatM ∩H = A.
(Completeness) For each optimal solutionA of P , there exists a best modelM of LPw(P)

such thatM ∩H = A.

Proof
(Soundness).Let M be a best model of LPw(P). From Lemma 2,A = M ∩ H is an
admissible solution forP , andsumγ(A) = HP(M). It remains to show thatA is optimal.

By contradiction, assume thatA is not optimal. Then, there exists an admissible solution
A′ for P such thatsumγ(A

′) < sumγ(A). By virtue of Lemma 3, we have that there
exists a stable modelM ′ for LPw(P) such thatM ′ ∩H = A′ andHP(M

′) = sumγ(A
′).

However, this contradicts the hypothesis thatM is a best model for LPw(P).
(Completeness).LetA be an optimal solution forP . By virtue of Lemma 3, there exists

a stable modelM for LPw(P) such thatM ∩H = A andHP(M) = sumγ(A). We have
to show thatM is a best model.

Assume thatM is not a best model. Then, there exists a stable modelM ′ for LPw(P)

such thatHP(M
′) < HP(M). By Lemma 2, there exists an admissible solutionA′ for

P such thatM ′ ∩ H = A′ andsumγ(A
′) = HP(M

′). However, this contradicts the
hypothesis thatA is an optimal solution forP .

Appendix B A Logic Program for the Travelling Salesman Problem

In this section we describe how to represent the Travelling Salesman Problem in logic
programming.

Suppose that the cities are encoded by a set of atoms{city(i) | 1 ≤ i ≤ n} and that
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the intercity traveling costs are stored in a relationC(i, j, v)wherev = w(i, j). In abuse of
notation, we simply refer to the numbern of cities (which is provided by an input relation)
by itself.

The following programπ1 computes legal tours and their costs in its stable models:

(1) T(I, J) ∨ ~T(I, J) :− c(I, J, ).

(2) :− T(I, J), T(I, K), J 6= K.

(3) :− T(I, K), T(J, K), I 6= J.

(4) visited(1) :− T(J, 1).

(5) visited(I) :− T(J, I), visited(J).

(6) :− not visited(I), city(I).

(7) P Value(1, X) :− T(1, J), C(1, J, X).

(8) P Value(K, X) :− P Value(K-1, Y), T(K, I), C(K, I, Z), X= Y+ Z.

(9) Cost(x) :− P Value(n, x).

The first claus guesses a tour, whereT(I, J) intuitively means that theI-th stop of the
tour is cityJ and~T(I, J) that it’s not. By the minimality of a stable model, exactly one of
T(I, J) and~T(I, J) is true in it, for eachI andJ such that1 ≤ I, J ≤ n; in all other cases,
both are false.

The subsequent clauses (2)–(6) check that the guess is proper: each stop has attached
at most one city, each city can be attached to at most one stop,and every stop must have
attached some city. The rules (7)–(9) compute the cost of thechosen tour, which is given
by the (unique) atomCost(X) contained in the model.

It holds that the stable models ofπ1 correspond one-to-one to the legal tours.
To reach our goal, we have to eliminate from them those which do not correspond to

optimal tours. That is, we have to eliminate all toursT such that there exists a tourT ′ which
has lower cost. This is performed by a logic program, which basically tests all choices for
a tourT ′ and rules out each choice that is not a cheaper tour, which is indicated by a
propositional atomNotCheaper. The following program, which is similar toπ1, generates
all possible choices forT ′:

(1′) T′(I, J) ∨ ~T′(I, J) :−c(I, J, ).
(2′) NotCheaper :−T′(I, J), T′(I, K), J 6= K.

(3′) NotCheaper :−T′(I, K), T′(J, K), I 6= J.

(4′) NotChosen Stop(I, 1) :−~T′(I, 1).

(5′) NotChosen Stop(I, J) :−~T′(I, J), NotChosen Stop(I, J - 1).
(6′) NotCheaper :−NotChosen Stop(I, n).

(7′) cnt(1, 1) .
(8′) cnt(K+ 1, J) :−cnt(K, I), T′(I, J), J 6= 1.

(9′) NotCheaper :−cnt(K, I), T′(I, 1), K 6= n.

(10′) P Value′(1, X) :−T′(1, J), C(1, J, X).

(11′) P Value′(K, X) :−P Value′(K - 1, Y), T′(K, I), c(K, I, Z), X = Y+ Z.

(12′) Cost′(X) :−P Value′(n, X).

The predicatesT′, ~T′, P Value′ andCost′ have the rôle of the predicatesT, ~T, P Value
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andCost in π1. Since we do not allow negation, the test that for each stop a city has
been chosen (rules(4)–(6) in π1) has to be implemented differently (rules(4′)–(9′) ).
NotChosen Stop(I, J) tells whether no city≤ J has been chosen for stopI. Thus, if
NotChosen Stop(I, n) is true, then no city has been chosen for stopI, and the choice for
T′ does not correspond to a legal tour.

The minimal models of(1′)–(12′) which do not containNotCheaper correspond one-
to-one to all legal tours. By adding the following rule, eachof them is eliminated which
does not have smaller cost than the tour given byT:

(13′) NotCheaper :− Cost(X), Cost′(Y), X ≤ Y.

Thus, if for a legal tourT, each choice forT′ leads to the derivation ofNotCheaper, then
T is an optimal tour.

For the desired program, we add the following rules:

(14′) :− not NotCheaper.

(15′) P(X1, . . . , Xn) :− NotCheaper. ,

for any predicateP that occurs in a rule head of(1′)–(12′) exceptNotCheaper. The first
rule enforces thatNotCheaper must be contained in the stable model; consequently, it
must be derivable. The other rules derive the maximal extension for each predicateP if
NotCheaper is true, which is a trivial model for(1′)–(12′). In fact, it is for some given
tourT the only model if no choice forT′ leads to a tour with cost smaller than the cost of
T; otherwise, there exists another model, which does not containNotCheaper.

Let π2 be the program consisting of the rules(1′)–(15′). Then, it holds that the stable
models ofπ = π1 ∪ π2 on any instance of TSP correspond to the optimal tours.6 In
particular, the optimal cost value, described byCost(X), is contained in each stable model.
Thus, the programπ computes on any instance of TSP under the possibility (as well as
certainty) stable model semantics inCost the cost of an optimal tour.

6 Here, we suppose that the provided universeU of the database storing the instance is sufficiently large for
computing the tour values.
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