
ar
X

iv
:c

s/
05

11
04

1v
1 

 [
cs

.L
O

] 
 1

0 
N

ov
 2

00
5

Under consideration for publication in Theory and Practice of Logic Programming 1

Logic Programming with Default, Weak and

Strict Negations

Susumu Yamasaki

Department of Computer Science

Graduate School of Natural Science and Technology

Okayama University

Okayama 700-0082, Japan

(e-mail: yamasaki@momo.it.okayama-u.ac.jp)

submitted 19 October 2004; revised 30 March 2005, 8 July 2005; accepted 8 November 2005

Abstract

This paper treats logic programming with three kinds of negation: default, weak and strict

negations. A 3-valued logic model theory is discussed for logic programs with three kinds of

negation. The procedure is constructed for negations so that a soundness of the procedure

is guaranteed in terms of 3-valued logic model theory.
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1 Introduction

Negation in logic programming is so well studied that negation as failure is com-

bined with SLD resolution from procedural views, and model theories are es-

tablished in both 2-valued and 3-valued logic. There are approaches that add

negations to logic programs, such as those to the answer set and strong nega-

tion (Gelfond and Lifschitz 1990; Pearce and Wagner 1991), but they are not re-

ally related to that proposed here. The present paper is relevant to 3-valued logic

model theories (Fitting 1985; Kunen 1987; Shepherdson 1987; Przymusinski 1990;

Van Gelder, Ross and Schlipf 1991; Baral and Subrahmanian 1993; Yamasaki and Kurose 2001).

They are well constructed by means of monotonic mappings associated with pro-

grams involving negations. For default negation, some interpretations are made,

with reference to the closed world assumption, the well-founded model and the

3-valued stable model (Ruiz and Minker 1997; Ruiz and Minker 1998). In contrast

to multiple default negations, some usage(s) of different negation(s) with a single

default negation is/are required.

For example, assume a scenario as follows. There are two places a and b as

candidates for some event such that:

(i) If the place a or b is approved, then the event place is determined.

(ii) A conjunction of statements “a is approved” and “b is approved” is strictly

negated.

http://arxiv.org/abs/cs/0511041v1
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(iii) If a proposition p holds, then a is approved.

(iv) If a statement “a is approved” is strictly negated and an exclusion of a propo-

sition “a is preferred” is made, then b is approved.

(v) If a is not preferred, then b is preferred.

By means of strict negation (denoted by ∼s), a strictly negated proposition is ex-

pressed. By means of weak negation (denoted by ∼w), an exclusion of a proposition

may be represented. Default negation (denoted by not) is used as is shown in the

literature. (Note that the model-theoretic treatments of three negations are shown

as below.) The first sentence (i) is translated into two clauses (a) and (b) of logic

programming. The second sentence (ii) is represented by a goal (c). The third,

fourth and fifth sentences (iii), (iv) and (v) are expressed by clauses (d), (e) and

(f), respectively.

(a) determined← approved(a)

(b) determined← approved(b)

(c) ← approved(a), approved(b)

(d) approved(a)← p

(e) approved(b)← ∼s approved(a),∼w preferred(a)

(f) preferred(b)← not preferred(a)

In this paper, default (not), weak (∼w) and strict (∼s) negations are treated for

logic programming, where “default” and “weak” negations are discussed in some

of the literature, but the term “strictness” is adopted for the negation as below. In

3-valued logic, they map the truth values t (true), u (undefined) and f (false) to

those values as follows.

not : t 7→ f , u 7→ u, f 7→ t.

∼w : t 7→ f , u 7→ t, f 7→ t.

∼s : t 7→ f , u 7→ f , f 7→ t.

Now the case of multiple occurrences of negations in parallel is examined. The de-

fault negation is already included in the established framework by means of negation

as failure rule. The weak negation is interpreted as being “not true” (Schmitt 1986).

Strict negation is of use to illustrate the constraint that a conjunction of proposi-

tions is contradictory.

We have a monotonic alternating mapping to denote the well-founded model for

the programwith default negation (Przymusinski 1990; Van Gelder, Ross and Schlipf 1991).

By a simultaneous usage of default negation with weak or strict negation, some

nonmonotonic mapping is associated with a logic program even in 3-valued logic.

When weak and/or strict negations occur together with default negation in a logic

program, the definition of a general fixpoint semantics is problematic. For model

theory of the logic program involving multiple negations, procedural interpretations

of negations may be effective:

(i) Negation as failure for default negation

(ii) Negation by weak failure (non-succeeding) for weak negation

(iii) Negation by strict failure (failing) for strict negation
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The primary goal of this paper is to present an abstract procedure containing

rules for default, weak and strict negations. Its soundness is proven with respect

to model theory, in the sense that the model is defined to be coherent with the

procedure.

This paper is organized as follows. Section 2 is devoted to preliminaries for logic

programs with three kinds of negation, as well as the alternating mapping. In Sec-

tion 3, we provide a model theory and a procedure for the logic program with

default, weak and strict negations. In this paper, for simplicity, we only deal with

(ground) programs containing no variable. However, in Section 4 we make some

remarks on the first-order logic programming and on hierarchical usages of nega-

tions.

2 Negation in Logic Programming

2.1 Logic Program and 3-Valued Interpretation

We deal with a finite (ground) set of clauses of the form A← L1, . . . , Ln, where A

is an atom, and L1, . . . , Ln are literals. The atom A is referred to as the head of

the clause, and the sequence L1, . . . , Ln as its body. A goal is an expression of the

form← L1, . . . , Ln, where L1, . . . , Ln are literals. When n = 0, the goal is denoted

by ✷. A literal is either B (a positive literal), not B (a negative literal with default

negation), ∼w B (a negative literal with weak negation) or ∼s B (a negative literal

with strict negation) for some atom B.

A definite program is a set of clauses containing no negative literal. A general

logic program (LP, for short) is a set of clauses containing default negation, but

neither weak negation, nor strict negation. The term of a “program” denotes a set of

clauses with default, weak, and strict negations. In what follows, the set BP stands

for the Herbrand base of a program P , which is the set of all atoms constructed by

means of predicate and function symbols occurring in P .

Definition 2.1

If I, J ⊆ BP for a program P such that I ∩ J = ∅, then we say that the pair (I, J)

is a 3-valued Herbrand interpretation.

In the 3-valued Herbrand interpretation (I, J), I is regarded as a true set, and J

as a false set, while BP − (I∪J) is regarded as the set of undefined atoms in BP for

the truth value. The values t, u and f denote the truth values true, undefined and

false, respectively, with respect to some interpretation. Assume a 3-valued Herbrand

interpretation (I, J). The evaluation val(I,J)(E) of the expression E is defined with

respect to (I, J) as follows, where we assume an order among the truth values: f <

u < t.
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(1) Literal:

val(I,J)(A) =







t (A ∈ I)

u (A 6∈ I ∪ J)

f (A ∈ J)

val(I,J)(not A) =







f (A ∈ I)

u (A 6∈ I ∪ J)

t (A ∈ J)

val(I,J)(∼w A) =







f (A ∈ I)

t (A 6∈ I ∪ J)

t (A ∈ J)

val(I,J)(∼s A) =







f (A ∈ I)

f (A 6∈ I ∪ J)

t (A ∈ J)

(2) Body:

The value of the body L1, . . . , Ln, val(I,J)(L1, . . . , Ln), is the least one among

the values of literals L1, . . . , and Ln.

(3) Clause:

The clause is true if the value of the head is not less than that of the body, and

false otherwise.

(4) Program:

The program P is true if all the clauses have the truth value, and false otherwise.

We say that the interpretation (I, J) is a 3-valued Herbrand model of the program

P if the value of the program is true, that is, val(I,J)(P ) = t.

2.2 Alternating Mapping, Reviewed

Here we examine model theories in the 3-valued logic for programs. Before the

examination, we review the model theory for LPs by means of alternating fixpoint

semantics.

Definition 2.2

Let K be a subset of the Herbrand base BP for an LP P . We define the set of

clauses with respect to the set K as follows.

P [K] = {A← A1, . . . , Am |

∃(A← A1, . . . , Am, not Am+1, . . . , not An) ∈ P : [Am+1, . . . , An ∈ K]}.

The mapping SP : 2
BP → 2BP is defined to be SP (K) = UP [K] ↑ ω, where we

have the least fixpoint of the mapping UR, UR ↑ ω = ∪i∈ω UR ↑ i, for the definite

program R = P [K] as follows. The set UQ ↑ i is defined for a definite program Q

by:

UQ ↑ i =

{

∅ (i = 0),

UQ(UQ ↑ (i − 1)) (i > 0).

The mapping UQ: 2
BQ → 2BQ is defined to be

UQ(J) = {B | ∃(B ← B1, . . . , Bn) ∈ Q : [B1, . . . , Bn ∈ J ]}

for a set J ⊆ BQ.

Note that the mapping name “UQ” is usually denoted by TQ (Lloyd 1993). How-

ever, the letter “T ” is later reserved for the Herbrand interpretation (T, F ), so the
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mapping (name) UQ is adopted here. Because the mapping UQ is continuous, there

is a least fixpoint UQ ↑ ω = ∪i∈ω UQ ↑ i. SP is monotonic with respect to the

subset inclusion ordering. We take the (alternating) mapping ΘP : 2BP → 2BP

(Van Gelder 1993) to be ΘP (K) = SP (SP (K)), where the over-line stands for the

operation taking the complement set with respect to the Herbrand base BP . Since

SP is monotonic, ΘP is also monotonic. Therefore there is a fixpoint of ΘP , which

is concerned with the 3-valued stable model. Note that its least fixpoint is directly

in accordance with the well-founded model (Van Gelder, Ross and Schlipf 1991).

Following the organization of (You and Yuan 1995), we give the definition of the

3-valued stable model (Przymusinski 1990) in terms of the alternating fixpoint.

Definition 2.3

Assume that (SP (J), J) is a 3-valued Herbrand interpretation. If J is a fixpoint of

ΘP , we say that (SP (J), J) is a 3-valued stable model of P .

3 Model Theory for Negations

In this section, we study a model theory for the program. The transformation

method for LPs by means of Definition 2.2 is now extended to be applicable to the

program.

Definition 3.1

Let I, J , K be subsets of the Herbrand base BP for a program P . We define the

set of clauses with respect to the sets I, J and K as follows.

P [I, J,K] = {A← A1, . . . , Ak |

∃(A← A1, . . . , Ak, not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,

∼s D1, . . . ,∼s Dn) ∈ P :

[B1, . . . , Bl ∈ I, C1, . . . , Cm ∈ J and D1, . . . , Dn ∈ K]}.

Note that the set of clauses P [I, J,K] is a definite program for the mapping

UP [I,J,K] to be applied, where we have seen the mapping UQ and the set UQ ↑ ω

for the definite program Q in the former section.

Definition 3.2

Assume a program P . A mapping ΣP : 2
BP × 2BP × 2BP → 2BP is defined to be

ΣP (I, J,K) = UP [I,J,K] ↑ ω.

We see that if I1 ⊆ I2, J1 ⊆ J2 andK1 ⊆K2, then ΣP (I1, J1,K1)⊆ ΣP (I2, J2,K2).

In this sense, the mapping ΣP is monotonic.

Definition 3.3

Assume a program P . The semantic equations for P are defined as follows.
{

T = ΣP (F, T , F ),

F = ΣP (T , T , F ),

such that T ∩ F = ∅.
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We refer to the equations of Definition 3.3 as the semantic equations for the

program P . We do not always have any fixpoint of the semantic equations, because

the transformation (caused by the semantic equations) is not monotonic, as is easily

seen, for T0 ⊆ T1 and F0 = F1, ΣP (F1, T1, F1) ⊆ ΣP (F0, T0, F0). For T0 = T1 and

F0 ⊆ F1, ΣP (T1, T1, F1) ⊆ ΣP (T0, T0, F0).

Theorem 3.1

Assume a program P . Also suppose for P that

(a) T ∩ F = ∅,

(b) ΣP (F, T , F ) = T ,

(c) ΣP (T , T , F ) ⊆ F ,

(d) A ∈ F ⇒

∀(A← A1, . . . , Ak, not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn) ∈

P . [ some Ai is in F , or [ some Bj1 is in T , some Cj2 is in T , or some Dj3

is not in F ] ]

for a pair (T, F ) ∈ 2BP × 2BP . Then the pair (T, F ) is a 3-valued Herbrand model

of P .

Proof

Assume that T ∩ F = ∅, that is, that the pair (T, F ) is a 3-valued Herbrand

interpretation. Take any clause

A← A1, . . . , Ak, not B1, . . . , not Bl, ∼w C1, . . . , ∼w Cm,∼s D1, . . . ,∼s Dn

in P . We can examine the following cases.

(1) In the case that some Bq is in T for 1 ≤ q ≤ l, some Cr is in T for 1 ≤ r ≤ m,

or some Ds is in F for 1 ≤ s ≤ n, the body of the clause is interpreted as f such

that the clause has the value t.

(2) In the case that B1, . . . , Bl are all in F ⊆ T , C1, . . . , Cm are all in T , and D1,

. . . , Dn are all in F , we see by the definition of ΣP (F, T , F ) = U
P [F,T,F ] ↑ ω that:

[ A1, . . . , Ak ∈ ΣP (F, T , F ) ] ⇒ [ A ∈ ΣP (F, T , F ) ].

Because of (b), ΣP (F, T , F ) = T . Hence the set ΣP (F, T , F ) denotes the set con-

taining atoms evaluated as t in the interpretation (T, F ), and

[ A1, . . . , Ak are t ⇒ A is t ].

It follows that the clause is evaluated as t.

(3) In the case that B1, . . . , Bl are all in T such that some Bq is not in F for

1 ≤ q ≤ l, C1, . . . , Cm are all in T , and D1, . . . , Dn are all in F , we see by the

definition of ΣP (T , T , F ) = U
P [T ,T,F ] ↑ ω that:

[ A1, . . . , Ak ∈ ΣP (T , T , F ) ] ⇒ [ A ∈ ΣP (T , T , F ) ].

Because of (c), ΣP (T , T , F ) ⊆ F so that ΣP (T , T , F ) denotes the set containing
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atoms evaluated as t or u in the interpretation (T, F ). If A1, . . . , Ak are t, that is,

in T , then A is in T as in case (2). As far as A1, . . . , Ak ∈ ΣP (T , T , F ),

A1, . . . , Ak are t or u,

where at least one of them is u ⇒ A is u, that is, not f.

If Ai 6∈ ΣP (T , T , F ) for some Ai and Ai ∈ F , then the body of the clause is evaluated

as f. If Ai 6∈ ΣP (T , T , F ) for some Ai and Ai is in F , then, in the case that the

head A is in F , the body of the clause is interpreted as f, because of the assumed

condition (d). This concludes that the clause is interpreted as t.

Corollary 3.1

If there is a fixpoint (T, F ) of the semantic equations for a program P such that T

∩ F = ∅, then it is a 3-valued Herbrand model of P .

Proof

Assume that the pair (T, F ) is a fixpoint of the semantic equations such that T ∩

F = ∅. Then it satisfies the conditions (a), (b), (c) and (d) of Theorem 3.1. Thus

it is a 3-valued Herbrand model of P .

We have some illustrations for programs and fixpoints of their semantic equations.

Example 3.1

Assume a program P = {p ← not q,∼w r; r ← ∼w p,∼s s}, where the expressions

p, q, r, s are atoms. There are fixpoints: ({p}, {q, r, s}), and ({r}, {p, q, s}).

Example 3.2

Assume a program P = {p ← not q,∼w r; r ← not r,∼s s}, where the expressions

p, q, r, s are atoms. There is a fixpoint ({p}, {q, s}).

Example 3.3

Assume a program P = {p ← ∼w q; q ← p,∼s s}, where the expressions p, q, s are

atoms. There is no fixpoint.

4 Sound Proof Procedure

This section is devoted to an abstract procedure to define negations combined with

SLD resolution, where its soundness is shown with respect to some model theory.

SLD resolution is a deduction formed by a rule to infer a goal

← L1, . . . , Li−1,M1 . . . ,Mn, Li+1, . . . , Lm

from a goal ← L1, . . . , Li−1, A, Li+1, . . . , Lm and a clause A ← M1, . . . ,Mn in

the given program. The default negation may be implemented by negation as

failure combined with SLD resolution as follows (Kunen 1987; Shepherdson 1987;

Shepherdson 1989; Lloyd 1993):

← A succeeds ⇒ ← not A fails,

← A fails ⇒ ← not A succeeds.
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The weak and strict negations are combined with SLD resolution and negation

as failure:

(Negation by weak failure)

← A succeeds ⇒ ← ∼w A fails,

← A does not succeed ⇒ ← ∼w A succeeds.

(Negation by strict failure)

← A does not fail ⇒ ← ∼s A fails,

← A fails ⇒ ← ∼s A succeeds.

For the program P , we recursively define the relations sucP , failP ⊆ Goal for the

set Goal of goals, following the method (Kunen 1989). By the relations sucP (← A)

and failP (← B), we have the statements that the goal ← A succeeds, and that

the goal ← B fails, respectively. The relations are to be the least set satisfying the

following rule closure, where two rules (a) and (b) are contained for the rule closure

to be compositional. A (possibly empty) sequence of literals is denoted by using

letters like G, G1, G2, . . . , where a sequence of literal sequences is also regarded as

a sequence of literals. The rule is abstract, because it contains assumptions like “no

relation sucP (← A)” and “no relation failP (← B)”. But it is referred to as a proof

procedure, where it contains some operational views as SLDNF resolution. Note

that the 3-valued Herbrand model is not always related to the least rule closure.

For example, assume a program P = {p ← ∼s q; q ← q}. The pair ({p}, {q}) is a

model of P , while there is no relation sucP (← p), nor failP (← q).

(a) sucP (← G1), sucP (← G2) ⇒ sucP (← G1, G2).

(b) failP (← G) ⇒ failP (← G1, G,G2).

(i) sucP (✷).

(ii) sucP (← G), (A← G) ∈ P ⇒ sucP (← A).

(iii) failP (← A) ⇒ sucP (← not A).

(iv) no relation sucP (← A) ⇒ sucP (← ∼w A).

(v) failP (← A) ⇒ sucP (← ∼s A).

(vi) no clause (in P ) with A in head ⇒ failP (← A).

(vii) for all clauses A← G, failP (← G) ⇒ failP (← A).

(viii) sucP (← A) ⇒ failP (← not A).

(ix) sucP (← A) ⇒ failP (← ∼w A).

(x) no relation failP (← A) ⇒ failP (← ∼s A).

In the case that the program P is finite, we implement another practical method

as follows.

(1) Take a pair (T, F ) in 2BP ×2BP . On condition that T = {sucP (← A) | A ∈ T }

and F = {failP (← B) | B ∈ F}, check whether the pair (T, F) is included

in a rule closure.

(2) For all the pairs (T1, F1), . . . , (Tn, Fn) (n ≥ 0) like the pair (T, F) of (1),

included in rule closures, respectively, we define a pair (∩1≤i≤n Ti, ∩1≤i≤n

Fi) if n ≥ 1, and get no pair if n = 0.

(3) The pair defined in step (2) is a required one, if it exits, and none otherwise.
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The componentwise intersection of such pairs respectively included in rule clo-

sures is a required one, even if the program P is countably infinite, because the

componentwise intersection is contained in a rule closure.

Next we present soundness of the proof procedure with respect to model theory.

For soundness of the proof procedure, we need a relation between the set ΣP (I, J,K)

and the set derivable by SLD resolution.

Definition 4.1

Assume a program P . For the goal ← A containing an atom A, the expression

ResP (← A) is the set of goals obtained by SLD resolution from the goal← A, and

is recursively defined as follows.

(i) The goal ← A is in ResP (← A).
(ii) If a goal g is in ResP (← A) and a goal g′ is obtained from the goal g by SLD

resolution, then the goal g′ is in ResP (← A).

We define the set n-ResP (← A) to be { g ∈ ResP (← A) | g contains only negative

literals }.

Lemma 4.1

Assume a program P . For an atom A,

A ∈ ΣP (I, J,K) ⇔ ∃(← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,

∼s D1, . . . ,∼s Dn) ∈ n-ResP (← A) :

[B1, . . . , Bl ∈ I, C1, . . . , Cm ∈ J,D1, . . . , Dn ∈ K].

Proof

We see that:

A ∈ ΣP (I, J,K) ⇔ A ∈ UP [I,J,K] ↑ ω

(by the definition of ΣP )

⇔ the goal ✷ is obtained by SLD resolution from the goal ← A

with the definite program P [I, J,K]

(see (Lloyd 1993))

⇔ some goal

← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,

∼s D1, . . . ,∼s Dn

is obtained by SLD resolution from the goal ← A

with the program P such that B1, . . . , Bl ∈ I, C1, . . . , Cm ∈ J ,

D1, . . . , Dn ∈ K

(by the relation of P with P [I, J,K])

⇔ ∃(← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,

∼s D1, . . . ,∼s Dn) ∈ n-ResP (← A) :

[B1, . . . , Bl ∈ I, C1, . . . , Cm ∈ J,D1, . . . , Dn ∈ K]

(by Definition 4.1).

This concludes the proof.

The following theorem states that if a goal← A succeeds, then there is a 3-valued

Herbrand model (T, F ) such that A ∈ T . That is, the proof procedure is sound with

respect to some associated model.
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Theorem 4.1

Assume a program P and a relation sucP (← A). Then there is a 3-valued Herbrand

model (T, F ) of P such that:

(a) A ∈ T ,

(b) ΣP (F, T , F ) = T ,

(c) F ⊆ ΣP (T , T , F ).

Proof

We here define the sets:

T = {B ∈ BP | sucP (← B)},

F = {C ∈ BP | failP (← C)}.

We see as below that the pair (T, F ) is a 3-valued Herbrand interpretation of P :

Firstly a relation RP ⊆ BP × BP is defined as follows:

RP (A1, A2) ⇔ both sucP (← A1) and failP (← A1) hold, and

both sucP (← A2) and failP (← A2) hold such that :

sucP (← G) where G contains not A2.

We secondly see that: If we assume that T ∩ F 6= ∅, that is, both the relations

sucP (← B) and failP (← B) hold for some atom B, then the relation RP is not

empty. Assume that B ∈ T ∩ F . Because the relation sucP (← B) holds, we have

a relation sucP (← G1, G2, G3) by applying the rule (ii) of the proof procedure

backwards, for some goal ← G1, G2, G3 in the set n-ResP (← B), where:

G1 = not B1, . . . , not Bl,

G2 = ∼w C1, . . . ,∼w Cm, and

G3 = ∼s D1, . . . ,∼s Dn.

For the rules (iii), (iv) and (v) to be applied for the relation sucP (← G1, G2, G3),

failP (← B1), . . . , failP (← Bl),

none of sucP (← C1), . . . , none of sucP (← Cm), and

failP (← D1), . . . , failP (← Dn).

Since the relation failP (← B) holds then, it follows from backward applications of

the rule (vii) of the proof procedure that we have a relation failP (← G1, G2, G3)

for the same goal ← G1, G2, G3. By the rules (viii), (ix) and (x) to be applied for

the relation failP (← G1, G2, G3),

sucP (← Bq) for some Bq,

sucP (← Cr) for some Cr, or

none of failP (← Ds) for some Ds.

On the assumption that both the relations sucP (← B) and failP (← B) hold, we

see the relation RP (B,Bq) for the above Bq, by observing that

sucP (← Bq) for some Bq and failP (← Bq) such that:

sucP (← G1, G2, G3) where the sequence G1, G2, G3 contains not Bq.
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We thirdly take the notion of a “negative loop”. We say that there is a negative

loop for an atom C, if R+
P (C,C) for the transitive closure R+

P of the relation RP .

Because the transitive closure R+
P is not empty and the Herbrand base BP is finite,

we have the relation R+
P (C,C) for some atom C. That is, there is a negative loop.

If there is a negative loop for some atom C, then both the relations suc(← C) and

sucP (← G) hold for the sequence G containing not C. But the relation sucP (← G)

cannot be recursively connected to the primitive relation sucP (✷). By the least set

condition of rule closure, this is a contradiction. That is, we are in contradiction to

the assumption that T ∩ F 6= ∅. Hence T ∩ F = ∅.

(a) Assume a relation sucP (← A). It follows from the construction of the set T

that A ∈ T .

(b) Assume that B ∈ ΣP (F, T , F ). By Lemma 4.1, there is some goal

← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn ∈ n-ResP (← B)

such that

B1, . . . , Bl ∈ F,

C1, . . . , Cm ∈ T , and

D1, . . . , Dn ∈ F.

By the set definition of F , if Bq ∈ F then failP (← Bq). As well, if Ds ∈ F

then failP (← Ds). By the set definition of T , if Cr ∈ T then there is no relation

sucP (← Cr). It follows from the rules (iii), (iv) and (v) of the proof procedure that

sucP (← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn).

Following finitely many applications of the rule (ii) of the proof procedure, sucP (←

B). That is, B ∈ T . Finally ΣP (F, T , F ) ⊆ T . Conversely assume that B ∈ T . It

follows from the definition that sucP (← B). By finitely many backward applications

of the rule (ii) of the proof procedure, we have a relation

sucP (← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn)

for a goal← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn ∈ n-ResP (←

B) such that failP (← Bq) (1 ≤ q ≤ l), none of sucP (← Cr) (1 ≤ r ≤ m) and

failP (← Ds) (1 ≤ s ≤ n). By the definitions of the sets T and F , we see that

B1, . . . , Bl ∈ F,

C1, . . . , Cm ∈ T ,

D1, . . . , Dn ∈ F.

By Lemma 4.1, B ∈ ΣP (F, T , F ). Therefore T ⊆ ΣP (F, T , F ). This completes the

proof.

(c) Assume that B ∈ ΣP (T , T , F ). By Lemma 4.1, there is some goal

← not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn ∈ n-ResP (← B)

such that

B1, . . . , Bl ∈ T ,

C1, . . . , Cm ∈ T , and

D1, . . . , Dn ∈ F.
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Table 1. Truth value for double negations

A not ∼
w A ∼

w not A not ∼
s A ∼

s not A ∼
w
∼

s A ∼
s
∼

w A

t t t t t t t

u f t t f t f

f f f f f f f

By the set definition of T , if Bq ∈ T then there is no relation sucP (← Bq). As

well, if Cr ∈ T then there is no relation sucP (← Cr). By the set definition of

F , if Ds ∈ F then failP (← Ds). Because we cannot apply any rule of (viii),

(ix) and (x) of the proof procedure to the above goal, there is no relation failP (←

not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn). It follows that we cannot

have the relation failP (← B). That is, B 6∈ F (B ∈ F ). Therefore ΣP (T , T , F ) ⊆

F . Finally F ⊆ ΣP (T , T , F ).

(d) Assume any clause

A← A1, . . . , Ak, not B1, . . . , not Bl,∼w C1, . . . ,∼w Cm,∼s D1, . . . ,∼s Dn

such that A ∈ F , that is, failP (← A). It follows from the rules (vi) and (vii), or

the rules (viii), (ix) or (x) of the proof procedure, respectively that:

• failP (← Ai) for some Ai, that is, Ai ∈ F ,

• sucP (← Bj1) for some Bj1 , that is, Bj1 ∈ T ,

• sucP (← Cj2) for some Cj2 , that is, Cj2 ∈ T , or

• no relation failP (← Dj3) for some Dj3 , that is, Dj3 6∈ F .

Hence the condition (d) of Theorem 3.4 is satisfied.

By the conditions (b), (c) and (d) with the consistency that T ∩ F = ∅, it follows

from Theorem 3.4 that the pair (T, F ) is a 3-valued Herbrand model of P .

5 Concluding Remarks

Model theory and a sound proof procedure of the logic program with default, weak

and strict negations are presented in the case of no occurrence of variables. Because

the analysis of the semantic equations is not so easy, the procedural interpretations

of the negations are studied. It is practical to lift it up to a first-order procedure by

means of the safe rule for negations, that is, by means of the rule to allow only the

ground negative literal containing no variable. The design of a procedure should

be a problem for the possibly infinite Herbrand base. For a procedural definition

with a non-safe rule, ideas on even the constructive negation (Stuckey 1991) may

be needed, as well as on non-ground models considered for general logic programs

(Gottlob, Marcus, Nerode, Salzer and Subrahmanian 1996; Yamasaki 1996).

On double usages of negation, Table 1 is obtained. The interpretations may in-

volve the following aspects.
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(i) ∼w not A and ∼w ∼s A are “not false” (Schmitt 1986). They are complemen-

tary to the default negation ∼s A with reference to default negation, so that

they are equivalent to not ∼s A.

(ii) ∼s not A and ∼s∼w A are complementary to the weak negation ∼w A with

reference to default negation, so that they are equivalent to not ∼w A.

It is left to future studies, to analyze double negations and to define a procedure

applied to such usages. In the paper (Przymusinski 1997), knowledge and belief

operators are discussed in details, where their model theories are treated in logic

programming with default negation. It might be a problem to examine whether the

usages of weak and strict negations can be relevant to those operators.
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