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Abstract. Answer set programming (ASP) with disjunction offers a powerful tool for declaratively rep-
resenting and solving hard problems. ManyNP-complete problems can be encoded in the answer set
semantics of logic programs in a very concise and intuitive way, where the encoding reflects the typical
“guess and check” nature ofNP problems: The property is encoded in a way such that polynomial size
certificates for it correspond to stable models of a program.However, the problem-solving capacity of
full disjunctive logic programs (DLPs) is beyondNP, and captures a class of problems at the second
level of the polynomial hierarchy. While these problems also have a clear “guess and check” structure,
finding an encoding in a DLP reflecting this structure may sometimes be a non-obvious task, in particu-
lar if the “check” itself is a co-NP-complete problem; usually, such problems are solved by interleaving
separate guess and check programs, where the check is expressed by inconsistency of the check pro-
gram. In this paper, we present general transformations of head-cycle free (extended) disjunctive logic
programs into stratified and positive (extended) disjunctive logic programs based on meta-interpretation
techniques. The answer sets of the original and the transformed program are in simple correspondence,
and, moreover, inconsistency of the original program is indicated by a designated answer set of the
transformed program. Our transformations facilitate the integration of separate “guess” and “check”
programs, which are often easy to obtain, automatically into a single disjunctive logic program. Our
results complement recent results on meta-interpretationin ASP, and extend methods and techniques
for a declarative “guess and check” problem solving paradigm through ASP.
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1 Introduction

Answer set programming (ASP) [35, 15, 26, 29, 31], also called A-Prolog [1, 2, 16], is widely proposed as
a useful tool for solving problems in a declarative manner, by encoding the solutions to a problem in the
answer sets of a normal logic program. By well-known complexity results, in this way all problems with
complexity inNP can be expressed and solved [39, 28]; see also [6].

A frequently considered example of anNP-complete problem which can be elegantly solved in ASP
is Graph-3-Colorability, i.e., deciding whether some given graphG is 3-colorable. It is an easy exercise
in ASP to write a program which determines whether a graph is 3-colorable. A straightforward encoding,
following the “Guess and Check” [8, 23] respectively “Generate/Define/Test” approach [26], consists of two
parts:

• A “guessing” part, which assigns nondeterministically each node of the graph one of three colors:

col(red, X) v col(green, X) v col(blue, X) :- node(X).

• and a “checking” part, which tests whether no adjacent nodeshave the same color:

:-edge(X, Y), col(C, X), col(C, Y).

Here, the graphG is represented by a set of factsnode(x) andedge(x, y). Each legal 3-coloring ofG is
a polynomial-size “proof” of its 3-colorability, and such agiven proof can be validated in polynomial time.
Furthermore, the answer sets of this program yield all legal3-colorings of the graphG.

However, we might encounter situations in which we want to express a problem which is complementary
to someNP problem, and thus belongs to the class co-NP. It is widely believed that in general, not all
problems in co-NP are inNP, and hence that it is not always the case that a polynomial-size “proof” of
a co-NP propertyP exists which can be verified in polynomial time. For such problems, we thus can
not write a (polynomial-size propositional) normal logic program in ASP which guesses and verifies in its
answer sets possible “proofs” ofP . One such property, for instance, is the co-NP-complete property that a
given graph isnot 3-colorable. However, this and similar propertiesP can be dually expressed in ASP in
terms of whether a normal logic program (equivalently, a head-cycle free disjunctive logic program [3])ΠP

has no answer set if and only if the propertyp holds.
Properties that are co-NP-complete often occur within the context of problems that reside in the class

ΣP
2 , which is aboveNP in the polynomial time hierarchy [33]. In particular, the solutions of aΣP

2 -complete
problem can be typically singled out from given candidate solutions by testing a co-NP-complete property.
Some well-known examples of suchΣP

2 -complete problems are the following ones, which will be further
detailed in Section 6:

Quantified Boolean Formulas: Evaluating a Quantified Boolean formula (QBF) of the form
∃X∀Y Φ(X,Y ), where Φ(X,Y ) is a disjunctive normal form over propositional variables
X ∪ Y . Here, a solution is a truth value assignmentσ to the variablesX such that the formula
∀Y Φ(σ(X), Y ) evaluates to true, i.e.,Φ(σ(X), Y ) is a tautology. Given a candidate solutionσ, the
co-NP-complete property to check here is whetherΦ(σ(X), Y ) is a tautology.

Strategic Companies: Computing strategic companies sets [8, 23]. Roughly, here the problem is to com-
pute, given a set of companiesC in a holding, a minimal subsetS ⊆ C which satisfies some con-
straints concerning the production of goods and control of companies. Any such set is called strategic;
Given a candidate solutionS which satisfies the constraints, the co-NP-complete property to check
here is the minimality, i.e., that no setS′ ⊂ S exists which also satisfies the constraints.
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Conformant Planning: Computing conformant plans under incomplete information and nondeterministic
action effects. Here the problem is to generate from a description of the initial stateI, the planning
goalG, and the actionsα and their effects a sequence of actions (a plan)P = α1, . . . , αn which
carries the agent from the initial state to a goal-fulfillingstate under all contingencies, i.e., regardless
of the precise initial state and how non-deterministic actions work out. Given a candidate solution
in terms of anoptimisticplanP , which works undersomeexecution [10], the property to check is
whether it works underall executions, i.e., whether it is conformant [17]. The latterproblem is in
co-NP, provided that executability of actions is polynomially decidable, cf. [10, 40].

This list can be extended, and further examples can be found,e.g., in [13, 12, 18, 38].
The problems described above can be solved using ASP in a two-step approach as follows:

1. Generate a candidate solutionS by means of a logic programΠguess.

2. Check the solutionS by “running” another logic programΠcheck (=Πp) on S, such thatΠcheck ∪ S
has no answer set if and only ifS is a valid solution.

The respective programsΠcheck can be easily formulated (cf. Section 6).
On the other hand, ASP with disjunction, i.e. full extended disjunctive logic programming, allows one

to formulate problems inΣP
2 in asingle(disjunctive) program, since this formalism captures the complexity

classΣP
2 , cf. [6, 13]. Hence, efficient ASP engines such asDLV [23] or GNT [21] can be used to solve such

programs directly in a one-step approach.
A difficulty here is that sometimes, an encoding of a problem in a single logic program (e.g., for the

conformant planning problem above) may not be easy to find. This raises the issue whether there exists
an (effective) possibility tocombineseparateΠguess andΠcheck programs into a single programΠsolve,
such that this unified program computes the same set of solutions as the two-step process outlined above.
A potential benefit of such a combination is that the space of candidate solutions might be reduced in the
evaluation due to its interaction with the checking part. Furthermore, automated program optimization
techniques may be applied which consider both the guess and check part as well as the interactions between
them. This is not possible for separate programs.

The naive attempt of taking the unionΠguess ∪Πcheck unsurprisingly fails: indeed, each desired answer
set ofΠguess would be eliminated byΠcheck (assuming that, in a hierarchical fashion,Πcheck has no rules
defining atoms fromΠguess). Therefore, some program transformation is necessary. A natural question
here is whether it is possible to rewriteΠcheck to some other programΠ′

check such that an integrated logic
programΠsolve = Πguess ∪Π′

check is feasible, and, moreover, whether this can be done automatically.
From theoretical complexity results about disjunctive logic programs cf. [6, 13], one can infer that the

programΠ′
check should be truly disjunctive in general, i.e., not rewritable to an equivalent non-disjunctive

program in polynomial time. This and further considerations (see Section 3) provide some evidence that a
suitable rewriting ofΠcheck to Π′

check is not immediate.
In this paper, we therefore address this issue and present a generic method for constructing the program

Π′
check by using a meta-interpreter approach. In particular, we make the following contributions:

(1) We provide a transformationtr(Π) from propositional head-cycle-free [3] (extended) disjunctive
logic programs (HDLPs)Π to disjunctive logic programs (DLPs), which enjoys the properties that the
answer sets oftr(Π) encode the answer sets ofΠ, if Π has some answer set, and thattr(Π) has a canonical
answer set otherwise which is easy to recognize. The transformation tr(Π) is polynomial and modular in
the sense of [19], and employs meta-interpretation ofΠ.
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Furthermore, we describe variants and modifications oftr(Π) aiming at optimization of the transformation.
In particular, we present a transformation to positive DLPs, and show that in a precise sense, modular
transformations to such programs do not exist.

(2) We show how to usetr(·) for integrating separate guess and check programsΠguess andΠcheck,
respectively, into a single DLPΠsolve such that the answer sets ofΠsolve yield the solutions of the overall
problem.

(3) We demonstrate the method on the examples of QBFs, the Strategic Companies problem, and confor-
mant planning [17] under fixed polynomial plan length (cf. [10, 40]). Our method proves useful to loosen
some restrictions of previous encodings, and to obtain disjunctive encodings for more general problem
classes.

(4) We compare our approach on integrating separate guess and check programs experimentally against
existing ad hoc encodings for QBFs and Strategic Companies and also applying it to conformant planning,
where no such ad hoc encodings were known previously. For these experiments, we useDLV [23], a state-of-
the-art Answer Set engine for solving DLPs. The results which we obtained reveal interesting aspects: While
as intuitively expected, efficient ad hoc encodings have better performance than the synthesized integrated
encodings in general, there are also cases where the performances scale similarly (i.e., the synthesized
encoding is within a constant factor), or where even ad hoc encodings from the literature are outperformed.

Our results contribute to further the “Guess and Check” resp. “Generate/Define/ Test” paradigms for
ASP, and fill a gap by providing an automated construction forintegrating guess and check programs. They
relieve the user from the burden to use sophisticated techniques such as saturation, as employed e.g. in
[13, 8, 24], in order to overcome the technical intricacies in combining natural guess and check parts into a
single program. Furthermore, our results complement recent results about meta-interpretation techniques in
ASP, cf. [28, 7, 9].

The rest of this paper is organized a follows. In the next section, we very briefly recall the necessary
concepts and fix notation. After that, we present in Section 3our transformationtr(Π) of a “checking”
programΠ into a disjunctive logic program. We start there with makingthe informal desirable properties
described above more precise, present the constituents oftr(Π), the factual program representationF (Π)
and a meta-interpreterΠmeta, and prove that our transformation satisfies the desirable properties. Section 4
thereafter is devoted to modifications towards optimization. In Section 5, we show how to synthesize sepa-
rate guess and check programs to integrated encodings. Several applications are considered in Section 6, and
experimental results for these are reported in Section 7. The final Section 8 gives a summary and presents
issues for further research.

2 Preliminaries

We assume that the reader is familiar with logic programmingand answer set semantics, see [15, 35], and
only briefly recall the necessary concepts.

A literal is an atoma(t1, . . . , tn), or its negation¬a(t1, . . . , tn), where “¬” is the strong negation
symbol, for which we also use the customary “–”, in a function-free first-order language (including at least
one constant), which is customarily given by the programs considered. We write|a| = |¬a| = a to denote
the atom of a literal.
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Extended disjunctive logic programs (EDLPs; or simply programs) are disjunctive logic programs with
default (weak) and strong negation, i.e., finite setsΠ of rulesr

h1v . . . v hl :- b1, . . . , bm, not bm+1, . . . not bn. (1)

l,m, n ≥ 0, where eachhi andbj is a literal andnot is weak negation (negation as failure). ByH(r) =
{h1, . . . , hl}, B+(r) = {b1, . . . , bm}, B−(r) = {bm+1, . . . , bn}, andB(r) = B+(r) ∪ B−(r) we denote
the head and (positive, resp. negative) body of ruler. Rules with|H(r)|=1 andB(r)=∅ are calledfactsand
rules withH(r)=∅ are calledconstraints. For convenience, we omit “extended” in what follows and refer
to EDLPs as DLPs etc.

Literals (resp. rules, programs) areground if they are variable-free. Non-ground rules (resp. programs)
amount to theirground instantiation, i.e., all rules obtained by substituting variables with constants from the
(implicit) language.

Rules (resp. programs) arepositive, if “ not” does not occur in them, andnormal, if |H(r)| ≤ 1. A
ground programΠ is head-cycle free[3], if no literals l 6= l′ occurring in the same rule head mutually
depend on each other by positive recursion;Π is stratified [36, 37], if no literall depends by recursion
through negation on itself (counting disjunction as positive recursion).

Theanswer set semantics[15] for DLPs is as follows. Denote byLit(Π) the set of all ground literals for
a programΠ. Consider first positive (ground) programsΠ. Let S ⊆ Lit(Π) be a set of consistent literals.
Such a setS satisfies a positive ruler, if H(r) ∩ S 6= ∅ wheneverB+(r) ⊆ S. An answer setfor Π then
is a minimal (under⊆) setS satisfying all rules.1 To extend this definition to programs with weak negation,
thereductΠS of a programΠ with respect to a set of literalsS is the set of rules

h1 v . . . v hl :- b1, . . . , bm

for all rules (1) inΠ such thatS ∩B−(r) = ∅. ThenS is ananswer setof Π, if S is an answer set forΠS .
There is a rich literature on characterizations of answer sets of DLPs and restricted fragments; for our

concerns, we recall here the following characterization of(consistent) answer sets for HDLPs, given by
Ben-Eliyahu and Dechter [3]:

Theorem 1 Given a ground HDLPΠ, a consistentS ⊆ Lit(Π) is an answer set iff

1. S satisfies each rule inΠ, and

2. there is a functionφ : Lit(Π) 7→ N such that for each literall in S there is a ruler in Π with

(a) B+(r) ⊆ S

(b) B−(r) ∩ S = ∅

(c) l ∈ H(r)

(d) S ∩ (H(r) \ {l}) = ∅

(e) φ(l′) < φ(l) for eachl′ ∈ B+(r)

We will use Theorem 1 as a basis for the transformationtr(Π) in the next section.

1We disregard a possible inconsistent answer set, which is not of much interest for our concerns.
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3 Meta-Interpreter Transformation

As discussed in the Introduction, rewriting a given check programΠcheck to a programΠ′
check for integration

with a separate guess programΠguess into a single programΠsolve = Πguess ∪ Π′
check can be difficult in

general. The problem is that the working of the answer set semantics, to be emulated inΠ′
check, is not easy

to express there.
One difficulty is that for a given answer setS of Πguess, we have to test thenon-existenceof an answer

set ofΠcheck with respect toS, whileΠsolve should have an answer setextendingS to Π′
check if the check

succeeds. A possibility to work around this problem is to design Π′
check in a way such that it has a dummy

answer set with respect toS if the check ofΠcheck onS succeeds, and no answer set if the check fails, i.e.,
if Πcheck has some answer set onS. While this may not look to be very difficult, the following observations
suggest that this is not straightforward.

SinceΠsolve may need to solve aΣP
2 -complete problem, any suitable programΠ′

check must be truly
disjunctive in general, i.e., contain disjunctions which are not head-cycle free (assuming that no head literal
in Π′

check occurs inΠguess). Indeed, if bothΠguess andΠ′
check are head-cycle free, then alsoΠsolve =

Πguess ∪Π′
check is head-cycle free, and thus can only express a problem inNP.

Furthermore, we can make inΠ′
check only limited use of default negation on atoms which do not occur

in Πguess. The reason is that upon a “guess”S for an answer set ofΠsolve = Πguess ∪ Π′
check, the reduct

ΠS
solve is not-free. Contrary to the case ofΠcheck in the two-step approach, it is not possibile to explicitly

consider for a guessSguess of an answer set ofΠguess varying extensionsS = Sguess ∪ S′
check to the whole

programΠsolve which activate different rules inΠ′
check (e.g., unstratified clausesa:-not b andb:-nota

encoding a choice amonga andb). Therefore, default negation in rules ofΠcheck must be handled with care
and might cause major rewriting as well.

These observations provide some evidence that a rule-rewriting approach for obtainingΠ′
check from

Πcheck may be complicated. For this reason, we adopt at a generic level a Meta-interpreter approach, in
which the co-NP-check modeled byΠcheck is “emulated” by a minimality check for a positive DLPΠ′

check.

3.1 Basic approach

The considerations above lead us to an approach in which the programΠ′
check is constructed by the use of

meta-interpretation techniques [28, 7, 9]. The idea behindmeta-interpretation is here that a programΠ is
represented by a set of facts,F (Π), which is input to a fixed programΠmeta, the meta-interpreter, such
that the answer sets ofΠmeta ∪ F (Π) correspond to the answer sets ofΠ. Note that the meta-interpreters
available are normal logic programs (including arbitrary negation), and can not be used for our purposes
for the reasons explained above. We thus have to construct a novel meta-interpreter which is essentially
not-free, i.e. uses negation as failure only in a restricted way, and contains disjunction.

Basically, we present a general approach to translate normal LPs and HDLPs into stratified disjunctive
logic programs. To this end, we exploit Theorem 1 as a basis for a transformationtr(Π) from a given HDLP
Π to a DLPtr(Π) = F (Π) ∪ Πmeta such thattr(Π) fulfills the properties mentioned in the introduction.
More precisely, it will satisfy the following properties:

T0 tr(Π) is computable in time polynomial in the size ofΠ.

T1 Each answer setS′ of the transformed programtr(Π) corresponds to an answer setS of Π, such that
S = {l | inS(l) ∈ S′} for some predicateinS(·), providedΠ is consistent, and conversely, each
answer setS of Π corresponds to some answer setS′ of tr(Π) such thatS = {l | inS(l) ∈ S′}.
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T2 If the programΠ has no answer set, thentr(Π) has exactly one designated answer setΩ, which is easily
recognizable.

T3 The transformation is of the formtr(Π) = F (Π) ∪Πmeta, whereF (Π) is a factual representation ofΠ
andΠmeta is a fixed meta-interpreter.

T4 tr(Π) is modular (at the syntactic level), i.e.,tr(Π) =
⋃

r∈Π tr(r) holds. Moreover,tr(Π) returns a
stratified DLP [36, 37] which uses negation only in its “deterministic” part.

Note that propertiesT0 – T4 for tr(·) are similar yet different from the notion of polynomial faithful
modular (PFM) transformation by Janhunen [19, 20], which isa functionTr mapping a class of logic
programsC to another classC′ of logic programs (whereC′ is assumed to be a subclass or superclass of
C), such that the following three conditions hold: (1) For each programΠ ∈ C, Tr(Π) is computable in
polynomial time in the size ofΠ (calledpolynomiality), (2) the Herbrand base ofΠ, Hb(Π), is included in
the Herbrand base ofTr(Π), Hb(Tr(Π)) and the models/interpretations ofΠ andTr(Π), are in one-to-one
correspondence and coincide up toHb(Π) (faithfulness), and (3)Tr(Π1 ∪ Π2) = Tr(Π1) ∪ Tr(Π2) for all
programsΠ1,Π1 in C andC′ ⊆ C impliesTr(Π) = Π for all Π in C′ (modularity).

Compared to PFM, also our transformationtr(·) is polynomially computable byT0 and hence satisfies
condition 1). Moreover, byT4 and the fact that stratified disjunctive programs are not necessarily head-cycle
free, it also satisfies condition 3). However, condition 2) fails. Its first part, thatHb(Π) ⊆ Hb(tr(Π)) and
that answer sets coincide onLit(Π) could be fulfilled by adding rulesl :- inS(l) for everyl ∈ Lit(Π));
these polynomially many rules could be added during input generation. The second part of condition 2)
is clearly in contradiction withT2, since forΩ never a corresponding answer set ofΠ exists. Moreover,
conditionT1 is a weaker condition than the one-to-one correspondence between the answer sets ofΠ and
tr(Π) required for faithfulness: In fact, in caseΠ has positive cycles, there might be several possible guesses
for φ for an answer setS of Π in Theorem 1 reflected by different answer sets oftr(Π). We illustrate this
by a short example:

Example 1 LetΠ be the program consisting of the following four rules:

r1 : a :- b. r2 : b :- a. r3 : a. r4 : b.

Then, Π has a single answer setS = {a, b}, while tr(Π) has two answer sets such thatS1 =
{inS(a), inS(b), phi(a, b), . . .} andS2 = {inS(a), inS(b), phi(b, a), . . .}, intuitively reflecting that here
the order of applications of rulesr1 andr2 does not matter, although they are cyclic.

We remind that the different properties of our transformation tr(·) and PFM transformations is not
an accident but a necessary feature, since we want to expressnonexistence of certain answer sets via the
transformation, and not merely preserve the exact semantics as targeted by PFM. Apart from this different
objective, the other properties involved (polynomiality and modularity) are in effect the same.

3.2 Input representationF (Π)

As input for our meta-interpreterΠmeta, which will be introduced in the next subsection, we choose the
representationF (Π) of the propositional programΠ defined below. We assume that each ruler has a
unique namen(r); for convenience, we identifyr with n(r).

Definition 1 LetΠ be any ground (propositional) HDLP. The setF (Π) consists of the facts
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lit(h,l, r). atom(l,|l|). for each literall ∈ H(r),
lit(p,l, r). for each literall ∈ B+(r),
lit(n,l, r). for each literall ∈ B−(r),

for every ruler ∈ Π.

While the facts for predicatelit obviously encode the rules ofΠ, the facts for predicateatom indicate
whether a literal is classically positive or negative. We only need this information for head literals; this will
be further explained below.

3.3 Meta-Interpreter Πmeta

We construct our meta-interpreter programΠmeta, which in essence is a positive disjunctive program, in a
sequence of several steps. They center around checking whether a guess for an answer setS ⊆ Lit(Π),
encoded by a predicateinS(·), is an answer set ofΠ by testing the criteria of Theorem 1. The steps of the
transformation cast the various conditions there into rules ofΠmeta, and also provide auxiliary machinery
which is needed for this aim.

Step 1 We add the following preprocessing rules:

1: rule(L,R) :- lit(h,L,R), not lit(p,L,R), not lit(n,L,R).

2: ruleBefore(L,R) :- rule(L,R), rule(L,R1), R1 < R.
3: ruleAfter(L,R) :- rule(L,R), rule(L,R1), R < R1.
4: ruleBetween(L,R1,R2) :- rule(L,R1), rule(L,R2), rule(L,R3),

R1 < R3, R3 < R2.

5: firstRule(L,R) :- rule(L,R), not ruleBefore(L,R).
6: lastRule(L,R) :- rule(L,R), not ruleAfter(L,R).
7: nextRule(L,R1,R2) :- rule(L,R1), rule(L,R2), R1 < R2,

not ruleBetween(L,R1,R2).

8: before(HPN,L,R) :- lit(HPN,L,R), lit(HPN,L1,R), L1 < L.
9: after(HPN,L,R) :- lit(HPN,L,R), lit(HPN,L1,R), L < L1.

10: between(HPN,L,L2,R) :- lit(HPN,L,R), lit(HPN,L1,R),
lit(HPN,L2,R), L<L1, L1<L2.

11: next(HPN,L,L1,R) :- lit(HPN,L,R), lit(HPN,L1,R), L < L1,
not between(HPN,L,L1,R).

12: first(HPN,L,R) :- lit(HPN,L,R), not before(HPN,L,R).
13: last(HPN,L,R) :- lit(HPN,L,R), not after(HPN,L,R).

14: hlit(L) :- rule(L,R).

Lines 1 to 7 fix an enumeration of the rules inΠ from which a literall may be derived, assuming a
given order< on rule names (e.g. inDLV, built-in lexicographic order;< can also be easily generated using
guessing rules). Note that under answer set semantics, we need only to consider rules where the literall to
prove does not occur in the body.
Lines 8 to 13 fix enumerations ofH(r), B+(r) andB−(r) for each rule. The final line 14 collects all literals
that can be derived from rule heads. Note that the rules on lines 1-14 plusF (Π) form a stratified program,
which has a single answer set, cf. [36, 37].
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Step 2 Next, we add rules which “guess” a candidate answer setS ⊆ Lit(Π) and a total orderingphi on
S corresponding with the functionφ in condition2 of Theorem 1. We will explain this correspondence in
more detail below (cf. proof of Theorem 2).

15: inS(L) v ninS(L) :- hlit(L).

16: ninS(L) :- lit(pn,L,R), not hlit(L). for eachpn ∈ {p,n}
17: notok :- inS(L), inS(NL), L !=NL, atom(L,A), atom(NL,A).
18: phi(L,L1) v phi(L1,L) :- inS(L), inS(L1), L < L1.
19: phi(L,L2) :- phi(L,L1),phi(L1,L2).

Line 15 focuses the guess ofS to literals occurring in some relevant rule head inΠ; only these can
belong to an answer setS, but no others (line 16). Line 17 then checks whetherS is consistent, deriving
a new distinct atomnotok otherwise. Line 18 guesses a strict total orderphi on inS where line 19
guarantees transitivity; note that minimality of answer sets prevents thatphi is cyclic, i.e., thatphi(L,L)
holds.

In the subsequent steps, we will check whetherS andphi violate the conditions of Theorem 1 by
deriving the distinct atomnotok (considered in Step 5 below) in case, indicating thatS is not an answer
set orphi does not represent a proper functionφ.

Step 3 Corresponding to condition1 in Theorem 1,notok is derived whenever there is an unsatisfied
rule by the following program part:

20: allInSUpto(p,Min,R) :- inS(Min), first(p,Min,R).
21: allInSUpto(p,L1,R) :- inS(L1), allInSUpto(p,L,R), next(p,L,L1,R).

22: allInS(p,R) :- allInSUpto(p,Max,R),last(p,Max,R).

23: allNinSUpto(hn,Min,R) :- ninS(Min), first(hn,Min,R).
24: allNinSUpto(hn,L1,R) :- ninS(L1), allNinSUpto(hn,L,R),

next(hn,L,L1,R).

25: allNinS(hn,R) :- allNinSUpto(hn,Max,R), last(hn,Max,R).















for each
hn ∈ {h,n}

26: hasHead(R) :- lit(h,L,R).
27: hasPBody(R) :- lit(p,L,R).
28: hasNBody(R) :- lit(n,L,R).

29: allNinS(h,R) :- lit(HPN,L,R), not hasHead(R).
30: allInS(p,R) :- lit(HPN,L,R), not hasPBody(R).
31: allNinS(n,R) :- lit(HPN,L,R), not hasNBody(R).

32: notok :- allNinS(h,R), allInS(p,R), allNinS(n,R), lit(HPN,L,R).

These rules compute by iteration overB+(r) (resp.H(r), B−(r)) for each ruler, whether for all
positive body (resp. head and default negated body) literals in ruler inS holds (resp.ninS holds) (lines
20 to 25). Here, empty heads (resp. bodies) are interpreted as unsatisfied (resp. satisfied), cf. lines 26 to 31.
The final rule 32 fires exactly if one of the original rules fromΠ is unsatisfied.
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Step 4 We derivenotokwhenever there is a literall ∈ S which is not provable by any ruler with respect
to phi. This corresponds to checking condition2 from Theorem 1.

33: failsToProve(L,R) :- rule(L,R), lit(p,L1,R), ninS(L1).
34: failsToProve(L,R) :- rule(L,R), lit(n,L1,R), inS(L1).

35: failsToProve(L,R) :- rule(L,R), rule(L1,R), inS(L1), L1 !=L, inS(L).
36: failsToProve(L,R) :- rule(L,R), lit(p,L1,R), phi(L1,L).

37: allFailUpto(L,R) :- failsToProve(L,R), firstRule(L,R).
38: allFailUpto(L,R1) :- failsToProve(L,R1), allFailUpto(L,R),

nextRule(L,R,R1).
39: notok :- allFailUpto(L,R), lastRule(L,R), inS(L).

Lines 33 and 34 check whether condition2.(a) or (b) are violated, i.e. some rule can only prove a literal
if its body is satisfied. Condition2.(d) is checked in line 35, i.e.r fails to provel if there is somel′ 6= l
such thatl′ ∈ H(r) ∩ S. Violations of condition2.(e) are checked in line 36. Finally, lines 37 to 39 derive
notok if all rules fail to prove some literall ∈ S. This is checked by iterating over all rules withl ∈ H(r)
using the order from Step 1. Thus, condition2.(c) is implicitly checked by this iteration.

Step 5 Whenevernotok is derived, indicating a wrong guess, then we apply a saturation technique as in
[13, 8, 24] to some other predicates, such that a canonical set Ω results. This set turns out to be an answer
set iff no guess forS andφ works out, i.e.,Π has no answer set. In particular, we saturate the predicates
inS, ninS, andphi by the following rules:

40: phi(L,L1) :- notok, hlit(L), hlit(L1).
41: inS(L) :- notok, hlit(L).
42: ninS(L) :- notok, hlit(L).

Intuitively, by these rules, any answer set containingnotok is “blown up” to an answer setΩ containing
all possible guesses forinS, ninS, andphi.

Definition 2 The programΠmeta consists of the rule 1–42 from above.

We then can formally define our transformationtr(Π) as follows.

Definition 3 Given any ground HDLPΠ, its transformationtr(Π) is given by the DLPtr(Π) = F (Π) ∪
Πmeta.

Examples oftr(Π) will be provided in Section 6.

3.4 Properties oftr(Π)

We now show thattr(Π) satisfies indeed the propertiesT0 – T4 from the beginning of this section.
As for T0, we note the following proposition, which is not difficult toestablish.

Proposition 1 GivenΠ, the transformationtr(Π) and its ground instantiation are both computable in log-
arithmic workspace (and thus in polynomial time).
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Proof. The input representationF (Π) is easily generated in a linear scan ofΠ, using the rule numbers
as names, for which a counter (representable in logspace) issufficient. The meta-interpreter partΠmeta

is fixed anyway. A naive grounding oftr(Π) can be constructed by instantiating each ruler from Πmeta

with constants fromΠ and rule ids in all possible ways; for each variableX in r, all constants ofΠ can
be systematically considered, using counters to mark the start and end position inΠ (viewed as a string),
and the rule ids by a rule number counter. A constant number ofsuch counters is sufficient. Thus, the
grounding oftr(Π) is constructible in logarithmic work space. Notice that intelligent, efficient grounding
methods such as those used inDLV [23] usually generate a smaller ground program than this naive ground
instantiation. ✷

Clearly,tr(Π) satisfies propertyT3, and as easily checked,tr(Π) is modular. Moreover, strong negation
does not occur intr(Π) and weak negation only stratified. The latter is not applied to literals depending on
disjunction; it thus occurs only in the deterministic part of tr(Π), which meansT4 holds.

To establishT1 andT2, we define the literal setΩ as follows:

Definition 4 LetΠi
meta be the set of rules inΠmeta established in Stepi ∈ {1, . . . , 5}. For any programΠ,

let ΠΩ = F (Π) ∪
⋃

i∈{1,3,4,5} Π
i
meta ∪ {notok.}. Then,Ω is defined as the answer set ofΠΩ.

Lemma 1 Ω is well-defined and uniquely determined byΠ.

Proof. (Sketch) This follows immediately from the fact thatΠΩ is a (locally) stratified normal logic program
without¬ and constraints, which as well-known has a single answer set. ✷

Theorem 2 For a given HDLPΠ the following holds fortr(Π):

1. tr(Π) always has some answer set, andS′ ⊆ Ω for every answer setS′ of tr(Π).

2. S is an answer set ofΠ⇔ there exists an answer setS′ of tr(Π) such thatS = {l | inS(l) ∈ S′} and
notok 6∈ S′.

3. Π has no answer set⇔ tr(Π) has the unique answer setΩ.

Proof. 1. The first part follows immediately from the fact thattr(Π) has no constraints, no strong negation,
and weak negation is stratified; this guarantees the existence of at least one answer setS of tr(Π) [37].
Moreover,S′ ⊆ Ω must hold for every answer set: after removing{notok.} from ΠΩ and addingΠ2

meta,
we obtaintr(Π). Note that any rule inΠ2

meta fires with respect toS′ only if all literals in its head are
in Ω, andinS, ninS, andphi are elsewhere not referenced recursively through negationor disjunction.
Therefore, increasingS′ locally to the value ofΩ on inS, ninS, phi, andnotok, and closing off thus
increases it globally toΩ, which meansS′ ⊆ Ω.
2. (⇒) Assume thatS is an answer set ofΠ. Clearly, thenS is a consistent set of literals which has a
corresponding setS′′ = {inS(l) | l ∈ S} ∪ {ninS(l) | l ∈ Lit(Π) \ S} being one possible guess by the
rules in lines 15 to 17 ofΠmeta. Let nowφ : Lit(Π) → N be the function from Theorem 1 for answer set
S: Without loss of generality, we may assume two restrictionson this functionφ:

• φ(l) = 0 for all l ∈ Lit(Π) \ S andφ(l) > 0 for all l ∈ S.

• φ(l) 6= φ(l′) for all l, l′ ∈ S.
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Then, the functionφ can be mapped to a total order overS phi such that

phi(l, l′) ⇔ φ(l) > φ(l′) > 0.

This relationphi fixes exactly one possible guess by the lines 18 and 19 ofΠmeta.
Note that it is sufficient to definephi only over literals inS: Violations of condition2.(e) have only

to be checked for rules withB+(r) ⊆ S, as otherwise condition2.(a) already fails. Obviously, condition
2.(e) of Theorem 1 is violated with respect toφ iff (a) phi(Y,X) holds for someX in the head of a rule
with Y in its positive body or (b) ifX itself occurs in its positive body. While (a) is checked in lines 36, (b)
is implicit by definition of predicaterule (line 1) which says that a literal can not prove itself.

GivenS′′ andphi from above, we can now verify by our assumption thatS is an answer set and by
the conditions of Theorem 1 that (a)notok can never be derived intr(Π) and (b)S′′ andphi uniquely
determine an answer setS′ of tr(Π) of the form we want to prove. This can be argued by construction of
Steps 3 and 4 oftr(Π), wherenotok will only be derived if some rule is unsatisfied (Step 3) or there is a
literal in S (i.e.S′′) which fails to be proved by all other rules (Step 4).

(⇐) Assume thatS′ is an answer set oftr(Π) not containingnotok. Then by the guess ofphi in
Step 5 a functionφ : Lit(Π) → N can be constructed by the implied total order ofphi as follows: We
number all literalsl ∈ S = {l | inS(l) ∈ S′} according to that order from1 to |S| and fixφ(l) = 0 for
all other literals. Again, by construction of Steps 3 to 5 andthe assumption thatnotok 6∈ S′, we can see
thatS and the functionφ constructed fulfill all the conditions of Theorem 1; in particular, line 17 guarantees
consistency. HenceS is an answer set ofΠ.
3. (⇐) Assume thatΠ has an answer set. Then, by the already proved Part 2 of the Theorem, we know that
there exists an answer setS′ of tr(Π) such thatnotok 6∈ S′. By minimality of answer sets,Ω can not be
an answer set oftr(Π).

(⇒) By Part 1 of Theorem 2, we know thattr(Π) always has an answer setS′ ⊆ Ω. Assume that there
is an answer setS′ $ Ω. We distinguish 2 cases: (a)notok 6∈ S′ and (b)notok ∈ S′. In case (a), proving
Part 2 of this proposition, we have already shown thatΠ has an answer set; this is a contradiction. On the
other hand, in case (b) the final “saturation” rules in Step 5 “blow up” any answer set containingnotok to
Ω, which contradicts the assumptionS′ $ Ω. ✷

As noticed above, the transformationtr(Π) uses weak negation only stratified and in a deterministic
part of the program; we can easily eliminate it by computing in the transformation the complement of
each predicate accessed throughnot and providing it inF (Π) as facts; we then obtain a positive program.
(The built-in predicates< and ! = can be eliminated similarly if desired.) However, such a modified
transformation is not modular. As shown next, this is not incidental.

Proposition 2 There is no modular transformationtr′(Π) from HDLPs to DLPs (i.e. such thattr′(Π) =
⋃

r∈Π tr′(r)), satisfyingT1 such thattr′(Π) is a positive program.

Proof. Assuming such a transformation exists, we derive a contradiction. LetΠ1 = { a :- not b.}
andΠ2 = Π1 ∪ {b.}. Then,tr′(Π2) has some answer setS2. Sincetr′(·) is modular,tr′(Π1) ⊆ tr′(Π2)
holds and thusS2 satisfies each rule intr′(Π1). Sincetr′(Π1) is a positive program,S2 contains some
answer setS1 of tr′Π1. By T1, we have thatinS(a) ∈ S1 must hold, and henceinS(a) ∈ S2. By T1
again, it follows thatΠ2 has an answer setS such thata ∈ S. But the single answer set ofΠ2 is {b}, which
is a contradiction. ✷

We remark that Prop. 2 remains true ifT1 is generalized such that the answer setS of Π corresponding to
S′ is given byS = {l | S′ |= Ψ(l)}, whereΨ(x) is a monotone query (e.g., computed by a normal positive
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program without constraints). Moreover, if a successor predicatenext(X,Y) and predicatesfirst(X)
andlast(X) for the constants are available, given that the universe is finite by the constants inΠ and
rule names, then computing the negation of the non-input predicates accessed throughnot is feasible by a
positive normal program, since such programs capture polynomial time computability by well-known results
on the expressive power of Datalog [32]; thus, negation of input predicates inF (Π) is sufficient in this case.

4 Modifications towards Optimization

The meta-interpreterΠmeta from above can be modified in several respects. We discuss in this section some
modifications which, though not necessarily reducing the size of the ground instantiation, intuitively prune
the search of an answer set solver applied totr(Π).

4.1 Giving up modularity (OPTmod)

If we sacrifice modularity and allow thatΠmeta partly depends on the input, then we can circumvent the
iterations in Step 3 and in part of Step 1. Intuitively, instead of iterating over the heads and bodies of all
rules in order to determine whether these rules are satisfied, we add a single rule intr(Π) for each ruler in
Π firing notok wheneverr is unsatisfied. We therefore replace the rules from Step 3 by

notok :- ninS(h1), . . . , ninS(hl), inS(b1), . . . , inS(bm),

ninS(bm+1), . . . ninS(bn).
(2)

for each ruler in Π of form (1). These rules can be efficiently generated in parallel to F (Π). Lines 8 to 13
of Step 1 then become unnecessary and can be dropped.

We can even refine this further. For every normal ruler ∈ Π with non-empty head, i.e.H(r) = {h},
which has a satisfied body, we can force the guess ofh: we replace (2) by

inS(h):- inS(b1), . . . , inS(bm), ninS(bm+1), . . . ninS(bn). (3)

In this context, since constraints only serve to “discard” unwanted models but cannot prove any literal,
we can ignore them during input generationF (Π). Note that dropping input representationlit(n, l, c). for
literals only occurring in the negative body of constraintsbut nowhere else inΠ requires some care. Such
l can be removed by simple preprocessing, though, by removingall l ∈ B−(c) which do not occur in any
rule head inΠ. On the other hand, all literalsl ∈ B−(c) which appear in some other (non-constraint) ruler
are not critical, since factslit(hpn,l,r). (hpn ∈ {h,p,n}) from this other rule will ensure that either
line 15 or line 16 inΠmeta is applicable and therefore, eitherinS(l) or ninS(l) will be derived. Thus,
after elimination of critical literals in constraints beforehand, we can safely drop the factual representation
of constraints completely (includinglit(n,l, c). for the remaining negative literals).

4.2 Restricting to potentially applicable rules (OPTpa)

We only need to consider literals in heads ofpotentially applicablerules. These are all rules with empty
bodies, and rules where any positive body literal – recursively – is the head of another potentially applicable
rule. This suggests the following definition:

Definition 5 A setR of ground rules ispotentially applicable, if there exists an enumeration〈ri〉i∈I of R,
whereI is a prefix ofN resp.I=N, such thatB+(ri) ⊆

⋃

j<iH(rj).
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The following proposition is then not difficult to establish.

Proposition 3 LetΠ be any ground HDLP. Then there exists a unique maximal setR∗ ⊆ Π of potentially
applicable rules, denoted byPA(Π).

Proof. Indeed, suppose〈ri〉i∈I and〈r′i〉i∈I′ are enumerations witnessing that rule setsR andR′ such that
R,R′ ⊆ Π are potentially applicable. Then their unionR ∪ R′ is potentially applicable, witnessed by the
enumeration obtained from the alternating enumerationr0, r

′
0, r1, r

′
1,. . . whose suffix are the rules from the

larger set ofR andR′ if they have different cardinalities, from which duplicaterules are removed (i.e.,
remove any ruler′j if r′j = ri, for somei ≤ j, and remove any rulerj if r′i = rj and for somei < j). It
follows that a unique largest setR∗ ⊆ Π of potentially applicable rules exists. ✷

The setPA(Π) can be computed by adding a rule:

pa(r) :- lit(h,b1,R1), pa(R1), ..., lit(h,bm,Rm), pa(Rm).

for any ruler of the form (1) inΠ. In particular, ifm = 0 we simply add the factpa(r). Finally, we
change line 1 inΠmeta to:

rule(L,R) :- lit(h,L,R), not lit(p,L,R), not lit(n,L,R), pa(R).

such that only “interesting” rules are considered.
We note, however, that computingpa(·) incurs some cost: Informally, a profit of optimizationOPTpa

might only be expected in domains whereΠcheck contains a a reasonable number of rules which positively
depend on each other and might on the other hand likely be “switched off” by particular guesses inΠguess.

4.3 Optimizing the order guess (OPTdep)

We only need to guess and check the orderφ for literalsL, L′ if they allow for cyclic dependency, i.e., they
appear in the heads of rules within the same strongly connected component of the program with respect to
S.2 These dependencies with respect toS are easily computed:

dep(L,L1) :- lit(h,L,R),lit(p,L1,R),inS(L),inS(L1).

dep(L,L2) :- lit(h,L,R),lit(p,L1,R),dep(L1,L2),inS(L).

cyclic :- dep(L,L1),dep(L1,L).

The guessing rules forφ (line 18 and 19) are then be replaced by:

phi(L,L1) v phi(L,L1) :- dep(L,L1), dep(L1,L), L < L1,cyclic.

phi(L,L2) :- phi(L,L1),phi(L1,L2), cyclic.

Moreover, we add the new atomcyclic also to the body of any other rule wherephi appears (lines 36,40)
to checkphi only in caseΠ hasanycyclic dependencies with respect toS.

In the following, we will denote the transformation obtained by the optimizations from this section as
trOpt(Π) while we refer totr(Π) for the original transformation.

2Similarly, in [3] φ : Lit(Π) → {1, . . . , r} is only defined for a ranger bound by the longest acyclic path in any strongly
connected component of the program.
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5 Integrating Guess and co-NP Check Programs

In this section, we show how our transformationtr (resp.trOpt) from above can be used to automatically
combine a HDLPΠguess which guesses in its answer sets solutions of a problem, and aHDLP Πcheck

which encodes a co-NP-check of the solution property, into a single DLPΠsolve of the formΠsolve =
Πguess ∪Π′

check.
We assume that the setLit(Πguess) is a Splitting Set [25] forΠguess ∪ Πcheck, i.e. no head literal from

Πcheck occurs inΠguess. This can be easily achieved by introducing new predicate names, e.g.,p′ for a
predicatep, and adding a rulep′(t):-p(t) in case there is an overlap.

Each ruler in Πcheck is of the form

h1v · · · v hl :- bc1, . . . , bcm, not bcm+1, . . . , not bcn

bg1, . . . , bgp, not bgp+1, . . . , not bgq.
(4)

where the bgi are the body literals defined inΠguess. We write bodyguess(r) for
bg1, . . . , bgp, not bgp+1, . . . , not bgq. We now define a new check program as follows.

Definition 6 For any ground programΠcheck as above, the programΠ′
check contains the following rules

and constraints:

(i) The factsF (Πcheck) in a conditional version: For each ruler ∈ Πcheck of form (4), the rules

lit(h,l, r):- bodyguess(r). atom(l,|l|). for eachl ∈ H(r);
lit(p,bci, r):- bodyguess(r). for eachi ∈ {1, . . . ,m};
lit(n,bcj, r):- bodyguess(r). for eachj ∈ {m+ 1, . . . , n};

(ii) each rule inΠmeta= tr(Πcheck)\ F (Πcheck) (resp. intrOpt(Πcheck)\F (Πcheck), wherebodyguess(r)
must be added to the bodies of the rules (2) and (3));

(iii) a constraint

:- not notok.

It eliminates any answer setS such thatΠcheck ∪ S has an answer set.

The union ofΠguess andΠ′
check then amounts to the desired integrated encodingΠsolve, which is ex-

pressed by the following result.

Theorem 3 Given separate guess and check programsΠguess andΠcheck, the answer sets of

Πsolve = Πguess ∪Π′
check,

denotedSsolve, are in 1-1 correspondence with the answer setsS of Πguess such thatΠcheck∪S has no
answer set.
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Proof. This result can be derived from Theorem 2 and the Splitting Set Theorem for logic programs under
answer set semantics [25]. We consider the proof for the original transformationtr(·); the proof for the
optimized transformationtrOpt(·) is similar (with suitable extensions in places). In what follows, for any
programQ and any consistent literal setS, we letQ[S] denote the program obtained fromQ by eliminating
every ruler such thatbodyguess(r) is false inS, and by removingbodyguess(r) from the remaining rules.
Notice thatΠcheck ∪ S andΠcheck[S] ∪ S have the same answer sets.

We can rewriteΠsolve as

Πsolve = Πguess ∪ F ′(Πcheck) ∪Πmeta ∪ {:- not notok. }

whereF ′(Πcheck) denotes the modified factual representation forΠcheck, given in item1. of the definition
of Π′

check. By hypothesis onΠguess ∪ Πcheck, the setLit(Πguess) is a splitting set forΠsolve. Hence, as
easily seen alsoLit(Πguess ∪ F ′(Πcheck)) is a splitting set forΠsolve, andLit(Πguess) is also a splitting
set forΠguess ∪ F ′(Πcheck). Moreover, each answer setS of Πguess is in 1-1 correspondence with an
answer setS′ of Πguess ∪ F ′(Πcheck). ThenS′ \ S = F (Πcheck[S]) ∪ AS , such thatF (Πcheck[S]) is
the factual representation ofΠcheck[S] in the transformationtr(Πcheck[S]) andAS = {atom(l, |l|). | l ∈
H(Πcheck) \H(Πcheck[S])}

3 is an additional set of facts emerging fromF ′(Πcheck), since we added facts
atom(l, |l|). for all head literals ofr ∈ Πcheck, not only for thoser wherebodyguess(r) was satisfied.

Now let Ssolve be any (consistent) answer set ofΠsolve. From the Splitting Set Theorem [25], we can
conclude thatSsolve can be written asSsolve = S ∪ Scheck ∪AS whereS andScheck ∪AS are disjoint,S is
an answer set ofΠguess, andScheck ∪AS is an answer set of the programΠ′

S = (Πsolve \Πguess)[S]. Since
F ′(Πcheck) is the only part ofΠsolve \ Πguess where literals fromLit(Πguess) occur, we obtain

Π′
S = F (Πcheck[S]) ∪AS ∪Πmeta ∪ {:- not notok.}

= tr(Πcheck[S]) ∪AS ∪ {:- not notok.}.

The additional factsAS can be viewed as independent part of any answer set ofΠ′
S , since the answer sets

of Π′
S are the setsT ∪ AS whereT is any answer set ofΠ′

S \ AS ; note thatT ∩ AS = ∅. Indeed, the only
rule inΠ′

S where the facts ofAS play a role, is line 17 ofΠmeta. All ground instances of line 17 are of the
following form:

notok :- inS(l), inS(nl), l !=nl, atom(l,|l|), atom(nl,|l|).

We assumer fires andatom(l,|l|) ∈ AS (resp.atom(nl,|l| ∈ AS). Then, in order for the rule to
fire, inS(l) (resp.inS(nl)) has to be true. However, this can only be the case for literals l (resp.nl)
occurring in a rule head ofΠcheck[S] (backwards, by the rules in line 15, 14 and 1 ofΠmeta and by definition
of Π′

check), which contradicts our assumption thatatom(l,|l|) ∈ AS (resp.atom(nl,|l| ∈ AS).
Therefore, the facts ofAS do not affect the rule in line 17 and consequentlyΠ′

S has an answer set if and
only if Π′

S \AS has an answer set and these answer sets coincide onLit(Π′
S) \AS .

By Theorem 2, we know that (i)tr(Πcheck[S]) always has an answer set and (ii)tr(Πcheck[S]) has any
answer set containingnotok (which is unique) if and only ifΠcheck[S] has no answer set. However, the
constraint:- not notok. only allows for answer sets ofΠ′

S containingnotok. Hence, an answer set
Scheck of Π′

S \AS exists if and only ifΠcheck[S] has no answer set, equivalently,Πcheck ∪ S has no answer
set.

3Here, for any programΠ, we writeH(Π) =
⋃

r∈Π
H(r).
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Conversely, supposeS is an answer set ofΠguess such thatΠcheck ∪ S has no answer set; equivalently,
Πcheck[S] has no answer set. By Theorem 2, we know thattr(Πcheck[S]) = F (Πcheck[S]) ∪ Πmeta has a
unique answer setScheck, andScheck containsnotok. Hence, also the program

QS = F (Πcheck[S]) ∪Πmeta ∪ {:- not notok.}

has the unique answer setScheck. On the other hand, sinceS is an answer set ofΠguess andLit(Πguess) is
a splitting set forΠsolve, for each answer setS′′ of the programΠ′

S = (Πsolve \ Πguess)[S], we have that
S ∪ S′′ is an answer set ofΠsolve. However,Π′

S = QS ∪ AS ; hence,S′′ = Scheck ∪ AS must hold and
Ssolve = S ∪ Scheck ∪AS is the unique answer set ofΠsolve which extendsS. This proves the result. ✷

The optimizationsOPTpa and OPTdep in Section 4 still apply. However, concerningOPTmod, the
following modifications are necessary:

1. Like the input representation, rules (2) and (3) have to beextended by addingbodyguess(r).

2. As for constraintsc, we mentioned above that the factual representation of literals inB(c) may be skipped.
This now only applies to literals inB+(c); the rulelit(n,l, c) :- bodyguess(c). for l ∈ B−(c) may
no longer be dropped in general, as shown by the following example.

Example 2 Let Πguess = { g v-g. } andΠcheck = { r1 : x :- g., r2 : :- not x. } The “input”
representation ofΠcheck with respect to optimizationOPTmod, i.e., the variable part ofΠ′

check, now consists
of:

lit(h,x,r1):-g. lit(n,x,r2). inS(x):-g. notok:-ninS(x).

where the latter correspond to rules (3) and (2). If we now assume that we want to check answer set
S = {-g } of Πguess, it is easy to see thatΠcheck has no answer set forS, and thereforeS should be
represented by some answer set of our integrated encoding. Now assume thatlit(n,x,r2). is dropped
and we proceed in generating the integrated encoding as outlined above with respect toOPTmod. Since
g 6∈ S and we have droppedlit(n,x,r2)., the “input” representation ofΠcheck for S comprises only
the final rulenotok :- ninS(x).. However, this rule can never fire because neither line 15 norline 16
of Πmeta can ever deriveninS(c). Therefore, alsonotok can not be derived and the integrated check
fails. On the other hand,lit(n,x,r2). suffices to deriveninS(x) from line 16 ofΠmeta, such that
notok can be derived and the integrated check works as intended.

In certain cases, we can still dropl ∈ B−(c). For example, ifl occurs in the head of a ruler with
bodyguess(r) = ∅, since in this caselit(h,l,r)will always be added to the program (see also respective
remarks in Section 6).

5.1 Integrating Guess andNPCheck Programs

In contrast to the situation above, integrating a guess programΠguess and a check programΠcheck which
succeeds iffΠcheck ∪ S hassomeanswer set, is easy. Given thatΠcheck is a HDLP again, this amounts
to integrating a check which is inNP. After a rewriting to ensure the Splitting Set property (if needed),
simply takeΠsolve = Πguess ∪Πcheck; its answer sets correspond on the predicates inΠguess to the desired
solutions.
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6 Applications

We now give examples of the use of our transformation for three well-knownΣP
2 -complete problems from

the literature, which involve co-NP-complete checking for a polynomial-time solution guess: the first is
about quantified Boolean formulas (QBFs) with one quantifieralternation, which are well-studied in An-
swer Set Programming, the second about conformant planning[10, 40, 24], and the third is about strategic
companies in the business domain [23].

Further examples and ad hoc encodings of such problems can befound e.g. in [13, 12, 23] (and solved
similarly). However, note that our method is applicable toanychecks encoded by inconsistency of a HDLP;
co-NP-hardness is not a prerequisite.

6.1 Quantified Boolean formulas

Given a QBFF = ∃x1 · · · ∃xm∀y1 · · · ∀ynΦ, whereΦ = c1 ∨ · · · ∨ ck is a propositional formula
over x1, . . . , xm, y1, . . . , yn in disjunctive normal form, i.e. eachci = ai,1 ∧ · · · ∧ ai,li and |ai,j| ∈
{x1, . . . , xm, y1 . . . , yn}, the problem is to compute some resp. all assignments to the variablex1, . . . , xm
which witness thatF evaluates to true.

Intuitively, this problem can be solved by “guessing and checking” as follows:

(QBF guess) Guess a truth assignment for the variablesx1, . . . , xm.

(QBF check) Check whether this (fixed) assignment satisfiesΦ for all assignments of variablesy1, . . . , yn.

Both parts can be encoded by very simple HDLPs (or similarly by normal programs):

QBF guess :

x1 v −x1. ... xm v −xm.

QBF check :

y1 v −y1. ... yn v −yn.

:- a1,1, . . . , a1,l1.
...

:- ak,1, . . . , ak,l1.

Clearly, both programs are head-cycle free. Moreover, for every answer setS of QBF guess –
representing an assignment tox1, . . . , xm– the programQBF check ∪ S has no answer set thanks to the
constraints, iff every assignment fory1, . . . , yn satisfies formulaΦ.

By the method described in Section 5, we can automatically generate a single programΠsolve integrating
the guess and check programs. For illustration, we considerthe following QBF:

∃x0x1∀y0y1(¬x0 ∧ ¬y0) ∨ (y0 ∧ ¬x0) ∨ (y1 ∧ x0 ∧ ¬y0) ∨ (y0 ∧ ¬x1 ∧ ¬y0)

This QBF evaluates to true: for the assignmentsx0 = 0, x1 = 0 andx0 = 0, x1 = 1, the subformula
∀y0y1(· · · ) is a tautology.

The integrated programQBF solve = QBF guess∪QBF ′
check under use of the optimized transformation

trOpt(·) of tr(·) as discussed is shown in Figure 1. It has two answer sets of theform S1 = {x0,−x1, . . . , }
andS2 = {x0, x1, . . . , }, respectively.
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Figure 1: Integrated encodingQBFsolve for QBF∃x0x1∀y0y1(¬x0∧¬y0)∨ (y0∧¬x0)∨ (y1∧x0∧¬y0)∨
(y0 ∧ ¬x1 ∧ ¬y0)

%%%% GUESS PART
x0 v -x0. x1 v -x1.

%%%% REWRITTEN CHECK PART
%% 1. Create dynamically the facts for the check program:

% y0 v -y0. % y1 v -y1.
lit(h,"y0",1). lit(h,"-y0",1). lit(h,"y1",2). lit(h,"-y1",2).
atom("y0","y0"). atom("-y0","y0"). atom("y1","y1"). atom("-y1","y1").

% :- -y0, -x0.
% :- y0, -x0.
% :- -y0, y1, x0.
% :- -y0, y0, -x1.

%% 2. Optimized meta-interpreter
%% 2.1 -- program dependent part

notok :- ninS("y0"),ninS("-y0").
notok :- ninS("y1"),ninS("-y1").
notok :- inS("-y0"),-x0.
notok :- inS("y0"),-x0.
notok :- inS("y1"),inS("-y0"),x0.
notok :- inS("y0"),inS("-y0"),-x1.

%% 2.2 -- fixed rules

% Iterate only over rules which contain L in the head:
rule(L,R) :- lit(h,L,R), not lit(p,L,R), not lit(n,L,R).
ruleBefore(L,R) :- rule(L,R), rule(L,R1), R1<R.
ruleAfter(L,R) :- rule(L,R), rule(L,R1), R<R1.
ruleBetween(L,R1,R2) :- rule(L,R1), rule(L,R2), rule(L,R3), R1<R3, R3<R2.
firstRule(L,R) :- rule(L,R), not ruleBefore(L,R).
lastRule(L,R) :- rule(L,R), not ruleAfter(L,R).
nextRule(L,R1,R2) :- rule(L,R1), rule(L,R2), R1<R2, not ruleBetween(L,R1,R2).

% hlits are only those from active rules:
hlit(L) :- rule(L,R).
inS(L) v ninS(L) :- hlit(L).
ninS(L) :- lit(HPN,L,R), not hlit(L).

% Consistency check could be skipped for programs without class. negation:
notok :- inS(L), inS(NL), L != NL, atom(L,A), atom(NL,A).

dep(L,L1) :- rule(L,R),lit(p,L1,R),inS(L1), inS(L).
dep(L,L2) :- rule(L,R),lit(p,L1,R),dep(L1,L2),inS(L).
cyclic :- dep(L,L1), dep(L1,L).
phi(L,L1) v phi(L1,L) :- dep(L,L1), dep(L1,L), L<L1, cyclic.
phi(L,L2) :- phi(L,L1),phi(L1,L2), cyclic.
failsToProve(L,R) :- rule(L,R), lit(p,L1,R), ninS(L1).
failsToProve(L,R) :- rule(L,R), lit(n,L1,R), inS(L1).
failsToProve(L,R) :- rule(L,R), rule(L1,R), inS(L1), L1 !=L.
failsToProve(L,R) :- lit(p,L1,R), rule(L,R), phi(L1,L), cyclic.
allFailUpto(L,R) :- failsToProve(L,R), firstRule(L,R).
allFailUpto(L,R1) :- failsToProve(L,R1), allFailUpto(L,R), nextRule(L,R,R1).
notok :- allFailUpto(L,R), lastRule(L,R), inS(L).
phi(L,L1) :- notok, hlit(L), hlit(L1), cyclic.
inS(L) :- notok, hlit(L).
ninS(L) :- notok, hlit(L).

%%% 3. constraint
:- not notok.
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With respect to the variants of the transformation, we remark that for the QBF encoding considerations
upon negative literals in constraints inOPTmod do not play a role, because all literals in the constraints of
QBF check are positive. AlsoOPTpa does not play a role, since the only rules inQBF check with non-empty
heads are always potentially applicable because their bodies are empty.

Note that the customary (but tricky) saturation technique in disjunctive logic programming to solve this
problem, as used e.g. in [13, 23] and shown in C, is fully transparent to the non-expert, who might easily
come up with the two programs above.

6.2 Conformant planning

Loosely speaking, planning is the problem of finding a sequence of actionsP = α1, α2,. . . ,αn, a plan,
which takes a system from an initial states0 to a statesn in which a goal (often, given by an atomg) holds,
where a states is described by values of fluents, i.e., predicates which might change over time.Conformant
planning [17] is concerned with finding a planP which works under all contingencies which may arise
because of incomplete information about the initial state and/or nondeterministic action effects.

As well-known, conformant planning in a STRIPS-style formulation is aΣP
2 -complete problem (pre-

cisely, deciding plan existence) in certain settings, e.g.if the plan lengthn (of polynomial size) is given
and executability of actions is guaranteed, cf. [10, 40]. Hence, the problem can be solved with a guess and
(co-NP) check strategy.

As an example, we consider a simplified version of the well-known “Bomb in the Toilet” planning
problem [30] as in [10]: We have been alarmed that a possibly armed bomb is in a lavatory which has a
toilet bowl. Possible actions are dunking the bomb into the bowl and flushing the toilet. After just dunking,
the bomb may be disarmed or not; only flushing the toilet guarantees that it is really disarmed.

Using the following guess and check programsBombguess andBombcheck , respectively, we can compute
a plan for having the bomb disarmed by two actions:

Bombguess :

% Timestamps:
time(0). time(1).

% Guess a plan:
dunk(T) v -dunk(T) :- time(T).
flush(T) v -flush(T) :- time(T).

% Forbid concurrent actions:
:- flush(T), dunk(T).

Bombcheck :

% Initial state:
armed(0) v -armed(0).

% Frame Axioms:
armed(T1) :- armed(T), not -armed(T1), time(T), T1=T+1.
dunked(T1) :- dunked(T), T1=T+1.

% Effect of dunking:
dunked(T1) :- dunk(T), T1=T+1.
armed(T1) v -armed(T1) :- dunk(T), armed(T), T1=T+1.

% Effect of flushing:
-armed(T1) :- flush(T), dunked(T), T1=T+1.
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% Check whether goal holds in stage 2:
:- not armed(2).

Bombguess guesses all candidate plansP = α1, α2, starting from possible time points for action execu-
tion, whileBombcheck checks whether any such planP is conformant for the goalg = not armed(2).
Here, the closed world assumption (CWA) onarmed is used, i.e., absence ofarmed(t) is viewed as
-armed(t), which saves a negative frame axiom on-armed. The final constraint eliminates a plan ex-
ecution iff it reaches the goal; thus,Bombcheck has no answer set iff the planP is conformant. As can be
checked, the answer setS = {time(0),time(1),dunk(0),flush(1)} of Bombguess corresponds
to the (single) conformant planP= dunk, flush for the goalnot armed(2).

By using the method from Section 5, the programsBombguess andBombcheck can be integrated auto-
matically into a single programBombplan = Bombguess ∪ Bombcheck

′ (cf. A). It has a single answer set,
corresponding to the single conformant planP = dunk, flush as desired.

We point out that our rewriting method is more generally applicable than the encoding for conformant
planning proposed in [24]. It loosens some of the restrictions there: While [24] requires that the state
transition function is specified by a positive constraint-free logic program, our method can still safely be
used in presence of negation and constraints, provided action execution will always lead to a consistent
successor state and not entail absurdity; see [10, 40] for a discussion of this setting.

ConcerningOPTmod, we point out that there is the interesting constraint

c : :- not armed(2).

in programBombcheck . Here, we may droplit(h,"armed(2)",c) safely: For the frame axiom

r : armed(2) :- armed(1), not -armed(2), time(1).

(cf. A), we havebodyguess(r) = {time(1)}. Therefore, we obtain:

lit(h,"armed(2)",r) :- time(1).

However, this rule will always be added sincetime(1) is a deterministic consequence ofBombguess . As
for OPTpa and considering the “Bomb in the Toilet” instances from [10], there might be rules which are
not possible applicable with respect to a guessed plan; however, in experiments, the additional overhead for
computing unfounded sets did not pay off.

A generalization of the method demonstrated here on a small planning problem expressed in Answer Set
Programming to conformant planning in theDLVK planning system [10], is discussed in detail in [34]. In
this system, planning problems are encoded in a logical action language, and the encodings are mapped to
logic programs. For conformant planning problems, separate guess and check programs have been devised
[10], which by our method can be automatically integrated into a single logic program. Such an encoding
was previously unkown.

6.3 Strategic Companies

AnotherΣP
2 -complete problem is the strategic companies problem from [4]. Briefly, a holding owns com-

panies, each of which produces some goods. Moreover, several companies may jointly have control over
another company. Now, some companies should be sold, under the constraint that all goods can be still
produced, and that no company is sold which would still be controlled by the holding after the transaction.
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PRODUCT COMPANY #1 COMPANY #2
Pasta Barilla Saiwa

Tomatoes Frutto Barilla
Wine Barilla –
Bread Saiwa Panino

Table 1: Relationprod by storing producers of each good

A company isstrategic, if it belongs to astrategic set, which is a minimal set of companies satisfying these
constraints. Guessing a strategic set, and checking its minimality can be done by the following two pro-
grams, where we adopt the constraint in [4] that each productis produced by at most two companies and
each company is jointly controlled by at most three other companies.

SCguess :

strat(X) v -strat(X) :- company(X).

:- prod by(X,Y,Z), not strat(Y), not strat(Z).

:- contr by(W,X,Y,Z), not strat(W),
strat(X), strat(Y), strat(Z).

SCcheck :

strat1(X) v -strat1(X) :- strat(X).

:- prod by(X,Y,Z), not strat1(Y), not strat1(Z).

:- contr by(W,X,Y,Z), not strat1(W),
strat1(X), strat1(Y), strat1(Z).

smaller :- -strat1(X).

:- not smaller.

Here,strat(C) means thatC is strategic,prod by(P,C1, C2) that productP is produced by com-
paniesC1 andC2, andcontr by(C,C1, C2, C3) thatC is jointly controlled byC1, C2 andC3. We
assume factscompany(·)., prod by(·, ·, ·)., andcontr by(·, ·, ·, ·). to be defined in a separate
program which can be considered as part ofSCguess.

The two programs above intuitively encode guessing a setstrat of companies which fulfills the pro-
duction and control preserving constraints, such that no real subsetstrat1 fulfills these constraints. While
the ad hoc encodings from [8, 23], which can also be found in D,are not immediate (and require some
thought), the above programs are very natural and easy to come up with.

As an example, let us consider the following production and control relations from [4] in a holding
as shown in Tables 1 and 2. The symbol “–” there means that the entry is void, which we simply repre-
sent by duplicating the single producer (or one of the controlling companies, respectively) in the factual
representation; a possible representation is thus

company(barilla). company(saiwa).
company(frutto). company(panino).
prod by(pasta,barilla,saiwa). prod by(tomatoes,frutto,barilla).
prod by(wine,barilla,barilla). prod by(bread,saiwa,panino).
contr by(frutto,barilla,saiwa,saiwa).

If we would consider only the production relation, then Barilla and Saiwa together would form a strategic
set, because they jointly produce all goods but neither of them alone. On the other hand, Frutto would not
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CONTROLLED CONT #1 CONT #2 CONT #3
Frutto Barilla Saiwa –

Table 2: Relationcontr by storing company control information

be strategic. However, given the company control as in Table2 means that Barilla and Saiwa together have
control over Frutto. Taking into account that therefore Frutto can be sold only if either Barilla or Saiwa
is also sold, the minimal sets of companies that produce all goods change completely:{Barilla, Saiwa} is
no longer a strategic set, whiles1 = {Barilla, Saiwa, Frutto} is. Alternatively,s2 = {Barilla, Panino} is
another strategic set.

Integration of the programsSCguess andSCcheck after grounding is again possible by the method from
Section 5 in an automatic way. Here, the facts representing the example instance are to be added as part of
SCguess, yielding two answer sets corresponding tos1 ands2 (cf. B).

With regard toOPTmod, we remark that depending on the concrete problem instance,SCcheck contains
critical constraintsc, wherenot strat1(·) occurs, such thatlit(n,"strat1(·)",c) may not be
dropped here (cf. B). Furthermore, as forOPTpa all rules with non-empty heads are either possibly appli-
cable or “switched off” bySCguess. Since there are no positive dependencies among the rules,pa(·) does
not play a role there.

As a final remark, we note that modifying the guess and check programsSCguess andSCcheck to allow
for unbounded numbers of producers for each product and controllers for each company, respectively, is
easy. Assume that production and control are represented instead of relationsprod by andcontr by
by an arbitrary number of facts of the formproduces(c, p). andcontrols(c1, g, c)., which state
that companyc producesp and that companyc1 belongs to a groupg of companies which jointly controlc,
respectively. Then, we would simply have to change the constraints inSCguess to:

no control(G,C) :- controls(C1,G,C), not strat(C1).

:- controls(C1,G,C), not no control(G,C), not strat(C).

produced(P) :- produces(C,P), strat(C).

:- produces(C,P), not produced(P).

The constraints inSCcheck are changed similarly. Then, the synthesized integrated encoding according
to our method gives us a DLP solving this problem. The ad hoc encodings in [8, 23] can not be adapted that
easily, and in fact require substantial changes.

7 Experiments

As for evaluation of the proposed approach we have conducteda series of experiments for the problems
outlined in the previous Section. Here, we were mainly interested in the following questions:

(1) What is the performance impact of our automatically generated, integrated encoding compared with
ad hoc encodings ofΣP

2 problems?

We have therefore compared our automatically generated integrated encoding of QBFs and Strategic Com-
panies against the following ad hoc encodings:
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(i) QBF against the ad hoc encoding for QBFs described in [23](which assumes that the quantifier-free
part is in 3DNF, i.e., contains three literals per disjunct); see C.

(ii) Strategic companies against the two ad hoc encodings for the Strategic Companies problem from [8];
see D.

These two encodings significantly differ: The first encoding, adhoc1 is very concise, and integrates
guessing and checking in only two rules; it is an illustrative example of the power of disjunctive rules
and tailored for a DLP system under answer set semantics. Thesecond encoding,adhoc2, has a more
obvious separate structure of the guessing and checking parts of the problem at the cost of some extra
rules. However, in our opinion, none of these ad hoc encodings is obvious at first sight compared with
the separate guess and check programs shown above.

Concerning (i) we have tested randomly generated QBF instances withn existentially andn universally
quantified variables (QBF-n), and concerning (ii) we have chosen randomly generated instances involving
n companies (SC-n).

(2) What is the performance impact of the automatically generated, integrated encoding compared with
interleaved computation of guess and check programs?

To this end, we have tested the performance of solving some conformant planning problems with integrated
encodings compared with the ASP based planning systemDLVK [10] which solves conformant planning
problems by interleaving the guess of a plan with checking plan security. For its interleaved computa-
tion, DLVK hinges on translations of the planning problem to HDLPs, by computing “optimistic” plans as
solutions of a HDLPΠplan

guess and interleaved checking of plan security by non-existenceof solutions of a
new programΠplan

guess which is dynamically generated with respect to the plan at hand. DLVK generalizes
in some sense solving the small planning example in Section 6.2 for arbitrary planning problems specified
in a declarative language,K [11]. For our experiments we have used elaborations of “Bombin the Toilet”
as described in [11], namely “Bomb in the Toilet with clogging” BTC(i), where the toilet is clogged after
dunking a package, and “Bomb in the Toilet with Uncertain Clogging” BTUC(i) where this clogging effect
is non-deterministic and there arei many possibly armed packages.

7.1 Test Environment and General Setting

All tests were performed on an AMD Athlon 1200MHz machine with 256MB of main memory running
SuSE Linux 8.1.

All our experiments have been conducted using theDLV system [23, 14], which is a state-of-the-art
Answer Set Programming engine capable of solving DLPs. Another available system, GNT [21]4 which is
not reported here showed worse performance/higher memory consumption on the tested instances.

Since our method works on ground programs, we had to ground all instances (i.e. the corresponding
guess and check programs) beforehand whenever dealing withnon-ground programs. Here, we have used
DLV grounding with most optimizations turned off:5 Some optimizations duringDLV grounding rewrite the
program, adding new predicate symbols, etc. which we turnedoff in order to obtain correct input for the
meta-interpreters.

4GNT, available fromhttp://www.tcs.hut.fi/Software/gnt/, is an extension of SMODELS solving DLPs by in-
terleaved calls of SMODELS, which itself is only capable of solving normal LPs.

5Respective ground instances have been produced with the commanddlv -OR- -instantiate, (cf. theDLV-Manual
[14]), which turns off most of the grounding optimizations.

http://www.tcs.hut.fi/Software/gnt/
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In order to assess the effect of various optimizations and improvements to the transformationtr(·),
we have also conducted the above experiments with the integrated encodings based on different optimized
versions oftr(·).

7.2 Results

The results of our experiments are shown in Tables 3-5. We report there the following tests on the various
instances:

• meta indicates the unoptimized meta-interpreterΠmeta

• mod indicates the non-modular optimizationOPTmod including the refinement for constraints.

• dep indicates the optimizationOPTdep wherephi is only guessed for literals mutually depending
on each other through positive recursion.

• opt indicates both optimizationsOPTmod andOPTdep turned on.

We did not include optimizationOPTpa in our experiments, since the additional overhead for comput-
ing unfounded rules in the check programs which we have considered did not pay off (in fact,OPTpa is
irrelevant for QBF and Strategic Companies).

All times reported in the tables represent the execution times for finding the first answer set under the
following resource constraints. We set a time limit of 10 minutes (=600 seconds) for QBFs and Strategic
Companies, and of 4.000 seconds for the “Bomb in the Toilet” instances. Furthermore, the limit on memory
consumption was 256 MB (in order to avoid swapping). A dash ’-’ in the tables indicates that one or more
instances exceeded these limits.

The results in Tables 4-5 show that the “guess and saturate” strategy in our approach benefits a lot from
optimizations for all problems considered. However, we emphasize that it might depend on the structure
of Πguess andΠcheck which optimizations are beneficial. We strongly believe that there is room for further
improvements both on the translation and for the underlyingDLV engine.

We note the following observations:

• Interestingly, for the QBF problem, the performance of our optimized translation stays within reach of
the ad hoc encoding in [23] for small instances. Overall, theperformance shown in Table 3 is within
roughly a factor of 5-6 (with few exceptions for small instances), and thus scales similarly.

• For the Strategic Companies problem, the picture in Table 4 is even more interesting. Unsurprisingly,
the automatically generated encoding is inferior to the succinct ad hoc encodingadhoc1; it is more
than an order of magnitude slower and scales worse. However,while it is slower by a small factor
than the ad hoc encodingadhoc2 (which is more involved) on small instances, it scales much better
and quickly outperforms this encoding.

• For the planning problems, the integrated encodings testedstill stay behind the interleaved calls of
DLVK.

• In all cases, the time limit was exceeded (for smaller instances) rather than the memory limit, but
especially for bigger instances of “Bomb in the toilet” and “Strategic Companies,” in some cases the
memory limit was exceeded before timeout (e.g. for BTUC(5),even with the optimized version of our
transformation).
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2
5

adhoc [23] meta mod dep opt

AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX
QBF-4 0.01s 0.02s 0.16s 0.18s 0.10s 0.15s 0.09s 0.11s 0.07s 0.09s
QBF-6 0.01s 0.02s 1.11s 1.40s 0.25s 1.12s 0.17s 0.21s 0.08s 0.12s
QBF-8 0.01s 0.06s 10.4s 16.3s 1.18s 7.99s 0.49s 0.87s 0.10s 0.23s
QBF-10 0.02s 0.09s 82.7s 165s 4.34s 30.7s 1.74s 3.67s 0.12s 0.36s
QBF-12 0.02s 0.16s - - - - - - 0.15s 0.79s
QBF-14 0.06s 1.21s - - - - - - 0.34s 5.87s
QBF-16 0.08s 1.85s - - - - - - 0.44s 10.3s
QBF-18 0.19s 7.12s - - - - - - 1.04s 38.8s
QBF-20 1.49s 21.3s - - - - - - 7.14s 101s

Average and maximum times for 50 randomly chosen instances per size.

Table 3: Experiments for QBF

adhoc1 [8] adhoc2 [8] meta mod dep opt

AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX
SC-10 0.01s 0.02s 0.05s 0.05s 0.66s 0.69s 0.49s 0.51s 0.36s 0.38s 0.13s 0.15s
SC-15 0.01s 0.02s 0.11s 0.13s 1.82s 3.23s 1.50s 3.12s 0.64s 0.68s 0.20s 0.22s
SC-20 0.02s 0.02s 0.26 0.27s 3.75s 3.90s 3.34s 3.61s 1.07s 1.13s 0.26s 0.27s
SC-25 0.02s 0.02s 0.51s 0.54s - - - - 1.63s 1.68s 0.33s 0.35s
SC-30 0.02s 0.03s 0.91s 0.97s - - - - 2.35s 2.47s 0.42s 0.44s
SC-35 0.02s 0.03s 1.50s 1.60s - - - - 3.17s 3.27s 0.54s 0.56s
SC-40 0.03s 0.03s 2.52s 2.70s - - - - 4.25s 4.43s 0.68s 0.71s
SC-45 0.03s 0.04s 4.503 4.97s - - - - 5.46s 5.77s 0.84s 0.90s
SC-50 0.03s 0.04s 8.38s 8.68s - - - - 6.73s 6.86s 1.00s 1.02s
SC-60 0.04s 0.05s 22.6s 24.3s - - - - 10.2s 10.6s 1.47s 1.53s
SC-70 0.04s 0.05s 44.2s 48.1s - - - - 14.7s 15.4s 2.05s 2.10s
SC-80 0.04s 0.05s 75.9s 82.5s - - - - 19.7s 21.0s 2.78s 3.05s
SC-90 0.05s 0.06s 125s 130s - - - - 26.8s 27.6s 3.67s 3.85s
SC-100 0.06s 0.08s 196s 208s - - - - 34.8s 36.3s 4.70s 4.80s

Average and maximum times for 10 randomly chosen instances per size.

Table 4: Experiments for Strategic Companies
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DLVK[10] meta mod dep opt

BTC(2) 0.01s 1.16s 0.80s 0.15s 0.08s

BTC(3) 0.11s 9.33s 9.25s 8.18s 4.95s

BTC(4) 4.68s 71.3s 67.8s 333s 256s

BTUC(2) 0.01s 6.38s 6.26s 0.22s 0.17s

BTUC(3) 1.78s - - 28.1s 13.0s

BTUC(4) 577s - - - 2322s

BTC, BTUC with 2,3 and 4 packages.

Table 5: Experiments for Bomb in Toilet

8 Summary and Conclusion

We have considered the problem of integrating separate “guess” and “check” programs for solving expres-
sive problems in the Answer Set Programming paradigm with a 2-step approach, into a single logic program.
To this end, we have first presented a polynomial-time transformation of a head-cycle free, disjunctive pro-
gramΠ into a disjunctive programtr(Π) which is stratified and constraint-free, such that in the case where
Π is inconsistent (i.e., has no answer set),tr(Π) has a single designated answer set which is easy to recog-
nize, and otherwise the answer sets ofΠ are encoded in the answer sets oftr(Π). We then showed how to
exploit tr(Π) for combining a “guess” programΠsolve and a “check” programΠcheck for solving a problem
in Answer Set Programming automatically into a single disjunctive logic program, such that its answer sets
encode the solutions of the problem.

Experiments have shown that such a synthesized encoding hasweaker performance than the two-step
method or an optimal ad hoc encoding for a problem, but can also outperform (reasonably looking) ad hoc
encodings. This is noticeable since in some cases, finding any arbitrary “natural” (not necessarily optimal)
encoding of a problem in a single logic program appears to be very difficult, such as e.g., for conformant
planning [24] or determining minimal update answer sets [12], where such encodings were not known for
the general case.

Several issues remain for being tackled in future work. The first issue concerns extending the scope of
programs which can be handled. The rewriting method which wehave presented here applies to proposi-
tional programs only. Thus, before transformation, the program should be instantiated. In [23] instantiations
of a logic program used inDLV have been described, which keep the grounding small and do not necessarily
ground over the whole Herbrand universe. For wider applicability and better scalability of the approach, a
more efficient lifting of our method to non-ground programs is needed. Furthermore, improvements to the
current transformations might be researched. Some preliminary experimental results suggest that a structural
analysis of the given guess and check program might be valuable for this purpose.

A further issue are alternative transformations, which arepossibly tailored for certain classes of pro-
grams. The work of Ben-Eliyahu and Dechter [3], on which we build, aimed at transforming head-cycle free
disjunctive logic programs into SAT problems. It might be interesting to investigate whether related meth-
ods such as the one developed for ASSAT [27], which was recently generalized by Lee and Lifschitz [22] to
disjunctive programs, can be adapted for our approach.
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A Integrated Program for Conformant Planning

The integrated program for the planning problem in Section 6.2, Bombplan = Bombguess ∪ Bombcheck
′,

is given below. It has a single answer setS = { dunk(0), -flush(0), flush(1), -dunk(1), . . .}
which corresponds to the single conformant planP= dunk, flush as desired.

%%%% GUESS PART

% Timestamps:
time(0). time(1).

% Guess a plan:
dunk(T) v -dunk(T) :- time(T).
flush(T) v -flush(T) :- time(T).
:- flush(T), dunk(T).

%%%% REWRITTEN CHECK PART (after grounding)
%% 1. Create dynamically the facts for the program:

% armed(0) v -armed(0).
lit(h,"armed(0)",1). atom("armed(0)","armed(0)").
lit(h,"-armed(0)",1). atom("-armed(0)","armed(0)").

% armed(T1) :- armed(T), not -armed(T1), time(T), T1=T+1.
lit(h,"armed(1)",2) :- time(0). atom("armed(1)","armed(1)").
lit(p,"armed(0)",2) :- time(0).
lit(n,"-armed(1)",2) :- time(0).

lit(h,"armed(2)",3) :- time(1). atom("armed(2)","armed(2)").
lit(p,"armed(1)",3) :- time(1).
lit(n,"-armed(2)",3) :- time(1).

% dunked(T1) :- dunked(T), T1=T+1.
lit(h,"dunked(1)",4). atom("dunked(1)","dunked(1)").
lit(p,"dunked(0)",4).

lit(h,"dunked(2)",5). atom("dunked(2)","dunked(2)").
lit(p,"dunked(1)",5).

% dunked(T1) :- dunk(T), T1=T+1.
lit(h,"dunked(1)",6) :- dunk(0).

lit(h,"dunked(2)",7) :- dunk(1).

% armed(T1) v -armed(T1) :- dunk(T), armed(T), T1=T+1.
lit(h,"armed(1)",8) :- dunk(0).
lit(h,"-armed(1)",8) :- dunk(0). atom("-armed(1)","armed(1)").
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lit(p,"armed(0)",8) :- dunk(0).

lit(h,"armed(2)",9) :- dunk(1).
lit(h,"-armed(2)",9) :- dunk(1). atom("-armed(2)","armed(2)").
lit(p,"armed(1)",9) :- dunk(1).

% -armed(T1) :- flush(1), dunked(T),T1=T+1.
lit(h,"-armed(1)",10) :- flush(0). lit(p,"dunked(0)",10) :- flush(0).

lit(h,"-armed(2)",11) :- flush(1). lit(p,"dunked(1)",11) :- flush(1).

% :- not armed(2).

%% 2. Optimized meta-interpreter

%% 2.1 -- program dependent part

notok :- ninS("armed(0)"), ninS("-armed(0)").
inS("armed(1)") :- inS("armed(0)"), ninS("-armed(1)"), time(0).
inS("armed(2)") :- inS("armed(1)"), ninS("-armed(2)"), time(1).
inS("dunked(1)") :- inS("dunked(0)").
inS("dunked(2)") :- inS("dunked(1)").
inS("dunked(1)") :- dunk(0).
inS("dunked(2)") :- dunk(1).
notok :- ninS("armed(1)"),ninS("-armed(1)"), inS("armed(0)"), dunk(0).
notok :- ninS("armed(2)"),ninS("-armed(2)"),inS("armed(1)"), dunk(1).
inS("-armed(1)") :- inS("dunked(0)"), flush(0).
inS("-armed(2)") :- inS("dunked(1)"), flush(1).
notok :- ninS("armed(2)").

%% 2.2 -- fixed rules

% Skipped, see QBF Encoding

%%% 3. constraint
:- not notok.

B Integrated Program for Strategic Companies

The integrated program for the strategic companies probleminstance in Section 6.3,SCstrategic =
SCguess ∪ SCcheck

′, is given below. It has two answer setsS1 = {strat(barilla), strat(saiwa),
strat(frutto), . . .} andS2 = {strat(barilla), strat(panino), . . .} which correspond to
the strategic sets as identified above.

%%%% GUESS PART
company(barilla). company(saiwa). company(frutto). company(panino).
prod_by(pasta,barilla,saiwa). prod_by(tomatoes,frutto,barilla).
prod_by(wine,barilla,barilla). prod_by(bread,saiwa,panino).
contr_by(frutto,barilla,saiwa,barilla).

%% Guess Program: Not necessarily minimal

strat(X) v -strat(X) :- company(X).
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:- prod_by(X,Y,Z), not strat(Y), not strat(Z).
:- contr_by(W,X,Y,Z), not strat(W),

strat(X), strat(Y), strat(Z).

%%%% REWRITTEN CHECK PART (after grounding)
%% 1. Create dynamically the facts for the program:

% smaller :- -strat1(X).
lit(h,"smaller",1). atom("smaller","smaller").
lit(p,"-strat1(saiwa)",1).
lit(h,"smaller",2). atom("smaller","smaller").
lit(p,"-strat1(panino)",2).
lit(h,"smaller",3). atom("smaller","smaller").
lit(p,"-strat1(frutto)",3).
lit(h,"smaller",4). atom("smaller","smaller").
lit(p,"-strat1(barilla)",4).

% strat1(X) v -strat1(X) :- strat(X).
lit(h,"strat1(saiwa)",5) :- strat(saiwa). atom("strat1(saiwa)","strat1(saiwa)").
lit(h,"-strat1(saiwa)",5) :- strat(saiwa). atom("-strat1(saiwa)","strat1(saiwa)").
lit(h,"strat1(panino)",6) :- strat(panino). atom("strat1(panino)","strat1(panino)").
lit(h,"-strat1(panino)",6) :- strat(panino). atom("-strat1(panino)","strat1(panino)").

lit(h,"strat1(frutto)",7) :- strat(frutto). atom("strat1(frutto)","strat1(frutto)").
lit(h,"-strat1(frutto)",7) :- strat(frutto). atom("-strat1(frutto)","strat1(frutto)").
lit(h,"strat1(barilla)",8) :- strat(barilla). atom("strat1(barilla)","strat1(barilla)").
lit(h,"-strat1(barilla)",8) :- strat(barilla). atom("-strat1(barilla)","strat1(barilla)").

% For constraints, critical negative literals need to be represented (cf. OPTmod)

% :- prod_by(X,Y,Z), not strat1(Y), not strat1(Z).
lit(n,"strat1(saiwa)",10) :- prod_by(bread,saiwa,panino).
lit(n,"strat1(panino)",10) :- prod_by(bread,saiwa,panino).
lit(n,"strat1(frutto)",11) :- prod_by(tomatoes,frutto, barilla).
lit(n,"strat1(barilla)",11) :- prod_by(tomatoes,frutto, barilla).
lit(n,"strat1(barilla)",12) :- prod_by(wine,barilla,barilla).
lit(n,"strat1(barilla)",13) :- prod_by(pasta,barilla,saiwa).
lit(n,"strat1(saiwa)",13) :- prod_by(pasta,barilla,saiwa).

% :- contr_by(W,X,Y,Z), not strat1(W), strat1(X), strat1(Y), strat1(Z).
lit(n,"strat1(frutto)",14) :- contr_by(frutto,barilla,saiwa,saiwa).

%% 2. Optimized meta-interpreter

%% 2.1 -- program dependent part
inS("smaller") :- inS("-strat1(saiwa)").
inS("smaller") :- inS("-strat1(panino)").
inS("smaller") :- inS("-strat1(frutto)").
inS("smaller") :- inS("-strat1(barilla)").
notok :- ninS("strat1(saiwa)"),ninS("-strat1(saiwa)"),strat(saiwa).
notok :- ninS("strat1(panino)"),ninS("-strat1(panino)"),strat(panino).
notok :- ninS("strat1(frutto)"),ninS("-strat1(frutto)"),strat(frutto).
notok :- ninS("strat1(barilla)"),ninS("-strat1(barilla)"),strat(barilla).
notok :- ninS("smaller").
notok :- ninS("strat1(saiwa)"),ninS("strat1(panino)").
notok :- ninS("strat1(frutto)"),ninS("strat1(barilla)").
notok :- ninS("strat1(barilla)").
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notok :- ninS("strat1(barilla)"),ninS("strat1(saiwa)").
notok :- inS("strat1(barilla)"),inS("strat1(saiwa)"),ninS("strat1(frutto)").

%% 2.2 -- fixed rules

% Skipped, see QBF Encoding

%%% 3. constraint
:- not notok.

C Ad Hoc Encoding for Quantified Boolean Formulas

The ad hoc encoding in [23] for evaluating a QBF of formF = ∃x1 · · · ∃xm∀y1 · · · ∀ynΦ, whereΦ =
c1 ∨ · · · ∨ ck is a propositional formula overx1, . . . , xm, y1, . . . , yn in 3DNF, i.e. eachci = ai,1 ∧ · · · ∧ ai,3
and|ai,j | ∈ {x1, . . . , xm, y1 . . . , yn}, representsF by the following facts:

• exists(xi). for each existential variablexi;

• forall(yj). for each universal variableyj; and

• term(p1, p2, p3, q1, q2, q3). for each disjunctcj = li,1 ∧ li,2 ∧ li,3 in Φ, where (i) if li,j is a positive
atomvk, thenpj = vk, otherwisepj= true, and (ii) if li,j is a negated atom¬vk, thenqi = vk,
otherwiseqi = false. For example,term(x1, true, y4, false, y2, false), encodes the termx1 ∧
¬y2 ∧ y4.

For instance, our sample instance from Section 6.1

∃x0x1∀y0y1(¬x0 ∧ ¬y0) ∨ (y0 ∧ ¬x0) ∨ (y1 ∧ x0 ∧ ¬y0) ∨ (y0 ∧ ¬x1 ∧ ¬y0)

would be encoded by the following facts:

exists(x0). exists(x1). forall(y1). forall(y2).
term(true,true,true,x0,y0,false).
term(y0,true,true,x0,false,false).
term(y1,x0,true,y0,false,false).
term(y0,true,true,x1,y0,false).

These facts are conjoined with the following facts and rules:

t(true). f(false).
t(X) v f(X) :- exists(X).
t(Y) v f(Y) :- forall(Y).

w :- term(X,Y,Z,Na,Nb,Nc),t(X),t(Y),t(Z),
f(Na),f(Nb),f(Nc).

t(Y) :- w, forall(Y).
f(Y) :- w, forall(Y).

:- not w.

The guessing part “initializes” the logical constantstrue andfalse and chooses a witnessing assign-
mentσ to the variables inX, which leads to an answer setMG for this part. The more tricky checking part
then tests whetherφ[X/σ(X)] is a tautology, using a saturation technique similar to our meta-interpreter.
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D Ad Hoc Encodings for Strategic Companies

The first ad hoc encoding for Strategic Companies in [8],adhoc1, solves the problem in a surprisingly ele-
gant way by the following two rules conjoined to the facts representing theprod by andcontr by relations:

strat(Y) v strat(Z) :- prod by(X,Y,Z).
strat(W) :- contr by(W,X,Y,Z), strat(X), strat(Y), strat(Z).

Here, the minimality of answer sets plays together with the first rule generating candidate strategic sets
and the second rule enforcing the constraint on the controlsrelation. It constitutes a sophisticated example
of intermingled guess and check. Howewer, this succinct encoding relies very much on the fixed number of
producing and controlling companies; an extension to arbitrarily many producers and controllers seems not
to be as easy as in our separate guess and check programs from Section 6.3.

The second ad hoc encoding from [8],adhoc2, strictly separates the guess and checking parts, and uses
the following rules and constraints:

strat(X) v -strat(X) :- company(X).
:- prod by(X,Y,Z), not strat(Y), not strat(Z).
:- contr by(W,X,Y,Z), not strat(W), strat(X), strat(Y), strat(Z).
:- not min(X), strat(X).
:- strat’(X,Y), -strat(Y).
:- strat’(X,X).

min(X) v strat’(X,Y) v strat’(X,Z) :- prod by(G,Y,Z),strat(X).
min(X) v strat’(X,C) :- contr by(C,W,Y,Z), strat(X),

strat’(X,W), strat’(X,Y), strat’(X,Z).
strat’(X,Y) :- min(X), strat(X), strat(Y), X !=Y.

Informally, the first rule and the first two constraints generate a candidate strategic set, whose minimality
is checked by the remainder of the program. For a detailed explanation, we refer to [8].
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