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Abstract

The language Timed Concurrent Constraint (tccp) is the extension over time of the Con-
current Constraint Programming (cc) paradigm that allows us to specify concurrent sys-
tems where timing is critical, for example reactive systems. Systems which may have an
infinite number of states can be specified in tccp. Model checking is a technique which is
able to verify finite-state systems with a huge number of states in an automatic way. In
the last years several studies have investigated how to extend model checking techniques
to systems with an infinite number of states. In this paper we propose an approach which
exploits the computation model of tccp. Constraint based computations allow us to de-
fine a methodology for applying a model checking algorithm to (a class of) infinite-state
systems. We extend the classical algorithm of model checking for LTL to a specific logic
defined for the verification of tccp and to the tccp Structure which we define in this work
for modeling the program behavior. We define a restriction on the time in order to get a
finite model and then we develop some illustrative examples. To the best of our knowledge
this is the first approach that defines a model checking methodology for tccp.

KEYWORDS: Automatic verification, reactive systems, timed concurrent constraint pro-
gramming, model checking

1 Introduction

Model checking is a technique for formal verification that was defined for finite-state

systems. It was first introduced in (Clarke and Emerson 1981) and (Quielle and Sifakis 1982)

for verifying automatically if a system satisfies a given property. Concurrent sys-

tems can be very complicated, and the process of modeling and verifying them by

hand can be hard. Thus, the development of formal and fully automatic methods
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grant TIN 2004-7943-C04-02, by ICT for EU-India Cross Cultural Dissemination Project under
grant ALA/95/23/2003/077-054, and by the Italian project Cofin’04 AIDA.
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such as model checking is essential. Basically, this technique consists in an exhaus-

tive analysis of the state-space of the system. This exhaustive analysis implies that,

in principle, we can apply it only to finite-state systems limiting a lot its appli-

cability. Furthermore, the state-explosion problem is the main drawback even for

finite-state systems and for this reason many approaches in the literature try to

mitigate it. Two of the main solutions for the state-explosion problem that have

been presented in the last years are the symbolic approach (McMillan 1993) and

the algorithms for abstract model checking (Dams 1996). The idea which is shared

by these approaches is to reduce the number of states of the system.

The different approaches to the model checking problem for infinite state sys-

tems can be classified in two categories. The first one corresponds to those ap-

proaches that construct an abstract finite model of the system which can be auto-

matically verified (see (Clarke et al. 1994; Loiseaux et al. 1995)). The second cat-

egory contains those approaches based on the symbolic reachability analysis where

a finite representation of the set of reachable configurations of the system is cal-

culated (see (Alur et al. 1995; Cousot and Halbwachs 1978; Bouajjani et al. 1997;

Boigelot and Godefroid 1996)). The methodologies that make use of regular lan-

guages and regular relations are considered in the so called regular model check-

ing approach (Pnueli and Shahar 2000; Kesten et al. 1997; Bouajjani et al. 2000).

Moreover, in (Abdulla et al. 1999) the notion of abstraction and the notion of sym-

bolic reachability are combined in order to define a method to verify infinite-state

systems. Our approach is novel and makes use of a notion of abstraction based on

constraints and a time interval. The notion of constraints is used to collapse the

number of states.

In (Manna and Pnueli 1995) reactive systems are defined as those systems that

keep exchanging information with their environment at run time. Reactive systems

are typically defined as a set of processes working in parallel, hence the family of

reactive systems is strictly related to the notion of concurrency. In some cases it is

not expected that the system terminates but it may continue its execution indefi-

nitely. Examples of such systems are operating systems, communication protocols

or some kind of embedded systems. Thus it is quite useful to have a specification

language that supports concurrency which makes easier for the user to describe

systems. Usually, in model checking, by exploiting concurrency we model the whole

system, including the environment. For example, users are represented as a concur-

rent process which models the possible actions that users can perform to interact

with the system.

The language Temporal Concurrent Constraint Programming (tccp) extends the

Concurrent Constraint Programming (cc) paradigm defined in (Saraswat 1989)

with a notion of time. This extension is suitable for modeling reactive systems.

Actually, in the literature you can find two similar languages which extend cc with

some notion of time: the tcc language first presented in (Saraswat et al. 1994) and

the ntcc language defined in (Nielsen et al. 2002). tccp is a declarative language

defined in (Boer et al. 2000) that handles constraints which is a key characteristic

for the results which we achieve in the present work. Our idea is to take advantage

of the natural properties of the language in order to define a model-checking algo-
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rithm that allows us to verify reactive systems specified in tccp. Note that when

we speak of reactive systems we are not limiting ourselves to finite-state systems.

The tccp language allows us to model infinite-state systems, hence we tackle the

problem of model checking for infinite-state systems. We show how the constraint

nature of the language and the fact that it has a built-in notion of time can be

exploited usefully.

Some related works can be found in the literature where constraints are used for

solving similar problems. In (Delzanno and Podelski 1999; Delzanno and Podelski 2001)

the authors present a method that allows them to verify a communication protocol

with an infinite number of states in the sense that they prove that a client-server

protocol is correct for an arbitrary number of processes (clients). This could not be

proved by using classical approaches to model checking, however it become possible

thanks to the use of the notion of constraint.

The model-checking technique can be divided into three main phases; specifica-

tion, modeling and verification. In this work, we use the notion of constraint in the

three phases of the model-checking technique. First, we introduce the notion of con-

straint in the constructed model of the system. We note that constraints are able

to represent in a compact manner a set of possible values that the system variables

can take (i.e., a possibly infinite set of states if we use the classical notion of state).

In the second phase we use a logic able to handle constraints for specifying the

property to be verified. Such logic was presented in (Boer et al. 2001) and revisited

in (Boer et al. 2002). The last phase of the model-checking technique consists in

defining an algorithm that determines whether the system satisfies the property by

using the two outputs of the previous phases. In this work we extend the classical

algorithm defined for LTL to the constrained approach. Note that we can take as a

reference the classical algorithm because we use a logic able to handle constraints,

and this makes possible to combine it with the tccp Structure defined in this pa-

per to model the system. Since this structure contains constraints, it would not

be possible to use a classical temporal logic directly. To the best of our knowledge

this is the first time that a model-checking algorithm for systems specified with the

tccp language is defined. Some of the results in this work have been included in

Villanueva’s doctoral thesis (Villanueva 2003).

In (Falaschi et al. 2000a; Falaschi et al. 2000b) we presented a framework that al-

lowed us to build a graph structure as a first step for applying the model-checking

technique to tcc programs. tcc is a language similar to tccp for programming embed-

ded systems. The main differences between tcc and the language that we consider

here is in the deterministic nature of the tcc language versus the non-determinism,

and the monotonicity of the store in tccp. Monotonicity means that the store of

the system always increases. tcc is not monotonic since the store is reset when

passing from one time instant to the following one. These differences make the

graph structures defined in (Falaschi et al. 2000a; Falaschi et al. 2000b) and in this

work completely different. We will show these differences in detail in the follow-

ing sections. Moreover, only the modeling process of the method was presented in

(Falaschi et al. 2000a; Falaschi et al. 2000b), whereas in this paper we provide the
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logic used for the specification of the property and the model-checking algorithm

as well.

This paper is organized as follows. In Section 2 we introduce some basic theoretic

notions. In Section 3 we present the basic notions of the tccp language. Then, in

Section 4 we describe the method to construct an adequate model of the system,

which is shown to model correctly the language operational semantics. In Section 5

we present the logic for specifying the properties of our system. In Section 6 we

define the algorithm that applies the model-checking technique to this model and

show its correctness. Section 7 discusses some related work. Finally, in Section 8

final remarks and future work are discussed.

2 Preliminaries

In this section we present some definitions necessary to follow the technical details

of this work. For a quick reading it is possible to skip to Section 3.

A Constraint System is a system of partial information. We follow the definition

of Saraswat et al.:

Definition 1 (Simple constraint system (Saraswat et al. 1991))

Let D be a non-empty set of tokens or primitive constraints. A simple constraint

system is a structure 〈C ,⊢〉 where ⊢⊆ ℘f (C )×C is an entailment relation satisfying:

C1 u ⊢ P whenever P ∈ u,

C2 u ⊢ Q whenever u ⊢ P for all P ∈ v and v ⊢ Q .

Moreover, an element of ℘f (C ) is called a finite constraint and ⊢ is extended to

℘f (C )× ℘f (C ) in the obvious way. Finally, u ≈ v iff u ⊢ v and v ⊢ u. We also say

that u ≥ v when v ⊢ u.

Definition 2 (Cylindric constraint system (Saraswat et al. 1991))

We define a cylindric constraint system as a structure 〈C ,⊢,V , {∃x | x ∈ V}〉 such

that 〈C ,⊢〉 is a simple constraint system, V is an infinite set of variables and, for

each x ∈ V , ∃x : ℘f (C ) → ℘f (C ) is an operation satisfying:

E1 u ⊢ ∃xu,

E2 u ⊢ v implies ∃xu ⊢ ∃xv ,

E3 ∃x (u ⊔ ∃xv) ≈ ∃xu ⊔ ∃xv ,

E4 ∃x∃yu ≈ ∃y∃xu.

∃x is called the existential quantifier or cylindrification operator.

A set of diagonal elements for a cylindric constraint system is a family {δxy ∈

C | x , y ∈ V} such that

D1 ∅ ⊢ δxx ,

D2 if y 6= x , z then {δxz} ≈ ∃y{δxy , δyz},

D3 if x 6= y then {δxy} ⊔ ∃x (u ⊔ {δxy}) ⊢ u.

We define an element c of a cylindric constraint system 〈C ,⊢〉 as a subset of C

closed by entailment, i.e., such that u ⊆f c and u ⊢ P implies P ∈ c.
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3 Timed Concurrent Constraint Language

The tccp language was developed in (Boer et al. 2000). It was designed as a com-

putational model which allows one to model reactive and real-time systems. Thus,

it is possible to specify and to verify distributed, concurrent systems where the no-

tion of time is a crucial question. tccp is based on the cc paradigm (Saraswat 1989;

Saraswat and Rinard 1990; Saraswat et al. 1991) that was presented as a general

concurrent computational model.

The computational model of cc is defined by means of a global store and a set of

defined agents that can add (tell) information into the store or check (ask) whether

a constraint is entailed by the store. Computations evolve as an accumulation of

information into a global store. In tccp the agents defined for cc are inherited. The

model is enriched with a new agent and a discrete global clock. It is assumed that ask

and tell actions take one time-unit and the parallel operator is interpreted in terms

of maximal parallelism. Computation evolves in steps of one time-unit. It is assumed

that the response time of the constraint solver is constant, independently of the size

of the store. In practice some restrictions (mentioned below) are taken in order to

ensure that these hypothesis are reasonable (the reader can see (Boer et al. 2000)

for details).

To model reactive systems it is necessary to have the ability to describe notions

as timeout or preemption. The timeout behavior can be defined as the ability to

wait for a specific signal and, if a limit of time is reached and such signal is not

present, then an exception program is executed. The notion of preemption is the

ability to abort a process when a specific signal is detected. In tccp these behaviors

can be modeled by using the new conditional agent (not present in cc)

now c thenA elseB

which tests if in the current time instant, the store entails the constraint c and if it

occurs, then in the same time instant it executes the agent A; otherwise, it executes

B (in the same time instant). A limit for the number of nested conditional agents

is imposed in order to ensure the bounded time response of the constraint solver

within a time instant.

3.1 Syntax

The tccp language is parametric to an underlying cylindric constraint system as

defined in Section 2. Since now we assume that C = 〈C ,⊢,V , ∃〉 is the underlying

constraint system for tccp. Given C, in Figure 1 we show the syntax of the agents

of the language. We assume that c and ci are finite constraints (i.e. elements) in C.

The Parallel and Hiding agents are inherited from the cc model and behave in the

same way. Thus, the Parallel agent represents concurrency, whereas the Hiding op-

erator makes a variable local to some process. Also the Tell, Choice and Procedure

Call agents were present in the cc model, but in tccp they have a different semantics

since in the timed model, these three agents cause extension over time. The Tell

agent adds the information c to the store, but this information is available to other

agents only in the following time instant. Therefore, we can say that the tell action
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(Agents) A ::= tell(c) – Tell
| stop – Stop
|

∑n

i=1
ask(ci) → Ai – Choice

| now c thenA elseA – Conditional
| A || A – Parallel
| ∃x A – Hiding
| p(x) – Procedure Call

(Declarations) D ::= D .D
| p(x):-A

(Program) P ::= D .A

Fig. 1. tccp syntax (following F. de Boer et al.)

takes one unit of time. The same thing occurs with the Choice and Procedure Call

agents. Thus, when we execute the
∑n

i=1 ask(ci) → Ai agent, the execution of Ai

starts in the next time instant. Note that the Choice agent models the nondeter-

ministic behavior of the language, thus nondeterminism is always associated to a

time delay.

Finally, the Conditional agent (now c thenA elseB) is the new agent introduced in

the model in order to capture negative information. It behaves within a time unit in

the sense that the condition is checked in the same instant of time as the execution

of the corresponding agent is started. In particular, if the guard is satisfied, then

A will be executed, otherwise the agent B will be executed (we note that B is

executed also in the case when the store entails neither c nor ¬c). If we have two

nested conditional agents, then the guards are recursively checked within the same

time instant. This is the reason why tccp needs a restriction about the maximum

number of nested conditional agents.

3.2 tccp Operational Semantics

In Figure 2 it is shown the operational semantics for tccp as described in (Boer et al. 2000).

Each transition step takes one unit of time. In a configuration (Conf ) there are

two components: a set of agents and a finite constraint representing the store. The

transition relation −→⊆ Conf ×Conf is the least relation that satisfies the rules

in Figure 2. We can say that the transition relation characterizes the (temporal)

evolution of the system.

Since tccp interprets concurrency in terms of maximal parallelism, we assume

that there are as many processors as needed to execute a program. This behavior is

described by means of rulesR7,R8 andR9 where the reader can see that whenever

it is possible, two agents are executed concurrently.

Rules R3, R4, R5 and R6 describe the operational semantics for the conditional

agent. Note that the different possible behaviors depend on the store and on the

initial configuration. Rule R10 shows the semantics for the Hiding operator. Intu-

itively, the rule says that, if there exists a transition 〈A, d ⊔ ∃xc〉 −→ 〈B , d ′〉, then

d ′ is the local information produced by A; moreover, this local information d ′ must

be hidden from the main process.
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R1 〈tell(c), d〉 −→ 〈stop, c ⊔ d〉

R2 〈
∑n

i=1
ask(ci) → Ai , d〉 −→ 〈Aj , d〉 j ∈ [1, n] and d ⊢ cj

R3
〈A,d〉−→〈A′,d ′〉

〈now c thenA elseB ,d〉−→〈A′,d ′〉 d ⊢ c

R4
〈A,d〉6−→

〈now c thenA elseB ,d〉−→〈A,d〉 d ⊢ c

R5
〈B ,d〉−→〈B ′,d ′〉

〈now c thenA elseB ,d〉−→〈B ′,d ′〉 d 6⊢ c

R6
〈B ,d〉6−→

〈now c thenA elseB ,d〉−→〈B ,d〉 d 6⊢ c

R7
〈A,c〉−→〈A′,c′〉 〈B ,c〉−→〈B ′,d ′〉

〈A||B ,c〉−→〈A′||B ′,c′⊔d ′〉

R8
〈A,c〉−→〈A′,c′〉 〈B ,c〉6−→
〈A||B ,c〉−→〈A′||B ,c′〉

R9
〈A,c〉−→〈A′,c′〉 〈B ,c〉6−→
〈B ||A,c〉−→〈B ||A′,c′〉

R10
〈A,d⊔∃xc〉−→〈B ,d ′〉

〈∃dxA,c〉−→〈∃d′xB ,c⊔∃xd ′〉

R11 〈p(x), c〉 −→ 〈A, c〉 p(x) : −A ∈ D

Fig. 2. Operational semantics for tccp language extracted from F. de Boer et al.

The observable behavior of the language is defined from the transition system

described in Figure 2 and considers the input/output of finite and infinite compu-

tations:

Definition 3 (Observable)

Let A be an agent from the tccp language, the operational behavior is given by the

set of resulting stores computed by A for each given input store, considering finite

and infinite computations.

O(A) = {d | 〈A, c〉 −→ . . . 〈B , ci〉 −→ . . . , where d ≡ {c, c1, · · ·, ci , · · ·}}

3.3 Practical Example

We can find in the literature a variety of examples of systems that can be modeled

using the tccp language. Here we develop a typical system: a microwave oven. In

Figure 3 the reader can see the behavior of a microwave. We can note that, for

example, if we are in a state where the door of the microwave is closed, the system
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is turned-off and no error is detected. If, from that state, we open the door, then

we move to the state on the top of the figure.

off
error~

closed

error~

error~

off

on

opened

on
opened

error

opened

closed
off
error~

open

close

turn−on

turn−off
open

turn−on

turn−off

close

close
turn−off

turn−off
open

turn−off

turn−on
close

open

Fig. 3. Example: the microwave system.

The whole system example is inspired in the system for a microwave control

shown in the classical literature (Clarke et al. 1999). However, we have considered

only a subpart of the system in order to easily use this example as a reference in

this work. In Figure 4 we show the tccp program which models a reduced part of

the microwave system. In particular, it models the part of the system which detects

if the door is open when the microwave is turned-on.

microwave error(Door,Button,Error) :-
∃D ,B ,E ( tell(Error = [ |E ]) || (tell(Door = [ |D ]) || (tell(Button = [ |B ]) ||

(now (Door = [open | D ] ∧ Button = [on | B ]) then
(∃E1(tell(E = [yes | E1]))||
∃B1(tell(B = [off | B1])))

else

∃E1(tell(E = [no | E1]))||
microwave error(D ,B ,E )))))·

Fig. 4. Example of a tccp program: a simple error controller

Looking into the program code, we can observe that a Conditional agent checks if

the door is open when the microwave is turned-on. In that case, it forces (with the

Tell agent) that in the following time instant, the microwave is turned-off and an

error signal is emitted. If it is not true that the door is open and the microwave is

working on, then the program simply emits (via the Tell agent) a signal of no error

that will be available in the global store in the following time instant. Therefore,

this example corresponds to the part of the system which avoids wrong behaviors

such as those in Figure 3 which are represented by the two states on the right.

This simple example allows us to illustrate the fact that tccp is not able to model
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strong preemption, i.e., it is not possible to turn-off the start button in the same

instant when the error is detected. Actually, it is possible to start the execution

of the agent that turns the button off, but the fact that it has been turned off is

visible only in the following time instant.

4 tccp Model Checking

The cc paradigm has some interesting features which allow us to define a model-

checking algorithm for reactive systems. We define a model-checking algorithm

which uses a time interval (provided by the user) in order to restrict the state-

space of the system in the cases when the algorithm does not terminates. The

fact that the time is in the semantics makes reasonable the use of such restriction

since the user knows how much time is needed to have a response from the system.

The reader could think that the restriction to an interval of time could make the

algorithm incomplete in too many cases. In the following sections we show that

the time interval is not always used. Obviously, the user must provide a reasonable

time interval. Moreover, if the limit is reached and the verification is terminated,

then we obtain an over-approximation of the system thus some properties can still

be checked. The idea to limit the verification to a time limit is not new. It has been

used in different approaches, for example in (Alur et al. 1997).

Let us now develop a model-checking technique to tccp programs. The key ideas

are that we use the notion of constraint which is underlying the language in order to

have a compact model of the system first, and second, to handle the model directly

to verify properties.

In the following we describe in detail the three main phases which implement the

model-checking algorithm. We also illustrate each phase with the application of the

method to the microwave example.

4.1 Model Construction

The first task of the method corresponds to the construction of the model of the

system. In classical approaches, Kripke Structures1 are used to model the system

behavior; in our approach we define a similar structure called tccp Structure whose

states are essentially a conjunction of constraints of the underlying constraint sys-

tem. The idea is to automatize the construction of the model of the system from

the specification. In other words, we take a program written in tccp, and a model

of the system behavior is constructed in an automatic way.

4.1.1 Program Labeling

First of all, we need a labeled version of the specification in order to construct the

model of the system automatically. We adapt the idea introduced in (Manna and Pnueli 1995)

1 Kripke Structures were defined in (Hughes and Creswell 1968). The definition can also be seen
in (Clarke et al. 1999) for example.
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to our framework: a different label is assigned to each occurrence of an agent. Labels

allow us to identify during the model construction in which point of the execution of

the program we are. The presence or absence of a label determines if the associated

agent can be executed or not during the computation. The labeling process consists

on the introduction of a different label for each occurrence of a language construct:

Definition 4

Let P be a specification, the labeled version Pl of P is defined as follows. The

subindex k ∈ N corresponds to the number of labels introduced up to a given

point. When the labeling process starts, k = 0 and each time that we introduce a

new fresh label, k is incremented by one.

• If P = stop then Pl = lstopk stop.

• If P = tell(c) then Pl = ltellk tell(c).

• If P =
∑n

i=1 ask(ci) → Ai then Pl = laskk
∑n

i=1 ask(ci) → Al .

• If P = now c thenA elseB then Pl = lnowk
now c thenAl elseBl .

• If P = A||B then Pl = l||k (Al ||Bl ).

• If P = ∃x A then Pl = lek∃x Al .

• If P = p(x ) then Pl = lpkp(x ).

The labeling of a declaration D of the form p(x ) :- A is defined as lpi
p(x ) :- Al ,

called Dl . Finally, the labeled version of a program of the form D .A is Dl .Al .

In practice, we explore the tccp specification, and each time that we find an oc-

currence of a construct we introduce a new label which identifies such point of the

program.

In Figure 5 we show the labeled version of the microwave error detection program

showed in Figure 4. Note that the structure of the program has not changed, simply

some labels have been added.

{lp0
}microwave error(Door,Button,Error) : −

{le1} ∃D ,B ,E ({l||2({lt3}tell(Error = [ |E ])|| ({l||4}({lt5} tell(Door = [ |D ]) ||
{l||6}({lt7}tell(Button = [ |B ]) ||

{l||8} ({lnow9
} now (Door = [open | D ] ∧ Button = [on | B ]) then

{l||10} ({le11} ∃E1({lt12} tell(E = [yes | E1]))||
{le13} ∃B1({lt14} tell(B = [off | B1])))

else

{le15} ∃E1({lt16} tell(E = [no | E1]))||
{lp17

}microwave error(D ,B ,E )))))·

Fig. 5. Example of a labeled tccp program: a simple error controller

4.1.2 The tccp Structure

The main point in the modeling phase is the construction of the graph structure

which represents the system behavior. We define a new graph structure to represent

the system. The tccp Structure is defined as a variant of the Kripke Structure.
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Intuitively, a Kripke Structure is a finite graph structure where there could be

many initial nodes and each node is always related to another one (or to itself).

Moreover, each state has associated a set of atomic propositions which are true in

such state.

The main difference between the two structures is that the definition of a state in

the Kripke Structure follows the classical notion of state whereas in our structure,

a state consists of a conjunction of constraints and intuitively it can be seen as a

set of classical states.

Let us formally define our tccp Structure.

Definition 5

The set AP of atomic propositions is defined as the set of elements2 of the cylindric

constraint system C of the tccp language.

In the rest of the paper we abuse of notation by identifying the meaning of the

terms constraint, atomic proposition and element. Next we define what a state of

the tccp Structure is:

Definition 6 (tccp State)

Let AP be the atomic propositions in the tccp syntax and L be the set of all labels

generated during the labeling process described above. We define the set of states

as S ⊆ 2AP × 2L .

Before the definition of the tccp Structure, we define the notion of equivalent

states. For this, we need the classical notion of renaming of variables. Let y1, . . . , yn
be n distinct variables. The substitution {x1/y1, . . . , xn/yn} is a renaming.

Definition 7 (Equivalent States)

Given two tccp states s and s ′, we say that the two states are equivalent if:

• the set of labels l ⊆ L of s and the set of labels l ′ ⊆ L coincide and,

• there exists a renaming γ of variables of the constraints in s which makes

them syntactically identical to the set of constraints of s ′

In Definition 8, we define the tccp Structure. Observe that the differences w.r.t.

a Kripke Structure are the definition of state (in Definition 6) and the two labeling

functions C and T which replace the labeling function L of the classical Kripke

Structure.

Definition 8 (tccp Structure)

Let AP be a set of atomic propositions, we define a tccp Structure M over AP as

a five tuple M = (S , S0,R,C ,T ) where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S × S is a transition relation.

4. C : S → 2AP is the function that returns the set of atomic propositions in a

given state.

2 See the definition in Section 2.
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5. T : S → 2L as the function that returns the set of labels in a given state.

We assume that a transition in the graph represents an increment of one time-

unit in the system. Intuitively, C labels a state with the set of constraints true

in such state. In other words, this function represents the new information that

we know in a specific instant. T labels each state with the set of labels associated

to agents that must be executed in the following time instant. In other words, T

represents the point of execution in each instant (or state).

When two states s and s ′ are related by R(s , s ′), it means that it is possible to

reach the state s ′ from state s by executing the agents associated to the labels in

T (s) with the store C (s) deriving as a result (by applying the renaming γ) the

store C (s ′) and the point of execution T (s ′). In other words, given a state s and a

renaming γ, we obtain a state s ′ whose store is C (s ′) · γ.

Given a tccp Structure Z = (S , S0,R,C ,T ), we define tr(Z ) as the set of se-

quences of states of Z starting from an initial state and which are related by R:

tr(Z ) = {s | s = s0 · s1 · · · sn · · · ∧ s0 ∈ S0 ∧ ∀i ≥ 0, ∃R(si , si+1)} (1)

Which intuitively means that for each si , there exists a transition to the (re-

named) state si+1 · γi .

4.1.3 Construction of the model

In this section we show how the tccp Structure that represents the system behavior

is constructed from a labeled specification S in an automatic way. We present the

pseudo-code of the necessary algorithms for the construction. Moreover, we show

the complexity of such algorithms and explain the process from a theoretical point

of view.

Intuitively, the construction evolves as follows. A process is composed by a set of

clauses and a goal. A specification is a set of clauses. We describe how a specification

(or declaration) can be transformed in a set of tccp Structures. Actually, for each

different clause we construct a tccp Structure which is labeled with a unique name.

This name can be used as one of the labels introduced in the program and is used

when a procedure call refers to such clause. We consider that the declaration Dl

of the form p(x )l :- Al is a public information which is always available. We also

assume that each label lA is associated with the agent A.

The first algorithm that we show is the main procedure construct(D) (Figure 6)

which, given a tccp declaration Dl of the form lpp(x ) : −Al , returns a tccp Structure

Q = 〈S , S0,R,C ,T 〉 representing the behavior of p.

We define globally a data type called state which represents a state of the tccp

Structure. We assume that store is a conjunction of constraints and label is a set

of labels in L.

state :

st : store;

ℓ[ ] : label;
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In our pseudo-code, we use the dot notation to access to the components of a

state. Moreover, we use the notation [ ] for lists of elements, thus ℓ[ ] is a list of

labels. The ℵ value is a possible value of a store denoting unsatisfiability.

Finally, we simplify the treatment of functions C and T . Although we do not

mention them in the algorithm itself, these functions correspond to the two com-

ponents of the state structure of the algorithm. We also write R(n, n ′) to describe

that nodes n and n ′ are related.

construct(inputD : tccpdeclaration, output 〈S ,S0,R,C ,T 〉 : tccp Structure)
s : state;
S ′, S ′

0 : set of states;
inf[ ] : store;
lab[ ] : set of labels;
j : int;

S ′ = ∅; // ∅ denotes the empty set
S ′
0 = ∅;

inf = instant(true, lA); // lpp(x) : −Al

lab = follows(lA);
for j = 1 to sizeof(inf)

if inf[j] <> ℵ then

s = create node(inf[j], lab[j]);
C (s) = inf[j];
L(s) = lab[j];
S ′ = S ′ ∪ {s};

S ′
0 = S ′;

construct ag(S ′,S ′
0,R

′,C ′,T ′);
S = S ′; S0 = S ′

0; R = R′;
C = C ′; T = T ′;

Fig. 6. Description of the construction algorithm

Roughly speaking, in this algorithm the tccp Structure is initialized and the set

of initial states is created. Then the function construct ag (Figure 7) is called. This

function iteratively completes the construction. Functions instant and follows are

two auxiliary procedures used during the construction of the tccp Structure. We

show them below.

Now we show (Figure 7) the construct ag procedure, which uses two more aux-

iliary functions: the find(s , S ) function, which returns a reference to the state in

S which coincides (modulo renaming of variables) with s , and the perm function

which, given two states, returns the necessary renamings which make them equiv-

alent.

Given a label ll, follows(ll) returns the list which contains the labels associated

to the agents that must be analyzed in the following time instant. Each element

of the list corresponds to a different possible behavior of the system. For example,

in the case of a conditional agent, the initial part of the list corresponds to the

possible behaviors when the guard of the agent is satisfied, and the final part of

the list corresponds to the case when it is not satisfied. Therefore, if two or more

conditional agents are nested, then all the possible behaviors depending on the first
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construct ag(input/outputS [ ] : state; input S0[ ] : state
input/outputR : relation,C ,T : function)

stat1, stat2 : state;
s[ ], acc[ ] : state
inf[ ] : store;
lab[ ] : set of labels;
rn : renaming of variables;
j,k : int;

acc = S ;
j = 0;
while acc <> ∅ do

stat1 = select(acc);
acc = remove(acc, stat1);
inf = instant(stat1. st, stat1. ℓ);
lab = follows(stat1. ℓ);
for k=1 to sizeof(inf)

if inf[k] <> ℵ then

s[j ] = create node(inf[k], lab[k]);
stat2 = find(s[j ], S);
if (stat2) then // there exists an equivalent state

rn = perm(s[j ], stat2);
R(stat1, rn, stat2);

else

R(stat1, {}, s[j]);
j = j + 1;
S = S∪{s[j]};
acc = acc ∪ {s[j]};
C [j ] = inf[k];
L[j ] = lab[k];

Fig. 7. Description of the construction algorithm for agents

then part will appear before those of the else part in the list. Since tccp restricts

the number of nested conditional agents in a program, we can ensure that this

algorithm terminates and the list of sets of labels is finite.

The follows algorithm uses two additional auxiliary functions, append and com-

bine, which are functions that implement operations over lists: append(ℓ1, ℓ2) returns

the concatenation of the two lists ℓ1 and ℓ2 whereas combine(ℓ1, ℓ2) constructs a

new list whose elements consist of an element of ℓ1 and an element of ℓ2. For ex-

ample, if ℓ1 = {{l1}, {l2}} and ℓ2 = {{l3}}, then the result of combine(ℓ1, ℓ2) is the

list {{l1, l3}, {l2, l3}}.

We can show that the complexity of the algorithm showed in Figure 8 is expo-

nential in the maximum number of nested agents in the specification. The high

complexity is a theoretical case which does not occur in practice. We think that the

complexity in practical cases should be semi-linear on average.

Lemma 1

The time complexity for the algorithm follows(A) presented in Figure 8 is O(n ∗2m)
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list of sets of stores follows(ll : label)
ℓ[], ℓ1[], ℓ2[] : set of labels;
n, i, j : int;

case A of // we assume that A is the agent associated with ll .
stop : ℓ[1] = {};
tell(c) : ℓ[1] = {};
∑n

i=1
ask(ci ) → Ai : for j = 1 to n

ℓ[j ] = lAj ;
ℓ[n + 1] = {ll};

now c thenB1 elseB2 : ℓ1 = follows(lB1
);

ℓ2 = follows(lB2
);

ℓ = append(ℓ1, ℓ2);
B1||B2 : ℓ = combine(follows(lB1

), follows(lB2
));

∃x B1 : ℓ = follows(lB1
);

p(x) : ℓ = {lp}; // where lp represents the label
// of the tccp Structure constructed for p

end case;
return ℓ;

Fig. 8. Description of the auxiliary algorithm follows(ll)

where m is the maximum number of nested agents and n is the size of the list

returned by follows(A).

Proof

First of all, we know that the agentA has a finite number of nested agents. Moreover,

we can see that the cost of the algorithm in the case of Tell and Stop agents is

constant since follows(A) = {} in such cases. The cost is constant also in the case

of Procedure Call agents since follows(p(x )) returns a single label. For the Choice

agent, the cost depends on the number of asks contained in the agent. Therefore,

given the agent
∑n

i=1 ask(ci) → Ai , the cost will be n + 1. In addition, we know

that the maximum number of nested recursive calls is 2m which corresponds to

the worst case: when every nested agent is a parallel or conditional agent. Note

that in these cases, the functions combine or append are used. These are indeed the

expensive operations which we count. We assume that the cost of these functions

is linear in the size of the resulting list.

Thus, the time complexity of the worst case is O(n ∗ 2m).

Next we show the second auxiliary function needed during the automatic con-

struction of the model (see Figure 9). Given a store and a label, instant(c, ll) returns

a list of stores which corresponds to the information which can be computed instan-

taneously (i.e., before the following time instant) by executing the agents associated

with the label ll . In this algorithm we have marked the negation not(c) with a star

to indicate that the semantics of negation is defined as the non satisfiability of c

instead of the satisfiability of ¬c. The instant procedure uses the auxiliary function

flat(st,ll) (Figure 10) which adds the constraint st to each element of the list ll

returning a simple list of stores. If st is inconsistent with any element of the list,

then the value of the element is set to ℵ.
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list of stores instant(input st : store, ll : label)
s[], s1[], s2[]: store;
j: int;

case A of // we assume that ll is associated to the agent A
abort : s[1] = true;
tell(c) : s[1] = c;
∑n

i=1
ask(di) → Ai : for j = 1 to n

s[j] = {di};
s[n+1] = true;

now d thenB1 elseB2 : s1 = flat(st , instant(st ⊔ d , lB1
));

s2 = flat(st , instant(not∗(d) ⊔ st , lB2
));

s = append(s1, s2);
B1||B2 : s = combine(instant(st , lB1

), instant(st , lB2
))

∃x B1 : s[1] = {st [y/x ]} ⊔ instant(st , lB1
) //where y is a fresh variable

p(x) : s[1] = true; // where p(x) :: {lB1
}B1 is a

// clause of the specification
end case;
return s;

Fig. 9. Description of the auxiliary algorithm instant(st , ll)

list of stores flat(input st : store, ll [] : store)
s[]: store;
j: int;

for j = 1 to sizeof(ll)
if ll[j] ⊔ st = false then

s[j] = ℵ;
else

s[j] = ll[j] ⊔ st;
return s;

Fig. 10. Description of the auxiliary algorithm flat(st,ll)

It is easy to see that the time complexity of flat is linear on the size of the list.

Lemma 2
The time complexity for the algorithm flat(c,ll) presented in Figure 10 is O(n)

where n is the number of elements in the list ll .

Proof
The proof is trivial since we iterate n times over the elements of the list.

The complexity of the algorithm instant showed above is exponential in the max-

imum number of nested agents in the specification. Note that also in this case, this

is a theoretical case which may only occur very rarely in practice. We think that

the complexity in practical cases should be semi-linear on average.

Lemma 3
The time complexity for the algorithm instant(st,A) presented in Figure 9 is O(n ∗

2m+2n) where m is the maximum number of nested agents and n is the cardinality

of the list of stores returned by instant(st,A).
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Proof

We know that the agent A has a finite number of nested agents. We also know that

if the agent is a Stop, Tell or Procedure Call agent, then the cost of the function is

constant. If A is a Choice agent, then we have a linear cost, in particular we have

O(n+1) since there is an iterative loop over the number n of guards in the Choice.

Now let us consider the three remaining cases. For both the Conditional and the

Parallel agents we have two recursive calls, whereas for the Hiding agent we have a

single recursive call. We assume that the combine and append functions are linear

in the size of the two lists passed as argument (i.e., we take O(n) where n is the

number of elements in the resulting list).

Therefore, we can say that the upper-bound for the global complexity of the

algorithm is O(n ∗ 2m + 2n) where m is the maximum number of nested agents.

Now we can analyze the complexity of the construct algorithm. First of all, we

state the complexity for the construct ag function.

Lemma 4

The time complexity for the algorithm construct ag(S , S0, s ,R,C ,T ) presented in

Figure 7 is O(c ∗m ∗ 2m) where m is the maximum number of nested agents, and

c is the number of states in the model.

Proof

By Lemma 3 and Lemma 1 we know the complexity of the auxiliary functions.

Moreover, we know that select and remove take linear time and we assume that

create node has constant complexity. We know that the while loop will be executed

c times, where c is the number of different states in the model.

We can see that each time the loop is executed, we have one procedure call to

each auxiliary function. Moreover, we have a for loop which is executed at most

m + 1 times. Therefore, the cost of the for loop is O(m) and the cost of the while

loop is 2c ∗ (m ∗ 2m). We ensure the finiteness of the number of states since we

know that there is a finite number of combinations of labels and constraints (which

appear in the specification) modulo renaming.

Theorem 1

The time complexity for the algorithm construct(D) presented in Figure 6 is O(c ∗

(2m∗2m)) wherem is the maximum number of nested agents and n is the cardinality

of the resulting list.

Proof

We know the cost of the auxiliary algorithms. Following the structure of the algo-

rithm, we can see that there is one call to the construct ag function. In addition, we

have a procedure call to the algorithm instant and follows. Then, we have to add the

cost of such algorithms: O(2n ∗ 2m + c ∗ (2m ∗ 2m)). We have also a for loop which

is executed at most m times. Therefore, we obtain the global complexity given in

this result.
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Let us now explain intuitively the idea of algorithm showed in Figure 7. Each

time an agent is analyzed, some actions are executed. In the following description

we show the intuitions behind the formal definitions:

Stop S ≡ stop. When we find a stop agent, we add no information to the store,

insert a self-loop over the new node and instantiate the set of labels to the empty

set since the construction must be concluded.

Tell S ≡ tell(c). The new information c is introduced into the store and the label

associated to S is removed from the labels to be executed.

Choice S ≡
∑n

i=1 ask(ci) → Ai . This agent leads to a set of corresponding

branches in the graph. We introduce at most m+1 branches with m ≤ n, one for

each possible successful ask guard. Note that if a ci condition is not consistent

with the store C (s) then the corresponding branch will not be generated. For

each new node s ′i , we define the transition R(s , s ′i · γ) where γ is the renaming

obtained when new nodes are generated, and we define an extra arc R(s , sm+1 ·γ)

that corresponds to the case when the store does not entail any condition ci but

the execution of concurrent agents proceed (if there are no concurrent agents or

there exist but they cannot proceed, then sm+1 = s thus a self-loop is intro-

duced). Moreover, we do not introduce any additional information into the store

and the labels are updated.

Conditional S ≡ now c thenA elseB . The construction process in this case follows

the same idea as for the choice operator: we define two new nodes (s ′1 and s ′2)

that correspond to the two possible behaviors. The first branch corresponds to

the case when the store entails c. It is added to the store the information that the

agent A can generate in a single time instant. Also the set of labels is updated.

The second branch is defined in a similar way.

Parallel S ≡ A||B . When a parallel agent is analyzed, the new node generated

depends on the execution of the agents A and B in the present time instant. This

means that the new store is defined as the union of the information obtained

from the execution of A and B (if it is possible to execute them). Also the set of

labels depends on these two agents.

Hiding S ≡ ∃x A. The behavior of the hiding agent is modeled in the graph

construction by the introduction of the necessary renaming of variables in the

store.

Procedure Call S ≡ p(X1, . . . ,Xn). When a procedure call is reached we finish

the process by introducing in s ′ a reference to the initial node of the tccp Structure

for p. If there are more concurrent agents that must be analyzed, then we continue

by considering the tccp Structure already generated for such clause (with the

necessary renaming of variables). We link the current node s with a simplified

copy of this piece of structure. The simplification consists in eliminating the

branches whose condition is inconsistent with the constraints derived by the

other (parallel) agents. Thus, the new node s ′ depends on the execution of the

other concurrent agents and the body of the clause for p.

If there are two (or more) procedure calls in parallel the process is similar and

as many nodes as different possible behaviors are generated.
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In order to illustrate the construction process, in Figure 11 we present the con-

struction of the tccp Structure for the program in Figure 5. Remember that this

program simply detects if the door is open when the microwave works and in that

case turns the system off and emits an error signal.

Button = [on|B]),

 {  (Door = [open|D]~
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n1 n2
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}

{Error = [_|E],

 {D/Door, B/Button, E/Error}

D, B, E, B1, E1}

Button = [on|B]),

 {(Door = [open|D]

lt14, lp17lt5, lt7,

B = [on|B1])}
   (D = [open|_]~

B=[off|B1],E = [yes|E1],

Button = [_|B],

lt3, lt16, lp17
lt5, lt7,

B = [on|B1])}

   (D = [open|D1]~
E = [no|E1],

lt3, lt16, lp17

{Error = [_|E],

Door = [_|D],
Door = [_|D],

Button = [_|B],

 {D/Door, B/Button, E/Error}
 {E1/E, B1/B, D1/D}  {E1/E, B1/B, D1/D}

Fig. 11. Construction of the tccp Structures for the example showed in Figure 4

We can see how, for the first time instant, two nodes corresponding to the

two possible behaviors of the conditional agent have been generated in the spec-

ification (n1 and n2). Now look at the node n1 where we have that L(n1) =

{lt3, lt12, lt5, lt7, lt14, lp17}. This means that in order to continue with the graph

construction we have to try to execute the agents associated with such labels. The

tell agents update the store with the information that an error combination has

been encountered and in the next time instant a stop signal will be present. This is

important because when we try to execute the procedure call associated with lp17,

only one of the two possible branches can be followed.

When we generate new nodes and the corresponding connecting arcs we should

consider formulas which are renamed apart. Note that if we find a node equal (up to

renaming) to another one, a loop will be formed in the graph and the construction

following this branch will terminate.

Next we show an additional example which may be useful to understand the

construction. Given the program

p(x ):-∃y(tell(x = f (y))||p(y))

the constructed tccp Structure is shown in Figure 12. Note that, in each state, we

store the new information added during a single time instant, thus the store of the
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program at a time instant k is given by the union of the information added along

the path in the structure, after making k loops. For instance, after 3 time instants,

the derived information is the following: {x = f (y), y = f (y ′)}. Roughly speaking,

each time we loop on the second node, a renaming of variables which form the

constraints in the store is performed. Thus, the renaming {x/y, y/y ′} where y ′ is

a new variable, defines the new constraint y = f (y ′). Following the syntax of the

program, x = f (y) and y ′ = f (y ′′) are introduced by the tell agent in the first and

second time instant respectively. Note that we show the store after 3 instants of

time since the information produced by a tell agent in a given time instant (for

example, the second), does not appear in the store till the following time instant.

This is due to the fact that tell agents take one time instant.

lp0

 { }

n1

n2

 { }

 {x/y y/y’}

x = f(y)

lt1
lp1

lp1

lt1

Fig. 12. Construction of the tccp Structures

4.1.4 Correctness and Completeness

In this section we prove the correctness and completeness of the automatic construc-

tion of the model. We first introduce a function which extracts the information from

the states of the tccp Structure. We define st as the set of sequences of the form

{t | t = c1 · c2 · · · cn · · ·} where ci is a finite constraint.

Definition 9

Given a tccp Structure Z and s ∈ tr(Z ) of the form s0 ·s1 ·. . ., we define the function

δs : tr(Z ) → st as follows:

δs(s) =

{

C (s0) if s = s0,

δ(s0) · δs(s ′) if s = s0 · s ′,
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where δ(si) is defined as

δ(si) = ∪0≤j≤iC (sj )

The extension of δs to sets of sequences is made in the obvious way.

The following theorem shows that the defined graph construction is correct and

complete. In other terms it shows that the set of traces which correspond to the tccp

structure Z is the same given by the operational semantics of the tccp specification

S .

Theorem 2
Let Z be the tccp Structure corresponding to the tccp specification S . Then the

construction Z is correct and complete since

δs(tr(Z )) = O(S )

Proof
Let us first define an equivalence relation ∼ between configurations of the opera-

tional semantics presented in Figure 2 and graph states. Let σ(Γ) be the store in

configuration Γ, then we extend σ over sequences of configurations in the obvious

way. In the graph, stores are ‘extracted’ by using function C . Then, we say that

a configuration Γ corresponds to a tccp state s if C (s) ⊢ σ(Γ) and σ(Γ) ⊢ C (s),

and the ‘active agent’ (namely one agent immediately reducible given the store in

the current configuration) in Γ corresponds to that selected for reduction in s ; we

denote this by Γ ∼ s .

A trace t of the form s0, . . . , si , . . . in a tccp Structure Z and a derivation (trace)

γ = γ0, . . . , γi , . . . in the operational semantics of a specification S correspond iff

δs(t) = γ, i.e., ∀i δ(si) ∼ γi . We must prove that all (the partial) paths in the

tccp Structure Z generated from the specification S have an equivalent trace in the

operational semantics of S and vice-versa.

Let us first prove that δs(tr(Z )) ⊆ O(S ).

We proceed by induction on the length of the partial trace n in Z and on the

structure of the agent A selected in step n. Note that each node in the tccp Structure

has a finite number of successors, thus we can reason about all of them.

The basic case for n = 0 is trivial, since the tccp Structure Z is based on the same

initial state s0 considered in the operational semantics. Let us consider the inductive

case, i.e., n > 0. Thus, let us consider the trace s0, . . . , sn in Z . We assume, by

inductive hypothesis, that there exists a corresponding partial derivation γ0, . . . , γn
in O(S ). We now prove that, if a further step is made in Z starting from sn , it is

possible to make a further step starting from γn in O(S ) and the new states still

correspond. Let π = s0, . . . , sn ∈ tr(Z ) and let A be the active agent selected in sn .

We have to consider several cases corresponding to the possible structure of A.

Tell A = tell(c). Let C (sn ) = d and T (sn) = {ltell}. Then, we have the trace

γ ∈ O(A) with γ = γ0, γ1, . . . , γn and γn = 〈A, d〉, where sn and γn correspond

by inductive hypothesis. By the definition of the construction of the structure

and the operational semantics we have that C (sn+1) = {c ⊔ d}, T (sn+1) = {}

and γn+1 = 〈∅, c ⊔ d〉 which correspond, thus sn+1 ∼ γn+1.
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Choice A =
∑m

i=1 ask(ci) → Ai . Let C (sn ) = d and T (sn) = {lask}. Then, we

have the trace γ ∈ O(A) with γ = γ0, γ1, . . . , γn and γn = 〈A, d〉. By inductive

hypothesis we have that sn ∼ γn . By definition of the construction of the structure

and the operational semantics we have two cases: the first case is when there is

no ci such that d ⊢ ci , then in the construction of the tccp Structure there will

be a loop, thus the state sn+1 actually is the state sn whereas in the operational

semantics there is no possible transition. In this case we just take γn+1 = γn ,

and clearly sn+1 ∼ γn+1.

The second case is when there exists a ci such that d ⊢ ci . This means that we

have C (sn+1) = {d} and T (sn+1) = {lAi
}. It is clear that by selecting A in γn ,

we derive γn+1, which corresponds to sn+1.

Conditional A = now c thenA1 elseA2. Let C (sn) = d and T (sn) = {lnow}. Then,

there exists a trace γ ∈ O(A) with γ = γ0, γ1, . . . , γn and γn = 〈A, d〉, such

that, by inductive hypothesis, sn ∼ γn . By definition of the construction of the

structure and the operational semantics we have two possible behaviors: either

d ⊢ c or d 6⊢ c. In the first case, C (sn+1) = {d ⊔ instant(d , lAn+1
)} and T (sn+1) =

follows(An+1). On the other side, we have γn+1 = 〈A′
1, d

′〉 where A′
1 is the agent

reached by the execution of A1 and d ′ the new store with the information added

by the execution of A1. Clearly sn+1 and γn+1 correspond. The case when d 6⊢ c

is similar, considering A2 for reduction.

Parallel A = A1||A2. Let C (sn) = d and T (sn ) = {l||}. Then, we have the trace

γ ∈ O(A) with γ = γ0, γ1, . . . , γn and γn = 〈A, d〉. By inductive hypothesis

sn ∼ γn . By definition of the construction of the structure and the operational

semantics we have that C (sn+1) = {d ⊔ instant(d , lAn+1
) ⊔ instant(d , lA2

)} and

T (s1) = {follows(A1) ∪ follows(A2)}. Then, we have γn+1 = 〈A′
1||A

′
2, d

′〉 where

A′
1 (A′

2) is the agent reached by the execution of A1 (A2) and d ′ is the new store

with the information added by the execution of A1 and A2. Hence sn+1 ∼ γn+1.

Exists A = ∃x A1. Let C (sn) = d and T (sn) = {le}. Then, we have the trace γ ∈

O(A) with γ = γ0, γ1, . . . , γn and γn = 〈A, d〉. By inductive hypothesis sn ∼ γn .

We know that C (sn+1) = {d ⊔ instant(d , lA1[y/x ])}. Note that instant(d , lA1[y/x ])

represents the information generated in one time step by the agent A1[y/x ] which

is the result of the application of the substitution y/x to the agent A1 and

T (sn+1) = follows(A1). y is a fresh variable, thus the information generated by

A1 involving such variable will not affect the rest of the system.

Now, following the operational semantics we derive that γn+1 = 〈∃e
′

xB , d ⊔

∃xe ′〉, where 〈A1, ∃xd〉 → 〈B , e ′〉. Thus, we can identify e ′ with the information

generated from agent A1, and sn+1 and γn+1 correspond.

Procedure Call A = p(X ). Let p(X ) : −B be a clause in the program (in the

specification S ). Let C (sn ) = d and T (sn ) = {lp}. By inductive hypothesis,

there exists the trace γ = γ0, γ1, . . . , γn ∈ O(A) and γn = 〈A, d〉. We have that

sn+1 = N where N is the first node of the tccp Structure constructed for p(X ).

We have that C (sn+1) = C (sn) and T (sn+1) = lB . By expanding the procedure

call in the operational semantics we get γn+1 = 〈B , d〉, which clearly corresponds

to sn+1.
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Now we have to prove that O(S ) ⊆ δs(tr(Z )). This is completely analogous to

the inclusion that we have proved.

5 Specification of the property

In this section we present the logic which we use in our model checking algorithm.

This is a temporal logic which has also the ability to handle constraints of a given

constraint system. In (Boer et al. 2001), the authors presented a temporal logic

for reasoning about tccp programs. In particular, it is an epistemic logic with two

modalities, one representing the knowledge and the other one representing the

belief. These two modalities allow us to reason with the input-output behavior of

programs.

Given an atomic proposition c of the underlying constraint system, K(c) and B(c)

are formulas of the logic which mean that c is known or c is belief respectively.

In other words, B(c) holds if the process assumes that the environment provides c

whereas K(c) holds if the information c is produced by the process itself.

The syntax of temporal formulas for this logic is shown below (see (Boer et al. 2001)

for details):

Definition 10

Given an underlying constraint system with set of constraints C, formulas of the

temporal logic are defined by

φ ::= K(s) | B(s) | ¬φ | φ ∧ ψ | ∃xφ | ❞φ | φU ψ

As for classical temporal logics, it is possible to define other logic operators

such as the always or eventually operators from the basic ones. For example, if we

want to express that a formula φ is satisfied at some point in the future, we write

that ♦φ = trueU φ. To express that a formula φ is always satisfied, we can write

that �(φ) = ¬(trueU ¬φ). Moreover, as usual we denote by φ → ψ the formula

¬φ ∨ (φ ∧ ψ).

A reaction is defined as a pair of constraints of the form 〈c, d〉 where c represents

the input provided by the environment and d corresponds to the information pro-

duced by the process itself. Moreover, it holds that d ≥ c for every reaction, i.e.,

the output always contains the input.

The truth value of temporal formulas is defined with respect to reactive sequences.

〈c1, d1〉 · · · 〈cn , dn〉〈d , d〉 denotes a reactive sequence which consists of a sequence of

reactions. Each reaction in the sequence represents a computation step performed

by an agent at time i . Intuitively each pair can be seen as the input-output behavior

at time i .

Therefore, given a reactive sequence s we can define the truth values of for-

mulas. The function first(s) returns the first reaction of a sequence, i.e., if s =

〈c1, d1〉 · · · 〈cn , dn〉〈d , d〉 then first(s) = 〈c1, d1〉. next(s) returns the sequence ob-

tained by removing the first reaction of it, i.e., if s = 〈c1, d1〉 · · · 〈cn , dn〉〈d , d〉 then

next(s) = 〈c2, d2〉 · · · 〈cn , dn〉〈d , d〉.

We say that 〈c, d〉 |= B(e) if c ⊢ e, i.e., the reaction “believes” the constraint e if
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the first component of the reaction (c) entails e. Moreover, 〈c, d〉 |= K(e) if d ⊢ e,

i.e., the reaction 〈c, d〉 “knows” the constraint e if its second component entails e.
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Definition 11 (by F. de Boer et al.)

Let s be a timed reactive sequence and φ be a temporal formula. Then we define

s |= φ by:

s |= K(c) if first(s) |= K(c)

s |= B(c) if first(s) |= B(c)

s |= ¬φ if s 6|= φ

s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2
s |= ∃xφ if s ′ |= φ for some s ′ such that ∃x s = ∃x s ′

s |= ❞φ if next(s) |= φ

s |= φUψ if for some s ′ ≤ s , s ′ |= ψ and for all s ′ < s ′′ ≤ s , s ′′ |= φ

where, for a sequence s = 〈c1, d1〉 · · · 〈cn , dn〉, we define the existential quantification

∃x s = 〈∃xc1, ∃xd1〉 · · · 〈∃x cn , ∃xdn〉.

We say that a formula φ is valid (|= φ) if and only if for every reactive sequence s ,

s |= φ holds. The reader can see that the modal operators K and B are monotonic

w.r.t. the entailment relation of the underlying constraint system.

In this work we want to reason about tccp programs. Since the store of such

programs evolves monotonically along the time, the notion of monotonically in-

creasing reactive sequences is defined: let s be a reactive sequence of the form

〈c1, d1〉· · ·〈cn−1, dn−1〉〈cn , dn〉, then we say that s is monotonically increasing if it

satisfies that ci ≤ di and dj ≤ cj+1 for each i ∈ {1, . . . , n} and j ∈ {1, . . . , n − 1}.

From now on we consider only monotonically increasing reactive sequences. In Ta-

ble 5 some properties of the logic operators are shown.

Table 1. Logic Operators Properties

B(c) → (B(c))
K(c) → (K(c))
B(c) → K(c)
K(c) → ❞B(c)

Therefore, whenever a constraint is believed in a specific time instant, then it will

be believed also in all the following time instants. Moreover, if a given constraint is

known at the present time instant, then it will be known at every time instant in

the future.

Finally, we can define a relation between modal operators. In particular, we say

that if a constraint c is believed at a specific time instant, then it is also known.

Also, if the constraint c is known at a specific time instant, then it is believed at

the following one.

The logic presented in this section can be seen as a kind of linear temporal

logic. The reader can see that there are no quantifiers over alternative paths. It

is considered that each instant of time has only one direct successor. If fact, if we

compare this logic with the classical LTL logic (see (Clarke et al. 1999) for example)
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we can see that each temporal operator corresponds to a temporal operator from

LTL.

As we have said in the introduction, in model checking we assume a closed world

in the sense that all the agents which can interact with the system are modeled.

For this reason, the output in a time instant will always coincide with the input

in the following time instant, i.e., it is not possible that other information different

from the one generated by the model be introduced as an extra-input in any time

instant. This mean that we can work with simple sequences of stores instead of

working with sequences of reactions. We simply eliminate (or ignore) the second

component of each reaction since it coincides with the fist one of the subsequent

reaction.

¿From now, when we speak about sequences in the logic, we mean sequences of

the form s = s0, s1, . . . where each si is a store and we omit the modal operator K.

The monotonic properties described above are maintained.

5.1 Some examples

Here we illustrate which kind of properties we are able to specify using this logic.

We refer to the program example in Figure 4. Remember that such example models

a very simplified program which controls the state of the door of a microwave.

We could check if it is true that when an error is detected, then the microwave

has been turned-off. Actually, the error has occurred in the previous time instant

since the door was open and the microwave was working, but the program can

emit the error signal only in the following time instant, and at the same time the

microwave should be turned-off.

The following formula represents such property.

¬(true U¬∃{Error,E,Button,B}(Error = [no | E ]∨

(Error = [yes | E ] ∧ Button = [off | B ])))
(2)

It could seem that it is a complicate formula but if we think in terms of the always

and eventually operators defined before, it becomes a very intuitive formula:

�∃{Error,E,Button,B}(Error = [no | E ] ∨ (Error = [yes | E ] ∧ Button = [off | B ]))

We can also model the property that the door will be eventually closed:

♦∃{Door,D}(Door = [close | D ]) (3)

Let us now remark the importance of the chosen logic in this work. We know

that states of the tccp Structure represent only partial information. Therefore, if

we want to check properties directly in the tccp Structure, then we need a logic able

to handle partial information, as is the case of the logic presented in this section.

If we use any classical logic, we should consider each possible valuation of the

variable values for each tccp state. In that case we had the same problem as in

(Falaschi et al. 2000a; Falaschi et al. 2000b), i.e., we would not take advantage of

the compact representation of the system that constraints can provide. Finally, the

model-checking algorithm would not be effectively applicable for the state-explosion

problem.
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6 The algorithm

The third and last phase of the model-checking technique is to define the algorithm

which checks if a given temporal formula is satisfied by the model. The idea of

the algorithm is similar to that for the classical tableau algorithm for the LTL

model checking problem. The first thing is to construct the closure of the formula

φ that we want to verify. Such closure is reminiscent of the Fischer-Ladner’s one

(Fischer and Ladner 1979).

Actually, if we intend to prove that the model satisfies the formula φ, then we

construct the closure of the negated formula (¬φ). The atomic propositions of the

logic are those of the underlying constraint system. The closure of the negated

formula and the tccp Structure are used to construct a graph structure (called the

model-checking graph). This graph structure consists of nodes of the form (q,Φ)

where q is a state of the tccp Structure and Φ is a set of formulas from the closure of

¬φ. The constructed graph structure allows us to verify if the property is satisfied or

not by the system by using well known graph algorithms. In particular, we look for a

path which starts from an initial state and reaches a strongly connected component

(SCC) which satisfies some properties. If such path exists, then we can say that the

property ¬φ is satisfied, thus φ is not satisfied in the model of the system. In this

section we describe this process more in detail.

The construction of the graph combining the formula and the model might not

terminate. It is for this reason that we use the interval of time which the user pro-

vides to the system. This interval imposes a time limit. If such time limit is reached,

the system aborts the construction of the graph. The idea is that if this occurs, then

we have obtained an over-approximation of the model, which nevertheless allows

us to make useful verifications over the finite graph calculated.

6.1 The closure of the formula

The closure CL(φ) of a formula φ allows us to determine its truth value. Intuitively,

it is the set of sub-formulas that can affect the truth value. This set is used classically

to define tableaux algorithms where sub-formulas are evaluated as follows: simplest

formulas are evaluated first, then more complex formulas are considered. Thus, we

can say that the closure of φ (CL(φ)) is the smallest set of formulas satisfying the

following conditions:

• φ ∈ CL(φ),

• ¬φ1 ∈ CL(φ) iff φ1 ∈ CL(φ),

• if φ1 ∧ φ2 ∈ CL(φ), then φ1, φ2 ∈ CL(φ),

• if ∃xφ1 ∈ CL(φ), then φ1 ∈ CL(φ),

• if ❞φ1 ∈ CL(φ), then φ1 ∈ CL(φ),

• if ¬ ❞φ1 ∈ CL(φ), then ❞¬φ1 ∈ CL(φ),

• if φ1Uφ2 ∈ CL(φ), then φ1, φ2, ❞φ1Uφ2 ∈ CL(φ).

Note that in the case of ¬ ❞ φ1 it is necessary to introduce the formula ❞¬φ1
which cannot be generated by the other rules.
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Now we consider the microwave program example. The formula (2) for which we

calculate the closure is that presented in the previous section.

Example 1

For the program showed in Figure 4 we construct the closure of the formula which

we want to verify, starting from the negation of Formula (2). Note that we assume

that ¬¬φ = φ. We also change in the obvious way the disjunction operator into a

conjunction:

trueU (¬(Error=[no | E ]) ∧ ¬(Error=[yes | E ] ∧ Button=[off | B ])) (4)

Then, we show the closure of the formula. Note that the size of the set of formu-

las in the closure increases polynomially with the size of the formula (meaning the

number of operators in the formula).

CL(χ) = {trueU (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),

true,

false,

¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]),

¬(Error = [no | E ]),

¬(Error = [yes | E ] ∧ Button = [off | B ]),

¬(¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),

Error = [no | E ],

Error = [yes | E ] ∧ Button = [off | B ],

Error = [yes | E ],

Button = [off | B ],

¬(Error = [yes | E ]),

¬(Button = [off | B ]),
❞trueU (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),

¬( ❞trueU (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]))),
❞¬(trueU (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]))),

¬(trueU (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])))

}

6.2 The model-checking graph

Given a formula φ of the logic described in Section 5, and the tccp Structure Z

constructed from the specification, the graph G(φ,Z ) is defined as follows

Definition 12 (Model-Checking Graph)

Let φ be a formula, CL(φ) the closure of φ as defined in Section 6.1 and Z the tccp

Structure constructed following the algorithm described in Section 4.1.3. A node n

of the model-checking graph is formed by a pair of the form (sn ,Qn) where sn is a

state of Z and Qn is a subset of CL(φ) and the atomic propositions such that the

following conditions are satisfied:

• for each atomic proposition p, K(p) ∈ Qn iff p ∈ C (sn),
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• for every ∃xφ1 ∈ CL(φ), ∃xφ1 ∈ Qn iff ∃xφ1 ∈ C (sn),

• for every φ1 ∈ CL(φ), φ1 ∈ Qn iff ¬φ1 6∈ Qn ,

• for every φ1 ∧ φ2 ∈ CL(φ), φ1 ∧ φ2 ∈ Qn iff φ1 ∈ Qn and φ2 ∈ Qn ,

• for every ¬ ❞φ1 ∈ CL(φ),¬ ❞φ1 ∈ Qn iff ❞¬φ1 ∈ Qn ,

• for every φ1 U φ2 ∈ CL(φ), φ1 U φ2 ∈ Qn iff φ2 ∈ Qn or φ1, ❞φ1 U φ2 ∈ Qn .

An edge in the graph is defined as follows: there will be an edge from one node

n1 = (s1,Q1) to another node n2 = (s2,Q2) iff there is an arc from the node s1 to

the node s2 in the tccp Structure and for every formula ❞φ1 ∈ CL(φ), ❞φ1 ∈ Q1 iff

φ1 ∈ Q2.

Note that, in the definition above, when we take into consideration the set of arcs

of the tccp Structure (when analyzing the formulas containing the next operator),

we also consider the renaming that may label these arcs.

Intuitively, for each node of the model-checking graph, in Q we have the largest

consistent set of formulas that is also consistent with the labelling function (the

function C ) of the tccp Structure. Moreover, two nodes of the graph are related if

the temporal formulas in their Q sets are consistent.

For each node si of the tccp Structure many nodes are generated in the model-

checking graph. All these nodes have as first component the state si and the second

component consists of the different consistent sets of formulas derived from C (si)

and the closure of the formula.

Next we show an example to illustrate how the nodes of the model-checking

graph are constructed. We construct the graph for the negation of the property

since we intend to prove that there is no computation of the system which satisfies

the negated property. This is equivalent to prove that the property is satisfied for

all the computations.

Example 2

In this example we show some nodes of the graph which would result from our

program example. We take the tccp Structure shown in Figure 11 and the closure

set of the formula showed in the previous section.

Here we show two of the nodes generated for s1 and one of the nodes generated

for s2.
n1 = (s1,Q1) where

Q1 = {

Door = [open | D ] ∧ Button = [on | B ],

true, Error = [no | E ],

¬(Button = [off | B ]),

¬(Error = [yes | E ] ∧ Button = [off | B ]),

¬(¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),
❞true U (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),

true U (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]))

}
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n2 = (s1,Q2) where

Q2 = {

Door = [open | D ] ∧ Button = [on | B ],

true, Error = [yes | E ],

¬(Button = [off | B ]),

¬(Error = [yes | E ] ∧ Button = [off | B ]),

¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]),

true U (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),
❞true U (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]))

}

n3 = (s2,Q3) where

Q3 = {

Error = [yes | E ], Button = [off | B ],

¬(Door = [open | D ] ∧ Button = [on | B ]),

true,

Error = [yes | E ] ∧ Button = [off | B ],

¬(¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),
❞true U (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ])),

true U (¬(Error = [no | E ]) ∧ ¬(Error = [yes | E ] ∧ Button = [off | B ]))

}
Then, following the definition of the model-checking graph, we can define an arc

from n2 to n3 since for each formula of the form ❞φ in the closure, if it is in Q2

then φ is in Q3.

n1

n2 n3

Fig. 13. A part of the model-checking graph for the tccp Structure showed in Fig-

ure 11 and the Formula (2)

In this example, a brief time interval is sufficient to build the complete graph

without approximation. During the construction, we can annotate how many steps

are needed to reach each node from a root note, which determines the current instant

of time. If such instant of time is equal to the time limit, then the construction is

concluded and the graph obtained since that moment is given as output of the

algorithm.

6.3 The searching algorithm

It is well known that in order to prove that a property is satisfied, it is possible

to prove that there is no path satisfying the negation of the property. Thus, for
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verifying the formula φ, we construct the model-checking graph using the negation

of φ and the model of the system. Then we look for a sequence such that starting

from the initial node of the graph, it reaches a self-fulfilling strongly connected

component (SCC). Let us now give the formal definitions of SCC and self-fulfilling

SCC.

Definition 13 (Strongly Connected Component)

Given a graph G, we define a Strongly Connected Component (SCC) C as a max-

imal subgraph of G such that every node in C is reachable from every other node

in C along a directed path entirely contained within C .

We say that C is nontrivial iff either it has more than one node or it contains

one node with a self-loop.

Then we can define a kind of strongly connected component. Actually, we will

search for SCC satisfying the following properties in our model-checking algorithm.

Definition 14 (Self-fulfilling SCC )

Given a model-checking graph G, a self-fulfilling strongly connected component C

is defined as a nontrivial strongly connected component in G which satisfies that

for every node n in C and for every φ1 U φ2 ∈ Qn , there exists a node m in C such

that φ2 ∈ Qm , and vice-versa.

Now, let G be the model-checking graph generated following the steps described

in Definition 12. We say that a sequence is an eventually sequence if it is an infinite

path in G such that if there exists a node n in the path with φ1 U φ2 ∈ Qn , then

there exists another node n ′ in the same path reachable from n along the path,

such that φ2 ∈ Qn′ .

Moreover, we can prove the following result, which says that if we find a self-

fulfilling strongly connected component in the corresponding model-checking graph,

then the property represented by the formula is satisfied by the system. Our problem

will be to prove that such self-fulfilling SCC does not exist3.

Theorem 3

Let φ be a formula, Z a tccp Structure and G(φ,Z ) the corresponding model-

checking graph. If there exists a path in G, which satisfies a formula φ, from an

initial node to a self-fulfilling strongly connected component, then the model Z

satisfies the formula φ.

Proof

In order to prove this theorem we prove instead an equivalent result. We prove that

if there exists an eventually sequence starting at an initial node n = (s ,Qn) such

that the formula φ is in Qn , then the model satisfies the formula φ. This result is

equivalent to the statement of the theorem since classical results (Clarke et al. 1999;

Manna and Pnueli 1995) show that there exists an eventually sequence starting at

3 Note that the result assumes that the construction of the graph has terminated before reaching
the time limit provided by the user.
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a node n = (s ,Qn) if and only if there is a path in G(φ,Z ) from n to a self-fulfilling

SCC. We show that we can extend this result directly to our framework.

Assume that we have an eventually sequence n1, n2, . . . where n1 = (s1,Qn1
),

n2 = (s2,Qn2
), etc., starting with n1 = n. This eventually sequence starts at node

n1 with φ ∈ Qn1
. By definition, π = s1, s2, . . . is a path in the model Z starting

at s = s1. We want to show that π |= φ. We will prove a stronger result: for every

formula ψ in the closure of the formula φ (ψ ∈ CL(φ)) and every i ≥ 0, πi |= ψ

iff ψ ∈ Qni
. We follow the classical notations and by πi with i ≥ 0 we mean the

suffix of the path π starting from the i-th component: πi = si , si+1, . . .. The proof

proceeds by structural induction over the sub-formulas. There will be six cases

corresponding to the six considered operators of the logic.

1. If ψ is an atomic formula, then by Definition 12 of node ni , ψ ∈ Qni
iff ψ ∈ C (si).

2. if ψ = ∃xχ then πi |= ψ iff ψ ∈ C (si ).

3. If ψ = ¬χ then πi |= ψ iff πi 6|= χ. By the inductive hypothesis, this holds iff

χ 6∈ Qni
. By Definition 12, this guarantees that ψ ∈ Qni

.

4. If ψ = χ1 ∧ χ2 then πi |= ψ iff πi |= χ1 and πi |= χ2. By the inductive hypothesis,

this holds iff χ1 ∈ Qni
and χ2 ∈ Qni

. By Definition 12 this is true iff ψ ∈ Qni
.

5. if ψ = ❞χ then πi |= ψ iff πi+1 |= χ. By the inductive hypothesis this holds iff

χ ∈ Qni+1
. Since ((si ,Qni

), (si+1,Qni+1
)) ∈ R, the above holds iff ❞χ ∈ Qni

.

6. if ψ = χ1 U χ2 then by definition of an eventually sequence, there is some j ≥ i such

that χ2 ∈ Qnj
. Since ψ ∈ Qni

, the definition of a node implies that if χ2 6∈ Qni
,

then χ1 ∈ Qni
and ❞ψ ∈ Qni

. In this case, the definition of the transition relation

of G implies that ψ ∈ Qni+1
. It follows that for every i ≤ k < j , χ1 ∈ Qnk

. By the

inductive hypothesis, πj |= χ2 and for every i ≤ k < j , πk |= χ1. Hence π
i |= ψ.

Since πi |= ψ, then there exists j ≥ i such that πj |= χ2 and for all i ≤ k < j , πk |=

χ1. We take the minimum j . By the inductive hypothesis, χ2 ∈ Qnj
and for every

i ≤ k < j , χ1 ∈ Qnk
. Suppose ψ 6∈ Qni

. Since χ1 ∈ Qni
, by Definition 12 ❞ψ 6∈ Qni

,

which implies that ❞¬ψ ∈ Qni
. Now by definition of the transition relation of G,

¬ψ ∈ Qni+1
, and hence ψ 6∈ Qni+1

. Continuing the argument inductively, we would

eventually find ψ 6∈ Qnk
, which is a contradiction since χ2 ∈ Qnj

.

This proves that if we have an eventually sequence, the model satisfies the formula

φ. Now we have the classical result that can be applied to the graph G. If we look

for an eventually sequence, we can instead look for a path from the initial node

n to a self-fulfilling SCC. There are algorithms that implement this search with a

complexity linear in the size of the graph and exponential in the size of the formula.

For the complexity of the algorithm, we can see that the method is quite inefficient

since it is based on the tableau algorithm for LTL. Note that such algorithm is

PSPACE-complete. The important thing is the fact that we are dealing with a

programming language and we can handle constraints as a powerful way to represent

systems. Moreover, we obtain a similar complexity to the classical approach since

we use a logic which is able to handle tccp states. If we had used a classical logic,

the complexity would have increased too much since it would be necessary to unfold
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the states of the graph structures in order to consider all the possible valuations of

variables which could satisfy a given constraint.

7 Related Works

We can find in the literature some related works which use the notion of constraint in

order to solve the automatic verification problem for infinite-state systems. For ex-

ample, in (Delzanno and Podelski 2001) and (Delzanno and Podelski 1999), the au-

thors introduce a methodology to translate concurrent systems into CLP programs

and verify safety and liveness properties over such CLP programs. (Esparza and Melzer 1997)

introduces a semi-decision algorithm that uses constraint programming in order to

verify 1-safe Petri nets. Actually, while in (Delzanno and Podelski 2001; Delzanno and Podelski 1999),

constraints are used as an abstract representation of sets of system states, in

(Esparza and Melzer 1997) constraint programming is used for solving linear con-

straints in the implementation of the algorithm.

Constraints are useful for different purposes in software verification. They can be

used in the checking algorithms as is done in (Esparza and Melzer 1997); they can

be used to model the problem as Delzanno and Podelsky do; and they can also be

integrated into the specification language, that is used to model the system, as we

do.

Regarding the systems that our approach is able to verify, we have seen that there

are basically two main cases. The first case is when we are able to verify a system

without the limitation on the time interval and the second case is when the time

limit is reached. The first case corresponds to systems whose infinite nature comes

from the fact that they use variables with an infinite domain. These systems are

somehow similar to the ones that can be verified in (Delzanno and Podelski 2001)

for the properties of safety. In the second case we consider a large class of systems

by using the time interval “approximation”. If we reach the limit of time imposed

by the user (obviously, if the user provides a too short time interval, then some

systems of the first class end up in this second category) then we must stop the

construction of the graph G at that point. Thus, we can verify the system, but we

must consider that it is an approximation of the original system.

We note that there are some limitations in the tccp language since, for example,

tccp is not able to model strong preemption while (Delzanno and Podelski 2001)

considers a language which can express this behavior.

In the last years many different extensions over time have been presented in the

literature. There are approaches which extend the cc paradigm with a notion of

discrete time (tccp, tcc (Saraswat et al. 1994) or ntcc (Valencia 2002)) and there is

also an extension of the model with a notion of continuous notion of time (hybrid

cc language (Gupta et al. 1998)). Regarding ntcc, in (Valencia 2003), the author

presented some decidability results with respect to such language. Those results

show that it is possible to apply model checking to ntcc but no algorithm nor

complexity studies are presented.

In (Falaschi et al. 2000a; Falaschi et al. 2000b) a method to construct a structure

was presented as a first step towards the definition of a model-checking technique for
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tcc. Nevertheless, the structure defined in (Falaschi et al. 2000a; Falaschi et al. 2000b)

to model tcc programs was quite different from the structure defined in this work.

Actually, in those works the modeling phase was defined in detail, giving only a

brief description of the specification and the algorithmic phase.

The tcc structure had two kind of transitions: the timed transitions and the

normal transitions. The set of states of the tcc Structure were defined in a way as

similar to the tccp Structure and could also be seen as sets of classical states for

a Kripke Structure. However, also in this case, classical model checking algorithms

cannot be applied to tcc Structures. First of all because tcc Structures have two

kind of transitions, and secondly because the algorithms cannot handle the notion

of state of the graph structure. Note that in the tccp approach we have only one

kind of transition relation, thus we have only one problem: how to handle states.

Another main difference between the tcc and the tccp Structure lies in the in-

terpretation of branching points. Branching points in tcc Structures are due to the

interleaving nature of the model. The normal transitions are instantaneous in the

sense that they do not cause time steps. The branching points of the tccp Struc-

ture due to conditional agents can be viewed as the branching points which could

appear in the quiescence points of the tcc Structure, i.e., when passing from one

time instant to the following one. However, branching points of the tccp Structure

due to Choice agents cannot be identified with anything in the tcc Structure since

the tcc model is deterministic.

In (Falaschi et al. 2000a; Falaschi et al. 2000b) the idea was to transform the tcc

Structure into a Kripke structure, and hence the problem at this point was the huge

number of states of the transformed structure. Essentially, we lost the possibility to

take advantage of the compact representation that the notion of constraint provides.

In the tccp approach it is not necessary to eliminate the kind of transitions (since

there is only one type). More important is the fact that it is not necessary to

unfold the possible values of variables in order to define a model-checking method.

Actually, we use a temporal logic which is able to handle the tccp states.

In (Falaschi et al. 2001) a first approach to the problem of verification of hcc,

which is similar to the problem for tccp was presented. The idea was the essentially

similar, i.e., to define a structure able to represent the system behavior and to check

properties over such structure. However, we just constructed the basic model which

was transformed into a linear time automaton which could be given as input to a

classical model checker such as HyTech.

8 Conclusions

In this work we have introduced a method that allows us to check properties from

a temporal logic over reactive systems that are specified in the Temporal Con-

current Constraint Language defined in (Boer et al. 2000). We have seen that we

can adapt the classical method of LTL model checking to the logic presented in

(Boer et al. 2001) and the tccp Structure defined in this paper which models the

system behavior. We have described a method that can handle generic programs

written in tccp, which means that we are not restricting ourselves to finite-state sys-
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tems. By using tccp we can define infinite-state systems that can be handled by the

logic which we have used. This epistemic logic allows us to work with constraints.

Constraints can be seen as a compact representation of (possibly infinite) many

states. In a previous work (Falaschi et al. 2000a; Falaschi et al. 2000b) the authors

have defined a structure which can help to verify a different class of reactive systems

specified using another language from the ccp framework. (Falaschi et al. 2000a;

Falaschi et al. 2000b) defined a kind of structure that may seem similar to the

tccp Structure but it is essentially different: the nodes and the arcs of the graph

structure are interpreted in a different manner. Furthermore (Falaschi et al. 2000a;

Falaschi et al. 2000b) do not define any model-checking algorithm, rather they only

concentrate on the modeling phase. We have proved that our verification method

is correct and have illustrated how it works.

We plan to make a prototypical implementation of our system and test it on a

set of benchmarks, such as protocol verification and verification of properties of

concurrent systems like safety or liveness properties.

We also want to study how our method can be optimized in order to improve its

efficiency. It is well known that this kind of classical model-checking algorithm is

exponential in the size of the formula. Hence as future work we want to extend to

our framework some efficient model-checking algorithms, such as symbolic model

checking, for avoiding a complete construction of the graph.
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