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Abstract

This paper presents a technique for the optimization of bound queries over disjunctive
deductive databases with constraints. The proposed approach is an extension of the well-
known Magic-Set technique and is well-suited for being integrated in current bottom-up
(stable) model inference engines. More specifically, it is based on the exploitation of binding
propagation techniques which reduce the size of the data relevant to answer the query and,
consequently, reduces both the complexity of computing a single model and the number
of models to be considered. The motivation of this work stems from the observation that
traditional binding propagation optimization techniques for bottom-up model generator
systems, simulating the goal driven evaluation of top-down engines, are only suitable
for positive (disjunctive) queries, while hard problems are expressed using unstratified
negation.

The main contribution of the paper consists in the extension of a previous technique,
defined for positive disjunctive queries, to queries containing both disjunctive heads and
constraints (a simple and expressive form of unstratified negation). As the usual way of
expressing declaratively hard problems is based on the guess-and-check technique, where
the guess part is expressed by means of disjunctive rules and the check part is expressed by
means of constraints, the technique proposed here is highly relevant for the optimization
of queries expressing hard problems. The value of the technique has been proved by several
experiments.

1 Introduction

Disjunctive Datalog programs, i.e. programs allowing clauses to have both dis-
junction in their heads and negation in their bodies (short. Datalog" ™ programs),
have been successfully introduced with the aim of modelling incomplete data
(Lobo et al., 1992). Over the last few years, there has been a great deal of in-
terest in studying declarative semantics for Datalog" ™ programs. In fact, mini-
mal model semantics (Grant & Minker, 1986) is widely accepted for programs in
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the absence of body negation (Datalog” programs), and is naturally extended for
programs with (possibly unstratified) negation. For Datalog’>™ programs there
are several extensions of the minimal model semantics such as disjunctive sta-
ble models (Przymusinski, 1991 |Gelfond & Lifschitz, 1991)) minimal founded se-
mantics (Furfaro et al., 2004), and different proposals of well-founded semantics
(see, e.g., (Ross, 1990; [Brass & Dix, 1999; [Przymusinski, 1995} [Eiter et al., 1997b;
[Baral et al., 1992} [Wang, 2000)).

For each of the above semantics, several algorithms and techniques for model
generation have also been proposed. Model generation is often carried out through
bottom-up evaluation of clauses (Minker & Rajasekar, 1990; [Brass & Dix, 1994
[Fernandez & Minker, 1995a; [Leone et al., 2002; [Simons et al., 2002).

For instance, bottom-up methods have been employed to compute perfect and
stable models (Fernandez & Minker, 1995a; [Fernandez & Minker, 1995b) using or-
dered model trees, and to process logic programs under the minimal model seman-
tics using a tableau calculus (N 990)).

This paper focuses on stable model semantics, according to which a dis-
junctive program may have several alternative models, called answer sets, each
one corresponding to a possible view of the world — see for
a recent overview of answer set programming. Disjunctive logic programs un-
der stable model semantics are very expressive, since they capture the complex-
ity class %4 ([Eiter et al., 1997a) and they have been used for developing sev-
eral practical applications. Furthermore, in the last few years several efficient in-

ference engines implementing stable model semantics have been developed; the
DLV system (Leone et al., 2002) and the GnT system (Janhunen et al., 2000)
should be recalled which implement disjunctive stable models, while for the non-
disjunctive case many other engines are currently available (see, e.g., Smod-
els (Syrjanen & Niemela, 2001)), DeReS (Cholewinski et al., 1996), and ASSAT
(Lin & Zhao, 2002)).

Even though model generator techniques for stable model semantics are quite
useful for knowledge representation and reasoning tasks, it is well-known that they
are inefficient when used for refutations, i.e. query answering. In fact, they often
explore a search space much larger than that required, and tend to generate answers
to all the possible queries rather than to the precise query.

However, it is often the case that only a strict subset of the stable models needs
to be considered and that there is no need to compute these models in their entirety
to answer the query. This intuition is exploited by top-down techniques which only
consider atoms necessary to answer the current query and outperform model gen-
erators used for refutation. In fact, top-down approaches systematically utilize the
query to propagate the binding into the body of the rules to avoid computing all
the models of the program — a brief overview of top-down (disjunctive) reasoning
is presented in the next section.

In order to optimize query evaluation, while still preserving the ability to com-
pute models (well-suited for complex reasoning tasks), several works proposed the
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simulation of top-down strategies, by means of suitable transformations introducing
new predicates and rewriting some clauses.

Among them, the Magic-Set technique is the best-known technique. This is due to
its efficiency and its generality, even though other focused methods, such as the sup-
plementary Magic-Set and other special techniques for linear and chain queries have
also been proposed (see, e.g., (Beeri & Ramakrisnhan, 1991} |Greco et al., 1995;
[Ullman, 19894l [Ramakrisnhan et al., 1993))).

It should be recalled that the formal equivalence between top-down evaluation
with memoing and bottom-up evaluation with Magic-Set optimization is well-known
(Ullman, 19894 [UIlman, 1989b)). However, this Magic-Set optimization technique
is only suitable for positive Datalog queries, i.e. queries without disjunction and
negation. To the best of our knowledge the first extension of the Magic-Set technique
for the evaluation of disjunctive Datalog" queries, in which negation is not allowed,
was introduced in and extended in (Greco, 2003).

This paper further investigates optimization techniques simulating the top-down
evaluation of queries, by extending the proposal presented in from
Datalog” programs to Datalog¥'™ programs. Actually, a syntactic restriction of
Datalog" ™ programs is considered in which unstratified negation can only be ex-
pressed in the form of constraint rules. Notice that this is not truly a restriction.
In fact, constraints represent a natural way to extend database semantics, by ex-

plicitly defining properties which are supposed to be satisfied by all instances over
a given database schema. Moreover, the usual way of expressing declaratively hard
problems, such as NP problems and problems in the second level of the polynomial
hierarchy (32 and II? problems), is based on the guess-and-check technique where
the guess part is expressed by means of disjunctive rules and the check part is
expressed by means of constraints. Therefore, the technique proposed here is highly
relevant for the optimization of queries expressing hard problems.

Even though constraints can be easily managed in top-down approaches, it should
be pointed out they represent a serious issue when simulating top-down reasoning
by means of the Magic-Set technique. In fact, all the rewriting techniques presented
so far in the literature cannot be straightforwardly extended to constraint rules.

1.1 Contributions
The main contributions of the paper are as follows.

e A query rewriting algorithm is defined which allows the simulation of top-
down computation in bottom-up inference engines by propagating the bind-
ings from the query-goal into the body of rules. The rewriting technique avoids
the computation of complete models and useless models which are not necess-
ary to answer the query. Essentially the technique is an adaptation of the
Magic-Set technique (Bancilhon et al., 1986; [Beeri & Ramakrisnhan, 1997))
to disjunctive Datalog programs with constraints.

e It is observed that the application of the Magic-Set technique to queries with
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constraints produces a query that can be evaluated more efficiently, but, unfor-
tunately, the technique may produce a query that, generally, is not equivalent
to the original one. The conditions that a program must satisfy in order to
preserve this equivalence are investigated.

e The proposed algorithm is an extension of for Datalog pro-
grams only. However, an in-depth analysis is also provided of the algorithm in
(Greco, 2003), formally showing how it can work independently of the partic-
ular strategy adopted for simulating the binding occurring in top-down eval-
uation. In this way, this approach is orthogonal to the Magic-Set technique,
since it can exploit any other rewriting strategy proposed in the literature.

e In order to verify the wvalidity of this approach the technique has
been tested with different disjunctive programs using the DLV system
(Leone et al., 2002). The experiments comparing the execution time required
to answer the source and the optimized query, have achieved very encouraging
results proving the value of the approach.

Even though there are a number of proposals for efficient query answering in dis-
junctive deductive databases under well-founded semantics, there are few effective
techniques for top-down reasoning under stable model semantics. Thus, the paper
also contributes to provide an effective, implemented technique for query answering
under stable model semantics.

Finally, it should be stressed that even though the results in
suggest that this extension of the Magic-Set technique is equival-

ent to the form of binding propagation occurring in the top-down evaluation, the
technique may suffer from some potential inefficiency due to the computation of
additional predicates and rules needed in the rewriting (intrinsic in the Magic-Set
technique). However, note that some redundancy can also occur in the top-down
evaluation due to the tabling of intermediate results.

However, the main aim here is to formally prove the possibility of efficient query
evaluation in bottom-up systems, breaking down the complexity of a brute force
approach and still using the internal model generator. Thus, implementations of
top-down systems supporting disjunction and stable model semantics have not been
sought in order to make an experimental comparison w.r.t. this approach. This
aspect calls for further study and research.

1.2 Related Work on the FEvaluation of Disjunctive Programs

The (efficient) evaluation of disjunctive logic programs has a long his-
tory (Grant & Minker, 1986; |[Yahya & Henschen, 1989; [Liu & Sunderraman, 1990;
[Yuan & Chiang, 1989). Recently there has been a growing interest in answering
queries on disjunctive deductive databases. The two main approaches proposed in
the literature for the evaluation of queries and programs are now discussed.
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1.2.1 Bottom-Up Techniques

The definition of efficient bottom-up evaluation algorithms for assigning semantics
to disjunctive deductive databases has been the subject of several proposals. In the
following some of these approaches proposed in the literature are briefly described.

(Minker & Rajasekar, 1990) introduce the concept of state, consisting of a set
of positive disjunctions, as the domain of a fixpoint operator that gives semantics
to disjunctive logic programs. The fixpoint computation operates bottom-up and
produces, as the resulting fixpoint, the model state, i.e. a state whose minimal
models satisfy the disjunctive deductive database.

(Brass & Dix, 1994)) propose a general approach for defining the semantics of
disjunctive logic programs. The framework consists of: a semantical part, where
the declarative meaning of a program is defined in an abstract way as the weakest
semantics satisfying certain properties, and a procedural part, namely a bottom-up
query evaluation method based on operators working on conditional facts. More
specifically, the approach is based on the generation of a residual program, i.e. a
program obtained by transforming the original one, which makes the use of dis-
junctive information explicit.

(Fernandez & Minker, 19954) introduce a new fixpoint characterization of the
minimal models of disjunctive logic programs. The proposed operator, applied iter-
atively, is shown to characterize the perfect model semantics of stratified disjunctive
logic programs. Based on these results the authors present a bottom-up evaluation
algorithm for stratified disjunctive deductive databases that uses the model-tree
data structure to both represent the information contained in the database and
compute answers to queries.

(Leone et al., 2002) propose the DLV system, which exploits an algorithm for
computing stable models for disjunctive logic programs. This approach searches
for stable models by using efficient fixpoint algorithms computing the semantics of
programs. In particular, it obtains effective performances by using an (intelligent)
ground instantiation of programs, i.e. a program in which unsatisfiable ground rules
are deleted, and heuristics are used for implementing a backtracking search strategy
for pruning the search space.

(Simons et al., 2002) define a novel answer set programming language that gener-
alizes normal logic programs. The language allows weighted constraint rules which
increase the expressivity of the language to express different types of constraint (e.g.
cardinality conditions) optimization capabilities. The declarative semantics extends
the one for normal programs while the complexity of computing stable models for
this novel language is comparable to that of normal programs (without considering
optimizations).

1.2.2 Top-Down Techniques

Top-down query evaluation is based on refutation procedures. The first of such refu-
tation techniques, called SLD-resolution, was introduced in (Kowalski, 1974) and
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is suitable for Datalog programs only, i.e. programs without negation and disjunc-
tion. extended SLD-resolution to SLDNF-resolution, introducing the
negation as a failure rule for inferring negative information.

In order to prevent the possibility of infinite loops and a large amount of re-
dundant sub-derivations (intrinsic in SLD-resolution), the SLG-resolution was in-
troduced (Chen & Warren, 1993; |Chen & Warren, 1996). It is a tabling mechanism
for the evaluation of the well founded semantics of logic programs (without disjunc-
tion), and it is the evaluation strategy underlying XSB, the best known state-of-
the-art top-down tabling system (Sagonas et al., 1994)). (Shen et al., 2002) present
an optimization of SLG-resolution, called SLT-resolution.

The problem of top-down computation for disjunctive well-founded semantics
(DWFS) was investigated in (Wang, 2001). Specifically, the author proposes a top-
down procedure for disjunctive well-founded semantics called D-SLS-resolution,
which can eventually be optimized by employing some techniques such as the tabling
method of (Chen & Warren, 1996). A top-down method for testing DWFS mem-
bership, based on the characterization of the DWFS in terms of Gelfond-Lifschitz
transformations, is presented in (Johnson, 2001)).

A bottom-up procedure computing queries in a top-down fashion has also been
proposed for minimal model semantics (Yahya, 2000; [Yahya, 2002). The approach,
suitable for positive queries, is based on the duality principle for interpreting logical

connectives. In more detail, the duality transformation is obtained by reversing the
direction of the implication arrows in the clauses representing both the program and
the negation of the query goal. The application of a generic bottom-up procedure
to the transformed clause set results in a top-down query answering.

Finally, (Johnson, 1999)) shows that disjunctive stable models can be character-
ized in terms of cyclic covers, and in particular that such covers provide a powerful
technique for characterizing the properties of query processing, compilation and
view updating. A (correct and terminating) top-down method for query processing
under the disjunctive stable model semantics is also presented. Supported covers
have also been used to facilitate the top-down query processing under the possible

model semantics (Johnson, 2002).

1.3 Plan of the Paper

The paper is organized as follows: Section [ presents preliminary definitions and
results on disjunctive Datalog, minimal and stable model semantics and Magic-
Set rewriting; Section 3 presents the Magic-Set rewriting for positive disjunctive
queries; Section 4 extends the binding propagation technique to disjunctive queries
with constraints; Section 5 presents experimental results showing the validity of the
proposed technique; finally, Section 6 presents the conclusions.
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2 Preliminaries

In this section standard concepts on Datalog, Magic-set rewriting, query equival-
ence, disjunction and constraints are reviewed.

2.1 Disjunctive Datalog

The existence of alphabets of constants, variables and predicate symbols are
aaumed. A term is a constant or a variable. An atom is of the form p(t1,- - -, tg)
where p is a k-ary predicate symbol and 1, - - -, t are terms. A literal is an atom A
or its negation —A. A Datalog" ™ (or simply disjunctive Datalog) rule r is a clause
of the form:

ap V-V Gy < by, b, e, e, e,

where n, k,m >0, n+k+m >0and a1, -, G, b1, -, bk, 1, -+, ¢, are function-
free atoms. The disjunction a; V --- V a,, is called the head of r and is denoted
by Head(r) while the conjunction by, - -, by, 0c1, -+, —¢y, is called the body and is
denoted by Body(r). If m = 1, then r is normal (i.e. V-free) or Datalog™; if n = 0,
then r is positive (i.e. =-free) or Datalog; if both m = 1 and n = 0, then r is
normal and positive or Datalog; if £k = n = 0 r is a fact, whereas if m = 0 r is
a constraint or denial rule, i.e. a rule which is satisfied only if Body(r) is false. A
Datalog” '™ program P is a finite set of Datalog ™ rules; it is normal (resp. positive)
if all its rules are normal (resp. positive). Given a program P and a predicate symbol
g occurring in P, the definition of ¢, denoted by def (g, P), consists of all rules in
P having ¢ in their heads.

The Herbrand Universe Up of a program P is the set of all constants appearing
in P, and its Herbrand Base Bp is the set of all ground atoms constructed from
the predicates appearing in P and the constants from Up. A ground term (resp. an
atom, a literal, a rule or a program) is a term (resp. an atom, a literal, a rule or a
program) where no variables occur in it. A rule 7’ is a ground instance of a rule r,
if 7’ is obtained from r by replacing every variable in r with some constant in Up.
We denote by ground(P) the set of all ground instances of the rules in P.

Given a set of ground atoms Z, a program P, a predicate symbol g and an atom
g(t), Z[g] denotes the set of g-atoms in Z, whereas Z[P] denotes the set of atoms
in Z whose predicate symbol appears in the head of some rule of P. Given a set of
interpretations S, then S[g] = {M|[g]|M € S} and S[P] = {M[P]|M € S}.

An interpretation of P is any subset of Bp. The value of a ground atom L w.r.t.
an interpretation I, valuer (L), is 1 (true) if L € I and 0 (false) otherwise. The value
of a ground negated literal not L is 1 — valuer (L). The truth value of a conjunction
of ground literals C' = Ly,..., L, is the minimum over the values of the L;, i.e.
valuer (C) = min({valuer(L;) | 1 < 4 < n}), while the value of a disjunction
D =LyV---V L, is its maximum, i.e. values (D) = maz({valuer(L;) | 1 < i < n});
if n = 0, then value; (C) = true and valuer (D) = false. A ground rule r is satisfied
by I if valuer(Head(r)) > wvaluer(Body(r)). Thus, a rule r with empty body is
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satisfied by I if value;(Head(r)) = true. An interpretation M for P is a model of
P if M satisfies all rules in ground(P).

The model-theoretic semantics for a positive program P assigns the set of its min-
imal models MM (P). A model M for P is minimal, if no proper subset of M is a
model for P (Minker, 1994). Accordingly, the program P = {a V b <} has the two
minimal models {a} and {b}, i.e. MM(P) = { {a}, {b} }. The more general dis-
Jjunctive stable model semantics generalizes stable model semantics, previously de-
fined for normal programs (Gelfond & Lifschitz, 1988) and also applies to programs
with (unstratified) negation (Gelfond & Lifschitz, 1991} [Przymusinski, 1991)).

Let P be a logic program P and let I be an interpretation for P, P! denotes
the ground positive program derived from ground(P) by (1) removing all rules
that contain a negative literal —a in the body and a € I, and (2) removing all
negative literals from the remaining rules. An interpretation M is a (disjunctive)
stable model for P if and only if M € MM(PM).

For general P, the stable model semantics assigns to P the set SM(P) of
its stable models. It is well known that stable models are minimal models (i.e.
SM(P) C MM(P)) and that for negation-free programs minimal and stable model
semantics coincide (i.e. SM(P) = MM(P)) and that Datalog programs have a
unique minimal model.

Predicate symbols can be either extensional (i.e. defined by the ground facts of a
database — EDB predicate symbols), also called base predicates, or intensional (i.e.
defined by the rules of the program — IDB predicate symbols), also called derived
predicates. Thus a database D consists of a set of ground facts having in the head
a base predicate symbol (i.e. ground normal rules with empty body defining base
predicates), whereas a program P consists of a set of (disjunctive) rules having in
the heads derived predicate symbols.

A disjunctive Datalog query over a database defines a mapping from the database
to a finite (possibly empty) set of finite (possibly empty) relations for the goal. A
query is a pair (G, P) where G is an atom, called a goal, and P is a program. The
application of a query Q to a database D is denoted by Q(D) and the union of the
program P and the facts in D is denoted by Pp. Clearly, all models for Pp contain
the database D.

The result of a query Q@ = (G, P) on an input database D is defined in terms of
the stable models of Pp, by taking either the union (possible inference) or the inter-
section (certain inference) of all models. Thus, given a program P and a database
D, a ground atom G is true, under possible (brave) semantics, if there exists a
stable model M for Pp such that G € M. Analogously, G is true, under certain
(cautious) semantics, if G is true in every stable model for Pp.

Given an atom G and an interpretation M, A(G, M) denotes the set of substi-
tutions for the variables in G such that G is true in M. The answer to a query
Q = (G, P) over a database D under possible (resp. certain) semantics, denoted
Ansp(Q, D) (resp., Ans.(Q, D)) is the relation Uy A(G, M) (resp., Nm A(G, M))
such that M € SM(P, D). Two queries Q; = (G1,P1) and Qy = (Ga, P3) are
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said to be equivalent under semantics s (Q1 =; Q) if for every database D (on
a fixed schema) Anss(Q1, D) = Ans;(Q2, D). Moreover, we say that two programs
P; and P5 are equivalent under a given semantics s: P; =, Po if for every atom g
(g,P1) =5 (g, P2). Finally, if 01 =, Q2 and Q1 =, Q2 (the two queries or programs
are equivalent under both brave and cautious semantics) we simply write Q; = Qo.

2.2 Magic-Set rewriting

In the literature different approaches have been proposed for the efficient bottom-
up evaluation of queries, e.g. the Magic-Set (Bancilhon et al., T986)), the supple-
mentary Magic-Set (Beeri & Ramakrisnhan, 1991)) and other specialized rewrit-
ing techniques (Greco et al., 1995} [Ullman, 1989al [Ramakrisnhan et al., 1993). The
key idea of all these techniques consists in the rewriting of deductive rules with re-
spect to the query goal to answer the query without actually computing irrelevant
facts. In this section we recall the Magic-Set rewriting is recalled, which is a gen-
eral and well-known technique for the optimization of Datalog queries. Although
the Magic-Set technique can be applied to general Datalog queries, for the sake
of simplicity, here the technique for linear programs is presented, i.e. programs
whose rules contain, at most, one body predicate mutually recursive with the head
predicate.

The Magic-Set rewriting consists of three separate steps:

1. An Adornment step in which the relationship between a bound argument in
the rule head and the bindings in the rule body is made explicit.

2. A Generation step in which the adorned program is used to generate the
magic rules which simulate the top-down evaluation scheme.

3. A Modification step in which the adorned rules are modified by the magic
rules generated in Step (2); these rules will be called modified rules.

An adorned program, P? is a program whose predicate symbols have associated a
string «, defined on the alphabet {b, f}, of length equal to the arity of the predicate.
A character b (resp. f) in the i-th position of the adornment associated with a
predicate p means that the i-th argument of p is bound (resp. free).

The adornment step consists in generating a new program whose predicates are
adorned. Given a rule r and an adornment « of the rule head, the adorned version
of r is derived as follows:

1. identify the distinctive arguments of the rules as follows: an argument is dis-
tinctive if it is bound in the adornment «, is a constant or appears in a base
predicate of the rule-body which includes an adornment argument;

2. assume that the distinctive arguments are bound and use this information in
the adornment of the derived predicates in the rule body.

Adornments containing only f symbols can be omitted.

Given a query Q = (q(T),P) and letting « be the adornment associated with
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q(T), the set of adorned rules for Q is generated by 1) first computing the adorned
version of the rules defining ¢ and 2) then generating, for each new adorned pred-
icate p® introduced in the previous step, the adorned version of the rules defining
p w.r.t. a; Step 2 is repeated until no new adorned predicate is generated.

The second step of the process consists in using the adorned program for the
generation of the magic rules. For each of the adorned predicates in the body of
the adorned rule:

1. eliminate all the derived predicates in the rule body which are not mutually
recursive with the rule head;

2. replace the derived predicate symbol p® with magic_p® and eliminate the
variables which are free w.r.t. «;

3. Replace the head predicate symbol ¢* with magic- ¢® and eliminate the vari-
ables which are free w.r.t. o;

4. interchange the transformed head and derived predicate in the body.

Finally, the modification step of an adorned rule is performed as follows: for each
adorned rule whose head is p®(X), where X is a list of variables, extend the rule
body with magic_p®(X’) where X’ is the list of variables in X which are bound
w.r.t. .

The final program will contain only the rules which are needed to answer the
query.

Ezxample 1

Consider the query Qs = (p(1,C), P3) where Ps is defined as follows:
P(X%,C)  « q(X2,0)
q(X,Y,¢) « a(XY,C)
q(X,Y,C) <« b(X,Y,Z,W), q(Z,W,D), ¢(D,C)-

The adorned version of P3 w.r.t. the query goal p(1,C) is:

be (X7 C) <~ qbbf (X7 27 C)
(X, Y,€) + a(X,Y,C)
Q™ (X,Y,C) + b(X,Y,Z,W), " (Z,W,D), c(D,C)

The rewritten query is Q4 = (p®(1,C), P) where P} is as follows:

magic_p® (1)
magic_q°™(X,2) + magic_p™(X)-
magic_q®™(Z,W) + magic q”*(X,Y),b(X,Y,Z, W)

qbbf (X, 27 C).
Y)v a(xv Y, C)
Y)v b(Xa Y, Z, W), qbbf(za W, D)a C(Dv C)

P*(X,C)  « magic p™(X),
g”®(X,Y,C) + magic_q°*

(
bbf (

X,
a™*(X,Y,C) + magic_q”™(X

3

Note that the first set of rules consists of the magic rules generated in the second
step, while the second set of rules consists of the modified rules. O
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Observe that, although the technique presented here applies only to negation free
linear programs, the Magic-Set rewriting is general and can also be applied to non-
linear programs with some form of negation (e.g. stratified negation) where bindings
are also propagated through derived predicates (Beeri & Ramakrisnhan, 1991)).

Let Q = (G, P) be a query, then Magic(Q) denotes the query derived from Q
by applying the Magic-Set technique. The query Magic(Q) will also be denoted as
(G*, magic(G, P)) where G* denotes the adorned version of G, and magic(G,P)
denotes the rewriting of P w.r.t. the goal G. The rewritten program consists of two
distinct sets of rules: a set of new rules (generated in Step (2)), called magic rules,
and the set of modified rules, (generated in Step (3)) which is derived from the set
of rules in the source program. The adorned rules generated in Step (1) are denoted
by Adorn(G,P).

3 Binding Propagation for Positive Queries

In this section the technique proposed in (Greco, 1999; |Greco, 2003) for apply-
ing the Magic-Set technique to positive disjunctive Datalog programs is reviewed
and extended. The technique proposed in (Greco, 1999; |[Greco, 2003) produces a
rewriting of the source query which, under the bottom-up evaluation, simulates the
propagation of bindings occurring in the query-goal, performed in the top-down
evaluation.

It should be pointed out that this formalization stems from the approach in
(Greco, 2003). However, it is further extended by providing a new result on query
equivalence (not stated in (Greco, 2003))), which is crucial for allowing the technique
to work in the case of disjunctive programs with constraint rules. This result is
important and states that the rewriting technique is independent of the particular
strategy adopted for simulating the propagation of bindings carried out in top-down
evaluation. Therefore, even though conceptually introduced as an extension of the
Magic-Set technique, this approach is orthogonal to the Magic-Set technique, since
it can use any other rewriting strategy proposed in the literature.

For the sake of simplicity, the following running example is considered.

Example 2

Consider the query (ancestor(john,Y), ANC) where the program ANC consists of the
following rules:

father(X,Y) V brother(X,Y) < related(X,Y)
ancestor(X,Y) < father(X,Y)
ancestor(X,Y) + father(X,Z), ancestor(Z,Y)-

The predicate ancestor defines the transitive closure of father, while father is
defined by a disjunctive rule. O
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Given a positive disjunctive Datalog program P, the first step is to construct a
suitable normal program.

Definition 1

Let P be a (positive) disjunctive Datalog program. The extended standard version
of P, denoted esv(P), is the Datalog program derived from P by replacing each
disjunctive rule a; V - - - V a,, + B with

1. m rules of the form a; + B for 1 <7 < m, and
2. m x (m — 1) rules of the form a; +— a;, B for 1 <i,j <m and i # j.

Given a query Q = (G, P), we denote with esv(Q) the query (G, esv(P)). O

Example 8

The program esv(ANC), where ANC is the program presented in Example @ consists
of the following rules:

father(X,Y) related(X,Y)-
brother(X,Y) related(X,Y)-
father(X,Y) brother(X,Y), related(X,Y)-

T

)
brother(X,Y) father(X,Y), related(X,Y)-
ancestor(X,Y) father(X,Y)-
ancestor(X,Y) father(X,Z), ancestor(Z,Y)-

O

Observe that the rules introduced by applying Item 2 of Definition [ are subsumed
by those introduced by applying Item 1; indeed, the semantics of esv(P) is not
affected by the insertion of these rules. However, these rules are necessary in order
to allow the propagation of the bindings, as will be clear in the following.

It should be pointed out that programs P and esv(P) are not equivalent; in fact,
P is a disjunctive Datalog program that is able to express all the queries in X,
while esv(P) is a positive Datalog program that is able to express a subset of the
queries computable in polynomial time.

The second step is to derive a program that must be equivalent to the original
one. Let us first present some notation.

Definition 2

Given a (positive) disjunctive Datalog program P, ESV (P) denotes the program
derived from esv(P) by replacing each derived predicate symbol g with a new
predicate symbol G. Given a query Q = (g(t),P), ESV(Q) denotes the query
(G(t), ESV(P)) where G is the new symbol used to replace g. O

Definition 3

Let P be a (positive) disjunctive Datalog program. The restricted version of P,
denoted by RV (P), is the disjunctive Datalog program defined as follows:

RV(P)={aV---Vay < A1, Am,B | a1V---Va, < B P}
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where each A;, for 1 < i < m, is the atom replacing a; in the program ESV (P). The
rewritten version of P is Rew(P) = RV (P)UESV (P). Given a query Q = (g¢(t), P),
Rew(Q) denotes the query (g(t), Rew(P)). 0

Observe that in the above definition, the rewriting of the program P does not
take into account the goal. This is not true for rewriting techniques propagating
bindings.

Ezxample 4

The program Rew(ANC), where ANC is the program defined in Example B consists
of the following rules RV (ANC):

father(X,Y) V brother(X,Y) < FATHER(X,Y), BROTHER(X, Y), related(X, Y)-
ancestor(X,Y) < ANCESTOR(X,Y), father(X,Y)-
ancestor(X,Y) < ANCESTOR(X,Y), father(X, Z), ancestor(Z,Y)-

plus the set of rules ESV (ANC) :

FATHER(X,Y) < related(X,Y):
BROTHER(X,Y) < related(X,Y):
FATHER(X,Y)  + BROTHER(X,Y), related(X,Y)-
BROTHER(X,Y) < FATHER(X,Y), related(X,Y)-
ANCESTOR(X,Y) < FATHER(X,Y)-
ANCESTOR(X,Y) < FATHER(X,Z), ANCESTOR(Z,Y)-
The rewritten query is (ancestor(john,Y), Rew(ANC)) O

The programs P and Rew(P) actually have the same semantics (w.r.t. the pred-
icates in P).

Proposition 1

Let P be a (positive) disjunctive Datalog program, and Rew(P) be the rewritten
version of P. Then, for every atom ¢(t), (g(t), P) = (g(t), Rew(P)).

Proof. In order to prove that for any g¢(t), (¢(¢),P) = (g(t), Rew(P)), under
both possible and certain semantics, it will be shown that for any database D,
an interpretation M of Rew(P)p is a stable model if, and only if, M[Pp] is a
stable model for Pp. Moreover, only minimal models can be considered, since for
disjunctive positive Datalog programs, the set of stable models of a given program
coincides with the set of minimal models.

It should be pointed out that the program Rew(P) consists of two distinct com-
ponents: i) the program ESV (P) whose rules only depend on D, and ii) the program
RV (P) whose rules depend on predicates defined in ESV (P) and D. Hence, the set
of stable models of Rew(P)p can be computed in a level wise manner.

As for the models of ESV(P)p, observe that ESV(P)p has a unique minimal
model, since it is a positive program. Let Mgsy be such a model, and let M., =
{a | A€ MESV}-

Then, MM(ESV(P)D U RV(P)D) = MM(FMESV @] RV(P)D), where FMggy
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denotes the set of facts associated with each atom in the model Mggy . Finally, in
order to conclude the proof, it can be claimed that Mggy U M is a minimal model
for MM (FMgsy U RV (P)p) if, and only if, M is a minimal model for Pp.

In fact, consider arule 7 : a3 V-V ay, < b, by, -+, b, in P and the corresponding
rule 7’ :ag Voo Vay <+ Ay, A, by by, o+, by in RV(P), where b is a conjunction
of derived predicates, while by, - - -, b, are extensional predicates. It is easy to see,

that for any model M for Pp, we have M C M.g,. Hence, if b, by, - - -, b, is true in
M then also B, by, - -, by is true in Mggy . Then, due to the rules A; < B, by, -+, b,
in ESV(P), A1, -+, Ay, is true in Mggy, too.

Conversely, if b is false in M, then the body of r’ is trivially false (no matter
what the evaluation of B), too. Hence, after the assertion of the facts in Mggy,
the semantics of RV (P)p is not affected from ' the predicates Aqy,- - -, A,, are
removed. O

The previous proposition states that the program P and Rew(P), obtained by
restricting the rules of P, are equivalent. In fact, adding the atoms defined in
ESV(P) inside the body of the rules of P, does not make any effective restriction,
as for every ground atom a(t) appearing in the head of a disjunctive ground rule r
there is a ground atom A(t) which is derived from ESV (P).

Thus, in the following, instead of using the program ESV (P) to restrict the rules
in P, a different program is considered which makes an effective and sound restric-
tion; this program will be obtained by performing the binding propagation from
the query goal into the rules of the program esv(P). However, program ESV (P)
is used instead of program esv(P), in order to distinguish between atoms of the
source program and atoms making restrictions.

Throughout the paper, the Magic-Set technique is considered which is a well-
known and general technique. For special classes of queries we could use specialized
techniques as the choice of the rewriting technique is independent and orthogonal
w.r.t. the proposed framework.

For details about the Magic-Set technique the reader should refer to
(Beeri & Ramakrisnhan, 1991} [Ullman, 19894) while for specialized rewriting tech-
niques see (Ullman, 1989al [Ramakrisnhan et al., 1993; [Greco et al., 1995)).

Let’s now formally provide a way of “collecting” all the adorned predicates gen-
erated by the rewriting of queries.

Definition 4
Given a (positive) disjunctive Datalog program P, a predicate symbol p appearing
in P and an adorned program P? derived from P, then

Coll(p, P, PP) = {p(Xy, -, Xi) « p*(X1, -, X)|for every p® in P? derived from p}

denotes the set of rules (also called collecting rules) used to collect the atoms of
the predicates having different adornments, but the same predicate symbols.
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Moreover,
Coll(P,PP) = U Coll(p,P,P”)
p appearing in P
denotes the set of all collecting rules derived from P and P5. O

With respect to the rewriting of Definition Bl ESV(P) is now replaced by the
rules of the Magic-Set program P’ = Magic(G(t), ESV (P)) (where G is the sym-
bol corresponding to g in ESV(P)) plus the rules used to collect the atoms with
different adornments of P’, denoted by Coll(ESV (P),P’).

Example 5

Consider the program ANC of Example Hl and the query goal ancestor(john,Y).
The corresponding extended standard query is ESV ({ancestor(john,Y),ANC)) =
(ANCESTOR(john,Y), ESV (ANC)). The first step consists in the generation of adorn-
ments for derived predicates. From the propagation of bindings only one binding
for the predicate ANCESTOR®(john,Y) is derived.

Thus, the program Magic(ANCESTOR(john, Y), ESV(ANC)) is as follows:

FATHER™ (X, Y) + magic_FATHER™(X), related(X,Y)-

BROTHER™ (X,Y) < magic_BROTHER™ (X), related(X,Y)-

FATHER™ (X, Y) <+ magic_FATHER™ (X), BROTHER™ (X,Y), related(X, Y)-
BROTHER™ (X,Y) <« magic_BROTHER™(X), FATHER™ (X,Y), related(X,Y)-
ANCESTOR™ (X,Y) < magic_ANCESTOR™(X), FATHER™ (X,Y)-

ANCESTOR™ (X,Y) < magic_ANCESTOR™ (X), FATHER™ (X, Z), ANCESTOR™ (Z,Y)-

magic_ ANCESTOR™ (john)-

magic_ANCESTOR™ (Z) < magic_ANCESTOR™ (X), FATHER™ (X, Z)-
magic_FATHER™ (X) < magic_ANCESTOR™ (X)-
magic_BROTHER™ (X) + magic_FATHER™(X)-

magic_FATHER™ (X) <+ magic_BROTHER™ (X)-

Here the predicate magic_ANCESTORP computes all ancestors which are relevant to
establish whether a given person is an ancestor of john.

The set Coll(ESV (ANC), Magic(ANCESTOR(john,Y), ESV(ANC))), consisting of the
rules collecting atoms with the same predicate and different adornments, is

ANCESTOR(X,Y) < ANCESTOR™(X,Y)-
FATHER(X, Y) < FATHER™(X,Y)-
BROTHER(X,Y) < BROTHER™ (X,Y)-

These rules collect into ANCESTOR (resp. FATHER, BROTHER) all the ANCESTOR (resp.
FATHER, BROTHER) atoms with different adornments. Since there is only one adorn-
ment for each predicate, adornments and collecting rules could be eliminated. O

Definition 5
Let Q = (g(t),P) be a disjunctive Datalog query, then the disjunctive Magic-Set

rewriting of P w.r.t. g(t), denoted by Disj_ Magic(g(t), P), is the following program:
RV (P) U Coll(ESV (P), Magic(G(t), ESV (P))) U Magic(G(t), ESV (P))- O
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Ezxample 6

The complete rewriting of the program in Example consists  of
the rules in  Coll(ESV (ANC), Magic(ANCESTOR(john,Y), ESV(ANC))) U
Magic(ANCESTOR(john,Y), ESV(ANC)) (shown in Example ) plus the rules
in RV (ANC):

father(X,Y) V brother(X,Y) < FATHER(X,Y),BROTHER(X, Y), related(X, Y)-

ancestor(X,Y) < ANCESTOR(X,Y),father(X,Y)
ancestor(X,Y) < ANCESTOR(X,Y),father(X,Z), ancestor(Z,Y)- 0

From the above observation and definition, combined with Proposition [ the
following result proved in (Greco, 2003) can be derived.

Fact 1
Let Q = (g4(t),P) be a Datalog” query, then, Q = (g(t), Disj- Magic(g(t), P)). O

4 Binding Propagation in Datalog” Programs with Constraints

This section formally introduces a technique for propagating bindings into Datalog"
queries with strong or classical constraints, a simple and powerful form of unstrat-
ified negation. A strong constraint is a rule with empty head of the form: + B(X)
where B(X) is a conjunction of literals and X is a vector of range restricted vari-
ables, which must be satisfied in each model'.

Contrary to standard Datalog, where bindings are propagated from the head of
rules into the body, the problem with programs containing constraints is that the
bindings need to be propagated also through the constraints. For instance, if one
is interested in knowing whether p(1) is true in a program where there is the
constraint < p(X), ¢(X), then the truth value of ¢(1) also needs to be evaluated.

Thus, the truth value of each ground atom in a constraint depends on the truth
value of the other atoms appearing in the same ground constraint, and, hence, in
a more abstract perspective, constraints behave in a similar manner as disjunctive
rules when propagating bindings into their heads.

In the following, a Datalog” program P with constraints (Datalog'>*) will be
denoted by a pair (Pgr,Pc), where Pr is a nonempty set of (positive) disjunctive
rules and P is a set of constraints. It is worth noting that Pr being a nonempty
set of positive disjunctive rules, the only form of negation contained in P is that
related to the rewriting of constraints. Moreover, the use of constraints instead of
general (possibly unstratified) negation is not a limitation since Datalog¥ < has the
same expressive power as Datalog” ". Indeed, since in (Eiter ef al., 1997al) it has
been shown that Datalog" ™ has the same expressivity as Datalog"'~, whereas in

I Tt should be recalled that, under stable models semantics, a constraint < B(X) could be
rewritten into an equivalent rule with unstratified negation of the form: p; < B(X), —p;, where
p; is a new predicate symbol not defined elsewhere in the program.
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(Zumpano, 2004) it has been shown that stratified negation can be simulated by
using disjunction and constraints, we have that Datalog’:<~ = Datalog">™s.

As has been shown in (Zumpano, 2004)), that every rule containing stratified
negation can be rewritten in Datalog”:* rules. For instance, consider the following
stratified rule where predicate b does not depend on predicate p:

p(X) « a(X), =b(X)
This rule can be rewritten as:

pp(X) « p(X)

2: p/(X)V IV (X) ¢ a(X)
31 p/(X),b(X)
4
5

[

L B (X)b(X)
tp'(X), b(X)

where the rule 2 together with the constraint 3 states that a is partitioned into p’
and b’, whereas constraints 4 and 5 state, respectively, that b’ must be a subset of b
and that the intersection between p’ and b must be empty. Therefore, tuples being
in @ — b must be in p’. The rule 1 is necessary only in the case the predicate p in the
source program is defined by more than one rule. In the following we assume that
a predicate symbol p cannot appear both positively and negatively in two different
constraints. This restriction does not make any limitation on the expressive power
of the language as stratified negation can be emulated by considering the above
restricted form of constraints.

By following the same guidelines as in the previous section, the technique and
the main results, by using a running example.

Ezxample 7

Suppose to have the query (2col(1,2),Coloring) checking whether a graph is 3-
colorable and whether the colors red and blue can be assigned to nodes 1 and 2
respectively. The program Coloring consists of the following rules:

r : 2col(X,Y) < color(X,red),color(Y,blue)-

s : color(X,red) V color(X,blue) V color(X,yellow) < node(X)

c : < edge(XY), color(X,C),color(Y,C)- O

Definition 6
Given a set of constraints P¢, esv(P¢) denotes the set of Datalog rules obtained
by replacing each constraint in Pc having the form

< ay, -, A, bla"v bm,_‘Cl,' Ty Cp

where a1, - -, a; are base atoms, by, - -, b,, are derived atoms and ¢y, - -, ¢, are
negated literals (either base or derived), with the following set of rules:

bi <~ bl7"7 bi—lu bi+17"7 bm7a’17' ©ty Ay, T1CL, 1, T Vi€ [1 : m]

Given program P = (Pg,Pc¢), the extended standard version of P, denoted by
esv(P) = esv((Pr,Pc)) = esv(Pr) U esv(Pe). O
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Ezxample 8

The extended standard version of the program Coloring of Example[d obtained by
the rewriting of constraints and disjunctive rules and denoted by esv(Coloring), is
as follows:

ri: 2col(X,Y) < color(X,red),color(Y,blue)-

s1: color(X,red) node(X)-
sz : color(X,blue) node(X)-
s3 : color(X,yellow) node(X)-
sq : color(X,red) color(X,blue), node(X)-

ss : color(X,blue) color

(
(
(
(
(
se : color(X,red)
(
(
(
(X
(Y

X,red), node(X)-
X,yellow), node(X)-
X,red), node(X)-
X,yellow), node(X)-
X,blue), node(X)-

color
color
color

s7: color(X,yellow)
ss : color(X,blue)
sg : color(X,yellow)

2 O O Y Y Y

color

o~

,C) <+ edge(X,Y), color(Y,C)
,C) <+ edge(X,Y), color(X,C)

cy : color
cy : color

where the rule r; is derived from r, rules s; — sg are derived from the rule s and
rules ¢y and c, are derived from constraint c. O

As in the case of disjunctive programs without constraints, ESV (P) denotes the
program derived from esv(P) by replacing each derived predicate symbol g with a
new predicate symbol G.

Definition 7

Let P = (Pg,Pc) be a Datalog’ program with constraints. Program Rew(P) is
defined as RV (Pgr)UPcUESV(P). Given a query Q = (g(t), P), Rew(Q) denotes
the query (g(t), Rew(P)). ml

Notice that, with respect to programs without constraints, RV (Pg) is replaced
by RV (Pr)UPc and ESV (Pg) by ESV(Pr) U ESV(Pe).

Ezxample 9
The set of restricted rules in RV (Coloring), derived from the program Coloring
of Example [ is as follows:

2col(X,Y) < 2COL(X,Y), color(X,red), color(Y,blue)-

color(X,red) V color(X,blue) V color(X,yellow) < COLOR(X,red), COLOR(X,blue),
COLOR(X, yellow), node(X)-

where predicates 2COL and COLOR are defined in ESV (Coloring) which is derived
from program esv(Coloring), shown in Example B by replacing 2col with 2COL
and color with COLOR. The complete rewriting of the program Coloring consists
of the above rules plus the constraint:

< edge(X,Y), color(X,C), color(Y,C)-

and the rules in ESV (Coloring), presented in Example O



Optimization of Bound Disjunctive Queries with Constraints 19

The first interesting result is that (as for Datalog" programs without constraints)
the above rewriting method does not affect the semantics of the query.

Proposition 2

Let P = (Pg,Pc) be a Datalog¥ program with constraints, and Rew(P) be the
rewritten version of P. Then, for every atom ¢(t), {g(t),P) = (g(t), Rew(P)).

Proof. Recall that Rew(P) = Rew((Pr,Pc)) = RV(Pr) U Pc U ESV(P); hence
Rew(P) = Rew(Pgr) UPc UESV(P¢) can also be written.

Let us now consider program P’ = Rew(Pgr) U ESV (P¢); using the same argu-
ments as for Proposition[ (g(t), Pr) = (g(t), P’} is derived. In fact, it has already
been shown that adding the atoms defined in ESV (Pg) inside the body of the rules
of P, does not make any effective restriction, provided that Pg is a positive program;
moreover, program ESV (P¢) is also a positive program that possibly enlarges the
unique model Mggy of ESV(P), without affecting the models of RV (Pg). Finally,
the result follows by observing that the set of constraints P¢ affects the result of
the query only in the case when there is some ground constraint that is not satisfied,
and by the fact that P and Rew(P) share the same set of constraints. O

Thus, a viable way for reducing the number of models to be computed is to
consider a suitable rewriting of ESV(P), which is able to make an effective and
sound restriction by simulating the binding propagation occurring in top-down
evaluation. This rewriting is carried out by means of the Magic-Set technique,
which in fact limits attention to the models that are really needed for answering
the query.

Definition 8

Let Q = (g(t), P) with P = (Pg, Pc), then the disjunctive Magic-Set rewriting of
P w.r.t. g(t), denoted by Disj- Magic(g(t),P), is defined as follows:

RV (Pr)UPc U Coll(ESV (P), Magic(G(t), ESV (P))) U Magic(G(t), ESV (P))- O

Ezxample 10

Consider again the query (2col(1,2),Coloring) of Example [

The program Magic(2C0L(1,2), ESV (Coloring)), obtained by applying the Magic-
Set technique to the query ESV ({(2col(1,2),Coloring)), is as follows:

magic_2COL™(1,2)-

magic_COLOR™(X,red) ¢+ magic_2COL™(X,Y)-
magic_COLOR™(Y,blue) < magic_2COL*®(X,Y)-
magic_COLOR (X, blue) magic_COLOR™ (X, red)-
magic_COLOR™ (X, red) magic_COLOR™ (X, blue)-
magic_COLOR™ (X, yellow) magic_COLOR™ (X, red)-
magic_COLOR™ (X, red) magic_COLOR™ (X, yellow)-
magic_COLOR™ (X, blue) magic_COLOR™ (X, yellow)-
magic_COLOR™ (X, yellow) magic_COLOR™ (X, blue)-
magic_COLOR™(Y,C) < magic_COLOR®®(X,C),edge(X,Y)
magic_COLOR™(X,C) < magic_COLOR™(Y,C),edge(X,Y)

T
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COLOR™ (X, red) + magic_COLOR™ (X, red),node(X)-
COLOR™ (X, blue) < magic_COLOR™(X,blue),node(X)-
COLOR™(X,yellow) < magic_COLOR™(X,yellow),node(X)-

LOR (X, red < magic_COLOR™(X,red), COLOR™ (X, blue)-
COLOR™ gic_COLOR™ COLOR™

COLOR™ (X, blue) + magic_COLOR™(X,blue), COLOR™ (X, red)-
COLOR™ (X, red) < magic_COLOR™(X,red), COLOR™ (X, yellow)-
COLOR™(X,yellow) < magic_COLOR®(X,yellow), COLOR™ (X, red)-
COLOR™ (X, blue) + magic_COLOR™(X,blue), COLOR™ (X, yellow)-
COLOR™(X,yellow) < magic_COLOR™(X,yellow), COLOR™(X,blue)-

COLOR™(X,C) < magic_COLOR™(X,C), edge(X,Y), COLOR™(Y,C)-
COLOR™(Y,C) <« magic_COLOR™(Y,C),edge(X,Y), COLOR™ (X, C)-

2COL™(X,Y) < magic_2COL™(X,Y), COLOR™ (X, red), COLOR™ (Y, blue)-

while the rules in Coll(ESV (Coloring), Magic(2COL(1,2), ESV (Coloring))) are:

2COL(X, Y) +—  2COL*(X,Y)-

COLOR(X, red) < COLOR™ (X, red)-

COLOR(X, blue) + COLOR™(X,blue)-

COLOR(X, yellow) < COLOR™(X,yellow)- 0

Before formally presenting the correctness of the rewriting technique, let us re-
sume the process and make some comments. The rewriting process takes in input
a query @ = (g(t),P) = (g(t), (Pr, Pc)) and first generates the equivalent query
Q' = (9(t), (RV(Pr) U ESV(P), P¢c)), where ESV(P) is a normal program. Next
the query Q" = (g(t), (RV(Pr) UP',Pc)), where P’ is the optimized program
derived from ESV(P) is produced. To answer the source query @ is sufficient to
consider the minimal models of Pxr which satisfies P¢. As the program ESV (P)
(resp. P’) may contain negated literals, to answer the rewritten query @’ (resp. Q")
the stable models of RV (Pgr)U ESV(P) (resp. RV(Pr) U P’) satistying P have
to be computed. Moreover, under the assumption that a predicate symbol p can-
not appear both positively and negatively in two different constraints, the program
ESV (P) is stratified and therefore has a unique stable model (namely the perfect
or stratified model). Therefore, in order to answer the query @’ it is sufficient to
compute the perfect model M of ESV (P) and then to compute the minimal models
of RV (Pgr) U M satisfying Pc. For unstratified ESV (P) the complete set of sta-
ble models has to be considered. However, as already mentioned, problems in the
second level of the polynomial hierarchy can be expressed by means of Datalog"
programs with restricted constraints.

4.1 Query Equivalence Results

For the sake of presentation in Figure [ the main steps provided by the whole
algorithm presented in this section are explicitly pointed out. The algorithm takes
as input a query (g(t), P) and a database D, and outputs the set of stable models
of Disj- Magic(g(t), P)p; obviously, this set can be used for answering the query
under both the possible and certain semantics.
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Input: A query @ = (g(t), P) with P = (Pgr, Pc), a database D;
Output: The stable models of (Disj_ Magic(g(t),P))p.
var: ESV, RV, Coll: set of rules;
begin
let ESV :=0, RV := 0, Coll := 0;
//*** generation of the restricted version ***
{ for each rule r € Pg of the form ai(t) V...V an(t) < B do
insert a;V---Va, < A1, -+, A,, B into RV;
//*¥** generation of the extended standard version ***
for each rule r € Pg of the form ai1(¢) V...V an(t) < B do begin
insert a;, + B for 1 <i < n into ESV;
insert a; < a;, B for 1 <1i,5 <n and i # j into ESV;

end
for each constraint ¢ € P¢ of the form <« a1,-- -, ax, b1, -, b, —c1,- -+, ¢, doO
insert b; < b1, -, bi—1, bit1, -+, b, a1, - -, ag, C1, - -+, ey forl <4 < m into ESV;

let Magic :== Magic(G(t), ESV(P));
//*** generation of the collecting rules ***
for each predicate symbol p defined in P with arity ¥ do
for each adornment « of p in Magic do
insert p(X1, -, X&) «+ p®(Xa, -, X&) into Coll;
return SM(RV UPc U Coll U Magic U D);
end.

{ //*** application of the Magic-Set technique to a normal program ***

Fig. 1. Algorithm Extended Magic-Set (Magic_Partial)

For Datalog programs without constraints the correctness of Algorithm in Fig. [l
follows from Fact [l For Datalog” program with constraints, its correctness (under
proper assumptions) will be provided below.

First of all observe that as in the case of disjunctive queries without constraints,
the application of the Magic-Set technique to queries with constraints produces a
query that can be evaluated more efficiently. Unfortunately, for Datalog¥ < queries
the technique previously described produces a query that, generally, is not equival-
ent to the original one. This result is due to the fact that Magic-Set technique not
only focuses on the models really relevant for answering the query, but also com-
putes part of the models and not models in their entirety. In contrast, constraints
express conditions that must hold for every ground instance of the program includ-
ing atoms which are not relevant to the query. This observation will be clearer after
the following example.

Ezxample 11

Consider the query (2col(1,2),Coloring) applied to the program of Example Blon
the graph shown in Figure B consisting of two disconnected components, say C)
and (5. Since both nodes 1 and 2 belong to component Cj, there is no way for
propagating bindings from 1 and 2 into the component C,. This means that the
query goal only depends on component C); and the colorability of Cs affects the
result only in the case when the component C5 is not colorable. O

The above example suggests that the original query Q = (¢(t), P) and the query



22 G. Greco, S. Greco, I. Trubitsyna and E. Zumpano

Fig. 2. A graph with two components, with Cy being not 3-Colorable.

@', obtained by applying the Magic-Set technique to Q, are equivalent if the pro-
gram Pp admits stable models. Before formally proving such an intuition, some
preliminary definitions are provided.

Given a Datalog" program with constraints P and an interpretation N for P, then
P/ N denotes the set of rules in ground(P) which are true w.r.t. N, and P/N denotes
the set of rules in ground(P) which are false w.r.t. N,i.e. P/N = ground(P)—P/N.

In order to capture the meaning of the application of the Magic-Set technique in
the case of disjunctive rules with constraints, use is made of the following concept.

Definition 9

Let P be a Datalog¥ program with constraints and D a database and let M be an
interpretation for Pp, then M is a pre-model for Pp if there exists N € SM(Pp)
such that M C N. |

In the case of Datalog programs without constraints, every model of the program
rewritten by means of the Magic-Set technique can be extended to be a model of the
original program, i.e. given a program Pp, every model of Disj_Magic(g(t), Pp)
restricted to the predicates in Pp is a pre-model for Pp.

Lemma 2

Let (g(t), Pr) be a disjunctive Datalog query without constraints. Then, for any
database D, M € SM(Disj-Magic(g(t),(Pr)p)) if, and only if, there exists N €
SM(Pp) such that M[(Pr)p] C N.

Proof. From Fact [l it is known that (g(t), Pr) = (g(t), Disj- Magic(g(t), Pr))-
Indeed, for any model M € SM(Disj-Magic(g(t),(Pr)p)) the program
(Pr)p/MI(Pr)p] consists of a set of ground rules that are false in (Pg)p only
because they are not necessary for answering the query, i.e. they are not used for
propagating the binding. Thus, there exists a way for extending model M[(Pr)p]
into a new model N for (Pr)p that satisfies the above rules. O

The above lemma states that from the rewritten program atoms not inferable
from the source program cannot be inferred, apart from those introduced for binding
propagation and to collect atoms with different adornments.

In the case of a program P with constraint rules, the above observation does
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not hold as it is not always the case that for a given program Pp every model of
Disj_Magic(g(t), Pp) restricted to the predicates in Pp is a pre-model for Pp.

Lemma 8

There exists a query (g(t), P), with P = (Pr,Pc) and Pc # 0, a database D and
a model M in SM(Disj_ Magic(g(t), Pp)) such that M[Pp] is not a pre-model for
Pp.

Proof. Consider the query (2col(1,2),Coloring) presented in Example [l Con-
sider the database D modelling the graph in Example [1]

Then, Pp does not have stable models, since the graph is not 3-colorable. How-
ever, SM(Disj_ Magic(2col(1,2),Pp)) # 0, since the component of the graph con-
taining both nodes 1 and 2 is 3-colorable — any such legal coloring corresponds in
fact to a stable model. a

Hence, the Magic-Set technique (and any other similar technique to propagate
bindings) for Datalog" programs with constraints does not produce a query equiv-
alent to the original one. Nonetheless, it is natural to investigate some restrictions
that may guarantee the soundness and/or the completeness of the answers.

Theorem 1

Let @ = (g(t),P) be a query, where P = (Pgr,P¢) is Datalog” program with
constraints, and D a database. Then, for each model M’ of Pp, there exists M €
SM(Disj-Magic(g(t),Pp)), with M[Pp] C M’ being a pre-model for Pp.

Proof. Recall that Disj_ Magic(g(t),(Pr,Pc)) is defined as RV (Pgr) U
Pc U Coll(ESV (P), Magic(G(t), ESV(P))) U Magic(G(t), ESV(P)). Given two
programs S; and Sy such that Sp = RV(S), then we also denote S; as RV ~1(Sy).

Let P’ = Disj-Magic(g(t),P)) — Pc. Then, (g(¢),P") = (g(t),Pr) =
(g(t), Disj- Magic(g(t), Pr)) as the additional rules in P’ do not make any re-
strictions on the ground rules in Pgr used to derive the goal ¢(¢). The program
Py = ground(P’) consists of the three distinct sets: P13 = ground(RV (Pg))
containing restricted rules, P1o = ground(Coll(ESV (P), Magic(G(t), ESV(P))))
containing collecting rules and P13 = ground(Magic(G(t), ESV (P))) containing
adorned rules.

Consider now program Py = ground(Pr) — RV ~!(P11) containing all the rules
in ground(Pgr) not relevant for the query goal g(t). It is obvious that, letting P3 =
ground(Pr)—"Pa, we have that (g(t), P3) = (g(t), P1) as both contain all the ground
rules relevant for the query goal.

Therefore, for any database D, SM(Pp) = SM(ground(P)p) = SM((Ps U
Pc)p) x SM((P2 UPc)p), where for any two sets of stable models A and B,
AXB:{M1UM2|M1€A/\M2€B}.

Moreover, since (g(t), PsUPc) = (g(t), PrUP¢), as the constraints act on atoms
derived from both Ps and Py, and (g(¢), P1 U Pc) = (9(t), P’ UP¢), we conclude
that (g(1),P3 UPc) = (g(t), Disj- Magic(g(t), Pp))-
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Hence, given a model M’ of Pp, there exist (i) M € SM(Disj- Magic(g(t),Pp))
and (ii) M" € SM((P2UP¢)p) such that M' = M[Pp] x M". ml

The above theorem can be restated in the following more explicative form.

Corollary 1
Let @ = (g(t),P = (Pgr,Pc)) be a query, D be a database, and Q =
(9(t), Disj- Magic(g(t),P)) then

- Ansy(Q', D) C Ansy(Q, D), and
- Ans.(Q',D) 2 Ans.(Q, D)

Proof. The relation Ans,(Q', D) C Ansy(Q, D) straightforwardly derives from
Theorem [l For the answer under cautious semantics, we distinguish two cases.
If SM(Pp) = 0, then any ground atom is trivially in Ans.(Q’, D), and hence
Ans.(Q', D) 2 Ans.(Q,D). Assume, then, that SM(Pp) # 0. In this case,
Ans.(Q', D) = Ny A(g, M'), where A(g, M') denotes the set of substitutions for
the variables in g such that ¢ is true in M’, for each M’ stable model of Pp.
Since, for each stable model M’, there exists M € SM(Disj- Magic(g(t), Pp), with
M[Pp] € M’ it follows that Ans.(Q', D) = Ny A(g, M') = NarA(g, M[Pp]). As
Disj_ Magic(g(t), Pp) might contain additional stable models w.r.t. those of Pp,
Ans.(Q, D) is a subset of Ny A(g, M[Pp]). Hence, we have that Ans.(Q',D) =
N A(g, M[Pp)) 2 Ans.(Q, D). O

The above result has shed some light into the effectiveness of the Magic-Set tech-
nique for disjunctive program with constraints. Indeed, the rewriting is both bravely
complete, i.e., under the brave semantics it guarantees to compute all the answers
for the original query, and cautiously sound, i.e., under the cautious semantics it
guarantees that no false answers are in fact computed. Actually, since we cannot
prove that soundness and completeness hold at the same time in any semantics, the
algorithm presented in Figure 0l will be also called Magic_Partial algorithm.

A natural extension, called Magic_Total algorithm, is shown in Figure Bl and
consists of a first application of the Magic_Partial, and in a successive evaluation
of the stable models of the program in which the binding has not been propagated.
It is worth noting that the Magic_Total algorithm returns the set of all the models;
however, it is almost trivial to modify the algorithm, in order to implement the
possible and certain semantics in a more direct and efficient way.

We conclude by observing that applying the algorithm Magic_Total (rather than
Magic_Partial) produces an overhead in query answering. Then, in the next section
the results of some experiments are presented which quantify this overhead.

5 Experimental results

In this section some experimental results are presented to give an idea of the im-
provements which can be obtained by means of this technique; the proposed al-
gorithm has been included in the system presented in (Greco, 2003), and all the
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Input: A disjunctive Datalog query @ = (g(t),P), a database D;
Output: The set of stable models of Pp in which g¢(t) is evaluated true;
var: M, MP: set of models;
begin

let M :=0;

let MP :=Magic_Partial ({g(t),P), D);

for each M € MP do

let M := MU M[Pp] x SM(Pp/M[Ppl);

return M;

end.

Fig. 3. Algorithm Magic_Total

experiments have been carried out by means of the DLV system (Leone et al., 2002)
on a PC with a Pentium 4, 1.7 GHz, 512 Mbyte of RAM under the operating system
Linux.

It should be pointed out that this proposal is neither a new evaluation strategy
nor a new implementation, but an optimization useful for efficiently evaluating
bound queries in bottom-up engines; in fact, this contribution lies in having formally
proved that the Magic-Set rewriting can also be extended to deal with constraint
rules, and, hence, implementation issues are subject for further research.

Nonetheless, experimental evaluation makes sense, since some classical decision
and optimization problems applied in “extreme” situations have been considered,
representative of a wide spectrum of real cases, in which the improvements of our
techniques are negligible and highly evident, respectively.

Note that the timings considered in all the following experimental results do not
include the time for the rewriting. In any case, this time does not affect the overall
result as an exponential speedup in the execution times is obtained between the
source and optimized (rewritten) versions.

SIMPLE EXAMPLES. Consider disjunctive program P; consisting of the following
rule:

p(X)Vg(X) « a(X,Y)
and program Po obtained by adding to P; the constraint
“p(X),a(X,Y),q(Y), X <1

Figure Bl (i) shows the results obtained by considering query (p(1),P:), evaluated
over the database D consisting of a set of facts a(1,2), a(2,3), -+, a(k,k +1). The
figure presents the execution time for the source program and the optimized version,
obtained by applying the rewriting technique for positive queries. The experiments
have been performed with databases, whose number of facts is shown on the z-
axis, while the y-axis shows the time taken to evaluate the query (in seconds). The
improvement of the optimized query is extremely high (observe that the scale of the
y-axis is logarithmic), and is due to the fact that the optimized version propagates



26 G. Greco, S. Greco, I. Trubitsyna and E. Zumpano

the binding of the query p(1), with the effect of reducing the models to be computed
from an exponential to a constant number.
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—- Source prjogran /I — Source prjogran /
10 10
/II'/ /lr/
w w
F /r/ S /r/
o1 E
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01 L] 01
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Number of facts Number of facts

(@) (ii)
Fig. 4. Results for the query of (i) Example 1, and (ii) Example 2

In FigureHl(ii) the results obtained by evaluating query (p(1), P,) are presented.
By comparing the results shown in Figure ll (i) and Figure Hl(ii) it can be observed
that also in this case there is an exponential speedup between the optimized query
and the source query, as the number of ground rules in the optimized version is still
constant.

5.1 Search problems

For the following queries graphs have been used having the structure depicted in
Figure Bl with base = height and output grade equal to 3 and 2, respectively. Here
base denotes the number of nodes in the same layer, height the number of nodes
in the same column and grade the number of arcs starting from each node not
belonging to the top layer (or equivalently, the number of arcs ending at every
node not belonging to the bottom layer). The number of nodes in the graph is
base x height, and the number of arcs is (base—1) X (height—1) X grade + (base—1)+
(height—1).

3-COLORING. The query of Example[dis considered with input graphs consisting
of two disconnected components with variable sizes; the results are shown in Fig.
where the computation of the source query and the computation of the query
rewritten using both the Magic_Partial and Magic_Total algorithm have been con-
sidered. In particular, in[B (i) the two components are of very different size, and the
nodes in the query goal belong to the larger one. The graph shows the execution
times as the size of the larger component changes. In [l (ii) the same experiments
repeated using two components with the same number of nodes are presented.

Note that in the first experiment, whose results are shown in Fig. B (i), there
is no difference between the response time of the two optimized versions because
the Magic-Set technique propagates the binding in the greatest component that
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Fig. 5. Graph structures.
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Fig. 6. Execution time for the 3-coloring problem.

dominates the size of the graph. For both optimized programs the advantage with
respect to the source program is evident, since the size of the component on which

the binding does not propagate is quite irrelevant. In Fig. B (ii) graphs with two

components of the same size are being considered and, therefore, obtaining a full
solution (i.e. Magic-Total) requires almost twice the time required for the partial

solution (i.e. Magic-Partial).

k-DOMINATING SET. Given a graph G = (V,E), a subset of the vertex set
V' C V is a dominating set if for all u € V — V' there is a v € V' for which
(u,v) € E. The k-dominating set problem consists in finding a partition of the
nodes into V71, -+, Vj disjoint dominating sets for G. The 3-Dominating Set problem,
denoted by 3PDS, can be formalized by means of the following set of logic rules:
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< nvi(X),not connectedi(X)-
< nv2(X),not connected2(X)-
< nv3(X),not connected3(X)

connectedl(Y) < v1(X),edge(X,Y)
connected2(Y) <+ v2(X),edge(
connected3(Y) <« v3(X),edge(X,Y)

Note that the first group of rules and the strong constraints induce a partition
of the nodes into 3 disjoint sets, v1, v2 and v3.

The query ((v1(1),v2(2),v3(3)), 3DS) is supplied on a graph G consisting of two
components C; and Cs. The size of (] is fixed and it is assumed that this component
contains nodes 1, 2 and 3. In some experiments the size of C; was varied and the
response time calculated for the source program described above, and the optimized
program produced by the Algorithm in Fig. [

The results, presented in Fig. [ show that the optimized program is not affected
by the size of C5 as there is no way of propagating the binding from nodes 1,2 and
3.

25

—&— Optimized
Program

20 1 ; I

—— Source program

Exec. Time [s]

5 10 15 17 18 19 20 25
Number of nodes

Fig. 7. Execution time for the 3-Dominating Set problem.

5.2 Optimization problems

In this section the possibility of using Magic-Set techniques for the optimization
of queries over disjunctive Datalog programs is explored. In order to also express
optimization problems the approach used in the DLV system is considered as well
as the consideration, in addition to strong constraints, weak constraints. Weak
constraints represent constraints which should be respected, but if they cannot be
eventually enforced, then they only invalidate the portion of the program which
they are concerned with (Greco, 1998). Therefore, strong constraints express a set
of conditions that have to be satisfied, while weak constraints express a set of
desiderable conditions that may be violated and their informal semantics is to
minimize the number of violated instances.
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A weak constraint is a rule of the form < by, -, b, 2bgt1, -+, "bk4m. Given
a program P U W where P is a set of rules and W a set of weak constraints,
an interpretation M is a stable model for P U W if M is a stable model for P
which minimizes the number of rules not satisfied in ground(W). Thus, the stable
models of P can be ordered w.r.t. the number of weak constraints not satisfied in
ground(W); the preferred stable models are those which minimize this number.

Like strong constraints, weak constraints are not used to infer atoms, but only to
check that the computed set verifies a given property. In (Buccafurri et al., 2000}
Greco, 1998)) it is proved that the introduction of weak constraints allows the so-
lution of optimization problems since each weak constraint can be regarded as an
“objective function” of an optimization problem.

Ezxample 12

Given a graph G = (V, E), defined by means of the unary predicate node and the
binary predicate edge, we can model the MAX_CLIQUE problem, asking for the clique
of G having maximum size, by means of the following disjunctive Datalog program
with both strong and weak constraints:

c(X) Vne(X) <« node(X)
—  c(X),c(Y),X # Y,not edge(X,Y)-
<  nc(X)

Note that the first rule is used for creating all possible partitions of nodes into c
and nc, and the second one (i.e. the strong constraint) is used for ensuring that ¢ is
a clique, i.e. each couple of nodes in the clique must be connected by an edge, while
the weak constraint minimizes the number of vertices that are not in the clique, or
equivalently it maximizes the size of c.

Consider the query (¢(1), MAX_CLIQUE) over the graph of Figure[] asking whether
node 1 belongs to a clique of maximum size. It is easy to see that nodes 1, 9 and
10 form a clique of size 3, which is also the size of the maximum clique in the
component C). Component C; is a clique of size 4, and, hence, the above query is
false. In contrast, the query (c¢(12),MAX_CLIQUE) asking whether node 12 belongs
to a clique of maximum size is evaluated true.

Now, observe that both the above queries are evaluated true, by using the Magic-
Set rewriting; in fact, when we ask whether 1 belongs to a clique of maximum size,
there is no way for propagating the binding in component Cs, where the maximum
clique actually is. O

From the above example, it is clear that any query optimization technique applied
in the presence of weak constraints, will eventually lead to a different semantics
consisting in a ‘local’ optimization, rather than in a global one.

In many circumstances, this semantics can also be desirable. In all other cir-
cumstances, the global solution can be simply obtained by comparing the different
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solutions obtained while making local optimizations, by exploiting the same ap-
proach used in developing the Magic_Total algorithm.

The extension of the technique to deal also with weak constraints is outside the
scope of this paper. Therefore, in the next two paragraphs some hints for future
research are presented. In particular, two optimization problems are considered
where the propagation of bindings defines a partition of the input graph G into
two separated components G; and Gz and the optimal solution can be obtained
by first computing an optimal solution using component G; and next finding the
global optimal solution starting from the partial solution obtained in the first step
and considering component Go.

However, in many cases an optimization problem Opt over a given graph G can
be defined by decomposing the graph G into separated subgraphs Gy, -+, Gy and to
compute the k subproblems. Thus, let Opt(G;, O;) be the optimization problem over
the (sub-)graph G; using the partial solution O;, we say that Opt is decomposable
if Opt(G,0) = Opt(Gy, Ox) where O = Opt(Gy,0) and O; = Opt(G;, O;—1) for
i €2 k]

MAX CLIQUE. Let us consider the program of Example [ and let us supply
the query (c(1),MAX_CLIQUE), by using a graph consisting of two components with
the structure shown in Figure Bl The experimental results are shown in Fig.
In particular Fig. B (i) shows the execution time for a graph consisting of two
components having the same size. In Fig. Bl (ii) the difference in the execution time
between the source program and the optimized one for different sizes of the second
component it is shown. Note that in Fig. B (ii), if the second component is empty
(0 nodes) the source program performs a little better than the optimized one as the
second program presents an overhead due to the instantiation and the computation
of the magic rules. The advantage of using the optimized program becomes more
evident as the size of the second component increases.
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Fig. 8. The Max Clique Problem.

It is worth noting that the previous example is a prototype of the guess and check
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paradigm, that, as already pointed out, has been proved to be the most intuitive
way for expressing NP (optimization) problems.

MIN COLORING. Given a graph G = (V,E) a coloring for G is minimum if,
in the assignment of colors to vertices, it uses the minimum number of colors. The
disjunctive Datalog program modelling the MIN_COLORING problem is the following:

col(X,I)Vncol(X,I) < mnode(X),color(I)-

 col(X,I),col(Y,I),edgeT(X,Y)
+— col(X,I),col(X,J),I! =17
< mnode(X),not colored(X)-

colored(X) <+ col(X,I)
used(I) +— col(X,I)

< used(I)

The first rule guesses a coloring for the graph; the set of strong constraints checks
the guess that two joined vertices do not have the same color, and that each vertex
is assigned to exactly one color; the weak constraint requires that the number of
colors used is minimum.

The query (col(1,c1),MIN_COLORING) is supplied on different graph topologies.
Some of the results are shown in Figure @
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Fig. 9. Execution time for the Min coloring problem.

In particular the results obtained by augmenting the number of disconnected
components, and by augmenting the cardinality of the components have been in-
vestigated. Figure [ (i) and Figure [ (ii) show, respectively, the performance of the
optimized program and of the source program with a different number of compo-
nents. In all the experiments the first component contains node 1.
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6 Conclusions

In this paper a technique has been proposed for the optimization of bound queries
over disjunctive deductive databases with constraints (a simple and expressive form
of unstratified negation), which extends a previous technique suitable for disjunctive
Datalog programs. As the usual way of expressing declaratively hard problems is
based on the guess-and-check technique, where the guess part is expressed by means
of disjunctive rules and the check part is expressed by means of constraints, the
technique proposed here is highly relevant for the optimization of queries expressing
hard problems.

The proposed approach is based on the use of a binding propagation technique
which, by reducing the size of the data relevant to answer the query, is suitable for
minimizing the complexity of computing a single model and the whole number of
models to be considered.

The main contribution of the paper lies in the definition of a rewriting algorithm
which systematically utilizes the query goal to propagate the binding through both
the rules and the constraints thereby avoiding the computation of useless models.
An interesting peculiarity of the formalization proposed here is that it is completely
independent of the particular strategy adopted for propagating the binding: in this
way, the results are completely orthogonal to the Magic-Set technique in itself, and,
hence, to the results in (Greco, 2003)). The value of the technique has been proved
by several experiments.

Acknowledgement. The authors thank Nicola Leone and Wolfgang Faber for useful
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