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Abstract

Combining a set of existing constraint solvers into an integrated system of cooperating
solvers is a useful and economic principle to solve hybrid constraint problems. In this paper
we show that this approach can also be used to integrate different language paradigms
into a unified framework. Furthermore, we study the syntactic, semantic and operational
impacts of this idea for the amalgamation of declarative and constraint programming. To
appear in Theory and Practice of Logic Programming (TPLP).
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1 Introduction

Declarative programming languages base on the idea that programs should be as

close as possible to the problem specification and domain. In particular, the se-

mantics of the computation does not depend on the concepts of time and state.

Programs of these languages usually consist of directly formulated mathematical

objects, i. e. of predicates and functions in logic and functional (logic) languages

resp. which are used to describe properties of problems and required solutions.

Our point of view is to consider declarative programming as constraint program-

ming: Syntactically this is evident. Logic languages are based on predicates, and

goals (on these predicates) are constraints. For functional languages the under-

lying equality relations can be regarded as constraints as well. But this point of

view also applies to the (operational) semantics: the evaluation of expressions in

logic and functional languages consists of their stepwise transformation to a normal

form, while particular knowledge is collected (in the form of substitutions). This

corresponds to a stepwise propagation of constraints.

This kind of consideration opens an interesting potential: In (Hofstedt 2000b)

a framework for cooperating constraint solvers has been introduced which allows

the integration of arbitrary solvers and the handling of hybrid constraints. Con-

sidering declarative programming as constraint programming and looking at the
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language evaluation mechanisms as constraint solvers we are able to integrate these

solvers into this framework. Within the framework it is then possible to extend the

declarative languages by constraint systems and, thus, to build constraint languages

customised for a given set of requirements for a comfortable modelling and solving

of many problems. The paper elaborates this approach.

We start with a recapitulation of necessary concepts and elements of the syn-

tax and semantics of declarative languages in Sect. 2. Section 3 reintroduces the

framework for cooperating solvers of Hofstedt (2000b). In Sect. 4 we examine the

integration of a functional logic language and consider the approach w. r. t. a logic

language. We conclude our paper with a discussion of the gains and perspectives of

the approach in Sect. 5 and compare it with related work.

2 Declarative Programming Languages

Declarative languages are roughly distinguished into functional, logic, and con-

straint programming languages.

All declarative languages base on the concepts of signatures and terms.

Definition 2.1. A signature Σ = (S, F,R) consists of a set S of sorts, a set F of

S-sorted function symbols and a set R of S-sorted predicate symbols. R contains

in particular equality symbols for every sort s ∈ S and the predicate symbols true

and false.

By T (F,X) we denote the usual set of free F -terms, short: terms, over the set

X of S-sorted variables. Variable-free terms are called ground terms. Expressions

r(t1, . . . , tn) with terms ti and a predicate symbol r ∈ R as outermost symbol are

called predicate terms. By T (Σ, X) we denote the set of terms and predicate terms.

Given a Σ-structure D we obtain the usual notions of the value of a ground term

t in D and of the validity of a predicate term p in D, denoted as D � p. ✁

In connection with the evaluation of programs the well-known notions of substi-

tutions and unifiers play a central role. We briefly recall their main aspects.

Definition 2.2. By t[t′] we denote a term t with a distinguished subterm t′. (This

can be formally defined using either positions or contexts.)

A substitution σ is a sort-preserving association {x1 = t1, . . . , xm = tm} from

variables xi ∈ X to terms ti ∈ T (F,X). (Since it fits more nicely into our overall

framework and therefore simplifies some of the later presentations, we write substi-

tutions here as special equations.) The application of a substitution σ to a term or

predicate term e is denoted as σ(e).

A unifier of two terms or predicate terms t and t′ is a substitution σ which makes

them equal: σ(t) = σ(t′). The most general unifier is denoted as mgu(t, t′).

The composition of some substitutions σ and φ is defined by (σ ◦φ)(x) = σ(φ(x))

for all x ∈ X . A substitution σ is idempotent, if σ ◦ σ = σ holds.

The parallel composition ↑ of idempotent substitutions is defined as in (Palamidessi 1990),

i. e. (σ ↑ φ) = mgu(σ, φ). (Since we consider substitutions as special equations, mgu

is defined for them.) ✁
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Starting from the foundation T (Σ, X) we build a hierarchy of language paradigms.

constraint functional (logic)

functional logic constraint logic

functional constraint logic

T (Σ, X)

In the following we briefly sketch the syntax and the underlying ideas of this

hierarchy. In the subsequent sections we will then address the much more important

issues of the semantic and operational integration of the different paradigms.

Functional programming. The realm of functional programming languages (ex-

amples are haskell (Hudak et al. 2000) and opal (Didrich et al. 1994)) is inhab-

ited by a plethora of syntactic variations. For our conceptual treatment we can

constrain this to a minimal core that is as close as possible to the other kinds of

languages that we are treating here. In the following, we distinguish two (disjoint)

subsets of the set F of function symbols of the signature Σ: the set ∆ ⊆ F of

constructors of the underlying data types and the set Φ ⊆ F of defined functions.

Definition 2.3. A functional program P over Σ is given by a finite set of rules of

the form (called pattern-based definitions)

f(t1, . . . , tn) → t

where f ∈ Φ is a defined function and the parameter terms ti ∈ T (∆, X) are linear

constructor terms, i. e. are built up from constructors and variables such that every

variable occurs only once. The right-hand side t ∈ T (F,X ′) is an arbitrary F -term,

restricted to those variables X ′ ⊆ X that actually occur on the left-hand side. ✁

The evaluation of a functional program P reduces a given ground term e using the

rules of P until a normal form is obtained (Field and Harrison 1988). Each reduc-

tion step picks some function call f(e′1, . . . , e
′
n), that is, a subterm of e[f(e′1, . . . , e

′
n)],

which can be unified with the left-hand side of some rule f(t1, . . . , tn) → t. The

resulting unifier σ = mgu(f(t1, . . . , tn), f(e′1, . . . , e
′
n)) is then applied to the right-

hand side t to derive the new term e[σ(t)].

Since there may be different applicable rules for a chosen subterm caused by

overlapping left-hand sides, the rule selection strategy – e. g. first-fit or best-fit – of

the language ensures a deterministic rule choice.

Moreover, there are different reduction strategies for picking a redex in each

step, for example leftmost-innermost, leftmost-outermost, lazy, etc. These strate-

gies lead to quite different semantics as has already been studied extensively in

(Manna 1974). These differences are mainly reflected in the model-theoretic in-

terpretation of the equality t1 = t2 of the functional domain. For the following
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illustrating examples an intuitive understanding of equality will do. A thorough

elaboration will be given in Sect. 4.

Example 2.1. The following functional program provides rules for the addition of

natural numbers which are represented by the constructors 0 and s.

add(0,X) → X (1)

add(s(X),Y) → s(add(X,Y)) (2)

This leads e. g. to the following evaluation sequence, where the reduced subterms

are underlined:

add(s(0),s(s(0))) ❀(2) s(add(0,s(s(0)))) ❀(1) s(s(s(0))) ✁

Since we will use it later on, we present a second example here. It comes from

the realm of resistors and their composition.

Example 2.2. For describing the composition of resistors we have three constructor

functions: a simple resistor, sequential composition, and parallel composition. The

laws of physics entail the program rules:

rc(simple(X)) → X

rc(seq(R1, R2)) → rc(R1) + rc(R2)

rc(par(R1, R2)) → 1/(1/rc(R1) + 1/rc(R2))

This allows e. g. the following evaluation:

rc(par(simple(300), simple(600))) ❀ 1/(1/rc(simple(300))+1/rc(simple(600)))

❀ 1/(1/300 + 1/600) ❀ 200 ✁

Functional logic programming. Functional logic programming was originally

developed as an extension of functional languages by concepts of logic languages, cf.

(Reddy 1985; Loogen 1995). However, they can as well be considered as embedding

functional concepts into a logic language, which is indicated by the dashed connec-

tion in the above diagram. Typical representatives are babel (Moreno-Navarro and Rodŕıguez-Artalejo 1992)

and curry (Hanus et al. 2003).

Syntactically, a functional logic program looks like a functional program. The

difference lies in the evaluation mechanism. Whereas functional programs only allow

the reduction of ground terms to normal forms, functional logic programs also allow

the solving of equations using residuation (Aı̈t-Kaci and Nasr 1989) and narrowing

(Hanus 1994).

A narrowing step is a transition e[l′] ❀l→r,σ σ(e[r]), where l → r is a rule from

the program P and l′ is a non-variable term (i. e. l′ /∈ X) such that σ = mgu(l′, l).

Example 2.3. We again use the above addition example. In order to solve the

equation add(s(A), B) = s(s(0)), we apply narrowing. The chosen subterm is un-

derlined.

add(s(A),B) = s(s(0)) ❀(2),{X1=A,Y1=B} s(add(A,B)) = s(s(0))

❀(1),{A=0,X2=B} s(B) = s(s(0))

Thus, a solution of the initial equation is given by the substitution σ(A) = 0 and
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σ(B) = s(0) which is computed by unification of s(B) and s(s(0)) after the last

narrowing step. ✁

We need to ensure confluence of the rewrite system which is essential for complete-

ness. Thus, the rules of functional logic programs usually must satisfy particular

conditions, e. g. linearity of the left-hand sides, no free variables in the right-hand

sides and (weak) nonambiguity for lazy languages, cf. (Hanus 1994).

An overview of functional logic programming languages is given in (Hanus 1994),

where the following assessment is made: “In comparison with pure functional lan-

guages, functional logic languages have more expressive power due to the availability

of features like function inversion, partial data structures, and logic variables. In

comparison with pure logic languages, functional logic languages have a more ef-

ficient operational behaviour since functions allow more deterministic evaluations

than predicates.”

It should not come as a surprise that the aforementioned semantic intricacies of

functional languages carry over to functional logic programming, leading to notions

such as innermost narrowing and the like, cf. (Hanus 1994). But there are more

severe problems, which are often ignored in the literature. Consider the example

from (Hanus 1994).

Example 2.4. Consider the following program

f(X) → a

g(a) → a

For the equation f(g(X)) = a innermost narrowing yields the substitution {X = a} as

the only solution, whereas outermost narrowing provides the identity substitution

{} as solution. However, this depends on the language semantics. In most functional

languages the function g would be considered undefined for all arguments but a

(since there are no patterns for the other cases). And in a call-by-value semantics

this would entail that {X = a} is the only solution. This illustrates that call-by-name

or call-by-need semantics is incompatible with innermost strategies (Manna 1974).

These observations will play a role in our later considerations in Sect. 4. ✁

Logic programming. By contrast to functional programming, logic programming

is based on predicate terms.

Definition 2.4. A logic program P is a set of rules of the form

q0(t0,1, . . . , t0,m) :- q1(t1,1, . . . , t1,n), . . . , qk(tk,1, . . . , tk,r), k ≥ 0.

where the qi(. . .) are predicate terms and they are called atoms. The borderline

case k = 0, which has no conditions, is called a fact. ✁

The evaluation of a logic program is based on resolution. One starts with a goal

(R1 ∧ . . .∧Rl), which is a conjunction of atoms, and adds its negation (¬R1 ∨ . . .∨
¬Rl) to the set of rules. Then one has to find a refutation, that is, a sequence of

resolution steps which ends with the empty clause ✷.

A resolution step on a goal G = (R′
1 ∧ . . . ∧ R′

m) and a program P takes one

subgoal R′
i and a new variant r = (Q : − Q1, . . . , Qn.), n ≥ 0, of a rule of P
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such that R′
i and Q can be unified with most general unifier σ. The result of the

resolution step G ❀σ,r G′ is the new goal G′ = (σ(R′
1) ∧ . . . ∧ σ(R′

i−1) ∧ σ(Q1) ∧
. . . ∧ σ(Qn) ∧ σ(R′

i+1) ∧ . . . ∧ σ(R′
m)).

If a refutation can be computed, i. e. P � ∃(R1 ∧ . . . ∧ Rl) holds, then the com-

putation yields an answer substitution φ (as composition of the unifiers computed

in the resolution steps) such that P � ∀ φ(R1 ∧ . . . ∧ Rl) holds. For a detailed

description of logic programming and its well-known representative prolog see for

example (Nilsson and Ma luszyński 1995).

Constraint programming. Here problems are specified by means of constraints,

that is, first order formulas which express conditions or restrictions describing prop-

erties of objects and relations between them. Constraints come from constraint

systems:

Definition 2.5. Let Σ = (S, F,R) be a signature such that R contains at least a

predicate symbol =s for every sort s ∈ S. Let X be a set of Σ-variables. Let D be a

Σ-structure with equality, i. e. for every predicate symbol =s there is an according

predicate which is an equivalence relation and fulfils the following requirements:

For all f ∈ F , r ∈ R and all terms ti, t
′
i ∈ T (F,X) of appropriate sorts si:

If for all i: D � ∀(ti =si t′i), then

• D � ∀(f(t1, . . . , tn) =s f(t′1, . . . , t
′
n)), when f(t1, . . . , tn) and f(t′1, . . . , t

′
n) are

both defined, or both terms are undefined,

• D � ∀(r(t1, . . . , tm) ↔ r(t′1, . . . , t
′
m)), when r(t1, . . . , tn) and r(t′1, . . . , t

′
n) are

both defined, or both terms are undefined.

A basic constraint is of the form r(t1, . . . , tm), where r ∈ R and ti ∈ T (F,X).

The set of basic constraints over Σ is denoted by Constraint. It contains the two

distinct constraints true and false with D � true and D 2 false.

A constraint system is a 4-tuple ζ = (Σ,D, X, Cons), where {true, false} ⊆
Cons ⊆ Constraint. ✁

Example 2.5. A typical example are constraint systems for linear arithmetic with

constraints that are equalities and inequalities, e. g. X + 2 ∗ Y = 7 and X ≤ 3.5.

In this realm the signature Σ usually contains the function symbols +,−, ∗, / and

the relation symbols =,≥,≤. ✁

The evaluation of constraints is handled by constraint solvers. These are so-

phisticated algorithms for particular application domains, for example the simplex

algorithm for linear arithmetic. Constraint solvers can not only check the satisfia-

bility of constraints but can also compute entailed constraints, projections and even

solutions. A solution of a constraint is a valuation which satisfies it.

In order to allow more convenient programming, constraint systems can be em-

bedded into an appropriate language, which provides concepts like recursion, en-

capsulation and abstraction. This leads to constraint logic and constraint functional

(logic) programming.
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Constraint logic programming. Logic programs are extended by constraints

such that the right-hand side of a rule may not only contain atoms but also con-

straints from an arbitrary constraint system. Consequently, the evaluation mech-

anism of logic languages, viz. resolution, has to be extended by mechanisms for

collecting constraints and checking their satisfiability using appropriate constraint

solvers (Jaffar et al. 1998).

The first and also the most typical language which has been extended by con-

straints, was the logic programming language prolog; the initial motivation was

to overcome the limitations of the expressive power of the language when reasoning

about arithmetic. A typical and comfortable constraint logic programming system

is ECLiPSe (Cheadle et al. 2003).

Constraint functional (logic) programming. Functional (logic) languages can

be extended further by guarding the rules with sets of constraints.

Definition 2.6. A constraint functional (logic) program P over Σ is given by a

finite set of rules of the form

f(t1, . . . , tn) → t where G

where – as in functional logic programs – f ∈ Φ, ti ∈ T (∆, X) and t ∈ T (F,X).

But now we have in addition a set G of (basic) constraints over Σ and X . ✁

For example, toy(FD) (Fernández et al. 2003) and toy(R) (Hortalá-González et al. 1997)

allow finite domain constraints and real arithmetic constraints, resp.

An example of a constraint functional logic program and its evaluation will be

considered informally in Sect. 3.1. The evaluation mechanism is discussed in detail

and formally in Sect. 4.

3 Cooperating Constraint Solvers

The basic architecture of a simple constraint solving system is a solver algorithm

CS associated to a constraint store C and a constraint pool ; both are sets of (basic)

constraints (see Figure 1 (a)).

• Initially the constraint store of a solver is empty, more precisely: it contains

only the constraint true; the constraint pool contains the constraints to solve.

• By the so-called constraint propagation the solver adds constraints from the

pool to its store while ensuring that the constraints in the store remain sat-

isfiable. In this way the set of possible valuations for the variables of the

constraint store is successively narrowed.

• If the solver detects an inconsistency, the corresponding constraint is rejected.

When constraints from different realms shall be used together, one has two pos-

sibilities. Either one programs a new solver that is capable of handling all kinds

of constraints. Or one takes several existing solvers, one for each realm, and coor-

dinates them by some mediating program. The former approach usually generates

more efficient solvers, but the amount of implementation work becomes prohibitive,



8 Petra Hofstedt and Peter Pepper

constraint pool

constraint
solver CS

store C

constraint pool

meta constraint solver

constraint
solver CS1

. . . constraint
solver CSk

store C1 store Ck

control

(a) (b)

Fig. 1. General architecture for (cooperating) constraint solvers

when more and more kinds of constraints shall be integrated. Therefore we focus

on the second approach, which is more flexible and more economic.

In (Hofstedt 2000a) a framework for cooperating constraint solvers has been in-

troduced and formally described, including cooperation strategies for the solvers. In

(Hofstedt 2001) termination and confluence, as well as soundness and completeness

restrictions are examined. An implementation of our system meta-s is described in

(Frank et al. 2003a; Frank et al. 2003b).

Figure 1 (b) shows the architecture of our system for cooperating solvers. In the

following let L with µ, ν ∈ L denote the set of indices of constraint systems.

• The stores Cν of the individual constraint solvers CSν hold the constraints

which have been propagated so far. Initially they are all empty.

• The constraint pool is again the set of constraints that still need to be con-

sidered. Initially it contains the whole constraint problem to be solved.

• The meta solver coordinates the work of the individual solvers. It distributes

the constraints from the pool to the appropriate solvers, which put them

into their stores by constraint propagation and use them for their local com-

putation (see the function tellν below). Conversely, constraints in the local

stores may be projected to the pool in order to make them available as new

information to other solvers (see the functions proj ν→µ below).

The process of sequent propagations and projections ends, when no more informa-

tion exchange takes place. Then the contents of the stores and of the pool together

represent the result: it may indicate, whether the initial constraint conjunction was

unsatisfiable or not; moreover, restrictions of the solution space are provided by

means of projections of the stores. The restrictions may even provide a full solution

of the problem.

Details of the cooperation and communication of the involved solvers are deter-

mined by the cooperation strategy of the solvers. A cooperation strategy may influ-

ence the solution process with regard to different criteria. The solver cooperation

system meta-s which implements our ideas provides a flexible strategy definition
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framework. One can prescribe particular search strategies, one can formulate choice

heuristics for constraints with respect to their gestalt and their domains, one can

specify the order of propagation and projection and so forth. For this system it

has been shown in (Frank et al. 2003a) that appropriate strategies for solver co-

operation can yield comfortable performance improvements for various kinds of

constraint problems.

At the heart of our approach are the requirements for the interfaces by which the

solvers are integrated into the system. There are essentially two kinds of operations

that constitute this interface (cf. Sect. 3.2 and 3.3):

• For every solver CSν there is a function tellν for propagating constraints from

the pool to the store Cν .

• For every pair of solvers CSν , CSµ there is a function proj ν→µ for providing

information from the store Cν to the solver CSµ (via the constraint pool).

Note that this entails the translation into the other solver’s signature.

3.1 An Example

To give a better intuition about the working of our approach, we present a small

example. It is taken from the realm of constraint functional logic programming and

illustrates the interaction of a functional logic language with a finite domain solver

and a solver for interval arithmetic.

Example 3.1. The following program1 describes resistors from a certain set {300 Ω,

. . . , 3000 Ω}, as well as the formulas for the sequential and parallel composition

of resistors. The formulation is a mixture of functional logic programming and

constraint programming. The first constraint uses the membership test ∈FD from a

constraint system for finite domains, and the other two constraints use the equality

=A from a constraint system over rational arithmetic. The equality =FL comes

from the functional logic resolution mechanism.

rc(simple(X)) → X where X ∈FD {300, 600, 900, 1200, . . . , 2700, 3000}
rc(seq(R1, R2)) → Z where X + Y =A Z, X =FL rc(R1), Y =FL rc(R2)

rc(par(R1, R2)) → Z where 1/X + 1/Y =A 1/Z, X =FL rc(R1), Y =FL rc(R2)

Note that the various subterms (including equations) in this program are all

homogeneous, that is, they are in T (Σ, X) for the signature of one of the underlying

solvers. This is possible in general: by introducing auxiliary variables we can always

turn hybrid terms into homogeneous terms; this is called flattening of terms and

constraints, resp. Again, this relies on an appropriate semantic definition of the

functional logic equality =FL (which will be discussed in Sect. 4).

In the following we sketch the way, in which our approach may handle the above

program. For the time being, the treatment is on a more intuitive basis. The for-

malisation of the various steps will be given subsequently. We use the following

1 We use so-called extra variables in the rules, i. e. variables which occur in the body but not in
the head. We discuss the issue of completeness in presence of extra variables briefly in Sect. 4.1.
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notation to illustrate the snapshots from the evaluation, where the three stores

CFL, CFD and CA belong to the functional logic language solver, the finite domain

solver, and the arithmetic solver, resp.

ConstraintPool

store of CSFL store of CSFD store of CSA

(1) Suppose we want to compose two resistors in parallel and need a combined resis-

tance of 200 Ω. The question is, which resistors do we have to pick from our set. This

question is formalizable in our program as the equation rc(par(RA, RB)) =FL 200.

This leads to the following initial configuration.

rc(par(RA, RB)) =FL 200

true true true

(2) We apply the third rule (using narrowing) and reach the following system state.

Z =FL 200, 1/X + 1/Y =A 1/Z, X =FL rc(RA), Y =FL rc(RB)

true true true

(3) When there are several constraints in the pool, the particular cooperation strat-

egy of the system decides, which constraint to choose next for propagation, here

e. g. the goal 1/X + 1/Y =A 1/Z. We propagate it (using the function tellA) to the

arithmetic solver CSA. This is followed by a propagation of Z =FL 200 to the store

of CSFL. (In the pertinent stores we can omit the index of the equality symbol.)

X =FL rc(RA), Y =FL rc(RB)

Z = 200 true 1/X + 1/Y = 1/Z

(4) Next, the system chooses the goal X =FL rc(RA) for a narrowing step based on

the rules of our program (using the function tellFL). This leads to a disjunction of

three possibilities:

RA =FL simple(X) ∧ X ∈FD {300, 600, . . . , 3000}
∨ RA =FL seq(R1, R2) ∧ (X1 + Y1 =A X) ∧ X1 =FL rc(R1) ∧ Y1 =FL rc(R2)

∨ RA =FL par(R1, R2) ∧ (1/X2 + 1/Y2 =A 1/X) ∧ X2 =FL rc(R1) ∧ Y2 =FL rc(R2)

Due to the disjunction, we have to form three instances of our configuration, each

representing one of the choices. For lack of space we only present the derivation of

the first alternative here.

RA =FL simple(X), X ∈FD {300, . . . , 3000}, Y =FL rc(RB)

Z = 200 true 1/X + 1/Y = 1/Z

Note that the store CFL did not change in this step. The application of a program

rule causes a replacement of the chosen constraint by new ones according to the
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right-hand side of the rule. In contrast, an enhancement of the store happens at the

propagation of constraints which do not contain defined functions any more, as we

will see in Step (6).

(5) Now we apply the same process to the second goal Y =FL rc(RB), again pursuing

only the first variant.

RA =FL simple(X), X ∈FD {300, . . .}, RB =FL simple(Y), Y ∈FD {300, . . . , 3000}
Z = 200 true 1/X + 1/Y = 1/Z

(6) Next we propagate all the constraints of the pool to their associated stores.

true

RA = simple(X)

RB = simple(Y)

Z = 200

X ∈ {300, . . . , 3000}
Y ∈ {300, . . . , 3000}

1/X + 1/Y = 1/Z

(7) At this point a system without solver cooperation would terminate the compu-

tation and not draw any further conclusions.

But our system enables solver cooperation. For the continuation of our example

we assume that the cooperation strategy of the system now forces the finite domain

solver to project its store by generating bounds for the variables using the function

projFD→A.2 This is followed by a projection of CFL for the variable Z common to

CFL and CA.

(Z =A 200), (300 ≤A X), (X ≤A 3000), (300 ≤A Y), (Y ≤A 3000)

RA = simple(X)

RB = simple(Y)

Z = 200

X ∈ {300, . . . , 3000}
Y ∈ {300, . . . , 3000}

1/X + 1/Y = 1/Z

(8) The new constraints in the pool are now amenable to treatment by the arith-

metic solver. Therefore the meta solver propagates them (using tellA) to this solver.

Using its computational capabilities, the arithmetic solver can derive more accurate

bounds:

true

RA = simple(X)

RB = simple(Y)

Z = 200

X ∈ {300, . . . , 3000}
Y ∈ {300, . . . , 3000}

1/X + 1/Y = 1/200, Z = 200

(300 ≤ X), (X ≤ 600)

(300 ≤ Y), (Y ≤ 600)

2 Actually, our implementation meta-s (Frank et al. 2003a) distinguishes between weak projec-
tion generating only constraint conjunctions and strong projection which is allowed to project
disjunctions as well (first proposed in (Hofstedt 2001)). Using different kinds of projections we
are able to realise a variant of the Andorra principle (Costa et al. 1991; Warren 1988) which
proved to be very advantageous w. r. t. efficiency. The generation of bounds in our example
represents a weak projection.
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(9) In the following steps the arithmetic solver’s improved bounds can be projected

back to the pool, from where they are propagated to the finite domain solver, which

then narrows down its choices.

true

RA = simple(X)

RB = simple(Y)

Z = 200

X ∈ {300, 600}
Y ∈ {300, 600}

1/X + 1/Y = 1/200, Z = 200

(300 ≤ X), (X ≤ 600)

(300 ≤ Y), (Y ≤ 600)

(10) At this point we need strong projection (cf. footnote (2)) by which the finite

domain solver puts a disjunction of equations

(X =A 300 ∧ Y =A 300) ∨ . . . ∨ (X =A 600 ∧ Y =A 600)

into the pool. Each of these four conjunctions can again be propagated to the

arithmetic solver. Two of them will lead to solutions, but the other two propagations

lead to inconsistencies in the arithmetic solver and are therefore discarded. One

successful final configuration is:

true

RA = simple(300)

RB = simple(600)

Z = 200

X = 300

Y = 600

Z = 200

X = 300

Y = 600

The solution {RA = simple(300), RB = simple(600)} can be extracted from the

constraint store CFL of the solver CSFL. ✁

This small example already demonstrates the important role of cooperation

strategies for the efficiency of the computation. For example, the ability to con-

trol the order of weak and strong projections allows a considerable restriction of

the set of variable assignments before an explicit search for solutions is initiated for

the remaining alternatives. Suppose that we had applied the strong projection at an

earlier point. This would have caused a search across all 100 alternatives of resistor

combinations, i. e. (X =A 300∧Y =A 300), . . . , (X =A 3000∧Y =A 3000). As a mat-

ter of fact, it is in general a good strategy to delay the introduction of disjunctions

as long as possible for the sake of efficiency. This is suggested by experiences with

the KIDS system (Westfold and Smith 2001).

Based on the intuitive insights provided by this example we will now look more

deeply into the precise definitions of the propagation function tellν and the projec-

tion function proj ν→µ.

3.2 Constraint Propagation (tellν)

As can be seen e. g. in Step (3) of the above example, the function tellν , ν ∈ L,

takes a constraint c ∈ Consν (i. e. a basic constraint of the constraint system of

solver CSν) from the pool and adds it to the constraint store Cν , which leads to a
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tellν : Consν × Storeν −→ {true, false} × Storeν ×DCConsν with

1. if tellν(c, Cν) = (true,C′
ν , c

′′), then

(a) Dν � ∀((Cν ∧ c)←→ (C′
ν ∧ c′′)),

(b) Dν � ∀(C′
ν −→ Cν),

(c) Dν � ∃C′
ν ,

2. if tellν(c, Cν) = (false,C′
ν , c

′′), then

C′
ν = Cν , c

′′ = false, Dν � ¬∃(Cν ∧ c).

Fig. 2. Interface function tellν , ν ∈ L, (requirements)

new store C′
ν . There may also be a remaining part c′′ of c, which is put back into

the pool (but this happens rarely in practice).

Example 3.2. Suppose we have the constraint
√
X = Y in the pool. This may be

used to put the constraint X = Y2 into the store of some solver, while keeping the

constraint Y ≥ 0 in the pool. ✁

Figure 2 shows the requirements for the function tellν .3 The function returns

three values. The first one is a Boolean indicator of the success or failure. The

second one is the modified store. And the third one is the remaining constraint

c′′ ∈ DCConsν , which is put back into the pool. By DCConsν we denote the set of

disjunctions of constraint conjunctions.

When the solver successfully propagates a constraint c to a store Cν (Case 1),

then it must be ensured that the (overall) knowledge of the store and the constraint

is neither lost nor increased (a). It is only possible to add constraints to a store,

but not to delete them. Thus, the new constraint store C′
ν must imply the old one

(b). Of course, the new store C′
ν has to be satisfiable in the domain Dν of CSν as it

is a constraint store (c). In Example 3.1, e. g. in Steps (3) and (4), tellA and tellFL

have been applied according to this definition.

This first case also covers the situation that a solver is not able to handle a

certain constraint c, i. e. if the solver is incomplete. In this case the store Cν does

not change and c = c′′ remains in the pool.4

Figure 3 visualises the state change of the system when a solver performs a

successful constraint propagation. The left side shows the system before the prop-

agation, the right side afterwards. When we propagate c to Cν by tellν(c, Cν), c

is deleted from the pool and propagated to the store Cν . The resulting new store

C′
ν and the remaining constraint c′′ may in general be disjunctions of constraint

conjunctions, e. g. c′′ =
∨

i∈{1,...,n} c
(i). Since store and pool are sets of basic con-

straints, this causes a splitting of the system as shown in Figure 3.

3 In (Hofstedt 2000a) two forms of successful propagation are distinguished, which is necessary
for general solvers to ensure termination of the system. For the “language solvers” considered
in this paper this is simplified.

4 Again, to ensure termination of the overall system, this particular case must be detected by
the overall machinery and the treatment of the constraint must be suspended. We omit this
technical detail in favour of readability.
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... CSν ... CSµ ...

...
Cµ

MCS

...

MCS

.........

c0, . . . c, . . . , cr

...

......

MCS

... ......

c0, . . . , c
(1), . . . , cr

c0, . . . , c
(n), . . . , cr

tell(c, Cν) = (true,C′
ν , c

′′),
where c ∈ Consν and c′′ =

∨

i∈{1,...,n} c
(i).

... CSν ... CSµ ...

... CSν ... CSµ ...

C′
ν

C′
ν Cµ

Cν Cµ

Fig. 3. Application of the interface function tell

If tellν(c, Cν) fails (Case 2) because c and Cν are contradictory, then false is

added to the constraint pool and Cν does not change (not shown in Figure 3).

Example 3.3. The interface function tellA of our rational arithmetic solver CSA

could work as follows (see e. g. Step (10) in Example 3.1):

Given the store C = (1/X+1/Y =A 1/200) the propagation tellA((X =A 300), C) =

(true, C′, true) yields – after some computation by the solver CSA – a new simpli-

fied store C′ = (X =A 300∧Y =A 600). On the other hand, tellA((Y >A 600), C′) =

(false, C′, false) represents a failing propagation. ✁

For each concrete solver CSν the user must provide a suitable function tellν .

However, constraint propagation is mainly based on the satisfiability test which is

the main operation of a constraint solver. Moreover, the requirements in Figure 2

are chosen in such a way that they allow an easy integration of many existing

solvers into the cooperating system, taking particular properties of solvers (like

their incompleteness (cf. Case 1) or an existing entailment test) into consideration.

Examples for such concrete propagation functions will be shown in Sect. 4 for

the special cases of functional logic and logic languages, when they are viewed as

solvers.

3.3 Projection of Constraint Stores (proj ν→µ)

Projection is used for information exchange between constraint solvers CSν and

CSµ, ν 6= µ, µ, ν ∈ L, via the constraint pool.

Figure 4 shows the requirements for the function proj ν→µ. The function proj ν→µ

takes a set of common variables of the two solvers and the local store Cν and returns

(a disjunction of conjunctions of) constraints to the pool. proj ν→µ(X,Cν) = c

describes a projection of a store Cν w. r. t. common variables (i. e. X ⊆ Xν ∩ Xµ)

to provide constraints c of another solver CSµ. It provides knowledge implied by

the store Cν . Projection does not change the stores but only extends the pool by

the projected constraints.

To ensure that finally no solution is lost, a projection c must provide every

satisfying valuation of the current store Cν . That is, proj ν→µ must be defined



Integration of Declarative and Constraint Programming 15

proj ν→µ : ℘(Xν ∩Xµ)× Storeν → DCConsµ, where Vars(proj ν→µ(X,Cν)) = Y ⊆ X,

must be sound, i. e. for every valuation σν for the variables of Y must hold:

If (Dν , σν) � ∃ Y Cν , then (Dµ, σν) � proj ν→µ(X,Cν), where

∃ Y Cν denotes the existential closure of formula Cν except for the variables of Y .

Fig. 4. Interface function proj ν→µ, µ 6= ν, µ, ν ∈ L, (requirements)

in such a way that every solution σν of Cν is a solution of its projection c in Dµ

(soundness).

Example 3.4. Consider the arithmetic solver CSA and the finite domain solver

CSFD. Let CFD = (X ∈FD {300, . . . , 3000} ∧ Y ∈FD {300, . . . , 3000}) hold. Define

projFD→A (as a weak projection, cf. footnote (2)) such that

projFD→A({X}, CFD) = ((X ≥A 300) ∧ (X ≤A 3000)).

This corresponds to Step (7) of Example 3.1. ✁

As in the case of tellν the function proj ν→µ has to be concretely programmed for

every pair of given solvers. For many pairs of solvers it is possible to automatically

provide simple projection functions generating equality constraints which at least

express variable bindings. Often it is also sufficient to provide actual projection

functions only for particular pairs of solvers and to reduce superfluous communica-

tion.

Examples of projection functions will also be shown in Sect. 4 in connection with

constraint functional logic and constraint logic languages.

3.4 Semantics

In (Hofstedt 2001) we define reduction systems describing solver collaborations

based on the interface functions tellν and proj ν→µ. The reduction systems work on

so-called configurations which consist of representations of the current constraint

pool and the associated stores, which together represent the state of the system.

Hofstedt (2001) gives a detailed discussion of the termination, confluence, sound-

ness and completeness of the reduction systems.

Based on the signatures and Σ-structures of the incorporated constraint systems

we build combined constraint systems by their disjoint unions. Clearly, for those

sorts and function and predicate symbols that are common to different systems the

corresponding carrier sets, functions and predicates must be identical. This applies

in particular to the semantics of the equality symbol (on shared sorts).

It is shown that – using our method – no solutions are lost. If the system fails

then the given constraint problem is unsatisfiable. Furthermore, we discuss the

situation of suspended constraints remaining in the pool due to the incompleteness

of solvers. If all incorporated solvers are complete and the reduction relation is

terminating, then for a satisfiable constraint problem the method can be guaranteed

to be successful.
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The soundness and completeness results do not depend on the particular coop-

eration strategy of the solvers.

The (obvious) fact that the completeness of the overall system depends on the

completeness of the individual solvers will play a role in connection with functional

logic languages.

4 Combination of Declarative and Constraint Programming

As a particular application, our system of cooperating solvers allows the integration

of different host languages by treating them as constraint solvers. As a matter of

fact, it even makes it possible to work quite flexibly with different evaluation strate-

gies, that is, different operational semantics. A good point in case are functional

(logic) languages, which have very different semantics depending on the chosen

evaluation mechanisms. As mentioned in Sect. 2, this has already been elaborated

in the textbook (Manna 1974) for functional languages; for the realm of functional

logic programming the pertinent issues are described in (Hanus 1994; Hanus 1995).

The feasibility of this idea is based on two main observations: First, the evaluation

of expressions in declarative languages consists of their stepwise transformation to

a normal form while particular knowledge (in the form of substitutions) is collected.

Second, this way of proceeding is similar to a stepwise propagation of constraints

to a store, which is simplified in doing so.

In the following, we consider the integration of a functional logic language and

of a logic language, resp., into the system of cooperating solvers. Syntactically, we

extend the languages by constraints, but their evaluation mechanisms are nearly

unchanged: they are only extended by a mechanism for collecting constraints of the

other constraint solvers.

A four-step process. The integration of a declarative language into our system

of cooperating solvers requires four activities.

1. The inherent constraints of the language have to be identified.

2. Conversely, the constraints from the other domains have to be integrated into

the syntax of the language.

3. The language evaluation mechanism (e. g. reduction or resolution) has to be

extended by gathering constraints from the other domains.

4. Finally one needs to carefully define the interface functions tell . and proj .→.

of the new language solver.

4.1 A Functional Logic Language as Constraint Solver

The introduction of constraints into the rules of a functional logic language yields

constraint functional logic programming. We follow our four step process. Recall

that the basic syntactic construct is

f(t1, . . . , tn) → t where G

where G is a set of constraints, including constraints from other domains. Moreover,
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all constraints in G are homogeneous, that is, are built from the signature of one

solver, including equalities t1 =FL t2 of the functional logic language.

(1) Identifying language constraints. Functional logic languages are based on equal-

ities between terms. In order to state precisely what this means, we have to look

more closely into the semantic models of these languages, cf. e. g. (Manna 1974;

Winskel 1993; Broy et al. 1987). It has to be ensured that the operational semantics

induced by our cooperating solvers is compatible with the mathematical semantics

of the language under consideration.

Recall that the semantic value of a term t in the model D is denoted by JtKD; when

D is obvious from the context, we omit it and just write JtK. We are dealing with

partial functions; according to the traditional convention we write “⊥” (pronounced

“bottom”) to express partiality: JtK = ⊥ means: t has no proper semantic value.

We note in passing that there are two kinds of partiality, both of which can be

subsumed under the element ⊥. One is nontermination of evaluations, the other is

the lack of matching rules. For example, if there is no rule for X/0 – independent

of the responsible solver – then we have Jt/0K = ⊥. The following discussion is

exemplified with nontermination but it applies to both cases.

Example 4.1. Consider the following superficial example over the natural numbers

with constructors 0 and s . (To ease reading we write s without parentheses.)

f(0, Y) → 0

f(s X, Y) → f(X, f(s X, Y))

We consider a functional logic solver CSFL working in cooperation with others and

we use again the notation from Example 3.1 to illustrate the snapshots from the

evaluation. The formalisation of the interface functions for CSFL will be given and

explained in more detail subsequently.

Start from the constraint Z =FL f(0, f(s 0, s 0)) in the pool.

Z =FL f(0, f(s 0, s 0))

true true true

In a call-by-name semantics we first reduce the outermost f using the first rule of

the program. This immediately yields the result: Z =FL 0. Semantically this means

JZK = Jf(0, f(s 0, s 0))Kcbn = J0K.

In a call-by-value semantics we first reduce the innermost f using the second rule:

Z =FL f(0, f(0, f(s 0, s 0))). As one can immediately see, this reduction process

will never terminate, that is, there will always be an equation Z =FL ti in the

pool (with longer and longer right-hand sides ti). Semantically this means JZK =

Jf(0, f(s 0, s 0))Kcbv = ⊥. ✁

What does this mean for the introduction of variables? Recall that we need

auxiliary variables for the homogeneity of the constraints for different solvers, i. e.

we need to flatten constraints and terms. To see the pertinent problems, we modify
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the above example by introducing several auxiliary variables. Moreover, we add a

further function g.

f(0, Y) → 0

f(s X, Y) → f(X, W) where W =FL f(s X, Y)

g(X) → 0 where f(s X, s X) =FL 0

Let us first consider the operational semantics. We start from

Z =FL g(0)

true true true

After the first two steps this leads to the following situation:

Z =FL 0, f(0, W) =FL 0, W =FL f(s 0, s 0)

true true true

In the next steps we may propagate Z =FL 0 and evaluate the two calls of f:

W =FL f(0, W′), W′ =FL f(s 0, s 0)

Z = 0 true true

This may continue into the following configuration:

W(i) =FL f(s 0, s 0)

Z = 0, W = 0, W′ = 0, . . . true true

This process will obviously continue forever, creating more and more auxiliary vari-

ables W(j).

Let us compare this w. r. t. the original (not flattened) definition of the function

f in Example 4.1 and the two kinds of mathematical semantics that we consider

here.

• Under call-by-value semantics, the result is JZK = Jg(0)K = ⊥.

• Under call-by-name semantics the result is JZK = Jg(0)K = J0K.

Note that the auxiliary variables W, W′, . . . do not appear at all in the solution

space of the mathematical semantics, since they are only internal artefacts of the

computation process.

Coming back to the operational semantics, we can only look up the value of Z in

the store, when the computation is finished, that is, when the pool is empty. In the

above example this will never happen; therefore we will never be able to extract

the value Z = 0 from the store. This means that Z has no value, i. e. JZK = ⊥.

In other words: Without further precautions, the introduction of variables is only

compatible with call-by-value semantics.

How could we implement call-by-name semantics and still allow the introduction

of variables? A simple solution consists of the introduction of a dependency relation
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between variables. In our example, W′ would depend on W, because it occurs in

the term on the right-hand side of W. As soon as the pertinent rule would reduce

W =FL f(0, W′) to W =FL 0, the dependent variable W′ would be eliminated from the

pool. Moreover, the order of evaluation would have to follow the dependencies.

As can be seen from this sketch, our method of handling hybrid constraints by

flattening is more naturally related to call-by-value semantics, but with a little effort

other semantic principles such as call-by-name can be accommodated as well.

We note in passing that these considerations do not only apply to functional logic

solvers, but to all kinds of solvers. Consider for example an arithmetic solver with

the rule 0 ∗ X = 0. If we multiply the term g(0) from the above example by 0 we

obtain from Z = 0∗g(0) the two constraints Z = 0∗X1, X1 =FL g(0), which leads to

Z = 0, X1 =FL g(0). Again, the differences between call-by-name and call-by-value

can be captured by introducing a dependency of the variable X1 on Z.

Remark on strict equality. From a semantic point of view it is unsatisfactory that we

express undefinedness only operationally by the fact that the pool does not become

empty. In a denotational setting, one would prefer to represent this situation also

as ⊥. This brings strict equality into the game.

In discussions about mathematical semantics there are usually two kinds of equal-

ity: Under strong equality we have e. g. (⊥ =D ⊥) = true and (⊥ =D 3) = false.

And strict equality has the property Jt1 = t2K =D ⊥ if Jt1K =D ⊥ or Jt2K =D ⊥.

Strong equality obeys the laws of classical two-valued logic, but it is in general not

decidable. Strict equality is a “normal” operator in the language but the semantics

leads to all problems of three-valued logic. Neither equality is “better” than the

other, they just serve different purposes.

Call-by-value semantics evidently conforms nicely to strict equality. In our above

example we have JZK = Jg(0)K = Jf(s 0, s 0)K = . . . = ⊥. Therefore every pool

contains some equality of the kind JW(i) = f(s 0, s 0)K and thus JW(i) = ⊥K, which –

under strict equality – is ⊥. Finally, we must consider conjunctions as strict such

that the whole configuration is ⊥. This exactly reflects the fact that our computation

does not terminate.5 The overall system remains semantically consistent, since a

“wrong” equation such as Z = 0 is in conjunction with ⊥ and therefore does no

harm. As a matter of fact, the overall configuration just moves in each step from

one representation of the value ⊥ to another representation of the value ⊥.

The same considerations apply to call-by-name semantics. Here we have the sit-

uation that e. g. Jf(0,⊥)K = 0. Therefore an equality like f(0, W) = 0, where both

terms are different from ⊥, has the same truth value under both kinds of equality.

However, if we encounter a function that is nonterminating even under call-by-name

semantics, then we need again the strict equality in order to represent the overall

nontermination by ⊥.

The fact that the operational semantics requires additional means such as depen-

dencies among variables is independent of the kind of equality. If one considers the

5 The formal disjunctions that reflect the various branches of the evaluation need a different
semantic treatment in order to accommodate the inherent nondeterminism.
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above example, the computation is consistent, since it simply keeps adding valid

equalities of the kind W(i) = 0 to the store. All we need is a mechanism to stop it

from doing this forever.

(2) Extending the language by constraints of other domains. The syntax of the

language also contains the constraints from the other domains (occurring in the part

. . . where G of the rules). Therefore they are also part of the language constraints.

To get a clean separation of concerns we also have to flatten hybrid terms from

different domains. Suppose, for example, that we had given the third rule of our

program in the hybrid form

rc(par(R1, R2)) → Z where 1/rc(R1) + 1/rc(R2) =A 1/Z

Then we would need to put this into the separated form

rc(par(R1, R2)) → Z where 1/X + 1/Y =A 1/Z, X =FL rc(R1), Y =FL rc(R2)

(3) Extending the language evaluation mechanism by gathering constraints. Func-

tional logic languages are based on narrowing. Therefore we consider this evaluation

mechanism as constraint solver CSFL. But in addition to performing the narrowing

steps, the solver must also collect constraints from other domains (occurring in the

part . . . where G).

The basic concept of a narrowing step with constraints can be described as follows:

Let e be an equation with a distinguished non-variable subterm t, that is, e[t] with

t /∈ X . Let (l → r where G) be a rule from the program such that σ = mgu(t, l)

unifies the subterm t with the left-hand side l of the rule. Then the narrowing step

yields the new equation σ(e[r]) together with the rewritten constraint σ(G), we

write: e[t] ❀σ (σ(e[r]), σ(G)).

The extensive discussion of the previous pages has shown the various possibilities

for choosing evaluation strategies and their impacts on the semantics.

(4) Defining the interface functions tellFL and projFL→ν of the particular language

solver. This final step has to integrate the effects of narrowing and constraint col-

lection with the other solvers.

Propagation. Figure 5 illustrates how the interface function tellFL is used to simu-

late a narrowing step with constraints, and Figure 6 gives the formal definition of

the pertinent requirements. To ease the presentation we suppose that all functional

logic equalities are in the form Y =FL t with variable Y and term t. This can always

be achieved with the help of auxiliary variables.

Like all solvers, CSFL propagates constraints to its store CFL thereby checking

the satisfiability of CFL in conjunction with the new constraints. Therefore the

function tellFL incorporates the principle of narrowing.

In the light of the preceding discussion on flattening we assume that all con-

straints which get into the pool (either as part of the initial problem to solve or

as results of propagations or projections) are decomposed with the help of auxil-

iary variables such that all subterms of the form f(t1, . . . , tn), where f is a defined
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Cν

Cν

MCS

... ......

MCS

......

......

...

MCS

......

. . . , Y =FL t, . . . . . . , σi, Y =FL ti, σi(Gi), . . .

. . . , σj , Y =FL tj , σj(Gj), . . .

Program:

. . .

lj → rj where Gj

φ(t) ❀σi
(ti, σi(Gi)) and

φ(t) ❀σj
(tj , σj(Gj)).

and it holds:

li → ri where Gi

... CSFL ... CSν ... ... CSFL ... CSν ...

CFL

... CSFL ... CSν ...

CFL

= φ
Cν

CFL

Fig. 5. Application of the interface function tellFL (see also Figure 6)

function, are extracted. The definition of tellFL therefore only needs to consider

narrowing steps on outermost terms. The distinction between call-by-value and

call-by-name must therefore be based on the aforementioned dependency relation

among variables.

We have to distinguish two kinds of constraints Y =FL t (see Figure 6):

(1) When the term t still contains defined functions, a narrowing step is applied

as part of tellFL. This is only reflected by a change of the constraint pool. The store

does not change in this case. Note that due to the flattening t contains exactly one

defined function f , and this function is the outermost symbol in t. Moreover, since

the substitution φ defined in Figure 6 only contains constructor terms, t̂ = φ(t)

retains this property.

(2) When the term t is a constructor term then the constraint Y =FL t is added

to the store if possible. Thereby, the satisfiability test is realised by the parallel

composition ↑ of substitutions.

This integration of the narrowing into the propagation sometimes leads to earlier

bindings of variables and thus to a faster recognition of unsuccessful computations.

The price to be paid is that the solver CSFL is amalgamated into the function

tellFL – and with it all its problems.

Example 4.2. To elucidate the interface definition we use our running example

from Sect. 3.1. In Step (2) of this example we applied the only matching rule

rc(par(R1, R2)) → Z where 1/X + 1/Y =A 1/Z, X =FL rc(R1), Y =FL rc(R2)

to the initial configuration. We split the equation in the pool into two equations

using an auxiliary variable such that the pool reads:

Z1 =FL rc(par(RA, RB)), Z1 =FL 200

We pick the first term and apply tellFL as described in Figure 6. Note that we

have the special situation, where the store CFL = φ is still empty such that t̂ =

φ(rc(par(RA, RB))) = rc(par(RA, RB)).

The narrowing step for the term with (a new instance of) the rule unifies the
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tellFL: Let P be a functional logic program with constraints, let CFL = φ be the current
constraint store of CSFL. (Recall that the constraint store CFL is nothing but a substi-
tution φ from variables to constructor terms, which is written in the form of equations
and thus can be treated like constraints.) Let c = (Y =FL t) be the constraint to be
propagated. Let t̂ = φ(t).

Finally, we use the following notion: A rule p = (lp → rp where Gp) applies to t̂, if for
t̂ 6∈ X there is a unifier σp = mgu(t̂, lp).

We need to distinguish the following cases

1. Let t̂ contain defined functions; that is, t̂ is of the form f(. . .) with f being the only
defined function (due to the maximal flattening). If the set Pc ⊆ P of applicable
rules is nonempty, then
tellFL(c, CFL) = (true, CFL,

∨

p∈Pc
(σp ∧ (Y =FL σp(rp)) ∧ σp(Gp))).

2. Let t̂ be a constructor term, i. e. t̂ ∈ T (∆, XFL).

(a) If ({Y = t} ↑ CFL) 6= ∅, then
tellFL(c, CFL) = (true, {Y = t} ↑ CFL , true).

(b) If ({Y = t} ↑ CFL) = ∅, then
tellFL(c, CFL) = (false, CFL, false).

Fig. 6. Interface function tellFL

subterm rc(par(RA, RB)) – which happens to be the full term – with the left-hand

side rc(par(R1, R2)) of the rule. Since this matching exists, we have Case 1 of

Figure 6. The resulting most general unifier is the substitution σ = {R1 = RA, R2 =

RB}. Applied to the rule this substitution yields the instantiated right-hand side Z

and constraints 1/X + 1/Y =A 1/Z, X =FL rc(RA), Y =FL rc(RB). This is put back

into the pool:

R1 =FL RA, R2 =FL RB, Z1 =FL Z, 1/X + 1/Y =A 1/Z, X =FL rc(RA),

Y =FL rc(RB), Z1 =FL 200

If there is more than one applicable rule, we get a number of newly built constraint

pools.

Applying tellFL to the two constraints R1 =FL RA and R2 =FL RB leads to

Case 2.(a) of Figure 6. As a result the store CFL then contains these constraints (a

substitution). The remaining constraints in the pool are as follows:

Z1 =FL Z, Z1 =FL 200, 1/X + 1/Y =A 1/Z, X =FL rc(RA), Y =FL rc(RB).

Note, that Example 3.1 displays simplified forms for brevity. ✁

Projection. Since the constraint store CFL only contains substitutions, the projec-

tion is trivial. It generates equality constraints representing them. For example,

in Step (7) the constraint Z =A 200 is transferred from CFL to the pool using

projFL→A.

The specification of the function projFL→ν is given in Figure 7. (Note, that the

equalities in the result φ|X are indexed ν to express the fact that they now belong

to the domain of the solver CSν .)
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projFL→ν : The projection of a store CFL = φ w. r. t. a constraint system ζν and a set
of variables X ⊆ XFL ∩Xν makes the substitutions for x ∈ X explicit:

projFL→ν(X,φ) =
{

φ|X if φ 6= ∅
true otherwise.

Fig. 7. Interface function projFL→ν , ν ∈ L

Completeness and other aspects. Since the interface functions tellFL and projFL→ν

of our functional logic language solver fulfil the requirements given in Sect. 3, the

soundness and completeness results of the cooperation framework hold for the inte-

gration of a functional logic language – however, only relative to the completeness

of the narrowing strategy encoded within tellFL.

It is well known that narrowing is in principle a complete and sound method

for theories presented by confluent and terminating rewrite systems. But in con-

nection with functional logic languages and in particular in the presence of ex-

tra variables the issue of completeness becomes more intricate. This problem has

been investigated by several authors, among others (Middeldorp and Hamoen 1994;

Suzuki et al. 1995; Hanus 1995). These papers discuss slightly different syntactic

criteria, which guarantee that certain narrowing strategies (e. g. lazy or needed

narrowing) are sound and complete.

Evidently, these criteria carry over to the narrowing strategy that we embed into

our function tellFL. For lack of space we cannot go into details here. Suffice it to

say that, for example, our program rule

rc(par(R1, R2)) → Z where 1/X + 1/Y =A 1/Z, X =FL rc(R1), Y =FL rc(R2)

contains the three extra variables X, Y and Z and is in the class 3-CTRS of (Middeldorp and Hamoen 1994).

But the syntactic form also meets the requirements of being orthogonal, properly

oriented and right-stable (Suzuki et al. 1995), which guarantees that the program

is level-confluent. (These conditions essentially state that the variables are in a nice

left-to-right order.)

As a matter of fact, the rule is also constructor-based and functional in the

sense of (Hanus 1995), since the variables R1 and R2 in the guarding constraints

occur in the left-hand side and the variable Z of the right-hand side is defined by

the guarding constraints. This also entails the completeness of lazy and needed

narrowing. But Hanus imposes a further requirement: the equality =FL has to be

strict (which allows to consider it as an equality (Y ≡ t) =FL true). Since we only

put substitutions with constructor terms into the store CFL, this works in our

approach as well. (This is similar to the language curry (Hanus et al. 2003).)

However, there is one further issue! The above quoted requirements refer to the

functional logic equalities in the guard G. But our rules have a more general form:

f(t1, . . . , tn) → r where c1, . . . , cm, u1 =FL v1, . . . , uk =FL vk

Only the equalities ui =FL vi (with ui being a constructor term, possibly only a

variable) belong to the functional logic solver. The cj are constraints from other

domains.
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This raises the question: How do these constraints c1, . . . , cm from the other

domains fit into the picture? Let us consider our standard example

rc(par(R1, R2)) → Z where 1/X + 1/Y =A 1/Z, X =FL rc(R1), Y =FL rc(R2)

Without the first constraint, the variable Z would not occur in the guard and thus

the rule would not even be 3-CTRS (and thus no completeness results could be

given at all). On the other hand, all constraints ci do not contain any of the defined

functions and therefore do not participate in any kind of narrowing strategy. So,

from the point of view of narrowing, a variable like Z can be treated like a constant.

If one of the other solvers finds a solution, e. g. Z = 200 in our example, then the

corresponding substitution is put into the store CFL. This way the associated value

is guaranteed to be a ground constructor term and thus does not interfere with the

narrowing strategies.

This illustrates again the – evident – fact that the completeness of the overall

system, and thus also of its narrowing part, depends on the completeness of all

participating solvers.

4.2 A Logic Language as Constraint Solver

The integration of a logic language into the system of cooperating solvers yields a

constraint logic programming language. Since this is actually simpler than the case

of functional logic languages, we only sketch it here briefly.

(1 & 2) Identifying language constraints and extending the language by constraints

of other domains. It is widely accepted that logic programming can be interpreted

as constraint programming over the Herbrand universe. The appropriate constraint

solving mechanism CSL is resolution.

The goals according to a given constraint logic program P are the natural con-

straints of a logic language solver. Furthermore, the set ConsL of constraints of this

solver must contain equality constraints Y =L t between variables and terms to

represent substitutions.6

We extend the syntax of the language by constraints of other constraint systems

which yields the typical CLP syntax, cf. e. g. (Jaffar and Lassez 1987). Thus, the

set ConsL must furthermore include all constraints of the incorporated solver(s).

(3 & 4) Extending the language evaluation mechanism by gathering constraints and

defining the interface functions of the particular language solver. For the integration

of CSL into the system the interface functions tellL and projL→ν must be defined.

Step (3), i. e. gathering constraints during resolution, is realised by the extension

of the resolution step from atoms to the whole body including the constraints of

other domains.

6 Not all CLP systems support equalities on the syntactical level. Rather they only generate them
internally in the solver. In our system, they are explicitly visible.
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tellL: Let P be a constraint logic program, let CL = φ be the current store of CSL.

1. Let R = p(t1, . . . , tm) be the constraint (goal) which is to be propagated. Let
R̂ = φ(R). We use the following notion: A rule p = (Qp :- rhsp) applies to R̂, if
there is a unifier σp = mgu(R̂,Qp).

(a) If the set PR ⊆ P of applicable rules is nonempty, then
tellL(R,CL) = (true, CL,

∨

p∈PR
(σp ∧ σp(rhsp))).

(b) If there is no applicable rule in P , then
tellL(R,CL) = (false, CL, false).

2. Let c = (Y =L t) be the constraint which is to be propagated.

(a) If ({Y = t} ↑ CL) 6= ∅, then
tellL(c, CL) = (true, {Y = t} ↑ CL , true).

(b) If ({Y = t} ↑ CL) = ∅, then
tellL(c, CL) = (false, CL, false).

Fig. 8. Interface function tellL

Propagation. The propagation function tellL emulates resolution steps (including

gathering constraints). Its formal definition is given in Figure 8. Case 1.(a) repre-

sents a resolution step on a goal R as a successful propagation, where for every

applicable rule we get a newly created constraint pool and, thus, a new instanti-

ation of the architecture. If there is no applicable rule for a goal, i. e. Case 1.(b),

the propagation fails (in contrast to the functional logic solver considered before,

undefinedness of a predicate is regarded as failure here).

Similar to the definition of tellFL the remaining cases describe the propagation

of equality constraints by parallel composition of substitutions (Case 2).

Projection. As before, the projection function provides constraints representing the

substitution from the store which has been computed during resolution. The def-

inition of the projection function projL→ν is the same as for the functional logic

language solver given in Figure 7, where the index FL is replaced by L to denote

the origin of the projection.

Since the interface functions tellL and projL→ν fulfil the requirements given in

Sect. 3, the soundness and completeness results of the cooperation framework hold

for the integration of a logic language.

5 Conclusion and Related Work

This paper describes a general approach for the integration of declarative languages

and constraint systems. This essentially means to treat their evaluation mechanisms

together with programs as constraint solvers. This is done in four general steps :

1. Identifying language constraints,

2. Extending the language by constraints of other domains,

3. Extending the language evaluation mechanism by gathering constraints,

4. Defining the interface functions of the particular language solver.
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The most important aspect of our approach is that the overall system for coop-

erating solvers allows the handling of hybrid constraints over different domains.

Gains and perspectives. Our general framework for cooperating solvers provides

mechanisms for the definition of cooperation strategies. Similar to CLP(X) (Jaffar and Lassez 1987)

and CFLP(X) (López-Fraguas 1992), which are covered by our approach, the frame-

work can thus be instantiated by three parameters: a strategy definition S, a set

X of constraint systems and a host language Y. In this way, our approach enables

the building of constraint languages customised for a given set of requirements for

a comfortable modelling and the solution of many problems.

For example, if one needs a convenient language to express search problems with

special constraints over finite and/or further domains, the user chooses a logic lan-

guage and according constraint systems. For problems which allow or require a

more deterministic modelling one may decide to build a constraint language based

on a functional or functional logic language. In a similar way one can imagine to

combine a database language with constraints (Kanellakis et al. 1995) or a partic-

ular special-purpose language or system, such as an expert system, a geographical

information system, or a planning system. Of course, the user is responsible for a

sound specification of the language constraints and the definition of the interface

functions.

The meta-solver system meta-s (Frank et al. 2003b; Frank et al. 2003a) imple-

ments our ideas. Even though meta-s provides programming constructs for its

integration into other applications, which may even be imperative languages, the

true integration of imperative languages according to our approach is an open ques-

tion and a topic of future research. The main reason is that declarative languages

abstract from real-world issues such as time and state while imperative languages

are time-dependent which complicates their integration also for our approach.

The choice of an appropriate cooperation strategy plays an important role for

the efficiency of the cooperating system (Frank et al. 2003a).

The definition of solver cooperation strategies is also very interesting in the case

of language solvers. This will allow for example to switch from depth-first search

to breadth-first search or an evaluation mechanism based on the Andorra principle

(Costa et al. 1991; Warren 1988) using a logic language without reimplementing

the evaluation mechanisms. The system meta-s already offers predefined strategy

patterns for these search strategies which can be refined by problem-dependent

knowledge or user knowledge about the program.

If the user is able to define cooperation strategies for the solvers and the lan-

guage(s) or to refine them on the base of predefined strategy patterns (as given in

our implementation), she/he can also employ problem-dependent knowledge and

user knowledge, e. g. about the termination of particular predicates, to guide the

computation.

First results (Frank et al. 2004) on the integration of language solvers into the

meta-solver framework meta-s according to the described approach confirm our

theoretical considerations.
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Finally, the approach opens a further interesting perspective: A simple approach

for the combination of different languages consists of the definition of an explicit

interface and providing language constructs for initialising subcomputations in the

particular languages. In this way one reaches a loose coupling and interaction of

programs written in different languages.

Our cooperation framework bases on a similar idea: It provides a meta mecha-

nism which takes care of the strategy of the cooperating solvers and provides the

constraint pool for maintaining and managing common data and constraints. Be-

sides this the main concept is the uniform solver interface which allows to integrate

declarative languages as solvers as shown above. Using this interface it is not only

possible to integrate constraint solvers and language evaluation mechanisms but

also to integrate language evaluation mechanisms among each other by appropri-

ate interface definitions. This finally yields a language interaction according to the

above sketched interface model.

Related Work. López-Fraguas (1992) considered a general scheme CFLP(X) for

constraint functional logic programming. The scheme is based on lazy functional

logic languages and allows beside conditions constraints in the guards of the rules.

Using our cooperation approach, we achieve a covering of the CFLP(X) and CLP(X)

(Jaffar and Lassez 1987) approaches. In (Hortalá-González et al. 1997) and (Fernández et al. 2003),

extending CFLP(X), functional logic programming is integrated with real arith-

metic and finite domain constraints respectively. The lazy functional logic languages

toy(R) and toy(FD) are the respective implementations. Lux (2001) integrates

linear constraints over real numbers into the functional logic language curry in a

similar way.

open cflp by Kobayashi et al. (2003) combines a functional logic host language

with collaborating equational solvers which may be distributed in an open environ-

ment. It provides the user with a declarative strategy definition for the cooperat-

ing solvers basing upon a set of basic operators. However, the strategy language of

meta-s gives finer control over the individual collaboration steps because of its well

considered solver interface on the one hand and its structural pattern-matching and

constraint rewriting facilities which provide a finer and more intuitive control for

strategy definition on the other hand.

While our approach pursues the idea to integrate languages into a system of coop-

erating solvers the approaches (López-Fraguas 1992; Hortalá-González et al. 1997;

Fernández et al. 2003; Kobayashi et al. 2003; Lux 2001) come from the opposite

point of view and extend the functional logic program evaluation by constraint

evaluation.

In contrast to the other approaches our framework allows the integration of sev-

eral constraint systems. The user can integrate desired domains and solvers which

satisfy the interface requirements as discussed in Sect. 3. The opportunity to in-

tegrate different host languages and constraint systems also distinguishes our ap-

proach from other existing systems of cooperating solvers (for example (Hong 1994;

Monfroy 1996; Rueher 1995)) that usually have one fixed host language (a logic lan-

guage).
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Furthermore both, the above mentioned languages and the cooperative systems,

mainly have a fixed order of evaluation of constraints and functional expressions

resp. In contrast, an integration according to our ideas using the meta-s system

allows the user to either define its own strategies or to refine existing strategy

patterns in a simple way. The usefulness of different cooperation strategies has been

proven for usual solvers (e. g. on arithmetic, see (Frank et al. 2003b)). As well, first

results for the integration of a logic language into meta-s confirm their usefulness

for language solvers (Frank et al. 2004).

oz (Müller et al. 1995) supports (constraint) logic, functional and object-oriented

programming styles within one (as well fixed) language. The computation in oz is

based on the concept of computation spaces (Schulte 2002) which consist of a con-

straint store containing only basic constraints and propagators (for more complex

constraints) manipulating them. Similar to our framework, computation spaces can

be used to describe solver cooperations and search strategies. However, this relies

on all solvers sharing the same store format and hence is not satisfying for the main

goal of our approach, i. e. the cooperation of black box solvers independent of their

implementation.
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Nilsson, U. and Ma luszyński, J. 1995. Logic, Programming and Prolog. John Wiley &
Sons Ltd.

Palamidessi, C. 1990. Algebraic Properties of Idempotent Substitutions. In Automata,
Languages and Programming – ICALP, M. Paterson, Ed. LNCS, vol. 443. Springer,
386–399.

Reddy, U. 1985. Narrowing as the Operational Semantics of Functional Languages. In
IEEE Symposium on Logic Programming. 138–151.

Rueher, M. 1995. An Architecture for Cooperating Constraint Solvers on Reals. In
Constraint Programming: Basics and Trends, A. Podelski, Ed. LNCS, vol. 910. Springer,
231–250.

Schulte, C. 2002. Programming Constraint Services. LNCS, vol. 2302. Springer.

Suzuki, T., Middeldorp, A., and Ida, T. 1995. Level-Confluence of Conditional Rewrite
Systems with Extra Variables in Right-Hand Sides. In 6th International Conference on
Rewriting Techniques and Applications. LNCS, vol. 914. Springer, 179–193.

Warren, D. H. 1988. The Andorra Principle. Presented at the Gigalips Workshop,
Swedish Institute of Computer Science (SICS), Stockholm, Sweden.

Westfold, S. J. and Smith, D. R. 2001. Synthesis of Efficient Constraint Satisfaction
Programs. In Knowledge Engineering Reviews. Special Issue on AI and OR. Kestrel
Institute Technical Report KES.U.01.7.

Winskel, G. 1993. Formal Semantics of Programming Languages. MIT Press.


	Introduction
	Declarative Programming Languages
	Cooperating Constraint Solvers
	An Example
	Constraint Propagation (tell)
	Projection of Constraint Stores (proj)
	Semantics

	Combination of Declarative and Constraint Programming
	A Functional Logic Language as Constraint Solver
	A Logic Language as Constraint Solver

	Conclusion and Related Work
	References

