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Abstract

Argumentation has proved a useful tool in defining formal semantics for assumption-based reasoning
by viewing a proof as a process in which proponents and opponents attack each others arguments by
undercuts (attack to an argument’s premise) and rebuts (attack to an argument’s conclusion). In this
paper, we formulate a variety of notions of attack for extended logic programs from combinations
of undercuts and rebuts and define a general hierarchy of argumentation semantics parameterised by
the notions of attack chosen by proponent and opponent. We prove the equivalence and subset rela-
tionships between the semantics and examine some essentialproperties concerning consistency and
the coherence principle, which relates default negation and explicit negation. Most significantly, we
place existing semantics put forward in the literature in our hierarchy and identify a particular argu-
mentation semantics for which we prove equivalence to the paraconsistent well-founded semantics
with explicit negation, WFSXp. Finally, we present a general proof theory, based on dialogue trees,
and show that it is sound and complete with respect to the argumentation semantics.

Keywords: Non-monotonic Reasoning, Extended Logic Programming, Argumentation se-
mantics, Well-founded Semantics with Explicit Negation
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1 Introduction

Argumentation has attracted much interest in the area of Artificial Intelligence. On the one
hand, argumentation is an important way of human interaction and reasoning, and is there-
fore of interest for research into intelligent agents. Application areas include automated ne-
gotiation via argumentation (Parsons et al. 1998; Kraus et al. 1998; Schroeder 1999) and
legal reasoning (Prakken and Sartor 1997). On the other hand, argumentation provides a
formal model for various assumption based (or non-monotonic, or default) reasoning for-
malisms (Bondarenko et al. 1997; Chesñevar et al. 2000). Inparticular, various argumen-
tation based semantics have been proposed for logic programming with default nega-
tion (Bondarenko et al. 1997; Dung 1995).

Argumentation semantics are elegant since they can be captured in an abstract frame-
work (Dung 1995; Bondarenko et al. 1997; Vreeswijk 1997; Jakobovits and Vermeir 1999b),
for which an elegant theory of attack, defence, acceptability, and other notions can be de-
veloped, without recourse to the concrete instance of the reasoning formalism at hand. This
framework can then be instantiated to various assumption based reasoning formalisms.
Similarly, a dialectical proof theory, based on dialogue trees, can be defined for an abstract
argumentation framework, and then applied to any instance of such a framework (Simari et al. 1994;
Dung 1995; Jakobovits and Vermeir 1999a).

In general, an argumentA is a proof which may use a set of defeasible assumptions.
Another argumentB may have a conclusion which contradicts the assumptions or the con-
clusions ofA, and therebyB attacksA. There are two fundamental notions of such attacks:
undercut and rebut (Pollock 1987; Prakken and Sartor 1997) or equivalentlyground-attack
andreductio-ad-absurdum attack(Dung 1993). We will use the terminology of undercuts
and rebuts. Both attacks differ in that an undercut attacks apremise of an argument, while
a rebut attacks a conclusion.

Given a logic program we can define an argumentation semantics by iteratively collect-
ing those arguments which are acceptable to a proponent, i.e. they can be defended against
all opponent attacks. In fact, such a notion of acceptability can be defined in a number of
ways depending on which attacks we allow the proponent and opponent to use.

Normal logic programs do not have negative conclusions, which means that we cannot
use rebuts. Thus both opponents can only launch undercuts oneach other’s assumptions.
Various argumentation semantics have been defined for normal logic programs (Bondarenko et al. 1997;
Dung 1995; Kakas and Toni 1999), some of which are equivalentto existing semantics
such as the stable model semantics (Gelfond and Lifschitz 1988) or the well-founded se-
mantics (van Gelder et al. 1991).

Extended logic programs (Gelfond and Lifschitz 1990; Alferes and Pereira 1996; Wagner 1994),
on the other hand, introduce explicit negation, which states that a literal is explicitly false.
As a result, both undercuts and rebuts are possible forms of attack; there are further varia-
tions depending on whether any kind of counter-attack is admitted. A variety of argumenta-
tion semantics arise if one allows one notion of attack as defence for the proponent, and an-
other as attack for the opponent. Various argumentation semantics have been proposed for
extended logic programs (Dung 1993; Prakken and Sartor 1997; Móra and Alferes 1998;
?). Dung has shown that a certain argumentation semantics is equivalent to the answer
set semantics (Gelfond and Lifschitz 1990), a generalisation of the stable model seman-
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tics (Gelfond and Lifschitz 1988). For the well-founded semantics with explicit negation,
WFSX (Pereira and Alferes 1992; Alferes and Pereira 1996), there exists ascenario se-
mantics(Alferes et al. 1993) which is similar to an argumentation semantics. This seman-
tics applies only to non-contradictory programs; to our knowledge, no argumentation se-
mantics has yet been found equivalent to theparaconsistentwell-founded semantics with
explicit negation, WFSXp (Damásio 1996; Alferes et al. 1995; Alferes and Pereira 1996).

This paper makes the following contributions: we identify various notions of attack for
extended logic programs. We set up a general framework of argumentation semantics, pa-
rameterised on these notions of attacks. This framework is then used to classify notions of
justified arguments, and to compare them to the argumentation semantics of (Dung 1993)
and (Prakken and Sartor 1997), among others. We examine someproperties of the differ-
ent semantics, concerning consistency, and the coherence principle which relates explicit
and implicit negation. One particular argumentation semantics is then shown to be equiv-
alent to the paraconsistent well-founded semantics with explicit negation (Damásio 1996).
Finally, we develop a general dialectical proof theory for the notions of justified arguments
we introduce, and show how proof procedures for these proof theories can be derived. This
paper builds upon an earlier conference publication (Schweimeier and Schroeder 2002),
which reports initial findings, while this article providesdetailed coverage including all
proofs and detailed examples.

The paper is organised as follows: First we define arguments and notions of attack and
acceptability. Then we set up a framework for classifying different least fixpoint argumen-
tation semantics, based on different notions of attack. Section 4 examines some properties
(coherence and consistency) of these semantics. In Section5, we recall the definition of
WFSXp, and prove the equivalence of an argumentation semantics and WFSXp. A general
dialectical proof theory for arguments is presented in Section 6; we prove its soundness
and completeness and outline how a proof procedure for the proof theory may be derived.

2 Extended Logic Programming and Argumentation

We introduce extended logic programming and summarise the definitions of arguments
associated with extended logic programs. We identify various notions of attack between
arguments, and define a variety of semantics parametrised onthese notions of attack.

Extended logic programming extends logic programming by two kinds of negation:de-
fault negationandexplicit negation. The former allows the assumption of the falsity of a
fact if there is no evidence for this fact. Explicit negation, on the other hand, allows to
explicitly assert the falsity of a fact.

The default negation of a literalp, writtennot p, states the assumption of the falsity of
p. The assumptionnot p is intended to be true iff there is no evidence ofp. Thus, the truth
of not p relies on a lack of knowledge aboutp. An operational interpretation of default
negation is given bynegation as failure(Clark 1978): the querynot p succeeds iff the
queryp fails. Default negation is usually not allowed in the head ofa rule: the truth value
of not p is defined in terms ofp, and so there should not be any other rules that define
not p.

Default negation thus gives a way of expressing a kind of negation, based on a lack of
knowledge about a fact. Sometimes, however, it is desirableto express the explicit knowl-
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edge of the falsity of a fact. The explicit negation¬p of a literalp states thatp is known to
be false. In contrast to default negation, an explicit negation¬p is allowed in the head of a
rule, and there is no other way of deriving¬p except by finding an applicable rule with¬p
as its consequence.

Consider the following example1: “A school bus may cross the railway tracks under the
condition that there is no approaching train.” It may be expressed using default negation as

cross← not train

This is a dangerous statement, however: assume that there isno knowledge about an ap-
proaching train, e.g. because the driver’s view is blocked.In this case, the default negation
not train is true, and we conclude that the bus may cross. Instead, it would be appropriate
to demand the explicit knowledge that there is no approaching train, as expressed using
explicit negation:

cross← ¬train

The combination of default and explicit negation also allows for a more cautious statement
of positive facts: while the rule

¬cross← train

states that the driver should not cross if there is a train approaching, the rule

¬cross← not ¬train

states more cautiously that the driver should not cross if ithas not been established that
there is no train approaching. In contrast to the former rule, the latter rule prevents a driver
from crossing if there is no knowledge about approaching trains.

A connection between the two kind of negations may be made by asserting thecoherence
principle (Pereira and Alferes 1992; Alferes and Pereira 1996): it states that whenever an
explicit negation¬p is true, then the default negationnot p is also true. This corresponds
to the statement that if something is known to be false, then it should also be assumed to
be false.

2.1 Arguments

Definition 1
An objective literal is an atomA or its explicit negation¬A. We define¬¬L = L. A
default literal is of the formnot L whereL is an objective literal. Aliteral is either an
objective or a default literal.
An extended logic programis a (possibly infinite) set of rules of the form
L0 ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n(m,n ≥ 0),

where eachLi is an objective literal (0 ≤ i ≤ m + n). For such a ruler, we callL0 the
headof the rule,head(r), andL1, . . . , not Lm+n the bodyof the rule,body(r). A rule
with an empty body is called afact, and we writeL0 instead ofL0 ←.

Our definition of an argument associated with an extended logic program is based on (Prakken and Sartor 1997).

1 Due to John McCarthy, first published in (Gelfond and Lifschitz 1990)
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Essentially, an argument is a partial proof, resting on a number ofassumptions, i.e. a set of
default literals.2 Note that we do not consider priorities of rules, as used e.g.in (Antoniou 2002;
Kakas and Moraitis 2002; Prakken and Sartor 1997; Brewka 1996; Garcı́a et al. 1998; Vreeswijk 1997).
Also, we do not distinguish betweenstrict rules, which may not be attacked, andde-
feasiblerules, which may be attacked (Prakken and Sartor 1997; Simari and Loui 1992;
Garcı́a et al. 1998).

Definition 2
Let P be an extended logic program. Anargumentassociated withP is a finite sequence
A = [r1, . . . rn] of ground instances of rulesri ∈ P such that for every1 ≤ i ≤ n, for
every objective literalLj in the body ofri there is ak > i such thathead(rk) = Lj.
A subargumentof A is a subsequence ofA which is an argument. The head of a rule inA

is called aconclusionof A, and a default literalnot L in the body of a rule ofA is called
anassumptionof A. We writeassm(A) for the set of assumptions andconc(A) for the set
of conclusions of an argumentA.

An argumentA with a conclusionL is aminimal argument forL if there is no subargu-
ment ofA with conclusionL. An argument isminimal if it is minimal for some literalL.
Given an extended logic programP , we denote the set of minimal arguments associated
with P byArgsP .

The restriction to minimal arguments (cf. (Simari and Loui 1992)) is not essential, but
convenient, since it rules out arguments constructed from several unrelated arguments.
Generally, one is interested in the conclusions of an argument, and wants to avoid hav-
ing rules in an argument which do not contribute to the desired conclusion. Furthermore,
when designing a proof procedure to compute justified arguments, one generally wants to
compute only minimal arguments, for reasons of efficiency.

Example 1
Consider the following program:

¬cross ← not ¬train

cross ← ¬train

train ← see train

¬train ← not train, wear glasses

wear glasses

The program models the example from the introduction to thissection. A bus is allowed to
cross the railway tracks if it is known that there is no train approaching; otherwise, it is not
allowed to cross. A train is approaching if the driver can seethe train, and it is known that
there is no train approaching if there is no evidence of a train approaching, and the driver
is wearing glasses.

There is exactly one minimal argument with conclusioncross:

[cross← ¬train;¬train← not train, wear glasses;wear glasses]

2 In (Bondarenko et al. 1997; Dung 1993), an argumentis a set of assumptions; the two approaches are equiv-
alent in that there is an argument with a conclusionL iff there is a set of assumptions from whichL can be
inferred. See the discussion in (Prakken and Sartor 1997).
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It contains as subarguments the only minimal arguments for¬train andwear glasses:

[¬train← not train, wear glasses]

[wear glasses]

There is also exactly one minimal argument with conclusion¬cross:

[¬cross← not ¬train]

There is no argument with conclusiontrain, because there is no rule forsee train.

2.2 Notions of attack

There are two fundamental notions of attack:undercut, which invalidates an assumption
of an argument, andrebut, which contradicts a conclusion of an argument (Dung 1993;
Prakken and Sartor 1997). From these, we may define further notions of attack, by allowing
either of the two fundamental kinds of attack, and considering whether any kind of counter-
attack is allowed or not. We will now formally define these notions of attack.

Definition 3
LetA1 andA2 be arguments.

1. A1 undercutsA2 if there is an objective literalL such thatL is a conclusion
of A1 andnot L is an assumption ofA2.

2. A1 rebutsA2 if there is an objective literalL such thatL is a conclusion of
A1 and¬L is a conclusion ofA2.

3. A1 attacksA2 if A1 undercuts or rebutsA2.
4. A1 defeatsA2 if

• A1 undercutsA2, or
• A1 rebutsA2 andA2 does not undercutA1.

5. A1 strongly attacksA2 if A1 attacksA2 andA2 does not undercutA1.
6. A1 strongly undercutsA2 if A1 undercutsA2 andA2 does not undercutA1.

The notions ofundercutandrebut, and henceattackare fundamental for extended logic
programs (Dung 1993; Prakken and Sartor 1997). The notion ofdefeatis used in (Prakken and Sartor 1997),
along with a notion ofstrict defeat, i.e. a defeat that is not counter-defeated. For arguments
without priorities, rebuts are symmetrical, and thereforestrict defeat coincides with strict
undercut, i.e. an undercut that is not counter-undercut. For this reason, we use the term
strong undercutinstead ofstrict undercut, and similarly definestrong attackto be an attack
which is not counter-undercut. We will use the following abbreviations for these notions
of attack.r for rebuts,u for undercuts,a for attacks,d for defeats,sa for strongly attacks,
andsu for strongly undercuts.

Example 2
Consider the program of example 1. There are the following minimal arguments:

A : [cross← ¬train;¬train← not train, wear glasses;wear glasses]

B : [¬cross← not ¬train]

C : [¬train← not train, wear glasses]

D : [wear glasses]
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The argumentA andB rebut each other. The subargumentC of A also undercutsB, so
A also undercutsB. ThereforeA strongly attacksB, whileB does not strongly attack or
defeatA.

Example 3

The arguments[q ← not p] and[p ← not q] undercut each other. As a result, they do not
strongly undercut each other.

The arguments[p ← not q] and[¬p ← not r] do not undercut each other, but strongly
attack each other.

The argument[¬p← not r] strongly undercuts[p← not ¬p] and[p← not ¬p] attacks
- but does not defeat - the argument[¬p← not r].

These notions of attack define for any extended logic programa binary relation on the
set of arguments associated with that program.

Definition 4

A notion of attackis a functionx which assigns to each extended logic programP a binary
relationxP on the set of arguments associated withP , i.e.xP ⊆ ArgsP ×ArgsP . Notions
of attack are partially ordered by definingx ⊆ y iff ∀P : xP ⊆ yP

Notation We will use sans-serif font for the specific notions of attackintroduced in Def-
inition 3 and their abbreviations:r, u, a, d, sa, andsu. We will usex, y, z, . . . to denote
variables for notions of attacks. Arguments are denoted byA,B,C, . . .

The term “attack” is somewhat overloaded: 1. it is the notionof attacka consisting
of a rebut or an undercut; we use this terminology because it is standard in the litera-
ture (Dung 1993; Prakken and Sartor 1997). 2. in general, an attack is a binary relation
on the set of arguments of a program; we use the term “notion ofattack”. 3. if the argu-
mentation process is viewed as a dialogue between an proponent who puts forward an
argument, and an opponent who tries to dismiss it, we may choose one notion of attack
for the use of the proponent, and another notion of attack forthe opponent. In such a set-
ting, we call the former notion of attack the “defence”, and refer to the latter as “attack”,
in the hope that the meaning of the term “attack” will be clearfrom the context.

Definition 5

Let x be a notion of attack. Then theinverseof x, denoted byx−1, is defined asx−1

P =

{(B,A) | (A,B) ∈ xP }.

In this relational notation, Definition 3 can be rewritten asa = u∪ r, d = u∪ (r− u
−1),

sa = (u ∪ r) − u
−1, andsu = u− u

−1.

Proposition 1

The notions of attack of Definition 3 are partially ordered according to the diagram in
Figure 1.
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attacks = a = u ∪ r

defeats = d = u ∪ (r− u
−1)

iiiiiiiiiiiii

VVVVVVVVVVVV

undercuts = u

UUUUUUUUUUUU
strongly attacks = sa = (u ∪ r)− u

−1

iiiiiiiiiiii

strongly undercuts = su = u− u
−1

Fig. 1. Notions of Attack

Proof
A simple exercise, using the set-theoretic lawsA−B ⊆ A ⊆ A ∪C and(A ∪B)−C =

(A− C) ∪ (B − C) (for any arbitrary setsA, B, andC).

As mentioned above, we will work with notions of attack as examined in previous litera-
ture. Therefore Figure 1 contains the notions ofundercut (Dung 1993; Prakken and Sartor 1997),
attack (Dung 1993; Prakken and Sartor 1997),defeat (Prakken and Sartor 1997),strong
undercut (Prakken and Sartor 1997), andstrong attack as an intermediate notion between
strongly undercuts anddefeats. All of these notions of attack are extensions ofunder-
cuts. The reason is that undercuts are asymmetric, i.e. for two argumentsA, B, AuB
does not necessarily implyBuA. Rebuts, on the other hand, are symmetric, i.e.ArB im-
pliesBrA. As a consequence, rebuts on their own always lead to a “draw”between argu-
ments. There is, however, a lot of work on priorities betweenarguments (Antoniou 2002;
Kakas and Moraitis 2002; Prakken and Sartor 1997; Brewka 1996; Garcı́a et al. 1998; Vreeswijk 1997),
which implies that rebuts become asymmetric and therefore lead to more interesting se-
mantics. But the original, more basic approach does not consider this extension, and hence
undercuts play the prime role and notions of attack mainly based on rebuts, such asr or
r − u

−1, are not considered.
The following example shows that the inclusions in Figure 1 are strict.

Example 4
Consider the following program:

p ← not ¬p

p ← not q

¬p ← not r

q ← not p

¬ q ← not s

It has the minimal arguments{[p← not¬p], [p← not q], [¬p← not r], [q ← not p], [¬ q ←

not s]}. The arguments[p ← not q] and[q ← not p] undercut (and hence defeat) each
other, but they do not strongly undercut or strongly attack each other. The arguments
[q ← not r] and [¬q ← not s] strongly attack (and hence defeat) each other, but they
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do not undercut each other. The argument[p ← not ¬p] attacks[¬p ← not r], but it does
not defeat it, because[¬p← not r] (strongly) undercuts[p← not ¬p].

2.3 Acceptability and justified arguments

Given the above notions of attack, we define acceptability ofan argument. Basically, an
argument is acceptable if it can be defended against any attack. Our definition of accept-
ability is parametrised on the notions of attack allowed forthe proponent and the opponent.

Acceptability forms the basis for our argumentation semantics, which is defined as
the least fixpoint of a function, which collects all acceptable arguments (Pollock 1987;
Simari and Loui 1992; Prakken and Sartor 1997; Dung 1993). The leastfixpoint is of par-
ticular interest, because it provides a canonical fixpoint semantics and it can be constructed
inductively.

Because the semantics is based on parametrised acceptability, we obtain a uniform
framework for defining a variety of argumentation semanticsfor extended logic programs.
It can be instantiated to a particular semantics by choosingone notion of attack for the
opponent, and another notion of attack as a defence for the proponent. The uniformity
of the definition makes it a convenient framework for comparing different argumentation
semantics.

Definition 6
Let x andy be notions of attack. LetA be an argument, andS a set of arguments. Then
A is x/y-acceptable wrt.S if for every argumentB such that(B,A) ∈ x there exists an
argumentC ∈ S such that(C,B) ∈ y.

Based on the notion of acceptability, we can then define a fixpoint semantics for argu-
ments.

Definition 7
Let x andy be notions of attack, andP an extended logic program. The operatorFP,x/y :

P(ArgsP )→ P(ArgsP ) is defined as

FP,x/y(S) = {A | A is x/y-acceptable wrt.S}

We denote the least fixpoint ofFP,x/y byJP,x/y. If the programP is clear from the context,
we omit the subscriptP . An argumentA is calledx/y-justifiedif A ∈ Jx/y; an argument
is calledx/y-overruledif it is attacked by anx/y-justified argument; and an argument is
calledx/y-defensibleif it is neitherx/y-justified norx/y-overruled.

Note that this definition implies that the logic associated with justified arguments is 3-
valued, with justified arguments corresponding totrue literals, overruled arguments tofalse
literals, and defensible arguments toundefinedliterals. We could also consider arguments
which are both justified and overruled; these correspond to literals with the truth value
overdeterminedof Belnap’s four-valued logic (Belnap 1977).

Proposition 2
For any programP , the operatorFP,x/y is monotone. By the Knaster-Tarski fixpoint the-
orem (Tarski 1955; Birkhoff 1967),FP,x/y has a least fixpoint. It can be constructed by
transfinite induction as follows:
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a/x d/x
u/u =
u/su

u/a =
u/d =
u/sa

sa/sa =
sa/su

sa/a =
sa/d =
sa/u

su/x

1 ∅ [s] [s] [s]
[p ← not q],
[s]

[p ← not q],
[s]

[p ← not q],
[q ← not p],
[s]

2 ∅ ∅ [¬q ← not r] [¬q ← not r] ∅ [¬q ← not r] [¬q ← not r]

3 ∅ ∅ ∅ [p← not q] ∅ ∅ ∅

4 ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 1. Computing justified arguments – then-th row shows the justified arguments
added at then-th iteration

J0
x/y := ∅

Jα+1

x/y
:= FP,x/y(J

α
x/y) for α+1 a successor ordinal

Jλ
x/y :=

⋃
α<λ Jα

x/y for λ a limit ordinal

Then there exists a least ordinalλ0 such thatFx/y(J
λ0

x/y) = Jλ0

x/y =: Jx/y.

Proof
LetS1 ⊆ S2, andA ∈ FP,x/y, i.e.A is x/y-acceptable wrt.S1, i.e. everyx-attack against
A is y-attacked by an argument inS1. ThenA is alsox/y-acceptable wrt.S2, because
S1 ⊆ S2, i.e.S2 contains more arguments to defendA.

Note that our general framework encompasses some well-known argumentation se-
mantics for extended logic programs: Dung’s grounded semantics (Dung 1993) isJa/u.
Prakken and Sartor’s argumentation semantics (Prakken andSartor 1997), without priori-
ties or strict rules isJd/su. If we regard explicitly negated literals¬L as new atoms, unre-
lated to the positive literalL, then we can apply the well-founded argumentation semantics
of (Bondarenko et al. 1997; Kakas and Toni 1999) to extended logic programs, and obtain
Ju/u.

Example 5
Consider the following programP :

p ← not q

q ← not p

¬q ← not r

r ← not s

s

¬s ← not s

Table 1 shows the computation of justified arguments associated withP . The columns
show various combinationsx/y of attack/defence, and a rown shows those argumentsA
that get added at iteration stagen, i.e.A ∈ Jn

P,x/y andA 6∈ Jn−1

P,x/y.
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The set of arguments associated withP is{[p← not q], [q ← not p], [¬q ← not r], [r ←

not s], [s], [¬s← not s]}.
All arguments are undercut by another argument, except[s]; the only attack against[s] is

a rebut by[¬s← not s], which is not a defeat. Thus,[s] is identified as a justified argument
at stage0 in all semantics, except ifattacks is allowed as an attack. In the latter case, no
argument is justified at stage0, hence the set of justified argumentsJa/x is empty.

3 Relationships between Notions of Justifiability

The definition of justified arguments provides a variety of semantics for extended logic
programs, depending on which notion of attackx is admitted to attack an argument, and
which notion of attacky may be used as a defence.

This section is devoted to an analysis of the relationship between the different notions
of justifiability, leading to a hierarchy of notions of justifiability illustrated in Figure 2.

3.1 Equivalence of argumentation semantics

We will prove a series of theorems, which show that some of theargumentation semantics
defined above are subsumed by others, and that some of them areactually equivalent. Thus,
we establish a hierarchy of argumentation semantics, whichis illustrated in Figure 2.

First of all, it is easy to see that the least fixpoint increases if we weaken the attacks or
strengthen the defence.

Theorem 3
Let x′ ⊆ x andy ⊆ y′ be notions of attack, thenJx/y ⊆ Jx′/y′ .

Proof
See Appendix A.

Theorem 4 states that it does not make a difference if we allowonly the strong version
of the defence. This is because an argument need not defend itself on its own, but it may
rely on other arguments to defend it.

Theorem 4
Letx and andy be notions of attack such thatx ⊇ undercuts, and letsy = y−undercuts−1.
ThenJx/y = Jx/sy.

Proof
Informally, everyx-attackB to anx/y-justified argumentA is y-defended by somex/sy-
justified argumentC (by induction). Now ifC is nota sy-attack, then it is undercut byB,
and becausex ⊇ undercuts andC is justified, there exists astrongdefence forC against
B, which is also a defence of the original argumentA againstC.

The formal proof is by transfinite induction. By Theorem 3, wehaveJx/sy ⊆ Jx/y. We
prove the inverse inclusion by showing that for all ordinalsα: Jα

x/y ⊆ Jα
x/sy, by transfinite

induction onα. See Appendix A for the detailed proof.
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In particular, the previous Theorem states that undercut and strong undercut are equiva-
lent as a defence, as are attack and strong attack. This may beuseful in an implementation,
where we may use the stronger notion of defence without changing the semantics, thereby
decreasing the number of arguments to be checked. The following Corollary shows that
because defeat lies between attack and strong attack, it is equivalent to both as a defence.

Corollary 5

Let x be a notion of attack such thatx ⊇ undercuts. ThenJx/a = Jx/d = Jx/sa.

Proof

It follows from Theorems 3 and 4 thatJx/sa ⊆ Jx/d ⊆ Jx/a = Jx/sa.

The following theorem states that defence withundercuts is equally strong as one with
defeats or with attacks, provided the opponent’s permitted attacks include at least the
strong attacks.

Theorem 6

Let x be a notion of attack such thatx ⊇ strongly attacks. ThenJx/u = Jx/d = Jx/a.

Proof

It is sufficient to show thatJx/a ⊆ Jx/u. Then by Theorem 3,Jx/u ⊆ Jx/d ⊆ Jx/a = Jx/u.

Informally, everyx-attackB to a x/a-justified argumentA is attacked by somex/u-
justified argumentC (by induction). IfC is a rebut, but not an undercut, then because
B strongly attacksC, and becausex ⊇ strongly attacks, there must have been an argu-
ment defendingC by undercuttingB, thereby also defendingA againstB.

We prove by transfinite induction that for all ordinalsα: Jα
x/a ⊆ Jα

x/u. See Appendix A for
the detailed proof.

In analogy to Theorem 6, strong undercuts are an equivalent defence to strong attacks if
the allowed attacks are strong attacks.

Theorem 7

Jsa/su = Jsa/sa

Proof

The proof is similar to the proof of Theorem 6. See Appendix A.

Theorem 8

Jsu/a = Jsu/d
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Proof

By Theorem 3,Jsu/d ⊆ Jsu/a.

We now show the inverse inclusion. Informally, every strongundercutB to asu/a-justified
argumentA is attacked by somesu/d-justified argumentC (by induction). IfC does not
defeatA, then there is some argumentD defendingC by defeatingB, thereby also de-
fendingA againstB.

Formally, we show that for all ordinalsα: Jα
su/a ⊆ Jα

su/d, by transfinite induction onα. See
Appendix A for the detailed proof.

These results are summarised in a hierarchy of argumentation semantics in Theorem 9
and Figure 2.

3.2 Distinguishing argumentation semantics

The previous section showed equality and subset relationships for a host of notions of justi-
fied arguments. In this section we complement these positivefindings by negative findings
stating for which semantics there are no subset relationships. We prove these negative
statements by giving counter-examples distinguishing various notions of justifiability.

The first example shows that, in general, allowing only strong forms of attack for the
opponent leads to a more credulous semantics, because in cases where only non-strong
attacks exist, every argument is justified.

Example 6

Consider the following program:

p ← not q

q ← not p

For any notion of attackx, we haveJsu/x = Jsa/x = {[p ← not q], [q ← not p]},

because there is no strong undercut or strong attack to any ofthe arguments. However,
Ja/x = Jd/x = Ju/x = ∅, because every argument is undercut (and therefore defeatedand
attacked).

Thus, in general,Js/x 6⊆ Jw/y, for s ∈ {su, sa},w ∈ {a, u, d}, and any notions of attack
x andy.

The following example shows that some interesting properties need not hold for all
argumentation semantics: a fact (i.e. a rule with an empty body) need not necessarily lead
to a justified argument; this property distinguishes Dung’s(Dung 1993) and Prakken and
Sartor’s (Prakken and Sartor 1997) semantics from most of the others.

Example 7

Consider the following program:

p ← not q

q ← not p

¬p
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Let x be a notion of attack. ThenJd/x = Ja/x = ∅, because every argument is defeated
(hence attacked).Jsa/su = Jsa/sa = {[q ← not p]}, because[q ← not p] is the only
argument which is not strongly attacked, but it does not strongly attack any other argument.
Ju/su = Ju/u = {[¬p]}, because there is no undercut to[¬p], but [¬p] does not undercut
any other argument.Ju/a = {[¬p], [q ← not p]}, because there is no undercut to[¬p],
and the undercut[p ← not p] to [q ← not p] is attacked by[¬p]. We also haveJsa/u =

{[¬p], [q ← not p]}, because[q ← not p] is not strongly attacked, and the strong attack
[p← not q] on [¬p] is undercut by[q ← not p].

Thus, in general,Ju/x 6⊆ Jd/x, Ju/x 6⊆ Ja/x, Jsa/sx 6⊆ Ju/y (wheresx ∈ {su, sa} and
y ∈ {u, su}), andJu/y 6⊆ Jsa/sx (wheresx ∈ {su, sa} andy ∈ {u, a, d, su, sa}).

The following example is similar to the previous example, except that all the undercuts
are strong, whereas in the previous example there were only non-strong undercuts.

Example 8
Consider the following program:

p ← not q

q ← not r

r ← not s

s ← not p

¬p

Let x be a notion of attack. ThenJsa/x = ∅, because every argument is strongly attacked.
Jsu/u = Jsu/su = {[¬p]}, because all arguments except[¬p] are strongly undercut,

but [¬p] does not undercut any argument. AndJu/a = Jsu/sa = Jsu/a = {[¬p], [q ←

not r], [s ← not p]}, because[¬p] is not undercut, and it defends[s ← not p] against the
strong undercut[p ← not q] (by rebut), and in turn,[s ← not p] defends[q ← not r]

against the strong undercut[r ← not s] (by strong undercut).
Thus,Ju/a 6⊆ Jsu/y, Jsu/sa 6⊆ Jsu/y, andJsu/a 6⊆ Jsu/y, for y ∈ {u, su}.

The following example shows that in certain circumstances,non-strong defence allows
for more justified arguments than strong defence.

Example 9
Consider the following program:

p ← not q

q ← not p

r ← not p

Let x be a notion of attack. ThenJu/x = Jd/x = Ja/x = ∅, because every argument is
undercut.Jsu/su = Jsu/sa = Jsa/su = Jsa/sa = {[p ← not q], [q ← not p]} : In these
cases, the strong attacks are precisely the strong undercuts; the argument[r ← not p] is
not justified, because the strong undercut[p ← not q] is undercut, but not strongly under-
cut, by [q ← not p]. And finally, Jsu/u = Jsu/a = Jsa/u = Jsa/a = {[p ← not q], [q ←

not p], [r ← not p]} : Again, undercuts and attacks, and strong undercuts and strong at-
tacks, coincide; but now[r ← not p] is justified, because non-strong undercuts are allowed
as defence.

Thus, in general,Jx/u 6⊆ Jx/su andJx/a 6⊆ Jx/sa, wherex ∈ {su, sa}.
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The following example distinguishes the argumentation semantics of Dung (Dung 1993)
and Prakken and Sartor (Prakken and Sartor 1997).

Example 10

Consider the following program:

p ← not ¬p

¬p

ThenJa/x = ∅, because both arguments attack each other, whileJd/x = {[¬p]}, because
[¬p] defeats[p← not ¬p], but not vice versa.

Thus,Jd/x 6⊆ Ja/x.

The final example shows that if we do not allow any rebuts as attacks, then we obtain a
strictly more credulous semantics.

Example 11

Consider the following program:

¬p ← not q

¬q ← not p

p

q

Let x be a notion of attack. ThenJsa/x = Jd/x = Ja/x = ∅, because every argument is
strongly attacked (hence defeated and attacked), whileJu/x = Jsu/x = {[p], [q]}.

Thus, in general,Jv/x 6⊆ Jw/y, wherev ∈ {u, su}, w ∈ {a, d, sa}, andx andy are any
notions of attack.

3.3 A hierarchy of argumentation semantics

We now summarise the results of this section, establishing acomplete hierarchy of argu-
mentation semantics, parametrised on a pair of notions of attackx/y wherex stands for the
attacks on an argument, andy for the possible defence. We locate in this hierarchy the argu-
mentation semantics of Dung (Dung 1993) and Prakken and Sartor (Prakken and Sartor 1997),
as well as the well-founded semantics for normal logic programs (van Gelder et al. 1991).
In Section 5 we will show that the paraconsistent well-founded semantics with explicit
negation, WFSXp (Damásio 1996), can also be found in our hierarchy. As a corollary, we
obtain precise relationships between these well-known semantics and our argumentation
semantics.

Theorem 9

The notions of justifiability are ordered (by set inclusion)according to the diagram in
Figure 2, wherex/y lies belowx′/y′ iff Jx/y ( Jx′/y′ .
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su/a = su/d

su/u

jjjjjjjjj
su/sa

SSSSSSSS

sa/u = sa/d = sa/a

oooooo

su/su

TTTTTTTTTTT

kkkkkkkkkk
u/a = u/d = u/sa

LLLLL

sa/su = sa/sa

OOOOO

jjjjjjjjj

u/su = u/u

SSSSSSSS
rrrrr

d/su = d/u = d/a = d/d = d/sa

TTTTTTT

kkkkkkk

a/su = a/u = a/a = a/d = a/sa

Fig. 2. Hierarchy of Notions of Justifiability

Proof
All equality and subset relationships (i.e. arcs between notions of justifiability) depicted in
Figure 2 are underpinned by the theorems in section 3.1. Two notions of justifiability are
not subsets of each other iff they are not equal and not connected by an arc in Figure 2.
These findings are underpinned by the counter-examples of section 3.2.

By definition, Prakken and Sartor’s semantics (Prakken and Sartor 1997), if we disre-
gard priorities, amounts tod/su-justifiability.

Similarly, Dung’s grounded argumentation semantics (Dung1993) is exactlya/u-justifiability;
and if we treat explicitly negated literals as new atoms, we can apply the least fixpoint ar-
gumentation semantics for normal logic programs (Dung 1995; Bondarenko et al. 1997) to
extended logic programs, which is then, by definition,u/u-justifiability.

Note that these latter semantics use a slightly different notation to ours: arguments are
sets of assumptions (i.e. default literals), and a conclusion of an argument is a literal that
can be derived from these assumptions. This approach can be translated to ours by taking
as arguments all those derivations of a conclusion from an argument. Then the definitions
of the notions of attack and the fixpoint semantics coincide.See also the discussion in
(Prakken and Sartor 1997).

As corollaries to Theorem 9 we obtain relationships of thesesemantics to the other
notions of justifiability.

Corollary 10
Let JDung be the set of justified arguments according to Dung’s grounded argumenta-
tion semantics (Dung 1993). ThenJDung = Ja/su = Ja/u = Ja/a = Ja/d = Ja/sa and
JDung ( Jx/y for all notions of attackx 6= a andy. Thus, in Dung’s semantics, it does not
matter which notion of attack,su,u,a,d,sa, is used as a defence, and Dung’s semantics is
more sceptical than the others.

Corollary 11
Let JPS be the set of justified arguments according to Prakken and Sartor’s argumentation
semantics (Prakken and Sartor 1997), where all arguments have the same priority. Then
JPS = Jd/su = Jd/u = Jd/a = Jd/d = Jd/sa, JPS ( Jx/y for all notions of attack
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x 6∈ {a, d} and y, andJPS ) Ja/y for all notions of attacky. Thus, in Prakken and
Sartor’s semantics, it does not matter which notion of attack, su,u,a,d,sa, is used as a
defence, andJPS is more credulous than Dung’s semantics, but more scepticalthan all the
others.

Corollary 12
Let JWFS be the set of justified argument according to the well-founded argumentation
semantics for normal logic programs (Dung 1995; Bondarenkoet al. 1997), where an ex-
plicitly negated atom¬L is treated as unrelated to the positive atomL. ThenJWFS =

Ju/u = Ju/su, JWFS ) Jd/y ) Ja/y, JWFS ( Jsu/y, andJWFS ( Ju/a = Ju/d = Ju/sa,
for all notions of attacky. Thus, in contrast to Dung’s and Prakken and Sartor’s semantics,
for WFS it makes a difference whether rebuts are permitted inthe defence (a,d,sa) or not
(u,su).

Remark 1
1. The notions ofa/x-, d/x- andsa/x-justifiability are particularly sceptical in that even
a factp may not be justified, if there is a rule¬p ← B (wherenot p 6∈ B) that is not
x-attacked. On the other hand this is useful in terms of avoiding inconsistency.
2. sx/y-justifiability is particularly credulous, because it doesnot take into account non-
strong attacks, so e.g. the program{p ← not q, q ← not p} has the justified arguments
[p← not q] and[q ← not p].

Remark 2
One might ask whether any of the semantics in Figure 2 are equivalent fornon-contradictory
programs, i.e. programs for which there is no literalL such that there exist justified argu-
ments for bothL and¬L. The answer to this question is no: all the examples in Section 3.2
distinguishing different notions of justifiability involve only non-contradictory programs.

In particular, even for non-contradictory programs, Dung’s and Prakken and Sartor’s se-
mantics differ, and both differ fromu/a-justifiability, which will be shown equivalent to the
paraconsistent well-founded semantics WFSXp (Damásio 1996; Pereira and Alferes 1992;
Alferes and Pereira 1996) in Section 5.

4 Properties of Argumentation Semantics

We will now state some important properties which a semantics for extended logic pro-
grams may have, and examine for which of the argumentation semantics these properties
hold.

4.1 The coherence principle

The coherence principle for extended logic programming (Alferes and Pereira 1996) states
that “explicit negation implies implicit negation”. If theintended meaning ofnot L is “if
there is no evidence forL, assume thatL is false”, and the intended meaning of¬L is “there
is evidence for the falsity ofL”, then the coherence principle states that explicit evidence
is preferred over assumption of the lack of evidence. Formally, this can be stated as: if¬L
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is in the semantics, thennot L is also in the semantics. In an argumentation semantics, we
have not defined what it means for a default literal to be “in the semantics”. This can easily
be remedied, though, and for convenience we introduce the following transformation.3

Definition 8
LetP be an extended logic program, andx andy notions of attack, and letL be an objective
literal. ThenL is x/y-justifiedif there exists ax/y-justified argument forL.

Let nL be a fresh atom, andP ′ = P ∪ {nL ← not L}. Thennot L is x/y-justifiedif
[nL← not L] is ax/y-justified argument associated withP ′.

Note that becausenL is fresh, then eitherJx/y(P ′) = Jx/y(P ) or Jx/y(P ′) = Jx/y(P ) ∪

{[nL← not L]}.

Definition 9
A least fixpoint semanticsJx/y satisfies the coherence principleif for every objective literal
L, if ¬L is x/y-justified, thennot L is x/y-justified.

The following result states that a least fixpoint semantics satisfies the coherence principle
exactly in those cases where we allow any attack for the defence. Informally, this is because
the only way of attacking a default literalnot L is by undercut, i.e. an argument forL, and
in general, such an argument can only be attacked by an argument for¬L by a rebut.

Theorem 13
Let x, y ∈ {a, u, d, su, sa}. ThenJx/y satisfies the coherence principle iffJx/y = Jx/a.

Proof
• For the “only if” direction, we show that for those notions ofjustifiability x/y 6=

x/a, the coherence principle does not hold.

— Consider the programP :
p ← not q

q ← not r

r ← not s

s ← not p

¬p
ThenJu/u(P ′) = Jsu/u(P

′) = Jsu/su(P
′) = {[¬p]}, whereP ′ = P ∪ {np ←

not p}. In these cases, the coherence principle is not satisfied, because¬p is
justified, butnot p is not justified.

— Now consider the programQ:
p ← not ¬p

¬p ← not p
Then Jsu/sa(Q

′) = Jsa/sa(Q
′) = {[p ← not ¬p], [¬p ← not p]}, where

Q′ = Q∪{np← not p}. Again, the coherence principle is not satisfied, because
¬p is justified, butnot p is not justified.

3 The purpose of the transformation could be equally achievedby defining thatnot L is x/y-justified if all
arguments forL are overruled.
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• For the “if” direction, letx be any notion of attack. LetP be an extended logic pro-
gram, and¬L ax/a-justified literal, i.e. there is an argumentA = [¬L← Body, . . .]

and an ordinalα s.t.A ∈ Jα
x/a.

Let A′ = [nL ← not L], and(B,A′) ∈ x. BecausenL is fresh, the only possible
attack onA′ is a strong undercut, i.e.L is a conclusion ofB. ThenA attacksB, and
so [nL← not L] ∈ Jα+1

x/a .

4.2 Consistency

Consistency is an important property of a logical system. Itstates that the system does not
support contradictory conclusions. In classical logic “exfalso quodlibet”, i.e. if bothA and
¬A hold, then any formula holds. In paraconsistent systems (Damásio and Pereira 1998),
this property does not hold, thus allowing bothA and¬A to hold for a particular formula
A, while not supporting any other contradictions.

A set of arguments isconsistent, orconflict-free(Prakken and Sartor 1997; Dung 1995),
if it does not contain two arguments such that one attacks theother. There are several
notions of consistency, depending on which notion of attackis considered undesirable.

Definition 10
Let x be a notion of attack, andP an extended logic program. Then a set of arguments
associated withP is calledx-consistentif it does not contain argumentsA andB such that
(A,B) ∈ xP .

The argumentation semantics of an extended logic program need not necessarily be con-
sistent; because of explicit negation, there exist contradictory programs such as{p,¬p},
for which there exist sensible, but inconsistent arguments([p] and[¬p] in this case).

A general result identifies cases in which the set of justifiedarguments for a program is
consistent. It states that if we allow the attack to be at least as strong as the defence, i.e. if
we aresceptical, then the set of justified arguments is consistent.

Theorem 14
Let x andy be notions of attack such thatx⊇ y, and letP be an extended logic program.
Then the set ofx/y-justified arguments isx-consistent.

Proof
We show thatJα

x/y is x-consistent for all ordinalsα, by transfinite induction onα.
Base caseα = 0: Trivial.
Successor ordinalα  α + 1: AssumeA,B ∈ Jα+1

x/y and(A,B) ∈ x. Then there exists
C ∈ Jα

x/y such that(C,A) ∈ y ⊆ x. Then by induction hypothesis, becauseC ∈ Jα
x/y,

thenA 6∈ Jα
x/y. BecauseA ∈ Jα+1

x/y , there existsD ∈ Jα
x/y such that(D,C) ∈ y ⊆ x. This

contradicts the induction hypothesis, so we have to retractthe assumption and conclude
thatJα+1

x/y is x-consistent.

Limit ordinalλ: AssumeA,B ∈ Jλ
x/y and(A,B) ∈ x. Then there existα, β < λ s.t.A ∈

Jα
x/y andB ∈ Jβ

x/y. W.l.o.g. assume thatα ≤ β. Then becauseJα
x/y ⊆ Jβ

x/y, we have

A ∈ Jβ
x/y, contradicting the induction hypothesis thatJβ

x/y is x-consistent.
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The following example shows that, in general, the set of justified arguments may well
be inconsistent.

Example 12
Consider the following program:

q ← not p

p

¬p

ThenJu/a = {[q ← not p], [p], [¬p]}, and[p] and[¬p] rebut each other, and[p] strongly
undercuts[q ← not p].

5 Argumentation Semantics and WFSX

In this section we will prove that the argumentation semanticsJu/a is equivalent to the para-
consistent well-founded semantics with explicit negationWFSXp (Damásio 1996; Alferes and Pereira 1996).
First, we summarise the definition of WFSXp.

5.1 Well-founded semantics with explicit negation

We recollect the definition of the paraconsistent well-founded semantics for extended logic
programs, WFSXp. We use the definition of (Alferes et al. 1995), because it is closer to our
definition of argumentation semantics than the original definition of (Pereira and Alferes 1992).

Definition 11
The set of all objective literals of a programP is called theHerbrand baseofP and denoted
byH(P ). A paraconsistent interpretationof a programP is a setT ∪ not F whereT and
F are subsets ofH(P ). An interpretationis a paraconsistent interpretation where the sets
T andF are disjoint. An interpretation is calledtwo-valuedif T ∪ F = H(P ).

Definition 12
Let P be an extended logic program,I an interpretation, and letP ′ (resp.I ′) be ob-
tained fromP (resp.I) by replacing every literal¬A by a new atom, say¬ A. The GL-
transformationP

′

I′
is the program obtained fromP ′ by removing all rules containing a

default literalnot A such thatA ∈ I ′, and then removing all remaining default literals
from P ′, obtaining a definite programP ′′. Let J be the least model ofP ′′, i.e. J is the
least fixpoint ofTP ′′(I) := {A | ∃A ← B1, . . . , Bn ∈ P ′′ s.t.Bi ∈ I}. ThenΓP I is
obtained fromJ by replacing the introduced atoms¬ A by¬A.

Definition 13
Thesemi-normalversion of a programP is the programPs obtained fromP by replacing
every ruleL← Body in P by the ruleL← not ¬L,Body. If the programP is clear from
the context, we writeΓI for ΓP I andΓsI for ΓPs

I.

Note that the setΓP I is just a set of literals; we will now use it to define the semantics
of P as a (paraconsistent) interpretation.
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Definition 14
LetP be a program whose least fixpoint ofΓΓs isT . Then theparaconsistent well-founded
model ofP is the paraconsistent interpretationWFMp(P ) = T ∪ not (H(P ) − ΓsT ).
If WFMp(P ) is an interpretation, thenP is callednon-contradictory, andWFMp(P ) is
thewell-founded model ofP , denoted byWFM(P ).

The paraconsistent well-founded model can be defined iteratively by the transfinite se-
quence{Iα}:

I0 := ∅

Iα+1 := ΓΓsIα for successor ordinalα+ 1

Iλ :=
⋃

α<λ Iα for limit ordinalλ
There exists a smallest ordinalλ0 such thatIλ0

is the least fixpoint ofΓΓs, and
WFMp(P ) := Iλ0

∪ not (H(P )− ΓsIλ0
).

5.2 Equivalence of argumentation semantics and WFSXp

In this section, we will show that the argumentation semanticsJu/a and the well-founded
model coincide. That is, the conclusions of justified arguments are exactly the objective
literals which are true in the well-founded model; and thoseobjective literals all of whose
arguments are overruled are exactly the literals which are false in the well-founded model.
The result holds also for contradictory programs under theparaconsistentwell-founded
semantics. This is important, because it shows that contradictions in the argumentation
semantics are precisely the contradictions under the well-founded semantics, and allows
the application of contradiction removal (or avoidance) methods to the argumentation se-
mantics (Damásio et al. 1997). For non-contradictory programs, the well-founded seman-
tics coincides with the paraconsistent well-founded semantics (Alferes and Pereira 1996;
Damásio 1996); consequently, we obtain as a corollary thatargumentation semantics and
well-founded semantics coincide for non-contradictory programs.

Before we come to the main theorem, we need the following Lemma, which shows a
precise connection between arguments and consequences of aprogramP

I .

Lemma 15
Let I be a two-valued interpretation.

1. L ∈ Γ(I) iff ∃ argumentA with conclusionL such thatassm(A) ⊆ I.
2. L ∈ Γs(I) iff ∃ argumentA with conclusionL such thatassm(A) ⊆ I and
¬conc(A) ∩ I = ∅.

3. L 6∈ Γ(I) iff ∀ argumentsA with conclusionL, assm(A) ∩ I 6⊆ ∅.
4. L 6∈ Γs(I) iff ∀ argumentsA with conclusionL, assm(A) ∩ I 6⊆ ∅ or
¬conc(A) ∩ I 6= ∅.

Proof
See Appendix A.

In order to compare the argumentation semantics with the well-founded semantics, we
extend the definitionconc(A) of the conclusions of a single argumentA to work on a set
of argumentsA. The extended definitionconc(A) includes all positive and negative con-
clusions of arguments inA; i.e. those literalsL ∈ conc(A), as well as the default literals
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not L where all arguments forL are overruled by some argumentA ∈ A. We will use this
definition of conc for the set of justified argumentsJu/a to compare the “argumentation
model”conc(Ju/a) toWFMp(P ), the well-founded model.

Definition 15
LetA be a set of arguments. Then

conc(A) =
⋃

A∈A

conc(A)∪{not L | all arguments forL are overruled by an argumentA ∈ A}

With the above definition, we can formulate the main theorem thatu/a-justified argu-
ments coincide with the well-founded semantics.

Theorem 16
LetP be an extended logic program. ThenWFMp(P ) = conc(Ju/a).

Proof
First, note thatA undercutsB iff ∃ L s.t.L ∈ conc(A) andnot L ∈ assm(B); andA
rebutsB iff ∃ L ∈ conc(A) ∩ ¬conc(B).

We show that for all ordinalsα, Iα = conc(Jα
u/a), by transfinite induction onα. The proof

proceeds in two stages. First, we show that all objective literalsL in WFMp(P ) are con-
clusions ofu/a-justified arguments and second, that for all default negated literalsnot L
in WFMp(P ), all arguments forL are overruled.

Base caseα = 0: Iα = ∅ = conc(Jα
u/a)

Successor ordinalα α+ 1:

L ∈ Iα+1

iff (Def. of Iα+1)
L ∈ ΓΓsIα

iff (Lemma 15(1))
∃ argumentA for L such thatassm(A) ⊆ ΓsIα

iff (Def. of ⊆, andΓsIα is two-valued)
∃ argumentA for L such that∀ not L ∈ assm(A), L 6∈ ΓsIα

iff (Lemma 15(4))
∃ argumentA for L such that∀ not L ∈ assm(A), for any argumentB for L, ( ∃ not L′ ∈

assm(B) s.t. L′ ∈ Iα or ∃ L′′ ∈ conc(B) s.t. ¬L′′ ∈ Iα )
iff (Induction hypothesis)

∃ argumentA for L such that∀ not L ∈ assm(A), for any argumentB for L, ( ∃ not L′ ∈

assm(B) s.t. ∃ argumentC ∈ Jα
u/a for L′, or∃ L′′ ∈ conc(B) s.t. ∃ argumentC ∈ Jα

u/a

for ¬L′′)
iff (Def. of undercut and rebut)

∃ argumentA for L such that for any undercutB to A, ( ∃ argumentC ∈ Jα
u/a s.t.C

undercutsB, or∃ argumentC ∈ Jα
u/a s.t.C rebutsB)

iff
∃ argumentA for L such that for any undercutB toA, ∃ argumentC ∈ Jα

u/a s.t.C attacks
B

iff (Def. of Jα+1

u/a )
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∃ argumentA ∈ Jα+1

u/a for L
iff (Def. of conc)

L ∈ conc(Jα+1

u/a )

Limit ordinalλ:
Iλ =

⋃
α<λ Iα andJλ

u/a =
⋃

α<λ J
α
u/a, so by induction hypothesis (Iα = conc(Jα

u/a) for

all α < λ), Iλ = conc(Jλ
u/a).

Next we will show that a literalnot L is in the well-founded semantics iff every argument
for L is overruled, i.e.not L ∈ WFMp(P ) impliesnot L ∈ conc(Ju/a).

not L ∈WFMp(P )

iff (Def. of WFMp(P ))
L 6∈ ΓsIλ

iff (Lemma 15(4)
for all argumentsA forL, (∃ not L′ ∈ assm(A) s.t. L′ ∈ Iλ, or∃L′′ ∈ conc(A) s.t.¬L′′ ∈

Iλ )
iff ( Iλ = conc(Jλ

u/a))

for all argumentsA for L, ( ∃ not L′ ∈ assm(A) s.t. ∃ argumentB ∈ Jλ
u/a for L′, or

∃ L′′ ∈ conc(A) s.t. ∃ argumentB ∈ Jλ
u/a for ¬L′′ )

iff (Def. of undercut and rebut)
for all argumentsA for L, ( ∃ argumentB ∈ Jλ

u/a s.t. B undercutsA, or ∃ argument

B ∈ Jλ
u/a s.t.B rebutsA )

iff
every argument forL is attacked by a justified argument inJλ

u/a

iff (Def. of overruled)
every argument forL is overruled

iff (Def. of conc(Ju/a))
not L ∈ conc(Ju/a)

Corollary 17
LetP be a non-contradictory program. ThenWFM(P ) = conc(Ju/a).

Remark 3
In a similar way, one can show that theΓ operator corresponds to undercuts, while the
Γs operator corresponds to attacks, and so the least fixpoints of ΓΓ, ΓsΓ, andΓsΓs cor-
respond toJu/u, Ja/u, andJa/a, respectively. In (Alferes et al. 1995), the least fixpoints
of these operators are shown to be ordered aslfp(ΓsΓ) ⊆ lfp(ΓsΓs) ⊆ lfp(ΓΓs), and
lfp(ΓsΓ) ⊆ lfp(ΓΓ) ⊆ lfp(ΓΓs). BecauseJa/u = Ja/a ⊆ Ju/u ⊆ Ju/a by Theorem 9,
we can strengthen this statement tolfp(ΓsΓ) = lfp(ΓsΓs) ⊆ lfp(ΓΓ) ⊆ lfp(ΓΓs).

The following corollary summarises the results so far.

Corollary 18
The least fixpoint argumentation semantics of Dung (Dung 1993), denotedJDung, of
Prakken and Sartor (Prakken and Sartor 1997), denotedJPS, and the well-founded seman-
tics for normal logic programsWFS (Bondarenko et al. 1997; van Gelder et al. 1991) and
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for logic programs with explicit negationWFSXp (Pereira and Alferes 1992; Alferes and Pereira 1996)
are related to the other least fixpoint argumentation semantics as illustrated in Figure 3.

su/a = su/d

su/u

nnnnnnn

su/sa

TTTTTTTTTT

sa/u = sa/d = sa/a

oooooo

su/su

QQQQQQQQ

jjjjjjjjjjj

u/a = u/d = u/sa =WFSXp

TTTTTTTTTT

sa/su = sa/sa

OOOOOO

nnnnnnn

u/su = u/u =WFS

TTTTTTTTTT

jjjjjjjj

d/su = d/u = d/a = d/d = d/sa = JPS

QQQQQQ

jjjjjjjj

a/su = a/u = a/a = a/d = a/sa = JDung

Fig. 3. Hierarchy of Notions of Justifiability and Existing Semantics

6 Proof Theory

One of the benefits of relating the argumentation semanticsJu/a to WFSXp is the exis-
tence of an efficient top-down proof procedure for WFSXp (Alferes et al. 1995), which we
can use to compute justified arguments inJu/a. On the other hand,dialecticalproof theo-
ries, based on dialogue trees, have been defined for a varietyof argumentation semantics
(Simari et al. 1994; Prakken and Sartor 1997; Jakobovits andVermeir 1999a; Kakas and Toni 1999).
In this section we present a sound and complete dialectical proof theory for the least fix-
point argumentation semanticsJx/y for any notions of attackx andy.

6.1 Dialogue trees

We adapt the dialectical proof theory of (Prakken and Sartor1997) to develop a general
sound and complete proof theory forx/y-justified arguments.

Definition 16
Let P be an extended logic program. Anx/y-dialogueis a finite nonempty sequence of
movesmovei = (Player i, Argi)(i > 0), such thatPlayeri ∈ {P,O}, Argi ∈ ArgsP ,
and

1. Player i = P iff i is odd; andPlayer i = O iff i is even.
2. If Player i = Player j = P andi 6= j, thenArgi 6= Argj .
3. If Player i = P and i > 1, thenArgi is a minimal argument such that

(Argi, Argi−1) ∈ y.
4. If Player i = O, then(Argi, Argi−1) ∈ x.
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The first condition states that the playersP (Proponent) andO (Opponent) take turns,
andP starts. The second condition prevents the proponent from repeating a move. The
third and fourth conditions state that both players have to attack the other player’s last
move, where the opponent is allowed to use the notion of attack x, while the proponent
may usey to defend its arguments. Note that the minimality conditionin 3 is redundant,
becauseall arguments inArgsP are required to be minimal by Definition 2. We have
explicitly repeated this condition, because it is important in that it prevents the proponent
from repeating an argument by adding irrelevant rules to it.

Definition 17
An x/y-dialogue treeis a tree of moves such that every branch is ax/y-dialogue, and for
all movesmovei = (P,Argi), the children ofmovei are all those moves(O,Argj) such
that(Argj , Argi) ∈ x.
Theheightof a dialogue tree is0 if it consists only of the root, and otherwiseheight(t) =
sup{height(ti)}+ 1 whereti are the trees rooted at the grandchildren oft.

Example 13
Consider the following program:

p ← q, not r

q ← not s

¬q ← u

r ← not t

s ← not t

t ← not w

u ← not v

v ← not r

¬v ← not t

A a/u-dialogue tree rooted at the argument[p← q, not r; q ← not s] is given by Figure 4.

Each node is marked withP for proponent orO for opponent, and an edgeA
x

// B
denotes thatA attacksB with the notion of attackx, i.e.(A,B) ∈ x.

Note that although dialogues are required to be finite, dialogue trees may be infinitely
branching. Therefore dialogue trees need not be finite, nor need their height be finite.

Example 14
Consider the following programP 4:

p(0)

p(s(X)) ← not q(X)

q(X) ← not p(X)

r ← q(X)

s ← not r

4 Note that by definition, programs are not allowed to contain variables. Here,X denotes a variable, andP is an
abbreviation for the (infinite) program obtained by substituting the termssn(0) for the variableX, in all the
rules.



A Hierarchy of Argumentation Semantics 27

P : [p← q, not r; q ← not s]

O : [r ← not t]

u

44jjjjjjjjjjjjjjjj

O : [¬q ← u;u← not v]

r

OO

O : [s← not t]

u

jjTTTTTTTTTTTTTTTT

P : [t← not w]

u

OO

P : [v ← not r]

u

OO

P : [t← not w]

u

OO

O : [r ← not t]

u

OO

O : [¬v ← not t]

r

jjTTTTTTTTTTTTTTTT

P : [t← not w]

u

OO

P : [t← not w]

u

OO

Fig. 4. Ana/u-dialogue tree

For eachn ∈ N, there is exactly one minimal argumentAn with conclusionp(sn(0)),
namely [p(0)] for n = 0, and [p(sn(0)) ← not q(sn−1(0))] for n > 0. Similarly,
there is exactly one minimal argumentBn with conclusionq(sn(0)), namely[q(sn(0))←
not p(sn(0))].
Therefore, au/u-dialogue tree rooted atAn+1 consists of just one dialogueTn+1 of the
form ((P,An+1), (O,Bn), Tn). A u/u-dialogue tree rooted atA0 consists only of the root,
because there are no undercuts toA0. Thus, the height of the dialogue treeTn is n.
Now consider theu/u-dialogue tree rooted at the argumentC = [s ← not r]. The ar-
gumentC is undercut by infinitely many argumentsDn = [r ← q(sn(0)); q(sn(0)) ←

not p(sn(0))]; eachDn is undercut by exactly one argument:An. A dialogue in theu/u-
dialogue treeTC rooted at argumentC is therefore a sequence((P,C), (O,Bn), Tn). Be-
causeheight(Tn) = n, then by Definition 17:height(TC) = sup{height(Tn) | n ∈

N}+ 1 = ω + 1.

Definition 18
A playerwins anx/y-dialogueiff the other player cannot move. A playerwins anx/y-
dialogue treeiff it wins all branches of the tree. Anx/y-dialogue tree which is won by the
proponent is called awinningx/y-dialogue tree.

We show that the proof theory ofx/y-dialogue trees is sound and complete for any
notions of attackx andy.

Theorem 19
An argumentA is x/y-justified iff there exists ax/y-dialogue tree withA as its root, and
won by the proponent.

Proof
We show by transfinite induction that for all argumentsA, for all ordinalsα: A ∈ Jα

x/y if
and only if there exists a winningx/y-dialogue tree of height≤ α for A. See Appendix A
for the detailed proof.
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7 Related Work

There has been much work on argument-theoretic semantics for normal logic programs, i.e.
logic programs with default negation (Bondarenko et al. 1997; Dung 1995; Kakas and Toni 1999).
Because there is no explicit negation, there is only one formof attack, theundercutin our
terminology. An abstract argumentation framework has beendefined, which captures other
default reasoning mechanisms besides normal logic programming. Within this framework,
a variety of semantics may be defined, such aspreferred extensions; stable extensions,
which are equivalent tostable models(Gelfond and Lifschitz 1988); and a least fixpoint
semantics based on the acceptability of arguments, which isequivalent to thewell-founded
semantics(van Gelder et al. 1991). The latter fixpoint semantics formsthe basis of our
argumentation semantics. Proof theories and proof procedures for some of these argumen-
tation semantics have been developed in (Kakas and Toni 1999).

There has been some work extending this argumentation semantics to logic programs
with explicit negation. Dung (Dung 1995) adapts the framework of (Dung 1993), by dis-
tinguishing betweenground attacksand reductio-ad-absurdum-attacks, in our terminol-
ogy undercuts and rebuts. Argumentation semantics analogous to those of normal logic
programs are defined, and the stable extension semantics is shown to be equivalent to
the answer set semantics (Gelfond and Lifschitz 1990), an adaptation of the stable model
semantics to extended logic programs. A least fixpoint semantics (calledgroundedseman-
tics) based on a notion of acceptability is defined, and related to the well-founded semantics
of (van Gelder et al. 1991), although only for the case of programs without explicit nega-
tion.

Prakken and Sartor (Prakken and Sartor 1997) define an argumentation semantics for
extended logic programs similar to that of Dung. Their language is more expressive in that
it distinguishes betweenstrict rules, which may not be attacked, anddefeasiblerules, which
may be attacked. Furthermore, rules have priorities, and rebuts are only permitted against a
rule of equal or lower priority. Thus, rebuts are not necessarily symmetric, as in our setting.
Our language corresponds to Prakken and Sartor’s without strict rules, and either without
priorities, or, equivalently, if all rules have the same priority. The semantics is given as
a least fixpoint of an acceptability operator, analogous to Dung’s grounded semantics. A
proof theory, similar to those of Kakas and Toni (Kakas and Toni 1999) is developed. This
proof theory formed the basis of our general proof theory forjustified arguments.

In (Móra and Alferes 1998), an argumentation semantics forextended logic programs,
similar to Prakken and Sartor’s, is proposed; it is influenced by WFSX, and distinguishes
between sceptical and credulous conclusions of an argument. It also provides a proof theory
based on dialogue trees, similar to Prakken and Sartor’s.

Defeasible Logic Programming (Garcı́a and Simari 2004; Simari et al. 1994; Garcı́a et al. 1998)
is a formalism very similar to Prakken and Sartor’s, based onthe first order logic argumen-
tation framework of (Simari and Loui 1992). It includes logic programming with two kinds
of negation, distinction between strict and defeasible rules, and allowing for various criteria
for comparing arguments. Its semantics is given operationally, by proof procedures based
on dialectical trees (Garcı́a and Simari 2004; Simari et al.1994). In (Chesñevar et al. 2002),
the semantics of Defeasible Logic Programming is related tothe well-founded semantics,
albeit only for the restricted language corresponding to normal logic programs (van Gelder et al. 1991).
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The answer set semantics for extended logic programs (Gelfond and Lifschitz 1990) is
defined via extensions which are stable under a certain program transformation. While this
semantics is a natural extension of stable models (Gelfond and Lifschitz 1988) and pro-
vides an elegant model-theoretic semantics, there are several drawbacks which the answer
set semantics inherits from the stable models. In particular, there is no efficient top-down
proof procedure for the answer set semantics, because the truth value of a literalL may de-
pend on the truth value of a literalL′ which doesnotoccur in the proof tree belowL 5. The
well-founded semantics (van Gelder et al. 1991) is an approximation of the stable model
semantics, for which an efficient top-down proof procedure exists. In (Przymusinski 1990),
the well-founded semantics is adapted to extended logic programs. However, this semantics
does not comply with thecoherence principle, which states that explicit negation implies
implicit negation. In order to overcome this, (Pereira and Alferes 1992; Alferes and Pereira 1996)
developed WFSX, a well-founded semantics for extended logic programs, which satisfies
the coherence principle. It has several desirable properties not enjoyed by the answer set
semantics; in particular, an efficient goal-oriented top-down proof procedure for WFSX
is presented in (Alferes et al. 1995). WFSX is well established and e.g. widely available
through Prolog implementations such as XSB Prolog (Freire et al. 1997).

Our own work is complementary to these approaches, in that wefill a gap by bringing
argumentation and WFSX together in our definition ofu/a-justified arguments, which are
equivalent to WFSXp (Damásio 1996; Alferes and Pereira 1996; Alferes et al. 1995), the
paraconsistent version of WFSX. Furthermore, the generality of our framework allows us
to relate existing argumentation semantics such as Dung’s and Prakken and Sartor’s ap-
proach and thus provide a concise characterisation of all the existing semantics mentioned
above.

A number of authors (Kraus et al. 1998; Parsons and Jennings 1996; Sierra et al. 1997;
Parsons et al. 1998; Sadri et al. 2001; Torroni 2002; Schroeder 1999; Móra and Alferes 1998)
work on argumentation for negotiating agents. Of these, theapproaches of (Sadri et al. 2001;
Torroni 2002; Schroeder 1999) are based on logic programming. The advantage of the
logic programming approach for arguing agents is the availability of goal-directed, top-
down proof procedures. This is vital when implementing systems which need to react in
real-time and therefore cannot afford to computeall justified arguments, as would be re-
quired when a bottom-up argumentation semantics would be used.

In (Sadri et al. 2001; Torroni 2002), abduction is used to define agent negotiation fo-
cusing on the generation of negotiation dialogues using abduction. This work is relevant
in that it shows how to embed an argumentation proof procedure into a dialogue proto-
col, which is needed to apply proof procedures of argumentation semantics as defined in
this paper into agent communication languages such as KQML (Finin et al. 1994) or FIPA
ACL (Chiariglione et al. 1997).

With a variety of argument-based approaches being pursued to define negotiating agents,
the problem of how these agents may inter-operate arises. This paper could serve as a first
step towards inter-operation as existing approaches can beplaced in our framework, thus
making it easier to compare them.

5 See the extensive discussion in (Alferes and Pereira 1996) for details.
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8 Conclusion and Further Work

We have identified various notions of attack for extended logic programs. Based on these
notions of attack, we defined notions of acceptability and least fixpoint semantics. The
contributions of this paper are five-fold.

• First, we defined a parameterised hierarchy of argumentation semantics by estab-
lishing a lattice of justified arguments based on set inclusion. We showed which
argumentation semantics are equal, which are subsets of oneanother and which are
neither.
• Second, we examined some properties of the different semantics, and gave a neces-

sary and sufficient condition for a semantics to satisfy the coherence principle (Alferes and Pereira 1996),
and a sufficient criterion for a semantics to be consistent.
• Third, we identified an argumentation semanticsJu/a equal to the paraconsistent

well-founded semantics for logic programs with explicit negation, WFSXp (Damásio 1996;
Alferes and Pereira 1996) and proved this equivalence.
• Forth, we established relationships between existing semantics, in particular that
JDung ( JPS ( Ju/u = WFS ( Ju/a = WFSXp, whereJDung andJPS are
the least fixpoint argumentation semantics of Dung (Dung 1993) and Prakken and
Sartor (Prakken and Sartor 1997), andWFS is the well-founded semantics without
explicit negation (van Gelder et al. 1991).
• Fifth, we have defined a dialectical proof theory for argumentation. For all notions of

justified arguments introduced, we prove that the proof theory is sound and complete
wrt. the corresponding fixpoint argumentation semantics.

It remains to be seen whether a variation in the notion of attack yields interesting varia-
tions of alternative argumentation semantics for extendedlogic programs such as preferred
extensions or stable extensions (Dung 1993). It is also an open question how the hierarchy
changes when priorities are added as defined in (Antoniou 2002; Kakas and Moraitis 2002;
Prakken and Sartor 1997; Brewka 1996; Garcı́a et al. 1998; Vreeswijk 1997).
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DAM ÁSIO, C. V., PEREIRA, L. M., AND SCHROEDER, M. 1997. REVISE: Logic programming
and diagnosis. InProceedings of the Conference on Logic Programming and Non-monotonic
Reasoning LPNMR97. LNAI 1265, Springer–Verlag, 353–362.

DUNG, P. M. 1993. An argumentation semantics for logic programming with explicit negation. In
Proc. of the 10th International Conference on Logic Programming ICLP’93. MIT Press, 616–630.

DUNG, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games.Artificial Intelligence 77,2, 321–357.

FININ , T., FRITZSON, R., MCKAY, D., AND MCENTIRE, R. 1994. KQML as an agent commu-
nication lanugage. InProceedings of the Third International Conference on Information and
Knowledge Management (CIKM’94). ACM Press, 456–463.

FREIRE, J., RAO, P., SAGONAS, K., SWITFT, T., AND WARREN, D. S. 1997. XSB: A system for
efficiently computing the well-founded semantics. InInternational Workshop on Logic Program-
ming and Non-monotonic Reasoning. 431–441.
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Appendix A Proofs of Theorems

Theorem 3
Let x′ ⊆ x andy ⊆ y′ be notions of attack, thenJx/y ⊆ Jx′/y′ .

Proof
We show by transfinite induction thatJα

x/y ⊆ Jα
x′/y′ , for all α.

Base case: α = 0: ThenJx/y = ∅ = Jx′/y′ .
Successor ordinal: α α+ 1:

Let A ∈ Jα+1

x/y , and(B,A) ∈ x′. Then also(B,A) ∈ x, and so there existsC ∈ Jα
x/y

such that(C,B) ∈ y, so also(C,B) ∈ y′. By induction hypothesis,C ∈ Jα
x′/y′ , and so

A ∈ Jα+1

x′/y′
.

Limit ordinalλ:
AssumeJα

x/y ⊆ Jα
x′/y for all α < λ. Then

Jλ
x/y =

⋃
α<λ J

α
x/y ⊆

⋃
α<λ J

α
x′/y′ = Jλ

x′/y′

Theorem 4
Letx and andy be notions of attack such thatx ⊇ undercuts, and letsy = y−undercuts−1.
ThenJx/y = Jx/sy.

Proof
By Theorem 3, we haveJx/sy ⊆ Jx/y. We prove the inverse inclusion by showing that for
all ordinalsα: Jα

x/y ⊆ Jα
x/sy, by transfinite induction onα.

Base caseα = 0: Jx/y = ∅ = Jx/sy.

Successor ordinalα α+ 1: LetA ∈ Jα+1

x/y , and(B,A) ∈ x. By definition, there exists
C ∈ Jα

x/y such that(C,B) ∈ y. By induction hypothesis,C ∈ Jα
x/sy.

If B does not undercutC, then we are done. If, however,B undercutsC, then because
C ∈ Jα

x/sy, andundercuts ⊆ x, there existsD ∈ Jα0

x/sy(α0 < α) such that(D,B) ∈ sy.

It follows thatA ∈ Jα+1

x/sy.

Limit ordinal λ: AssumeJα
x/y ⊆ Jα

x/sy for all α < λ. ThenJλ
x/y =

⋃
α<λ J

α
x/y ⊆⋃

α<λ J
α
x/sy = Jλ

x/sy

Theorem 6
Let x be a notion of attack such thatx ⊇ strongly attacks. ThenJx/u = Jx/d = Jx/a.

Proof
It is sufficient to show thatJx/a ⊆ Jx/u. Then by Theorem 3,Jx/u ⊆ Jx/d ⊆ Jx/a = Jx/u.

We prove by transfinite induction that for all ordinalsα: Jα
x/a ⊆ Jα

x/u.

Base case:α = 0

Jα
x/a = ∅ = Jα

x/u.

Successor ordinal:α α+ 1
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LetA ∈ Jα+1

x/a , and(B,A) ∈ x. By definition, there existsC ∈ Jα
x/a such thatC undercuts

or rebutsB. By induction hypothesis,C ∈ Jα
x/u.

If C undercutsB, then we are done. If, however,C does not undercutB, thenC rebuts
B, and soB also rebutsC, i.e.B strongly attacksC. Becausestrongly attacks ⊆ x and
C ∈ Jα

x/u, there existsD ∈ Jα0

x/u ⊆ Jα
x/u (α0 < α) such thatD undercutsB. It follows

thatA ∈ Jα+1

x/u .

Limit ordinalλ:

AssumeJα
x/a ⊆ Jα

x/u for all α < λ. ThenJλ
x/a =

⋃
α<λ J

α
x/a ⊆

⋃
α<λ J

α
x/u = Jλ

x/u.

Theorem 7
Jsa/su = Jsa/sa

Proof
By Theorem 3,Jsa/su ⊆ Jsa/sa.

We prove the inverse inclusion by showing that for all ordinals α: Jα
sa/sa ⊆ Jα

sa/su, by
transfinite induction onα.

Base case:n = 0

J0
sa/sa = ∅ = J0

sa/su

Successor ordinal:α α+ 1

Let A ∈ Jα+1

sa/sa, andB strongly attacksA. By definition, there existsC ∈ Jα
sa/sa such that

C attacksB andB does not undercutC. By induction hypothesis,C ∈ Jα
sa/su.

If C undercutsB, then we are done. If, however,C rebutsB andC does not undercut
B, thenB also rebutsC, i.e. B strongly attacksC, and so becauseC ∈ Jα

sa/su there
existsD ∈ Jα0

sa/su ⊆ Jα
sa/su (α0 < α) such thatD strongly undercutsB. It follows that

A ∈ Jα+1

sa/su(∅).

Limit ordinalλ:

AssumeJα
sa/sa ⊆ Jα

sa/su for all α < λ. ThenJλ
sa/sa =

⋃
α<λ J

α
sa/sa ⊆

⋃
α<λ J

α
sa/su =

Jλ
sa/su.

Theorem 8
Jsu/a = Jsu/d

Proof
By Theorem 3,Jsu/d ⊆ Jsu/a.

For the inverse inclusion, we show that for all ordinalsα: Jα
su/a ⊆ Jα

su/d, by transfinite
induction onα.

Base case:α = 0
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J0
su/a = ∅ = J0

su/d

Successor ordinal:α α+ 1

LetA ∈ Jα+1

su/a , andB strongly undercutsA. By definition, there existsC ∈ Jα
su/a such that

C undercuts or rebutsB. By induction hypothesis,C ∈ Jα
su/d.

If C undercutsB, orB does not undercutC, then we are done.
Otherwise,B strongly undercutsC, and so there existsD ∈ Jα0

su/d ⊆ Jα
su/d (α0 < α)

such thatD defeatsB. It follows thatA ∈ Jα+1

su/d .

Limit ordinalλ:

AssumeJα
su/a ⊆ Jα

su/d for all α < λ. Then

Jλ
su/a =

⋃

α<λ

Jα
su/a ⊆

⋃

α<λ

Jα
su/d = Jλ

su/d

Lemma 15
Let I be a two-valued interpretation.

1. L ∈ Γ(I) iff ∃ argumentA with conclusionL such thatassm(A) ⊆ I.
2. L ∈ Γs(I) iff ∃ argumentA with conclusionL such thatassm(A) ⊆ I and
¬conc(A) ∩ I = ∅.

3. L 6∈ Γ(I) iff ∀ argumentsA with conclusionL, assm(A) ∩ I 6= ∅.
4. L 6∈ Γs(I) iff ∀ argumentsA with conclusionL, assm(A) ∩ I 6= ∅ or
¬conc(A) ∩ I 6= ∅.

Proof

1. “Only If”-direction: Induction on the lengthn of the derivation ofL ∈ Γ(I).

Base case: n = 1:
Then there exists a ruleL ← not L1, . . . , not Ln in P s.t.L1, . . . , Ln 6∈ I, and
[L ← not L1, . . . , not Ln] is an argument forL whose assumptions are contained
in I.

Induction step: n n+ 1:
Let L ∈ Γn+1(I). Then there exists a ruler = L ← L1, . . . , Ln, not L

′
1, . . . , L

′
m

in P s.t.Li ∈ Γn(I), andL′
i 6∈ I. By induction hypothesis, there exists arguments

A1, . . . , An for L1, . . . , Ln with assm(Ai) ⊆ I. ThenA = [r] · A1 · · ·An is an
argument forL such thatassm(A) ⊆ I.

“If” direction: Induction on the length of the argument.

Base case: n = 1:
ThenA = [L ← not L1, . . . , not Ln], andL1, . . . , Ln 6∈ I. ThenL ←∈ P

I , and
L ∈ Γ1(I).

Induction step: n n+ 1:
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Let A = [L ← L1, . . . , Ln, not L
′
1, . . . , not L

′
m; r2, . . . , rn] be an argument s.t.

assm(A) ⊆ I.A contains subargumentsA1, . . . , An forL1, . . . , Ln, with assm(Ai) ⊆

I. BecauseL′
1, . . . , L

′
m 6∈ I, thenL ← L1, . . . , Ln ∈

P
I . By induction hypothesis,

Li ∈ Γ(I). so alsoL ∈ Γ(I).
2. “Only If”-direction: Induction on the lengthn of the derivation ofL ∈ Γs(I).

Base case: n = 1:
Then there exists a ruleL← not L1, . . . , not Ln in P s.t.¬L,L1, . . . , Ln 6∈ I, and
[L ← not L1, . . . , not Ln] is an argument forL whose assumptions are contained
in I, and¬L 6∈ I.

Induction step: n n+ 1:
Let L ∈ Γn+1(I). Then there exists a ruler = L ← L1, . . . , Ln, not L

′
1, . . . , L

′m

in P s.t.Li ∈ Γn(I), L′
i 6∈ I, and¬L 6∈ I. By induction hypothesis, there exists

argumentsA1, . . . , An for L1, . . . , Ln with assm(Ai) ⊆ I and¬conc(Ai) ∩ I =

∅. ThenA = [r] · A1 · · ·An is an argument forL such thatassm(A) ⊆ I, and
¬conc(A) ∩ I = ∅.

“If” direction: Induction on the length of the argument.

Base case: n = 1:
ThenA = [L ← not L1, . . . , not Ln], and¬L,L1, . . . , Ln 6∈ I. ThenL ←∈ Ps

I ,
andL ∈ Γ1(I).

Induction step: n n+ 1:
Let A = [L ← L1, . . . , Ln, not L

′
1, . . . , not L

′
m; r2, . . . , rn] be an argument s.t.

assm(A) ⊆ I, and¬conc(A) ∩ I = ∅. A contains subargumentsA1, . . . , An for
L1, . . . , Ln, with assm(Ai) ⊆ I, and¬conc(Ai)∩I = ∅. BecauseL′

1, . . . , L
′
m 6∈ I,

and¬L 6∈ I, thenL ← L1, . . . , Ln ∈
P
I . By induction hypothesis,Li ∈ Γ(I), so

alsoL ∈ Γ(I).
3. and 4. follow immediately from 1. and 2. becauseI is two-valued.

Theorem 19
An argumentA is x/y-justified iff there exists ax/y-dialogue tree withA as its root, and
won by the proponent.

Proof
“If”-direction. We show by transfinite induction: IfA ∈ Jα

x/y, then there exists a winning
x/y-dialogue tree of height≤ α for A.

Base caseα = 0:
Then there exists no argumentB such that(B,A) ∈ x, and soA is a winningx/y-dialogue
tree forA of height0.

Successor ordinalα+ 1:
If A ∈ Jα+1

x/y , then for anyBi such that(Bi, A) ∈ x there exists aCi ∈ Jα
x/y such that

(Ci, Bi) ∈ y. By induction hypothesis, there exist winningx/y-dialogue trees for theCi.
Furthermore, if any of theCi contains a movem = (P,A), then it also contains a winning
subtree forA rooted atm and we are done. Otherwise, we have a winning tree rooted atA,



A Hierarchy of Argumentation Semantics 37

with childrenBi, whose children are the winning trees forCi.

Limit ordinalλ:
If A ∈ Jλ

x/y, then there exists anα < λ such thatA ∈ Jα
x/y; by induction hypothesis, there

exists a winningx/y-dialogue tree of heightα for A.

“Only-if”-direction. We prove by transfinite induction: Ifthere exists a winning tree of
heightα for A, thenA ∈ Jα

x/y.
Note that by definition, the height of a dialogue tree is either 0 or a successor ordinal

α+1. So we prove the base case0, and for the induction step, we assume that the induction
hypothesis holds for allβ < α+ 1.

Base caseα = 0:
Then there are no argumentsB such that(B,A) ∈ x, and soA ∈ J0

x/y.

Successor ordinalα+ 1:
LetT be a tree with rootA, whose children areBi, and the children ofBi are winning trees
rooted atCi. By induction hypothesis,Ci ∈ Jα

x/y. Because theBi are all those arguments

such that(Bi, A) ∈ x, thenA is defended against eachBi byCi, and soA ∈ Jα+1

x/y .
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