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Abstract

In this paper, we propose a new language, called AR (Action Rules), and describe how
various propagators for finite-domain constraints can be implemented in it. An action
rule specifies a pattern for agents, an action that the agents can carry out, and an event
pattern for events that can activate the agents. AR combines the goal-oriented execution
model of logic programming with the event-driven execution model. This hybrid execution
model facilitates programming constraint propagators. A propagator for a constraint is an
agent that maintains the consistency of the constraint and is activated by the updates of
the domain variables in the constraint. AR has a much stronger descriptive power than
indexicals, the language widely used in the current finite-domain constraint systems, and
is flexible for implementing not only interval-consistency but also arc-consistency algo-
rithms. As examples, we present a weak arc-consistency propagator for the all distinct

constraint and a hybrid algorithm for n-ary linear equality constraints. B-Prolog has been
extended to accommodate action rules. Benchmarking shows that B-Prolog as a CLP(FD)
system significantly outperforms other CLP(FD) systems.

KEYWORDS: constraint programming, constraint propagation, action rules

1 Introduction

CLP(FD), the constraint logic programming language over finite domains, has

been proved effective for solving a large number of real-life optimization prob-

lems (Dincbas et al. 1990; Jaffar and Maher 1994). The key operation employed in

CLP(FD) is called constraint propagation (Kumar 1992; Tsang 1993), which uses

constraints actively to prune search spaces as follows: whenever a variable changes,

i.e., the variable has been instantiated or its domain has been updated, the do-

mains of all the remaining variables are filtered to contain only those values that

are consistent with this variable. There may exist different propagation rules for a

constraint depending on the level of consistency to be achieved. Constraint prop-

agation has been employed to solve not only constraints over finite domains but

also constraints over trees, lists, finite sets, floating-point numbers, and many other

domains (Jaffar and Maher 1994).

http://arxiv.org/abs/cs/0506005v1
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In early CLP(FD) systems, such as the CHIP system (Dincbas et al. 1988), con-

straints are interpreted rather than compiled. Constraints are first transformed into

canonical-form terms and are then executed by an interpreter that performs, among

other things, constraint propagation. The propagation procedure adopted is general

enough for handling all types of constraints. Learning from the success of compil-

ing Prolog programs into the Warren Abstract Machine (WAM) (Warren 1983),

a former research group at ECRC extended the WAM for compiling CLP(FD)

(Aggoun and Beldiceanu 1991). The CHIP compiler compiles constraints into low-

level instructions such that different specialized propagation procedures are used

for different types of constraints. This black-box approach has proved problematic

because it is too complicated and lacks flexibility and extendibility. The extended

WAM in the CHIP system (Aggoun and Beldiceanu 1991) has over 100 instructions

for compiling finite-domain constraints alone!

A language construct, called indexicals, has been quite popular as an intermediate

language for compiling finite-domain constraints. The language was first proposed in

(van Hentenryck et al. 1992) and then popularized by (Codognet and Diaz 1996).

This language is also adopted by other systems (Carlsson et al. 1997; Sidebottom and Havens 1996).

An indexical is a primitive constraint in the form of X in r, where X is a domain

variable and r is a range expression for X . For each indexical, a propagation pro-

cedure specific to it is used. Indexicals are claimed to be a glass-box approach to

compiling constraints in contrast with the black-box CHIP compiler. Nevertheless,

as the delaying mechanism is embedded in range expressions, indexicals are not as

open as claimed. Indexicals can be used to compile arithmetic constraints, but are

too weak to be used to program many other kinds of propagators.

CHR (Constraint Handling Rules) (Frühwirth 1998) may currently be the most

powerful implementation language for constraints. It can be used to program not

only constraint propagators but also constraint reasoning rules. CHR has been

implemented and integrated with ECLiPSe, SICStus, HAL, and Oz. CHR resembles

a production system. In CHR, the left-hand side of a rule specifies a pattern of

constraints in the constraint store and the right-hand side specifies new constraints

to replace those on the left-hand side or to be added into the store. The left-hand

side of a rule may have multiple constraint patterns. This feature is helpful for

reasoning about the constraint store. For example, A > B & B > C → A >

C + 1 is a CHR rule that generates the constraint A > C + 1, which is helpful

albeit redundant. The strong descriptive power, however, is not offered without

cost. For CHR, a sophisticated matching algorithm is needed to match constraint

patterns against the constraint store. Now, constraint solvers implemented in CHR

are still an order of magnitude slower than constraint interpreters implemented in

C (Holzbaur and Fruhwirth 1999; Holzbaur et al. 2004).

This paper proposes a new language, called AR (Action Rules), which can be used

to program event handling in general and constraint propagation in particular. An

action rule specifies a pattern for agents, an action that the agents can carry out,

and an event pattern for events that can activate the agents. An agent behaves in an

event-driven manner. An agent can be suspended when certain conditions on it are

satisfied and can be activated when certain events are posted. AR is an extension of
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delay constructs such as delay clauses (Meier 1994) that allows for the descriptions

of not only delay conditions but also activating events and actions (Zhou 1998).

The syntax, operational semantics, and implementation of AR will be described in

Section 3.

The focus of this paper is on how to implement various propagators for finite-

domain constraints in AR. A propagator for a constraint is an agent that maintains

the consistency of the constraint and is activated by the updates of the domain vari-

ables in the constraint. In Section 4, we present propagators for binary, non-binary,

and the global constraint all distinct. AR is more expressive than indexicals.

Some of the propagators presented, such as the one for maintaining arc consistency

for binary equality constraints and the one for maintaining weak arc consistency

for all distinct, cannot be implemented in indexicals as efficiently.

B-Prolog has been extended to accommodate AR and several constraint solvers

including the ones over finite domains, Boolean, trees, and finite sets have been

developed in AR (Zhou 2002). Section 5 compares the performance of the finite-

domain solver of B-Prolog with GNU-Prolog (GP), a state-of-the-art implemen-

tation of CLP(FD) (Diaz and Codognet 2001), and two other CLP(FD) systems:

ECLiPSe and SICStus. Benchmarking results show that B-Prolog is significantly

faster than GP and 4-6 times as fast as ECLiPSe and SICStus.

Readers are assumed to be familiar with logic programming and constraint sat-

isfaction, but no knowledge about the compilation is assumed. In Section 2, we

define some preliminary terms and concepts about CLP(FD) and constraint prop-

agation. Readers are referred to (Marriott and Stuckey 1998), (Hentenryck 1989)

and (Kumar 1992) for the details. A brief description of the implementation of AR

is given in Section 3, and a more detailed description can be found in (Zhou 2003).

2 Preliminaries

2.1 CLP(FD)

CLP(FD) (Hentenryck 1989) is an extension of Prolog that supports built-ins for

specifying domain variables, constraints, and strategies for instantiating variables.

The domains of variables are declared as follows:

V ars in D

where V ars is a variable or a list of variables, and D is a list of ground terms

or a range between two integers l..u. A domain variable is normally represented

as a Prolog variable with attributes. A CLP(FD) system provides primitives for

accessing and updating attribute values.

A CLP(FD) system provides equality (=), disequality (6=), and inequality con-

straints. In addition, a CLP(FD) system also provides some other constraints such

as global constraints. The global constraint all distinct(L) ensures that the el-

ements in the list L must be all pairwise different.



4 N.F. Zhou

2.2 Constraint propagation

Constraint Propagation (Kumar 1992; Tsang 1993) is a key operation employed in

CLP(FD) systems for maintaining the consistency of constraints. The basic idea of

constraint propagation is to activate the propagators of constraints whenever the

domains of the variables in the constraints are updated. Propagating the updates

to other variables may result in the shrinking of the domains of the variables or the

instantiation of the variables.

There are different levels of consistency for constraints such as node, interval,

bounds, arc, and path consistency (Tsang 1993; Marriott and Stuckey 1998). We

define below three levels of consistency needed in this paper, namely node, interval

and arc consistency, and define the propagators that maintain them.

A unary constraint p(X), where X has the domain D, is said to be node-consistent

if, for any element x in D, p(x) is satisfied.

∀x∈Dp(x)

For example, for the equality constraintX = Y +1, when X is instantiated to 3, the

constraint becomes unary and Y must be instantiated to 2 to make the constraint

node-consistent. As another example, for the disequality constraint X 6= Y , when

X is instantiated to 3, 3 must be excluded from the domain of Y to make the

constraint node-consistent. The propagation rule that maintains node consistency

is called forward checking. A propagator for a constraint that performs forward

checking is activated whenever the constraint becomes unary.

Let C be a linear equality constraint c+ a1 ×X1 + a2 ×X2 + . . .+ an ×Xn = 0

where ai 6= 0 and Xi is defined over the domain Di (i = 1, . . . , n). Let

gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) =

−c− a1 ×X1 − . . .− ai−1 ×Xi−1 − ai+1 ×Xi+1 − . . .− an ×Xn

ai
and l and u be the functions defined as follows:

l(gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)) =

min{gi(x1, . . . , xi−1, xi+1, . . . , xn)|xk ∈ Dk, 1 ≤ k ≤ n, k 6= i}

u(gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)) =

max{gi(x1, . . . , xi−1, xi+1, . . . , xn)|xk ∈ Dk, 1 ≤ k ≤ n, k 6= i}

The constraint C is said to be interval consistent w.r.t. Xi if:

∀x∈Di
(l(gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)) ≤ x ≤ u(gi(X1, . . . , Xi−1, Xi+1, . . . , Xn))

To make the constraint interval consistent w.r.t. Xi, we have to exclude all the

elements from Di that are not in the range. The constraint C is said to be interval

consistent if C is interval consistent w.r.t. all the variables. For example, the con-

straint X = Y +1, where X and Y have the domain 1..5, is not interval-consistent.

To make the constraint interval consistent, we have to exclude 1 from the domain
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of X and 5 from the domain of Y . Propagators for maintaining interval consistency

are activated whenever a bound of a variable is updated or whenever a variable is

instantiated. The definition can be easily extended to an inequality constraint.

Consider a binary constraint p(X,Y ) whereX and Y are defined over the domains

Dx and Dy, respectively. The constraint is said to be arc-consistent w.r.t. X if for

any element in Dx there exists a supporting element in Dy such that the constraint

is satisfied:

∀x∈Dx
∃y∈Dy

p(x, y)

Similarly, the constraint is arc-consistent w.r.t. Y if for any element in Dy there

exists a supporting element in Dx such that the constraint is satisfied:

∀y∈Dy
∃x∈Dx

p(x, y)

The constraint is arc-consistent if it is arc-consistent w.r.t. both X and Y . For

example, the equality constraint X = Y + 1 (X ∈ {2, 4, 5}, Y ∈ {1..4}) is not

arc-consistent since there is no element in the domain of X that supports 2 in

the domain of Y . To make the constraint arc-consistent, we must exclude 2 from

the domain of Y . Propagators for maintaining arc consistency are triggered when-

ever changes occur to the domain of a variable. Maintaining arc consistency for

a non-binary constraint requires examining Cartesian products of the domains

(Dechter 2003) and is thus very costly. For this reason, some CLP(FD) systems

maintain arc consistency only for binary constraints and many others do not con-

sider arc consistency at all.

2.3 Domain variables

A domain variable is a suspension variable to which there are suspended propagators

and some other information attached. A domain variable is represented in B-Prolog

as a record that has the following fields:

ref reference to the value

type type of the domain

min minimum element in the domain

max maximum element in the domain

size number of elements that remain in the domain

ins cs list of propagators to be executed when the variable is instantiated

bound cs list of propagators to be executed when a bound is updated

dom cs list of propagators to be executed when an inner element is excluded

elms pointer to the bit vector representation of the elements

where ref refers to the variable itself if the variable is not instantiated, and elms is

a pointer to a bit vector that represents the elements. When a domain is an interval

without holes, no bit vector is necessary and elms is a null pointer.

The following built-in predicates and functions are available on domain variables.

• dvar(X): Succeeds if X is a domain variable.
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• min(X), max(X): Functions that return, respectively, the minimum and max-

imum elements of the domain of X .

• size(X,Size): The size of the domain of X is Size.

• exclude(X,E): Excludes the element E from the domain of X .

• Xin D: The new domain for X is the intersection of its existing domain and

D where D is a set of ground terms or a range l..u of integers.

A failure occurs when the domain of a variable becomes empty. When the domain

of a variable becomes a singleton, the variable is instantiated to the element auto-

matically.

An event is posted whenever the domain of a variable is updated. For a domain

variable X , instantiating X posts the event ins(X),1 updating the lower or upper

bound of the domain posts the event bound(X), and excluding an inner element E

from the domain posts the event dom(X,E). Notice that the event bound(X) is not

posted when X is instantiated and the event dom(X,E) is not posted when either

bound of the domain ofX is updated. This implies that a propagator that maintains

arc consistency has to handle not only dom(X,E) events but also bound(X) and

ins(X) events.

Each event on a domain variable activates its corresponding list of propagators.

The event ins(X) activates the propagator list ins cs of X , bound(X) activates

the list bound cs, and dom(X,E) activates the list dom cs.

3 The AR Language

AR is designed for programming interactive agents. In this section, we describe the

syntax, operational semantics, and implementation of AR.

3.1 Syntax

An action rule takes the following form:

Agent, Condition, {Event} => Action

where Agent is an atomic formula that represents a pattern for agents, Condition

is a conjunction of conditions on the agents, Event is a non-empty disjunction

of patterns for events that can activate the agents, and Action is a sequence of

subgoals.2 Condition and the following comma can be omitted if no condition is

needed on Agent. Action cannot be empty. The subgoal true represents an empty

action that always succeeds. An action rule degenerates into a commitment rule if

Event together with the enclosing braces are missing. Conditions, event patterns,

and actions are all atomic formulas where the delimiter ‘,’ is used to separate the

constituents.

An AR predicate consists of a sequence of rules defining agents of the same

1 A variable is said to be instantiated if it is bound to another term, possibly another variable.
2 Subgoals in Action can be any subgoals including those defined by Prolog clauses.
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predicate symbol. In a program, AR predicates can be intermingled with Prolog

predicates. In this paper, the term agents is used to refer to subgoals that can

be suspended and activated, and the term predicate is used refer to both AR and

Prolog predicates unless explicitly specified.

All conditions must be in-line tests.3 In the implementation of AR in B-Prolog,

the following types of conditions are allowed:

• Type and mode checking: Predicates like integer(X), var(X), and nonvar(X).

• Matching: A matching call takes the form of X = Y where one of the ar-

guments must be a non-variable term at compile time and the other must

be a variable (again at compile time) that occurs before in the rule. The

non-variable term serves as a pattern and the variable refers to a term to be

matched against the pattern. This call succeeds if the pattern and the term

become identical after a substitution is applied to the pattern. For instance,

the condition f(X) = Y succeeds if Y is a structure whose functor is f/1.

• Term inspection: Several built-in predicates including arg/3, functor/3, ==/2,

\==/2, and n vars gt/2 can be used in the condition of a rule to inspect the

arguments of an agent. The call n vars gt(Term,N) succeeds if the number

of variables occurring in Term is greater than N .

• Arithmetic comparison: Checks the arithmetic equality (=:=), disequality

(=\=), or inequality (>, >=, <, and =<) of two terms which must be ground

at runtime.

A set of built-in events is provided.4 As far as programming constraint propaga-

tors is concerned, an event pattern can be one of the following:

• generated: The action of the rule is executed when the agent is suspended

for the first time.

• ins(X): The agent is activated when an event ins(X) is posted.

• bound(X): The agent is activated when an event bound(X) is posted.

• dom(X) and dom(X,E): The agent is activated when an event dom(X,E′) is

posted. Before the action is executed, E is made to reference the element E′.

A user program can create and post its own events and define agents to handle

them. A user-defined event takes the form of event(X,T) where X is a suspension

variable that connects the event with its handling agents, and T is a Prolog term

that contains the information to be transmitted to the agents. If the event poster

does not have any information to be transmitted to the agents, then the second

argument T can be omitted. The built-in post(E) posts the event E.

In an action rule, the event pattern dom(X,T) or event(X,T) is not allowed to

coexist with any other event patterns and T must be a first-occurring variable so

that when the action of the rule is executed T always refers to the second argument

of the event.

3 An in-line call is compiled into instructions that do not invoke any predicates. A test does not
change the instantiation status of the variables in its arguments.

4 In the implementation in B-Prolog, built-in events are provided for programming constraint
propagators, graphical user interfaces, and interactive agents.
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3.2 Examples

The following defines an agent that echoes the messages sent to it by event posters.

echo_agent(X), {event(X,Message)} => write(Message).

The following query,

echo_agent(Ping), echo_agent(Pong),

post(event(Ping,ping)), post(event(Pong,pong))

generates two echo agents echo agent(Ping) and echo agent(Pong), and activates

them by posting two events. The event event(Ping,ping) activates the agent

echo agent(Ping), and the event event(Pong,pong) activates echo agent(Pong).

The following defines the freeze predicate in Prolog-II (Colmerauer 1984).

freeze(X,G), var(X), {ins(X)} => true.

freeze(X,G) => call(G).

The primitive freeze(X,G) is logically equivalent to call(G) but the execution of

G is delayed until X is instantiated to a non-variable term. The agent freeze(X,G) is

suspended waiting for an event ins(X) when X is a variable. When an event ins(X)

is posted, the condition var(X) is tested again. If it succeeds, then the action true

is executed and the agent becomes suspended again. As long as X is a free variable,

the agent freeze(X,G) is suspended. Only when X becomes a non-variable term,

can the second rule be applied.

Consider, as another example, how to implement the following indexical:

X in min(Y)+min(Z)..max(Y)+max(Z).

which ensures that the constraint X = Y+Z is interval-consistent w.r.t. X.

‘V in V+V’(X,Y,Z),{generated,ins(Y),bound(Y),ins(Z),bound(Z)} =>

reduce_domain(X,Y,Z).

reduce_domain(X,Y,Z) =>

L is min(Y)+min(Z), U is max(Y)+max(Z),

X in L..U.

The propagator is activated whenever a bound of Y or Z is updated or either one is

instantiated. The action reduce domain(X,Y,Z) enforces that the domain of X be

in the range min(Y)+min(Z)..max(Y)+max(Z). The action is also executed before

the propagator is first suspended so that no preprocessing is needed to enforce

interval consistency.

3.3 Operational Semantics

The operational semantics of AR can be presented as a state-transition system

as shown in Figure 1. An agent may be in one of the following states: start, sleep,
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Fig. 1. Diagram of state transition of agents.

woken, and end. When an agent is generated, it enters the start state and is executed

immediately. A typical agent transits to the end state through the sleep and woken

states. An agent is said to be floundering if it stays in the sleep state forever. It is

the programmer’s responsibility to prevent agents from floundering.

When an agent is generated, the system searches in its predicate in textual order

for a rule whose agent-pattern matches the agent and whose condition is satisfied.

This kind of rule is said to be applicable to the agent. Formally, an action rule

“H,C, {E} => B” or a commitment rule “H,C => B” is applicable to an agent α

if there exists a unifier θ such that Hθ = α and Cθ is satisfied.5 If no rule is found

applicable, the agent fails. If a commitment rule is found, the agent is substituted

for the body,6 and its state is changed to end.

If an action rule “H,C, {E} => B” is found for the agent, the agent is suspended,

transiting from start to sleep. It will stay in the sleep state until it is activated by

one of the events in E.

When an event is posted, all the sleeping agents waiting for the event in the

system are woken up and the event is erased after that so that no agents generated

later will be responsive to this event. The woken agents are added to the queue of

active subgoals in some order. It is up to the implementer of the language to use

a strategy to schedule activated agents. Whatever scheduling strategy is adopted,

the programmer should not rely on the strategy to guarantee the correctness of

programs.

Suppose an agent was put into sleep by the action rule “H,C, {E} => B” and

was woken up by one of the events in E. After this agent is picked by the scheduler,

the system tests the condition C again. If it is satisfied, the action B is executed.

If the action succeeds, the agent is re-suspended. If the action fails, the agent fails

as well. If the condition C of the action rule does not hold, the system searches for

an alternative applicable rule for the agent just as for a newly generated agent.

There is no primitive for killing agents explicitly. An agent never disappears as

long as action rules are applied to it successfully. An agent transits to the end state

only when a commitment rule is applied to it.

5 Notice that since one-directional matching rather than full unification is used to search for an
applicable rule and in the condition no variable in α can be instantiated, the agent remains the
same after an applicable rule is found.

6 A commitment rule is similar to a guarded clause in concurrent logic languages (Shapiro 1989),
but an agent can never be blocked while it is being matched against an agent pattern.
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3.4 The Implementation

The abstract machine of B-Prolog, called ATOAM (Zhou 1996b), is extended to

support agents (Zhou 2003). This subsection briefly describes this implementation.

A more detailed description can be found in (Zhou 2003).

3.4.1 The frame structure for agents

The ATOAM is a variant of the Warren Abstract Machine (WAM) (Warren 1983).

Unlike in the WAM where arguments are passed through argument registers, argu-

ments in the ATOAM are passed through stack frames and only one frame is used

for each subgoal. Each time a predicate is invoked by a subgoal, a frame is placed

on top of the control stack unless the frame currently at the top can be reused.

Frames for different types of predicates have different structures.

Agents are stored as frames on the control stack. The frame for an agent has the

following slots in addition to those included in a normal frame:7

STATE: State of the agent

EVENT: Activating event

REEP: Re-entrance program pointer

PREV: Previous agent in the chain

The STATE slot has one of those states shown in Figure 1 as its value. The EVENT

slot stores the last event that activated the agent. The action rule of the agent can

have access to this event. The REEP slot stores the program pointer to continue

when the agent is activated. The PREV slot stores the pointer to the previous

agent’s frame in the chain of agents.

The frames on the control stack comprise three chains, namely the chain of active

subgoals8 that are being executed, the chain of choice points, i.e., subgoals that have

alternative clauses to be tried when execution backtracks to them, and the chain

of agents in either sleep or woken states.

Storing agents on the stack facilitates context switching for agents (Zhou 1996a)

but complicates memory management. With frames of agents on the stack, the

chronological order of frames is no longer preserved, and therefore a garbage collec-

tor is needed to collect useless frames on the control stack and run-time checking

is needed to determine whether the current frame can be reused.

3.4.2 When and how to invoke agents?

For the sake of efficiency, events are not checked after each instruction but checked

at the entry and exit points of each predicate. If it is found that the list of events

7 A normal frame has the following slots: arguments, FP (parent frame), CPS (continuation
program pointer on success), TOP (top of the control stack), BTM (bottom of the frame),
and local variables. A choice point frame has the following additional slots: CPF (continuation
program pointer on failure), B (parent choice point), H (top of the heap), and T (top of the
trail stack).

8 i.e., the frames connected by FP.
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is not empty, those agents that are waiting for the events are added into the active

chain and the current predicate is interrupted. After the activated agents com-

plete their execution successfully, the interrupted predicate resumes its execution.

The programmer has no control over the order in which agents are added. In our

implementation, the first-generated-first-served strategy is used.

At a point during execution, there may be multiple events posted that are all

expected by an agent. If this is the case, then the agent must be activated once for

each of the events. If an agent is found to be active already when the system tries

to add it into the active chain, the sytem makes a copy of it and adds the copy into

the chain.

The actions of constraint propagators are to reduce the domains of variables. This

characteristic is exploited to improve the performance of constraint propagators.

Some events that cannot lead to the shrinking of any domains are ignored. For

example, if multiple events of bound(X) are posted at the same time, then only one

of them needs to be handled, and if bound(X) and ins(X) are posted at the same

time, then the bound(X) event is ignored. In this way, many redundant activations

of rules that do not contribute to the reduction of any domains can be suppressed.

This optimization is applied to constraint propagators only and not general agents.

In a CLP(FD) program, constraint propagation is normally intertwined with

non-deterministic subgoals such as labeling that assign values to variables. If a

non-deterministic predicate is interrupted by events, then no choice point can be

created for the interrupted predicate until the activated agents are all executed.

Consider the following example:

?-p(X),X=f(Y),q(X),write(X).

p(X),var(X),{ins(X)} => true.

p(X) => X=f(a).

q(X):-fail.

q(X).

First the agent p(X) is generated, waiting for X to be instantiated. The subgoal

X=f(Y) posts an event ins(X) after X bound to f(Y). At the entry of q(X), the

event is detected and p(X) is activated. If there were a choice point created for q(X)

before p(X) is activated, the binding Y=a given by the second rule of p(X) would

be lost when fail in q/1 is executed since Y is older than the choice point, and the

output from write(X) would be f(Y) not f(a).

4 Programming Constraint Propagators in AR

The high descriptive power of AR opens new ways to implementing constraint

propagators. In this section, we implement propagators that maintain node, in-

terval, and arc consistency for binary constraints, a hybrid algorithm for non-

binary constraints, and a weak arc-consistency propagator for the global constraint

all distinct.
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4.1 Binary constraints

We consider how to implement propagators for the binary constraint A × X =

B × Y + C, where X and Y are domain variables, A and B are positive integers,

and C is an integer of any kind. Similar propagators can be implemented for other

types of binary constraints.

4.1.1 Forward checking

Recall that forward checking enforces node consistency. The following shows a prop-

agator that performs forward checking for the binary constraint.

‘aX=bY+c’(A,X,B,Y,C) =>

‘aX=bY+c_forward’(A,X,B,Y,C).

‘aX=bY+c_forward’(A,X,B,Y,C),var(X),var(Y),{ins(X),ins(Y)} => true.

‘aX=bY+c_forward’(A,X,B,Y,C),var(X) =>

T is B*Y+C, X is T//A, A*X=:=T.

‘aX=bY+c_forward’(A,X,B,Y,C) =>

T is A*X-C, Y is T//B, B*Y=:=T.

The operation op1//op2, which is equivalent to truncate(op1/op2), gives the

integer quotent of the division. When both X and Y are variables, the propagator

is suspended. When either variable is instantiated, the propagator computes the

value for the other variable.

4.1.2 Interval consistency

The following propagator, which extends the forward-checking propagator, main-

tains interval consistency for the constraint.

‘aX=bY+c’(A,X,B,Y,C) =>

‘aX=bY+c_reduce_domain’(A,X,B,Y,C),

‘aX=bY+c_forward’(A,X,B,Y,C),

‘aX=bY+c_interval’(A,X,B,Y,C).

The subgoal ‘aX=bY+c reduce domain’(A,X,B,Y,C) preprocess the constraint

to make it interval-consistent when the constraint is generated.

‘aX=bY+c_reduce_domain’(A,X,B,Y,C) =>

‘aX in bY+c_reduce_domain’(A,X,B,Y,C),

MC is -C,

‘aX in bY+c_reduce_domain’(B,Y,A,X,MC).

‘aX in bY+c_reduce_domain’(A,X,B,Y,C) =>

L is (B*min(Y)+C) /> A,

U is (B*max(Y)+C) /< A,

X in L..U.
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The operation op1 /> op2 returns the lowest integer that is greater than or equal

to the quotient of op1 by op2 and the operation op1 /< op2 returns the greatest

integer that is less than or equal to the quotient. It can be proved easily that no

value outside the range L..U satisfies the constraint.

The subgoal ‘aX=bY+c interval’(A,X,B,Y,C) maintains interval consistency

for the constraint.

‘aX=bY+c_interval’(A,X,B,Y,C) =>

‘aX in bY+c_interval’(A,X,B,Y,C), % reduce X when Y changes

MC is -C,

‘aX in bY+c_interval’(B,Y,A,X,MC). % reduce Y when X changes

‘aX in bY+c_interval’(A,X,B,Y,C),

var(X),var(Y),

{generated,bound(Y)}

=>

‘aX in bY+c_reduce_domain’(A,X,B,Y,C).

‘aX in bY+c_interval’(A,X,B,Y,C) => true.

Notice that the action ‘aX=bY+c reduce domain’(A,X,B,Y,C) is executed only

when both variables are free. If either one turns to be instantiated, then the forward-

checking rule takes care of that situation.

4.1.3 Arc consistency

The following propagator, which extends the one shown above, maintains arc con-

sistency for the constraint.

‘aX=bY+c’(A,X,B,Y,C) =>

‘aX=bY+c_reduce_domain’(A,X,B,Y,C),

‘aX=bY+c_forward’(A,X,B,Y,C),

‘aX=bY+c_interval’(A,X,B,Y,C),

‘aX=bY+c_arc’(A,X,B,Y,C).

‘aX=bY+c_arc’(A,X,B,Y,C) =>

‘aX in bY+c_arc’(A,X,B,Y,C), % reduce X when Y changes

MC is -C,

‘aX in bY+c_arc’(B,Y,A,X,MC).% reduce Y when X changes

‘aX in bY+c_arc’(A,X,B,Y,C),var(X),var(Y),{dom(Y,Ey)} =>

T is B*Ey+C,

Ex is T//A,

(A*Ex=:=T -> exclude(X,Ex);true).

‘aX in bY+c_arc’(A,X,B,Y,C) => true.

Whenever an element Ey is excluded from the domain of Y, the propagator ‘aX in

bY+c arc’(A,X,B,Y,C) is activated. If both X and Y are variables, the propagator
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excludes Ex, the counterpart of Ey, from the domain of X. Again, if either X or Y

becomes an integer, the propagator does nothing. The forward checking rule takes

care of that situation.

4.2 Non-binary Constraints

In indexical-based CLP(FD) systems, constraints are split into indexicals that con-

tain no more than three variables. This algorithm has several advantages. Firstly,

it generates linear-size code. Secondly, indexicals can be implemented in a low-level

language to achieve better performance. Thirdly, information propagation can be

restricted to only those constraints for which the domains have the possibility to

be reduced (Codognet and Diaz 1996). For example, consider the two ternary con-

straints T 1 = X1 + X2 and T 1 + X3 + X4 = 0. If T 1 = X1 + X2 is activated

by an update of X1, as long as the shared variable T 1 does not change the other

constraint needs not be activated. The disadvantages of this algorithm are that new

domain variables have to be introduced and the granularity of constraints becomes

smaller and thus context switching becomes more costly. In B-Prolog, each domain

variable takes at least 10 words, letting alone the space for the constraints and

data structures for the elements. The space overhead cannot be neglected when the

number of variables is large.

In comparison with indexicals, the high descriptive power of AR opens new ways

to compiling non-binary constraints. We present two algorithms. One is called unite,

which adopts one propagator for each constraint to maintain interval consistency.

The other one, called hybrid, maintains interval consistency when the constraint

contains more than two variables and maintains arc consistency when the constraint

turns into binary.

4.2.1 Unite: use one propagator for each constraint

Let A1 × X1 + . . . + An × Xn + C = 0 be an n-ary constraint where each Ai

(i = 1, . . . , n) is a non-zero integer and each Xi is a domain variable or an integer.

The propagator for the constraint takes the following form:

‘A1*X1+...+An*Xn+C=0’(C,A1,A2,...,An,X1,X2,..,Xn),

{generated,ins(X1),bound(X1),...,ins(Xn),bound(Xn)}

=>

... % reduce the domains of X1,...,Xn.

In the action, attempts are made to reduce the lower and upper bounds of the

domain of every variable.

To facilitate the generation of the code for reducing domains, the compiler splits

the expression A1×X1+ . . .+An×Xn+C into the following list of sub-expressions

each of which contains at most three variables:



Programming Finite-Domain Constraint Propagators in Action Rules 15

T0 = C,

T1 = T0 +A1 ∗X1,

T2 = T1 +A2 ∗X2,

. . .

Tn = Tn−1 +An ∗Xn

The generated reducer first computes the lower and upper bounds of the temporary

variables9 by propagating information forward from T0 to Tn. The lower and upper

bounds of Ti are computed from those of Ti−1 and Ai × Xi (i = 1, . . . , n). After

that, the reducer propagates information backward from Tn to T1. For each tuple

Ti = Ti−1 + Ai ×Xi, the new bounds of Ti−1 and Xi are computed from those of

Ti.

For example, the following shows the propagator generated for the constraint

X1+X2+X3+C = 0.

‘X1+X2+X3+C=0’(C,X1,X2,X3)

{generated,ins(X1),bound(X1),ins(X2),bound(X2),

ins(X3),bound(X3)}

=>

‘X1+X2+X3+C=0_reducer’(C,X1,X2,X3).

‘X1+X2+X3+C=0_reducer’(C,X1,X2,X3) =>

Lt1 is C+min(X1), Ut1 is C+max(X1), % T1 = C+X1

Lt2 is Lt1+min(X2), Ut2 is Ut1+max(X2), % T2 = T1+X2

Lt3 is Lt2+min(X3), Ut3 is Ut2+max(X3), % T3 = T2+X3

Lt3 =< 0, Ut3 >= 0, % T3 = 0

%

NewLx3 is 0-Ut2, NewUx3 is 0-Lt2, % T3 = T2+X3

X3 in NewLx3..NewUx3,

NewLt2 is 0-max(X3), NewUt2 is 0-min(X3),

%

NewLx2 is NewLt2-Ut1, NewUx2 is NewUt2-Lt1,% T2 = T1+X2

X2 in NewLx2..NewUx2,

NewLt1 is NewLt2-max(X2), NewUt1 is NewUt2-min(X2),

%

NewLx1 is NewLt1-C, NewUx1 is NewUt1-C, % T1 = C+X1

X1 in NewLx1..NewUx1,

NewLt1-max(X1) =< C, NewUt1-min(X1) >= C.

The advantage of this algorithm is that only one propagator is used for each con-

straint whose code size is linear in the number of variables in the constraint. The

weakness of this algorithm is that the reducer is not fast. Whenever a variable is in-

stantiated or a variable’s bound is updated, the reducer tries to reduce the domains

of all the variables including the seed variable that triggers the propagator.

9 Temporary variables are plain variables, not domain variables. Therefore, this compilation
scheme is different from compiling constraints into indexicals.
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4.2.2 Hybrid: combining interval and arc consistency algorithms

For a non-binary constraint, it is too expensive to maintain arc consistency. One

practical strategy is to maintain interval consistency while there are multiple vari-

ables in the constraint and to maintain arc consistency when the constraint turns

into binary. The following shows the propagator for the linear non-binary constraint

A1×X1 + ...+An×Xn+ C=0.

‘A1*X1+...+An*Xn+C=0’(C,A1,A2,...,An,X1,X2,..,Xn),

n_vars_gt([X1,...,Xn],2),

{generated,ins(X1),bound(X1),...,ins(Xn),bound(Xn)}

=>

... % reduce domains of X1,...,Xn.

‘A1*X1+...+An*Xn+C=0’(C,A1,A2,...,An,X1,X2,..,Xn) =>

nary_to_binary([C,A1,X2,A2,X2,...,An,Xn],NewC,B1,B2,Y1,Y2),

call_binary_constraint_propagator(NewC,B1,Y1,B2,Y2).

The propagator is activated whenever any variable is instantiated or its bound is

updated. When n vars gt([X1,...,Xn],2) succeeds, i.e. when there are multiple

variables in the constraint, the domains are reduced to make the constraint interval-

consistent. When the constraint becomes binary, the condition n vars gt fails and

the second rule is tried. The subgoal nary to binary transforms the constraint into

the binary constraint B1×Y 1+B2×Y 2+NewC=0, and the next subgoal invokes

an appropriate propagator for the binary constraint.10

4.3 Propagators for all distinct

The constraint all distinct(L) holds if the elements in L are pairwise different.

One naive implementation method for this constraint is to generate binary dise-

quality constraints between all pairs of variables in L. This implementation has

two problems: First, the space required to store the constraints is quadratic in the

number of variables in L; Second, splitting the constraint into fine-grained ones may

lose possible propagation opportunities (Regin 1994; Puget 1998). This subsection

presents two propagators for the constraint. The propagation algorithms are not

new. The goal of this subsection is to illustrate the expressive power of AR.

4.3.1 A linear-space propagator

To solve the space problem, we define all distinct in the following way:

all_distinct(L) => all_distinct(L,[]).

all_distinct([],Left) => true.

10 In the implementation in B-Prolog, the two built-ins n vars gt and nary to binary do not take
the constraint as an argument but instead access the constraint in the parent subgoal. In this
way, no copy of the constraint needs to be made.
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all_distinct([X|Right],Left) =>

outof(X,Left,Right),

all_distinct(Right,[X|Left]).

outof(X,Left,Right), var(X), {ins(X)} => true.

outof(X,Left,Right) => exclude_list(X,Left),exclude_list(X,Right).

exclude_list(X,[]).

exclude_list(X,[Y|Ys]):- exclude(Y,X),exclude_list(X,Ys).

For each variable X, let Left be the list of variables to the left of X and Right be the

list of variables to the right of X in L. The subgoal outof(X,Left,Right) holds if X

appears in neither Left nor Right. Instead of generating disequality constraints be-

tween X and all the variables in Left and Right, the subgoal outof(X,Left,Right)

suspends until X is instantiated. After X becomes non-variable, exclude list(X,Left)

and exclude list(X,Right) exclude X from the domains of the variables in Left

and Right, respectively.

There is one propagator outof(X,Left,Right) for each element X in the list,

which takes constant space. Therefore, all distinct(L) takes linear space in the

size of L. Notice that the two lists Left and Right are not merged into one bigger

list; otherwise, the constraint would take quadratic space.

4.3.2 Weak arc consistency

In terms of pruning ability, the linear-space propagator is the same as the naive

one that splits a constraint of all distinct into binary disequality constraints. In

this subsection, we present a propagator that has stronger prunning power than

the naive propagator.

Given any set of values D of size n, the constraint all distinct(L) is said to be

weak arc consistent if there are at most n variables in L whose domains are subsets

of D. For each variable X in L, let L−{X} be the list of variables in L but X , n be

the size of the domain of X , and m be the number of variables in L− {X} whose

domains are subsets of that of X . If m+ 1 > n, then the constraint is unsatisfiable

since it is impossible to assign n values to more than n variables such that each

variable gets a different value. If m + 1 = n, then for each value v in X ’s domain,

we can safely exclude v from the domains of all the variables whose domains are

not subsets of that of X .

Consider the following query,

X in {1,2}, Y in {1,2}, Z in {1,2}, all_distinct([X,Y,Z]).

the weak arc-consistency propagator detects the inconsistency of the constraint

without labeling any variables. For the following query,

X in {1,2}, Y in {1,2}, Z in {1,2,3}, all_distinct([X,Y,Z]).

the algorithm assigns 3 to Z without labeling any variables.
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The weak arc-consistency propagator is not as powerful as the algorithm proposed

by Regin (Regin 1994) in terms of pruning ability but is much easier to implement.

To incorporate weak arc-consistency checking into the linear-space propagator, we

only need to redefine outof(X,Left,Right) as follows:

outof(X,Left,Right), var(X), {generated,ins(X),bound(X),dom(X)} =>

outof_reducer(X,Left,Right).

outof(X,Left,Right) => exclude_list(X,Left),exclude_list(X,Right).

where outof reducer(X,Left,Right) first counts the variables in Left and Right

whose domains are subsets of the domain of X and then decides what action to take

depending on the count and the size of the domain of X.

The key operation is to decide whether a domain is a subset of another domain.

In the worst case, the two domains have to be scanned. There are several facts that

can be used to avoid scanning domain elements. A domain D1 cannot be a subset

of another domain D2 if D1 has a larger size or has a larger interval. Also if two

domains are intervals without holes, then scanning the elements is unnecessary.

Another fact that can be used in the detection is that if the event is dom(X,E)

meaning that E has been excluded from X’s domain, then another domain Y cannot

be a subset of X if E is included in Y. To take advantage of this fact, the propagator

can be rewritten into the following:

all_distinct(L) => all_distinct(L,[]).

all_distinct([],Left) => true.

all_distinct([X|Right],Left) =>

outof(X,Left,Right),

outof_dom(X,Left,Right),

all_distinct(Right,[X|Left]).

outof(X,Left,Right), var(X), {generated,ins(X),bound(X)} =>

outof_reducer(X,Left,Right).

outof(X,Left,Right) => exclude_list(X,Left),exclude_list(X,Right).

outof_dom(X,Left,Right),var(X), {dom(X,E)} =>

outof_reducer(X,E,Left,Right).

outof_dom(X,Left,Right) => true.

The subgoal outof reducer(X,E,Left,Right) takes E into account when detecting

whether a domain is a subset of that of X.

5 Performance Evaluation

B-Prolog has been extended to accommodate AR and the finite-domain constraint

solver described in this paper has been developed in AR. In this section, we evaluate

the performance of the finite-domain constraint solver.
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Table 1. Comparison of CPU times.

Program XP Linux

BP-IC BP-AC GP EP SP BP-IC GP

alpha 1 0.82 1.02 7.23 3.17 1 0.77
bridge 1 0.94 1.20 3.60 3.57 1 0.92
cars 1 1.00 1.67 7.03 4.67 1 1.60
color 1 1.14 1.00 6.29 3.01 1 1.25
eq10 1 0.98 3.77 4.77 4.92 1 3.78
eq20 1 1.06 2.00 4.23 3.34 1 1.96

magic3 1 1.38 1.98 8.44 4.41 1 1.52
magic4 1 1.18 1.96 8.45 6.27 1 1.57
olympic 1 0.75 2.25 11.25 4.75 1 1.43

queens(25) 1 1.01 0.43 4.24 5.03 1 0.43
sendmoney 1 1.09 3.65 6.74 7.78 1 2.62
sudoku81 1 1.00 2.28 6.67 6.18 1 1.36
zebra 1 1.13 2.33 7.86 9.61 1 1.77

<arithmetic mean> 1 1.04 1.96 6.68 5.13 1 1.61
<geometric mean> 1 1.03 1.72 6.36 4.84 1 1.42

We compared the performance of B-Prolog version 6.7 (BP)11 with three other

CLP(FD) systems: ECLiPSe 5.8 #77 (EP), GNU-Prolog version 1.2.16 (GP), and

SICStus 3.12.0 (SP). There are two solvers available in BP: one is called BP-AC

which adopts the hybrid algorithm presented in this paper for equality constraints

and the other called BP-IC which maintains only interval consistency for equality

constraints. BP-AC is the default solver.12. The linear-space propagator is used for

all distinct in both solvers.

Table 1 shows the CPU times taken by the four solvers to run a set of bench-

marks,13 assuming the time taken by BP-IC be 1. Most of the benchmarks have been

widely used by other authors to compare CLP(FD) systems (Carlsson et al. 1997;

Codognet and Diaz 1996; Hentenryck 1989). Three new programs were added by

the author into the set: color is a program that colors a map with 110 regions;

olympic is a puzzle taken from a Mathematics Olympic game for elementary stu-

dents; and sudoku81 is a program for solving a puzzle. The left-to-right labeling

strategy is used to instantiate variables in all the benchmarks. The CPU times were

measured on a 1.7GHz CPU running Windows XP. Each program was run at least

10 times and the average was taken. For some programs, execution was repeated

up to 1000 times to obtain a stable average. Garbage collection was disabled. GP

has a native code compiler for Linux. The comparison with GP was also conducted

on Linux.

11 Available from www.probp.com.
12 To switch to BP-IC, set the Prolog flag constr consistency to int
13 Available from probp.com/bench.tar.gz.
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Table 2. Comparison of numbers of backtracks.

Program BP-AC BP-IC GP

alpha 4605 8440 8440
bridge 0 0 0
cars 53 53 34
color 560 560 560
eq10 49 49 49
eq20 49 49 49

magic3 2 2 2
magic4 18 18 18
olympic 36 50 50

queens(25) 7255 7255 7255
sendmoney 2 2 2
sudoku81 0 0 0
zebra 2 2 2

The BP solvers compare favorably with GP and are significantly faster than EP

and SP. EP is the slowest among the compared solvers, probably because of the

overhead of supporting priority-based scheduling (Wallace et al. 2004). BP outper-

forms GP remarkably for programs that contain non-binary equality constraints,

such as eq10, eq20, and sendmoney. This result reveals that the disadvantages of

splitting n-ary constraints into indexicals outweigh the advantages. On the other

hand, GP is more than twice as fast as BP for queens(25). The high speed for

queens may be attributed to an optimization technique adopted in GP that com-

bines indexicals. If the propagators for the disequality constraints were combined

for the program in BP,14 the speed would be doubled.

Comparing BP-AC and BP-IC reveals that the hybrid algorithm is effective for

alpha and olympic only. The BP-AC solver is adopted as the default one since for

some programs, such as the queens program given in (Puget and Leconte 1995),15

BP-AC is exponentially faster than BP-IC. BP-AC is slightly slower than BP-IC for

some of the programs. In general, this happens for programs for which the efforts

to reduce domains do not pay off.

Table 2 gives the numbers of backtracks performed by the three solvers. BP-AC

makes the same number of backtracks as BP-IC except for alpha and olympic, and

GP makes fewer backtracks than BP-AC for cars. Basically, the three solvers explore

the same search trees for most of the programs. Therefore, the comparison results

shown in Table 1 reflect the real performance of the solvers.

GP and BP are quite different. In GP constraints are compiled into indexicals

14 For the three disequality constraints X 6= Y , X 6= Y + N , and X 6= Y − N , we can use one
propagator rather than three to handle the ins(X) and ins(Y ) events.

15 This program is not included in the benchmark set since it requires support of negative integer
domains and thus cannot run on GP.
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defined in C while in BP constraints are compiled into propagators defined in action

rules. Although the GP Prolog engine may not have much impact on the perfor-

mance of constraint programs, the BP engine does have a great impact since all the

propagators are defined in action rules. One evidence for this observation is that the

BP constraint solver becomes 20-30 percent faster after the main switch statement

in the emulator is changed to a jump table. A further speed-up is expected if a

native code compiler is employed.

There are other factors that affect the performance of a solver, such as domain

representation, interaction with other solvers, and garbage collection(Wallace et al. 2004).

GP supports only finite domains of positive integers, while BP supports not only

finite integer domains but also trees and finite domains of ground terms and sets

(Zhou 2002). In BP, integer domains are represented as described in Subsection 2.3.

BP adopts a sound and complete arithmetic that guarantees that solutions found

are correct and no solution is lost. When excluding an inner element from a large

interval domain, the system generates a disequality constraint rather than brutally

changes the interval into a bit vector as is done in GP.16 BP has a garbage col-

lector that collects garbage on the heap and the control stack, but GP does not

support garbage collection yet. Garbage collection may suppress some optimization

techniques.

6 Related Work

CLP(FD) systems have undergone an evolution process, from closed to open and

from low level to high level. Several constructs have been proposed to facilitate the

implementation of constraint propagators. Examples include attributed variables

(Holzbaur 1992), indexicals (Codognet and Diaz 1996), extended indexicals called

projection constraints (Sidebottom and Havens 1996), delay clauses (Meier 1994;

Zhou 1998), and constraint handling rules (Frühwirth 1998). An action rule is an

extension of a delay clause that allows for the descriptions of not only delay condi-

tions on subgoals but also activating events and actions. This section compares AR

with these constructs introduced into Constraint Logic Programming. Constructs

introduced into other languages such as ILOG (Puget and Leconte 1995) and Oz

(Schulte 2002) are not compared.

AR is more powerful and flexible than indexicals. We have described in this

paper several propagation algorithms in AR, some of which cannot be encoded

in indexicals (e.g., the hybrid algorithm for n-ary constraints) and some of which

cannot be implemented as efficiently (e.g., arc consistency for binary constraints).

Consider the following indexical taken from (Carlsson et al. 1997),

X in dom(Y ) + C

which maintains arc consistency for the constraint X = Y +C w.r.t. X . Whenever

an element y is excluded from the domain of Y , the indexical is activated. Because

16 Generating a disequality constraint is less efficient than changing an interval into a bit vector
since the disequality constraint needs to be checked each time the variable is instantiated.
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the indexical does not know what the excluded element is, it has to go through the

domain elements of Y in the worst case to locate a possible no-good value in the

domain of X . In contrast, in the propagator implemented in AR, the propagator

knows exactly what element is excluded from the domain of Y and thus can compute

the counterpart in the domain of X in constant time.

Compiling constraints into indexicals enables the use of more specialized propaga-

tors and restricts propagation to within a small number of constraints (Codognet and Diaz 1996).

Nevertheless, this approach has to introduce new temporary variables and lower

the granularity of propagators. Our experiment reveals that B-Prolog outperforms

GNU-Prolog for almost all the benchmarks that contain non-binary constraints.

This result reveals that the disadvantages of splitting constraints outweigh the ad-

vantages. Similar observations have been made independently in (Carlsson et al. 1997;

Harvey and Stuckey 2003; Zhou 1998). In (Harvey and Stuckey 2003), the same two-

phase algorithm is used to reduce domains of linear constraints.

Attributed variables (Holzbaur 1992) are variables with attached attributes each

of which has a list of handlers. Touching an attribute triggers the corresponding

list of handlers. In order to make context switching swift for handlers, systems such

as ECLiPSe treats handlers as demons rather than as normal subgoals. A demon

is different from a normal subgoal in that it does not disappear after execution but

instead waits for another activation. In this sense, agents in our system are similar

to demons. Nevertheless, an agent can be activated by different kinds of events and

an agent may take different actions depending on the conditions. An agent can

be defined by multiple action rules and the rules are compiled into a tree by the

compiler such that shared tests are combined and conditions that failed once need

not be tested again. SICStus (Carlsson et al. 1997) provides interfaces for imple-

menting propagators and also some sort of delay construct similar to attributed

variables that triggers propagators when events are posted.

AR is an extension of our early delay construct proposed in (Zhou 1998) that

allows for the event dom(X,E) and user-defined events. The support of the event

dom(X,E) is essential for implementing arc consistency algorithms and also prop-

agators for set constraints (Zhou 2002). Our delay construct is an extension of

Meier’s delay clause construct (Meier 1994) that allows for not only delay condi-

tions but also events and actions. In Meier’s delay clause, events are implicitly

extracted from delay conditions and a delayed subgoal never takes actions as long

as the delay condition is satisfied. In retrospect, all these constructs were inspired

by early work by Colmerauer and Naish (Colmerauer 1984; Naish 1985).

Other rule-based languages have been designed for implementing constraint prop-

agators. CHR resembles a production system. In CHR, the left-hand side of a rule

specifies a pattern of constraints in the constraint store and the right-hand side

specifies new constraints to replace those on the left-hand side or to be added into

the store. It should be possible to implement in CHR all the propagation algorithms

described in this paper provided certain built-ins are added. If events are treated as

constraints, then an action rule can be translated into a CHR rule. Treating events

as constraints, however, can hardly achieve the same performance. Events are re-

moved automatically after all the agents that are waiting for them are activated.
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In CHR, there must be rules to remove the events explicitly. The left-hand sides

of CHR rules can have multiple constraint patterns. Therefore, it is impossible in

general to translate a CHR rule into action rules straightforwardly. It is not clear

whether or not it is possible to simulate CHR rules in action rules and how if the

answer is yes. It would be an interesting direction to explore in the future.

7 Conclusion

There is a need for an implementation language for constraint propagators that

is expressive enough and can be implemented efficiently. This paper has presented

such a language called AR. The expressiveness of the language is illustrated though

several examples that cannot be implemented in indexicals: the propagator for

maintaining arc consistency of binary equality constraints; a weak arc-consistency

propagator for the all distinct constraint; and a hybrid algorithm for non-binary

equality constraints that combines interval and arc consistency ones. The efficiency

is evaluated through benchmarking. For a set of widely used benchmarks, our solver

implemented in B-Prolog is significantly faster than that of GNU-Prolog, one of the

fastest finite-domain constraint solvers available now.

The results are encouraging and promising since our solver is implemented in

a high-level language and B-Prolog is an emulator-based system which provides

more facilities than GNU-Prolog such as garbage collection and constraint solving

over other domains. The high-performance of our solver stems from the follow-

ing facts. Firstly, only one propagator is generated for each non-binary equality

constraint that maintains interval consistency. Our solver performs especially well

for the benchmarks that contain non-binary equality constraints. This reveals that

compiling non-binary equality constraints into indexicals has more cons than pros.

Secondly, the hybrid algorithm adopted in our solver is a good compromise be-

tween the need to achieve high-level consistency to cut search spaces and the need

to reduce the cost. The cost of achieving arc consistency for binary constraints

is relatively small, but the effect can be very big for certain programs. Thirdly,

our solver employs optimization techniques that reduce redundant activations of

propagators.

Our solver can be improved further in the following aspects: (1) develop new

optimization techniques for further avoiding redundant activations of propagators;

and (2) implement consistency algorithms beyond interval and arc consistency such

as path consistency and Regin’s algorithm for all distinct.
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