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Abstract

The software approach to developing Digital Signal Processing (DSP) applications brings
some great features such as flexibility, re-usability of resources and easy upgrading of
applications. However, it requires long and tedious tests and verification phases because of
the increasing complexity of the software. This implies the need of a software programming
environment capable of putting together DSP modules and providing facilities to debug,
verify and validate the code. The objective of the work is to provide such facilities as
simulation and verification for developing DSP software applications. This led us to develop
an extension toolkit, EPspectra, built upon Pspectra, one of the first toolkits available
to design basic software radio applications on standard PC workstations.

In this paper, we first present EPspectra, an Esterel-based extension of Pspectra
that makes the design and implementation of portable DSP applications easier. It allows
drastic reduction of testing and verification time while requiring relatively little expertise in
formal verification methods. Second, we demonstrate the use of EPspectra, taking as an
example the radio interface part of a GSM base station. We also present the verification
procedures for the three safety properties of the implementation programs which have
complex control-paths. These have to obey strict scheduling rules. In addition, EPspectra
achieves the verification of the targeted application since the same model is used for the
executable code generation and for the formal verification.

KEYWORDS: real-time application, Esterel, formal verification

1 Introduction

Esterel (Berry 1996) is a synchronous programming language targeted at reactive

systems. Esterel programs perform an input-driven computation: wait for inputs

and compute corresponding outputs in a cyclic manner, referred to as a reaction.

Esterel is also a formal language. The Esterel system allows one to provide

http://arxiv.org/abs/cs/0502025v1
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specification, simulation, automatic code generation, and verification. Taking into

account that most of traditional verification methods are concerned with proving

properties only of abstracted models of programs rather than programs themselves,

the Esterel methodology allows one to directly verify the actual code of Esterel

programs that corresponds to the targeted implementation. It guarantees that the

Esterel programs satisfy the properties to be proved on condition that all source

code is correctly compiled to the targeted code.

It still holds true that the number of transistors per integrated circuit roughly

doubles every 18 months according to Moore’s law1. Thus, programming environ-

ments for Digital Signal Processing (DSP) applications may no longer be required to

rely on specialized DSP hardware since the performance of general purpose proces-

sors and peripheral equipment increases along with the high-tech curves. This leads

to the shift of hardware-operation functions into software. A software approach

to developing DSP applications allows the following advantages: re-usability of ex-

isting hardware, ease of upgrades, and more flexible applications. Nevertheless, it

makes the implementation of software applications more complex because of the

need for multi-disciplinary knowledge of software architecture, signal processing,

real-time scheduling, networking protocols, validation, etc. Furthermore, it requires

an appropriate development environment accessible to programmers.

The goal of this work is to develop a methodology to make the implementation

of DSP software applications easier by allowing the code for specification, simula-

tion and verification to be executable. We make the best of the characteristics of

Esterel, a formal as well as programming language.

We have developed an Esterel-based extension toolkit, EPspectra built upon

Pspectra2 (Bose 1999; Vasconcellos 2000). In the EPspectra system, the con-

trol part of DSP application, which is to be verified eventually, is specified in Es-

terel and the data part, which contains DSP computation intensive modules, is

specified in C/C++. The behaviors of the control part are checked out in simu-

lation with Xes (Berry and team 1999) and its safety properties are verified with

Xeve (Bouali 1998). We demonstrate the verification and the implementation of

an example of DSP software applications, the radio interface part of a GSM Base

Transceiver Station using EPspectra. We also report the results of performance

comparison between the Esterel based implementation and the generic method

based one.

This paper is structured as follows: Section 2 describes the Pspectra software

architecture, which is divided into a data part and a control part. It also describes

an extension toolkit, EPspectra, of which the control part is re-designed and

implemented in Esterel. Section 3 presents the features that are derived from the

Esterel methodology and Section 4 focuses on scheduling techniques considering

two models: the Data-Pull Model and Data-Reactive Model. Once the extension

toolkit has been described, we present in Section 5 the implementation of a practical

1 See http://www.intel.com/research/silicon/mooreslaw.htm
2 It provides a signal processing programming environment to implement portable DSP applica-
tions on general-purpose workstations. See http://www.sds.lcs.mit.edu/SpectrumWare/

http://www.intel.com/research/silicon/mooreslaw.htm
http://www.sds.lcs.mit.edu/SpectrumWare/
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example which corresponds to the radio interface part of a GSM Base Transceiver

Station. Three safety properties of the implementation are verified in Section 6.

In Section 7, the performance results between EPspectra and Pspectra are

compared in terms of the capacity of computation and the number of lines of code.

Section 8 discusses the related work and the last Section concludes the paper and

presents future directions.

2 Pspectra & EPspectra

Pspectra, developed by the SpectrumWare project at MIT, is a real-time signal

processing programming environment used to implement portable DSP applications

such as software radios on general-purpose workstations. This environment includes

a library of portable (across platforms) DSP functions and an I/O subsystem. With

Pspectra, the hardware part is minimal and the boundary between software and

hardware is shifted right up to the A/D converter. This increases flexibility by

bringing more functions under software control.

The Pspectra software architecture is partitioned into a control part (out-of-

band components) and a data part (in-band components). This partitioning allows

for a maximal re-use of the computationally intensive DSP modules. The data part

takes care of the temporally sensitive and computationally intensive work, while

the control part deals with all code relating to scheduling processing modules.

2.1 Data Part

The data part contains the code required to perform specific signal processing

tasks, access functions used by the control part to configure and monitor the DSP

tasks, and I/O functions that read data from and write data into buffer. The data

part consists of two components: DSP modules and connectors. The DSP modules

perform the signal processing tasks and communicate with the control part via the

access functions. A connector can be thought of as a wire that carries signals from

the output of a processing module to the input of the following processing module.

The DSP modules are classified as follows:

• Sources are specialized modules that have one or more output ports and no

input ports.
• Sinks are specialized modules that have one or more input ports and no output

ports.
• Intermediate modules have one or more input ports and one or more output

ports.

Each port must be connected to exactly one connector. Each signal processing path

has at least one source beginning computation and at least one sink ending it.

2.2 Control Part

The control part is responsible for the creation of topology, the modification of

current data flow according to the system needs, the control of the communications
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between DSP modules, the handling of user interaction, and the monitoring of the

data computation on each DSP module. The data manipulated by the DSP modules

flow from sources to sinks. A DSP module reads input sample data from the DSP

module(s) directly preceding it, and performs some computation on it.

To refer to the input and output data in the buffer, a parameter called Sam-

pleRange is used in the DSP modules. This parameter keeps track of a position of

the data that each DSP module accesses. As shown in Figure 1, a SampleRange

contains two pieces of information: an index identifying a starting point from which

to read data into the buffer and a size identifying the amount of data to be read.

20 21 22 56 57 58 59

SampleRange :
index : 20
size : 40

I/O buffer

Fig. 1. SampleRange: each data block is referenced with an index and a size

All DSP modules include an estimating function and a computing function. The

estimating functions in DSP modules specify a SampleRange used by computing

functions with reference to the SampleRange parameter of the preceding modules

and inform the following modules of their SampleRange parameter. In addition,

estimating functions have to ensure that the same data is not computed more than

once. Computing functions start when estimating functions successfully return, and

they manipulate the data that estimating functions have scheduled.

2.3 Esterel-based Architecture

Even though Pspectra provides features such as dynamic flexibility, portability,

and re-usability for software implementations, it lacks the functionality of simula-

tion, testing, and formal models accessible to developers. Data-intensive activities

and control-driven handling activities require different programming techniques.

In an Esterel-based approach, as shown in Figure 2, the architecture is com-

posed of an extended part and the data part on the whole. The extended part is

partitioned into the control part in Esterel and the interface part in C/C++. In

the control part, the components of DSP modules are instantiated, initialized and

scheduled. The interface part is represented as an interface to link the Esterel-

written control part to the C++-written data part. The data part in C++ is where

DSP algorithms are run.

As a whole, as shown in Figure 3, the Esterel-based Pspectra software en-

vironment (EPspectra) contains the following: the component package that pro-

vides a library of computational functions for the data part and the General Purpose

PCI Interface (GuPPI3). It allows the sampled signal data to be directly transferred

in and out of memory of the workstation via Direct Memory Access (DMA).

3 See http://www.sds.lcs.mit.edu/SpectrumWare/guppi.thml

http://www.sds.lcs.mit.edu/SpectrumWare/guppi.thml
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Module2Module1Source Sink

Interface in C/C++

Extended Part

Control Part in Esterel

Data Part in C++

Fig. 2. Architecture of an Esterel-extension

Control Part

Data Part

GuPPI &
Operating SystemDMA DMA

Pspectra
Esterel−based

Source Coding

Modulation Summation

Sink

16−QAM

Component Package

Fig. 3. The Esterel-based Pspectra environment

2.4 Esterel Implementation of the Control Part

Figure 4 shows the architecture of EPspectra in more detail. In all the modules,

the computing functions follow the estimating functions. A scheduler first triggers

the estimating function on the source by sending a control signal. When the es-

timating function is completely performed, the source emits an ack-signal to the

scheduler that will allow it to perform the estimating function on the next module.

At the same time, the computing function on the source is performed to compute

the sample data. Afterwards, the source is required to wait until the ack-signal

coming from the next module is received. As soon as the next module is ready to

compute the corresponding sample data, the source repeats the same procedure to

manipulate the continuous sample data.

When each intermediate module gets a control signal from its preceding mod-

ule(s) via the scheduler, it starts computation and then transmits the computed

sample data to the next modules while it sends an ack-signal to the preceding mod-

ules. The sinks perform the same operation as intermediate modules except that

there is no next module.

3 The Esterel Methodology

Esterel belongs to the family of synchronous reactive languages, such as Lus-

tre (Halbwachs et al. 1992), Signal (Benveniste et al. 1991) and StateCharts

(Harel 1987). Esterel provides powerful constructs to express sequencing, parallel

behavior, and preemption. It also provides a communication mechanism with sig-
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call

Compute

call call call

Compute Compute Compute

writing

reading reading readingreading

buffer buffer buffer
writing writing sending

in C/C++

interconnect

computing

in C++

Sink

Output
SamplesSamples

Input

scheduler

scheduling
in Esterel

computing

estimating estimating

computing computing

estimating

computing

estimating
Source DSP moduleDSP module

reaction reaction reactionreaction
signal signal signal signal

data flow

Fig. 4. Architecture of the control part of EPspectra

nal broadcasting. These constructs are particularly suited for the programming of

a reactive system containing the control-dominated part. The Esterel language

has clean mathematical semantics that interpret an Esterel program as a Finite

State Machine (FSM), a state-graph model with labels over the graph edges. The

FSM model represents exhaustively all the possible states that the program can

be in and all the behaviors that the program can perform between the states. The

main features brought by the Esterel methodology are:

• Specification: Although Esterel is relatively simple, it is expressive and

concise enough to program complex controllers.

• Simulation: The Esterel system provides symbolic debugging simulation

with the symbolic debugging simulator Xes. The simulation environment is

based on the Finite State Machine (FSM) model. The simulator is coupled

with the formal verification environment.

• Automatic code generation: The Esterel system compiles an Esterel

program into an executable C program with a C interface that is easy to

connect with hand-written C code. The C code represents the FSM model

exactly.

• Formal verification: The FSM model allows one to perform model-checking

to verify its properties. When any property is not satisfied, the verifier gener-

ates the corresponding counter-example input-sequence. This counter-example

can be played back using Xes. More details of model-checking are given in

Section 6.

Hence, Esterel is not only a programming language, but also provides a formal

method, which means there is no gap between specification or simulation and exe-

cution. Using the Esterel methodology, the procedure verifying the properties of

an Esterel program is the following:

i. describe the properties satisfying the correctness of an Esterel program,

ii. compile the Esterel program in parallel with observer, the program that

describes properties and
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iii. check for satisfaction or violation of the properties using the Esterel model-

checker Xeve.

4 Scheduling Techniques

It is useful to review existing definitions of real-time systems before describing the

statistical real-time model. Although there are many different definitions of real-

time constraints in the literature, we can generally classify them into hard real-time

and soft real-time constraints (Jensen 1997). In hard real-time systems, the overall

time consumption of DSP modules is strictly limited. In other words, all the time

critical functions have deadlines which must always be met in order for the system to

function properly. This domain includes safety-critical real-time applications such

as space rockets, aircraft automatic pilots, air traffic control, car vital systems, and

some medical equipment. On the other hand, soft real-time systems are not well

defined. They are generally thought of as real-time systems that can still function

reasonably well even if deadlines are occasionally missed. Indeed, the reliability of

a system relies on the accuracy of the estimates.

EPspectra and Pspectra run on general purpose workstations in an operating

system (Linux OS) without explicit real-time support. Instead, by taking advantage

of the ability to sometimes process data faster than in real-time, jitter in the compu-

tation time of some functions can be absorbed. This provides a real-time scheduling

mechanism for dealing with frequent small-scale time variability. Resource unpre-

dictability may result in the processing time occasionally exceeding the real-time

rate, but the average processing rate can still be well below the real-time threshold.

Thus, there is a trade-off between higher average throughput and jitter in the com-

putation time. In order to deal with the larger variations, the concept of statistical

real-time performance is introduced with the following characteristics:

• the cumulative distribution of the number of cycles required to complete a

task,

• a desired real-time bound and

• a specification of the action that must be performed when the deadline is not

met.

This is a kind of soft real-time constraint since deadlines can be missed without

disastrous consequences. The probability that the task will be completed within

the desired time bound can be expressed from the cumulative distribution of cy-

cles required to a given application. This is possible since the statistics associated

with the execution time are consistent. Note that if the task is completed with a

probability of one, then the system will provide hard real-time constraints.

Different actions are possible when a deadline is missed. For example, one can

abort computation and drop the remaining data, replace the remaining data by a

special value or partially estimated data from the result, or start processing the

next slice of data while the current processing job continues in parallel.

Instead of extending the real-time paradigm across the whole system, EPspec-

tra and Pspectra extend the boundaries of the virtual time environment by (i)
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time-stamping and temporally decoupling sampled information at the edge of the

system and (ii) providing a virtual time programming environment in which it is

possible to implement applications that process temporally sensitive information.

4.1 DPM: Data-Pull Model

Let us account for the Data-Pull Model (DPM) on which the control part of Pspec-

tra is based before looking into the Data-Reactive Model (DRM). The DPM relies

on a “lazy evaluation approach” (Johnsson 2004). Lazy evaluation so-called call by

need has been proposed as a method for executing functional programs. The advan-

tages of using the DPM in Pspectra include: improved computational efficiency

resulting from the benefits of lazy evaluation, the rapid response to changes in the

processing requirements, and the caching benefits with a good locality of data ref-

erence by means of lazy evaluation. Further details concerning these advantages are

described in (Bose 1999).

Pspectra performs parallel processing for data computation of DSP modules,

generating multiple threads. However, the overhead of synchronization between

threads which share the same data may degrade the performance of parallel pro-

cessing. Suppose that there is an application composed of two sources, two sinks,

and several intermediate modules. The two independent sinks are connected to the

same intermediate module. According to the DPM, the two sinks are only pro-

cessed alternately. In addition, when the sequential processing chain is created,

sample data is processed by passing it through this chain, but the next sample data

is not processed before the process of the sample data is completed. More specif-

ically, it is not possible to interleave the computation chain of the current sample

data and that of the next sample data.

4.2 DRM: Data-Reactive Model

In contrast to the DPM, the DRMmakes use of a software pipelining method (Allan et al. 1995).

It allows the reduction of the idle time between the beginning and the end of com-

putation operations. It accelerates computation operations as well as computation-

intensive scheduling. Figure 5 shows the architecture of the DRM specified in Es-

terel. All the modules wait for input signals and compute the corresponding out-

put signals. The DRM allows the benefit of the well-formed semantic properties

of Esterel such as parallel composition and hierarchical automata, introduced in

(Berry 1996).

scheduler

signal signal signalsignal signal signal signal signal

source module 1 module 2 sink

Fig. 5. Data-Reactive Model

The data processed on the source is pushed into the sink through the operations
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of the intermediate modules. Since all DSP modules react on available data, a

scheduler determines the relation among DSP modules, and activates or deactivate

them according to the relation. The scheduling approach is the following:

• data computation starts on the source,

• whenever data on DSP modules are available, they start computing it, and

• the corresponding data is consumed on the sink.

The scheduler monitors and controls the communications of DSP modules. As soon

as the sources finish computing the data, they emit certain signal(s) triggering

the computation of the corresponding data on the following modules and then

wait for ack-signals from them. The DSP modules wait for two events: available

data from the preceding modules and ack-signals from the following modules. Here,

receiving ack-signals implies the completion of computation of the previous data.

When receiving both of them, the DSP modules compute the available data, and

then convey the computed data to the following modules. At the same time, they

emit ack-signals to the preceding modules simultaneously. The corresponding data

are finally consumed on the sinks. The DRM has two features of scheduling: a

software pipelining scheduling method and the data dependencies.

4.2.1 Software pipelining schedule

The software pipelining scheduling method makes use of parallel processing among

DSP modules at the operation-scheduling level, not at the instruction level. Let

us look at the loop body of Figure 6(a). Each set M4 of an iteration depends on

the previous set of operations as well as the previous iteration. As shown by the

execution schedule of Figure 6(b), the set of operations of the 2nd iteration of M1

depends on, and must follow the set of operations of the 1st iteration of M2. From

this basic software pipelining scheduling method, speed-up of the execution rate

can be expected.

4.2.2 Data Dependencies

DSP modules of a DSP application based on the DRM are dependent on data

associated with its topology. A dependence (Allan et al. 1995) exists between two

operations if interchanging their order affects the results. Dependencies constrain

what can be done in parallel. Let O1 and O2 be operations such that O1 precedes

O2. O2 must follow O1 if O2 reads data written by O1. O2 is said to be data

dependent on O1. Data dependence between two operations is extended to data

dependence between two operational modules. There is another reason that one

operation must wait for another operation. A control dependence exists between S1

and S2 if the execution of statement S1 determines whether or not statement S2

is executed. Therefore, even though S2 is able to execute because of the available

data, it may not execute because it is not known whether it is needed.

4 Note that M represents a set of operations of each module, not an operation itself.



10 Hahnsang Kim, Thierry Turletti and Amar Bouali

M1 M2 M3 M4

1

1

1

12

2

23

T
IM

E

(b)

M4: d = C4(c);
M3: c = C3(b);
M2: b = C2(a);

for i=1; ++i:

end for

(a)

M1: a = C1(Di);

Fig. 6. (a) Loop body code. (b) Execution schedule of iterations.

The DRM considers data dependencies, not control dependencies. Figure 7 gives

an example of this. It shows part of an audio application that switches between

Amplitude Modulation (AM) and Frequency Modulation (FM) demodulators, con-

sisting of the filter, AM demodulation, FM demodulation,multiplex and sink mod-

ules. The audio application has data dependencies represented as (1), (2), (3), (4),

and (5) and all the statements pertaining to the execution of modules. The control

program is required to change the execution topology with the establishment of

either (1) and (3), or (2) and (4) after the Channel Filter operation. Thus, it is

necessary to have control dependencies as well as data dependencies between the

Channel Filter and the AM demodulator, or between the Channel Filter and the

FM demodulator. It implies the need of the dynamic reconfiguration that enables

the execution topology to be adapted to the changeable environment.

AM
Demod

FM
Demod

MUXFilter

(3)

(4)(2)

(1)

Sink
(5)

Fig. 7. A diagram showing dependencies

5 An example of Application: The Radio Interface Part of a GSM BTS

As an example of implementation using EPspectra, this section describes the

general architecture of a GSM network and the radio interface part of a GSM

base station. The following sections describe the verification procedure of the three

safety properties of the implementation that should be satisfied. In addition to the

verification, the performance comparison between automatically generated code

programs and hand-written code programs is analyzed.

As shown in Figure 8, the GSM network can be generally divided into three

main parts: the Mobile Station (MS), the Base Station Subsystem (BSS), and the
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Network SubSystem (NSS). The MS is the physical equipment used by a sub-

scriber, most often a normal hand-held cellular telephone. The BSS connects the

MS and the NSS. It is in charge of transmission and reception. The BSS consists of

a Base Transceiver Station (BTS) and a Base Station Controller (BSC). The BTS

comprises radio transmission and reception devices and also manages the signal

processing related to the air interface. Each BTS has one to sixteen transceivers,

depending on the density of users in the cell. The BSC controls a group of BTS and

manages its radio resources, mainly through the allocation, release and hand-over

of radio channels. The Mobile Switching Center (MSC) is the central component of

the NSS. It performs the switching functions of the network and also provides con-

nection to other networks. In addition, there are several kinds of registers, namely

the Home Location Register (HLR), the Visitor Location Register (VLR), Equip-

ment Identity Register (EIR), and the Authentication Center (AuC). The further

description of the GSM system is given in (Mouly and Pautet 1993).

Fig. 8. Architecture of GSM Network

We focus on the implementation of the GSM radio interface part between the MS

and the BTS, particularly on the BTS side. It provides a multiple-access scheme and

operations for the transformations between source information and radio waves. The

implementation of the multiple access scheme has been excluded from our work.

Instead, we present and implement the operations that have to be performed to

pass from the speech source to radio waves and vice-versa.

5.1 Sequence of Operations between source information and radio

waves

The sequence of operations for the radio interface of a GSM BTS is shown in

Figure 9. Basically, after having transformed speech into compressed data blocks in

speech coding, channel coding adds redundancy to the data blocks. The data blocks

are interleaved and spread into pieces in interleaving, which are combined with flags

to build up the bursts. Ciphering is applied to these bursts and then the resulting

data is used to modulate the carriers in modulation. The reverse transformations

are performed on the other side.
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Speech

Coding
Speech

Channel
Coding

Interleaving

Ciphering

Modulation RF
Signal

Speech

Deciphering

Channel

Speech
Decoding

Demodulation

Decoding

Deinterleaving

Fig. 9. Sequence of operations from speech to radio waves and back to speech

• Speech coding algorithm, Regular Pulse Excitation with Long Term Predic-

tion (RPE/LTP) (Lorenz 1998) produces data blocks of 260 bits every 20ms.

• Channel coding introduces redundancy into the data flow, increasing its

rate by adding information calculated from the source data, in order to allow

the detection or the correction of signal errors introduced during transmission.

It forms a complete coded speech frame of 456 bits.

• Interleaving consists in mixing up the bits of several code words, which in

the modulated signal are spread over several code words. GSM coding blocks

are interleaved on 8 bursts each of which consists of 57 bits.

• Ciphering performs an exclusive or (XOR) operation between 2 bursts of

each block and a secret recipe known only by the mobile station and BTS.

• Modulation transforms the binary signal into a Gaussian Minimum Shift

Keying (GMSK) (Murota and Hirade 1981).

• Once radio waves are captured by the antenna, the portion of the received

signal which is of interest to the other side corresponding to radio waves to

source information is determined by the multiple access rules.Demodulation

takes place in this portion.

• Deciphering performs the same operations by reversing the ciphering algo-

rithm.

• Deinterleaving merges two different 8-burst blocks into a 456-bit code word.

• Channel decoding involves reconstructing the source information from the

output of the demodulator, using the added redundancy to detect or correct

possible errors in the output from the demodulator.

• Speech decoding reconstructs the speech by passing the residual pulse first

through the long-term prediction filter, and then through the short-term pre-

dictor.
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6 Formal Verification

In this section, we explain what formal verification of Esterel programs means.

As mentioned, Esterel is both a formal modeling language and a programming

language. Esterel benefits from clear mathematical semantics that characterize

a program as an FSM model. The Esterel FSM model is defined as a structure

(I ,O , S , s0,T ) where I is a set of input signals, O a set of output signals, S a

set of states, s0 the initial state, and T a transition relation. T is a set of 4-tuple

(s , i , o, s ′), which represents a transition from s to s ′ whenever the input event i

is true, generating the output event o. The FSM model is the one that is used

for simulation, execution and formal verification. A state of the FSM model is

a stable configuration of the control points of the program. A transition from a

system state is a reaction to some input event: the reaction leads to a new stable

system. The FSM model has the advantage of exhaustively exhibiting the program

behaviors. Formal verification is the activity of proving properties of programs and

systems in a mathematical sense. In other words, verification consists in verifying

the satisfaction of a set of properties over a FSM model of the program or system

behavior.

Generally speaking, there are two types of properties that can be expressed: safety

properties (Alpern et al. 1986) and liveness properties (Alpern and Schneider 1985).

Safety properties express the fact that “something bad will never happen.” Live-

ness properties express the fact that “something good will eventually happen.” For

example, a typical safety property is ”The elevator will never move while the door

is open” and a typical liveness property is ”If someone calls the elevator, then the

elevator will eventually come”. In our experience, most of the properties are safety

ones. When liveness is concerned, it is often reducible to bounded liveness, which is

fundamentally a particular form of safety properties. Bounded liveness properties

express the fact that “something good will eventually happen in at most k times

units,” where k is a constant. For example, we can transform the liveness property

of the elevator into a bounded liveness as follows: ”If someone calls the elevator,

then the elevator will eventually come in less than 5 minutes”. Let us look into a

way to directly apply these properties to the Esterel system.

6.1 Observer Properties

In the Esterel system, the users directly express the properties using the Esterel

language. Let us consider a simple property that requires the following condition:

“At each state, if signal A and B are present, then signal C in the next state should

be present unless signal R is present. Otherwise it falls into an error state”. In

Esterel, this property is written as follows:

module OBSERVER:

input A, B, C, R;

output BUG;

loop

present [A and B] then
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pause;

abort

present C else emit BUG end

when R

else

pause

end present

end loop

end module

The pause statement waits for one time unit. The abort ... when cond construct

kills its body as soon as the condition cond is true. This formal verification consists

in checking if the signal properties such as BUG above can be emitted in some

reachable states and for some input events. If the property is violated, the Xeve

model-checker generates an input sequence of events that would have produced the

error state.

6.2 Xeve

Xeve takes as inputs the FSM model expressed as a set of boolean equations

in Blif format generated by the Esterel compiler. It makes use of the sym-

bolic state space construction algorithm by means of Binary Decision Diagrams

(BDDs) (Bryant 1986), the internal representation of an FSM model for the reach-

able state space. Xeve provides two verification functions: minimising the number

of states of the FSM model and checking the emission status of output signals.

The first function is performed with respect to an equivalence notion called sym-

bolic bisimulation (de Simone and Ressouche 1994). The second function checks two

states for output signals: possibly emitted, which means there exists a reachable con-

figuration that some inputs lead to the emitted output signals, and never emitted,

which means there exists no reachable configuration that some inputs lead to the

emitted output signals. More details on Xeve’s verification technique can be found

in (Bouali 1998).

6.3 Properties of the GSM Programs

Basically, all processing modules do their behaviors in parallel. Let us take a look

at the following example.

module GSMsource2wave

...

run source/SOURCE

||

run speechcoding/P_MOD

||

run channelcoding/P_MOD

||
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run interleaving/P_MOD

||

run ciphering/P_MOD

||

run modulation/P_MOD

||

run sink/SINK

...

end module

Unless carefully programmed, the process of a module may prevent the process of

the other modules from running due to missing signals. Let us look at Figure 10.

The performance of parallelism can be enhanced as the process of an inside module

is partitioned into two parts (i.e. the estimating and the computing function parts)

running in parallel. It requires the cautious synchronization between the process of

a module and that of another.

await Ack_from_Down;
run Estimate_Data;

emit cancel;
await S_Compute_from_Up;
run Compute_Data;

emit E_Compute_to_Down;

run Rendez_Vous;

...
end loop
emit Ack_to_Up;

end loop end loop
emit Ack_to_Up;
end loop

...
emit E_Compute_to_Down;

run Rendez_Vous;

run Compute_Data;
await S_Compute_from_Up;
emit cancel;

run Estimate_Data;
await Ack_from_Down;
...

loop
emit take;

...
loop
emit take;
...

loop
...module P_MOD :

...loop
...
module P_MOD :

[ Channel Coding ][ Speech Coding ]

*

Fig. 10. Signal passing diagram between two adjacent modules

In Figure 10, the ‘Ack from Down’ signal of the speech coding module is syn-

chronized with the ‘Ack to Up’ signal emitted by the channel coding module. As

soon as ‘Ack from Down’ is received, the estimating function is performed on the

speech coding module (i.e. run Estimate Data). The ‘S Compute from Up’ signal

on the channel coding module is synchronized with the ‘E Compute to Down’ sig-

nal emitted in the speech coding module. This synchronization activates the com-

puting function on the channel coding module (i.e. run Compute Data). However,

Estimate Data and Compute Data submodules contain loop statements including

ticks5, the number of which being consumed is determined at the run time exe-

cution. It may cause deadlock to happen by the channel coding module to miss

5 Tick introduced in Esterel is thought of as logical time which represents the activation clock
of a reactive program.
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the signal coming from the speech coding module (which corresponds to the as-

terisked arrow (∗) in Figure 10). There are occasions when the number of ticks

being consumed are not transparent to programmers. We, therefore, add an ex-

plicitly synchronizing mechanism called Rendez-Vous. As shown in Figure 10, the

‘take’ signal on the channel coding module validates Rendez-Vous submodule on

the speech coding module, which results in suspending the successive process of the

speech coding module. This delays in emitting the ‘E Compute to Down’ signal on

the speech coding module. Afterwards, on receiving the ‘cancel’ signal coming from

the channel coding module, Rendez-Vous kills this suspension.

The GSM programs process sample data; the data processed on the sources ends

up being consumed on the sinks. All modules contain loop statements, which means

that the programs may stall or may be in a situation in which some critical stage of

a task is unable to finish. This fact must be verified for the safety of the programs.

Accordingly, the requirements that should be satisfied by the above model are the

following:

R1 The signal emitted by a module is always caught by the opposite modules

(referred to as Rendez-Vous).

R2 The computed sample data on the source(s) will eventually be consumed on

the sinks.

R3 Whenever the modules receive input signals, they emit the corresponding

output signals within a bounded time-period.

Each safety property is then translated into an Esterel observer. The safety prop-

erties and the corresponding translations are as follows:

S1 Deadlock freedom: an important safety property is deadlock freedom. In the

GSM program, deadlock occurs when one misses signals that should be re-

ceived. The Rendez-Vous mechanism aims to avoid this synchronization dead-

lock by establishing an explicit synchronization between at least two signals

of modules running in parallel. To guarantee that the program will never

deadlock, it is sufficient to verify the Rendez-Vous mechanism, namely, by

checking the satisfaction of the following safety property: any state at which

the module emits ‘E Compute to Down’ is preceded by a state at which the

opposite ones are ready to receive ‘S Compute from Up’. This is stated by

the following Esterel observer:

module S1:

input ReadytoReceive, E_Compute_to_Down;

output S1_VIOLATED;

loop

await E_Compute_to_Down;

abort

emit S1_VIOLATED

when pre(ReadytoReceive);

end loop

end module
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S2 Correctness: a major scheduling task of the GSM programs is to correctly

deliver certain sample data computed on a source up to a sink by applying

a sequence of operations to the corresponding data. The procedure begins

from the source receiving ‘Ack from Down’ and ends when the sink emits

‘Ack to Up’. However, we note that all sample data computed on the source

is not always consumed by the sink in the end. In fact, a certain amount

of sample data can be skipped, depending on the specific conditions, e.g., a

missed deadline happens since it is scheduled based on soft real-time con-

straints, there are changes to a type of modulation algorithm or an event,

such as reset, occurs from the outside environment.

Each module consumes one or two ticks for an iteration of the loop statement

from the input sample data to the corresponding output sample data. The

GSM programs are divided into the operations of the transmission from source

to radio wave and back. Each of them consists of five modules plus a source

and a sink (See Figure 9). Suppose that each module consumes two ticks

for a sample data, the sink finishes computing the sample data in no more

than fourteen ticks (= D). The correctness property is as follows: for a state

receiving ‘Ack from Down’ on the source, a state emitting ‘Ack to Up’ on the

sink follows no more than D position. This is stated by the following Esterel

observer:

module S2:

constant D;

input Ack_to_Up, Ack_from_Down;

output S2_VIOLATED;

await Ack_from_Down;

abort

await D tick;

emit S2_VIOLATED

when Ack_to_Up;

end module

S3 Safety-liveness: every module behaves like a sub-reactive program which waits

for inputs and computes corresponding outputs in a cyclic manner. Each

module contains a loop statement with a certain condition to exit. There is

possibly a situation where some critical stage of a task is unable to finish,

referred to as livelock. If one module is livelocked, the other modules would

be blocked. The number of ticks being consumed for a period of receiving

and responding to inputs is proportional to the length of a path between the

module and the sink.

Figure 11 shows a signal-passing scenario of the GSM program performing

operations from source information to radio waves. All the modules except

the source and the sink wait for two input signals from the previous and next

modules: await AckfromUp&Dwn. In an initial state, the signal coming from

the next module is given as on. We consider quantifying the total number

of ticks being consumed to compute given sample data on the source up to



18 Hahnsang Kim, Thierry Turletti and Amar Bouali

the sink. Each module contains two ‘pause’ identified by ‘await tick’ and

seven modules compose a sequence of operations. Therefore, fourteen ticks

are consumed in total, which is maximum number because the courses of

operations for one sample data and another are interleaved.

await AckfromDwn
pause;
emit MarktoDwn

pause;

await AckfromUp&Dwn
pause;
emit MarktoDwn
...
await CompfromUp
pause;
emit ComptoDwn
emit AcktoUp

await AckfromUp&Dwn
pause;
emit MarktoDwn
...
await CompfromUp
pause;
emit ComptoDwn
emit AcktoUp

await AckfromUp&Dwn
pause;
emit MarktoDwn
...
await CompfromUp
pause;
emit ComptoDwn
emit AcktoUp

emit ComptoDwn
...

...

await AckfromUp
...
pause;
...
await CompfromUp
...
pause;
...
emit AcktoUp

Source Speech Coding Channel Coding Modulation Sink

Fig. 11. A signal-passing scenario of the GSM program corresponding to from

source to radio waves

Considering that each module consumes two ticks in an iteration of a loop

statement, the source receives an ack-signal in no more than fourteen ticks

(=D) and yet D is also proportional to the length of the signal passing chain.

The general form of the property is as follows: if Is holds at position j , then

Os holds at position k , for j ≤ k ≤ j + D . This is stated by the following

Esterel observer:

module S3:

constant D;

input Is, Os;

output S3_VIOLATED;

loop

await Is;

abort

await D tick;

emit S3_VIOLATED

when Os;

end loop

end module

This property can be applied separately to the source, the sink and the others.

For example, (AckfromDwn, ComptoDwn) for the source, (AckfromUp, Ack-

toUp) for the sink, and (AckfromUp&Dwn, AcktoUp) for intermediate modules

are event predicate pair (Is ,Os) being observed.

At the phase of combining the GSM programs with observers in the properties

verifying procedure, the following program is defined consisting of the GSM program

to be verified and three observers, S1, S2 and S3 to verify. In Xeve, the occurrence

of S1 VIOLATED, S2 VIOLATED, and S3 VIOLATED is checked. We note that the GSM

program is compiled directly into an executable code without modification. We will

analyze the performance of the GSM program in Section 7.

module VERIFY_PROGRAM:

constant D:=14 : integer;
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input <the program inputs>;

output <the program outputs>,

S1_VIOLATED,

S2_VIOLATED,

S3_VIOLATED;

run GSM

||

run S1

||

run S2

||

run S3

end module

6.4 Verification Process

We verified the satisfaction of the properties in the GSM programs by confirming

never emitted the property-signals including violated deadlockfreedom, vio-

lated correctness, and violated liveness using Xeve. Figure 12 shows the

result of verifying the status of the property-signals of the GSM program containing

the operations of the transmission from source to radio waves in Xeve.

Fig. 12. Screen-shot of a verification result of checking the status of output signals

Generated reachable state space of two GSM Esterel programs (one describ-

ing the operations from source to radio waves and the other describing those of

backward) amounts to 127622 and 116972 states, respectively.

The number of nodes of the BDD graphs representing these reachable state spaces
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are 66965 and 63390 respectively. It takes each program about 273 and 236 seconds-

CPU time on Linux machine with 600Mhz Pentium processor and 516 RAM to

generate the reachable state space. Note that these amounts were generated by the

combination of the properties and the implementation of the Esterel programs.

7 Performance Results

Our performance analysis in the verification process was carried out on a Pentium

600MHz machine with 512MB of core memory and 516MB of swap space on Linux

kernel 2.2.15.Esterel programs are compiled with the version 6.03 of the Esterel

compiler intoBlif formats6 and then optimized byRemlatch (Sentovich et al. 1996)

and Sis (Sentovich et al. 1992). The Remlatch processor is used to optimize the

state encoding of the circuit and Sis is used to reduce the combinational logic in-

troduced by the sequential optimisation of Remlatch. The optimized Blif code is

translated into standard C code by the Esterel compiler. The executable code7

is built up by integrating the C++ code of the data part and the above C code.

7.1 Performance Comparison

We provide the performance comparison of GSM applications built on EPspectra

and Pspectra. Figure 14 and Figure 13 show the CPU requirement for the GSM

programs to operate seven logical channels, respectively. Each logical channel in-

cludes the operations of the transmission from source information to radio waves

and back. With respect to the scheduling segment, the GSM program implemented

Fig. 13. CPU requirement (%) for 7 logical channels in EPspectra

in EPspectra consumes CPU four times more than in Pspectra. It is because

of the interface part which provides no scheduling functionality but connection be-

tween Esterel code and C++ code. Partially, the scheduling performance also

varies to a large extent of the optimization of automatically generated code from

Esterel. However, this overhead has no effect on the channel handling capability

of signal processing process. For example, in Figure 13 11.98 percent of CPU are

still available as free. Therefore, the performance in terms of the number of handled

channels is the same.

6 Berkeley Logical Interchange Format is an ASCII format developed at the university of Berkeley
to describe a logic-level hierarchical circuit in textual form.

7 The executable code is obtained by gcc version egcs-2.91.66 with the -O2 optimisation flag.
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Fig. 14. CPU requirement (%) for 7 logical channels in Pspectra

7.2 Comparison of LoC (Lines of Code)

Table 1. Comparison of loc

code \ model EPspectra Pspectra

Esterel code 1434 not used

Esterel-generated C code 10876 not used

C/C++ code for interface part 3181 not used

C++ code for control part not used 8045

Assembly code 64310 13024

Table 1 makes the comparison of the loc of the control part of EPspectra and

Pspectra for the GSM programs8. The control part of EPspectra contains 1434

lines of the Esterel code and the Esterel code is translated into the C code

corresponding to 10876 lines. The code used for the interface contains the C code

for the access to the control part and the C++ code for the access to the data part.

With comparison of the assembly code composed of only the executable code,

the loc corresponding to EPspectra is 4.9 times larger than the loc corresponding

to Pspectra. Nevertheless, given that the advantage of a general purpose system

is to use the large amount of memory, the loc is not an important issue for these

applications, as opposed to embedded applications. Instead, the cost of extra loc

can be absorbed by the benefit of the Esterel methodology: simulation and veri-

fication.

Difficulties: Programmers with EPspectra need to be familiar with program-

ming in Esterel. In addition, in terms of a degrading performance, this may be a

fundamental constraint that results from automatically generated codes. It needs

8 The code corresponding to the data part of EPspectra is the same as is used in Pspectra.
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efficient techniques such as innovative scheduling techniques.

Advantages: EPspectra, whose features include the simulation and verifica-

tion phases, facilitates the design and implementation of DSP applications. More-

over, it allows one to directly verify the actual code of Esterel programs that are

compiled into an executable code. It guarantees that the Esterel programs satisfy

the safety properties so long as all source code is proved correct and compiled to

the targeted code.

8 Related Work

(Halbwachs et al. 1992; Halbwachs et al. 1993) presented an example of specifying

and verifying a real-time program using a synchronous data-flow language, Lus-

tre. They introduced a subway control system which operates in a U-turn section.

First, the subway control system, in which two verifiable problems, collision and

derailment may happen, is specified in Lustre. Next, the critical properties are ex-

pressed as the invariance of some boolean Lustre expression. Temporal properties

are handled with the allowance of references to the past with respect to the current

instant. Once the environment representing behaviors of the subway control system

and its properties to be verified are done in Lustre, they are verified whether

the assertions are true or false using Lesar, its associated verification tool. The

verification process runs relying on ’standard’ model checking (Clarke et al. 1986)

which leads to explicitly enumerating the reachable states and symbolic model

checking (Burch et al. 1990) which starts from a boolean formula and iteratively

computes a sequence of formulas. The advantage of the work is that there is no

manual transformation between the program that is verified and the code that is

executed.

(Halbwachs et al. 1997) presented linear relation analysis applied to the verifica-

tion of quantitative time properties of both synchronous programs and linear hybrid

systems.

(Jeannet et al. 1999) proposed to dynamically select a suitable partitioning ac-

cording to the property to be proved, avoiding exponential explosion of the analysis

caused by in-depth detailed partitioning.

(Raymond et al. 1998; Halbwachs and Raymond 1999) proposed to use synchronous

observers to express both the relevance and the correctness of the test sequences.

The relevance observer is used to randomly choose inputs satisfying temporal as-

sumptions about the environment.

(Benveniste et al. 1992; Borgne et al. 1996) presented an example of verification

of real-time applications, using a synchronous language, Signal. The overall pro-

cedure from programming to verification is similar to that using Lustre. Signal

approach provides the ease of implementing distributed systems including the fea-

tures of proof and compilation.
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9 Discussion

We have presented EPspectra for DSP applications development and verifica-

tion. EPspectra methodology achieves a substantial principle of what we prove

is what we execute (Berry 1989) straightforwardly; there is no gap between the

program which is verified and the code which is executed. All specification, simula-

tion, verification and execution are performed in it. We have also demonstrated the

implementation and verification of the radio interface part of a GSM BTS using

EPspectra. The performance results are promising in that the benefit from the

verification functionality absorbs the impact on the overhead of automated gener-

ated code.

In future work, we shall experiment with the automatic test-generation feature.

The Esterel model-checkerXeve provides an automatic test-cases generation fea-

ture that can further reduce the time cost of the testing phase (Arditi et al. 1999):

the generated test-cases are such that the Esterel FSM model’s states are totally

covered, that is, every state of the model is visited and stimulated at least once

by the test cases. With these test cases, the developers can detect more potential

tricky bugs called corner cases, which are particularly hard to write a test case for.

We shall also attempt to verify timing constraints considering that the appli-

cations developed by EPspectra correspond to time-sensitive systems based on

either hard real-time constraints or soft real-time constraints. The method intro-

duced in (Closse et al. 2001) can be used to verify quantitative timing constraints

by using a time-driven automata.
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Appendix A. Glossary

MS The GSM mobile station (or mobile phone) communicates with other parts

of the system through the base-station system.

GSM Global System for Mobile communications is the European standard for dig-

ital cellular telephone service.

BTS The Base Transceiver Station handles the radio interface to the mobile sta-

tion. The base transceiver station is the radio equipment (transceivers and

antennas).

BSS GSM Base Station Subsystem provides the interface between the GSM mobile

phone and other parts of the GSM network. It consists of one or more base

transceiver station (BTS) and one or more base station controller (BSC).

NSS Network SubSystem performs the switching of calls between the mobile users,

and between mobile and fixed network users.

MSC Mobile Switching Center performs the telephony switching functions of the

system. It also performs such functions as toll ticketing, network interfacing,

common channel signalling, and others.

BSC Base Station Controller provides the control functions and physical links be-

tween the MSC and BTS. It provides functions such as handover, cell config-

uration data and control of RF power levels in base transceiver stations.

HLR Home Location Register database is used for storage and management of

subscriptions. The home location register stores permanent data about sub-

scribers, including a subscriber’s service profile, location information, and

activity status.

VLR Visitor Location Register database contains temporary information about

subscribers that is needed by the MSC in order to service visiting subscribers.
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EIR Equipment Identity Register database contains information on the identity

of mobile equipment to prevent calls from stolen, unauthorized or defective

mobile stations.

AuC Authentication Center provides authentication and encryption parameters

that verify the user’s identity and ensure the confidentiality of each call.

DSP Digital Signal Processing are specialized computer chips designed to perform

speedy and complex operations on digitized waveforms. It is used in processing

sound, such as voice phone calls, and video.

RPE/LTP Regular Pulse Excitation with Long Term Prediction is used by GSM for full

rate speech coding.

GMSK Gaussian Minimum Shift Keying is the modulation technique used in GSM

networks. It employs a form of FSK (Frequency Shift Keying).

GuPPI General Purpose PCI I/O is the PCI appliance base for the SpectrumWare

project. Its function is to provide an efficient means for moving a continu-

ous stream of sampled data between a workstation’s main memory and an

application-specific analog daughtercard.

See URL: http://www.sds.lcs.mit.edu/SpectrumWare/guppi.html.

QAM Quadrature Amplitude Modulation is a method for encoding digital data in

an analog signal in which each combination of phase and amplitude represents

one of sixteen four bit patterns. This is required for fax transmission at 9600

bits per second. This constellation, and therefore the number of bits which

can be transmitted at once, can be increased for higher bit rates and faster

throughput, or decreased for more reliable transmission with fewer bit errors.

The number of ”dots” in the constellation is given as a number before the

QAM, and is always two to the power of an integer from one (2QAM) to

twelve (4096QAM). 64QAM is often used in digital cable television and cable

modem applications.

Appendix B. Source Code

The complete source code of EPspectra is available in a public domain for the

purpose of research. See http://www.inria.fr/planete/hkim/epspectra/. The

GSM radio interface implementation consists of the downlink and uplink part. We

present main Esterel and C code of the downlink part, respectively, in Appendix

B.1 and B.2. The Esterel code in Appendix B.1 is the one that is verified and com-

piled/executed. Once it is translated into the corresponding C code with Esterel

compiler, main function in Appendix B.2 calls the DNLINK function originated

from the Esterel code. Each time DNLINK() is called in main function, a logical

unit that is identified by the statement from a ’tick’ to the next is executed in

Esterel code.

B.1 Downlink Esterel code

%##########################################################

%# This module is downlink application with data flow model.

http://www.sds.lcs.mit.edu/SpectrumWare/guppi.html
http://www.inria.fr/planete/hkim/epspectra/
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%##########################################################

module DNLINK:

type StrlSampleRange;

type UnsignedLL;

type UnsignedLong;

constant INITIAL_RANGE:StrlSampleRange;

constant INITIAL_UNSIGNEDLL:UnsignedLL;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% parameter of modules

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

constant RATE1 = 32000 : integer; %{160*50}%

constant RATE2 = 6600 : integer; %{33*50}%

constant RATE3 = 91200: integer; %{456*50}%

constant RATE4 = 118400: integer; %{592*50}%

constant RATE5 = 177600: integer; %{148*6*50}%

input on_TimeConstraint:integer;

input IP_Addr:string;

input User_Quit;

input InitRange:StrlSampleRange; %{0 1600}%

inputoutput FileSource_module:string;

inputoutput SpeechCoder_module:string;

inputoutput ChannelCoder_module:string;

inputoutput Interleaver_module:string;

inputoutput Cipher_module:string;

inputoutput Modulator_module:string;

inputoutput UDPSink_module:string;

function GET_FILESOURCE(string,integer):string;

function GET_SPEECHCODER():string;

function GET_CHANNELCODER():string;

function GET_INTERLEAVER():string;

function GET_CIPHER():string;

function GET_MODULATOR():string;

function GET_UDPSINK(string,integer):string;

procedure CONNECT_MODULES()(string,string,integer,integer);

procedure INITIAL_SINK()(string);

%

% body part

%
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signal Mark_src2spcoder:=INITIAL_RANGE:StrlSampleRange,

Mark_spcoder2chcoder:=INITIAL_RANGE:StrlSampleRange,

Mark_chcoder2inleaver:=INITIAL_RANGE:StrlSampleRange,

Mark_inleaver2cipher:=INITIAL_RANGE:StrlSampleRange,

Mark_cipher2mod:=INITIAL_RANGE:StrlSampleRange,

Mark_mod2snk:=INITIAL_RANGE:StrlSampleRange,

Compute_src2spcoder, Compute_spcoder2chcoder,

Compute_chcoder2inleaver, Compute_inleaver2cipher,

Compute_cipher2mod, Compute_mod2snk,

Ack_snk2mod:=INITIAL_RANGE:StrlSampleRange,

Ack_mod2cipher:=INITIAL_RANGE:StrlSampleRange,

Ack_cipher2inleaver:=INITIAL_RANGE:StrlSampleRange,

Ack_inleaver2chcoder:=INITIAL_RANGE:StrlSampleRange,

Ack_chcoder2spcoder:=INITIAL_RANGE:StrlSampleRange,

Ack_spcoder2src:=INITIAL_RANGE:StrlSampleRange,

RDV_snk2mod, RDV_mod2cipher, RDV_cipher2inleaver,

RDV_inleaver2chcoder, RDV_chcoder2spcoder,

RDV_spcoder2src,Ready2Receive

in

%%%%%%%%%%%%%%%%%%%%%

% create modules

%%%%%%%%%%%%%%%%%%%%%

abort

await IP_Addr;

emit FileSource_module(GET_FILESOURCE("papin2.au",0));

emit SpeechCoder_module(GET_SPEECHCODER());

emit ChannelCoder_module(GET_CHANNELCODER());

emit Interleaver_module(GET_INTERLEAVER());

emit Cipher_module(GET_CIPHER());

emit Modulator_module(GET_MODULATOR());

emit UDPSink_module(GET_UDPSINK(?IP_Addr,5001));

%%%%%%%%%%%%%%%%%%%%%%%%%%

% make topology

%%%%%%%%%%%%%%%%%%%%%%%%%%

call CONNECT_MODULES()(?UDPSink_module,?Modulator_module,RATE5,8);

call CONNECT_MODULES()(?Modulator_module,?Cipher_module,RATE4,8);

call CONNECT_MODULES()(?Cipher_module,?Interleaver_module,RATE4,8);

call CONNECT_MODULES()(?Interleaver_module,?ChannelCoder_module,RATE3,8);

call CONNECT_MODULES()(?ChannelCoder_module,?SpeechCoder_module,RATE2,8);

call CONNECT_MODULES()(?SpeechCoder_module,?FileSource_module,RATE1,8);

call INITIAL_SINK()(?UDPSink_module);

await InitRange;

%%%%%%%%%%%%%%%%%%%%%%%%%%

% initialize parameters
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%%%%%%%%%%%%%%%%%%%%%%%%%%

[

emit Ack_spcoder2src(?InitRange);

||

run FileSource/

SOURCE[signal FileSource_module/Name;

signal Mark_src2spcoder/E_Mark_to_Down;%{mark1}%

signal Compute_src2spcoder/E_Compute_to_Down;

signal Ack_spcoder2src/Ack_From_Down;

signal RDV_spcoder2src/snooping%{;

signal FileSource_COMPUTEDSR/ComputedSRange}%];

||

run SpeechCoder/

P_MOD[signal SpeechCoder_module/Name;

signal Mark_src2spcoder/S_Mark_from_Up;%{mark1}%

signal Compute_src2spcoder/S_Compute_from_Up;%{}%

signal Ack_spcoder2src/Ack_to_Up;%{}%

signal RDV_spcoder2src/sig_on;%{}%

signal Ready2Receive/Ready2Receive;

signal Mark_spcoder2chcoder/E_Mark_to_Down;%{mark2}%

signal Compute_spcoder2chcoder/E_Compute_to_Down;%{wire2}%

signal Ack_chcoder2spcoder/Ack_From_Down;%{wire3}%

signal RDV_chcoder2spcoder/snooping%{;

signal SpeechCoder_COMPUTEDSR/ComputedSRange}%];

||

run ChannelCoder/

P_MOD[signal ChannelCoder_module/Name;

signal Mark_spcoder2chcoder/S_Mark_from_Up;%{mark2}%

signal Compute_spcoder2chcoder/S_Compute_from_Up;%{wire2}%

signal Ack_chcoder2spcoder/Ack_to_Up;%{wire3}%

signal RDV_chcoder2spcoder/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_chcoder2inleaver/E_Mark_to_Down;%{snk1}%

signal Compute_chcoder2inleaver/E_Compute_to_Down;%{}%

signal Ack_inleaver2chcoder/Ack_From_Down;%{from sink1}%

signal RDV_inleaver2chcoder/snooping%{;

signal ChannelCoder_COMPUTEDSR/ComputedSRange}%];

||

run Interleaver/

P_MOD[signal Interleaver_module/Name;

signal Mark_chcoder2inleaver/S_Mark_from_Up;%{mark2}%

signal Compute_chcoder2inleaver/S_Compute_from_Up;%{wire2}%

signal Ack_inleaver2chcoder/Ack_to_Up;%{wire3}%

signal RDV_inleaver2chcoder/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;
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signal Mark_inleaver2cipher/E_Mark_to_Down;%{snk1}%

signal Compute_inleaver2cipher/E_Compute_to_Down;%{}%

signal Ack_cipher2inleaver/Ack_From_Down;%{from sink1}%

signal RDV_cipher2inleaver/snooping%{;

signal Interleaver_COMPUTEDSR/ComputedSRange}%];

||

run Cipher/

P_MOD[signal Cipher_module/Name;

signal Mark_inleaver2cipher/S_Mark_from_Up;%{mark2}%

signal Compute_inleaver2cipher/S_Compute_from_Up;%{wire2}%

signal Ack_cipher2inleaver/Ack_to_Up;%{wire3}%

signal RDV_cipher2inleaver/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_cipher2mod/E_Mark_to_Down;%{snk1}%

signal Compute_cipher2mod/E_Compute_to_Down;%{}%

signal Ack_mod2cipher/Ack_From_Down;%{from sink1}%

signal RDV_mod2cipher/snooping%{;

signal Cipher_COMPUTEDSR/ComputedSRange}%];

||

run Modulator/

P_MOD[signal Modulator_module/Name;

signal Mark_cipher2mod/S_Mark_from_Up;%{mark2}%

signal Compute_cipher2mod/S_Compute_from_Up;%{wire2}%

signal Ack_mod2cipher/Ack_to_Up;%{wire3}%

signal RDV_mod2cipher/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_mod2snk/E_Mark_to_Down;%{snk1}%

signal Compute_mod2snk/E_Compute_to_Down;%{}%

signal Ack_snk2mod/Ack_From_Down;%{from sink1}%

signal RDV_snk2mod/snooping%{;

signal Modulator_COMPUTEDSR/ComputedSRange}%];

||

run UDPSink/

SINK[signal UDPSink_module/Name;

signal Mark_mod2snk/S_Mark_from_Up;%{snk2}%

signal Compute_mod2snk/S_Compute_from_Up;

signal Ack_snk2mod/Ack_to_Up;

signal RDV_snk2mod/sig_on;

signal Ready2Receive/Ready2Receive%{;

signal UDPSink_COMPUTEDSR/ComputedSRange}%];

]

when User_Quit

end signal

end module
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B.2 Downlink main C code

#include <stdio.h>

#include <sys/time.h>

#include "GSM_DNLINK.h"

main(int argc,char** argv){

char *addr=(char *)malloc(sizeof(char[16]));

if (argc < 2)

strcpy(addr,"localhost");

else

strcpy(addr,argv[1]);

DNLINK();

DNLINK_I_IP_Addr(addr);

DNLINK();

DNLINK_I_InitRange("0 1600");

while(1)

DNLINK();

}
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