
ar
X

iv
:c

s/
04

03
03

7v
3

 [
cs

.D
S]

 2
 N

ov
 2

00
4

Under consideration for publication in Theory and Practice of Logic Programming 1

Schedulers and Redundancy for a Class of

Constraint Propagation Rules

Sebastian Brand and Krzysztof R. Apt

Abstract

We study here schedulers for a class of rules that naturally arise in the context of rule-based
constraint programming. We systematically derive a scheduler for them from a generic
iteration algorithm of (Apt 2000). We apply this study to so-called membership rules
of (Apt and Monfroy 2001). This leads to an implementation that yields a considerably
better performance for these rules than their execution as standard CHR rules. Finally, we
show how redundant rules can be identified and how appropriately reduced sets of rules
can be computed.

KEYWORDS: constraint programming, rule-based programming, constraint propagation

1 Introduction

In this paper we identify a class of rules that naturally arise in the context of con-

straint programming represented by means of rule-based programming and study

efficient schedulers for these rules. We call these rules propagation rules, in short

prop rules. An important class of prop rules are the membership rules, introduced

in (Apt and Monfroy 2001). An example of a membership rule is

x ∈ {3, 4, 8}, y ∈ {1, 2} → z 6= 2.

Informally, it should be read as follows: if the domain of x is included in {3,4,8}

and the domain of y is included in {1,2}, then 2 is removed from the domain of z.

In the computations of constraint programs the variable domains gradually

shrink. So if the domain of x is included in {3,4,8}, then it will remain so dur-

ing the computation. In turn, if 2 is removed from the domain of z, then this

removal operation does not need to be repeated. The prop rules generalize these

observations to specific conditions on the rule condition and body.

In the resulting approach to constraint programming the computation process

is limited to a repeated application of the prop rules intertwined with splitting

(labeling). So the viability of this approach crucially depends on the availability

of efficient schedulers for such rules. This motivates the work here reported. We

provide an abstract framework for such schedulers and use it as a basis for an

implementation.

More precisely, to obtain appropriate schedulers for the prop rules we use the

generic approach to constraint propagation algorithms introduced in (Apt 1999)

http://arxiv.org/abs/cs/0403037v3

and (Apt 2000). In this framework one proceeds in two steps. First, a generic itera-

tion algorithm on partial orderings is introduced and proved correct in an abstract

setting. Then it is instantiated with specific partial orderings and functions to ob-

tain specific constraint propagation algorithms. In this paper, as in (Apt 2000), we

take into account information about the scheduled functions, which are here the

prop rules. This yields a specific scheduler in the form of an algorithm called R.

We then show by means of an implementation how this abstract framework can

be used to obtain a scheduler for the membership rules. The relevance of the mem-

bership rules for constraint satisfaction problems (CSPs) with finite domains stems

from the following observations made in (Apt and Monfroy 2001):

• constraint propagation can be naturally achieved by repeated application of

the membership rules;

• in particular the notions of arc consistency and hyper-arc consistency can be

characterized in terms of the membership rules;

• for constraints explicitly defined on small finite domains all valid mem-

bership rules can be automatically generated; (For a more referent

work on the subject of an automatic generation of such rules see

(Abdennadher and Rigotti 2001).)

• many rules of the CHR language (Constraint Handling Rules) of

(Frühwirth 1998) that are used in specific constraint solvers are in fact mem-

bership rules. In the logic programming approach to constraint programming

CHR is the language of choice to write constraint solvers.

The implementation is provided as an ECLiPSe program that accepts a set of

membership rules as input and constructs an ECLiPSe program that is the in-

stantiation of the R algorithm for this set of rules. Since membership rules can be

naturally represented as CHR propagation rules, one can assess this implementation

by comparing it with the performance of the standard implementation of member-

ship rules in the CHR language. By means of various benchmarks we found that

our implementation is considerably faster than CHR. It is important to stress that

this implementation was obtained by starting from “first principles” in the form

of a generic iteration algorithm on an arbitrary partial ordering. This shows the

practical benefits of studying the constraint propagation process on an abstract

level.

Additionally, we clarify how to identify prop rules that are redundant for the

considered computations and how to compute appropriately reduced sets of rules.

The concept of redundancy is formalized here in a “semantic” sense that takes

into account the type of computations performed by means of the considered rules.

We provide a simple test for redundancy that leads to a natural way of computing

minimal sets of rules in an appropriate sense. The computation of a specific minimal

set for the membership rules is then implemented in ECLiPSe.

CHR is available in a number of languages including the ECLiPSe and the Sicstus

Prolog systems. In both cases CHR programs are compiled into the host language,

so either ECLiPSe or the Sicstus Prolog. There is also a recent implementation in

Java, see (Abdennadher et al. 2001). To make CHR usable it is important that its

2

implementation does not incur too much overhead. And indeed a great deal of effort

was spent on implementing CHR efficiently. For an account of the most recent im-

plementation see (Holzbaur et al. 2001). Since, as already mentioned above, many

CHR rules are membership rules, our approach provides a better implementation

of a subset of CHR. This, hopefully, may lead to new insights into a design and

implementation of languages appropriate for writing constraint solvers.

The paper is organized as follows. In the next section we briefly recall the original

generic iteration algorithm of (Apt 2000) and modify it successively to obtain the

iteration algorithm R for prop rules. An important novelty is the preprocessing phase

during which we analyze the mutual dependencies between the rules. This allows

us to remove permanently some rules during the iteration process. This permanent

removal of the scheduled rules is particularly beneficial in the context of constraint

programming where it leads to accumulated savings when constraint propagation

is intertwined with splitting.

In Section 3 we recall the membership rules of (Apt and Monfroy 2001) and show

that they are prop rules. Then in Section 4 we recall the relevant aspects of the

CHR language, discuss the implementation of the R algorithm and present several

benchmarks. Finally, in Section 5 we deal with the subject of redundancy of prop

rules.

2 Revisions of the Generic Iteration Algorithm

2.1 The Original Algorithm

Let us begin our presentation by recalling the generic algorithm of (Apt 2000). We

slightly adjust the presentation to our purposes by assuming that the considered

partial ordering also has the greatest element ⊤.

So we consider a partial ordering (D,⊑) with the least element ⊥ and the greatest

element ⊤, and a set of functions F := {f1, . . . , fk} on D. We are interested in

functions that satisfy the following two properties.

Definition 2.1

• f is called inflationary if x ⊑ f(x) for all x.

• f is called monotonic if x ⊑ y implies f(x) ⊑ f(y) for all x, y. �

The following algorithm is used to compute the least common fixpoint of the

functions from F .

Generic Iteration Algorithm (GI)

d := ⊥;

G := F ;

while G 6= ∅ and d 6= ⊤ do

choose g ∈ G;

G := G− {g};

G := G ∪ update(G, g, d);

d := g(d)

end

3

where for all G, g, d the set of functions update(G, g, d) from F is such that

A {f ∈ F −G | f(d) = d ∧ f(g(d)) 6= g(d)} ⊆ update(G, g, d),

B g(d) = d implies that update(G, g, d) = ∅,

C g(g(d)) 6= g(d) implies that g ∈ update(G, g, d).

Intuitively, assumption A states that update(G, g, d) contains at least all the

functions from F − G for which the “old value”, d, is a fixpoint but the “new

value”, g(d), is not. So at each loop iteration such functions are added to the set G.

In turn, assumption B states that no functions are added to G in case the value of

d did not change. Assumption C provides information when g is to be added back

to G as this information is not provided by A. On the whole, the idea is to keep in

G at least all functions f for which the current value of d is not a fixpoint.

The use of the condition d 6= ⊤, absent in the original presentation, allows us

to leave the while loop earlier. Our interest in the GI algorithm is clarified by the

following result.

Theorem 2.2 (Correctness)

Suppose that all functions in F are inflationary and monotonic and that (D,⊑) is

finite and has the least element ⊥ and the greatest element ⊤. Then every execution

of the GI algorithm terminates and computes in d the least common fixpoint of the

functions from F .

Proof. Consider the predicate I defined by:

I := (∀f ∈ F −G f(d) = d) ∧ (∀f ∈ F f(⊤) = ⊤).

Note that I is established by the assignment G := F . Moreover, it is easy to check

that by virtue of the assumptions A, B and C the predicate I is preserved by each

while loop iteration. Thus I is an invariant of the while loop of the algorithm.

Hence upon its termination

(G = ∅ ∨ d = ⊤) ∧ I

holds, which implies

∀f ∈ F f(d) = d.

This implies that the algorithm computes in d a common fixpoint of the functions

from F .

The rest of the proof is the same as in (Apt 2000). So the fact that this is the least

common fixpoint follows from the assumption that all functions are monotonic.

In turn, termination is established by considering the lexicographic ordering of

the strict partial orderings (D,⊐) and (N , <), defined on the elements of D × N

by

(d1, n1) <lex (d2, n2) iff d1 ⊐ d2 or (d1 = d2 and n1 < n2).

Then with each while loop iteration of the algorithm the pair (d, card G), where

card G is the cardinality of the set G, strictly decreases in the ordering <lex . �

4

2.2 Removing Functions

We now revise the GI algorithm by modifying dynamically the set of functions that

are being scheduled. The idea is that, whenever possible, we remove functions from

the set F . This will allow us to exit the loop earlier which speeds up the execution

of the algorithm.

To this end we assume that for each function g ∈ F and each element d ∈

D, two lists of functions from F are given, friends(g, d) and obviated (g, d), to be

instantiated below. We then modify the GI algorithm in such a way that each

application of g to d will be immediately followed by the applications of all functions

from friends(g, d) and by a removal of the functions from friends(g, d) and from

obviated(g, d) from F and G. Below we identify a condition, (1), on friends(g, d)

and obviated(g, d) that ensures correctness of this scheduling strategy. Informally,

this condition states that after an application of all the functions from friends(g, d)

the functions from friends(g, d) and from obviated(g, d) will not change anymore

the subsequent values of d.

This modified algorithm has the following form.1

Revised Generic Iteration Algorithm (RGI)

d := ⊥;

F0 := F ;

G := F ;

while G 6= ∅ and d 6= ⊤ do

choose g ∈ G;

G := G− {g};

F := F − (friends(g, d) ∪ obviated (g, d));

G := G− (friends(g, d) ∪ obviated(g, d));

G := G ∪ update(G, h, d),

where friends(g, d) = [g1, . . . , gk] and h = g ◦ g1 ◦ . . . ◦ gk;

d := h(d)

end

We now formalize the condition under which the Correctness Theorem 2.2 holds

with the GI algorithm replaced by the RGI algorithm. To this end we consider the

following property.

Definition 2.3

Suppose d ∈ D and f ∈ F . We say that f is stable above d if d ⊑ e implies f(e) = e.

We then say that f is stable if it is stable above f(d), for all d. �

That is, f is stable if for all d and e, f(d) ⊑ e implies f(e) = e. So stability

implies idempotence, which means that f(f(d)) = f(d), for all d. Moreover, if d

and f(d) are comparable for all d, then stability implies inflationarity. Indeed, if d

⊑f(d), then the claim holds vacuously. And if f(d) ⊑ d, then by stability f(d) = d.

1 We need in it lists instead of sets since the considered functions will be applied in a specific
order. But in some places, for simplicity, we identify these lists with the sets.

5

Consider now the following condition

∀d ∀e ⊒ g ◦ g1 ◦ . . . ◦ gk(d) ∀f ∈ friends(g, d) ∪ obviated(g, d) (f(e) = e), (1)

where friends(g, d) = [g1, . . . , gk]. That is, for all elements d, each function f in

friends(g, d) ∪ obviated(g, d) is stable above g ◦ g1 ◦ . . . ◦ gk(d), where friends(g, d)

is the list [g1, . . . , gk]. The following result holds.

Theorem 2.4

Suppose that all functions in F are inflationary and monotonic and that (D,⊑) is

finite and has the least element ⊥ and the greatest element ⊤. Additionally, suppose

that for each function g ∈ F and d ∈ D two lists of functions from F are given,

friends(g, d) and obviated(g, d) such that condition (1) holds.

Then the Correctness Theorem 2.2 holds with the GI algorithm replaced by the

RGI algorithm.

Proof. In view of condition (1) the following statement is an invariant of the while

loop:

∀f ∈ F−G(f(d) = d) ∧ ∀f ∈ F (f(⊤) = ⊤) ∧ ∀f ∈ F0−F ∀e ⊒ d (f(e) = e). (2)

So upon termination of the algorithm the conjunction of this invariant with the

negation of the loop condition, i.e.,

G = ∅ ∨ d = ⊤

holds, which implies that ∀f ∈ F0 (f(d) = d).

The rest of the proof is the same. �

2.3 Functions in the Form of Rules

In what follows we consider the situation when the scheduled functions are of a

specific form b → g, where b is a condition and g a function, that we call a body.

We call such functions rules.

First, we explain how rules are applied. Given an element d of D a condition b is

evaluated in d. The outcome is either true, that we denote by holds(b, d), or false.

Given a rule b → g we define then its application to d as follows:

(b → g)(d) :=

{
g(d) if holds(b, d)

d otherwise

We are interested in a specific type of conditions and rules.

Definition 2.5

Consider a partial ordering (D,⊑).

• We say that a condition b is monotonic if for all d, e we have that holds(b, d)

and d ⊑ e implies holds(b, e).
• We say that a condition b is precise if the least d exists such that holds(b, d).

We call then d the witness for b.
• We call a rule b → g a prop rule if b is monotonic and precise and g is stable.

�

To see how natural this class of rules is consider the following example.

6

Example 2.6

Take a set A and consider the partial ordering

(P(A),⊆).

In this ordering the empty set ∅ is the least element and A is the greatest element.

We consider rules of the form

B → G,

where B,G ⊆ A.

To clarify how they are applied to subsets of A we first stipulate for E ⊆ A

holds(B,E) iff B ⊆ E.

Then we view a set G as a function on P(A) by putting

G(E) := G ∪ E.

This determines the rule application of B → G.

It is straightforward to see that such rules are prop rules. In particular, the

element B of P(A) is the witness for the condition B. For the stability of G take

E ⊆ A and suppose G(E) ⊆ F . Then G(E) = G ∪E, so G ∪E ⊆ F , which implies

G ∪ F = F , i.e., G(F) = F .

Such rules can be instantiated to many situations. For example, we can view the

elements of the set A as primitive constraints. Then each rule B → G is a natural

operation on the constraint store: if all constraints in B are present in the store,

then add to it all constraints in G.

Alternatively, we can view A as a set of some atomic formulas and each rule

B → G as a proof rule, usually written as

B

G

The minor difference with the usual proof-theoretic framework is that rules have

then a single conclusion. An axiom is then a rule with the empty set ∅ as the

condition. A closure under such a set of rules is then the set of all (atomic) theorems

that can be proved using them.

The algorithm presented below can in particular be used to compute efficiently

the closure under such proof rules given a finite set of atomic formulas A. �

We now modify the RGI algorithm for the case of prop rules. In the algorithm

below we take into account that an application of a rule is a two step process:

testing of the condition followed by a conditional application of the body. This will

allow us to drop the parameter d from the lists friends(g, d) and obviated(g, d) and

consequently to construct such lists before the execution of the algorithm. The list

friends(g) will be constructed in such a way that we shall not need to evaluate

the conditions of its rules: they will all hold. The specific construction of the lists

friends(g) and obviated (g) that we use here will be provided in the second algorithm,

called Friends and Obviated Algorithm.

7

Rules Algorithm (R)

d := ⊥;

F0 := F ;

G := F ;

while G 6= ∅ and d 6= ⊤ do

choose f ∈ G; suppose f is b → g;

G := G− {b → g};

if holds(b, d) then

F := F − (friends(b → g) ∪ obviated(b → g));

G := G− (friends(b → g) ∪ obviated(b → g));

G := G ∪ update(G, h, d),

where friends(b → g) = [b1 → g1, . . . , bk → gk] and h = g ◦ g1 ◦ . . . ◦ gk;

d := h(d)

else if ∀e ⊒ d ¬holds(b, e) then

F := F − {b → g}

end

end

Again, we are interested in identifying conditions under which the Correctness

Theorem 2.2 holds with the GI algorithm replaced by the R algorithm. To this end,

given a rule b → g in F and d ∈ D define as follows:

friends(b → g, d) :=

{
friends(b → g) if holds(b, d),

[] otherwise

and

obviated(b → g, d) :=







obviated(b → g) if holds(b, d),

[b → g] if ∀e ⊒ d ¬holds(b, e),

[] otherwise

We obtain the following counterpart of the Correctness Theorem 2.2.

Theorem 2.7 (Correctness)

Suppose that all functions in F are prop rules of the form b → g, where g is

inflationary and monotonic, and that (D,⊑) is finite and has the least element ⊥

and the greatest element ⊤. Further, assume that for each rule b → g the lists

friends(b → g, d) and obviated(b → g, d) defined as above satisfy condition (1) and

the following condition:

∀d(b′ → g′ ∈ friends(b → g) ∧ holds(b, d) → ∀e ⊒ g(d) holds(b′, e)). (3)

Then the Correctness Theorem 2.2 holds with the GI algorithm replaced by the

R algorithm.

Proof. It suffices to show that the R algorithm is an instance of the RGI algorithm.

On the account of condition (3) and the fact that the rule bodies are inflationary

functions, holds(b, d) implies that

((b → g) ◦ (b1 → g1) ◦ . . . ◦ (bk → gk))(d) = (g ◦ g1 ◦ . . . ◦ gk)(d),

8

where friends(b → g) = [b1 → g1, . . . , bk → gk]. This takes care of the situation in

which holds(b, d) is true.

In turn, the definition of friends(b → g, d) and obviated(b → g, d) and assumption

B take care of the situation when ¬holds(b, d). When the condition b fails for all

e ⊒ d we can conclude that for all such e we have (b → g)(e) = e. This allows us to

remove at that point of the execution the rule b → g from the set F . This amounts

to adding b → g to the set obviated (b → g, d) at runtime. Note that condition (1)

is then satisfied. �

We now provide an explicit construction of the lists friends and obviated for a

rule b → g in the form of the following algorithm. GI(d) stands here for the GI

algorithm activated with ⊥ replaced by d and the considered set of rules as the set

of functions F . Further, given an execution of GI(e), we call here a rule g relevant

if at some point g(d) 6= d holds after the “choose g ∈ G” action.

Friends and Obviated Algorithm (F & O)

w := witness of b;

d := GI(g(w));

friends(b → g) := list of the relevant rules h ∈ F in the execution of GI(g(w));

obviated(b → g) := [];

for each (b′ → g′) ∈ F − friends(b → g) do

if g′(d) = d or ∀e ⊒ d ¬holds(b′, e) then

obviated(b → g) := [b′ → g′ | obviated(b → g)]

end

end

Note that b → g itself is not contained in friends(b → g) as it is a prop rule, however

it is in obviated(b → g), since by the stability of g g(d) = d holds.

The following observation now shows the adequacy of the F & O algorithm for

our purposes.

Lemma 2.8

Upon termination of the F & O algorithm conditions (1) and (3) hold, where the

lists friends(b → g, d) and obviated(b → g, d) are defined as before Theorem 2.7. �

Let us summarize now the findings of this section that culminated in the R algo-

rithm. Assume that all functions are of the form of the rules satisfying the conditions

of the Correctness Theorem 2.7. Then in the R algorithm, each time the evaluation

of the condition b of the selected rule b → g succeeds,

• the rules in the list friends(b → g) are applied directly without testing the

value of their conditions,

• the rules in friends(b → g) ∪ obviated(b → g) are permanently removed from

the current set of functions G and from F .

9

2.4 Recomputing of the Least Fixpoints

Another important optimization takes place when the R algorithm is repeatedly

applied to compute the least fixpoint. More specifically, consider the following se-

quence of actions:

• we compute the least common fixpoint d of the functions from F ,

• we move from d to an element e such that d ⊑ e,

• we compute the least common fixpoint above e of the functions from F .

Such a sequence of actions typically arises in the framework of CSPs, further studied

in Section 3. The computation of the least common fixpoint d of the functions

from F corresponds there to the constraint propagation process for a constraint

C. The moving from d to e such that d ⊑ e corresponds to splitting or constraint

propagation involving another constraint, and the computation of the least common

fixpoint above e of the functions from F corresponds to another round of constraint

propagation for C.

Suppose now that we computed the least common fixpoint d of the functions from

F using the RGI algorithm or its modification R for the rules. During its execution

we permanently removed some functions from the set F . These functions are then

not needed for computing the least common fixpoint above e of the functions from

F . The precise statement is provided in the following simple, yet crucial, theorem.

Theorem 2.9

Suppose that all functions in F are inflationary and monotonic and that (D,⊑)

is finite. Suppose that the least common fixpoint d0 of the functions from F is

computed by means of the RGI algorithm or the R algorithm. Let Ffin be the final

value of the variable F upon termination of the RGI algorithm or of the R algorithm.

Suppose now that d0 ⊑ e. Then the least common fixpoint e0 above e of the

functions from F coincides with the least common fixpoint above e of the functions

from Ffin .

Proof. Take a common fixpoint e1 of the functions from Ffin such that e ⊑ e1.

It suffices to prove that e1 is common fixpoint of the functions from F . So take

f ∈ F − Ffin . Since condition (2) is an invariant of the main while loop of the RGI

algorithm and of the R algorithm, it holds upon termination and consequently f is

stable above d0. But d0 ⊑ e and e ⊑ e1, so we conclude that f(e1) = e1. �

Intuitively, this result means that if after splitting we relaunch the same con-

straint propagation process we can disregard the removed functions.

In the next section we instantiate the R algorithm by a set of rules that natu-

rally arise in the context of constraint satisfaction problems with finite domains. In

Section 4 we assess the practical impact of the discussed optimizations.

3 Concrete Framework

We now proceed with the main topic of this paper, the schedulers for the rules that

naturally arise in the context of constraint satisfaction problems. First we recall

briefly the necessary background on the constraint satisfaction problems.

10

3.1 Constraint Satisfaction Problems

Consider a sequence of variables X := x1, . . . , xn where n > 0, with respective

domains D1, . . . , Dn associated with them. So each variable xi ranges over the

domain Di. By a constraint C on X we mean a subset of D1 × . . .×Dn. Given an

element d := d1, . . . , dn of D1 × . . .×Dn and a subsequence Y := xi1 , . . . , xiℓ of X

we denote by d[Y] the sequence di1 , . . . , diℓ . In particular, for a variable xi from X ,

d[xi] denotes di.

Recall that a constraint satisfaction problem, in short CSP, consists of a finite

sequence of variables X with respective domains D, together with a finite set C of

constraints, each on a subsequence of X . We write it as 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉,

where X := x1, . . . , xn and D := D1, . . . , Dn.

By a solution to 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉 we mean an element d ∈ D1×. . .×Dn

such that for each constraint C ∈ C on a sequence of variables X we have d[X] ∈ C.

We call a CSP consistent if it has a solution. Two CSPs with the same sequence of

variables are called equivalent if they have the same set of solutions.

3.2 Partial Orderings

With each CSP P := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉 we associate now a specific

partial ordering. Initially we take the Cartesian product of the partial orderings

(P(D1),⊇), . . . , (P(Dn),⊇). So this ordering is of the form

(P(D1)× . . .× P(Dn),⊇)

where we interpret ⊇ as the Cartesian product of the reversed subset ordering. The

elements of this partial ordering are sequences (E1, . . . , En) of respective subsets of

(D1, . . . , Dn) ordered by the component-wise reversed subset ordering. Note that

in this ordering (D1, . . . , Dn) is the least element while

(∅, . . . ,∅)
︸ ︷︷ ︸

n times

is the greatest element. However, we would like to identify with the greatest element

all sequences that contain as an element the empty set. So we divide the above

partial ordering by the equivalence relation R∅ according to which

(E1, . . . , En) R∅ (F1, . . . , Fn) iff (E1, . . . , En) = (F1, . . . , Fn)

or (∃i Ei = ∅ and ∃j Fj = ∅).

It is straightforward to see that R∅ is indeed an equivalence relation.

In the resulting quotient ordering there are two types of elements: the sequences

(E1, . . . , En) that do not contain the empty set as an element, that we continue to

present in the usual way with the understanding that now each of the listed sets

is non-empty, and one “special” element equal to the equivalence class consisting

of all sequences that contain the empty set as an element. This equivalence class is

the greatest element in the resulting ordering, so we denote it by ⊤. In what follows

we denote this partial ordering by (DP ,⊑).

11

3.3 Membership Rules

Fix now a specific CSP P := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉 with finite domains. We

recall the rules introduced in (Apt and Monfroy 2001). They are called membership

rules and are of the form

y1 ∈ S1, . . . , yk ∈ Sk → z1 6= a1, . . . , zm 6= am,

where

• y1, . . . , yk are pairwise different variables from the set {x1, . . . , xn} and

S1, . . . , Sk are subsets of the respective variable domains,

• z1, . . . , zm are variables from the set {x1, . . . , xn} and a1, . . . , am are elements

of the respective variable domains.2

Note that we do not assume that the variables z1, . . . , zm are pairwise different.

The computational interpretation of such a rule is:

if for i ∈ [1..k] the current domain of the variable yi is included in the set Si, then for
j ∈ [1..m] remove the element ai from the domain of zi.

When each set Si is a singleton, we call a membership rule an equality rule.

Let us mention here that in (Apt and Monfroy 2001) the interpretation of the

conditions of an equality rule is slightly different, as it is stipulated that the cur-

rent domain of the variable yi is to be equal to the singleton set Si. However, in

the discussed algorithms the membership rules are applied only when all variable

domains are non-empty and then both interpretations coincide.

Let us reformulate this interpretation so that it fits the framework considered in

the previous section. To this end we need to clarify how to

• evaluate the condition of a membership rule in an element of the considered

partial ordering,

• interpret the conclusion of a membership rule as a function on the considered

partial ordering.

Let us start with the first item.

Definition 3.1

Given a variable y with the domain Dy and E ∈ P(Dy) we define

holds(y ∈ S,E) iff E ⊆ S,

and extend the definition to the elements of the considered ordering (DP ,⊑) by

putting

holds(y ∈ S, (E1, . . . , En)) iff Ek ⊆ S, where we assumed that y is xk, and

holds(y ∈ S,⊤).

2 In (Apt and Monfroy 2001) it is also assumed that the lists y1, . . . , yk and z1, . . . , zm have no
variable in common. We drop this condition so that we can combine the membership rules.

12

Furthermore we interpret a sequence of conditions as a conjunction, by putting

holds((y1 ∈ S1, . . . , yk ∈ Sk), (E1, . . . , En))

iff holds(yi ∈ Si, (E1, . . . , En)) for i ∈ [1..k].

�

Concerning the second item we proceed as follows.

Definition 3.2

Given a variable z with the domain Dz we interpret the atomic formula z 6= a as a

function on P(Dz), defined by:

(z 6= a)(E) := E − {a}.

Then we extend this function to the elements of the considered ordering (DP ,⊑)

as follows:

• on the elements of the form (E1, . . . , En) we put

(z 6= a)(E1, . . . , En) := (E′

1, . . . , E
′

n),

where

— if z ≡ xi, then E′
i = Ei − {a},

— if z 6≡ xi, then E′
i = Ei.

If the resulting sequence (E′
1, . . . , E

′
n) contains the empty set, we replace it

by ⊤,

• on the element ⊤ we put (z 6= a)(⊤) := ⊤

Finally, we interpret a sequence z1 6= a1, . . . , zm 6= am of atomic formulas by inter-

preting each of them in turn. �

As an example take the CSP

P := 〈C ; x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c}〉

and consider the membership rule

r := x1 ∈ {a, b}, x2 ∈ {b} → x3 6= a, x3 6= b, x4 6= a.

Then we have

r({a}, {b}, {a, b, c}, {a, b}) = ({a}, {b}, {c}, {b}),

r({a, b, c}, {b}, {a, b, c}, {a, b}) = ({a, b, c}, {b}, {a, b, c}, {a, b}),

r({a, b}, {b}, {a, b}, {a, b}) = ⊤.

In view of the Correctness Theorem 2.7 the following observation allows us to

apply the R algorithm when each function is a membership rule and when for each

rule b → g the lists friends(b → g) and obviated (b → g) are constructed by the

F & O algorithm.

13

Note 3.3

Consider the partial ordering (DP ,⊑).

(i) Each membership rule is a prop rule.

(ii) Each function z1 6= a1, . . . , zm 6= am on DP is

• inflationary,

• monotonic.
�

To be able to instantiate the algorithm R with the membership rules we still

need to define the set update(G, g, d). In our implementation we chose the following

simple definition:

update(G, b → g, d) :=

{
F −G if holds(b, d) and g(d) 6= d,

∅ otherwise.

To illustrate the intuition behind the use of the lists friends(b → g) and

obviated(b → g) take the above CSP

P := 〈C ; x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c}〉

and consider the membership rules

r1 := x1 ∈ {a, b} → x2 6= a, x4 6= b,

r2 := x1 ∈ {a, b}, x2 ∈ {b, c} → x3 6= a,

r3 := x2 ∈ {b} → x3 6= a, x4 6= b.

Then upon application of rule r1 rule r2 can be applied without evaluating its

condition and subsequently rule r3 can be deleted without applying it. So we can

put rule r2 into friends(r1) and rule r3 into obviated(r1) and this is in fact what

the F & O algorithm does.

4 Implementation

In this section we discuss the implementation of the R algorithm for the membership

rules and compare it by means of various benchmarks with the CHR implementation

in the ECLiPSe system.

4.1 Modelling of the Membership Rules in CHR

Following (Apt and Monfroy 2001) the membership rules are represented as CHR

propagation rules with one head. Recall that the latter ones are of the form

H ==> G1, . . . , Gl | B1, . . . , Bm.

where

• l > 0, m > 0,

• the atom H of the head refers to the defined constraints,

• the atoms of the guard G1, . . . , Gl refer to Prolog relations or built-in con-

straints,

14

• the atoms of the body B1, . . . , Bm are arbitrary atoms.

Further, recall that the CHR propagation rules with one head are executed as

follows. First, given a query (that represents a CSP) the variables of the rule are

renamed to avoid variable clashes. Then an attempt is made to match the head of

the rule against the first atom of the query. If it is successful and all guards of the

instantiated version of the rule succeed, the instantiated version of the body of the

rule is executed. Otherwise the next rule is tried.

Finally, let us recall the representation of a membership rule as CHR a propagation

rule used in (Apt and Monfroy 2001). Consider the membership rule

y1 ∈ S1, . . . , yk ∈ Sk → z1 6= a1, . . . , zm 6= am.

related to the constraint c on the variables X1, . . . , Xn. We represent its condition

by starting initially with the atom c(X1, . . . , Xn) as the head. Each atomic condition

of the form yi ∈ {a} is processed by replacing in the atom c(X1, . . . , Xn) the

variable yi by a. In turn, each atomic condition of the form yi ∈ Si, where Si is

not a singleton, is processed by adding the atom in(yi, LSi) to the guard of the

propagation rule. The in/2 predicate is defined by

in(X,L) :- dom(X,D), subset(D,L).

So in(X,L) holds if the current domain of the variable X (yielded by the built-in

dom of ECLiPSe) is included in the list L. In turn, LSi is a list representation of the

set Si.

Finally, each atomic conclusion zi 6= ai translates to the atom zi ## ai of the

body of the propagation rule.

As an example consider the membership rule

X ∈ {0}, Y ∈ {1, 2} → Z 6= 2

in presence of a constraint c on the variables X,Y, Z. It is represented by the

following CHR propagation rule:

c(0,Y,Z) ==> in(Y,[1,2]) | Z##2.

In ECLiPSe the variables with singleton domains are automatically instantiated.

So, assuming that the variable domains are non-empty, the condition of this mem-

bership rule holds iff the head of the renamed version of the above propagation rule

matches the atom c(0,Y,Z) and the current domain of the variable Y is included

in [1,2]. Further, in both cases the execution of the body leads to the removal of

the value 2 from the domain of Z. So the execution of both rules has the same effect

when the variable domains are non-empty.

Execution of CHR. In general, the application of a membership rule as defined

in Section 3 and the execution of its representation as a CHR propagation rules

coincide. Moreover, by the semantics of CHR, the CHR rules are repeatedly applied

until a fixpoint is reached. So a repeated application of a finite set of membership

rules coincides with the execution of the CHR program formed by the representations

15

of these membership rules as propagation rules. An important point concerning the

standard execution of a CHR program is that, in contrast to the R algorithm, every

change in the variable domains of a constraint causes the computation to restart.

4.2 Benchmarks

In our approach the repeated application of a finite set of membership rules is

realized by means of the R algorithm of Section 2 implemented in ECLiPSe. The

compiler consists of about 1500 lines of code. It accepts as input a set of membership

rules, each represented as a CHR propagation rule, and constructs an ECLiPSe

program that is the instantiation of the R algorithm for this set of rules. As in CHR,

for each constraint the set of rules that refer to it is scheduled separately.

In the benchmarks below for each considered CSP we used the sets of all minimal

valid membership and equality rules for the “base” constraints which were automat-

ically generated using a program discussed in (Apt and Monfroy 2001). In the first

phase the compiler constructs for each rule g the lists friends(g) and obviated(g).

Time spent on this construction is comparable with the time needed for the genera-

tion of the minimal valid equality and membership rules for a given constraint. For

example, the medium-sized membership rule set for the rcc8 constraint, containing

912 rules, was generated in 166 seconds while the construction of all friends and

obviated lists took 142 seconds.

To see the impact of the accumulated savings obtained by permanent removal of

the rules during the iteration process, we chose benchmarks that embody several

successive propagation steps, i.e., propagation interleaved with domain splitting or

labelling.

In Table 1 we list the results for selected single constraints. For each such

constraint, say C on a sequence of variables x1, . . . , xn with respective domains

D1, . . . , Dn, we consider the CSP 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉 together with ran-

domized labelling. That is, the choices of variable, value, and action (assigning or

removing the value), are all random. The computation of simply one or all solutions

yields insignificant times, so the benchmark program computes and records also all

intermediate non-solution fixpoints. Backtracking occurs if a recorded fixpoint is en-

countered again. In essence, this benchmark computes implicitly all possible search

trees. As this takes too much time for some constraints, we also impose a limit on

the number of recorded fixpoints.

In turn, in Table 2 we list the results for selected CSPs. We chose here CSPs that

formalize sequential automatic test pattern generation for digital circuits (ATPG),

see (Brand 2001). These are rather large CSPs that employ the and constraints of

Table 1 and a number of other constraints, most of which are implemented by rules.

We measured the execution times for three rule schedulers: the standard CHR

representation of the rules, the generic chaotic iteration algorithm GI, and its im-

proved derivative R. The codes of the latter two algorithms are both produced by

our compiler and are structurally equal, hence allow a direct assessment of the

improvements embodied in R.

An important point in the implementations is the question of when to remove

16

Constraint rcc8 fork and3 and9 and11

membership

relative 37% / 22% 58% / 46% 66% / 49% 26% / 15% 57% / 25%

absolute 147/396/686 0.36/0.62/0.78 0.27/0.41/0.55 449/1727/2940 1874/3321/7615

equality

relative 97% / 100% 98% / 94% 92% / 59% 95% / 100% 96% / 101%

absolute 359/368/359 21.6/21.9/22.9 0.36/0.39/0.61 386/407/385 342/355/338

Table 1. Randomized search trees for single constraints

Logic 3-valued 9-valued 11-valued

membership

relative 61% / 44% 65% / 29% 73% / 29%

absolute 1.37/2.23/3.09 111/172/385 713/982/2495

equality

relative 63% / 29% 40% / 57% 36% / 51%

absolute 0.77/1.22/2.70 2.56/6.39/4.50 13.8/38.7/26.7

Table 2. CSPs formalizing sequential ATPG

solved constraints from the constraint store. The standard CHR representation of

membership rules as generated by the algorithm of (Apt and Monfroy 2001) does

so by containing, beside the propagation rules, one CHR simplification rule for each

tuple in the constraint definition. Once its variables are assigned values that cor-

respond to a tuple, the constraint is solved, and removed from the store by the

corresponding simplification rule. This ‘solved’ test takes place interleaved with

propagation. The implementations of GI and R, on the other hand, check after

closure under the propagation rules. The constraint is considered solved if all its

variables are fixed, or, in the case of R, if the set F of remaining rules is empty (see

the following subsection). Interestingly, comparing CHR and GI, the extra simplifi-

cation rules sometimes constitute a substantial overhead while at other times their

presence allows earlier termination.

We mention briefly that our specific implementation deviates slightly from the

description of R inside the else branch. The test ∀e ⊒ d ¬holds(b, e) in the case

of a membership condition y ∈ S corresponds to testing whether the intersection

17

Dy ∩ S is empty. Performing this always turned out to be more costly than doing

so only when Dy is a singleton set.

The platform for all benchmarks was a Sun Enterprise 450 with 4 UltraSPARC-

II 400MHz processors and 2GB memory under Solaris, and ECLiPSe 5.5 (non-

parallel). In the tables we provide for each constraint or CSP the ratio of the

execution times in seconds between, first, R and GI, and second, R and CHR. This is

followed by the absolute times in the order R / GI / CHR.

Recently, we have been experimenting with various ways of optimizing our im-

plementation of the R algorithm. In particular, we considered a better embedding

into the constraint-handling mechanism of ECLiPSe, for instance by finer control

of the waking conditions and a joint removal of the elements from the same domain.

At this stage we succeeded in achieving an average speed-up by a factor of 4. This

work is in progress but already shows that further improvements are possible.

4.3 Recomputing of the Least Fixpoints

Finally, let us illustrate the impact of the permanent removal of the rules

during the least fixpoint computation, achieved here by the use of the lists

friends(g) and obviated(g). Given a set F of rules call a rule g ∈ F solving if

friends(g) ∪ obviated(g) = F .

Take now as an example the equivalence relation ≡ from three valued logic of

(Kleene 1952, page 334) that consists of three values, t (true), f (false) and u (un-

known). It is defined by the truth table

≡ t f u

t t f u

f f t u

u u u u

The program of (Apt and Monfroy 2001) generates for it 26 minimal valid mem-

bership rules. Out of them 12 are solving rules. For the remaining rules the sizes of

the set friends ∪ obviated are: 17 (for 8 rules), 14 (for 4 rules), and 6 (for 2 rules).

In the R algorithm a selection of a solving rule leads directly to the termination

(G = ∅) and to a reduction of the set F to ∅. For other rules, also a considerable

simplification in the computation takes place. For example, one of the 8 rules with

17 rules in the set friends ∪ obviated is

r := x ∈ {f}, z ∈ {f, u} → y 6= f.

Consider now the CSP 〈≡ ; x ∈ {f}, y ∈ {f, t, u}, z ∈ {f, u}〉. In the R algorithm the

selection of r is followed by the application of the rules from friends and the removal

of the rules from friends ∪obviated . This brings the number of the considered rules

down to 26−17 = 9. The R algorithm subsequently discovers that none of these nine

rules is applicable at this point, so this set F remains upon termination. Then in a

18

subsequent constraint propagation phase, launched after splitting or after constraint

propagation involving another constraint, the fixpoint computation by means of the

R algorithm involves only these nine rules instead of the initial set of 26 rules. For

solving rules this fixpoint computation immediately terminates.

Interestingly, as Table 3 shows, the solving rules occur quite frequently. We list

there for each constraint and each type of rules the number of solving rules divided

by the total number of rules, followed in a new line by the average number of rules

in the set friends(g) ∪ obviated (g).

Constraints and2 and3 and9 and11 fork rcc8 allen

equality 6/6 13/16 113/134 129/153 9/12 183/183 498/498
6 14 130 148 11 183 498

membership 6/6 4/13 72/1294 196/4656 0/24 0/912 n.a./26446
6 7 810 3156 9 556 n.a.

Table 3. Solving rules

The fork constraint is taken from the Waltz language for the analysis of polyhe-

dral scenes. The rcc8 is the composition table for the Region Connection Calculus

with 8 relations from (Egenhofer 1991). It is remarkable that all its 183 minimal

valid equality rules are solving. While none of its 912 minimal valid membership rule

for rcc8 is solving, on the average the set friends(g)∪obviated (g) contains 556 mem-

bership rules. Also all 498 minimal valid equality rules for the allen constraint,

that represents the composition table for Allen’s qualitative temporal reasoning,

are solving. The number of minimal valid membership rules exceeds 26,000 and

consequently they are too costly to analyze.

Simplification rules. The CHR language supports besides propagation rules also

so-called simplification rules. Using them one can remove constraints from the

constraint store, so one can affect its form. In (Abdennadher and Rigotti 2001)

a method is discussed that allows one to automatically transform CHR propagation

rules into simplification rules that respects their semantics. It is based on identifying

or constructing propagation rules that are solving.

In contrast, our method captures the degree to which a rule is solving, by the

ratio of the sizes of U(r) = friends(r) ∪ obviated(r) and the full rule set. If the

sets are equal, then the ratio is 1 and r is a solving rule. Consider now two non-

solving rules r1, r2, that means with U(r1) ⊂ R and U(r2) ⊂ R, but let also

U(r1) ∪ U(r2) = R. Suppose that during a fixpoint computation the conditions of

both rules have succeeded, and their bodies have been applied. The R algorithm

would now immediately detect that the constraint is solved, and consequently ter-

minate. CHR, for which r1 and r2 are ordinary (propagation) rules, cannot detect

this possibility for immediate termination.

19

5 Redundancy of prop Rules

The cost of a fixpoint computation by the GI algorithm or one of its derivatives

depends on the number of functions involved, in particular in absence of a good

strategy for selecting the functions, represented in the algorithms by the “choose”

predicate. It is therefore important to identify functions or rules that are not needed

for computing fixpoints. In the following we shall examine the issue of rule redun-

dancy. We shall again start with arbitrary functions before moving on to (prop)

rules. The redundancy concept we employ is based on fixpoints. In the following,

for brevity, we drop the word “common” when referring to common fixpoints of a

set of functions.

Definition 5.1

• Consider a set F ∪ {f} of functions on a partial ordering. A function f is

called redundant with respect to F if the sets of fixpoints of F and F ∪ {f}

are equal.

• A set of functions F is called minimal with respect to redundancy (or simply

minimal), if no function f ∈ F is redundant with respect to F − {f}. �

Equivalently, we can say that a function f is redundant w.r.t. F if every fixpoint

of F is also a fixpoint of f .

5.1 Redundant Rules

We now focus on the subject of redundancy for prop rules. The following simple

test is then useful.

Theorem 5.2

Consider a set F of prop rules and a prop rule r := b → g with the witness w for

b. Let e be the least fixpoint of F greater than or equal to w. If g(e) = e, then the

rule r is redundant with respect to F .

Proof. We show that g(e) = e implies that an arbitrary fixpoint d of F is a fixpoint

of r by a case condition.

b holds for d: We have w ⊑ d since w is the witness for b. Also, w ⊑ e ⊑ d since

e is the least fixpoint of F greater than or equal to w. From e ⊑ d, g(e) = e, and

the stability of g we conclude g(d) = d. Hence r(d) = (b → g)(d) = g(d) = d.

b does not hold for d: Then r(d) = (b → g)(d) = d. �

This test is of interest to us since it allows us to compute only one fixpoint of F

instead of all fixpoints. It is effective if

• the witness can be computed,

• the equality g(e) = e can be determined, and

• the fixpoint computations are effective.

For the sake of fixpoint computations a rule r = b → g with a body g = g1, . . . , gn

(describing a function composition) such that any two different gi, gj commute can

20

be identified with the collection b → g1, . . . , b → gn of the rules, and vice versa.

Indeed, the respective fixpoints and the rule properties are the same. We consider

here these two representations as equivalent. If a rule with such a “compound” body

is not redundant it might be so in part. That is, some part of its body might be

redundant or, in other words, some sub-rules of its decomposition might be. This

is what we mean below by saying that a rule is partially redundant.

Let us consider now the task of computing minimal sets of prop rules. Such

sets can of course be generated by a simple bounded loop: select an untested rule,

test whether it is redundant and, if so, remove it from the current set. In general,

however, the obtained minimal sets depend on the selection order for testing; see

an example below. In our experiments we used a strategy that selects first the rules

the execution of which is computationally expensive, for instance due to conditions

on many variables. In this way we hope to obtain a set of computationally cheap

rules.

5.2 An Example: Redundant Membership Rules

Let us illustrate now a number of issues by means of an example. Consider the

constraint c(x, y, z, u) defined by

x y z u

0 1 0 1

1 0 0 1

1 1 1 0

The underlying domain for all its variables is {0, 1}. Hence the induced correspond-

ing partial order is

({(A,B,C,D) | A,B,C,D ⊆ {0, 1}}, ⊇).

The algorithm of (Apt and Monfroy 2001) generates eleven membership rules listed

in Figure 1. Since the rule conditions are only equality tests, we use an alternative

notation that should be self-explanatory.

For example, rule (11) states that if c(x, y, z, u), then it is correct to conclude

from x = 1 and u = 1 that y 6= 1 (validity), and furthermore that neither x = 1

nor u = 1 suffices for this conclusion (minimality).

Suppose we are interested in computing the smallest fixpoint greater than or

equal to E1 = {1} × {0, 1} × {0, 1} × {1}. Suppose rule (11) is considered. Its

application yields E2 = {1} × {0} × {0, 1} × {1} from where rule (4) leads to

E3 = {1} × {0} × {0} × {1}. This is indeed a fixpoint since for each rule either its

condition does not apply or the application of its body results again in E3.

A second possible iteration from E1 that stabilises in E3 is by rule (5) followed by

rule (10). Rule (11) can be applied at this point but its body does not change E3.

21

c(x, y, z, 0) → x 6= 0, y 6= 0, z 6= 0 (1)

c(x, y, 1, u) → u 6= 1, x 6= 0, y 6= 0 (2)

c(0, y, z, u) → u 6= 0, y 6= 0, z 6= 1 (3)

c(x, 0, z, u) → u 6= 0, x 6= 0, z 6= 1 (4)

c(x, y, z, 1) → z 6= 1 (5)

c(x, y, 0, u) → u 6= 0 (6)

c(1, 1, z, u) → u 6= 1, z 6= 0 (7)

c(x, 1, 0, u) → x 6= 1 (8)

c(x, 1, z, 1) → x 6= 1 (9)

c(1, y, 0, u) → y 6= 1 (10)

c(1, y, z, 1) → y 6= 1 (11)

Fig. 1. Membership rules for the constraint c

Indeed, E3 is a fixpoint of all rules including rule (11). We conclude that rule (11)

is redundant – we just performed the test of Theorem 5.2.

The process of identifying redundant rules can then be continued for the rule

set {(1), . . . , (10)}. One possible outcome is depicted in Figure 1, where redundant

parts of rules are underlined. From the 20 initial atomic conclusions 13 remain, thus

we find here a redundancy ratio of 35%.

Consider now the justification for the redundancy of rule (11), and observe that

rule (11) has no effect since rule (10), which has the same body, was applied before.

Suppose now that the process of redundancy identification is started with rule

(10) instead of rule (11). This results in identifying rule (10) as redundant, with a

relevant application of rule (11).

Note moreover that one of the rules (10), (11) must be present in any minimal

set since their common body y 6= 1 occurs in no other rule. It would seem difficult

to find a criterion that prefers one rule over the other as their structure is the same.

5.3 Experiments

We implemented in ECLiPSe an algorithm that computes minimal sets of member-

ship rules. The results for some benchmark rule sets are listed in Table 4.

For each constraint the set of minimal membership or equality rules (indicated

respectively by the subscript “M” or “E”) was computed by the rule generation

algorithm of (Apt and Monfroy 2001). The constraints are taken from the experi-

ments discussed in Table 1. Additionally a 5-ary constraint fula (standing for the

well-known fulladder constraint) is analyzed.

The table shows the size of the rule set, the number of fully and, in parentheses,

partially redundant rules. The redundancy ratio for the entire rule set shows the

percentage of the atomic disequalities that are removed from the rule conclusions

on the account of redundancy.

22

and11M and11E and3M equ3M fula2E forkE forkM

total 4656 153 18 26 52 12 24

redundant
(partially) 4263 (2) 0 (6) 5 (0) 8 (0) 24 (0) 0 (9) 6 (6)

redundancy
ratio

81% 4% 30% 26% 35% 35% 40%

Table 4. Minimizing rule sets

Computation times are negligible in so far as they are considerably smaller than

the corresponding rule generation times.

5.4 Schedulers and Minimal Rule Sets

There is no simple connection between redundancy and the rule sets friends and

obviated of the R scheduler. For instance, it is not the case that a rule is redundant

if it is contained in friends(r)∪ obviated(r) of every rule r. Nor is a redundant rule

necessarily contained in friends(r)∪ obviated (r) of every rule r. To examine this in

an example, recall the rules in Figure 1. All except (5) and (6) are solving rules, i.e.,

each respective set friends ∪ obviated is the complete set {(1), . . . , (11)} of rules,

while for rules (5) and (6) this set is {(1), (3), (5), (6)}. Further, neither (5) nor (6)

is redundant with respect to all other rules, whereas (10) and (11) are.

Benchmarks. We reran the benchmarks from Tables 1 and 2 with all involved rule

sets subjected to a removal of redundant rules and subsequent recomputation of

the sets friends and obviated . The results are reported in Tables 5 and 6 below.

The rule sets of rcc8 were already minimal; therefore this constraint is omitted.

Constraint fork and3 and9 and11

membership

relative 60% / 46% 69% / 48% 28% / 18% 50% / 29%

absolute 0.32/0.53/0.70 0.27/0.39/0.56 167/589/924 157/316/543

equality

relative 97% / 93% 97% / 64% 96% / 101% 96% / 101%

absolute 21.6/22.2/23.2 0.37/0.38/0.58 386/404/384 341/353/339

Table 5. Randomized search trees for single constraints (without redundant rules)

23

Logic 3-valued 9-valued 11-valued

membership

relative 66% / 46% 62% / 33% 68% / 35%

absolute 1.32/2.00/3.05 37/59/114 70/103/199

equality

relative 61% / 26% 40% / 58% 33% / 48%

absolute 0.72/1.18/2.73 2.57/6.41/4.46 13.8/41.0/28.6

Table 6. CSPs formalizing sequential ATPG (without redundant rules)

When comparing the redundancy and non-redundancy benchmarks versions we

observe that the absolute execution times are enormously reduced in the case of

the constraints on higher-valued logics. This is in line with the much smaller sizes

of the reduced rule sets. The ratios of the execution times, however, are barely

affected. The type of a scheduler and minimality w.r.t. redundancy appear to be

rather orthogonal issues.

It is interesting to examine in one case the distribution of the solving degrees,

i.e., the ratios of the sizes of friends ∪ obviated and the full rule set. Recall that a

ratio of 1 means that the constraint is solved when the rule body has been executed.

Such a rule could be represented as a simplification rule in CHR (see Section 4.3).

In Figure 2 two membership rule sets for the constraint and9 are compared.

One set contains redundant rules, the other set is minimal w.r.t. redundancy. The

rules in the minimal set are solving to a lesser degree. In particular, none is a

proper solving rule. The good performance of the R algorithm in the benchmarks

of Tables 5,6 may thus be attributed not to distinguishing solving (simplification)

rules and non-solving propagation rules, but to the accumulated effect of removing

rules from the fixpoint computation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

S
ol

vi
ng

 d
eg

re
e

Rule

1294 rules, some redundant

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350

S
ol

vi
ng

 d
eg

re
e

Rule

385 nonredundant rules

Fig. 2. and9M : Solving degree and redundancy

24

Acknowledgments

We thank Christian Holzbaur and Eric Monfroy for helpful discussions on the im-

plementation and on an early version of this paper. The reviewers made useful

comments which helped to improve the paper.

References

Abdennadher, S., Krämer, E., Saft, M., and Schmaus, M. 2001. JACK: A Java
Constraint Kit. In International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP 2001), Technical Report No. 2017. University of Kiel, Kiel, Germany.

Abdennadher, S. and Rigotti, C. 2001. Using confluence to generate rule-based con-
straint solvers. In Proceedings of the 3rd Int. Conf. on Principles and Practice of Declar-
ative Programming (PPDP 2001). ACM, Firenze, Italy, 127–135.

Apt, K. R. 1999. The essence of constraint propagation. Theoretical Computer Sci-
ence 221, 1–2, 179–210. Available via http://arXiv.org/archive/cs/.

Apt, K. R. 2000. The role of commutativity in constraint propagation algorithms. ACM
Transactions on Programming Languages and Systems 22, 6, 1002–1036. Available via
http://arXiv.org/archive/cs/.

Apt, K. R. and Monfroy, E. 2001. Constraint programming viewed as rule-based
programming. Theory and Practice of Logic Programming 1, 6, 713–750. Available via
http://arXiv.org/archive/cs/.

Brand, S. 2001. Sequential automatic test pattern generation by constraint programming.
In CP2001 Post Conference Workshop Modelling and Problem Formulation. Available
via http://homepages.cwi.nl/~sbrand/.

Egenhofer, M. 1991. Reasoning about binary topological relations. In Proceedings of the
2nd International Symposium on Large Spatial Databases (SSD), O. Günther and H.-J.
Schek, Eds. Lecture Notes in Computer Science, vol. 525. Springer-Verlag, 143–160.

Frühwirth, T. 1998. Theory and practice of Constraint Handling Rules. Journal of
Logic Programming 37, 1–3 (October), 95–138. Special Issue on Constraint Logic Pro-
gramming (P. J. Stuckey and K. Marriot, Eds.).

Holzbaur, C., de la Banda, M. G., Jeffery, D., and Stuckey, P. J. 2001. Op-
timizing compilation of constraint handling rules. In Proceedings of the 2001 Interna-
tional Conference on Logic Programming. Lecture Notes in Computer Science, vol. 2237.
Springer-Verlag, 74–89.

Kleene, S. C. 1952. Introduction to Metamathematics. van Nostrand, New York.

25

	Introduction
	Revisions of the Generic Iteration Algorithm
	The Original Algorithm
	Removing Functions
	Functions in the Form of Rules
	Recomputing of the Least Fixpoints

	Concrete Framework
	Constraint Satisfaction Problems
	Partial Orderings
	Membership Rules

	Implementation
	Modelling of the Membership Rules in CHR
	Benchmarks
	Recomputing of the Least Fixpoints

	Redundancy of prop Rules
	Redundant Rules
	An Example: Redundant Membership Rules
	Experiments
	Schedulers and Minimal Rule Sets

	References

