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Abstra
t

The theory of Petri Nets provides a general framework to spe
ify the behaviors of real-time

rea
tive systems and Time Petri Nets were introdu
ed to take also temporal spe
i�
ations

into a

ount. We present in this paper a forward zone-based algorithm to 
ompute the

state spa
e of a bounded Time Petri Net: the method is di�erent and more e�
ient than

the 
lassi
al State Class Graph. We prove the algorithm to be exa
t with respe
t to the

rea
hability problem. Furthermore, we propose a translation of the 
omputed state spa
e

into a Timed Automaton, proved to be timed bisimilar to the original Time Petri Net.

As the method produ
e a single Timed Automaton, synta
ti
al 
lo
ks redu
tion methods

(Daws and Yovine for instan
e) may be applied to produ
e an automaton with fewer


lo
ks. Then, our method allows to model-
he
k T-TPN by the use of e�
ient Timed

Automata tools.

KEYWORDS: Time Petri Nets, Timed Automata, Bisimulation, Rea
hability Analysis,

Zones.

1 Introdu
tion

Framework

The theory of Petri Nets provides a general framework to spe
ify the behaviors

of real-time rea
tive systems and time extensions were introdu
ed to take also

temporal spe
i�
ations into a

ount. The two main time extensions of Petri Nets are

Time Petri Nets (TPN) (Merlin 1974) and Timed Petri Nets (Ram
handani 1974).

While a transition 
an be �red within a given interval for TPN, in Timed Petri

Nets, transitions are �red as soon as possible. There are also numerous ways of

representing time. TPN are mainly divided in P-TPN, A-TPN and T-TPN where a

time interval is relative to pla
es (P-TPN), ar
s (A-TPN) or transitions (T-TPN).

Finally, Time Stream Petri Nets (Diaz and Sena
 1994) were introdu
ed to model

multimedia appli
ations.

Con
erning the timing analysis of these three models ((T,P,A)�TPN), few studies

have been realized about model-
he
king.

http://arxiv.org/abs/cs/0505023v1


2 G. Gardey, O.H. Roux and O.F. Roux

Re
ent works (Abdulla and Nylén 2001; de Frutos Es
rig et al. 2000) 
onsider Timed

Ar
 Petri Nets where ea
h token has a 
lo
k representing its �age�. Using a ba
kward

exploration algorithm (Abdulla and Jonsson 1998; Finkel and S
hnoebelen 1998),

it is proved that the 
overability and boundedness are de
idable for this 
lass of

Petri Nets. However, they assume a lazy (non-urgent) behavior of the net: the �r-

ing of a transition may be delayed even if its 
lo
k's value be
omes greater than its

latest �ring time, disabling the transition.

In (Roki
ki 1993; Roki
ki and Myers 1994), Roki
ki 
onsiders an extension of

labeled Petri Nets 
alled Orbitals Nets: ea
h transition of the TPN (safe P-TPN)

is labeled with a set of events (a
tions). The state spa
e is built using a forward

algorithm very similar to Alur and Dill region based method. Roki
ki �nally

uses partial order method to redu
e time and spa
e requirements for veri�
ation

purpose. The semanti
s used is not formally de�ned and seems to di�er from another


ommonly adopted proposed by Khansa (Khansa et al. 1996) for P-TPN.

In this paper, we 
onsider T-TPN in whi
h a transition 
an be �red within a time

interval. For this model, boundedness is unde
idable and works report unde
idabil-

ity results, or de
idability under the assumption of boundedness of the T-TPN (as

for rea
hability, de
idability (Popova 1991)).

Related Works

State Spa
e Computation of a T-TPN. The main method to 
ompute the

state spa
e of a T-TPN is the State Class Graph (Menas
he 1982; Berthomieu and Diaz 1991).

A 
lass C of a T-TPN is a pair (M,D) where M is a marking and D a set of in-

equalities 
alled the �ring domain. The variable xi of the �ring domain represents

the �ring time of the enabled transition ti relatively to the time when the 
lass C

was entered in and trun
ated to nonnegative times. The State Class Graph pre-

serves markings (Berthomieu and Vernadat 2003) as well as tra
es and 
omplete

tra
es but 
an only be used to 
he
k untimed rea
hability properties and is not

a

urate enough for 
he
king quantitative real-time properties. An alternative ap-

proa
h has been proposed by Yoneda et al. (Yoneda and Ryuba 1998) in the form

of an extension of equivalen
e 
lasses (atomi
 
lasses) whi
h allow CTL model-


he
king. Lilius (Lilius 1999) re�ned this approa
h so that it be
omes possible

to apply partial order redu
tion te
hniques that have been developed for untimed

systems. Berthomieu and Vernadat (Berthomieu and Vernadat 2003) propose

an alternative 
onstru
tion of the graph of atomi
 
lasses of Yoneda appli
able

to a larger 
lass of nets. In (Okawa and Yoneda 1997), Okawa and Yoneda pro-

pose another method to perform CTL model-
he
king on T-TPN, they use a region

based algorithm on safe T-TPN without ∞ as latest �ring time. Their algorithm is

based on the one of (Alur and Dill 1994) and aims at 
omputing a graph preserv-

ing bran
hing properties. Nevertheless, the algorithm used to 
onstru
t the graph

seems ine�
ient (their algorithm do 
ode regions) and no result 
an be exploited

to 
ompare with other methods.
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From T-TPN to TA. Several approa
hes aim at translating a Time Petri Net into

a Timed Automaton in order to use e�
ient existent tools on TA. In (Cortès et al. 2000),

Cortès et al. propose to transform an extension of T-TPN into the 
omposition

of several TA. Ea
h transition is translated into an automaton (not ne
essarily

identi
al due to 
on�i
t problems) and it is 
laimed that the 
omposition 
ap-

tures the behavior of the T-TPN. In (Cassez and Roux 2004), Cassez and Roux

propose another stru
tural approa
h: ea
h transition is translated into a TA us-

ing the same pattern. The authors prove the two models are timed bisimilar.

In (Sava and Alla 2001), Sava and Alla 
ompute the graph of rea
hable mark-

ings of a T-TPN. The result is a TA. However, they assume the T-TPN is bounded

and does not in
lude ∞ as latest �ring time. No proof is given of the timed bisimi-

larity between the two models. In (Lime and Roux 2003), Lime and Roux propose

a method for building the State Class Graph of a bounded T-TPN as a TA. They

prove the T-TPN to be timed bisimilar to the generated TA.

Considering the translation of T-TPN into TA, in order to study model's prop-

erties, raises the problem of the model-
he
king feasibility of the resulting TA. The

model-
he
king 
omplexity on TA is exponential in the number of 
lo
ks of the

TA. The proposed transformation in (Cassez and Roux 2004; Cortès et al. 2000) is

to build as many TA as the number of transitions of the T-TPN. Consequently,

there are as many 
lo
ks as in the initial T-TPN. It has also to be 
onsidered that

redu
tion method (Daws and Yovine 1996) 
an not be applied to the resulting TA:

the parallel 
omposition has to be 
omputed �rst. Nevertheless, the 
onstru
tion of

TA is straightforward and linear in the number of transitions of the T-TPN. Con-


erning the method in (Lime and Roux 2003), the resulting TA has a lower number

of 
lo
ks. The method we propose produ
es an automaton with more 
lo
ks than

the previous method but its 
omputation is faster.

Su
h translations show that TCTL and CTL are de
idable for bounded T-TPN

and that developed algorithms on TA may be extended to T-TPN.

Contributions

This paper is devoted to presenting an alternative approa
h to the state spa
e


onstru
tion of a T-TPN. The method is mainly based upon the region graph

algorithm of Alur and Dill on Timed Automaton. We propose to use a derived

method using zones to 
ompute the state spa
e of the T-TPN. The algorithm is

proved to be exa
t with respe
t to the rea
hability problem and we propose to

translate the state spa
e it 
omputes into a Timed Automaton, bringing so the

power of TA model-
heking algorithms to T-TPN.

We �rst re
all the semanti
s of T-TPN and present a forward zone-based algo-

rithm that 
omputes the state spa
e of a T-TPN. Next, we present the labeling of

the state spa
e that produ
es a TA we proved to be timed bisimilar to the original

T-TPN. We then 
ompare our method to other used methods on T-TPN and show

its advantages. Finally, some appli
ations are proposed.
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2 Time Petri Nets

2.1 De�nitions

Time Petri Nets (T-TPN) are a time extension of 
lassi
al Petri Nets. Informally,

with ea
h transition of the Net is asso
iated a 
lo
k and a time interval. The 
lo
k

measures the time sin
e the transition has been enabled and the time interval is

interpreted as a �ring 
ondition: the transition may �re if the value of its 
lo
k

belongs to the time interval.

Formally:

De�nition 1 (T-TPN )

A Time Petri Net is a tuple (P, T,•(.), (.)•, α, β,M0) de�ned by:

• P = {p1, p2, . . . , pm} is a non-empty set of pla
es,

• T = {t1, t2, . . . , tn} is a non-empty set of transitions,

• •(.) : T → INP
is the ba
kward in
iden
e fun
tion,

• (.)• : T → INP
is the forward in
iden
e fun
tion,

• M0 ∈ INP
is the initial marking of the Petri Net,

• α : T → Q≥0 is the fun
tion giving the earliest �ring times of transitions,

• β : T → Q≥0∪{∞} is the fun
tion giving the latest �ring times of transitions.

A Petri Net marking M is an element of INP
su
h that for all p ∈ P , M(p) is the

number of tokens in the pla
e p.

A marking M enables a transition t if: M ≥• ti. The set of transitions enabled

by a marking M is enabled (M).

A transition tk is said to be newly enabled by the �ring of a transition ti if

M −•ti+ t•i enables tk and M −•ti did not enable tk. If ti remains enabled after its

�ring then ti is newly enabled. The set of transitions newly enabled by a transition

ti for a marking M is noted ↑enabled (M, ti).

v ∈ (IR≥0)
T
is a valuation of the system. vi is the time elapsed sin
e the transition

ti has been newly enabled.

The semanti
s of T-TPN is de�ned as a Timed Transition Systems (TTS). Firing

a transition is a dis
rete transition of the TTS, waiting in a marking, the 
ontinuous

transition.

De�nition 2 (Semanti
s of a T-TPN )

The semanti
s of a T-TPN is de�ned by the Timed Transition System S = (Q, q0,→):

• Q = INP × (IR≥0)
T

• q0 = (M0, 0̄)

• →∈ Q×(T ∪IR≥0)×Q is the transition relation in
luding a dis
rete transition

and a 
ontinuous transition.

• The 
ontinuous transition is de�ned ∀d ∈ IR≥0 by:

(M, v)
e(d)
−−→ (M, v′) iff

{

v′ = v + d

∀k ∈ [1, n] M ≥• tk ⇒ v′k ≤ β(tk)
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• The dis
rete transition is de�ned ∀ti ∈ T by:

(M, v)
ti−→ (M ′, v′) iff



































M ≥• ti

M ′ = M −•ti + t•i

α(ti) ≤ vi ≤ β(ti)

∀k ∈ [1, n] v′k =

{

0 if tk ∈ ↑enabled (M, ti)

vk otherwise

2.2 The State Class Method

The main method for 
omputing the state spa
e of a Time Petri Net is the State

Class Method introdu
ed byBerthomieu andDiaz in (Berthomieu and Diaz 1991).

De�nition 3 (State Class)

A State Class C of a T-TPN is a pair (M,D) where M is a marking and D a set of

inequalities 
alled the �ring domain. The variable xi of the �ring domain represents

the �ring time of the enabled transition ti relatively to the time when the 
lass C

was entered in.

The State Class Graph is 
omputed iteratively as follows:

De�nition 4

Given a 
lass C = (M,D) and a �rable transition tj , the su

essor 
lass C′ =

(M ′, D′) by the �ring of tj is obtained by:

1. Computing the new marking M ′ = M −•tj + t•j .

2. Making variable substitution in the domain: ∀i 6= j, xi ← x′
i + xj .

3. Eliminating xj from the domain using for instan
e the Fourier-Motzkin method.

4. Computing a 
anoni
al form of D′
using for instan
e the Floyd-Warshall

algorithm.

In the state 
lass method, the domain asso
iated with a 
lass is relative to the

time when the 
lass was entered in and as the transformation (time origin swit
hing)

is irreversible, absolute values of 
lo
ks 
annot be obtained easily. The produ
ed

graph is an abstra
tion of the state spa
e for whi
h temporal information has been

lost and generally, the graph has more states than the number of markings of the

T-TPN. Transitions between 
lasses are no longer labeled with a �ring 
onstraint

but only with the name of the �red transition: the graph is a representation of the

untimed language of the T-TPN.

2.3 Limitations of the State Class Method

As a 
onsequen
e of the State Class Graph 
onstru
tion, sophisti
ated temporal

properties are not easy to 
he
k. Indeed, the domain asso
iated with a marking is

made of relative values of 
lo
ks and the fun
tion to 
ompute domains is not bi-

je
tive. Consequently, domains 
an not easily be used to verify properties involving


onstraints on 
lo
ks.

In order to get rid of these limitations, several works 
onstru
t a di�erent State



6 G. Gardey, O.H. Roux and O.F. Roux

Class Graph by modifying the equivalen
e relation between 
lasses. To our knowl-

edge, proposed methods (Berthomieu and Vernadat 2003) depend on the property

to 
he
k. Che
king LTL or CTL properties will lead to 
onstru
t di�erent State

Class Graphs.

Another limitation of methods and proposed tools to 
he
k properties is the need

to 
ompute the whole state spa
e while only the rea
hability of a given marking is

needed (e.g. for safety properties). The graph is then analyzed by a model-
he
ker.

The use of T-TPN observers is even more 
ostly: a
tually, for ea
h property to be


he
ked, a new State Class Graph has to be built and the observer 
an dramati
ally

in
rease the size of the state spa
e.

In the next se
tion we will present another method to 
ompute the state spa
e of

a bounded T-TPN. It will be used in a later se
tion to propose a Timed Automaton

that is timed bisimilar to the original T-TPN. As the graph has exa
tly as many

nodes as the number of rea
hable markings of the T-TPN, we obtain a 
ompa
t

representation of the state spa
e whi
h may be e�
iently model-
he
ked using TA

tools.

3 A Forward Algorithm to Compute the State Spa
e of a Bounded

T-TPN

The method we propose in this paper is an adaptation, proved to be exa
t, of the

region based method for Timed Automaton (Alur and Dill 1994; Roki
ki 1993).

This algorithm starts from the initial state and explores all possible evolutions of

the T-TPN by �ring transitions or by elapsing a 
ertain amount of time.

First, we de�ne a zone as a 
onvex union of regions as de�ned by Alur and

Dill (Alur and Dill 1994). For short, 
onsidering n 
lo
ks, a zone is a 
onvex subset

of (IR≥0)
n
. A zone 
ould be represented by a 
onjun
tion of 
onstraints on 
lo
ks

pairs: xi − xj ∼ c where ∼∈ {<,≤,=,≥, >} and c ∈ ZZ.

3.1 Our Algorithm: One Iteration

Given the initial marking and initial values of 
lo
ks (null ve
tor), timing su

essors

are iteratively 
omputed by letting time pass or by �ring transitions.

Let M0 be a marking and Z0 a zone. The 
omputation of the rea
hable markings

from M0 a

ording to the zone Z0 is done as follows:

• Compute the possible evolution of time (future):

−→
Z0. This is obtained by

setting all upper bounds of 
lo
ks to in�nity.

• Sele
t only the possible valuations of 
lo
ks for whi
h M0 
ould exist, i.e.

valuations of 
lo
ks must not be greater than the latest �ring time of enabled

transitions :

Z ′
0 =
−→
Z0 ∩ {

∧

i {xi ≤ βi | ti ∈ enabled (M0)}}

So, Z ′
0 is the maximal zone starting from Z0 for whi
h the marking M0 is

legal a

ording to the T-TPN semanti
s.
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• Determine the �rable transitions: ti is �rable if Z
′
0∩{xi ≥ αi} is a non empty

zone.

• For ea
h �rable transition ti leading to a marking M0i, 
ompute the zone

entering the new marking:

Zi = (Z ′
0 ∩ {xi ≥ αi}) [Xe := 0], where Xe s the set of 
lo
ks of newly

enabled transitions.

This means that ea
h transition whi
h is newly enabled has its 
lo
k reset.

Then, Zi is a zone for whi
h the new marking M0i is rea
hable.

3.2 Convergen
e Criterion

To ensure termination, a list of zones is asso
iated with ea
h rea
hable marking.

It will keep tra
k of zones for whi
h the marking was already analyzed or will be

analyzed. At ea
h step, we 
ompare the zone 
urrently being analyzed to the ones

previously 
omputed. If the zone is in
luded in one of the list there is no need to go

further be
ause it has already been analyzed or it will lead to 
ompute a subgraph.

3.3 Unboundedness in T-TPN

An algorithm to enumerate rea
hable markings for a bounded T-TPN 
ould be

based on the des
ribed algorithm but, generally, it will lead to a non-terminating


omputation. Though the number of rea
hable markings is �nite for a bounded T-

TPN, the number of zones in whi
h a marking is rea
hable is not ne
essarily �nite

(see �gure 1).

• •P1 P2

P3

T1[0,∞[ T2[1, 1] T3[1, 1]

Figure 1. Time Petri Net with an unbounded number of zones

Let us 
onsider the in�nite �ring sequen
e: (T2, T3)
∗
. The initial zone is {x1 =

0∧ x2 = 0∧ x3 = 0} (where xi is the 
lo
k asso
iated with Ti), the initial marking

M0 = (P1, P2, P3) = (1, 1, 0). By letting time pass, M0 is rea
hable until x2 = 1.

When x2 = x1 = 1 the transition T2 has to be �red. The zone 
orresponding to


lo
k values is: Z0 = {0 ≤ x1 ≤ 1∧ x1 − x2 = 0}. By �ring T2 and then T3, the net

returns to its initial marking. Entering it, values of 
lo
ks are: x1 = 2, x2 = 0 and

x1 − x2 = 2. Indeed, T1 remains enabled while T2 and T3 are �red and x2 is reset

when T3 is �red be
ause T2 is newly enabled. Given these new values, the initial

marking 
an exists while x2 ≤ 1 i.e. for the zone: Z1 = {2 ≤ x1 ≤ 3∧x1− x2 = 2}.
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By applying in�nitely the sequen
e (T2, T3), there exists an in�nite number of zones

for whi
h the initial marking is rea
hable.

A
tually, the number of zones is not bounded be
ause in�nity is used as latest

�ring time (T1). If in�nity is not used as latest �ring time, all 
lo
ks are bounded

and so, the number of di�erent zones is bounded (Alur and Dill 1994). The �naive�

algorithm is then exa
t and 
an be used to 
ompute the state spa
e of a bounded

T-TPN.

Consequen
e 1

For a bounded T-TPN without in�nity as latest �ring time, this forward analysis

algorithm using zones 
omputes the exa
t state spa
e of the T-TPN.

In the next se
tion, we propose a more general algorithm whi
h 
omputes the

state spa
e of a T-TPN as de�ned in se
tion 2, i.e. with in�nity as latest �ring time

allowed.

3.4 General Algorithm

A 
ommon operator on zones is the k-approx operator. For a given k value, the

use of this operator allows to 
reate a �nite set of distin
t zones. The algorithm

proposed is an extension of the one presented in the previous se
tion. It 
onsists in

applying the k-approx operator on the zone resulting from the last step:

Zi = k − approx ((Z ′
0 ∩ {xi ≥ αi}) [Xe := 0])

This approximation is based on the fa
t that on
e the 
lo
k asso
iated with an

unbounded transition ([α,∞[) has rea
hed the value α, its pre
ise value does not

matter anymore.

Unfortunately re
ent works on Timed Automaton (Bouyer 2002; Bouyer 2003)

proved that this operator generally leads to an overapproximation of the rea
h-

able lo
alities of TA. However, for a given 
lass of TA (diagonal-free), there is no

overapproximation of the rea
hable lo
alities.

Results of Bouyer are dire
tly extensible for T-TPN. As 
omputation on zones

only involved diagonal-free 
onstraints, the following theorem holds:

Theorem 1

A forward analysis algorithm using k-approx on zones is exa
t with respe
t to T-

TPN marking rea
hability for bounded T-TPN.

A detailed proof is available in (Gardey et al. 2003).

3.5 Example

Let us 
onsider the T-TPN of �gure 1.

We asso
iate the 
lo
k xi with the transition Ti of the T-TPN and re
all that


lo
ks asso
iated with ea
h transition 
ount the time sin
e the transition has been

newly enabled.
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The algorithm starts from the initial state: l0 = (M0, Z0), with M0 =
(

1 1 0
)

and Z0 = {x1 = x2 = 0}. At marking M0, transitions T1 and T2 are enabled.

The �rst step is to 
ompute the possible future, i.e. the maximal amount of time

for whi
h the marking M0 may exist:

−→
Z0 ∩ Inv(M0) = {x1 = x2 ∈ [0,∞[} ∩ {x1 ≤ ∞∧ x2 ≤ 1}

= {x1 = x2 ∈ [0, 1]}

From this zone, two transitions are �rable: T1 and T2.

Firing of T1

• the new marking is M1 =
(

0 1 0
)

• the new zone is obtained by interse
ting the previous zone (

−→
Z0 ∩ Inv(M0))

with the guard x1 ≥ 0, deleting 
lo
ks of transitions that are no longer

enabled in M1 (x1) and reseting 
lo
ks of newly enabled transitions (none).

Z1 = {x1 = x2 ∈ [0, 1]} ∩ {x1 ≥ 0} (interse
t with guard)

= {x1 = x2 ∈ [0, 1]}

= {x2 ∈ [0, 1]} (delete x1)

Firing of T2

• the new marking is M3 =
(

1 0 1
)

• the new zone is obtained by interse
ting the previous zone (

−→
Z0 ∩ Inv(M0))

with the guard x2 ≥ 1, deleting 
lo
ks of transitions that are no longer

enabled in M3 (x2) and reseting 
lo
ks of newly enabled transitions (x3).

Z3 = {x1 = x2 ∈ [0, 1]} ∩ {x2 ≥ 1} (interse
t with guard)

= {x1 = x2 = 1}

= {x1 = 1} (delete x2)

= {x1 = 1 ∧ x3 = 0} (reset x3)

We got two new states to analyze: (M1, Z1) and (M3, Z3). We apply the same

algorithm to these two states.

Considering (M1, Z1):

Z ′
1 =
−→
Z1 ∩ Inv(M1) = {x2 ∈ [0, 1]} ∩ {x2 ≤ 1}

= {x2 ∈ [0, 1]}

T2 is �rable and leads to the new state: (M2, Z2) with M2 =
(

0 0 1
)

and Z2 =

{x3 = 0}. Analyzing (M2, Z2) leads to the new state (M1, {x2 = 0}). As {x2 =

0} ⊂ Z1, the algorithm stops and get a new state to analyze: (M3, Z3).

Considering (M3, Z3):

Z ′
3 =
−→
Z3 ∩ Inv(M3) = {x1 − x3 = 1, x1 ∈ [0,∞[} ∩ {x1 ≤ ∞∧ x3 ≤ 1}

= {x1 − x3 = 1 ∧ x3 ≤ 1}

T3 and T1 are �rable...
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The analysis is performed until no new states are 
reated. We then build the

following graph of rea
hable markings.

M0

M1 M2

M3

T1 T1

T2

T3

T2

T3

Figure 2. Graph of rea
hable markings

In this se
tion we have presented an algorithm that exa
tly 
omputes the rea
h-

able markings of a bounded T-TPN with ∞ as latest �ring time. The graph 
om-

puted is not suitable to verify time logi
 properties. So, in the next se
tion we

present a transformation of the graph into a Timed Automaton we proved to be

timed bisimilar to the original T-TPN. Consequently, model-
he
king methods on

TA be
ome available for the model-
he
king of T-TPN.

4 Marking Timed Automaton of Time Petri Net

We �rst re
all the de�nition of Timed Automata, introdu
ed byAlur andDill (Alur and Dill 1994)

and their semanti
s.

4.1 Timed Automaton: De�nitions

Timed Automata are an extension of 
lassi
al automata providing timing 
on-

straints. A transition 
an o

ur if 
lo
ks valuations satisfy 
onstraints 
alled �guard�.

A
tions on 
lo
ks (reset for instan
e) are asso
iated with transition. The system 
an

idle in a lo
ality if valuations of 
lo
ks satisfy some 
onstraints 
alled �invariant�.

De�nition 5 (Constraints)

Let V be a set of 
lo
ks, C(V ) is the set of timing 
onstraints upon V i.e. the set

of expressions δ de�ned by:

δ := v ∼ c | v − v′ ∼ c | ¬ δ1 | δ1 ∧ δ2

with v, v′ ∈ V , ∼∈ {<,≤,=,≥, >} and c ∈ IN.

De�nition 6 (TA)

A Timed Automaton is a tuple (L, l0, C,A,E, Inv) de�ned by:

• L a �nite set of lo
ations,

• l0 ∈ L the initial lo
ation ,

• C a �nite set of positive real-valued 
lo
ks,

• A a �nite set of a
tions,
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• E ⊂ L×C(C)×A× 2C ×L a �nite set of transitions. e = (l, γ, a, R, l′) is the

transition from lo
ation l to lo
ation l′ with the guard γ, the label a and the

set of 
lo
ks to reset R,

• Inv : L × C(C) → {true, false}, a fun
tion assigning to ea
h lo
ation an

invariant.

The semanti
s of a Timed Automaton is given by a Timed Transition System

(TTS).

De�nition 7 (Semanti
s of a TA)

The semanti
s of a Timed Automaton is the Timed Transition System S = (Q,Q0,→)

where:

• Q = L× (IR≥0)
C
,

• Q0 = (l0, 0̄),
• → is the transition relation in
luding a dis
rete transition and a 
ontinuous

transition.

• The dis
rete transition is de�ned ∀a ∈ A by:

(l, v)
a
−→ (l′, v′) iff ∃(l, γ, a, R, l′) ∈ E su
h as :















γ(v) = true

v′ = v[R← 0]

Inv(l′)(v′) = true

• The 
ontinuous transition is de�ned ∀d ∈ IR≥0 by:

(l, v)
ǫ(d)
−−→ (l, v′) iff

{

v′ = v + d

∀t′ ∈ [0, d], Inv(l)(v + t′) = true

4.2 Labeling algorithm

The algorithm given in se
tion 3 represents the marking graph of the T-TPN. We

show here that it 
an easily be labeled to generate a Timed Automaton timed

bisimilar to the T-TPN.

Let G = (M,T ) be the graph produ
ed by the algorithm where:

• M is the set of rea
hable markings of the T-TPN: M0, . . . ,Mp

• T is the set of transitions: T0, . . . , Tq.

The Timed Automaton will be obtained by asso
iating to ea
h marking an in-

variant and to ea
h transition a guard and some 
lo
ks assignments.

4.2.1 Invariant

First, an invariant is asso
iated with ea
h marking Mk. By 
onstru
tion, in ea
h

marking, only the possible evolution of time is 
omputed: the entering zone is

interse
ted with the set of 
onstraints {xi ≤ βi}, where xi are 
lo
ks of transitions

enabled by the marking Mk. Then, the invariant asso
iated with ea
h marking Mk

is de�ned by:

I (Mk) = {xi ≤ βi | ti ∈ enabled (Mk)}
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4.2.2 Guard

Ea
h transition Tk of the graph G 
orresponds to the �ring of a transition ti. Then

we label Tk by:

• the a
tion name ti,

• the guard: xi ≥ αi,

• the 
lo
ks assignments: xk ← 0 for all 
lo
ks xk asso
iated with a newly

enabled transition tk

4.3 Marking Timed Automaton

The Timed Automaton we obtain is then de�ned as follows:

De�nition 8 (Marking Timed Automaton)

• L = {M0, . . . ,Mp} is the set of lo
alities i.e. the set of rea
hable markings of

the T-TPN.

• l0 = M0 is the initial lo
ality.

• C = {x1, . . . , xq} is the set of 
lo
ks i.e. the set of all 
lo
ks asso
iated with

a transition.

• A = {t1, . . . , tq} is the set of a
tions i.e. the transitions of the T-TPN.

• E ⊂ L×C(C)×A×2C×L is the �nite set of transitions. Let e = (Mi, γ, a, R,Mj)

a transition, e is de�ned as follows:

� a = tk
� γ = xk ≥ αk

� R = {xi | ti ∈↑enabled (Mi, tk)}

• Inv : L× C(C)→ {true, false}, with:

Inv(Mi) = {xi ≤ βi | ti ∈ enabled (Mi)}

Example

Considering the T-TPN of �gure 1, the resulting Timed Automaton is:

M0

x1 ≤ ∞

∧ x2 ≤ 1

M1

x2 ≤ 1
M2

x3 ≤ 1

M3

x3 ≤ 1
∧ x1 ≤ ∞

T1, x1 ≥ 0 T1, x1 ≥ 0

T2, x2 ≥ 1, x3 := 0

T3, x3 ≥ 1, x2 := 0

T2, x2 ≥ 1, x3 := 0

T3, x3 ≥ 1, x2 := 0

Figure 3. Time Marking Automaton
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4.4 Bisimulation

De�nition 9

As de�ned in the time transition system for a T-TPN T , we note QT the set of

states of T . QA is the set of states of a TA A.

De�nition 10

Let R ⊂ QT ×QA be the relation between a state of the Timed Automaton and a

state of the Time Petri Net de�ned by:

{

∀(M, v) ∈ QT

∀(l, v̄) ∈ QA

, (M, v)R(l, v̄)⇔

{

M =M(l)

v = v̄

where M is the fun
tion giving the asso
iated marking of a TA state l.

Two states are in relation if their �markings� and their 
lo
ks valuations are

equals.

Theorem 2

R is a bisimulation:

For all (M, v), (l, v̄) su
h that (M, v)R (l, v̄):

• (M, v)
ti−→ (M ′, v′) ⇔

{

(l, v̄)
ti−→ (l′, v̄′)

(M ′, v′)R(l′, v̄′)

• (M, v)
δ
−→ (M, v′) ⇔

{

(l, v̄)
δ
−→ (l, v̄′)

(M, v′)R(l, v̄′)

Proof

Continuous transition � time elapsing.

Let (M, vT ) ∈ QT , (l, vA) ∈ QA, and δ ∈ IR≥0
.

We prove that if the T-TPN 
an idle in a state, this is allowed on the 
onstru
ted

TA i.e. if the system 
an idle for any δ su
h that ∀k ∈ [1, n] M ≥ •tk ⇒ vT (tk)+δ ≤

β(tk) then the automaton veri�es: ∀t ∈ [0, δ] Inv(l)(vA + t) = true.

By 
onstru
tion, the invariant of the lo
ation l is obtained by the 
onjun
tion of

the latest �ring times of enabled transitions. So Inv(l) =
∧

{xi ≤ β(ti)} where ti ∈

enabled(M(l)). (M, vT ) and (l, vA) are in relation so vT = vA. As vT (ti)+δ ≤ β(ti)

then for all t ∈ [0, δ] vA(ti)+ t ≤ β(ti). This means that ∀t ∈ [0, δ] Inv(l)(vA+ t) =

true.

To 
on
lude, the automaton 
an idle in the state and (M, vT + δ)R(l, vA + δ).

Symmetri
ally, we prove that if the TA 
an idle for a time δ, the T-TPN 
an idle

for the same time δ.

A

ording to the semanti
s of T-TPN, a 
ontinuous transition 
an o

ur if and

only if ∀tk ∈ enabled(M), vT (tk) + δ ≤ β(tk). As (M, vT ) and (l, vA) are in

relation, vT = vA. The TA 
an idle in the state for all t ∈ [0, δ] vA(ti) + t ≤ β(ti)

by 
onstru
tion of the invariant. Then, t = δ prove the result.

The T-TPN 
an idle in the marking and (M, vT + δ)R(l, vA + δ).
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Con
erning 
ontinuous transitions, R is a bisimulation.

Dis
rete transition � �ring a transition ti Let (M, vT ) ∈ QT and (l, vA) ∈ QA

be two states in relation.

We prove that if a transition is �rable for the T-TPN, it is �rable for the TA and

the two resulting states are in relation.

A transition ti of the T-TPN 
an be �red if: M ≥ •ti and α(ti) ≤ vT (ti) ≤ β(ti).

The resulting marking isM ′ = M−•ti+t•i and the resulting valuation is v
′
T (tk) = 0

for all newly enabled transition tk, all others valuations remain un
hanged.

The 
orresponding a
tion is allowed on the 
onstru
ted TA if and only if

∃(l, γ, a, R, l′) ∈ E su
h as :















γ(v) = true

vA = vA[R← 0]

Inv(l′)(v′A) = true

As ti is �rable, it exits by 
onstru
tion a transition of the TA from l, su
h that

M(l) = M , to a lo
ation l′ su
h that M(l′) = M ′
. The guard is by 
onstru
tion,

γ = xi ≥ α(ti). Thus, as ti is �rable γ(vA) = true.

Also by 
onstru
tion, the 
lo
ks to be reset for the TA are the same 
lo
ks to be

reset for the T-TPN. Thus, v′A = v′T .

As 
lo
ks newly enabled are set to 0, they veri�es the inequalities xj ≤ β(tj) in

the invariant of l′. All other 
lo
ks stay un
hanged: v′A(tj) ≤ β(tj) for all other

enabled 
lo
ks. Thus, Inv(l′)(v′A) = true.

So the transition on TA is allowed and (M ′, v′T )R(l
′, v′A).

Symmetri
ally, we prove that if ti is �rable for the TA, it is �rable for the T-TPN.

The two resulting states are in relation.

A transition e = (l, ti, γ, R, l′) of the TA 
an o

ur and leads to a new state

(l′, v′A) if and only if γ(vA) = true and Inv(l′)(v′A) = true. Then v′A = vA[R← 0].

The 
orresponding a
tion is allowed on the T-TPN and leads to a new state

(M ′, v′T ) if and only if:



































M ≥• ti

M ′ = M −•ti + t•i

α(ti) ≤ vi ≤ β(ti)

∀ transitions tk v′T (tk) =

{

0 if tk ∈ ↑enabled(M, ti)

vT (tk) otherwise

By de�nition of the Marking Timed Automaton, if ti is �rable for the TA, it is for

the T-TPN. SoM ≥• ti and the resulting marking is by de�nition M ′ = M−•ti+t•i .

(l, vA) and (M, vT ) are in relation so vT = vA.

As, γ(vA) = true and Inv(l)(vA) = true so, α(ti) ≤ vT (ti) ≤ β(ti).

By 
onstru
tion, the 
lo
ks to be reset are the 
lo
ks of newly enabled transitions

i.e. the 
lo
ks of R. So v′A = v′T .

To 
on
lude, ti is �rable for the T-TPN and (M ′, v′T ) and (l′, v′A) are in relation.

R is a bisimulation for dis
rete transitions.



State Spa
e Computation and Analysis of Time Petri Nets 15

Table 1. Time to 
ompute the state spa
e of a T-TPN

Time Petri Net T-TPN (p./t.) Tina Gpn Mer
utio

Example 1 (oex15) 16 / 16 10.5 s 12.9 s 2 s

Example 2 (oex7) 22 / 20 30.5 s 9.8 s 1.3 s

Example 3 (oex8) 31 / 21 29 s 12.2 s 1.4 s

Example 4 (P6C7) 21 / 20 31.6 s 1 min 17 s 7.9 s

Example 5 (P10C10) 32 / 31 4.2 s 6.8 s 1 s

Example 6 (GC - 3) 20 / 23 2 s 1.2 s 0.1 s

Example 7 (GC - 4) 24 / 29 3 min 8 s 1 min 3 s 10.8 s

Example 8 (P6C9) 25 / 24 2 min 49 s 6 min 2 s 22.9 s

Example 9 (P6C10) 27 / 26 8 min 53 s 36 min 1 min

Example 10 (P6C11) 29 / 28 14 min 36 s 1 h 1 min 2 min 20s

Example 11 (P6C12) 31 / 30 23 min 34 s 2 h 7 min 3 min 59s

Example 12 (P6C13) 33 / 32 36 min 25 s × 6 min 3s

5 Performan
es

We have implemented the algorithm to 
ompute all the rea
hable markings of a

bounded T-TPN using DBM (Di�eren
e Bounded Matri
es) to en
ode zones. The

tool implemented (Mer
utio) is integrated into Romeo (Romeo 2003), a software

for T-TPN edition and analysis.

As boundedness of T-TPN is unde
idable, Mer
utio o�ers stopping 
riteria:

number of rea
hed markings, 
omputation time, bound on the number of tokens in

a pla
e. It also provides an on-the-�y rea
hability test of markings and export the

automaton in Kronos or Uppaal syntax. Con
erning the on-the-�y rea
hability

test,Mer
utio also provides a tra
e (sequen
e of transitions and interval in whi
h

they are �red) leading to the marking.

5.1 Comparison with other methods

We present here a 
omparison (Table 1) of three methods to 
ompute the state

spa
e of a T-TPN:

• the method proposed in this paper with our tool Mer
utio.

• the State Class Graph 
omputation (Berthomieu) with the tool Tina.

• the State Class Timed Automaton (Lime and Roux) with the tool Gpn.

Computations were performed on a Pentium 2 (400MHz) with 320MB of RAM.

Examples 1 to 5 
ome from real-time systems (parallel tasks [1℄, periodi
 tasks[2�

3℄, produ
er-
onsumer [4�5,8�12℄). Examples 7 and 8 are the 
lassi
al level 
rossing

example (3 and 4 trains).

For this set of examples and for all nets we have tested, our tool performs better

than Tina and than Gpn. For example 12, Gpn ran out of memory.
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Table 2. Stru
ture of resulting Timed Automata

Time Petri Net Clo
ks(1)

1 Marking(2) TA State Class TA (3)

Cl.

2
N.

3
T.

4
Cl. N. T.

Example 1 (oex15) 16 4 361 1095 4 998 3086

Example 2 (oex7) 20 11 637 2284 7 1140 3990

Example 3 (oex8) 21 11 695 2444 7 1277 4344

Example 4 (P6C7) 20 13 449 4175 3 11490 50268

Example 5 (P10C10) 31 4 1088 5245 2 1088 5245

Example 6 (GC - 3) 23 5 94 271 3 286 763

Example 7 (GC - 4) 29 6 318 1221 4 2994 11806

Example 8 (P6C9) 24 15 1299 12674 3 24483 117918

Example 9 (P6C10) 26 16 2596 27336 3 59756 313729

Example 10 (P6C11) 28 17 4268 44620 3 82583 440540

Example 11 (P6C12) 30 18 6846 70856 3 112023 606771

Example 12 (P6C13) 32 19 10646 108842 × × ×

Number of:

1


lo
ks of the original T-TPN ,

2


lo
ks of the TA ,

3

nodes of the TA ,

4

transitions of the TA .

5.2 Redu
ing the number of 
lo
ks

A major issue in model 
he
king TA is the number of 
lo
ks in the automaton.

Time 
omputation is exponential in the number of 
lo
ks. Consequently, obtaining

an automaton with a redu
ed number of 
lo
ks is of importan
e.

The algorithm we propose assigns a 
lo
k to ea
h transition. Thus, the resulting

automaton has as many 
lo
ks as transitions of the T-TPN. However we have

underlined that for ea
h lo
ation, only a redu
ed number of 
lo
ks (a
tive 
lo
ks)

really matter for the timing evolution of the T-TPN.

Daws and Yovine in (Daws and Yovine 1996) proposed a synta
ti
al method to

redu
e the number of 
lo
ks of a TA. As a single Timed Automaton is build with

our method (no need to 
ompute parallel 
omposition) we applied this redu
tion.

The table 2 presents the 
omparison between the 
lo
ks of (1) the Timed Automa-

ton obtained, (2) the Timed Automaton obtained after synta
ti
al 
lo
ks redu
tion

(we used Optikron from Kronos (Yovine 1997)), (3) the State Class Timed Au-

tomaton using Gpn that ensures a minimal number of 
lo
ks using 
lasses.

These results are all the more en
ouraging that, redu
ing the number of 
lo
ks

is made synta
ti
ally and is made at no 
ost 
omparatively to the state spa
e


omputation. The State Class Timed Automaton always as a lower number of


lo
ks but its 
onstru
tion is not as fast as our method: the Timed Automaton has

lower 
lo
ks at the pri
e of a greater size. For example 12, we have not su

eeded

in 
omputing the State Class Timed Automaton (out of memory).

6 Appli
ations

We propose in this se
tion some appli
ations of our method to model-
he
k T-TPN.
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6.1 Model 
he
king of Quantitative Properties

Sin
e they were introdu
ed, Timed Automata are an a
tive resear
h area and

several methods and tools have been developed to analyze them. Tools like Up-

paal (Larsen et al. 1997) or Kronos (Yovine 1997) su

essfully implement e�-


ient algorithms and data stru
tures to provide model-
he
king on TA (TCTL

model-
he
king for instan
e): numerous 
ase studies have been performed with real

rea
tive systems.

Con
erning T-TPN, few studies were realized and properties that 
an be 
he
ked

are mainly safety untimed properties (rea
hability). Time or untime properties

are mainly veri�ed over T-TPN using �observers�. Basi
ally, properties are trans-

formed in an additional T-TPN motif 
alled �observer�, and then, the problem

is transformed into a rea
hability test. Su
h methods are not easy to use: (1)

modeling the property with an observer is not easy (it exists some generi
 ob-

servers (Toussaint et al. 1997), but for few properties), (2) the observer's size may

be as large as the initial T-TPN, (3) due to the in
rease of the T-TPN's size,


omputing the state spa
e will be more time expensive.

The method we propose here, is to use existent TA tools to perform model-


he
king of T-TPN. As a Timed Automaton is produ
ed, model-
he
k a T-TPN

(LTL,CTL) be
omes possible and verifying quantitative time property (TCTL) is

possible. Moreover, as the automaton 
onstru
ted is a Timed Automaton with

diagonal free 
onstraints, model 
he
king 
ould be done using on-the-�y algorithms

on TA (Uppaal(Larsen et al. 1997), Kronos(Yovine 1997)).

Example

Let us 
onsider the 
lassi
al level 
rossing example. The system is modeled using

the three patterns of the �gure 4. This model is made of a 
ontroller (4(a)), a barrier

model (4(b)) and four identi
al trains (4(
)). The resulting Petri Net is obtained

by the parallel 
omposition of these T-TPN.

The property �the barrier is 
losed when a train 
rosses the road� is a safety

property and is interpreted as a rea
hability test: we want to 
he
k if there exists

a state su
h that for any train i: M(Oni) = 1 and M(Closed) = 0. This 
ould

be 
he
ked dire
tly on the 
omputed graph using Mer
utio or using Uppaal

to test the property. In Uppaal, the property is expressed as: E<>((M[On1℄==1

or M[On2℄==1 or M[On3℄==1 or M[On4℄==1) and M[Closed℄==0). In both 
ases, the

result is False, proving that no train may 
ross the road while the barrier is not


losed.

Using the automaton, it is possible to model time properties. For instan
e, �when

the train i approa
hes, the barrier 
loses within delay δ� may be 
he
ked. In

TCTL this property is expressed by: M(closei) = ↑ 1 =⇒ ∀♦≤δM(closed) = 1.

M(closei) = ↑ 1 means that only states for whi
h M(closei) = 1 in the state and

M(closei) = 0 for all the pre
eding states. To 
he
k this property on the TA using

Uppaal or on the T-TPN using rea
hability analysis leads to 
reate an observer or

modify the model. For instan
e, to use Uppaal we have to add an additional 
lo
k

that starts when a train 
hange its state to closei. By using Kronos, there is no
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Figure 4. Gate Controller

need to modify or 
reate an observer. Given the TA and a TCTL formula, Kronos


an perform model-
he
king using 
lassi
al TCTL forward or ba
kward algorithms.

6.2 Mixing Timed Automata and Time Petri Nets

The method proposed in this paper provides a 
ommon framework for using and

analyzing rea
tive systems modeled with Timed Automata or Time Petri Nets.

Many systems are modeled using T-TPN (FIP, CAN), nevertheless some prob-

lems (time 
ontroller synthesis for instan
e) bene�t of larger studies and e�
ient

tools. Then, it may be ne
essary to have a mixed representation of the system.

We give here some examples of mixing Timed Automata and Time Petri Nets:

Test Case Given a rea
tive system expressed with a T-TPN, di�erent s
enarios

may be studied by syn
hronizing it with a Test Automaton. This Test Automaton

represents the sequen
e of transitions to be �red and the syn
hronization is made

over the �ring of transitions.
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Controller Given a rea
tive system expressed with a T-TPN, a 
ontroller may be

modeled using TA to 
onstraint the exe
ution of the system.

7 Con
lusions

In this paper, we proposed an e�
ient method to 
ompute the state spa
e of a

bounded T-TPN. The proposed algorithm performs a forward 
omputation of the

state spa
e and we proved it is exa
t with respe
t to rea
hability even for bounded

T-TPN with ∞ as latest �ring time. We proposed a labeling algorithm of the

produ
ed graph to build a Timed Automaton that we proved to be timed bisimilar

to the original T-TPN. Some examples were given to show that our tool performs

better than two other methods used to 
ompute the state spa
e of a T-TPN: the

State Class Timed Automaton (Gpn) and the State Class Graph (Tina). Though

the number of 
lo
ks of our TA is greater than the one of the State Class Timed

Automaton, our 
onstru
tion is faster and synta
ti
al 
lo
ks redu
tion algorithms

may be su

essfully applied to redu
e it.

Consequently, our method allows the use of Timed Automaton tools to model-


he
k T-TPN. In parti
ular, the Timed Marking Automaton makes TCTL model-


he
king feasible for bounded T-TPN, whi
h, to our knowledge has not been done

before.

We are 
urrently involved in two di�erent resear
h area. First, we think possible

to use e�
ient data stru
tures (BDD-like stru
ture) to improve our implementation

and we are studying Partial Order methods to redu
e time and spa
e requirements.

Finally, it would be useful to develop a full model-
he
ker for T-TPN without

having to build the Timed Automaton. Then, a further step in the analysis of real-

time rea
tive systems will be to provide methods for the time 
ontroller synthesis

problem for T-TPN.
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