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Abstract

Argumentation has proved a useful tool in defining formal aetics for assumption-based reasoning
by viewing a proof as a process in which proponents and opysraétack each others arguments by
undercuts (attack to an argument’s premise) and rebutskatd an argument’s conclusion). In this
paper, we formulate a variety of notions of attack for exazhtbgic programs from combinations
of undercuts and rebuts and define a general hierarchy of@ngiation semantics parameterised by
the notions of attack chosen by proponent and opponent. @ phe equivalence and subset rela-
tionships between the semantics and examine some esggnpielties concerning consistency and
the coherence principle, which relates default negati@heaplicit negation. Most significantly, we
place existing semantics put forward in the literature intdararchy and identify a particular argu-
mentation semantics for which we prove equivalence to thagoasistent well-founded semantics
with explicit negation, WFSX. Finally, we present a general proof theory, based on dieddcees,
and show that it is sound and complete with respect to thenaegtation semantics.
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1 Introduction

Argumentation has attracted much interest in the area dfiddal Intelligence. On the one
hand, argumentation is an important way of human interacial reasoning, and is there-
fore of interest for research into intelligent agents. Aggdion areas include automated ne-
gotiation via argumentatioth (Parsons et al. 1998 Kraug 8888;[Schroeder 1999) and
legal reasoning (Prakken and Sartor 1997). On the other, lrlagdmentation provides a
formal model for various assumption based (or non-monatamidefault) reasoning for-
malisms [[Bondarenko et al. 1997; Cheshevar et al.|200Q)atticular, various argumen-
tation based semantics have been proposed for logic praogirsgmwith default nega-
tion (Bondarenko et al. 1997; Dung 1995).

Argumentation semantics are elegant since they can beredptuan abstract frame-
work (Dung 1995: Bondarenko et al. 1997; Vreeswik 199 /plaiifs and Vermeir 1999b),
for which an elegant theory of attack, defence, acceptgbdind other notions can be de-
veloped, without recourse to the concrete instance of gor@ng formalism at hand. This
framework can then be instantiated to various assumptisedacasoning formalisms.
Similarly, a dialectical proof theory, based on dialog@es, can be defined for an abstract
argumentation framework, and then applied to any instahseah a framework (Simari et al. 1994;
Dung 1995[ Jakobovits and Vermeir 1909a).

In general, an argument is a proof which may use a set of defeasible assumptions.
Another argumenB may have a conclusion which contradicts the assumptiorfeardn-
clusions of4, and therebyB attacksA. There are two fundamental notions of such attacks:
undercut and rebut (Pollock 1987: Prakken and Sartorl1995quivalentlyground-attack
andreductio-ad-absurdum attagoung 1993). We will use the terminology of undercuts
and rebuts. Both attacks differ in that an undercut attagk®mise of an argument, while
a rebut attacks a conclusion.

Given a logic program we can define an argumentation sensanyigteratively collect-
ing those arguments which are acceptable to a proponerheéyecan be defended against
all opponent attacks. In fact, such a notion of acceptgtibin be defined in a number of
ways depending on which attacks we allow the proponent apdrgnt to use.

Normal logic programs do not have negative conclusions¢hvineans that we cannot
use rebuts. Thus both opponents can only launch undercwgaanother’s assumptions.
Various argumentation semantics have been defined for ntrgi@programsi(Bondarenko et al. 1997,
Dung 1995 Kakas and Toni 1999), some of which are equivdtemixisting semantics
such as the stable model semantics (Geltond and Lifsch&&)16r the well-founded se-
mantics[(van Gelder et al. 1991).

Extended logic programs (Gelfond and Lifschifz 1990; Adleand Pereira 1966; Wagner 1994),
on the other hand, introduce explicit negation, which st#tat a literal is explicitly false.
As a result, both undercuts and rebuts are possible formsamfkathere are further varia-
tions depending on whether any kind of counter-attack isitiech A variety of argumenta-
tion semantics arise if one allows one notion of attack asrued for the proponent, and an-
other as attack for the opponent. Various argumentatiormséos have been proposed for
extended logic programs (Dung 1993; Prakken and Sartor; M8&va and Alferes 1998;
?). Dung has shown that a certain argumentation semanticguisadent to the answer
set semanticg (Gelfond and Lifschitz 1990), a generatinadf the stable model seman-
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tics (Gelfond and Lifschiiz 1988). For the well-founded sertics with explicit negation,
WFSX (Pereira and Alferes 1992; Alferes and Pereira 199@)et exists acenario se-
mantics(Alferes et al. 1993) which is similar to an argumentatiomaatics. This seman-
tics applies only to non-contradictory programs; to ourlealge, no argumentation se-
mantics has yet been found equivalent to plaeaconsistentvell-founded semantics with
explicit negation, WFSX (Damasio 1996; Alferes et al. 1995; Alferes and Pereire&5) 99

This paper makes the following contributions: we identifyious notions of attack for
extended logic programs. We set up a general framework ofhaegtation semantics, pa-
rameterised on these notions of attacks. This framewotieis tised to classify notions of
justified arguments, and to compare them to the argumentsgimantics of (Dung 19p3)
and [Prakken and Sartor 1997), among others. We examine gaperties of the differ-
ent semantics, concerning consistency, and the cohereimogppe which relates explicit
and implicit negation. One particular argumentation seroats then shown to be equiv-
alent to the paraconsistent well-founded semantics wigli@knegation|(Damasio 1996).
Finally, we develop a general dialectical proof theory far hotions of justified arguments
we introduce, and show how proof procedures for these pheafrtes can be derived. This
paper builds upon an earlier conference publication (Sahewer and Schroeder 2002),
which reports initial findings, while this article providdstailed coverage including all
proofs and detailed examples.

The paper is organised as follows: First we define argumemntsations of attack and
acceptability. Then we set up a framework for classifyirffedént least fixpoint argumen-
tation semantics, based on different notions of attackti@dd examines some properties
(coherence and consistency) of these semantics. In S&tior recall the definition of
WEFSX,, and prove the equivalence of an argumentation semanticg/&sX,. A general
dialectical proof theory for arguments is presented in i8e@; we prove its soundness
and completeness and outline how a proof procedure for thef gieory may be derived.

2 Extended Logic Programming and Argumentation

We introduce extended logic programming and summarise ¢fiaitions of arguments
associated with extended logic programs. We identify werinotions of attack between
arguments, and define a variety of semantics parametristftbsa notions of attack.

Extended logic programming extends logic programming hy kimds of negationde-
fault negationandexplicit negation The former allows the assumption of the falsity of a
fact if there is no evidence for this fact. Explicit negatiam the other hand, allows to
explicitly assert the falsity of a fact.

The default negation of a literal written not p, states the assumption of the falsity of
p. The assumptionot p is intended to be true iff there is no evidencepof hus, the truth
of not p relies on a lack of knowledge abopt An operational interpretation of default
negation is given byegation as failurgClark 1978): the query.ot p succeeds iff the
queryp fails. Default negation is usually not allowed in the headofile: the truth value
of not p is defined in terms op, and so there should not be any other rules that define
not p.

Default negation thus gives a way of expressing a kind of tiegabased on a lack of
knowledge about a fact. Sometimes, however, it is desitaldepress the explicit knowl-
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edge of the falsity of a fact. The explicit negatiop of a literalp states thap is known to
be false. In contrast to default negation, an explicit negatp is allowed in the head of a
rule, and there is no other way of deriving except by finding an applicable rule witlp
as its consequence.

Consider the following example “A school bus may cross the railway tracks under the
condition that there is no approaching train.” It may be esged using default negation as

cross < not train

This is a dangerous statement, however: assume that theoekisowledge about an ap-
proaching train, e.g. because the driver’s view is blockethis case, the default negation
not train is true, and we conclude that the bus may cross. Insteadyitvie appropriate
to demand the explicit knowledge that there is no approactrin, as expressed using
explicit negation:

cross < —train

The combination of default and explicit negation also aidar a more cautious statement
of positive facts: while the rule

—cross < train

states that the driver should not cross if there is a traimagaghing, the rule
—cross <— not —train

states more cautiously that the driver should not crosshifig not been established that
there is no train approaching. In contrast to the former, thie latter rule prevents a driver
from crossing if there is no knowledge about approachirigsra

A connection between the two kind of negations may be madessrang theoherence
principle (Pereira and Alferes 198P; Alteres and Pereira 1996): testthat whenever an
explicit negation—p is true, then the default negatiant p is also true. This corresponds
to the statement that if something is known to be false, thehauld also be assumed to
be false.

2.1 Arguments

Definition 1
An obijective literalis an atomA or its explicit negatior~A. We define-—L = L. A
default literalis of the formnot L whereL is an objective literal. Aliteral is either an
objective or a default literal.
An extended logic prograns a (possibly infinite) set of rules of the form

Lo« L1,..., Ly, not Lyt ...,n0t Lyin(m,n > 0),
where each; is an objective literal{ < ¢ < m + n). For such a rule,, we call L, the
headof the rule,head(r), and L1, ..., not L+, the bodyof the rule,body(r). A rule
with an empty body is calledfact, and we writel, instead ofLy «+.

Our definition of an argument associated with an extended fmggram is based oh (Prakken and Sartor 1997).

1 Due to John McCarthy, first published [0 {Gelfond and Liiszrigg0)
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Essentially, an argument is a partial proof, resting on abmemofassumptions.e. a set of

default literals?> Note that we do not consider priorities of rules, as usedrm(@ntoniou 2002;

Kakas and Moraifis 200P; Prakken and Sartor 1897; Brewk®&;1Q8rcia ef al. 1998; Vreeswijk 1997).
Also, we do not distinguish betweestrict rules, which may not be attacked, add-
feasiblerules, which may be attacked (Prakken and Sartorl1997; Sandr oui 1992;

Garcia et al. 1998).

Definition 2
Let P be an extended logic program. Aangumentassociated withP is a finite sequence
A = [r1,...r,] of ground instances of rules € P such that for every < i < n, for
every objective literal; in the body ofr; there is & > i such thatiead(ry) = L.
A subargumenof A is a subsequence af which is an argument. The head of a ruledn
is called aconclusionof A, and a default literakot L in the body of a rule ofd is called
anassumptiorof A. We write assm (A) for the set of assumptions amdnc(A) for the set
of conclusions of an argumenit

An argument4 with a conclusior. is aminimal argument fod. if there is no subargu-
ment of A with conclusionL. An argument isminimalif it is minimal for some literall.
Given an extended logic prograf, we denote the set of minimal arguments associated
with P by Argsp.

The restriction to minimal arguments (cf._(Simari and Lo8912)) is not essential, but
convenient, since it rules out arguments constructed fremeral unrelated arguments.
Generally, one is interested in the conclusions of an arginaad wants to avoid hav-
ing rules in an argument which do not contribute to the ddsdenclusion. Furthermore,
when designing a proof procedure to compute justified argusnene generally wants to
compute only minimal arguments, for reasons of efficiency.

Example 1
Consider the following program:

—cross < not —train
cross < —train
tratn < see_train
—train < not train, wear_glasses

wear_glasses

The program models the example from the introduction togbgion. A bus is allowed to
cross the railway tracks if it is known that there is no trgip@paching; otherwise, it is not
allowed to cross. A train is approaching if the driver cantbeetrain, and it is known that
there is no train approaching if there is no evidence of a@gproaching, and the driver
is wearing glasses.

There is exactly one minimal argument with conclusieoss:

[cross < —train; —train < not train, wear_glasses; wear_glasses]
2 |n (Bondarenko et al._199f; Dung 1993), an argunismat set of assumptions; the two approaches are equiv-

alent in that there is an argument with a conclusioiff there is a set of assumptions from whi¢hcan be
inferred. See the discussion [n(Prakken and Sartor|1997).
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It contains as subarguments the only minimal argumentsfedin andwear_glasses:

[—train < not train, wear_glasses]

[wear_glasses]

There is also exactly one minimal argument with conclusioross:
[-eross < not —train]

There is no argument with conclusiéruin, because there is no rule fete_train.

2.2 Notions of attack

There are two fundamental notions of attaukdercut which invalidates an assumption
of an argument, ancebut, which contradicts a conclusion of an argumeént (Dung 1993;
Prakken and Sartor 1997). From these, we may define furttienswmf attack, by allowing
either of the two fundamental kinds of attack, and considpnhether any kind of counter-
attack is allowed or not. We will now formally define theseion$ of attack.

Definition 3
Let A; andAs be arguments.

1. A; undercutsA, if there is an objective literal, such thatl is a conclusion
of A; andnot L is an assumption ofl,.

2. A; rebuts A, if there is an objective literal. such thatl is a conclusion of
A; and—L is a conclusion ofds.

3. A; attacksA, if A; undercuts or rebutd,.

4. A, defeatsA, if

e A; undercutsd,, or
e A; rebutsA, and A, does not undercud;.

5. A; strongly attacksAd, if A; attacksAs and A, does not undercu ;.
6. A; strongly undercutsi, if A; undercutsA, and A, does not undercud; .

The notions ofindercutandrebut and hencattackare fundamental for extended logic
programs{(Dung 1998; Prakken and Sartor 1997). The notidafefis used in[(Prakken and Sartor 1997),
along with a notion ostrict defeati.e. a defeat that is not counter-defeated. For arguments
without priorities, rebuts are symmetrical, and therefdret defeat coincides with strict
undercut, i.e. an undercut that is not counter-undercuttlis reason, we use the term
strong undercuinstead oftrict undercutand similarly definetrong attacko be an attack
which is not counter-undercut. We will use the following abbations for these notions
of attack.r for rebuts,u for undercutsa for attacksd for defeatssa for strongly attacks,
andsu for strongly undercuts.

Example 2
Consider the program of examjille 1. There are the followingmmel arguments:

A [eross « —train; —train < not train, wear_glasses; wear_glasses]
—cross < not —train]
—train < not train, wear_glasses|

B
C:
D: [wear_glasses]
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The argumentd and B rebut each other. The subarguméhof A also undercutd3, so
A also undercut$3. ThereforeA strongly attacks3, while B does not strongly attack or
defeatA.

Example 3
The argument§; « not p] and[p < not ¢] undercut each other. As a result, they do not
strongly undercut each other.

The argument® « not ¢] and[-p < not r] do not undercut each other, but strongly
attack each other.

The argumenf-p < not r| strongly undercut® < not —p| and[p « not —p| attacks
- but does not defeat - the arguménp < not ).

These notions of attack define for any extended logic progrdrimary relation on the
set of arguments associated with that program.

Definition 4

A notion of attacks a functionz which assigns to each extended logic progiambinary
relationz p on the set of arguments associated with.e.zp C Argsp x Argsp. Notions
of attack are partially ordered by definingC y iff VP :zp C yp

Notation We will use sans-serif font for the specific notions of attattkoduced in Def-
inition 3@ and their abbreviations; u, a, d, sa, andsu. We will usez, y, z, . . . to denote
variables for notions of attacks. Arguments are denoted by, C, . ..

The term “attack” is somewhat overloaded: 1. it is the notdrattacka consisting
of a rebut or an undercut; we use this terminology becausestaindard in the litera-
ture [Dung 1993; Prakken and Sartor 17997). 2. in generalftankais a binary relation
on the set of arguments of a program; we use the term “notiattack”. 3. if the argu-
mentation process is viewed as a dialogue between an propehe puts forward an
argument, and an opponent who tries to dismiss it, we maysehone notion of attack
for the use of the proponent, and another notion of attacthfaopponent. In such a set-
ting, we call the former notion of attack the “defence”, aafer to the latter as “attack”,
in the hope that the meaning of the term “attack” will be clieam the context.

Definition 5
Let = be a notion of attack. Then theverseof z, denoted by:~!, is defined asr ' =
{(B,A) [ (A, B) € zp}.

In this relational notation, Definitidd 3 can be rewrittersas uUr,d = uU (r —u™1!),
sa=(uUr)—u"tandsu =u—u~t

Proposition 1
The notions of attack of Definitioll 3 are partially ordered¢@ding to the diagram in
Figurell.
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attacks=a=uUr

defeats=d=uU(r—u™?)

/ \

undercuts = u strongly attacks =sa = (uUr) —u

\

strongly undercuts = su = u —u~

-1

1

Fig. 1. Notions of Attack

Proof
A simple exercise, using the set-theoretic lalvs BC AC AuCand(AUB) —C =
(A—C)U (B - C) (for any arbitrary setsl, B, andC). O

As mentioned above, we will work with notions of attack asreieed in previous litera-
ture. Therefore Figuild 1 contains the notionsdercut (Dung 1998 Prakken and Sarfor 1997),
attack (Dung 1993 Prakken and Sartor 199dgfeat (Prakken and Sartor 199 &trong
undercut (Prakken and Sarfor 1997), asitlong attack as an intermediate notion between
strongly undercuts anddefeats. All of these notions of attack are extensionsuofier-
cuts. The reason is that undercuts are asymmetric, i.e. for tgaraentsA, B, AuB
does not necessarily impluA. Rebuts, on the other hand, are symmetric,Ae3 im-
plies BrA. As a consequence, rebuts on their own always lead to a “doatvileen argu-
ments. There is, however, a lot of work on priorities betwasguments (Antoniou 2002;
Kakas and Moraifis 2002; Prakken and Sartor 1897; Brewk®:1Q8rcia ef al. 1998; Vreeswijk 1997),
which implies that rebuts become asymmetric and therefad to more interesting se-
mantics. But the original, more basic approach does notidenthis extension, and hence
undercuts play the prime role and notions of attack mainkedeon rebuts, such asor
r —u~!, are not considered.

The following example shows that the inclusions in Fiddreel sdrict.

Example 4
Consider the following program:

p < not-p

p < notq
-p < notr

q <+ notp
—q + nots

It has the minimal argumen{$p < not —pl, [p + not g|, [-p <+ not rl,[q + notp|,[-q +
not s]}. The argument® «+ not q] and[q + not p] undercut (and hence defeat) each
other, but they do not strongly undercut or strongly attaakheother. The arguments

[¢ + not r] and[—~q < not s] strongly attack (and hence defeat) each other, but they
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do not undercut each other. The argumgnt— not —p| attacks—p < not r], but it does
not defeat it, becaugep < not r] (strongly) undercut® «+ not —p).

2.3 Acceptability and justified arguments

Given the above notions of attack, we define acceptabilitgrohrgument. Basically, an
argument is acceptable if it can be defended against angkatBur definition of accept-
ability is parametrised on the notions of attack allowedli@ proponent and the opponent.

Acceptability forms the basis for our argumentation semsantwhich is defined as
the least fixpoint of a function, which collects all accep¢airguments(Pollock 1T9B7;
Simari and Loui 1992; Prakken and Sartor 11997; Dung 1993} .1@&stfixpoint is of par-
ticular interest, because it provides a canonical fixp@niantics and it can be constructed
inductively.

Because the semantics is based on parametrised accéptatdi obtain a uniform
framework for defining a variety of argumentation semarfiicextended logic programs.
It can be instantiated to a particular semantics by choosimgnotion of attack for the
opponent, and another notion of attack as a defence for thygopent. The uniformity
of the definition makes it a convenient framework for compgudifferent argumentation
semantics.

Definition 6

Let 2 andy be notions of attack. Lefl be an argument, anfl a set of arguments. Then
A is z/y-acceptable wrtS if for every argument3 such that B, A) € « there exists an
argumentC € S such tha(C, B) € y.

Based on the notion of acceptability, we can then define aifitg@mantics for argu-
ments.

Definition 7
Letz andy be notions of attack, an& an extended logic program. The operakes,, /,, :
P(Argsp) — P(Argsp) is defined as

Fp,y(S) ={A] Ais z/y-acceptable wrtS}

We denote the least fixpoint 5 ./, by Jp ../, - If the programP is clear from the context,
we omit the subscripP. An argumentd is calledz /y-justifiedif A € J,/,; an argument
is calledz/y-overruledif it is attacked by anc/y-justified argument; and an argument is
calledz/y-defensibléf it is neitherx /y-justified norz/y-overruled.

Note that this definition implies that the logic associatathustified arguments is 3-
valued, with justified arguments correspondintrte literals, overruled argumentstalse
literals, and defensible argumentsuodefinediterals. We could also consider arguments
which are both justified and overruled; these correspondtacals with the truth value
overdeterminedf Belnap’s four-valued logic¢ (Belnap 1977).

Proposition 2

For any progranP, the operatof' ./, is monotone. By the Knaster-Tarski fixpoint the-
orem [Tarski 1955; Birkhotf 1967)f's .., has a least fixpoint. It can be constructed by
transfinite induction as follows:
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— u/a = _ sa/a =
a/z | d/x E;zu_ u/d = ::?:3 - sa/d = su/x
u/sa sa/u
[p + notgq|,
o | g | ) e et o - o)
2 || 0 | 0 | [~q < not r] | [-q < not r] | 0 | [~q < not 7] | [~q < not 7]
3 || ] | 0 | ] | [p « not ¢ | 1] | ] | ]
4 || ] | 0 | ] | ] | ] | ] | 0

Table 1. Computing justified arguments — theh row shows the justified arguments
added at thex-th iteration

‘]S/y =0
J;‘/Zl = Fpay(Jy,) fora+lasuccessor ordinal
T2y = Uaer 1Sy, for Xalimit ordinal
Then there exists a least ordinal such that, ,,(.J9,) = J29, = Ju/y-

Proof

LetS; € S, andA € Fp,/,, i.e. Ais x/y-acceptable wrts,, i.e. everyz-attack against
A is y-attacked by an argument ity . Then A is alsox/y-acceptable wrtSs,, because
S1 C Sy, i.e..55 contains more arguments to defead [

Note that our general framework encompasses some welltkremgumentation se-
mantics for extended logic programs: Dung’s grounded séinsaDung 199B) is/, /.
Prakken and Sartor’s argumentation semanlics (PrakkeBaridr 19917), without priori-
ties or strict rules isly . If we regard explicitly negated literals as new atoms, unre-
lated to the positive literal, then we can apply the well-founded argumentation sensntic
of (Bandarenko et al. 199F: Kakas and Toni 11999) to extendgit pbrograms, and obtain
Ju/u-

Example 5
Consider the following prograrf:

p <+ notq
q <+ notp
-q <+ notr
r 4 nots

S 4 nots

Table[1 shows the computation of justified arguments aswatisith P. The columns
show various combinations/y of attack/defence, and a rowshows those arguments

that get added at iteration stagei.e. A € J3 , andA ¢ gt

z/y Pax/y
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The set of arguments associated Withs { [p < not ¢, [q < not pl, [~q + not ], [r +
not sl, [s], [7s < not s]}.

All arguments are undercut by another argument, eXegphe only attack againét| is
arebut by[—s + not s], which is not a defeat. Thug] is identified as a justified argument
at stage) in all semantics, except dttacks is allowed as an attack. In the latter case, no
argument is justified at stage hence the set of justified arguments,, is empty.

3 Relationships between Notions of Justifiability

The definition of justified arguments provides a variety ahaatics for extended logic
programs, depending on which notion of attacks admitted to attack an argument, and
which notion of attacky may be used as a defence.

This section is devoted to an analysis of the relationshipvéen the different notions
of justifiability, leading to a hierarchy of notions of jufiibility illustrated in Figurd.

3.1 Equivalence of argumentation semantics

We will prove a series of theorems, which show that some oatbamentation semantics
defined above are subsumed by others, and that some of thexctaadly equivalent. Thus,
we establish a hierarchy of argumentation semantics, whiitlustrated in Figur&l2.

First of all, it is easy to see that the least fixpoint increaéae weaken the attacks or
strengthen the defence.

Theorem 3
Letz’ C x andy C ' be notions of attack, then, ,, C J, .

Proof
SeqdAppendix . [

TheoreniH states that it does not make a difference if we adloly the strong version
of the defence. This is because an argument need not degaifdoit its own, but it may
rely on other arguments to defend it.

Theorem 4

Letz and and, be notions of attack such that> undercuts, and letsy = y—undercuts™ .
Thean/y = Ja/sy-

Proof

Informally, everyz-attackB to anx /y-justified argument is y-defended by some/ sy-
justified argumen€ (by induction). Now ifC is nota sy-attack, then it is undercut b,
and because D undercuts andC' is justified, there exists strongdefence foiC against
B, which is also a defence of the original argumdragainstC.

The formal proof is by transfinite induction. By Theor€in 3, have J, ., C J,,,. We
prove the inverse inclusion by showing that for all ordirm‘lsig/y C I3 sy by transfinite

induction ona.. Seq’/Appendix A for the detailed proof.[]



A Hierarchy of Argumentation Semantics 13

In particular, the previous Theorem states that underalistnong undercut are equiva-
lent as a defence, as are attack and strong attack. This mesehd in an implementation,
where we may use the stronger notion of defence without ghgrihle semantics, thereby
decreasing the number of arguments to be checked. The fotjo@orollary shows that
because defeat lies between attack and strong attackgitiigadent to both as a defence.

Corollary 5
Letz be a notion of attack such thatS undercuts. ThenJ, , = J, /4 = Jy/sa-

Proof
It follows from TheoremEI3 arld 4 thdt, /s, € J,/q € Joja = Joysa: O

The following theorem states that defence wittdercuts is equally strong as one with
defeats or with attacks, provided the opponent’s permitted attacks include att &g
strong attacks.

Theorem 6
Letz be a notion of attack such thatD strongly attacks. ThenJ, ,, = J, /4 = J;/a-

Proof
Itis sufficient to show thaf, /, C J,,,. Then by Theorell3], ,, C J,/4 € Jo/a = Jo/u-

Informally, everyz-attack B to a z/a-justified argumentd is attacked by some /u-
justified argumentC (by induction). If C is a rebut, but not an undercut, then because
B strongly attack€s”, and because DO strongly attacks, there must have been an argu-
ment defending” by undercutting3, thereby also defending againstB.

We prove by transfinite induction that for all ordinalsJ?,, € J2,,. Seq Appendix i for
the detailed proof. O

In analogy to Theoreld 6, strong undercuts are an equivatdande to strong attacks if
the allowed attacks are strong attacks.

Theorem 7

Jsa/su = Jsa/sa

Proof

The proof is similar to the proof of Theordih 6. $ee Appendix Al

Theorem 8
Jsu/a = Jsu/d
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Proof

By TheoreniB,Jy,/q € Jsu/a-

We now show the inverse inclusion. Informally, every strongercutB to asu/a-justified
argumentd is attacked by somsu/d-justified argumen€' (by induction). IfC does not
defeatA, then there is some argumebtdefendingC' by defeatingB, thereby also de-
fending A againstB.

Formally, we show that for all ordinais: J3 ,
for the detailed proof. [

These results are summarised in a hierarchy of argumentsgimantics in Theorehi 9
and FiguréD.

C Jq,a by transfinite induction on. See

3.2 Distinguishing argumentation semantics

The previous section showed equality and subset relatipnftr a host of notions of justi-
fied arguments. In this section we complement these po#itidengs by negative findings
stating for which semantics there are no subset relatipeshife prove these negative
statements by giving counter-examples distinguishingpuarnotions of justifiability.

The first example shows that, in general, allowing only siréarms of attack for the
opponent leads to a more credulous semantics, becauseeis wagre only non-strong
attacks exist, every argument is justified.

Example 6
Consider the following program:

p < notq
q < notp

For any notion of attack:, we haveJ,,/, = Ja/, = {[p < not q],[q < not p]},
because there is no strong undercut or strong attack to atheairguments. However,
Jasw = Jaje = Jusz = 0, because every argument is undercut (and therefore defaaded
attacked).

Thus, ingeneral/,,, Z J,,y, fors € {su,sa}, w € {a, u,d}, and any notions of attack
x andy.

The following example shows that some interesting propsrtieed not hold for all
argumentation semantics: a fact (i.e. a rule with an emptlyponeed not necessarily lead
to a justified argument; this property distinguishes Durfgeng 1998) and Prakken and
Sartor’s [Prakken and Sartor 1997) semantics from mosteobthers.

Example 7
Consider the following program:

p < notq
q < notp

-p
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Let = be a notion of attack. The#,,, = J,/, = (), because every argument is defeated
(hence attacked)ls, /sy = Jaaysa = {[lg + not p]}, becausdq «+ not p| is the only
argumentwhich is not strongly attacked, but it does notgfipattack any other argument.
Jussu = Juw = {[p]}, because there is no undercuttg], but [-p] does not undercut
any other argumentl, ,, = {[-p], [¢ < not p|}, because there is no undercut[te)],
and the undercup < not p| to [¢ < not p] is attacked by—p|. We also havel,,, =
{[-p], [q + not p|}, becausgq + not p] is not strongly attacked, and the strong attack
[p + not g] on[—p] is undercut bylg + not p).

Thus, in general), /. Z Ja/z: Jujz € Jajor Jsajse € Jusy (Wheresz € {su,sa} and
y € {u,su}), andJ, y Z Jsu s, (Wheresz € {su,sa} andy € {u,a,d,su,sa}).

The following example is similar to the previous example;ept that all the undercuts
are strong, whereas in the previous example there were onhstrong undercuts.

Example 8
Consider the following program:

p 4+ notgq

q + notr

r 4 nots

s 4+ mnotp

-p
Letz be a notion of attack. TheR, ,, = (), because every argument is strongly attacked.
Jouju = Jsussu = {[7p]}, because all arguments excepp| are strongly undercut,

but [-p] does not undercut any argument. Alig, = Josa = Jsua = {0, [0 <

not r], [s < not p]}, becausé—p]| is not undercut, and it defenfis < not p] against the
strong undercutp < not ¢] (by rebut), and in turnfs + not p] defendslg < not r]
against the strong underdut« not s] (by strong undercut).

Thus:Ju/a ,g Jsu/yv Jsu/sa g Jsu/y: andJsu/a g Jsu/ya fory S {U,SU}.

The following example shows that in certain circumstanoes-strong defence allows
for more justified arguments than strong defence.

Example 9
Consider the following program:

p < notq
q + notp
r < notp

Let 2 be a notion of attack. The#,,, = Jy,, = J./» = 0, because every argument is
ur-K:IerCl'lt-Jsu/su = Jsufsa — Jsa/su = Jsa/sa — {[p — not Q], [q — not p]} : In these
cases, the strong attacks are precisely the strong undgetcatargument < not p| is
not justified, because the strong undeffgut— not ¢| is undercut, but not strongly under-
cut, by[q — not p]- And finaIIy, Jsu/u = Jsu/a — Jsa/u = Jsa/a = {[p «— not Q]v [q A
not pl, [r < not p|} : Again, undercuts and attacks, and strong undercuts amagsat-
tacks, coincide; but nofw < not p| is justified, because non-strong undercuts are allowed
as defence.

Thus, ingeneral/, ;, £ J, sy @andJ, /o € J;/sa, Wherer € {su,sa}.
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The following example distinguishes the argumentationssgins of Dung|(Dung 1993)
and Prakken and Sartdr (Prakken and Sartori1997).

Example 10
Consider the following program:

p < not-—p
-p

ThenJ,,, = 0, because both arguments attack each other, whjlg = {[—-p|}, because
[-p] defeatdp < not —p|, but not vice versa.
Thus,Jq/z Z Ja/a-

The final example shows that if we do not allow any rebuts @kt then we obtain a
strictly more credulous semantics.

Example 11
Consider the following program:

-p < notq
—q < notp
p
q

Let = be a notion of attack. Thei, ,, = Jy/» = Ja/, = 0, because every argument is
strongly attacked (hence defeated and attacked), wWhile= J., /. = {[p]. [4]}-

Thus, in general/,,, Z J,,/,, wherev € {u,su}, w € {a,d,sa}, andz andy are any
notions of attack.

3.3 A hierarchy of argumentation semantics

We now summarise the results of this section, establishiognaplete hierarchy of argu-
mentation semantics, parametrised on a pair of notionsaxlat /y wherex stands for the
attacks on an argument, apdor the possible defence. We locate in this hierarchy tha-arg
mentation semantics of Dung (Dung 1993) and Prakken andidBrakken and Sartor 1997),
as well as the well-founded semantics for normal logic prots [van Gelder et al. 1991).

In Section[» we will show that the paraconsistent well-foeth@demantics with explicit
negation, WFSX (Damasio 1996), can also be found in our hierarchy. As alleoyowe
obtain precise relationships between these well-knowraséios and our argumentation
semantics.

Theorem 9

The notions of justifiability are ordered (by set inclusi@gcording to the diagram in
Figure2, where:/y lies belowz’ /y/ iff J,,, C Ty /.
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su/a =su/d
su/u/ \su/sa
sa/u=sa/d =sa/a su/su u/a=u/d=u/sa
sa/su = sa/sa u/su=u/u
=d/d=d/sa

d/su=d/u=d/a
|

a/su=a/u=a/a=a/d=a/sa

Fig. 2. Hierarchy of Notions of Justifiability

Proof

All equality and subset relationships (i.e. arcs betwedions of justifiability) depicted in

Figurel2 are underpinned by the theorems in se€fidn 3.1. Btioms of justifiability are

not subsets of each other iff they are not equal and not coeddry an arc in Figurgl 2.
These findings are underpinned by the counter-examplestésB.2. [

By definition, Prakken and Sartor’s semantics (Prakken amtb51997), if we disre-
gard priorities, amounts td/su-justifiability.

Similarly, Dung’s grounded argumentation semanfics (DL9f3) is exactha /u-justifiability;
and if we treat explicitly negated literals as new atoms, am @&pply the least fixpoint ar-
gumentation semantics for normal logic programs (Dung 1B&5darenko et al. 1997) to
extended logic programs, which is then, by definitiofy-justifiability.

Note that these latter semantics use a slightly differetdtian to ours: arguments are
sets of assumptions (i.e. default literals), and a conatusf an argument is a literal that
can be derived from these assumptions. This approach caarsated to ours by taking
as arguments all those derivations of a conclusion from garaent. Then the definitions
of the notions of attack and the fixpoint semantics coinci®fe also the discussion in
(Prakken and Sartor 1997).

As corollaries to Theorefll 9 we obtain relationships of thesmantics to the other
notions of justifiability.

Corollary 10

Let Jpung be the set of justified arguments according to Dung’s grodradgumenta-
tion semantics/ (Dung 19P3). Thefbung = Jajsu = Jaju = Jaja = Jaya = Jaysa @nd
Jpung & Juy for all notions of attack: # a andy. Thus, in Dung’s semantics, it does not
matter which notion of attaclsu,u,a,d,sa, is used as a defence, and Dung’s semantics is
more sceptical than the others.

Corollary 11

Let Jpgs be the set of justified arguments according to Prakken artdiSsargumentation
semantics[(Prakken and Sartor 1997), where all argumentstha same priority. Then
Jps = Jajsu = Jaju = Jaja = Jaja = Jdassar Jps & Joyy for all notions of attack
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r ¢ {a,d} andy, andJps 2 J,,, for all notions of attacky. Thus, in Prakken and
Sartor’s semantics, it does not matter which notion of &ttao,u,a,d,sa, is used as a
defence, andpg is more credulous than Dung’s semantics, but more sceptiaalall the

others.

Corollary 12

Let Jyyrs be the set of justified argument according to the well-fouhayumentation
semantics for normal logic programs (Dung 1995: Bondarestked. 199¥%), where an ex-
plicitly negated atom-L is treated as unrelated to the positive atbmThen Jyrps =
Juju = Jujsus Jwrs 2 Jajy 2 Jajys JIwrs C Jsuyy, @ndIwrs C Juja = Jusa = Jussas
for all notions of attacly. Thus, in contrast to Dung’s and Prakken and Sartor’s séosant
for WES it makes a difference whether rebuts are permittéddrdefenced,d,sa) or not
(u,su).

Remark 1

1. The notions of/z-, d/z- andsa/x-justifiability are particularly sceptical in that even
a factp may not be justified, if there is a rutep «+ B (wherenot p ¢ B) that is not
z-attacked. On the other hand this is useful in terms of amgidhiconsistency.

2. sz /y-justifiability is particularly credulous, because it doest take into account non-
strong attacks, so e.g. the progrdp <« not q,q < not p} has the justified arguments
[p + not g] and[q < not pl.

Remark 2
One might ask whether any of the semantics in Fiflire 2 arealguit fornon-contradictory
programs, i.e. programs for which there is no litekauch that there exist justified argu-
ments for bothl, and—L. The answer to this question is no: all the examples in SelEid
distinguishing different notions of justifiability invodvonly non-contradictory programs.
In particular, even for non-contradictory programs, Derayid Prakken and Sartor’s se-
mantics differ, and both differ from/a-justifiability, which will be shown equivalent to the
paraconsistent well-founded semantics WE§RBamasio 1996; Pereira and Alferes 1992;
Alferes and Pereira 1996) in Sectidn 5.

4 Properties of Argumentation Semantics

We will now state some important properties which a semarftic extended logic pro-
grams may have, and examine for which of the argumentatimastcs these properties
hold.

4.1 The coherence principle

The coherence principle for extended logic programmiindgi®ls and Pereira 1996) states
that “explicit negation implies implicit negation”. If thatended meaning afot L is “if
there is no evidence fdr, assume that is false”, and the intended meaning-af is “there

is evidence for the falsity of”, then the coherence principle states that explicit evigen
is preferred over assumption of the lack of evidence. Fdyrthis can be stated as:+fL
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is in the semantics, thewt L is also in the semantics. In an argumentation semantics, we
have not defined what it means for a default literal to be “@agbmantics”. This can easily
be remedied, though, and for convenience we introduce tteviog transformatior?.

Definition 8
Let P be an extended logic program, andndy notions of attack, and Idt be an objective
literal. ThenL is z/y-justifiedif there exists a:/y-justified argument foL.

LetnL be a fresh atom, an®’ = P U {nL < not L}. Thennot L is z/y-justifiedif
[nL + not L] is ax/y-justified argument associated with.

Note that becauseL is fresh, then eithes,,,, (P') = J,,,(P) or J,,,(P') = J;,(P) U
{[nL < not L]}.

Definition 9

A least fixpoint semantic$, ,, satisfies the coherence principléor every objective literal
L, if =L is 2 /y-justified, themot L is z/y-justified.

The following result states that a least fixpoint semantitisBes the coherence principle
exactly in those cases where we allow any attack for the defénformally, this is because
the only way of attacking a default literabt L is by undercut, i.e. an argument fby and
in general, such an argument can only be attacked by an argdione-L. by a rebut.

Theorem 13
Letz,y € {a,u,d,su,sa}. ThenJ,,, satisfies the coherence principle.ff,, = J, ..

Proof

e For the “only if” direction, we show that for those notionsjaostifiability x/y #
x/a, the coherence principle does not hold.

— Consider the prograr®:
p <+ notq

q

<~ notr
r 4 nots
(_

S not p

-p
ThenJu/u(Pl) = su/u(P/) = su/su(P/) = {[jp]}’ whereP’ = P U {np A
not p}. In these cases, the coherence principle is not satisfieduse—p is
justified, butnot p is not justified.

— Now consider the prograi®:
p < not-—p

-p < notp
Then Jsu/sa(Q/) = Jsa/sa(Q/) = {[p «— not _‘p]a [_‘p — not p]}' where
Q' = QU{np < not p}. Again, the coherence principle is not satisfied, because
—p is justified, butnot p is not justified.

3 The purpose of the transformation could be equally achiéedefining thatnot L is x/y-justified if all
arguments foll. are overruled.
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e For the “if” direction, letz be any notion of attack. Leg® be an extended logic pro-
gram, and-L ax/a-justified literal, i.e. there is an argumetit= [~L + Body, .. ]
and an ordinalv s.t. A € J7..

Let A’ = [nL < not L], and(B, A’) € z. BecauseuL is fresh, the only possible
attack ond’ is a strong undercut, i.d. is a conclusion oB. ThenA attacksB, and
so[nL + not L] € J;”;;l

O

4.2 Consistency

Consistency is an important property of a logical systerstdtes that the system does not
support contradictory conclusions. In classical logicfaso quodlibet”, i.e. if bothd and
—=A hold, then any formula holds. In paraconsistent systéms@3se and Pereira 1998),
this property does not hold, thus allowing botrand—A to hold for a particular formula
A, while not supporting any other contradictions.

A set of arguments isonsistentor conflict-free(Prakken and Sartor 1997; Dung 1995),
if it does not contain two arguments such that one attackother. There are several
notions of consistency, depending on which notion of attadonsidered undesirable.

Definition 10

Let z be a notion of attack, an® an extended logic program. Then a set of arguments
associated witlP is calledz-consistentf it does not contain argumentsand B such that

(A, B) cxp.

The argumentation semantics of an extended logic prograihmet necessarily be con-
sistent; because of explicit negation, there exist cottad/ programs such afp, —p},
for which there exist sensible, but inconsistent argum@ptsand|—p] in this case).

A general result identifies cases in which the set of justiiegiments for a program is
consistent. It states that if we allow the attack to be attlaastrong as the defence, i.e. if
we aresceptica) then the set of justified arguments is consistent.

Theorem 14
Let z andy be notions of attack such thaD y, and letP be an extended logic program.
Then the set of/y-justified arguments is-consistent.

Proof

We show that/?¥, is z-consistent for all ordinals, by transfinite induction or.

Base casex = 0: Trivial.

Successor ordinak ~» « + 1: AssumeA, B € J“Jrl and(A, B) € z. Then there exists

C e Ja such that(C, A) € y C z. Then by mductlon hypothesis, becausez J I/y

thenA gz J3,- Becaused € ijyl, there existd) € J7,, suchthatD,C) € y C z. This

contradicts the induction hypothesis, so we have to rettecassumption and conclude

thatJ2 ' 1 is z-consistent.

Limit ordinal \: AssumeA, B € Jg/y and(A, B) € z. Then there exist, 5 < As.t. A €
J, andB € J?, . W.lo.g. assume that < §. Then becausdy, C J?

z/y’ z/y’
AeJ’ contradicting the induction hypothesis thﬁj/y is z-consistent. []

we have

/ il
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The following example shows that, in general, the set offjest arguments may well
be inconsistent.

Example 12
Consider the following program:

q < notp

p
-p

ThenJ,,, = {lg < not pl, [p], [-p]}, and[p] and[—p] rebut each other, ang] strongly
undercutsdq < not p).

5 Argumentation Semantics and WFSX

In this section we will prove that the argumentation sentantj , is equivalent to the para-
consistent well-founded semantics with explicit negatifS X, (Damasio 1996; Alferes and Pereira 1996).
First, we summarise the definition of WF$X

5.1 Well-founded semantics with explicit negation

We recollect the definition of the paraconsistent well-foeith semantics for extended logic
programs, WFSX. We use the definition of(Alferes et al. 1995), because iioisar to our
definition of argumentation semantics than the originahil@din of (Pereira and Alferes 1992).

Definition 11

The set of all objective literals of a progralfris called theHerbrand basef P and denoted

by H(P). A paraconsistent interpretatioof a programP is a setl’ U not F whereT and

F are subsets of{(P). An interpretationis a paraconsistent interpretation where the sets
T andF are disjoint. An interpretation is calledo-valuedf T'U F = H(P).

Definition 12

Let P be an extended logic program,an interpretation, and leP’ (resp.I’) be ob-
tained fromP (resp.I) by replacing every literab A by a new atom, say-_A. The GL-
transformation% is the program obtained fro?’ by removing all rules containing a
default literalnot A such thatd € I’, and then removing all remaining default literals
from P’, obtaining a definite progra®”. Let J be the least model aP”, i.e. J is the
least fixpoint ofTp/ (1) := {A| JA + By,...,B, € P"s.t.B; € I}. ThenT'pI is
obtained fromJ by replacing the introduced atomsA by —A.

Definition 13

Thesemi-normalkersion of a progran® is the progranP, obtained fromP by replacing
every ruleL < Body in P by the ruleL < not —~L, Body. If the programP is clear from
the context, we writé&'I for I'pI andI'sI for I'p_ 1.

Note that the seff' p 1 is just a set of literals; we will now use it to define the serant
of P as a (paraconsistent) interpretation.
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Definition 14

Let P be a program whose least fixpointlof'; is T'. Then thegparaconsistent well-founded
model of P is the paraconsistent interpretatifiF' M,(P) = T U not (H(P) — I'sT).

If WFM,(P) is an interpretation, theR is callednon-contradictoryandW F M, (P) is
thewell-founded model aP, denoted by F M (P).

The paraconsistent well-founded model can be defined itehatby the transfinite se-
quence{l, }:

Iy =0
Ini1w = TTsl, for successor ordinal + 1
I = UgerIa forlimit ordinal A

There exists a smallest ordinal, such thatl,, is the least fixpoint ofl'T';, and
W FMy,(P) := I, Unot (H(P) —TsIy,).

5.2 Equivalence of argumentation semantics and WFESX

In this section, we will show that the argumentation sentanti ,, and the well-founded
model coincide. That is, the conclusions of justified argntaare exactly the objective
literals which are true in the well-founded model; and thogctive literals all of whose
arguments are overruled are exactly the literals whichasefin the well-founded model.
The result holds also for contradictory programs underpieconsistentvell-founded
semantics. This is important, because it shows that cantiads in the argumentation
semantics are precisely the contradictions under the faelided semantics, and allows
the application of contradiction removal (or avoidance}hmoés to the argumentation se-
mantics (Damasio et al. 1997). For non-contradictory paots, the well-founded seman-
tics coincides with the paraconsistent well-founded sdiosujAlferes and Pereira 1996;
Damasio 1996); consequently, we obtain as a corollaryatgatmentation semantics and
well-founded semantics coincide for non-contradictoiygrams.

Before we come to the main theorem, we need the following Lamwiich shows a
precise connection between arguments and consequencpmg‘ram%

Lemma 15
Let I be a two-valued interpretation.

1. L € T'(I) iff 3 argument4 with conclusionZ such thatussm(A) C I.

2. L € T'y(I) iff 3 argument4 with conclusionL such thatassm(A) C I and
—conc(A) NI = (.

3. L ¢T(I)iff Y argumentsd with conclusionZ, assm(A) NI Z 0.

4. L ¢ Tx(I) iff V arguments4 with conclusionZ, assm(A) N1 ¢ O or
—conc(A)NIT #0.

Proof
Seq Appendixh. [

In order to compare the argumentation semantics with thefaehded semantics, we
extend the definitioronc(A) of the conclusions of a single argumehto work on a set
of arguments4. The extended definitiononc(.A) includes all positive and negative con-
clusions of arguments in; i.e. those literald. € conc(A), as well as the default literals
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not L where all arguments fak are overruled by some argumette A. We will use this
definition of conc for the set of justified argumentg, /, to compare the “argumentation
model” conc(.J,/a) to WEM,(P), the well-founded model.

Definition 15
Let.A be a set of arguments. Then

conc(A) = U conc(A)U{not L | all arguments fol_ are overruled by an argumente A}
AcA

With the above definition, we can formulate the main theorleat ¢/a-justified argu-
ments coincide with the well-founded semantics.

Theorem 16
Let P be an extended logic program. ThBAF M, (P) = conc(Jy/a).

Proof
First, note thatd undercutsB iff 3 L s.t. L € conc(A) andnot L € assm(B); and A
rebutsB iff 3 L € cone(A) N —conc(B).

We show that for all ordinals, I, = conc(Juo‘/a), by transfinite induction or. The proof
proceeds in two stages. First, we show that all objectieedIsL in W F M, (P) are con-
clusions ofu/a-justified arguments and second, that for all default nebktieralsnot L
in WFM,(P), allarguments fo are overruled.
Base caser = 0: /o = 0 = conc(Jy),)
Successor ordinak ~ a + 1:
Le IaJrl

iff (Def. of I,+1)
LelTl;l,

iff (LemmalIB[1))
3 argumentA for L such thatassm(A) C I's 1,

iff (Def. of C, andI', 1, is two-valued)

3 argumentA for L such that/ not L € assm(A), L ¢ I's1,

iff (LemmalI3[3))
Jargumentd for L such that/ not L € assm(A), for any argumenB for L, (I not L' €
assm(B) s.t. L' € I, or3L" € conc(B) s.t. -L" € 1)

iff (Induction hypothesis)
Jargumentd for L such that/ not L € assm(A), for any argumenB for L, (I not L' €
assm(B) s.t. 3argumentC € J2, for L', or3 L" € conc(B) s.t. 3 argumentC' € Jg,
for —L")
iff (Def. of undercut and rebut)
3 argumentA for L such that for any undercu® to A, ( 3 argumentC € Jia St C
undercutsB, or3 argument’ € IS s.t.C rebutsB)
iff

JargumentA for L such that for any underciit to A, 3 argumentC' € Jj‘/a s.t.C attacks
B

iff (Def. of J7t1)



24 Ralf Schweimeier and Michael Schroeder

Jargumentd € Jf/’;l for L
iff (Def. of conc)
Le conc(Jf/tl)
Limit ordinal A:
In = Uper Lo andJuA/a = Ua<x 43 SO by induction hypothesid{ = conc(Jg),) for
alla < \), I = conc(Jj‘/a).

Next we will show that a literakot L is in the well-founded semantics iff every argument
for L is overruled, i.enot L € W FM,(P) impliesnot L € conc(Jy/,)-

not L € WFM,(P)
iff (Def. of W F M, (P))
LTI
iff (LemmalI3[3)
forallargumentsi for L, (3 not L’ € assm(A) s.t. L' € In,0r3L" € conc(A) s.t. ~L" €
1)
iff (I, = conc(J:‘/a))
for all argumentsA for L, (3 not L' € assm(A) s.t. 3 argumentB € Jj/a for L, or
3L" € conc(A) s.t. Jargument € J3, for =L")
iff (Def. of undercut and rebut)
for all argumentsA for L, ( 3 argumentB € Jja s.t. B undercutsA4, or 3 argument
B e J), stBrebutsA)
iff
every argument fol. is attacked by a justified argument,ﬁj s
iff (Def. of overruled)
every argument foL. is overruled
iff (Def. of conc(Jy/a))
not L € conc(Jys) O

Corollary 17
Let P be a non-contradictory program. ThBAF' M (P) = conc(Jy /).

Remark 3

In a similar way, one can show that theoperator corresponds to undercuts, while the
T's operator corresponds to attacks, and so the least fixpdiii§'ol';I', andT';I"; cor-
respond taJ, ., Ja/u, andJ, ., respectively. In[(Alferes et al. 1995), the least fixpoints
of these operators are shown to be orderetifaél’.I") C I fp(I'sI's) C Ifp(T'Ts), and
lfp(FsF) C lfp(rT) C lfp(rrs) BeCa'-'lse]a/u = Ja/a - Ju/u C Ju/a by TheoreniB,
we can strengthen this statement fo(T';I") = I fp(T'sT's) C Ifp(T'T) C Ifp(TTs).

The following corollary summarises the results so far.

Corollary 18

The least fixpoint argumentation semantics of Dung (Dund).98enotedJ pung, Of
Prakken and Sartdr (Prakken and Sarfor 1997), derlatgdand the well-founded seman-
tics for normal logic program@/FS (Bandarenko et al. 199F: van Gelder et al. 1991) and
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for logic programs with explicit negatioNFSX,, (Pereira and Alferes 1982; Alferes and Pereira 1996)
are related to the other least fixpoint argumentation sdosaas illustrated in Figuld 3.

su/a =su/d
/ \ y
sa/u=sa/d =sa/a su/su u/a=u/d =u/sa =WFSX,

u/su=u/u=WFS

/
\
\/

= d/d = d/sa = Jps
a/su=a/u=a/a=a/d=a/sa=JbDung

Fig. 3. Hierarchy of Notions of Justifiability and Existingi®antics

6 Proof Theory

One of the benefits of relating the argumentation semantjgsto WFSX, is the exis-

tence of an efficient top-down proof procedure for WESKlferes et al. 1995), which we

can use to compute justified argumentsg/in,. On the other handjialectical proof theo-

ries, based on dialogue trees, have been defined for a vafiatgumentation semantics

(Smari et al. 1994 Prakken and Sartor 11997: Jakobovitsvenaheir 1999k Kakas and Toni 1999).
In this section we present a sound and complete dialecticalf pheory for the least fix-

point argumentation semantids ,,, for any notions of attack andy.

6.1 Dialogue trees

We adapt the dialectical proof theory 6f (Prakken and Sdr9@¥7) to develop a general
sound and complete proof theory fefy-justified arguments.

Definition 16

Let P be an extended logic program. Any-dialogueis a finite nonempty sequence of
movesmove; = (Player;, Arg;)(i > 0), such thatPlayer; € {P,0}, Arg; € Argsp,
and

1. Player; = P iff ¢ is odd; andPlayer; = O iff i is even.

If Player; = Player; = P andi # j, thenArg; # Arg;.

3. If Player, = P andi > 1, then Arg; is a minimal argument such that
(Arg;, Arg;—1) € y.

4. If Player;, = O, then(Arg;, Arg;_1) € x.

N
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The first condition states that the playdrgProponent) and (Opponent) take turns,
and P starts. The second condition prevents the proponent frgeateng a move. The
third and fourth conditions state that both players havettimck the other player’s last
move, where the opponent is allowed to use the notion oflattagvhile the proponent
may usey to defend its arguments. Note that the minimality conditioBl is redundant,
becauseall arguments indrgs, are required to be minimal by Definitidd 2. We have
explicitly repeated this condition, because it is imporiarthat it prevents the proponent
from repeating an argument by adding irrelevant rules to it.

Definition 17

An z/y-dialogue treds a tree of moves such that every branch is/g-dialogue, and for
all movesmove, = (P, Arg;), the children ofnove; are all those move®), Arg;) such
that(Arg;, Arg;) € .

Theheightof a dialogue tree i8 if it consists only of the root, and otherwigeight(t) =
sup{height(t;)} + 1 wheret, are the trees rooted at the grandchildren. of

Example 13
Consider the following program:

q,notr
not s

3

TtTTrTTTTTT

—|q u

not t
not t
not w

not v

S 2 &+ » 3

not r

v not t

A a/u-dialogue tree rooted at the argumént— ¢, not r; q < not s is given by Figur€H.

Each node is marked witF for proponent oiO for opponent, and an edgg —— B
denotes thatl attacksB with the notion of attacl, i.e. (4, B) € z.

Note that although dialogues are required to be finite, disdotrees may be infinitely
branching. Therefore dialogue trees need not be finite, @ed their height be finite.

Example 14
Consider the following prograr® *:
p(0)
p(s(X)) <« not q(X)
q(X) <« mnotp(X)
ro— q(X)
s <4 notr

4 Note that by definition, programs are not allowed to contairiables. HereX denotes a variable, anfd is an
abbreviation for the (infinite) program obtained by subsitiig the termss™ (0) for the variableX, in all the
rules.
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P:[p+ g,notr;q <+ not s

/ r \
O : [r < not t] O : [~q < u;u < not v] O : [s < not t]
P : [t + not w] P : v+ notr] P : [t + not w]
O : [r <+ nott] O : [-v « not t]
P : [t + not w] P : [t + not w]

Fig. 4. Ana/u-dialogue tree

For eachn € N, there is exactly one minimal argumenf, with conclusionp(s™(0)),
namely [p(0)] for n = 0, and [p(s™(0)) < not q(s"~1(0))] for n > 0. Similarly,
there is exactly one minimal argumeBj, with conclusion(s™(0)), namely[q(s™(0)) +
not p(s™(0))].

Therefore, aui/u-dialogue tree rooted at,,;, consists of just one dialogug,,; of the
form ((P, An+1), (O, By,), Ty). A u/u-dialogue tree rooted at, consists only of the root,
because there are no undercutgitp Thus, the height of the dialogue trég is n.

Now consider thai/u-dialogue tree rooted at the argumént= [s < not r]. The ar-
gumentC' is undercut by infinitely many arguments, = [r < ¢(s"(0)); ¢(s™(0)) +
not p(s™(0))]; eachD,, is undercut by exactly one argumedtt,. A dialogue in theu/u-
dialogue treé- rooted at argument' is therefore a sequen¢éP, C), (O, B,,),T,). Be-
causeheight(T,) = n, then by Definitio7:height(Te) = sup{height(T,) | n €
N}+1l=w+1.

Definition 18

A playerwins anz/y-dialogueiff the other player cannot move. A playeins anz/y-
dialogue tredff it wins all branches of the tree. Am/y-dialogue tree which is won by the
proponent is called winningz /y-dialogue tree

We show that the proof theory af/y-dialogue trees is sound and complete for any
notions of attack: andy.

Theorem 19
An argumentd is z/y-justified iff there exists a/y-dialogue tree with4 as its root, and
won by the proponent.

Proof
We show by transfinite induction that for all argumedtsfor all ordinalsa: A € Jg‘/y if

and only if there exists a winning/y-dialogue tree of height « for A. Se
for the detailed proof. [
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7 Related Work

There has been much work on argument-theoretic semantiosfimal logic programs, i.e.
logic programs with default negatidn (Bondarenko et al.Zt@ing 1995: Kakas and Toni 1999).
Because there is no explicit negation, there is only one fafrattack, theundercutin our
terminology. An abstract argumentation framework has lgedimed, which captures other
default reasoning mechanisms besides normal logic pragmag Within this framework,

a variety of semantics may be defined, suchpeferred extensionstable extensions
which are equivalent tgtable modelg¢Geltond and Lifschiiz 1988); and a least fixpoint
semantics based on the acceptability of arguments, whisfpiszalent to thevell-founded
semanticqlvan Gelder et al. 1991). The latter fixpoint semantics fothes basis of our
argumentation semantics. Proof theories and proof praesdar some of these argumen-
tation semantics have been developed.in (Kakas and Ton)1999

There has been some work extending this argumentation siesiém logic programs
with explicit negation. Dungd (Dung 19P5) adapts the framiwaf (Dung 19938), by dis-
tinguishing betweemround attacksand reductio-ad-absurdum-attacks our terminol-
ogy undercuts and rebuts. Argumentation semantics anasogothose of normal logic
programs are defined, and the stable extension semantit®wsnso be equivalent to
the answer set semanti¢s (Gelfond and Lifschitz 1990), aptation of the stable model
semantics to extended logic programs. A least fixpoint s¢icgftalledgroundedseman-
tics) based on a notion of acceptability is defined, andedltt the well-founded semantics
of (van Gelder et al. 1991), although only for the case of paots without explicit nega-
tion.

Prakken and Sartof_(Prakken and Sartor 1997) define an argatiom semantics for
extended logic programs similar to that of Dung. Their laanggiis more expressive in that
it distinguishes betweestrict rules, which may not be attacked, atefeasibleules, which
may be attacked. Furthermore, rules have priorities, amatseare only permitted against a
rule of equal or lower priority. Thus, rebuts are not necelgssymmetric, as in our setting.
Our language corresponds to Prakken and Sartor's withoat siles, and either without
priorities, or, equivalently, if all rules have the sameopity. The semantics is given as
a least fixpoint of an acceptability operator, analogous tod®s grounded semantics. A
proof theory, similar to those of Kakas and Tdni(Kakas andi I899) is developed. This
proof theory formed the basis of our general proof theorydstified arguments.

In (Méra and Alferes 1998), an argumentation semanticektended logic programs,
similar to Prakken and Sartor’s, is proposed; it is influehlog WFSX, and distinguishes
between sceptical and credulous conclusions of an arguihalso provides a proof theory
based on dialogue trees, similar to Prakken and Sartor’s.

Defeasible Logic Programming (Garcia and Simari 2004 a8uext al. 1994; Garcia et al. 1998)
is a formalism very similar to Prakken and Sartor’s, basetheriirst order logic argumen-
tation framework ofi(Simari and Loui 1992). It includes logrogramming with two kinds
of negation, distinction between strict and defeasibleshnd allowing for various criteria
for comparing arguments. Its semantics is given operatigiey proof procedures based
on dialectical tree$ (Garcia and Simari 2004; Simar1 €i294). In [Cheshevar et al. 2002),
the semantics of Defeasible Logic Programming is relatateavell-founded semantics,
albeit only for the restricted language corresponding torablogic programs (van Gelder et al. 1991).
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The answer set semantics for extended logic programs (Ge#od Lifschifz 1990) is
defined via extensions which are stable under a certain @notpansformation. While this
semantics is a natural extension of stable models (Gelfodd dschitz 1988) and pro-
vides an elegant model-theoretic semantics, there areadelrawbacks which the answer
set semantics inherits from the stable models. In partictilare is no efficient top-down
proof procedure for the answer set semantics, becausaithevédue of a literal. may de-
pend on the truth value of a literal which doeshotoccur in the proof tree below °. The
well-founded semantic$é (van Gelder et al. 1991) is an appration of the stable model
semantics, for which an efficient top-down proof proceduiste. In [Przymusinski 1990),
the well-founded semantics is adapted to extended loggrpms. However, this semantics
does not comply with theoherence principlewhich states that explicit negation implies
implicit negation. In order to overcome this. (Pereira arigres 1992; Alferes and Pereira 1996)
developed WFSX, a well-founded semantics for extendea Ipgigrams, which satisfies
the coherence principle. It has several desirable praggenibt enjoyed by the answer set
semantics; in particular, an efficient goal-oriented tapyd proof procedure for WFSX
is presented in_(Alferes et al. 1995). WFSX is well estaldishand e.g. widely available
through Prolog implementations such as XSB Prolog (Ereied. € 997).

Our own work is complementary to these approaches, in thdiliveegap by bringing
argumentation and WFSX together in our definitiorugé-justified arguments, which are
equivalent to WFSX (Damasio 1996;_Alteres and Pereira 1006: Alferes et al5).9the
paraconsistent version of WFSX. Furthermore, the gengi@liour framework allows us
to relate existing argumentation semantics such as DumglsPaakken and Sartor’s ap-
proach and thus provide a concise characterisation of@kxisting semantics mentioned
above.

A number of authorg (Kraus et al. 1998; Parsons and Jennffifi[Bierra ef al. 1997;
Parsons et al. 1998; Sadri et al. 2001; Torroni 2002; SclernEg09; Mora and Alferes 1998)
work on argumentation for negotiating agents. Of thesegfimeoaches of (Sadri et al. 2001;
Torroni 2002;[ Schroeder 1999) are based on logic prograguniihe advantage of the
logic programming approach for arguing agents is the abviitia of goal-directed, top-
down proof procedures. This is vital when implementing syt which need to react in
real-time and therefore cannot afford to compaligustified arguments, as would be re-
quired when a bottom-up argumentation semantics would &e. us

In (Sadri et al. 2001, Torroni 2002), abduction is used torsgefigent negotiation fo-
cusing on the generation of negotiation dialogues usingietilwh. This work is relevant
in that it shows how to embed an argumentation proof proeeduo a dialogue proto-
col, which is needed to apply proof procedures of argumimaemantics as defined in
this paper into agent communication languages such as Kb et al. 19914) or FIPA
ACL (Chiariglione et al. 1997).

With a variety of argument-based approaches being pursudafine negotiating agents,
the problem of how these agents may inter-operate ariséspé@bper could serve as a first
step towards inter-operation as existing approaches catebed in our framework, thus
making it easier to compare them.

5 See the extensive discussionlin (Alferes and Pereiral 199@)etails.
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8 Conclusion and Further Work

We have identified various notions of attack for extendedtlpgograms. Based on these
notions of attack, we defined notions of acceptability arastdixpoint semantics. The
contributions of this paper are five-fold.

o First, we defined a parameterised hierarchy of argumentagomantics by estab-
lishing a lattice of justified arguments based on set inolusiWe showed which
argumentation semantics are equal, which are subsets @rmtber and which are
neither.

e Second, we examined some properties of the different sécsaahd gave a neces-
sary and sufficient condition for a semantics to satisfy thteecence principlé (Alferes and Pereira 1996),
and a sufficient criterion for a semantics to be consistent.

e Third, we identified an argumentation semantig, equal to the paraconsistent
well-founded semantics for logic programs with explicigagon, WFSX, (Damasio 1996;
Alferes and Pereira 19P6) and proved this equivalence.

e Forth, we established relationships between existing s&osa in particular that
Jpung & Jps S Jujy = WEFS C Jya = WFSX,, whereJpuny andJps are
the least fixpoint argumentation semantics of DUng (Dun@)2@d Prakken and
Sartor [Prakken and Sartor 1997), amdr'S is the well-founded semantics without
explicit negation[(van Gelder et al. 1991).

o Fifth, we have defined a dialectical proof theory for arguta@an. For all notions of
justified arguments introduced, we prove that the proofheosound and complete
wrt. the corresponding fixpoint argumentation semantics.

It remains to be seen whether a variation in the notion otktygelds interesting varia-
tions of alternative argumentation semantics for extemaigid programs such as preferred
extensions or stable extensions (Dung 1993). It is also an gpestion how the hierarchy
changes when priorities are added as defined in (Antoniold; ¥kas and Moraitis 2002;
Prakken and Sartor 1967: Brewka 1P96; Garcia et al.119%e 3k 1997).
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Appendix A Proofs of Theorems

Theorem 3
Letz’ C x andy C ' be notions of attack, then, ,, C J,/ .

Proof

We show by transfinite induction tha(fY cJs
Base casen = 0: ThenJ, ;, =0 = J, ,/y
Successor ordinab ~~ « + 1:

LetA € J”i;l and(B, A) € «’. Then alsa(B, A) € =, and so there exists' € J7/,
such that(C, B) € y, so also(C, B) € y'. By induction hypothesis}' € J¢ oy and so
Ae il
Limit ordinal A:

Assume/, C J7, foralla < A. Then

A « (e _TA
Jz/y - U(y<)\ Jz/y g U(!<>\ JI//y’ == Jm//y/ D

o 1y ,, forall a..

Theorem 4
Letz and and, be notions of attack such that> undercuts, and letsy = y—undercuts ™"
Theng/y = Jg/sy-

Proof
By TheoreniB, we havé, ,, C J,,,. We prove the inverse inclusion by showing that for

all ordinalsa: J, C J, ., by transfinite induction on.

Base caser = 0: J,/, = 0 = J, /sy

Successor ordinak ~ a+ 1: Let A € J“fyl and(B, A) € z. By definition, there exists
C e Jy,, such tha{C, B) € y. By induction hypothesig; € I sy

If B does not undercuf, then we are done. If, howevds, undercuts”, then because
C € Jy),,» andundercuts C z, there exists) € J7_ (ao < o) such tha(D, B) € sy.

z/sy
It follows that A J;‘/J;;

imi i . (€] A — (€]
Limit ordinal A\: AssumeJ2, < J  foralla < A ThenJ? = U,.,J7, C

« _ JA
Ua<)\ Jz/sy - Jz/sy 0
Theorem 6

Letz be a notion of attack such thatD strongly attacks. ThenJ, ,, = J, /4 = Jy/a-

Proof
Itis sufficient to show thaf, ;, C J,,. Then by Theoref3], ,, C J, /4 C Jy/a = Juju-

We prove by transfinite induction that for all ordinadng‘;‘/a C Jy,
Base casexa =0
J /a =0= Jg/u

Successor ordinalo ~ o + 1
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LetA e J;’/“gl, and(B, A) € x. By definition, there exist§’ € J? , such that” undercuts
or rebutsB. By induction hypothesis} € Jg/u.

If C undercutsB, then we are done. If, however, does not undercuB, thenC' rebuts
B, and soB also rebuts”, i.e. B strongly attack€’. Becausestrongly attacks C = and

C e Jg, there existd € J7 C J2,, (a0 < a) such thatD undercutsB. It follows
thatA e J&f 1.

z/u
Limit ordinal A:

AssumeJ, C Jg, foralla < \.ThenJ},, =U,r /2, C Uper Jo = J2

A

Theorem 7
Jsa/su = Jsa/sa

Proof
By Theoren[BJsa/su C Jsa/sa-

We prove the inverse inclusion by showing that for all orténa J, ., € Jg . by
transfinite induction om.

Base casen =0

Torja =0 =J

sa/su

Successor ordinalo ~ o + 1

Let A € J>T!, andB strongly attacksA. By definition, there exist6’ € J¢,_ such that

sa/sa’ sa/sa

C attacksB and B does not undercut. By induction hypothesig} € J2

sa/su’

If C undercutsB, then we are done. If, howeveT, rebutsB andC does not undercut

B, then B also rebutsC', i.e. B strongly attacks”', and so becaus€' € Jg ., there
existsD € JS";‘}SU € Jg s (o < @) such thatD strongly undercut$3. It follows that
Ae Jgl, o).

Limit ordinal \:

AssumeJg ., C J& ., foralla < X.Then ) . = Uscy /3 © Uncr IS /e =

N sa/sa — “sa/su
Jsa/su' O
Theorem 8
Jsu/a = Jsu/d
Proof

By TheoreniB,J,,/q € Jsu/a-

For the inverse inclusion, we show that for all ordinalsJg, ,, < Jg 4. by transfinite
induction ona.

Base casea =0
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=0= J;u/d

su/a
Successor ordinalo ~ o + 1

Let A € JT! andB strongly undercuts. By definition, there exist§’ € J, such that

su/a’
C undercuts or rebutB. By induction hypothesig, € I/
If C undercutsB, or B does not undercuf', then we are done.

Otherwise,B strongly undercut§’, and so there exist® ¢ J;(}d C solj/d (o < @)
such thatD defeatsB. It follows thatA ¢ J‘i}“dl

su/a

Limit ordinal A:

AssumeJg, . C Jg, 4 forall oo < A. Then
su/a - U su/a = U su/d su/d
a< a<A
O
Lemma 15

Let I be a two-valued interpretation.

1. L € I'(1) iff 3 argument4 with conclusionL such thatussm(A) C I.

2. L € T'x(I) iff 3 argumentA with conclusionL such thatassm(A) C I and

—conc(A)NI =1.

3. L ¢T(I)iff Y argumentsd with conclusionZ, assm(A) NI # 0.

4. L ¢ T (I) iff V argumentsA with conclusionL, assm(A) NI # 0 or
—conc(A)NIT #0.

Proof

1. “Only If"-direction: Induction on the length of the derivation ofL € I'(1).

Base casen = 1:
Then there exists a rule < not Ly,...,not L, in Pst.Ly,...,L, ¢ I, and

[L < not L1,...,not Ly,] is an argument fol, whose assumptions are contained

inl.
Induction stepn ~» n + 1:
Let L € I'™*Y(I). Then there exists arutle= L < Ly,...,Ly,not Ly,... L,

in Ps.t.L; € (1), andL; ¢ I. By induction hypothesis, there exists arguments

Ay,..., A, for Ly,..., L, with assm(A;) C I. ThenA = [r] - A;--- A, is an
argument forL such thatassm(A) C 1.
“If” direction: Induction on the length of the argument.

Base casen = 1:

ThenA = [L + not Ly,...,not L,), andLy,...,L, ¢ I. ThenL +< £, and
L eTYI).

Induction stepn ~» n + 1:
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LetA =[L « Ly,...,Ly,not L},...,not L, ;ra,...,7m,] be an argument s.t.
assm(A) C I. A contains subarguments, ..., A, for Ly, ..., L,, with assm(A;) C
I.Becausd.;,..., L, & I,thenl + Ly,...,L, € ? By induction hypothesis,
L; eT'(I).soalsoL € T'(I).

2. “Only If"-direction: Induction on the length of the derivation ofL € T';(I).
Base casen = 1:
Then there exists a rule < not Lq,...,not L, in Pst.—-L,Ly,...,L, & I,and
[L < not L1,...,not Ly,] is an argument fol. whose assumptions are contained
inI,and-L ¢ I.
Induction stepn ~» n + 1:
Let L € T"*TY(I). Then there exists arule= L < Ly,...,Ly,not L,...,L'm
inPstL; e I'™(I), L, ¢ I,and—L ¢ I. By induction hypothesis, there exists
argumentsdy, ..., A, for Ly,..., L, with assm(4;) C I and—conc(4;) NI =
¢. ThenA = [r] - A;--- A, is an argument fol. such thatassm(A4) C I, and
—conc(A) NI = (.

“If” direction: Induction on the length of the argument.

Base casen = 1:
ThenA = [L + not Ly,...,not L,],and=L, Ly,..., L, ¢ I. ThenL +¢€ £z,
andL € I''(1).
Induction stepn ~» n + 1:
LetA =[L « Ly,...,Ly,not Ly,...,not L, ;ra,...,m,] be an argument s.t.
assm(A) C I, and—conc(A) NI = . A contains subarguments,, ..., A4, for
Ly,..., Ly, with assm(A;) C I,and—conc(A4;)NI = (. Becausd.), ..., L. &1,
and-L & I,thenL < Ly,...,L, € % By induction hypothesidl; € T'(I), so
alsoL € T'(I).

3. and 4. follow immediately frofl 1. aldl 2. becauss two-valued.

O

Theorem 19
An argumentd is z/y-justified iff there exists a/y-dialogue tree with4 as its root, and
won by the proponent.

Proof
“If”-direction. We show by transfinite induction: i € J¢ » then there exists a winning
x/y-dialogue tree of height « for A.

Base casex = 0:
Then there exists no arguméBisuch thaf B, A) € z, and saA is a winningz /y-dialogue
tree for A of height0.

Successor ordinak + 1:

If A e J;’/“;l, then for anyB, such that(B;, A) € x there exists &; € J;‘/y such that
(Ci, B;) € y. By induction hypothesis, there exist winningy-dialogue trees for the’;.
Furthermore, if any of th€’; contains a move: = (P, A), then it also contains a winning
subtree ford rooted atn and we are done. Otherwise, we have a winning tree rootdd at



A Hierarchy of Argumentation Semantics 37

with children B;, whose children are the winning trees gy.
Limit ordinal \:

If Ae Jﬂj/y, then there exists am < A such thatd € oy by induction hypothesis, there
exists a winninge /y-dialogue tree of height for A.

“Only-if"-direction. We prove by transfinite induction: there exists a winning tree of
heighta for A, thenA € J2, .

Note that by definition, the height of a dialogue tree is @ilher a successor ordinal
a+1. So we prove the base caseand for the induction step, we assume that the induction
hypothesis holds for ap < o + 1.

Base caser = 0:

Then there are no argumerssuch tha{ B, A) € z, and soA € Jg/y.

Successor ordinak + 1:

LetT be a tree with rootl, whose children ar&;, and the children oB; are winning trees
rooted atC;. By induction hypothesis}; € Jory- Because thé; are all those arguments
such tha{ B;, A) € z, thenA is defended against eaéh by C;, and soA € Jer O

z/y "
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