
ar
X

iv
:c

s/
05

08
13

2v
1

 [
cs

.A
I]

 3
1

A
ug

 2
00

5

Under consideration for publication in Theory and Practice of Logic Programming 1

Planning with Preferences using Logic

Programming∗

TRAN CAO SON and ENRICO PONTELLI

Knowledge Representation, Logic, and Advanced Programming Laboratory

Computer Science Department, New Mexico State University, Las Cruces, New Mexico, USA

(e-mail: tson@cs.nmsu.edu) and (e-mail: epontell@cs.nmsu.edu)

submitted 29 June 2004; revised 17 December 2004, 9 August 2005; accepted 29 August 2005

Abstract

We present a declarative language, PP , for the high-level specification of preferences between
possible solutions (or trajectories) of a planning problem. This novel language allows users to
elegantly express non-trivial, multi-dimensional preferences and priorities over such prefer-
ences. The semantics of PP allows the identification of most preferred trajectories for a given
goal. We also provide an answer set programming implementation of planning problems with
PP preferences.

KEYWORDS: planning with preferences, preference language, preference representation, an-
swer set planning

1 Introduction and Motivation

Planning—in its classical sense—is the problem of finding a sequence of actions that

achieves a predefined goal (Reiter 2001). Most of the research in AI planning has

been focused on methodologies and issues related to the development of efficient

planners. To date, several efficient planning systems have been developed—e.g., see

(Long et al.). These developments can be attributed to the discovery of good domain-

independent heuristics, the use of domain-specific knowledge, and the development of

efficient data structures used in the implementation of planning algorithms. Logic pro-

gramming has played a significant role in this line of research, providing a declarative

framework for the encoding of different forms of knowledge and its effective use during

the planning process (Son et al. 2005).

However, relatively limited effort has been placed on addressing several important

aspects in real-world planning domains, such as plan quality and preferences about

plans. In many real world frameworks, the space of feasible plans to achieve the goal is

dense, but many of such plans, even if executable, may present undesirable features. In

these frameworks, it may be simple to find a solution (“a” plan); rather, the challenge,

is to produce a solution that is considered satisfactory w.r.t. the needs and preferences

of the user. Thus, feasible plans may have a measure of quality, and only a subset of

them may be considered acceptable. These issues can be seen in the following example.

∗ This paper is an extended version of a paper that appeared in the proceedings of the 7th Interna-
tional Conference on Logic Programming and Non-Monotonic Reasoning, 2004.

http://arxiv.org/abs/cs/0508132v1

2 Tran Cao Son and Enrico Pontelli

Example 1

Let us consider planning problems in the travel domain. A planning problem in this

domain can be represented by the following elements1:

• a set of fluents of the form at(l), where l denotes a location, such as home,

school, neighbor, airport, etc.;

• an initial location li;

• a final location lf ; and

• a set of actions of the form method(l1, l2) where l1 and l2 are two distinct loca-

tions and method is one of the available transportation methods, such as drive,

walk, ride train, bus, taxi, fly, bike, etc. In addition, there might be conditions

that restrict the applicability of actions in certain situations. For example, one

can ride a taxi only if the taxi has been called, which can be done only if one

has some money; one can fly from one place to another if he/she has the ticket;

etc.

Problems in this domain are often rich in solutions because of the large number

of actions which can be used in the construction of a plan. Consider, for example, a

simple situation, in which a user wants to construct a 3-leg trip, that starts from a

location l1 and ends at l4, and there are 10 ways to move along each leg, one of them

being the action walk(li, li+1). The number of possible plans is 103 and

walk(l1, l2), walk(l2, l3), walk(l3, l4)

is a possible plan that achieves the goal. In most of the cases, the user is likely to

dismiss this plan and selects another one for various reasons; among them the total

distance from l1 to l4 might be too large, the time and/or energy required to complete

the plan would be too much, etc. This plan, however, would be a reasonable one,

and most likely the only acceptable solution, for someone wishing to visit his/her

neighbors.

In selecting the plan deemed appropriate for him/herself, the user’s preferences play

an important role. For example, a car-sick person would prefer walking over driving

whenever the action walk can be used. A wealthy millionaire cannot afford to waste

too much time and would prefer to use a taxi. A poor student would prefer to bike over

riding a taxi, simply because he cannot afford the taxi. Yet, the car-sick person will

have to ride a taxi whenever other transportations are not available; the millionaire

will have to walk whenever no taxi is available; and the student will have to use a

taxi when he does not have time. In other words, there are instances where a user’s

preference might not be satisfied and he/she will have to use plans that do not satisfy

such preference. ✷

The above discussion shows that users’ preferences play a decisive role in the choice

of a plan. It also shows that hard-coding user preferences as a part of the goal is

not a satisfactory way to deal with preferences. Thus, we need to be able to evalu-

ate plan components at a finer granularity than simply as consistent or violated. In

(Myers and Lee 1999), it is argued that users’ preferences are of vital importance in

1 Precise formulae will be presented later.

Planning with Preferences using Logic Programming 3

selecting a plan for execution when the planning problem has too many solutions. It

is worth observing that, with a few exceptions—like the system SIPE-2 with meta-

theoretic biases (Myers and Lee 1999)—most planning systems do not allow users to

specify their preferences and use them in finding plans. The responsibility in selecting

the most appropriate plan rests solely on the users. It is also important to observe that

preferences are different from goals in a planning problem: a plan must satisfy the

goal, while it may or may not satisfy the preferences. The distinction is analogous to

the separation between hard and soft constraints (Bistarelli et al. 2000). For example,

let us consider a user with the goal of being at the airport who prefers to use a taxi

over driving his own car; considering his preference as a soft constraint, then the user

will have to drive his car to the airport if no taxi is available; on the other hand, if

the preference is considered as a hard constraint, no plan will achieves the user’s goal

when no taxi is available.

In this paper, we will investigate the problem of integrating user preferences into a

planner. We will develop a high-level language for the specification of user preferences,

and then provide a logic programming encoding of the language, based on Answer Set

Programming (Niemelä 1999). As demonstrated in this work, normal logic programs

with answer set semantics (Gelfond et al. 1990) provide a natural and elegant frame-

work to effectively handle planning with preferences.

We divide the preferences that a user might have in different categories:

• Preferences about a state: the user prefers to be in a state s that satisfies a

property φ rather than a state s′ that does not satisfy it, in case both lead to

the satisfaction of his/her goal;

• Preferences about an action: the user prefers to perform the action a, whenever

it is feasible and it allows the goal to be achieved;

• Preferences about a trajectory: the user prefers a trajectory that satisfies a cer-

tain property ψ over those that do not satisfy this property;

• Multi-dimensional Preferences: the user has a set of preferences, with an order-

ing among them. A trajectory satisfying a more favorable preference is given

priority over those that satisfy less favorable preferences.

It is important to observe the difference between φ and ψ in the above definitions. φ

is a state property, whereas ψ is a formula over the whole trajectory (from the initial

state to the state that satisfies the given goal).

The rest of this paper is organized as follows. In Section 2, we review the foundations

of answer set planning. Section 3 presents the high-level preference language PP .

Section 4 describes a methodology to compute preferred trajectories using answer set

planning. In Section 5 we discuss the related work, while Section 6 presents the final

discussion and conclusions.

2 Preliminary – Answer Set Planning

In this section we review the basics of planning using logic programming with answer

set semantics—Answer Set Planning (or ASP) (Dimopoulos et al. 1997; Lifschitz 2002;

Subrahmanian and Zaniolo 1995). We will assume that the effect of actions on the

world and the relationship between fluents in the world are expressed in an appropri-

4 Tran Cao Son and Enrico Pontelli

ate language. In this paper, we make use of the ontologies of a variation of the action

description language B (Gelfond and Lifschitz 1998). In this language, an action the-

ory is defined over two disjoint sets of names—the set of actions A and the set of

fluents F. An action theory is a pair (D, I), where

• D is a set of propositions expressing the effects of actions, the relationship

between fluents, and the executability conditions for the actions2;

• I is a set of propositions representing the initial state of the world.

Instead of presenting a formal definition of B, we introduce the syntax of the language

by presenting an action theory representing the travel domain of Example 1. We write

• at(l), where l is a constant representing a possible location, such as home, air-

port, school, neighbor, bus station, to denote the fact that the agent3 is at the

location l;

• available car to denote the fact that the car is available for the agent’s use;

• has ticket(l1, l2) to denote the fact that the agent has the ticket to fly from l1
to l2; etc.

The action of driving from location l1 to location l2 causes the agent to be at the

location l2 and is represented in B by the following dynamic causal law:

drive(l1, l2) causes at(l2) if at(l1).

This action can only be executed if the car is available for the agent’s use at the

location l1 and there is a road connecting l1 and l2. This information is represented

by an executability condition:

drive(l1, l2) executable if available car, at(l1), road(l1, l2).

The fact that one can only be at one location at a time is represented by the following

static causal law (l1 6= l2):

¬at(l2) if at(l1).

Other actions with their executable conditions and effects are represented in a similar

way.

To specify the fact that the agent is initially at home, he has some money, and a

car is available for him to use, we write

initially (at(home))

initially (has money)

initially (available car(home))

Example 2

2 Executability conditions were not originally included in the definition of the language B in
(Gelfond and Lifschitz 1998).

3 Throughout the paper, we assume that we are working in a single agent (or user) environment.
Fluents and actions with variables are shorthand representing the set of their ground instantiations.

Planning with Preferences using Logic Programming 5

Below, we list some more actions with their effects and executability conditions, using

B.

walk(l1, l2) causes at(l2) if at(l1), road(l1, l2)

bus(l1, l2) causes at(l2) if at(l1), road(l1, l2)

flight(l1, l2) causes at(l2) if at(l1), has ticket(l1, l2)

take taxi(l1, l2) causes at(l2) if at(l1), road(l1, l2)

buy ticket(l1, l2) causes has ticket(l1, l2)

call taxi(l) causes available taxi(l) if has money

rent car(l) causes available car(l) if has mony

bus(l1, l2) executable if has money

flight(l1, l2) executable if connected(l1, l2)

take taxi(l1, l2) executable if available taxi(l1)

buy ticket(l1, l2) executable if has money

where the l’s denote locations, airports, or bus stations. The fluents and actions are

self-explanatory. ✷

Since our main concern in this paper is not the language for representing actions

and their effects, we omit here the detailed definition of the proposed variation of B

(Gelfond and Lifschitz 1998). It suffices for us to remind the readers that the semantics

of an action theory is given by the notion of state and by a transition function Φ, that

specifies the result of the execution of an action a in a state s (denoted by Φ(a, s)).

Each state s is a set of fluent literals satisfying the two properties:

1. for every fluent f ∈ F, either f ∈ s or ¬f ∈ s but {f,¬f} 6⊆ s; and

2. s satisfies the static causal laws.

A state s satisfies a fluent literal f (f holds in s), denoted by s |= f , if f ∈ s. A state

s satisfies a static causal law

f if p1, . . . , pn

if, whenever s |= pi for every 1 ≤ i ≤ n, then we have that s |= f . An action a is

executable in a state s if there exists an executability condition

a executable if p1, . . . , pn

in D such that s |= pi for every i, ≤ i ≤ n. An action theory (D, I) is consistent if

1. s0 = {f | initially (f) ∈ I} is a state, and

2. for every action a and state s such that a is executable in s, we have that

Φ(a, s) 6= ∅.

In this paper, we will assume that (D, I) is consistent. A trajectory of an action

theory (D, I) is a sequence s0a1s1 . . . ansn where si’s are states, ai’s are actions, and

si+1 ∈ Φ(si, ai+1) for i ∈ {0, . . . , n− 1}.

A planning problem is specified by a triple 〈D, I,G〉, where (D, I) is an action

theory and G is a fluent formula (a propositional formula constructed from fluent

literals and propositional connectives) representing the goal. A possible solution to

〈D, I,G〉 is a trajectory α = s0a1s1 . . . amsm, where s0 |= I and sm |= G. In this case,

we say that the trajectory α achieves G.

6 Tran Cao Son and Enrico Pontelli

Answer set planning (Dimopoulos et al. 1997; Lifschitz 2002; Subrahmanian and Zaniolo 1995)

solves a planning problem 〈D, I,G〉 by translating it into a logic program Π(D, I,G)

which consists of (i) rules describing D, I, and G; and (ii) rules generating action

occurrences. It also has a parameter, length, declaring the maximal length of the

trajectory that the user can accept. The two key predicates of Π(D, I,G) are:

• holds(f, t) – the fluent literal f holds at the time moment t; and

• occ(a, t) – the action a occurs at the time moment t.

holds(f, t) can be extended to define holds(φ, t) for an arbitrary fluent formula φ,

which states that φ holds at the time moment t. Details about the program Π(D, I,G)

can be found in (Son et al. 2005)4. The key property of the translation of 〈D, I,G〉

into Π(D, I,G) is that it ensures that each trajectory achieving G corresponds to an

answer set of Π(D, I,G), and each answer set of Π(D, I,G) corresponds to a trajectory

achieving G.

Theorem 1

(Son et al. 2005) For a planning problem 〈D, I,G〉 with a consistent action theory

(D, I) and maximal plan length n,

1. if s0a1 . . . ansn is a trajectory achieving G, then there exists an answer set M

of Π(D, I,G) such that:

(a) occ(ai, i− 1) ∈M for i ∈ {1, . . . , n}, and

(b) si = {f | holds(f, i) ∈M} for i ∈ {0, . . . , n}.

2. if M is an answer set of Π(D, I,G), then there exists an integer 0 ≤ k ≤ n

such that s0a1 . . . aksk is a trajectory achieving G, where occ(ai, i− 1) ∈M for

1 ≤ i ≤ k and si = {f | holds(f, i) ∈M} for i ∈ {0, . . . , k}.

In the rest of this work, if M is an answer set of Π(D, I,G), then we will de-

note with αM the trajectory achieving G represented by M . Answer sets of the

program Π(D, I,G) can be computed using answer set solvers such as smodels

(Simons et al. 2002), dlv (Leone et al. 2005), cmodels (Lierler and Maratea 2004),

ASSAT (Lin and Zhao 2002), and jsmodels (Le and Pontelli 2003).

3 A Language for Planning Preferences Specification

In this section, we introduce the language PP for planning preferences specification.

This language allows users to express their preferences among plans that achieve the

same goal. We subdivide preferences in different classes: basic desires, atomic pref-

erences, and general preferences. Intuitively, a basic desire is a preference expressing

a desirable property of a plan such as the use of certain action over the others, the

satisfaction of a fluent formula, or a temporal property (Subsection 3.1). An atomic

preference describes a one-dimensional ordering on plans and allows us to describe a

ranking over the plans given a set of possibly conflicting preferences (Subsection 3.2).

4 A Prolog program for translation 〈D, I,G〉 into Π(D, I, G) can be found at
http://www.cs.nmsu.edu/~tson/ASPlan/Preferences/translate.pl.

http://www.cs.nmsu.edu/~tson/ASPlan/Preferences/translate.pl

Planning with Preferences using Logic Programming 7

Finally, a general preference provides means for users to combine different preference

dimensions (Subsection 3.3).

Let 〈D, I,G〉 be a planning problem with the set of actions A and the set of fluents

F; let FF be the set of all fluent formulae over F. The language PP is defined as

special formulae over A and F. We will illustrate the different types of preferences

using the action theory representing the travel domain discussed earlier (Example 2).

User preferences about plans in this domain are often based on properties of actions.

Some of these properties are flying is very fast but very expensive; walking is slow,

and very tiring if the distance between the two locations is large but cheap; driving is

tiring and costs a little but it is cheaper than flying and faster than walking; etc.

3.1 Basic Desires

A basic desire is a formula expressing a single preference about a trajectory. Consider

a user who is at home and wants to go to school (goal) spending as little money as

possible (preference), i.e., his desire is to save money. He has only three alternatives:

walking, driving, or take taxi. Walking is the cheapest and riding a taxi is the most

expensive. Thus, a preferred trajectory for him should contain the action walk(.,.).

This preference could also be expressed by a formula that forbids the fluent avail-

able taxi(home) or available car to become true in every state of the trajectory, thus

preventing him to drive or take a taxi to school. These two alternatives of preference

representation are not always equivalent. The first one represents the desire of leaving

a state using a specific group of actions, while the second one represents the desire of

being in certain states.

Basic desires are constructed by using state desires and/or goal preferences. Intu-

itively, a state desire describes a basic user preference to be considered in the context

of a specific state. A state desire ϕ (where ϕ is a fluent formula) implies that we prefer

a state s such that s |= ϕ. A state desire occ(a) implies that we prefer to leave state

s using the action a. In many cases, it is also desirable to talk about the final state of

the trajectory—we call this a goal preference. These cases are formally defined next.

Definition 1 (State Desires and Goal Preferences)

A (primitive) state desire is either a formula ϕ, where ϕ ∈ FF , or a formula of the

form occ(a), where a ∈ A.

A goal preference is a formula of the form goal(ϕ), where ϕ is a formula in FF .

We are now ready to define a basic desire that expresses a user preference over the

trajectory. As such, in addition to the propositional connectives ∧,∨,¬, we will also

use the temporal connectives next, always, until, and eventually.

Definition 2 (Basic Desire Formula)

A basic desire formula is a formula satisfying one of the following conditions:

• a goal preference ϕ is a basic desire formula;

• a state desire ϕ is a basic desire formula;

• given the basic desire formulae ϕ1, ϕ2, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ¬ϕ1, next(ϕ1),

until(ϕ1, ϕ2), always(ϕ1), and eventually(ϕ) are also basic desire formulae.

For example, to express the fact that a user would like to take the taxi or the bus to

8 Tran Cao Son and Enrico Pontelli

go to school, we can write:

eventually(occ(bus(home, school)) ∨ occ(taxi(home, school))).

If the user’s desire is not to call a taxi, we can write

always(¬occ(call taxi(home))).

If for some reasons, the user’s desire is not to see any taxi around his home, the desire

always(¬available taxi(home)).

can be used. Note that these encodings have different consequences—the second pre-

vents taxis to be present independently from whether it was called or not.

The definition above is used to develop formulae expressing a desire regarding the

structure of trajectories. In the next definition, we will describe when a trajectory

satisfies a basic desire formula. In a later section (Section 4), we will present logic

programming rules that can be added to the program Π(D, I,G) to compute tra-

jectories that satisfy a basic desire. In the following definitions, given a trajectory

α = s0a1s1 · · · ansn, the notation α[i] denotes the trajectory siai+1si+1 · · · ansn.

Definition 3 (Basic Desire Satisfaction)

Let α = s0a1s1a2s2 · · ·ansn be a trajectory, and let ϕ be a basic desire formula. α

satisfies ϕ (written as α |= ϕ) iff one of the following holds

• ϕ = goal(ψ) and sn |= ψ

• ϕ = ψ ∈ FF and s0 |= ψ

• ϕ = occ(a), a1 = a, and n ≥ 1

• ϕ = ψ1 ∧ ψ2, α |= ψ1 and α |= ψ2

• ϕ = ψ1 ∨ ψ2, α |= ψ1 or α |= ψ2

• ϕ = ¬ψ and α 6|= ψ

• ϕ = next(ψ), α[1] |= ψ, and n ≥ 1

• ϕ = always(ψ) and ∀(0 ≤ i ≤ n) we have that α[i] |= ψ

• ϕ = eventually(ψ) and ∃(0 ≤ i ≤ n) such that α[i] |= ψ

• ϕ = until(ψ1, ψ2) and ∃(0 ≤ i ≤ n) such that α[j] |= ψ1 for all 0 ≤ j < i and

α[i] |= ψ2.

Definition 3 allows us to check whether a trajectory satisfies a basic desire. This will

also allow us to compare trajectories. Let us start with the simplest form of trajectory

preference, involving a single desire.

Definition 4 (Ordering Between Trajectories w.r.t. Single Desire)

Let ϕ be a basic desire formula and let α and β be two trajectories. The trajectory α

is preferred to the trajectory β (denoted as α ≺ϕ β) if α |= ϕ and β 6|= ϕ.

We say that α and β are indistinguishable w.r.t. ϕ (denoted as α ≈ϕ β) if one of

the two following cases occur:

1. α |= ϕ and β |= ϕ, or

2. α 6|= ϕ and β 6|= ϕ.

Whenever it is clear from the context, we will omit ϕ from ≺ϕ and ≈ϕ. We will also

allow a weak form of single preference, described next.

Planning with Preferences using Logic Programming 9

Definition 5 (Weak Single Desire Preference)

Let ϕ be a basic desire formula and let α, β be two trajectories. α is weakly preferred

to β (denoted α �ϕ β) iff α ≺ϕ β or α ≈ϕ β.

It is easy to see that ≈ϕ is an equivalence relation over the set of trajectories.

Proposition 1

Given a basic desire ϕ, the relation ≈ϕ is an equivalence relation.

Proof

1. Reflexivity: this case is obvious.

2. Symmetry: let us assume that, given two trajectories α, β we have that α ≈ϕ β. This

implies that either both trajectories satisfy ϕ or neither of them do. Obviously, if

α |= ϕ and β |= ϕ (α 6|= ϕ and β 6|= ϕ) then we have also that β |= ϕ and α |= ϕ

(β 6|= ϕ and α 6|= ϕ), which leads to β ≈ϕ α.

3. Transitivity: let us assume that for the trajectories α, β, γ we have that

α ≈ϕ β and β ≈ϕ γ

From the first component, we have two possible cases:

(a) α |= ϕ and β |= ϕ. Since β ≈ϕ γ, we need to have γ |= ϕ, which leads to α ≈ϕ γ.

(b) α 6|= ϕ and β 6|= ϕ. This second component, together with β ≈ϕ γ leads to

γ 6|= ϕ, and thus α ≈ϕ γ.

In the next proposition, we will show that �ϕ is a partial order over the set of

equivalence classes representatives of ≈ϕ5.

Proposition 2

The relation�ϕ defines a partial order over the set of representatives of the equivalence

classes of ≈ϕ.

Proof

Let us prove the three properties.

1. Reflexivity: consider a representative α. Since either α |= ϕ or α 6|= ϕ, we have that

α �ϕ α.

2. Anti-symmetry: consider two representatives α, β and let us assume that α �ϕ β and

β �ϕ α. Since both α and β are equivalent class representatives of ≈ϕ, to prove this

property, it suffices to show that α ≈ϕ β. First of all, we can observe that from α �ϕ β

we have either α ≺ϕ β or α ≈ϕ β. If α ≺ϕ β then this means that α |= ϕ and β 6|= ϕ.

But this would imply that β 6�ϕ α. Then we must have that α ≈ϕ β.

3. Transitivity: consider three representatives α1, α2, α3 and let us assume

α1 �ϕ α2 ∧ α2 �ϕ α3

Let us consider two cases.

5 This means that �ϕ satisfies the following three properties: (i) Reflexivity: α �ϕ α; (ii) Antisym-
metry: if α �ϕ β and β �ϕ α then α ≈ϕ β; and (iii) Transitivity: if α �ϕ β and β �ϕ γ then
α �ϕ γ where α, β, and γ are arbitrary trajectories.

10 Tran Cao Son and Enrico Pontelli

• α1 ≺ϕ α2. This implies that α1 |= ϕ and α2 6|= ϕ. Because α2 �ϕ α3, we have

that α3 6|= ϕ. This, together with α1 |= ϕ, allows us to conclude α1 ≺ϕ α3.

• α1 ≈ϕ α2, then either α1 |= ϕ and α2 |= ϕ, or α1 6|= ϕ and α2 6|= ϕ. In the first

case, we have α1 ≈ϕ α3 if α3 |= ϕ and α1 ≺ϕ α3 if α3 6|= ϕ, i.e., α1 �ϕ α3.

If instead we have the second possibility, then since α2 6|= ϕ and α2 �ϕ α3, we

must have α3 6|= ϕ. This allows us to conclude that α1 ≈ϕ α3 and thus α1 �ϕ α3.

We next define the notion of most preferred trajectories.

Definition 6 (Most Preferred Trajectory w.r.t. Single Desire)

Let ϕ be a basic desire formula. A trajectory α is said to be a most preferred trajectory

w.r.t. ϕ if there is no trajectory β such that β ≺ϕ α.

Note that in the presence of preferences, a most preferred trajectory might require

extra actions that would have been otherwise considered unnecessary.

Example 3

Let us enrich the action theory of Example 2 with an action called buy coffee, which

allows one to have coffee, i.e, the fluent has coffee becomes true. The coffee is not free,

i.e., the agent will have to pay some money if he buys coffee. This action can only be

executed at the nearby Starbucks shop. If our agent wants to be at school and prefers

to have coffee, we write:

goal(has coffee).

Any plan satisfying this preference requires the agent to stop at the Starbucks shop

before going to school. E.g., while s0walk(home, school)s1, where s0 and s1 denote

the initial state (the agent is at home) and the final state (the agent is at school),

respectively, is a valid trajectory for the agent to achieve his goal, this is not a most

preferred trajectory; instead, the agent has to go to the Starbucks shop, buy the coffee,

and then go to school. Besides the action of buy coffee that is needed for him to get

the coffee, the most preferred trajectory requires the action of going to the coffee shop,

which is not necessary if he does not have the preference of having the coffee.

Observe that the most preferred trajectory contains the action buy coffee, which

can only be executed when the agent has some money. As such, if the agent does

not have any money, this action will not be executable and no trajectory achieving

the goal of being at the school will contain this action. This means that no plan can

satisfy the agent’s preference, i.e., he will have to go to school without coffee. ✷

The above definitions are also expressive enough to describe a significant portion

of preferences that frequently occur in real-world domains. Since some of them are

particularly important, we will introduce some syntactic sugar to simplify their use:

• (Strong Desire) given the basic desire formulae ϕ1, ϕ2, ϕ1 < ϕ2 denotes ϕ1∧¬ϕ2.

• (Weak Desire) given the basic desire formulae ϕ1, ϕ2, ϕ1 <
w ϕ2 denotes ϕ1∨¬ϕ2.

• (Enabled Desire) given two actions a1, a2, we will denote with a1 <e a2 the

formula (executable(a1) ∧ executable(a2))⇒ (occ(a1) < occ(a2)) where

executable(a) =
∨

a executable if p1,...,pk

p1 ∧ . . . ∧ pk.

Planning with Preferences using Logic Programming 11

In the rest of the paper, we often use the following shorthands:

• For a sequence of preference formulae ϕ1, . . . , ϕk,

ϕ1 < . . . < ϕk

stands for
∧

i∈{1,...,k−1}

(ϕi < ϕi+1).

• For a sequence of preference formulae ϕ1, . . . , ϕk,

ϕ1 <
w . . . <w ϕk

stands for
∧

i∈{1,...,k−1}

(ϕi <
w ϕi+1).

• For the sequence of actions a1, . . . , ak, b1, . . . , bm,

(a1 ∨ . . . ∨ ak) <
e (b1 ∨ . . . ∨ bm)

is a shorthand for
∧

i∈{1,...,k}, j∈{1,...,m}

(ai <
e bj).

• For actions with parameters like drive or walk, we sometime write drive <e walk

to denote the preference
∨

l1,l2∈S, l1 6=l2

(drive(l1, l2) <
e walk(l1, l2)).

where S is a set of pre-defined locations. Intuitively, this preference states that

we prefer to drive rather than to walk between locations belonging to the set S.

For example, if S = {home, school} then this preference says that we prefer to

drive from home to school and vice versa.

We can prove the following simple property of ≤w.

Lemma 1

Consider the set of basic desire formulae and let us interpret <w as a relation. This

relation is transitive.

Proof

Let ϕ1 <
w ϕ2 and ϕ2 <

w ϕ3. But these are the same as

(ϕ1 ∨ ¬ϕ2) ∧ (ϕ2 ∨ ¬ϕ3)

which implies

ϕ1 ∨ ¬ϕ3

and thus ϕ1 <
w ϕ3.

3.2 Atomic Preferences

Basic desires allow the users to specify their preferences and can be used in selecting

trajectories which satisfy them. From the definition of a basic desire formula, we can

12 Tran Cao Son and Enrico Pontelli

assume that users always have a set of desire formulae and that their intention is to

find a trajectory that satisfies all such formulae. In many cases, this proves to be too

strong and results in situations where no preferred trajectory can be found. Consider

again the preference in Example 3, it is obvious that the user cannot have a plan that

costs him nothing and yet satisfies his preferences. In the travel domain, time and cost

are two criteria that a user might have when making a travel plan. These two criteria

are often in conflict, i.e., a transportation method that takes little time often costs

more. As such, it is very unlikely that the user can get a plan that costs very little

and takes very little time.

Example 4

Let us continue with our travel domain. Again, let us assume that the agent is at

home and he wants to go to school. To simplify the representation, we will write bus,

taxi, drive, and walk to say that the agent takes the bus, taxi, drive, or walk to

school, respectively. The following is a desire expressing that the agent prefers to get

the fastest possible way to go to school (assume that both driving and taking the bus

require about the same amount of time to reach the school):

time = always(taxi <e (drive ∨ bus) <e walk)

On the other hand, when the agent is not in a hurry, he/she prefers to get the cheaper

way to go to school (assume that driving and taking the bus cost about the same

amount of money):

cost = always(walk <e (drive ∨ bus) <e taxi)

Here, the preference states that the agent prefers to execute first the action that

consumes the least amount of money. ✷

It is easy to see that any trajectories satisfying the preference time will not satisfy the

preference cost and vice versa. This discussion shows that it is necessary to provide

users with a simple way to rank their basic desires. To address the problem, we allow a

new type of formulae, called atomic preferences, which represents an ordering between

basic desire formulae.

Definition 7 (Atomic Preference)

An atomic preference formula is defined as a formula of the type ϕ1 ✁ ϕ2 ✁ · · ·✁ ϕn
where ϕ1, . . . , ϕn are basic desire formulae.

The intuition behind an atomic preference is to provide an ordering between different

desires—i.e., it indicates that trajectories that satisfy ϕ1 are preferable to those that

satisfy ϕ2, etc. Clearly, basic desire formulae are special cases of atomic preferences—

where all preference formulae have the same rank. The definitions of ≈ and ≺ can

now be extended to compare trajectories w.r.t. atomic preferences.

Definition 8 (Ordering Between Trajectories w.r.t. Atomic Preferences)

Let α, β be two trajectories, and let Ψ = ϕ1 ✁ ϕ2 ✁ · · ·✁ ϕn be an atomic preference

formula.

• α, β are indistinguishable w.r.t. Ψ (written as α ≈Ψ β) if

∀i. (1≤i≤n⇒ α ≈ϕi
β) .

Planning with Preferences using Logic Programming 13

• α is preferred to β w.r.t. Ψ (written as α ≺Ψ β) if ∃(1 ≤ i ≤ n) such that

1. ∀(1 ≤ j < i) we have that α ≈ϕj
β, and

2. α ≺ϕi
β.

We will say that α �Ψ β if either α ≺Ψ β or α ≈Ψ β.

It is easy to see that ≈Ψ is an equivalence relation on the set of trajectories. The

following proposition is similar to Proposition 2.

Proposition 3

For an atomic preference Ψ, �Ψ is a partial order over the set of representatives of

the equivalence classes of ≈Ψ.

Proof

Let us analyze the three properties.

• Reflexivity: Consider a representative α. By Definition 8, α ≈Ψ α, which leads to

α �Ψ α.

• Anti-symmetry: Let α �Ψ β and β �Ψ α. Again, it is enough if we can show that

α ≈Ψ β. Let us assume, by contradiction, that α ≺Ψ β. This means that there is

a value of i such that, for all 1 ≤ j < i we have that α ≈ϕj
β and α ≺ϕi

β. But

this implies that β ≈ϕj
α for j < i and β 6≺ϕi

α, which ultimately means β 6�Ψ α,

contradicting the initial assumptions.

• Transitivity: let α1, α2, α3 be three representatives such that

α1 �Ψ α2 ∧ α2 �Ψ α3

Let us consider the possible cases arising from the first component:

— α1 ≈Ψ α2. This means that α1 ≈ϕj
α2 for all 1 ≤ j ≤ n. We have two sub-cases:

– α2 ≈Ψ α3. Because ≈Ψ is an equivalence relation, we have that α1 ≈Ψ α3,

which implies that α1 �Ψ α3.

– α2 ≺Ψ α3. This means that there exists i, 1 ≤ i ≤ n, such that α2 ≈ϕk
α3 for

all 1 ≤ k < i and α2 ≺ϕi
α3. Since ≈ϕj

is an equivalence relation, we have

that α1 ≈ϕj
α3 for all 1 ≤ j < i. Furthermore, α1 ≈ϕi

α2 and α2 ≺ϕi
α3

imply that α1 |= ϕi, α2 |= ϕi, and α3 6|= ϕi. Thus, α1 ≺ϕi
α3. Hence,

α1 �Ψ α3.

— α1 ≺Ψ α2. This implies that there exists i, 1 ≤ i ≤ n, such that α1 ≈ϕk
α2 for

all 1 ≤ k < i and α1 ≺ϕi
α2. Again, we have two sub-cases:

– α2 ≈Ψ α3. This means that α2 ≈ϕj
α3 for all j, 1 ≤ j ≤ n. So, we have that

α1 ≈ϕj
α3 for all 1 ≤ j < i, since ≈ϕj

is an equivalence relation. Similar

to the above case, we can show that α1 ≺ϕi
α2 and α2 ≈ϕi

α3 implies that

α1 ≺ϕi
α3. Thus, α1 ≺Ψ α3.

– α2 ≺Ψ α3. This means that there exists j, 1 ≤ j ≤ n, such that α2 ≈ϕk
α3

for all 1 ≤ k < j and α2 ≺ϕj
α3. If j ≥ i, we have that α1 ≈ϕk

α3 for k < i

and α1 ≺ϕi
α3 (because α1 ≺ϕi

α2 and α2 ≈ϕi
α3). Otherwise, if j < i,

using this fact and the transitivity of ≈ϕk
, we can conclude that α1 ≈ϕk

α3

for all 1 ≤ k < j and α1 ≺ϕj
α3, which implies that α1 ≺Ψ α3.

14 Tran Cao Son and Enrico Pontelli

Definition 9 (Most Preferred Trajectory w.r.t. Atomic Preferences)

A trajectory α is most preferred if there is no other trajectory that is preferred to α.

Example 5

Let us continue the Example 4. The two preferences time and cost can be combined

into different atomic preferences, e.g.,

time✁ cost or cost✁ time.

The first one is more appropriate for the agent when he is in a hurry while the second

one is more appropriate for him when he has time. The trajectory

α = s0 walk(home, school) s1

is preferred to the trajectory

β = s0 call taxi(home) s
′
1 taxi(home, school) s

′
2

w.r.t. to the preference cost✁ time, i.e., α ≺cost✁time β.6 On the other hand, we have

that β ≺time✁cost α. ✷

3.3 General Preferences

Atomic preferences allow users to list their preferences according to their importance,

where more preferred desires appear before less preferred ones. Naturally, when a user

has a set of atomic preferences, there is a need for combining them to create a new

preference that can be used to select the best possible trajectory suitable to him/her.

This can be seen in the next example.

Example 6

Let us continue with the action theory described in Example 1. Besides time and

cost, agents often have their preferences based on the level of comfort and/or safety

of the the available transportation methods. This preferences can be represented by

the formulae

comfort = always(flight <e (drive ∨ bus) <e walk)

and

safety = always(walk <e flight <e (drive ∨ bus)).

Now, consider an agent who has in mind the four basic desires time, cost, comfort,

and safety. He can rank these preferences and create different atomic preferences, i.e.,

different orders among these preferences. Let us assume that he has combined these

four desires and produced the following two atomic preferences

Ψ1 = comfort✁ safety and Ψ2 = cost✁ time.

Intuitively, Ψ1 is a comparison between level of comfort and safety, while Ψ2 is a

comparison between affordability and duration.

Suppose that the agent would like to combine Ψ1 and Ψ2 to create a preference

6 For brevity, we omit the description of the states si’s.

Planning with Preferences using Logic Programming 15

stating that he prefers trajectories that are as comfortable as possible and cost as little

as possible. So far, the only possible way for him to combine these two preferences is to

concatenate them in a certain order and view the result as a new atomic preference.

However, neither Ψ1 ✁ Ψ2 nor Ψ2 ✁ Ψ1 meets the desired criteria—as they simply

state that Ψ1 is more relevant than Ψ2 (or vice versa). The only way to accomplish

the desired effect is to decompose Ψ1 and Ψ2 and rebuild a more complex atomic

preference. This shows that the agent might have to define a new atomic preference

for his newly introduced preference. ✷

The above discussion shows that it is necessary to provide additional ways for com-

bining atomic preferences. This is the topic of this sub-section. We will introduce

general preferences, which can be used to describe a multi-dimensional order among

preferences. Formally, we define general preferences as follows.

Definition 10 (General Preferences)

A general preference formula is a formula satisfying one of the following conditions:

• An atomic preference Ψ is a general preference;

• If Ψ1,Ψ2 are general preferences, then Ψ1&Ψ2, Ψ1 | Ψ2, and ! Ψ1 are general prefer-

ences;

• If Ψ1,Ψ2, . . . ,Ψk is a collection of general preferences, then Ψ1 ✁Ψ2 ✁ · · ·✁Ψk is a

general preference.

In the above definition, the operators &, |, ! are used to express different ways to com-

bine preferences. Syntactically, they are similar to the operations ∧,∨,¬ employed in

the construction of basic desire formulae. Semantically, they differ from the opera-

tions ∧,∨,¬ in a subtle way. Intuitively, the constituents of a general preference are

atomic preferences; and a general preference provides a means for combining different

orderings among trajectories created by its constituents, thus providing a means for

the selection of a most preferred trajectory. Let us consider the case where a general

preference has two constituents Ψ1 and Ψ2. As we will see later, each preference will

induce two relations on trajectories, the indistinguishable and preferred relations, as

in the case of atomic preferences. In other words, Ψi can be represented by this pair

of relations. Given a general preference Ψi, let oi and ei denote the set of pairs of

trajectories (α, β) such that α ≺Ψi
β and α ≈Ψi

β, respectively. The operators &, |, !

look at this characterization and define two relations among trajectories that satisfy

the following equations:

• For the formula Ψ1&Ψ2, we define

(o1, e1)&(o2, e2)
def
= ((o1 ∩ o2), (e1 ∩ e2)).

This says that the relation representing the ordering between trajectories in-

duced by & is created as the intersection of the relations representing the or-

derings between trajectories induced by its components. In this case, a most

preferred trajectory is the one which is most preferred w.r.t. every component

of the formula.

• For the formula Ψ1 | Ψ2, we define

(o1, e1) | (o2, e2)
def
= ((o1 ∩ o2) ∪ (o1 ∩ e2) ∪ (e1 ∩ o2), (e1 ∩ e2)).

16 Tran Cao Son and Enrico Pontelli

Here, the relation induced by | guarantees that the most preferred trajectory is

the one which is most preferred w.r.t. at least one component of the formula

and it is indistinguishable from others w.r.t. the remaining component of the

formula.

• For the formula !Ψ1, we define

!(o1, e1)
def
= ((o1

−1 ∪ e1), e1)

which basically reverses the relations induced by Ψ1.

This is made more precise in the following definition.

Definition 11 (Ordering Between Trajectories w.r.t. General Preferences)

Let Ψ be a general preference and let α, β be two trajectories. We say that

• α is preferred to β, denoted by α ≺Ψ β, if:

1. Ψ is an atomic preference and α ≺Ψ β

2. Ψ = Ψ1&Ψ2 and α ≺Ψ1
β and α ≺Ψ2

β

3. Ψ = Ψ1 | Ψ2 and:

(a) α ≺Ψ1
β and α ≈Ψ2

β; or

(b) α ≺Ψ2
β and α ≈Ψ1

β; or

(c) α ≺Ψ1
β and α ≺Ψ2

β

4. Ψ = !Ψ1 and β ≺Ψ1
α

5. Ψ = Ψ1 ✁ · · ·✁Ψk, and there exists 1 ≤ i ≤ k such that: (i) ∀(1 ≤ j < i)

we have that α ≈Ψj
β, and (ii) α ≺Ψi

β.

• α is indistinguishable from β, denoted by α ≈Ψ β, if:

1. Ψ is an atomic preference and α ≈Ψ β.

2. Ψ = Ψ1&Ψ2, α ≈Ψ1
β, α ≈Ψ2

β.

3. Ψ = Ψ1 | Ψ2, α ≈Ψ1
β, and α ≈Ψ2

β.

4. Ψ = !Ψ1 and α ≈Ψ1
β.

5. Ψ = Ψ1 ✁ · · ·✁Ψk, and for all 1 ≤ i ≤ k we have that α ≈Ψi
β.

Similar as above, α �Ψ β indicates that either α ≺Ψ β or α ≈Ψ β. Before we move

on, let us observe that the formula Ψ1✁ . . .✁Ψn, where each Ψi is a basic desire, can

be viewed as both an atomic preference as well as a general preference. This is not

ambiguous since the semantic definition for the two cases coincide. It is easy to see

that the following holds for �Ψ.

Lemma 2

For every pair of trajectories α and β and a general preference Ψ such that α �Ψ β,

− if Ψ = Ψ1&Ψ2 then α �Ψ1
β and α �Ψ2

β.

− if Ψ = Ψ1 | Ψ2 then α �Ψ1
β and α �Ψ2

β.

− if Ψ = !Ψ1 then β �Ψ1
α.

We can also show that for every general preference Ψ, ≈Ψ is an equivalence rela-

tion over trajectories and �Ψ is a partial order on the set of representatives of the

equivalence classes of ≈Ψ. To prove this property, we need the following lemma.

Planning with Preferences using Logic Programming 17

Lemma 3

Let Ψ be a general preference formula and let α, β, and γ be three trajectories. It

holds that

• if α ≺Ψ β and β ≈Ψ γ then α ≺Ψ γ; and

• if α ≺Ψ β and α ≈Ψ γ then γ ≺Ψ β.

Proof

Let us prove the result by structural induction on Ψ. Because the proof of the two

items are almost the same, we present below the proof of the first item.

• Base: If Ψ is an atomic preference, and Ψ = ϕ1✁· · ·✁ϕk then from α ≺Ψ β (Definition

8) we obtain that there exists 1 ≤ i ≤ k such that

— α ≈ϕj
β for all 1 ≤ j < i and

— α ≺ϕi
β.

Furthermore, from β ≈Ψ γ we have that β ≈ϕj
γ for all 1 ≤ j ≤ k. Since ≈ϕj

are

all equivalence relations, we obtain that α ≈ϕj
γ for all 1 ≤ j < i; furthermore, since

α ≺ϕi
β, then α |= ϕi and β 6|= ϕi. Since β ≈ϕi

γ then necessarily we have also that

γ 6|= ϕi. This allows us to conclude that α ≺Ψ γ.

• Inductive Step:

1. Ψ = Ψ1&Ψ2. Since α ≺Ψ β, we have α ≺Ψ1
β and α ≺Ψ2

β. Furthermore,

β ≈Ψ γ implies β ≈Ψ1
γ and β ≈Ψ2

γ. From the induction hypothesis we have

α ≺Ψ1
γ and α ≺Ψ2

γ, which leads to α ≺Ψ γ.

2. Ψ = Ψ1 | Ψ2. From α ≺Ψ β we have three possible cases:

(a) α ≺Ψ1
β and α ≺Ψ2

β. In this case, since β ≈Ψ γ implies β ≈Ψ1
γ and

β ≈Ψ2
γ, we have that α ≺Ψ1

γ and α ≺Ψ2
γ. This implies that α ≺Ψ γ.

(b) α ≺Ψ1
β and α ≈Ψ2

β. From β ≈Ψ γ we obtain β ≈Ψ1
γ and β ≈Ψ2

γ. Since

≈Ψ2
is an equivalence relation, we can infer α ≈Ψ2

γ. Furthermore, from

the induction hypothesis we obtain α ≺Ψ1
γ. These two conclusions lead to

α ≺Ψ γ.

(c) α ≺Ψ2
β and α ≈Ψ1

β. This case is symmetrical to the previous one.

3. Ψ =!Ψ1. From α ≺Ψ β we obtain β ≺Ψ1
α. Since β ≈Ψ γ implies β ≈Ψ1

γ, from

the induction hypothesis we can conclude γ ≺Ψ1
α and ultimately α ≺Ψ γ.

4. Ψ = Ψ1 ✁ · · · ✁ Ψk. From the definition of α ≺Ψ β we have that there exists

1 ≤ i ≤ k such that

(a) α ≈Ψj
β for all 1 ≤ j < i and

(b) α ≺Ψi
β

Furthermore, from β ≈Ψ γ we know that β ≈Ψj
γ for all 1 ≤ j ≤ k. Since

≈Ψj
are all equivalence relations, we have that α ≈Ψj

γ for all 1 ≤ j < i.

Furthermore, from the induction hypothesis, from α ≺Ψi
β and β ≈Ψi

γ we can

conclude α ≺Ψi
γ. This finally leads to α ≺Ψ γ.

18 Tran Cao Son and Enrico Pontelli

Lemma 4

Let Ψ be a general preference formula and α, β, and γ be three trajectories. It holds

that if α ≺Ψ β and β ≺Ψ γ then α ≺Ψ γ.

Proof

Let us prove the result by structural induction on Ψ.

• Base: If Ψ is an atomic preference, and Ψ = ϕ1✁· · ·✁ϕk then from α ≺Ψ β (Definition

8) we obtain that there exists 1 ≤ i ≤ k such that

— α ≈ϕj
β for all 1 ≤ j < i and

— α ≺ϕi
β.

Furthermore, from β ≺Ψ γ, we know that there exists 1 ≤ l ≤ k such that

— β ≈ϕj
γ for all 1 ≤ j < l and

— β ≺ϕl
γ.

If i ≤ l, it is easy to see that α ≈ϕj
γ for j < i and α ≺ϕi

γ, which implies that

α ≺Ψ γ. If l < i holds, we have that α ≈ϕj
γ for all 1 ≤ j < l and α ≺ϕi

γ. Thus,

α ≺Ψ γ.

• Inductive Step:

— Ψ = Ψ1&Ψ2. Since α ≺Ψ β then we have α ≺Ψ1
β and α ≺Ψ2

β. Furthermore,

β ≺Ψ γ implies β ≺Ψ1
γ and β ≺Ψ2

γ. From the induction hypothesis we have

α ≺Ψ1
γ and α ≺Ψ2

γ, which leads to α ≺Ψ γ.

— Ψ = Ψ1 | Ψ2. From α ≺Ψ β we have three possible cases:

1. α ≺Ψ1
β and α ≺Ψ2

β. The proof for this case is similar to the case

In this case, since β ≺Ψ γ implies β ≺Ψ1
γ and β ≺Ψ2

γ, then we have

α ≺Ψ1
γ and α ≺Ψ2

γ. This implies that α ≺Ψ γ.

2. α ≺Ψ1
β and α ≈Ψ2

β. From β ≈Ψ γ we obtain β ≈Ψ1
γ and β ≈Ψ2

γ. Since

≈Ψ2
is an equivalence relation, we can infer α ≈Ψ2

γ. Furthermore, from

the induction hypothesis we obtain α ≺Ψ1
γ. These two conclusions lead to

α ≺Ψ γ.

3. α ≺Ψ2
β and α ≈Ψ1

β. This case is symmetrical to the previous one.

— Ψ =!Ψ1. From α ≺Ψ β we obtain β ≺Ψ1
α. Since β ≈Ψ γ implies β ≈Ψ1

γ, from

the induction hypothesis we can conclude γ ≺Ψ1
α and ultimately α ≺Ψ γ.

— Ψ = Ψ1 ✁ · · · ✁ Ψk. From the definition of α ≺Ψ β we have that there exists

1 ≤ i ≤ k such that

– α ≈Ψj
β for all 1 ≤ j < i and

– α ≺Ψi
β

Furthermore, from β ≈Ψ γ we know that β ≈Ψj
γ for all 1 ≤ j ≤ k. Since all

≈Ψj
are equivalence relations, then we have that α ≈Ψj

γ for all 1 ≤ j < i.

Furthermore, from the induction hypothesis, from α ≺Ψi
β and β ≈Ψi

γ we can

conclude α ≺Ψi
γ. This finally leads to α ≺Ψ γ.

We now show that �Ψ is a partial order on the set of representatives of the equiv-

alence classes of ≈Ψ.

Planning with Preferences using Logic Programming 19

Proposition 4

Let Ψ be a general preference. Then �Ψ is a partial order on the set of representatives

of the equivalence classes of ≈Ψ.

Proof

We need to show that �Ψ is reflective, antisymmetric, and transitive. Reflexivity

follows from the fact that ≈Φ is an equivalence relation and thus α �Ψ α holds for

every α. We prove that �Ψ is antisymmetric and transitive using structural induction

on Ψ.

• Base: This corresponds to Ψ being an atomic preference. The two properties follow

from Proposition 3.

• Inductive step: Let us consider the possible cases for Ψ.

1. Ψ = Ψ1&Ψ2.

(a) Anti-symmetry: consider two representatives α, β and let us assume that

α �Ψ β and β �Ψ α. Again, it is enough if we can show that α ≈Ψ β.

α �Ψ β implies that α �Ψ1
β and α �Ψ2

β (Lemma 2). β �Ψ α implies that

β �Ψ1
α and β �Ψ2

α (Lemma 2). By the induction hypothesis, we have

that α ≈Ψ1
β and α ≈Ψ2

β which imply that α ≈Ψ β.

(b) Transitivity: consider three representatives α1, α2, and α3 with α1 �Ψ α2

and α2 �Ψ α3. The first relationship implies that α1 �Ψ1
α2 and α1 �Ψ2

α2.

The second relationship implies that α2 �Ψ1
α3, and α2 �Ψ2

α3. From the

induction hypothesis we have α1 �Ψ1
α3 and α1 �Ψ2

α3. Thus, α1 �Ψ α3.

2. Ψ = Ψ1 | Ψ2. Similar arguments to the above case (with the help of Lemma

2) allows us to conclude that anti-symmetry and transitivity also holds for this

case.

3. Ψ = !Ψ1.

(a) Anti-symmetry: consider two representatives α, β and let us assume that

α �Ψ β and β �Ψ α. Lemma 2 imply that β �Ψ1
α and α �Ψ1

β. By the

induction hypothesis, we have that α ≈Ψ1
β. This allows us to conclude that

α ≈Ψ β.

(b) Transitivity: consider three representatives α1, α2, and α3 with α1 �Ψ α2

and α2 �Ψ α3. Again, Lemma 2 implies that α2 �Ψ1
α1 and α3 �Ψ1

α2.

The induction hypothesis implies that α3 �Ψ1
α1, and hence, α1 �Ψ α3.

4. Ψ = Ψ1 ✁ · · ·✁Ψk.

(a) Anti-symmetry: consider two representatives α, β with α �Ψ β and β �Ψ α.

Assume that α ≺Ψ β. This means that there exists 1 ≤ i ≤ k such that

α ≈Ψj
β for all 1 ≤ j < i and α ≺Ψi

β. This will imply that β �Ψ α cannot

hold, i.e., we have a contradiction. This means that α ≈Ψ β.

(b) Transitivity: consider three representatives α1, α2, and α3 with α1 �Ψ α2

and α2 �Ψ α3. We have four sub-cases:

i α1 ≈Ψ α2 and α2 ≈Ψ α3. In this case, we have that α1 ≈Ψ α3 because

≈Ψ is an equivalence relation.

ii α1 ≺Ψ α2 and α2 ≈Ψ α3. Lemma 3 implies that α1 ≺Ψ α3.

iii α1 ≈Ψ α2 and α2 ≺Ψ α3. Lemma 3 implies that α1 ≺Ψ α3.

20 Tran Cao Son and Enrico Pontelli

iv α1 ≺Ψ α2 and α2 ≺Ψ α3. This implies that there exists 1 ≤ i1, i2 ≤ k

such that α1 ≈Ψj
α2 for all 1 ≤ j < i1 and α1 ≺Ψi1

α2; and α2 ≈Ψj
α3

for all 1 ≤ j < i2 and α2 ≺Ψi2
α3.

If i1 < i2 then from the fact that ≈Ψj
are equivalence relations, we can

conclude that α1 ≈Ψj
α3 for all 1 ≤ j < i1. Furthermore, by Lemma 3,

from α1 ≺Ψi1
α2 and α2 ≈Ψi1

α3, we can conclude that α1 ≺Ψi1
α3. This

leads to α1 ≺Ψ α3.

Similarly, if i1 > i2, we have that α1 ≈Ψj
α3 for all 1 ≤ j < i2 and

α1 ≺Ψi2
α3. This leads to α1 ≺Ψ α3.

Finally, if i1 = i2, then we have that α1 ≈Ψj
α3 for all 1 ≤ j < i1. Fur-

thermore, since α1 ≺Ψi
α2 and α2 ≺Ψi

α3, from the induction hypothesis

we obtain α1 ≺Ψi
α3. This also leads to α1 ≺Ψ α3.

Definition 12
Given a general preference Ψ, we say that a trajectory α is most preferred if there is

no trajectory that is preferred to α.

The next example highlights some differences and similarities between basic desires

and general preferences.

Example 7
Let us consider the original action theory presented in Section 2 with the action

buy coffee and a user having the goal of being at the school and having coffee. In-

tuitively, every trajectory achieving the goal of the user would require the action of

going to the coffee shop, buying the coffee, and going to the school thereafter.

Let us consider the following two preferences (similar to those discussed in Example

4):

time = always(occ(buy coffee) ∨ (take taxi <e (drive ∨ bus) <e walk))

and

cost = always(occ(buy coffee) ∨ (walk <e (drive ∨ bus) <e take taxi)).

It is easy to see that most preferred trajectories with respect to time should contain

only the actions buy coffee and take taxi while most preferred trajectories with respect

to cost should contain only the actions buy coffee and walk.

Consider the two preferences:

Ψ1 = time ∧ cost

and

Ψ2 = time & cost.

Observe that Ψ1 is a basic desire while Ψ2 is a general preference. It is easy to see that

there are no trajectories satisfying the preference Ψ1. Thus, every trajectory achieving

the goal is a most preferred trajectory w.r.t. Ψ1. At the same time, we can show that

for every pair of trajectories α and β, neither α ≺Ψ2
β nor β ≺Ψ2

α holds.

Let us now consider the two preferences:

Ψ3 = time ∨ cost

Planning with Preferences using Logic Programming 21

and

Ψ4 = time | cost

with respect to the same set of trajectories. Here, Ψ3 is a basic desire while Ψ4

is a general preference. We can see that any trajectory containing the actions taxi

and walk would be most preferred with respect to Ψ3. All of these trajectories are

indistinguishable. For example, the trajectory

α = s0 walk(home, coffee shop) s1 buy coffee s2 walk(coffee shop, school) s3

and the trajectory

β = s0 walk(home, coffee shop) s
′
1 buy coffee s

′
2 take taxi(coffee shop, school) s

′
3

are indistinguishable with respect to Ψ3. On the other hand, we have that α ≺cost β

(the minimal cost action is always used) and α ≈time β (the fastest action is not used

every time). This implies that α ≺Ψ4
β.

Let us consider now the preference

Ψ5 =! time.

It is easy to see that Ψ5 is equivalent to cost in the sense that every most preferred

trajectory w.r.t. Ψ5 is a most preferred trajectory w.r.t cost and vice versa. ✷

The next proposition is of interest for the computation of preferred trajectories7.

Proposition 5

Let Ψ1, Ψ2 and Ψ3 be three general preferences, Ψ = Ψ1 ✁ Ψ2 ✁ Ψ3, and Γ =

Ψ1 ✁ (Ψ2 ✁Ψ3). For arbitrary trajectories α and β, the following holds:

• α ≈Ψ β if and only if α ≈Γ β; and

• α ≺Ψ β if and only if α ≺Γ β.

Proof

• We have that α ≈Ψ β iff α ≈Ψi
β for i ∈ {1, 2, 3} iff α ≈Ψ1

β and α ≈Ψ2✁Ψ3
β iff

α ≈Γ β.

• Since α ≺Ψ β iff there exists i ∈ {1, 2, 3} such that α ≈Ψj
β for 1 ≤ j < i and

α ≺Ψi
β, we have three cases: i = 1, 2, or 3. We consider these three cases:

— i = 1. This implies immediately that α ≺Γ β.

— i = 2. This means that α ≈Ψ1
β and α ≺Ψ2

β. This in turn implies that α ≈Ψ1
β

and α ≺Ψ2✁Ψ3
β, i.e., α ≺Γ β.

— i = 3. This is similar to the case i = 2.

Thus, we have that if α ≺Ψ β then α ≺Γ β. The proof of the reverse is similar.

7 We would like to thank the anonymous reviewer who pointed out that this proposition is necessary
for the computation presented in the next section.

22 Tran Cao Son and Enrico Pontelli

4 Computing Preferred Trajectories

In this section, we address the problem of computing preferred trajectories. The ability

to use the operators ∧,¬,∨ as well as &, |, ! in the construction of preference formulae

allows us to combine several preferences into a preference formula. For example, if a

user has two atomic preferences Ψ and Φ, but does not prefer Ψ over Φ or vice versa,

he can combine them in to a single preference Ψ ∧ Φ✁ Ψ ∨ Φ✁ ¬Ψ ∧ ¬Φ. The same

can be done if Ψ or Φ are general preferences. Thus, without loss of generality, we can

assume that we only have one preference formula to deal with. We would like to note

that this way of combination of preferences creates a preference whose size could be

exponential in the number of preferences. We believe, however, that it is more likely

that a user—when presented with a set of preferences—will have a preferred order on

some of these preferences. This information can be used to create a single preference

with a reasonable and manageable size.

Given a planning problem 〈D, I,G〉 and a preference formula ϕ, we are interested

in finding a most preferred trajectory α achieving G w.r.t. the preference ϕ. We will

show how this can be done in answer set programming.

A naive encoding could be realized by modeling 〈D, I,G〉 in logic programming

(following the scheme described in (Son et al. 2005)), using an answer set engine to

determine its answer sets—and, thus, the trajectories—and then filtering them ac-

cording to ϕ.

In the rest of this section, instead, we present a more sophisticated approach which

allows us to determine a most preferred trajectory. We achieve this by encoding each

basic desire ϕ as a set of rules Πϕ and by developing two sets of rules Πsat and Πpref .

The program Πsat checks whether a basic desire is satisfied by a trajectory. On the

other hand, Πpref consists of rules that, when used together with the maximize

construct of smodels, allow us to find a most preferred trajectory with respect to a

preference formula. Since Π(D, I,G) has already been discussed in Section 2, we will

start by defining Πϕ.

4.1 Πϕ: Encoding of Basic Desire Formulae

The encoding of a basic desire formula is similar to the encoding of a fluent formula

proposed in (Son et al. 2005). In our encoding, we will use the predicate desire as a

domain predicate. The elements of the set {desire(l) | l is a fluent literal} belong to

Πϕ. Each atom in this set declares the fact that each literal is also a desire. Next,

we associate to each basic desire formula ϕ a unique name nϕ. If ϕ is a basic desire

formula then it will be encoded as a set of facts, denoted by Πϕ. This set is defined

inductively over the structure of ϕ8. The encoding is performed as follows.

− If ϕ is a fluent literal l then Πϕ = {desire(l)};

− If ϕ = goal(φ) then Πϕ = Πφ ∪ {desire(nϕ), goal(nφ)};

− If ϕ = occ(a) then Πϕ = {desire(nϕ), happen(nϕ, a)};

− If ϕ = ϕ1 ∧ ϕ2 then Πϕ = Πϕ1
∪ Πϕ2

∪ {desire(nϕ), and(nϕ, nϕ1
, nϕ2

)};

8 To simplify this encoding, we have developed a Prolog program
that translates ϕ into Πϕ. This program can be downloaded from
http://www.cs.nmsu.edu/~tson/ASPlan/Preferences/conv_form.pl.

http://www.cs.nmsu.edu/~tson/ASPlan/Preferences/conv_form.pl

Planning with Preferences using Logic Programming 23

− If ϕ = ϕ1 ∨ ϕ2 then Πϕ = Πϕ1
∪ Πϕ2

∪ {desire(nϕ), or(nϕ, nϕ1
, nϕ2

)};

− If ϕ = ¬φ then Πϕ = Πφ ∪ {desire(nϕ), negation(nϕ, nφ)};

− If ϕ = next(φ) then Πϕ = Πφ ∪ {desire(nϕ), next(nϕ, nφ)};

− If ϕ = until(ϕ1, ϕ2) then Πϕ = Πϕ1
∪ Πϕ2

∪ {desire(nϕ), until(nϕ, nϕ1
, nϕ2

)};

− If ϕ = always(φ) then Πϕ = Πφ ∪ {desire(nϕ), always(nϕ, nφ)};

− If ϕ = eventually(φ) then Πϕ = Πφ ∪ {desire(nϕ), eventually(nϕ, nφ)}.

It is worth noting that, due to the uniqueness of names for basic desires, nϕ will not

occur in ΠΦ \ {desire(nϕ)}.

4.2 Πsat: Rules for Checking of Basic Desire Formula Satisfaction

We now present the set of rules that checks whether a trajectory satisfies a basic desire

formula. Recall that an answer set of the program Π(D, I,G) will contain a trajectory

where action occurrences are recorded by atoms of the form occ(a, t) and the truth

value of fluent literals is represented by atoms of the form holds(f, t), where a ∈ A,

f is a fluent literal, and t is a time moment between 0 and length. The program Πsat
defines the predicate satisfy(F, T), where F and T are variables representing a basic

desire and a time moment, respectively. The satisfiability of a fluent formula at a

time moment will be defined by the predicate h(F, T)—which builds on the previous

mentioned predicate holds and the usual logical operators, such as ∧,∨,¬. Intuitively,

satisfy(F, T) says that the basic desire F is satisfied by the trajectory starting from

the time moment T . The rules of Πsat are defined inductively on the structure of F

and are given next.

satisfy(F, T) ← desire(F), goal(F), satisfy(F, length). (1)

satisfy(F, T) ← desire(F), happen(F,A), occ(A, T). (2)

satisfy(F, T) ← desire(F), literal(F), holds(F, T). (3)

satisfy(F, T) ← desire(F), and(F, F1, F2), (4)

satisfy(F1, T), satisfy(F2, T).

satisfy(F, T) ← desire(F), or(F, F1 , F2), satisfy(F1, T). (5)

satisfy(F, T) ← desire(F), or(F, F1 , F2), satisfy(F2, T). (6)

satisfy(F, T) ← desire(F), negation(F, F1), not satisfy(F1, T). (7)

satisfy(F, T) ← desire(F), until(F, F1, F2), T < T1, (8)

during(F1, T, T1 − 1), satisfy(F2, T1).

satisfy(F, T) ← desire(F), until(F, F1, F2), satisfy(F2, T). (9)

satisfy(F, T) ← desire(F), always(F, F1), during(F1, T, length). (10)

satisfy(F, T) ← desire(F), next(F, F1), satisfy(F1, T + 1). (11)

satisfy(F, T) ← desire(F), eventually(F, F1), T ≤ T 1, (12)

satisfy(F1, T 1).

during(F, T, T1) ← T < T1, desire(F), satisfy(F, T), (13)

during(F, T + 1, T1).

during(F, T, T) ← desire(F), satisfy(F, T). (14)

24 Tran Cao Son and Enrico Pontelli

In the next theorem, we prove the correctness of Πsat. We need some additional

notation. For a trajectory α = s0a1 . . . ansn, let

α−1 = {occ(ai, i− 1) | i ∈ {1, . . . , n}} ∪ {holds(f, i) | f ∈ si, i ∈ {0, . . . , n}}.

We have:

Theorem 2

Let 〈D, I,G〉 be a planning problem, α = s0a1 . . . ansn be a trajectory, and ϕ be a

basic desire formula. Then, for every t, 0 ≤ t ≤ length and every basic desire formula

η with desire(nη) ∈ Πϕ,

α[t] |= η iff Πϕ ∪ Πsat ∪ (α)−1 |= satisfy(nη, t).

(Recall that α[t] is the trajectory stat+1 . . . ansn.)

Proof

First, we prove that the program Π = Πϕ ∪ Πsat ∪ (α)−1 has only one answer set. It

is well-known that if a program is locally stratified then it has a unique answer set

(Apt et al. 1988; Przymusinski 1988). We will show that Π (more precisely, the set of

ground instances of rules in Π) is indeed locally stratified. To accomplish this we need

to find a mapping λ from literals of the grounding of Π to N that has the property: if

A0 ← A1, A2, . . . An, not B1, not B2, . . . not Bm

is a rule in Π, then λ(A0) ≥ λ(Ai) for all 1 ≤ i ≤ n and λ(A0) > λ(Bj) for all

1 ≤ j ≤ m.

To define λ, we first associate a non-negative number σ(φ) to each constant nη as

follows. Intuitively, σ(φ) represents the complexity of φ.

• σ(l) = 0 if l is a literal.

• σ(nη) = 0 if η has the form occ(a).

• σ(nη) = σ(nη1) + 1 if η has the form ¬η1, next(η1), eventually(η1), or always(η1).

• σ(nη) = max{σ(nη1), σ(nη2)} + 1 if η has the form η1 ∧ η2, η1 ∨ η2, or until(η1, η2).

• σ(nη) = σ(nη1) if η = goal(η1).

We define λ as follows.

• λ(satisfy(nη, t)) = 5 ∗ σ(η) + 2,

• λ(during(nη, t, t′)) = 5 ∗ σ(η) + 4, and

• λ(l) = 0 for every other literal of Π.

We need to check that λ satisfies the necessary requirements. For example, for the

rule (1), we have that λ(satisfy(nη, t)) = λ(satisfy(nη, length)) = 5 ∗ σ(nη) + 2 and

λ(satisfy(nη, t)) ≥ 2 > 0 = λ(goal(nη)) = λ(desire(nη)). For the rule (7), we have

that λ(satisfy(nη, t)) = 5 ∗ σ(nη) + 2 = 5 ∗ (σ(nη1) + 1) + 2 > 5 ∗ (σ(nη1)) + 2 =

λ(satisfy(nη1 , length)). The verification of this property for other rules is similar.

Thus, we can conclude that Π has only one answer set. Let X be the answer set of Π.

We prove the conclusion of the theorem by induction over σ(nη).

Base: Let η be a formula with σ(nη) = 0. By the definition of σ, we know that η is

a fluent literal or of the form occ(a). If η is a literal, then η is true in st iff η is in st,

that is, iff holds(η, t) belongs to X , which, because of rule (3), proves the base case.

Planning with Preferences using Logic Programming 25

If η = occ(a) then we know that happen(nη, a) ∈ Πϕ. Thus, satisfy(nη, t) ∈ X iff

occ(a, t) ∈ X (because of the rule (2)) iff α[t] |= η.

Step: Assume that for all 0 ≤ j ≤ k and formula η such that σ(nη) = j, α[t] |= η iff

satisfy(nη, t) is in X .

Let η be such a formula that σ(nη) = k + 1. Because of the definition of σ, we have

the following cases:

• Case 1: η = ¬η1. We have that σ(nη1) = σ(nη)−1 = k. Since negation(nη, nη1) ∈ X ,

satisfy(nη, t) ∈ X iff the body of rule (7) is satisfied by X iff satisfy(nη1 , t) /∈ X iff

α[t] 6|= η1 (by the induction hypothesis) iff α[t] |= η.

• Case 2: η = η1 ∧ η2. Similar to the first case, it follows from the rule (4) and the

facts desire(nη) and and(nη, nη1 , nη2) in Πϕ that satisfy(nη, t) ∈ X iff the body of

rule (4) is satisfied by X iff satisfy(nη1, t) ∈ X and satisfy(nη2, t) ∈ X iff α[t] |= η1
and α[t] |= η2 (induction hypothesis) iff α[t] |= η.

• Case 3: η = η1 ∨ η2. The proof is similar to the above cases, relying on the two rules

(5), (6), and the facts that desire(nη) ∈ Πϕ and or(nη , nη1 , nη2) ∈ Πϕ.

• Case 4: η = until(η1, η2). We have that σ(nη1) ≤ k and σ(nη2) ≤ k. Assume that

α[t] |= η. By Definition 3, there exists t ≤ t2 ≤ n such that α[t2] |= η2 and for

all t ≤ t1 < t2, α[t1] |= η1. By the induction hypothesis, satisfy(nη2, t2) ∈ X and

satisfy(nη1, t1) ∈ X for t ≤ t1 < t2. It follows that during(nη1 , t, t2−1) ∈ X . Because

of rule (8)-(9), we have satisfy(nη, t) ∈ X .

On the other hand, if satisfy(nη, t) ∈ X , because the only rules supporting satisfy(nη, t)

are (8)-(9), there exists t2, t ≤ t2 ≤ length, and during(nη1 , t, t2 − 1) ∈ X , and

satisfy(nη2, t2). It follows from during(nη1 , t, t2 − 1) ∈ X that satisfy(nη1, t1) ∈ X

for all t ≤ t1 < t2. By the induction hypothesis, we have α[t1] |= η1 for all t ≤ t1 < t2
and α[t2] |= η2. Thus α[t] |= until(η1, η2), i.e., α[t] |= η.

• Case 5: η = next(η1). Note that σ(nη1) ≤ k. Rule (11) is the only rule supporting

satisfy(nη, t) where η = next(η1). So satisfy(nη, t) ∈ X iff satisfy(nη1, t+ 1) ∈ X

iff α[t+ 1] |= η1 iff α[t] |= next(η1).

• Case 6: η = always(η1). We note that σ(nη1) ≤ k. Observe that satisfy(nη, t) is

supported only by rule (10). So satisfy(nη, t) ∈ X iff during(nη1 , t, n) ∈ X . The

latter happens iff satisfy(nη1 , t1) ∈ X for all t ≤ t1 ≤ n, that is, iff α[t1] |= η1 for all

t ≤ t1 ≤ n which is equivalent to α[t] |= always(η1), i.e., iff α[t] |= η.

• Case 7: η = eventually(η1). We know that satisfy(nη, t) ∈ X is supported only by

rule (12). So satisfy(nη, t) ∈ X iff there exists t ≤ t1 ≤ n such that satisfy(nη1, t1) ∈

X . Because σ(nη1) ≤ k, by induction, satisfy(nη, t) ∈ X iff there exists t ≤ t1 ≤ n

such that α[t1] |= η1, that is, iff α[t] |= eventually(η1), i.e., iff α[t] |= η.

• Case 8: η = goal(η1). Since η1 does not contain the goal operator, it follows from

the above cases that satisfy(nη1, n) ∈ X iff α[n] |= η1. From the rule (1), we can

conclude that satisfy(nη, t) ∈ X iff satisfy(nη1, n) ∈ X iff α[t] |= η.

The above cases prove the inductive step and, hence, the theorem.

The next theorem follows from Theorems (1) and (2).

Theorem 3

Let 〈D, I,G〉 be a planning problem and ϕ be a basic desire formula. For every answer

26 Tran Cao Son and Enrico Pontelli

set M of the program Π(D, I,G, ϕ) = Π(D, I,G) ∪ Πϕ ∪ Πsat,

αM |= ϕ iff satisfy(nϕ, 0) ∈M.

where αM denotes the trajectory achieving G represented by M .

Proof

Let S be the set of literals of the program Π(D, I,G). It is easy to see that for every

rule r in Π(D, I,G, ϕ) if the head of r belongs to S then every literal occurring in

the body of r also belongs to S. Thus, S is a splitting set of Π(D, I,G, ϕ). Using the

Splitting Theorem (Lifschitz and Turner 1994), we can show that M is an answer set

of Π(D, I,G, ϕ) iff M = X ∪ Y , where X is an answer set of Π(D, I,G) and Y is

an answer set of the program Πϕ ∪ Πsat ∪ (αM)−1. It follows from Theorem 2 that

αM [0] |= ϕ iff satisfy(nϕ, 0) ∈ Y iff satisfy(nϕ, 0) ∈M .

The above theorem allows us to compute a most preferred trajectory using the smod-

els system. Let Π(D, I,G, ϕ) be the program consisting of the Π(D, I,G)∪Πϕ ∪Πsat
and the rule

maximize{satisfy(nϕ, 0) = 1, not satisfy(nϕ, 0) = 0}. (15)

Note that rule (15) represents the fact that the answer sets in which satisfy(nϕ, 0)

holds are most preferred. smodels will first try to compute answer sets of Π in which

satisfy(nϕ, 0) holds; only if no answer sets with this property exist, other answer sets

will be considered.9

Theorem 4

Let 〈D, I,G〉 be a planning problem and ϕ be a basic desire formula. For every answer

set M of Π(D, I,G, ϕ), if satisfy(nϕ, 0) ∈M then αM is a most preferred trajectory

w.r.t. ϕ.

Proof

The result follows directly from Theorem 3: satisfy(nϕ, 0) ∈M implies that αM |= ϕ,

hence αM is a most preferred trajectory w.r.t. ϕ.

The above theorem gives us a way to compute a most preferred trajectory with respect

to a basic desire. We will now generalize this approach to deal with atomic and general

preferences. The intuition is to associate to the different components of the preference

formula a weight ; these weights are then used to obtain a weight for each trajectory,

based on what components of the preference formula are satisfied by the trajectory.

The maximize construct in smodels can then be used to compute answer sets with

maximal weight, thus computing most preferred trajectories. The weight functions are

defined as follows.

9 The current implementation of smodels has some restrictions on using the maximize construct;
our jsmodels system can now deal with this construct properly.

Planning with Preferences using Logic Programming 27

Definition 13

Given a general preference Ψ, a weight function wΨ w.r.t. Ψ (or weight function, for

short, when it is clear from the context what is Ψ) assigns to each trajectory α a

non-negative number wΨ(α).

Since our goal is to use weight functions in generating most preferred trajectories

using the maximize construct in smodels, we would like to find weight functions

which assign the maximal weight to most preferred trajectories. In what follows, we

discuss a class of weight functions that satisfy this property.

Definition 14

Let Ψ be a general preference. A weight function wΨ is called admissible if it satisfies

the following properties:

(i) if α ≺Ψ β then wΨ(α) > wΨ(β); and

(ii) if α ≈Ψ β then wΨ(α) = wΨ(β).

It is easy to see that if wΨ is admissible then the following theorem will hold.

Proposition 6

Let Ψ be a general preference formula and wΨ(α) be an admissible weight function.

If α is a trajectory such that wΨ(α) is maximal, then α is a most preferred trajectory

w.r.t. Ψ.

Proof

Since wΨ(α) is maximal and wΨ is admissible, we conclude that there exists no tra-

jectory β such that β ≺Ψ α. Thus, α is a most preferred trajectory w.r.t. Ψ.

The above proposition implies that we can compute a most preferred trajectory using

smodels if we can implement an admissible weight function. This is the topic of the

next section. We would like to emphasize that the above result states soundness of this

method, but not completeness. This means that the computation scheme proposed in

the next section will return a most preferred trajectory, if the planning problem admits

solutions. This is consistent and in line with the practice used in many well-known

planning systems, in which only one solution is returned.

4.3 Computing An Admissible Weight Function

Let Ψ be a general preference. We will now show how an admissible weight function

wΨ can be built in a bottom-up fashion. We begin with the basic desires.

Definition 15 (Basic Desire Weight)

Let ϕ be a basic desire formula and let α be a trajectory. The weight of the trajectory

α w.r.t. the basic desire ϕ is a function defined as

wϕ(α) =







1 if α |= ϕ

0 otherwise

The following proposition derives directly from the definition of admissibility.

28 Tran Cao Son and Enrico Pontelli

Proposition 7
Let ϕ be a basic desire. Then wϕ is an admissible weight function.

The weight function of an atomic preference builds on the weight function of the basic

desires occurring in the preference as follows.

Definition 16 (Atomic Preference Weight)
Let ψ = ϕ1✁ϕ2✁ · · ·✁ϕk be an atomic preference formula. The weight of a trajectory

α w.r.t. ψ is defined as follows:

wψ(α) =

k∑

r=1

(2k−r × wϕr
(α))

Proposition 8
Let ψ = ϕ1 ✁ ϕ2 ✁ · · · ✁ ϕk be an atomic preference formula, and let α1, α2 be two

trajectories. Then

α1 ≺ψ α2 iff wψ(α1) > wψ(α2)

Furthermore, we also have that

α1 ≈ψ α2 iff wψ(α1) = wψ(α2).

Proof
Let us start by assuming α1 ≺ψ α2. According to the definition, this means that

∃(1 ≤ i ≤ k) such that

• ∀(1 ≤ j < i)(α1 ≈ϕj
α2)

• α1 ≺ϕi
α2

From Proposition 7 we have that α1 ≈ϕj
α2 implies wϕj

(α1) = wϕj
(α2) for 1 ≤ j < i.

This leads to
i−1∑

r=1

(2k−r × wϕr
(α1)) =

i−1∑

r=1

(2k−r × wϕr
(α2))

In addition, since α1 ≺ϕi
α2, then we also have that 1 = wϕi

(α1) > wϕi
(α2) = 0.

Thus, we have
∑k

r=1(2
k−r × wϕr

(α1)) =
∑i−1

r=1(2
k−r × wϕr

(α1)) + 2k−i +
∑k

r=i+1(2
k−r × wϕr

(α1)) >
∑i−1

r=1(2
k−r × wϕr

(α1)) + 2k−i − 1 ≥
∑i−1

r=1(2
k−r × wϕr

(α1)) +
∑k

r=i+1(2
k−r × wϕr

(α2)) =
∑k

r=1(2
k−r × wϕr

(α2))

For similar reasons, it is also easy to see that α1 ≈ψ α2 implies wψ(α1) = wψ(α2).

Let us now explore the opposite direction. Let us assume that wψ(α1) > wψ(α2).

It is easy to see that there must be an integer i, 1 ≤ i ≤ k, such that α1 6≈ϕi
α2.

Consider the minimal integer i satisfying this property, i.e., α1 ≈ϕj
α2 for every j,

1 ≤ j < i. Since wψ(α1) > wψ(α2) and α1 6≈ϕi
α2 we conclude that α1 ≺ϕj

α2. This

implies that α1 ≺ψ α2.

Similar arguments allow us to prove that if wψ(α1) = wψ(α2) then α1 ≈ψ α2.

We are now ready to define an admissible weight function w.r.t. a general preference.

Planning with Preferences using Logic Programming 29

Definition 17 (General Preference Weight)

Let Ψ be a general preference formula. The weight of a trajectory α w.r.t. Ψ (denoted

by wΨ(α)) is defined as follows:

− if Ψ is an atomic preference then the weight is defined as in Definition 16.

− if Ψ = Ψ1&Ψ2 then wΨ(α) = wΨ1
(α) + wΨ2

(α)

− if Ψ = Ψ1 | Ψ2 then wΨ(α) = wΨ1
(α) + wΨ2

(α)

− if Ψ = ! Ψ1 then wΨ(α) = max(Ψ1) − wΨ1
(α) where max(Ψ1) represents the

maximum weight that a trajectory can achieve on the preference formulae Ψ1 plus

one.

− if Ψ = Ψ1 ✁Ψ2
10 then wΨ(α) = max(Ψ2)× wΨ1

(α) + wΨ2
(α)

We prove the admissibility of wΨ in the next proposition.

Proposition 9

For a general preference Ψ, wΨ is an admissible weight function.

The proof of this proposition is based on Propositions 7-8 and the structure of Ψ. It

is omitted here for brevity. The above propositions allow us to prove the following

result.

Proposition 10

Let Ψ be a general preference and α be a trajectory with the maximal weight w.r.t.

wΨ. Then, α is a most preferred trajectory w.r.t. Ψ.

Proof

Let wΨ(α) be maximal; let us assume by contradiction that there exists β such that

β ≺Ψ α. It follows from the previous proposition that β ≺Ψ α implies that wΨ(β) <

wΨ(α), which contradicts the hypothesis that wΨ(α) is maximal.

Propositions 7-9 show that we can compute an admissible weight function wΨ

bottom-up from the weight of each basic desire occurring in Ψ. We are now ready

to define the set of rules Πpref (Ψ), which consists of the rules encoding Ψ and the

rules encoding the computation of wΨ. Similarly to the encoding of the basic desires,

we will assign a new, distinguished name nφ to each preference formula φ occurring in

Ψ and encode the preferences in the same way as we did for the basic desires (Section

4.1). We will also add an atom preference(nφ) to the set of atoms encoding φ. For

brevity, we omit here the details of this step. The program Πpref (Ψ) defines two pred-

icates, w(p, n) and max(p, n), where p is a preference name and n is the weight of the

current trajectory with respect to the preference named p. w(p, n) (resp. max(p, n))

is true if the weight (resp. maximal weight) of the current trajectory with respect to

the preference p is n.

1. For each basic desire φ, Πpref (φ) contains the rules encoding φ and the following

rules:

w(nφ, 1) ← satisfy(nφ, 0)

w(nφ, 0) ← not satisfy(nφ, 0)

max(nφ, 2) ←

(16)

10 Because of Proposition 5, without loss of generality, we describe the encoding only for chains of
length 2.

30 Tran Cao Son and Enrico Pontelli

2. For each atomic preference φ = ϕ1 ✁ ϕ2 ✁ · · ·✁ ϕk, Πpref (φ) consists of

∪kj=1Πpref (ϕk)

and the following rules:

w(nφ, S) ← w(nϕ1
, S1), . . . , w(nϕk

, Sk), S = Σkr=12
k−r × Sr

max(nφ, 2
k) ←

(17)

3. For each general preference Ψ,

• if Ψ is an atomic preference then Πpref (Ψ) is defined as in the previous item.

• if Ψ = Ψ1&Ψ2 or Ψ = Ψ1|Ψ2 then Πpref (Ψ) consists of

Πpref (Ψ1) ∪Πpref (Ψ2)

and

w(nΨ, S) ← w(nΨ1
, N1), w(nΨ2

, N2), S = N1 +N2

max(nΨ, S) ← max(nΨ1
, N1),max(nΨ2

, N2), S = N1 +N2
(18)

• if Ψ =! Ψ1 then Πpref (Ψ) consists of Πpref (Ψ1) and the rules

w(nΨ, S) ← w(nΨ1
, N),max(nΨ1

,M), S =M −N

max(nΨ, S) ← max(nΨ1
, S).

(19)

• if Ψ = Ψ1 ✁Ψ2 then Πpref (Ψ) consists of Πpref (Ψ1) ∪ Πpref (Ψ2) and rules

w(nΨ, S) ← w(nΨ1
, N1), w(nΨ2

, N2),

max(nΨ2
,M2), S =M2 ∗N1 +N2

max(nΨ, S) ← max(nΨ1
, N1),max(nΨ2

, N2),

S = N2 ∗N1 +N2

(20)

The next theorem proves the correctness of Πpref (Ψ).

Theorem 5

Let 〈D, I,G〉 be a planning problem, Ψ be a general preference, and α = s0a1 . . . ansn
be a trajectory. Let Π = Πpref (Ψ) ∪ Πsat ∪ α−1. Then,

• For every desire φ with desire(nφ) ∈ Πpref (Ψ), we have that Π |= w(nφ, w) iff

wφ(α) = w and Π |= max(nφ, w) iff max(φ) = w.

• For every preference η with preference(nη) ∈ Πpref (Ψ), we have that Π |=

w(nη, w) iff wη(α) = w and Π |= max(nη, w) iff max(η) = w

where

α−1 = {occ(ai, i− 1) | i ∈ {1, . . . , n}} ∪ {holds(f, i) | f ∈ si, i ∈ {0, . . . , n}}.

Proof

Let Π1 be the program consisting of the rules (16)-(20) of the program Πpref (Ψ) and

the set of atoms of the form preference(nφ) in Πpref (Ψ). Let S be the set of literals

occurring in the program Π \ Π1. It is easy to check that S is a splitting set of Π.

Using the Splitting Theorem (Lifschitz and Turner 1994), we can show that M is an

answer set of Π iff M = X ∪ Y , where X is an answer set of the program Π \Π1 and

Planning with Preferences using Logic Programming 31

Y is an answer set of the program Π2, which is obtained from Π1 by replacing the

rules of the form (16) with the set of atoms Z where

Z =
⋃

desire(nφ)∈X
{w(nφ, 1) | satisfy(nφ, 0) ∈ X} ∪

{w(nφ, 0) | satisfy(nφ, 0) 6∈ X} ∪

{max(nφ, 2)}.

(21)

Observe that for a desire φ with desire(nφ) ∈ Πpref (Ψ) we have that Πφ ⊆ Πpref (Ψ).

By applying the results of Theorem 2, we have that Π \ Π1 has a unique answer set

X and satisfy(nφ, 0) ∈ X iff α |= φ. Together with the fact that Z ⊆ Y , we have

that w(nφ, 1) ∈M iff α |= φ iff wφ(α) = 1 and w(nφ, 0) ∈M iff α 6|= φ iff wφ(α) = 0.

Furthermore, max(nφ, 2) ∈M and wφ(α) ≤ 1 for every desire φ. This proves the first

item of the theorem.

We will now prove the second item of the theorem. To account for the structure of

the preference, we associate an integer, denoted by λ(nφ), to each constant nφ such

that preference(nφ) ∈ Πpref (Ψ) or desire(nφ) ∈ Πpref (Ψ). This is done as follows:

• λ(nφ) = 0 if desire(nφ) ∈ Πpref (Ψ) (i.e., if φ is a desire);

• λ(nφ) = 1 if preference(nφ) ∈ Πpref (Ψ) and φ = ϕ1 ✁ ϕ2 ✁ . . .✁ ϕk;

• λ(nφ) = λ(nφ1
) + λ(nφ2

) + 1 if preference(nφ) ∈ Πpref (Ψ) and φ = φ1&φ2 or

φ = φ1 | φ1; and
• λ(nφ) = λ(nφ1

) + 1 if preference(nφ) ∈ Πpref (Ψ) and φ =!φ1.

The proof is done inductively over λ(nφ).

• Base: λ(nφ) = 0 means that nφ is a desire. The claim for this case follows from the

first item.

• Step: Assume that we have proved the conclusion for λ(nφ) < k. We will now prove it

for λ(nφ) = k. Consider a preference φ with λ(nφ) = k. We have the following cases:

— φ = ϕ1 ✁ ϕ2 ✁ . . .✁ ϕk and ϕi are basic desires, i.e., φ is an atomic preference.

By definition, we have that ϕi’s are desires. It follows from (17) that

w(nφ, s) ∈ Y iff the body of the first rule in (17) is satisfied by Y

iff s = Σlr=12
k−r × wr and w(nϕi

, wr) ∈ Z for 1 ≤ i ≤ k

iff s = wφ(α).

Furthermore, max(nφ, 2
k) ∈ Y and the maximal weight of wφ(α) is Σ

k
r=12

k−r =

2k − 1. This proves the inductive step for this case.

— φ = φ1&φ2 (resp. φ = φ1 | φ2). We have that λ(nφ1
) < k and λ(nφ2

) < k. The

conclusion follows immediately from the induction hypothesis, the rules in (18),

and the definition of wφ(α).

— φ =!φ1. Again, we have that λ(nφ1
) < k. Using (19) and the definition of wφ, we

can prove that w(nφ, s) ∈ Y iff wφ(α) = s and max(nφ, s) ∈ Y iff max(φ) = s

— φ = φ1 ✁ φ2. Again, we have that λ(nφ1
) < k and λ(nφ2

) < k. The conclusion

follows immediately from (20), the induction hypothesis, and the definition of

wφ(α).

The above theorem implies that we can compute a most preferred trajectory by (i)

adding Πpref (Ψ) ∪ Πsat to Π(D, I,G) and (ii) computing an answer set M in which

w(nΨ, w) is maximal. A working implementation of this is available in jsmodels.

32 Tran Cao Son and Enrico Pontelli

4.4 Some Examples of Preferences in PP

We will now present some preferences that are common to many planning problems

and have been discussed in (Eiter et al. 2003). The main difference between the en-

coding presented in this paper and the ones in (Eiter et al. 2003) lies in that we

use temporal operators to represent the preferences, while action weights are used

in (Eiter et al. 2003). Let 〈D, I,G〉 be a planning problem. For the discussion in this

subsection, we will assume that the answer set planning module Π(D, I,G) is capa-

ble of generating trajectories without redundant actions in the sense that no action

occurrence is generated once the goal has been achieved. Such a planning module

can be easily obtained by adding a constraint to the program Π(D, I,G) preventing

action occurrences to be generated once the goal has been achieved. This, however,

does not guarantee that the planning module will generate the shortest trajectory if

n is greater than the length of the shortest trajectory. In keeping with the notation

used in the previous section, we use ϕ to denote G (i.e., ϕ = G).

4.4.1 Preference for shortest trajectory – formula based encoding

Assume that we are interested in trajectories achieving ϕ whose length is less than or

equal n. A simple encoding that allows us to accomplish such goal is to make use of

basic desires. By nexti(ϕ) we denote the formula:

next(next(next · · · (next
︸ ︷︷ ︸

i

(ϕ)) · · ·)).

Let us define the formula σi(ϕ) (0 ≤ i ≤ n) as follows:

σ0(ϕ) = ϕ σi(ϕ) =
∧i−1
j=0 ¬next

j(ϕ) ∧ nexti(ϕ)

Finally, let us consider the formula short(n, ϕ) defined as

short(n, ϕ) = σ0(ϕ)✁ σ1(ϕ)✁ σ2(ϕ)✁ · · ·✁ σn(ϕ).

Intuitively, this formula says that we prefer trajectories on which the goal ϕ is satisfied

as early as possible. It is easy to see that if α is a most preferred trajectory w.r.t.

short(n, ϕ) then α is a shortest length trajectory satisfying the goal ϕ.

4.4.2 Preference for shortest trajectory – action based encoding

The formula based encoding short(n, ϕ) requires the bound n to be given. We now

present another encoding that does not require this condition. We introduce two

additional fictitious actions stop and noop and a new fluent ended. The action stop

will be triggered when the goal is achieved; noop is used to fill the slot so that we can

compare between trajectories; the fluent ended will denote the fact that the goal has

been achieved. We add to the action theory the propositions:

stop causes ended

stop executable if ϕ

noop causes ended

noop executable if ended

Planning with Preferences using Logic Programming 33

Furthermore, we add the condition ¬ended to the executability condition of every

action in (D, I) and to the initial state I. We can encode the condition of shortest

length trajectory as follows. Let

short = always((stop ∨ noop) <e (a1 ∨ . . . ∨ ak)).

where a1, . . . , ak are the actions in the original action theory. Again, we can show that

any most preferred trajectory w.r.t. short is a shortest length trajectory satisfying the

goal ϕ. Observe the difference between short(n, ϕ) and short: both are built using

temporal connectives but the former uses fluent formula and the latter uses actions.

The second one, we believe, is simpler than the first one; however, it requires some

modifications to the original action theory.

4.4.3 Cheapest plan

Let us assume that we would like to associate a cost c(a) to each action a and de-

termine trajectories that have the minimal cost. Since our comparison is done only

on trajectories whose length is less than or equal length, we will also introduce the

two actions noop and stop with no cost and the fluent ended to record the fact that

the goal has been achieved. Furthermore, we introduce the fluent sCost(ct) to denote

the cost of the trajectory. Intuitively, scost(ct) is true mean that the cost of the tra-

jectory is ct. Initially, we set the value of sCost to 0 (i.e., sCost(0) is true initially

and sCost(c) is false for every other c) and the execution of action a will increase the

value of sCost by c(a). This is done by introducing an effect proposition

a causes sCost(N + c(a)) if sCost(N)

for each action a11. The preference

goal(sCost(m)) ✁ goal(sCost(m+ 1)) . . .✁ goal(sCost(M))

where m and M are the estimated minimal and maximal cost of the trajectories,

respectively. Note that we can have m = 0 and M = max{c(a) | a is an action} ×

length.

5 Related Work

The work presented in this paper is the natural continuation of the work we pre-

sented in (Son and Pontelli 2004a), where we rely on prioritized default theories to

express limited classes of preferences between trajectories—a strict subset of the

preferences covered in this paper. This work is also influenced by other works on

exploiting domain-specific knowledge in planning (e.g., (Bacchus and Kabanza 2000;

Dal Lago, Pistore, and Traverso 2002; Son et al. 2005)), in which domain-specific knowl-

edge is expressed as a constraint on the trajectories achieving the goal, and hence, is

a hard constraint. In subsection 5.1, we discuss different approaches to planning with

preferences which are directly related to our work. In Subsections 5.2–5.3 we present

11 Because of the grounding requirement of answer set solver, this encoding will yield a set of effect
propositions instead of a single proposition.

34 Tran Cao Son and Enrico Pontelli

works that are somewhat related to our work and can be used to develop alternative

implementation for PP .

5.1 Planning with Preferences

Different approaches have been proposed to integrate preferences in the planning

process. An approach close in spirit to the one proposed in this paper has been re-

cently developed by Delgrande et al. (2004). The framework they propose introduces

qualitative preferences built from two partial preorders, ≤c and ≤t, over the set of

propositional formulae of fluents and actions. Intuitively,

• ϕ1 ≤c ϕ2 (choice order) indicates the desire to prefer trajectories that satisfy

(at some point in time) the formula ϕ2 over those that satisfy ϕ1.

• ϕ1 ≤t ϕ2 (temporal order) indicates the desire to prefer trajectories that satisfy

ϕ1 first and ϕ2 later in the trajectory.

Choice preferences are employed to derive an ordering ✁c between trajectories as

follows: given trajectories α, β we have that

α✁c β iff ∀ϕ ∈ ∆(α, β).∃ϕ′ ∈ ∆(β, α).(ϕ ≤c ϕ
′)

where ∆(γ, γ′) = {ϕ ∈ dom(≤c) | γ |= ϕ, γ′ 6|= ϕ} and γ |= ϕ denotes the fact that the

formula ϕ is true at one of the states reached by the trajectory γ. The order is made

transitive by taking the transitive closure of ✁c.

The relation ✁c can be easily simulated in PP since ϕ ≤c ϕ
′ determines the same

order as eventually(ϕ′) ✁ eventually(ϕ). This can be generalized as long as ≤c is

cycle-free.

Example 8

Let us consider the monkey-and-banana example as formulated in (Delgrande et al. 2004).

The world includes the following entities: a monkey, a banana hanging from the ceil-

ing, a coconut on the floor, and a chocolate bar inside a closed drawer. Initially, all

the entities are in different locations in a room. The room includes also a box that

can be pushed and climbed on to reach the ceiling and grab the banana. The goal is

to get the chocolate as well as at least one of the banana or the coconut. The domain

description includes the following fluents:

• location(Entity, Location) denoting the current Location of Entity; the do-

main of Entity is {monkey, banana, coconut, drawer, box} and the domain of

Location is {1, . . . , 5} (denoting 5 different positions in the room).

• onBox denoting the fact that the monkey is on top of the box.

• hasBanana denoting the fact that the monkey has the banana.

• hasCoconut denoting the fact that the monkey has the coconut.

• hasChocolate denoting the fact that the monkey has the chocolate.

• DrawerOpen denoting the fact that the drawer is open.

The action theory provides actions to walk in the room, move the box, climb on and

off the box, grab objects, and open drawers. The goal considered here is expressed by

the fluent formula:

hasChocolate ∧ (hasCoconut ∨ hasBanana)

Planning with Preferences using Logic Programming 35

The preference discussed in (Delgrande et al. 2004) is that bananas are preferred

over coconuts—i.e., hasCoconut ≤c hasBanana—and in our framework it can be

expressed as

eventually(hasBanana)✁ eventually(hasCoconut).

This preference can also be represented by a simpler basic desire

goal(hasBanana)

which says that trajectories achieving hasBanana will be most preferred. ✷

Temporal preferences are employed to derive another preorder ✁t between trajectories

as follows:

• given a trajectory α = s0a1 . . . ansn and two propositions over fluent and actions

ϕ, ϕ′, then ϕ ≤α ϕ′ iff

— α |= ϕ and α |= ϕ′ and

— iϕ ≤ iϕ′ where siϕ (resp. siϕ′
) is the first state in α that satisfies ϕ (resp.

ϕ′).

• given two trajectories α, β, we have that α✁t β iff <t ∩ ≤
−1
β ⊆<t ∩ ≤

−1
α where

≤−1
α is the inverse relation of ≤α.

Each individual temporal preference ϕ ≤t ϕ′ can be expressed in our language as the

basic desire

c(ϕ ≤t ϕ
′) ≡ eventually(ϕ ∧ eventually(ϕ′)) ∧ until(¬ϕ′, ϕ)

The generalization to a collection of temporal preferences requires some additional

constructions. Given a collection of basic desires S = {ψ1, . . . , ψk}, then

• for an arbitrary permutation i1, . . . , ik of 1, . . . , k, let us define

ch(S, i1, . . . , ik) ≡
k∧

j=1

ψij ✁

k∧

j=2

ψij ✁

k∧

j=3

ψij ✁ · · ·✁ ψik .

Intuitively, ch(S, i1, . . . , ik) is an atomic preference representing an ordering be-

tween trajectories w.r.t. the set of basic desires {pi1 , . . . , pik}. For example, tra-

jectories satisfying
∧k
j=1 ψij is most preferred; if no trajectory satisfies

∧k
j=1 ψij

then trajectories satisfying
∧k

j=2 ψij is most preferred; etc.

• let {π1, . . . , πk!} be the set of all permutations of 1, . . . , k; let us define

maxim(S) ≡ ch(S, π1) | ch(S, π2) | · · · | ch(S, πk!).

Intuitively, maxim(S) indicates that we prefer trajectories satisfying the maxi-

mal number of basic desires from the set {ψ1, . . . , ψk}.

If we have a collection of temporal preferences {ϕi ≤t ϕ′
i | i = 1, . . . , k}, then the

equivalent formula is

maxim({c(ϕi ≤t ϕ
′
i) | i = 1, . . . , k}).

36 Tran Cao Son and Enrico Pontelli

Example 9

Let us continue Example 8 by removing the choice preference and assuming instead

the temporal preference hasBanana ≤t hasChocolate—i.e., the banana should be

obtained before the chocolate. The corresponding encoding in our language is

eventually(hasBanana ∧ eventually(hasChocolate)) ∧

until(¬hasChocolate, hasBanana)

✷

Eiter et al. introduced a framework for planning with action costs using logic pro-

gramming (Eiter et al. 2003). The focus of their proposal is to express certain classes

of quantitative preferences. Each action is assigned an integer cost, and plans with

the minimal cost are considered to be optimal. Costs can be either static or relative

to the time step in which the action is executed. (Eiter et al. 2003) also presents the

encoding of different preferences, such as shortest plan and the cheapest plan. Our

approach also emphasizes the use of logic programming, but differs in several aspects.

Here, we develop a declarative language for preference representation. Our language

can express the preferences discussed in (Eiter et al. 2003), but it is more high-level

and flexible than the action costs approach. The approach in (Eiter et al. 2003) also

does not allow the use of fully general dynamic preferences. On the other hand, while

we only consider planning with complete information, Eiter et al. (Eiter et al. 2003)

deal with planning in the presence of incomplete information and non-deterministic

actions.

Other systems have adopted fixed types of preferences, e.g., shortest plans (Cimatti and Roveri 2000;

Blum and Furst 1997).

Our proposal has similarities with the approach based on metatheories of the plan-

ning domain (Myers 1996; Myers and Lee 1999), where metatheories provide charac-

terization of semantic differences between the various domain operators and planning

variables; metatheories allow the generation of biases to focus the planner towards

plans with certain characteristics.

Our work is also related to the work in (Lin 1998) in which the author defined

three different measures for plan quality (A-, B-, and C-optimal) and showed how

they can be axiomatized in situation calculus. Roughly, a plan is A-optimal if none

of its actions can be deleted and the remainder is still a valid plan. It is B-optimal

if none of its segments can be deleted and the remainder is still a plan. It is C-

optimal if none of its segments can be replaced by a single action and the remain-

der is still a plan. While these measures are domain-independent, preferences in our

language are mostly domain-dependent. Theoretically, these measures could also be

expressed in PP by defining an order among possible plans. This impractical method

can be replaced by considering some approximations of these measures. As an ex-

ample, shortest plans as encoded in the previous section represents a class of A-

optimal plans; the atomic preference ϕ1 ✁ ϕ2 with ϕ1 = occ(a) ∧ executable(a) and

ϕ2 = occ(b)∧ executable(b) ∧next(occ(c) ∧ executable(c)) could be used to prefer

plans with action a over plan containing the sequence b; c; etc.

Our language allows the representation of several types of preferences similar to

those developed in (Haddawy and Hanks 1993) for decision-theoretic planners. The

fundamental difference is that we use logic programming while their system is prob-

Planning with Preferences using Logic Programming 37

ability based. Our approach also differs from the works on using Markov Decision

Processes (MDP) to find optimal plans (Putterman 1994); in MDPs, optimal plans

are functions from states to actions, thus preventing the user from selecting preferred

trajectories without changing the MDP specification.

5.2 High-level Languages for Qualitative Preferences

Brewka recently proposed (Brewka 2004a) a general rank-based description language

for the representation of qualitative preferences between models of a propositional

theory. The language has similar foundations to our proposal. The basic preference

between models derives from an inherent total preorder between propositional for-

mulae (Ranked Knowledge Base); models can be compared according to one of four

possible comparison criteria—i.e., inclusion, cardinality, maximal degree of satisfied

formula, and maximal degree of unsatisfied formula. The preference language allows

the refinement of the basic preference by using propositional combination as well

as meta-ordering between preferences, in a fashion similar to what described in this

paper.

The proposal by Junker (Junker 2001) presents a language designed to express

preferences between decisions and decision rules in the context of a language for solving

configuration problems. Decisions are described by labeled constraints t : ϕ, where

t is a term (possibly containing variables) and ϕ is a configuration constraint. The

configuration language allows also the creation of named sets of decisions. Preferences

between decisions are expressed through statements of the form prefer(t1, t2), where

t1, t2 identify decisions or sets of decisions. The language allows the user also to create

constraints that assert decisions, thus making it possible to express meta-preferences.

For example, the following decisions express different preferences (Junker 2001):

decision rule p1(x):

if x in instances(Customer) and playboy in characteristics(x)

then prefer(look, comfort)

decision rule p2(x):

if x in instances(Customer) and age(x)=old

then prefer(comfort,look)

and a statement of the type prefer(p1, p2) allows to express a meta-preference.

5.3 Other Related Works

Considerable effort has been invested in developing frameworks for expressing prefer-

ences within the context of constraint programming and constraint logic programming,

where the problem of inconsistency arises frequently. Most proposals rely on the idea

of associating preferences (expressed as mathematical entities) to constraints when

variables are assigned (Schiex and Cooper 2002). Combinations of constraints lead

to corresponding combinations of preferences, and the frameworks provide means to

compare preferences; comparisons are commonly employed to select solutions or to

discriminate between classes of satisfied constraints. A popular scheme relies on the

use of costs associated to tuples (where each tuple represent a value assignment), and

38 Tran Cao Son and Enrico Pontelli

costs are drawn from a semiring structure (Schiex et al. 1995; Bistarelli et al. 1997),

which provides operators to combine preferences and to “maximize” preferences. These

frameworks subsume various approaches to preferences in CSP, e.g., (Borning et al. 1989;

Moulin 1988; Fargier and Lang 1993).

Schiex et al. (Larrosa and Schiex 2003; Schiex and Cooper 2002) recently proposed

the notion of Valued CSP as an algebraic framework for preferences in constraint

network. In VCSP, costs for tuples are drawn from a value structure 〈E,⊕,�〉, where

E is totally ordered by �; the maximum denotes total inconsistency. Intuitively, in

a valued CSP, each constraint cX over a set of variables X is viewed as a function

that maps tuples of values (values drawn from the domains of the variables X) to an

element of E (the “cost” of the tuple). The cost of the constraint allows us to rank

the “degree” of constraint violation. Given an assignment t for a set of constraints

C, the valuation of the assignment is the ⊕ composition of the E values of the in-

dividual constraints. The objective is to determine an assignment which is minimal

w.r.t. the order �. Weighted CSP (WCSP) are instances of this framework, where

E = [0, 1, . . . , k], � is the standard ordering between natural numbers, and ⊕ is de-

fined as a⊕b = min{k, a+b}. Extensions of arc-consistency to these frameworks have

been investigated (Larrosa 2002; Larrosa and Schiex 2003; Bistarelli et al. 1997).

Qualitative measures of preference in constraint programming have been explored

through the notion of Ceteris Paribus Networks (CP-nets) (Boutilier et al. 1999).

A CP-net is a graphical tool to represent qualitative preferences. Let V be a set of

variables and let us denote with D(v) the domain of variable v (v ∈ V). A CP-net is a

pair 〈G,P 〉, where G is a directed (typically acyclic) graph whose vertices are elements

of V , while the edges denote preferential dependences between variables; intuitively,

preferences for a value for a variable v depend only on the values selected for the

parents of v in the network. For a given assignment of values to the parents of v, the

CP-net specifies a total order on D(v). An assignment of values γ to V is immediately

preferred to the assignment η if there is a variable v such that

• ∀u ∈ V \ {v}. γ(u) = η(u)

• γ(v) is preferred to η(v) in the ordering of D(v) specified by the assignment γ

to the parents of v.

In general, an assignment γ is CP-preferred to an assignment η if there exists a

sequence of assignments γ0, γ1, . . . , γk such that

• γ0 = η

• γi is immediately preferred to γi−1

• γk = γ

Algorithms for solving constraint optimization problems under preference ordering

specified by CP-nets have been proposed in the literature (Domshlak and Brafman 2002;

Boutilier et al. 2004).

Constraint solving has also been proposed for the management of planning in pres-

ence of action costs (Kautz and Walser 1999).

Considerable effort has been invested in introducing preferences in logic program-

ming. In (Cui and Swift 2002) preferences are expressed at the level of atoms and used

Planning with Preferences using Logic Programming 39

for parsing disambiguation in logic grammars. Rule-level preferences have been used

in various proposals for selection of preferred answer sets in answer set programming

(Brewka and Eiter 1999; Delgrande et al. 2003; Gelfond and Lifschitz 1998; Schaub and Wang 2001).

Some of the existing answer set solvers include limited forms of (numerical) optimiza-

tion capabilities. smodels (Simons et al. 2002) offers the ability to associate weights

to atoms and to compute answer sets that minimize or maximize the total weight.

DLV (Buccafurri et al. 2000) provides the notion of weak constraints, i.e., constraints

of the form

← ℓ1, . . . , ℓk. [w : l]

where w is a numeric penalty for violating the constraint, and l is a priority level. The

total cost of violating constraints at each priority level is computed, and answer sets

are compared to minimize total penalty (according to a lexicographic ordering based

on priority levels).

5.4 Alternative Encodings of PP

In this section we discuss the possibility of implementing PP using inference back-ends

different from smodels or jsmodels. It should be noted that the encoding proposed

in Section 4 can be translated into dlv code with little effort, while it is not so with

other answer set programming systems (e.g., cmodels, ASSAT), since they do not

offer a construct similar to the maximize construct of smodels.

In this section, we explore the relationships between PP and two relatively new

answer set programming frameworks, Logic Programming with Ordered Disjunctions

and Answer Set Optimizations. The key idea in both cases, is to show that each

preference of PP can be mapped to a collection of rules in these two languages. Below

we provide some details of these languages and their use for expressing PP.

5.4.1 Logic Programming with Ordered Disjunctions (LPOD)

Overview of LPOD: In Logic Programming with Ordered Disjunctions (Brewka et al. 2002),

a program is a collection of ground rules of the form

A1 × · · · ×Ak ← B1, . . . , Bn, not C1, . . . , not Cm

The literals in the head of the rule represent alternative choices; in the specific case

of LPOD, the choices are ordered, where A1 is the most preferred choice, while Ak is

the least preferred one.

The semantics of a LPOD program P is based on the general idea of answer sets

and the concept of split of a program. For each rule A1 × · · · × Ak ← Body, the ith

option of the rule is the standard logic programming clause

Ai ← Body, not A1, . . . , not Ai−1

A split of the program P is a standard logic program obtained by replacing each rule

of P by one of its options.

Given a LPOD program P and a set of ground literals S, then S is an answer set

of P iff S is an answer set of a split of P .

Ordered disjunctions are employed to create a preference order between answer sets

40 Tran Cao Son and Enrico Pontelli

of a program. Different ordering criteria have been discussed (Brewka et al. 2002).

Given an answer set S of a LPOD program P , we say that S satisfies a rule r

A1 × · · · ×Ak ← Body

• with degree 1 (degS(r) = 1) if S 6|= Body

• with degree i (degS(r) = i) if S |= Body and i = min{j | S |= Aj}

We denote with Si(P) = {r ∈ P | degS(r) = i}. The three criteria for comparing

answer sets under LPOD are the following. Let S1, S2 be two answer sets of P ;

• S1 is cardinality preferred to S2 (S1 >c S2) iff ∃i such that |Sj1(P)| = |S
j
2(P)|

for j < i and |Si1(P)| > |S
i
2(P)|.

• S1 is inclusion preferred to S2 (S1 >i S2) iff ∃i such that Sj1(P) = Sj2(P) for

j < i and Si1(P) ⊃ S
i
2(P).

• S1 is Pareto preferred to S2 (S1 >p S2) iff

— ∃r ∈ P. degS1
(r) < degS2

(r)

— 6 ∃r′ ∈ P. degS1
(r) > degS2

(r)

LPOD allows also the use of meta-preferences between rules of the form r1 ≻ r2.

The Pareto preference in this case is modified as follows: S1 >p S2 iff

• ∃r ∈ P. degS1
(r) < degS2

(r)

• ∀r ∈ P , if degS1
(r) > degS2

(r) then there exists another rule r′ such that r′ ≻ r

and degS1
(r′) < degS2

(r)

Translation of our Preferences: Let us start by providing a logic programming en-

coding of basic desires. We define two entities: Coreψ(T) is a unary predicate while

rulesψ(T) is a collection of rules where T is a variable representing time step.

• if ψ ≡ occ(a) (a ∈ A) then Coreψ(T) = occ(a, T) and ruleψ(T) = ∅.

• if ψ ≡ f (f is a fluent literal) then Coreψ(T) = holds(f, T) and ruleψ(T) = ∅.

• if ψ ≡ ψ1 ∧ ψ2 then Coreψ(T) = pψ(T) and

ruleψ(T) =







← pψ(T), not Coreψ1 (T)

← pψ(T), not Coreψ2 (T)

pψ(T)← Coreψ1(T), Coreψ2(T)







where pψ is a new unary predicate.

• if ψ ≡ ψ1 ∨ ψ2 then Coreψ(T) = pψ(T) and

ruleψ(T) =







← pψ(T), not Coreψ1(T), not Coreψ2 (T)}

pψ(T)← Coreψ1(T)

pψ(T)← Coreψ2(T)







where pψ is a new unary predicate.

• if ψ ≡ ¬ψ1 then Coreψ(T) = pψ(T) and

ruleψ(T) =

{
pψ(T)← not Coreψ1(T)

← pψ(T), Coreψ1(T)

}

where pψ is a new unary predicate.

Planning with Preferences using Logic Programming 41

• if ψ ≡ next(ψ1) then Core
ψ(T) = pψ(T) and

ruleψ(T) =

{
← pψ(T), not Coreψ1 (T + 1)

pψ(T)← Coreψ1 (T + 1)

}

where pψ is a new unary predicate.

• if ψ ≡ always(ψ1) then Core
ψ(T) = pψ(T) and

ruleψ(T) =







← pψ(T), not Coreψ1 (T 1), T ≤ T 1, T 1 ≤ n

pψ(T)← alwaysψ1(T)

alwaysψ1(n)← Coreψ1(n)

alwaysψ1(T)← T < n,Coreψ1(T), alwaysψ1(T + 1)







where pψ is a new unary predicate.

• if ψ ≡ eventually(ψ1) then Core
ψ(T) = pψ(T) and

ruleψ(T) =

{
← pψ(T), not Coreψ1(T), not Coreψ1(T + 1), . . . , Coreψ1(n)

pψ(T)← Coreψ1 (T 1), T ≤ T 1, T 1 ≤ n

}

where pψ is a new unary predicate.

Let us define as Πψ(i) = ruleψ(i) ∪ {Coreψ(i) × ¬Coreψ(i)} and let us denote with

rψ(i) the rule Coreψ(i) × ¬Coreψ(i). We can show that if 〈D, I,G〉 is a planning

problem and ψ is a basic desire, then the following holds:

S1 >p S2 iff π(S1) |= ψ and π(S2) 6|= ψ

where S1, S2 are two answer sets of Π(D, I,G)∪Πψ(i) and π(S) denotes the trajectory

represented by S.

Let us extend the encoding above to include atomic preferences. In particular, given

an atomic preference of the form ψ1 ✁ ψ2, we define

Πψ(i) = ruleψ1(i) ∪ ruleψ2(i) ∪







(r1) Coreψ1(i)× not Coreψ1 (i)

(r2) Coreψ2(i)× not Coreψ2 (i)

r1 ≻ r2







A result similar to the one above can be derived: for a planning problem 〈D, I,G〉 and

an atomic preference ψ, if S1, S2 are two answer sets of Π(D, I,G) ∪ Πψ(i), then

S1 >p S2 iff π(S1) ≺ψ π(S2).

The encoding of general preferences in the LPOD framework does not appear to be

as simple as in the previous cases. The encoding is clearly possible—it is sufficient to

make use of the encoding presented in Section 4; if ψ is the preference and max(nψ , v)

is true, then we can introduce the rule

w(nψ , v)× w(nψ , v − 1)× · · · × w(nψ , 1).

The resulting encoding, on the other hand, is not any simpler than the direct encoding

in smodels with atom weights.

42 Tran Cao Son and Enrico Pontelli

5.4.2 Answer Set Optimization (ASO)

Overview of Answer Set Optimization: The paradigm ofAnswer Set Optimization was

originally introduced by Brewka, Niemelä, and Truszczyǹski (Brewka et al. 2003) and

later refined by Brewka (Brewka 2004b).

In ASO, a program is composed of two parts 〈Pgen, Ppref 〉, where Pgen is an arbi-

trary logic program (the generator program) and Ppref is a collection of preference

rules, used to define a preorder over the answer sets of Pgen. The basic type of rules

present in Ppref are of the form

C1 : p1 > . . . > Cn : pn ← Body (22)

where pi are numerical weights while Cj are propositional formulae. The complex

types of preference rules in Ppref is defined inductively using rules of the form (22)

and the constructors psum, inc, rinc, card, rcard, pareto, and lex.

For each rule r of the form (22), an answer set S of the program 〈Pgen, Ppref 〉 yields

a penalty pen(S, r) which is defined by (i) pen(S, r) = pj where j = min{i | S |= Ci}

if S satisfies Body and at least one Ci, and (ii) pen(S, r) = 0 otherwise. This penalty

is used in defining a preorder among answer sets of the program as follows.

Given two answer sets S1, S2 of an ASO program P , we have that S1 is preferred

to S2 (S1 ≥ S2) w.r.t. a rule r in P of the form (22) if

pen(S1, r) ≤ pen(S2, r).

More complex types of preorder can be described by combining preference rules using

a predefined set of constructors:

• (psum e1, . . . , ek), where S1 ≥ S2 iff

k∑

i=1

pen(S1, ei) ≤
k∑

i=1

pen(S2, ei)

• (rinc e1, . . . , ek), where S1 ≥ S2 iff

∃1 ≤ i ≤ k.(Peni(S1) ⊃ Pen
i(S2) ∧ ∀j < i.(Penj(S1) = Penj(S2)))

or

∀1 ≤ i ≤ k.(Peni(S1) = Peni(S2))

where Peni(S) = {j | pen(S, ej) = i}.
• (rcard e1, . . . , ek), where S1 ≥ S2 iff

∃1 ≤ i ≤ k.(|Peni(S1)| > |Pen
i(S2)| ∧ ∀j < i.(|Penj(S1)| = |Pen

j(S2)|))

or

∀1 ≤ i ≤ k.(|Peni(S1)| = |Pen
i(S2)|)

• (lex e1, . . . , ek), where S1 ≥ S2 iff

∃1 ≤ i ≤ k.(S1 >i S2 ∧ ∀j < i.(S1 ≥j S2))

or

∀1 ≤ i ≤ k.(S1 ≥i S2)

where ≥i is the preorder associated to the expression ei.

Planning with Preferences using Logic Programming 43

• (pareto e1, . . . , ek), where S1 ≥ S2 iff

∀1 ≤ i ≤ k.(S1 ≥i S2)

where each ei is a preference rule in Ppref .

Encoding of our Preferences: As for the case of LPOD, the encoding of our preference

language in ASO is simple for the first two levels (basic desires and atomic preferences),

while it is more complex in the case of general preferences.

We will follow an encoding structure that is analogous to the one used in Section

5.4.1. In particular, we maintain the same definition of Coreψ(T) and rulesψ(T). In

this case, the generator program Pgen corresponds simply to the Π(D, I,G) program

that encodes the planning problem. The preference rules employed in the various cases

are the following:

• if ψ(T) ≡ occ(a) then

eψ(T) ≡ occ(a, T) > ¬occ(a, T)← .

• if ψ(T) ≡ f (where f is a fluent literal) then

eψ(T) ≡ holds(a, T) > ¬holds(a, T)← .

• if ψ(T) ≡ ψ1(T) ∧ ψ2(T) then

eψ(T) ≡ (Coreψ1 (T) ∧ Coreψ2(T)) > ⊤ ← .

(where ⊤ is a tautology).
• if ψ(T) ≡ ψ1(T) ∨ ψ2(T) then

eψ(T) ≡ (Coreψ1 (T) ∨ Coreψ2(T)) > ⊤ ← .

• if ψ(T) ≡ ¬ψ1(T) then

eψ(T) ≡ ¬Coreψ1(T) > Coreψ1(T)← .

• if ψ(T) ≡ next(ψ1(T)) then

eψ(T) ≡ Coreψ1(T + 1) > ¬Coreψ1 (T + 1)← .

• if ψ(t) ≡ eventually(ψ1(t)) (with 1 ≤ t ≤ n, where n is the length of the desired

plan) then

eψ(t) ≡ (Coreψ1 (t) ∨Coreψ1 (t+ 1) ∨ . . . ∨ Coreψ1(n)) > ⊤ ← .

• if ψ(t) ≡ always(ψ1(t)) then

eψ(t) ≡ (Coreψ1 (t) ∧Coreψ1 (t+ 1) ∧ . . . ∧ Coreψ1(n)) > ⊤ ← .

With respect to the original definition of ASO, which allows for a ranked sequence

of preference programs, atomic preferences of the type ψ1 ✁ ψ2 can be encoded as

〈{eψ1}, {eψ2}〉. In the extended ASO model proposed in (Brewka 2004b), the same

effect can be obtained by using the expression

(pareto eψ1 , eψ2)

Only some of the general preferences can be directly encoded without relying on

the use of numeric weights.

44 Tran Cao Son and Enrico Pontelli

• if ψ ≡ ψ1&ψ2, then we can introduce the expression

eψ ≡ (pareto eψ1 , eψ2)

• if ψ ≡ ψ1 ✁ ψ2, then we can introduce the expression

eψ ≡ (lex eψ1 , eψ2)

The other cases appear to require the use of weights, leading to an encoding as complex

as the one presented in Section 4.

For the cases listed above, we can assert the following result: for a planning problem

〈D, I,G〉, a preference ψ, and two answer sets S1, S2 of Π(D, I,G), it holds that

S1 ≥ψ S2 iff π(S1) �ψ π(S2)

where ≥ψ is the preorder derived from the expression eψ.

6 Conclusion and Future Work

In this paper we presented a novel declarative language, called PP , for the specifica-

tion of preferences in the context of planning problems. The language nicely integrates

with traditional action description languages (e.g., B) and it allows the elegant encod-

ing of complex preferences between trajectories. The language provides a declarative

framework for the encoding of preferences, allowing users to focus on the high-level

description of preferences (more than their encodings—as in the approaches based on

utility functions). PP allows the expression of complex preferences, including multi-

dimensional preferences. We also demonstrated that PP preferences can be elegantly

handled in a logic programming framework based on answer set semantics.

The implementation of the languagePP in the jsmodels system is almost complete,

and this will offer us the opportunity to validate our ideas on large test cases and to

compare with related work such as that in (Eiter et al. 2003). We would also like to

develop a direct implementation of the language which can guarantee completeness. In

other words, we would like to develop a system that can return all possible preferred

trajectories.

We also intend to explore the possibility of introducing temporal operators at the

level of general preferences. These seem to allow for very compact representation of

various types of preferences; for example, a shortest plan preference can be encoded

simply as:

always((occ(stop) ∨ occ(noop))✁ (occ(a1) ∨ . . . ∨ occ(ak)))

if a1, . . . , ak are the possible actions. We also intend to natively include in the language

preferences like maxim used in Section 5.1; these preferences are already expressible

in the existing PP language, but at the expense of large and complex preference

formulae. Furthermore, we would like to develop a system that can assist users in

defining the preferences given the planning problem.

Planning with Preferences using Logic Programming 45

Acknowledgments

The authors wish to thank the anonymous referees for their valuable comments. The

authors were supported by the NSF grants CNS-0220590, CNS-0454066, and HRD-

0420407. The authors also wish to thank Hung Le for his implementation of jsmodels.

References

Apt, K., Blair, H., and Walker, A. 1988. Towards a theory of declarative knowledge. In
Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, 89–148.

Bacchus, F. and Kabanza, F. 2000. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence 116, 1,2, 123–191.

Bistarelli, S., Codognet, P., Georget, Y., and Rossi, F. 2000. Labeling and Partial
Local Consistency for Soft Constraint Programming. In Practical Aspects of Declarative
Languages. Springer Verlag, 230–248.

Bistarelli, S., Montanari, U., and Rossi, F. 1997. Semiring Based Constraint Solving
and Optimization. Journal of the ACM 44, 2, 201–236.

Blum, A. and Furst, M. 1997. Fast Planning through Planning Graph Analysis. Artificial
Intelligence 90, 281–300.

Borning, A., Maher, M., Martindale, A., and Wilson, M. 1989. Constraint Hierar-
chies and Logic Programming. In Proceedings of the International Conference on Logic
Programming. MIT Press, 149–164.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., and Poole, D. 2004. Preference-
based Constrained Optimization with CP-Nets. Computational Intelligence 20, 2, 137–157.

Boutilier, C., Brafman, R., Hoos, H., and Poole, D. 1999. Reasoning with Conditional
Ceteris Paribus Preference Statements. In 15th Annual Conference on Uncertainty in
Artificial Intelligence. Morgan Kaufmann, 71–80.

Brewka, G. 2004a. A Rank Based Description Language for Qualitative Preferences. In
Proceedings of ECAI, IOS Press, 303–307.

Brewka, G. 2004b. Complex Preferences for Answer Set Optimization. In Proceedings of
KR, AAAI Press, 213–223.

Brewka, G. and Eiter, T. 1999. Preferred answer sets for extended logic programs.
Artificial Intelligence 109, 297–356.

Brewka, G., Niemelä, I., and Syrjänen, T. 2002. Implementing Ordered Disjunction
using Answer Set Solvers for Normal Programs. In Logics in Artificial Intelligence. Springer
Verlag, 444–455.

Brewka, G., Niemelä, I., and Truszczyǹski, M. 2003. Answer Set Optimization. In
International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 867–872.

Buccafurri, F., Leone, N., and Rullo, P. 2000. Enhancing Disjunctive Datalog by
Constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Cimatti, A. and Roveri, M. 2000. Conformant Planning via Symbolic Model Checking.
Journal of Artificial Intelligence Research 13, 305–338.

Cui, B. and Swift, T. 2002. Preference Logic Grammars: Fixed Point Semantics and
Application to Data Standardization. Artificial Intelligence 138, 1–2, 117–147.

Dal Lago, U. and Pistore, M. and Traverso, P. 2002. Planning with a Language for
Extended Goals. In Proceedings of AAAI/IAAI. AAAI Press, 447–454.

Delgrande, J., Schaub, T., and Tompits, H. 2003. A framework for compiling preferences
in logic programs. Theory and Practice of Logic Programming 3, 2 (Mar.), 129–187.

Delgrande, J., Schaub, T., and Tompits, H. 2004. Domain-specific Preferences for Causal
Reasoning and Planning. In Principles of Knowledge Representation and Reasoning. AAAI
Press, 673–682.

46 Tran Cao Son and Enrico Pontelli

Dimopoulos, Y., Nebel, B., and Koehler, J. 1997. Encoding planning problems in non-
monotonic logic programs. In Proceedings of European Conference on Planning. Springer
Verlag, 169–181.

Domshlak, C. and Brafman, R. 2002. CP-Nets: Reasoning and Consistency Testing. In
8th International Conference on Principles of Knowledge Representation and Reasoning.
Morgan Kaufmann, 121–132.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., and Polleres, A. 2002. Answer Set
Planning under Action Cost. Journal of Artificial Intelligence Research, 19, 25–71.

Fargier, H. and Lang, J. 1993. Uncertainty in Constraint Satisfaction Problems: a Prob-
abilistic Approach. In European Conference on Symbolic and Qualitative Approaches to
Reasoning and Uncertainty. Springer Verlag, 97–104.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electron. Trans. Artif. Intell. 2:
193-210.

Gelfond, M., Przymusinska, H., and Przymusinski, T. 1990. On the relationship be-
tween CWA, Minimal Model, and Minimal Herbrand Model semantics. International Jour-
nal of Intelligent Systems 5, 5, 549–565.

Haddawy, P. and Hanks, S. 1993. Utility Model for Goal-Directed Decision Theoretic
Planners. Tech. Rep., University of Washington.

Junker, U. 2001. Preference Programming for Configuration. In Proceedings of the IJCAI
Workshop on Configuration. www.soberit.hut.fi/pdmg/IJCAI2001ConfWS/S .

Kautz, H. and Walser, J. 1999. State-space Planning by Integer Optimization. In Pro-
ceedings of AAAI. AAAI Press, 526–533.

Larrosa, J. 2002. On Arc and Node Consistency in Weighted CSP. In Proceedings of AAAI.
AAAI Press, 48–53.

Larrosa, J. and Schiex, T. 2003. In the Quest of the Best Form of Local Consistency for
Weighted CSP. In Proceedings of IJCAI. Morgan Kaufmann, 239–244.

Le, H. V. and Pontelli, E. 2003. A Java Based Solver for Answer Set Programming.
www.cs.nmsu.edu/lldap/jsmodels.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scar-

cello, F. 2005. The DLV System for Knowledge Representation and Reasoning. In ACM
Transaction on Computational Logic. To Appear.

Lierler, Y. andMaratea, M. 2004. Cmodels-2: SAT-based Answer Set Solver Enhanced to
Non-tight Programs. In Proceedings of the 7th International Conference on Logic Program-
ming and Non-Monotonic Reasoning Conference (LPNMR’04). Springer Verlag, 346–350.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelli-
gence 138, 1–2, 39–54.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Proceedings of the
Eleventh International Conf. on Logic Programming. MIT Press, 23–38.

Lin, F. 1998. On Measuring Plan Quality (A Preliminary Report). In Proceedings of the
Sixth International Conferences on Principles of Knowledge Representation and Reasoning
(KR’98). 224–233.

Lin, F. and Zhao, Y. 2002. ASSAT: Computing Answer Sets of A Logic Program By SAT
Solvers. In Proceedings of AAAI. AAAI Press, 112–117.

Long, D., Fox, M., Smith, D., McDermott, D., Bacchus, F., and Geffner, H. 2002.
International Planning Competition. http://planning.cis.strath.ac.uk/competition/

Moulin, H. 1988. Axioms for Cooperative Decision Making. Cambridge University Press.

Myers, K. 1996. Strategic Advice for Hierarchical Planners. In Principles of Knowledge
Representation and Reasoning. Morgan Kaufmann, 112–123.

Myers, K. and Lee, T. 1999. Generating Qualitatively Different Plans through Metathe-
oretic Biases. In Proceedings of AAAI. AAAI Press, 570–576.

www.soberit.hut.fi/pdmg/IJCAI2001ConfWS/S
www.cs.nmsu.edu/lldap/jsmodels
http://planning.cis.strath.ac.uk/competition/

Planning with Preferences using Logic Programming 47

Niemelä, I. 1999. Logic programming with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3,4, 241–273.

Przymusinski, T. 1988. On the declarative semantics of deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming. Morgan Kauf-
mann, 193–216.

Putterman, M. 1994. Markov Decision Processes – Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY.

Reiter, R. 2001. KNOWLEDGE IN ACTION: Logical Foundations for Describing and
Implementing Dynamical Systems. MIT Press.

Schaub, T. and Wang, K. 2001. A Comparative Study of Logic Programs with Preferences.
In IJCAI. Morgan Kaufman, 597–602.

Schiex, T. and Cooper, M. 2002. Constraints and Preferences: The Interplay of Preferences
and Algorithms. In Proceedings of the AAAI Workshop on Preferences in AI and CP.

Schiex, T., Fargier, H., and Verfaillie, G. 1995. Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems. In Proceedings of IJCAI. Morgan Kaufmann, 631–637.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and Implementing the Stable
Model Semantics. Artificial Intelligence 138, 1–2, 181–234.

Son, T., Baral, C., Nam, T., and McIlraith, S. 2005. Domain-Dependent Knowledge
in Answer Set Planning. ACM Transaction on Computational Logic. To Appear.

Son, T. and Pontelli, E. 2004a. Reasoning about Actions and Planning with Preferences
using Prioritized Default Theory. Computational Intelligence 20, 2, 358–404.

Son, T. and Pontelli, E. 2004b. Planning with Preferences using Logic Programming.
Logic programming and Non-monotonic Reasoning , Springer Verlag, 247–260.

Subrahmanian, V. and Zaniolo, C. 1995. Relating stable models and ai planning domains.
In Proceedings of the International Conference on Logic Programming. MIT Press, 233–247.

	Introduction and Motivation
	Preliminary -- Answer Set Planning
	A Language for Planning Preferences Specification
	Basic Desires
	Atomic Preferences
	General Preferences

	Computing Preferred Trajectories
	: Encoding of Basic Desire Formulae
	sat: Rules for Checking of Basic Desire Formula Satisfaction
	Computing An Admissible Weight Function
	Some Examples of Preferences in PP

	Related Work
	Planning with Preferences
	High-level Languages for Qualitative Preferences
	Other Related Works
	Alternative Encodings of PP

	Conclusion and Future Work
	References

