
ar
X

iv
:c

s/
06

01
01

8v
1

 [
cs

.L
O

]
 6

 J
an

 2
00

6

Under consideration for publication in Theory and Practice of Logic Programming 1

A comparison between two logical formalisms for

rewriting

MIGUEL PALOMINO∗

Departamento de Sistemas Informáticos y Programación

Facultad de Informática, Universidad Complutense de Madrid, Spain

(e-mail: miguelpt@sip.ucm.es)

submitted 12 December 2003; revised 12 April 2005; accepted 5 January 2006

Abstract

Meseguer’s rewriting logic and the rewriting logic CRWL are two well-known approaches
to rewriting as logical deduction that, despite some clear similarities, were designed with
different objectives. Here we study the relationships between them, both at a syntactic
and at a semantic level. Even though it is not possible to establish an entailment system
map between them, both can be naturally simulated in each other. Semantically, there
is no embedding between the corresponding institutions. Along the way, the notions of
entailment and satisfaction in Meseguer’s rewriting logic are generalized. We also use the
syntactic results to prove reflective properties of CRWL.

KEYWORDS: rewriting logic, constructor-based rewriting logic, institutions

1 Introduction

The aim of this paper is to study in detail, and to try to clarify, the relationships

between two well-known approaches to rewriting as logical deduction, namely, José

Meseguer’s rewriting logic (Meseguer 1992), and the constructor-based rewriting

logic (CRWL) developed by Mario Rodŕıguez-Artalejo’s research group in Madrid

(González-Moreno et al. 1999).

The first of these was proposed as a logical framework wherein to represent other

logics, and also as a semantic framework, a unified model of concurrency for the

specification of languages and systems. The experience accumulated throughout the

last years has come to support that original intention (Mart́ı-Oliet and Meseguer 2002b).

In particular, it has been shown that rewriting logic is a very flexible framework in

which many other logics, including first-order logic, intuitionistic logic, linear logic,

Horn logic with equality, as well as any other logic with a sequent calculus, can be

represented (Meseguer 2000; Mart́ı-Oliet and Meseguer 2002a; Verdejo and Mart́ı-Oliet 2002;

Thati et al. 2002; Verdejo 2003). An important feature of these representations that

∗ Supported by a postgraduate scholarship from the Spanish Ministry for Education, Culture, and
Sports, and by the Spanish CICYT project AMEVA TIC 2000–0701–C02–01. This work was
completed during a stay of the author at the Department of Computer Science in the University
of Illinois at Urbana-Champaign.

http://arxiv.org/abs/cs/0601018v1

2 M. Palomino

should be stressed is that they are usually quite simple and natural (in Meseguer’s

vocabulary, “the representation distance is zero”), so that the mathematical prop-

erties of the source logics are often straightforward to derive in their rewriting logic

representation.

On the other hand, the goal of the constructor-based rewriting logic is to serve

as a logical basis for declarative programming languages involving lazy evaluation,

offering support, in addition, to non-strict and possibly non-deterministic functions.

Despite these differences, there is a clear resemblance between both logics, namely,

the fact that logical deduction is based on rewriting. It seems natural, then, to ask

about the relationships between deduction in these logics and to extend the question

so as to encompass whether the corresponding models are also related. A suitable

framework in which to carry out this study is the theory of general logics developed

in Meseguer (1989). There, logics are described in a very abstract manner and two

separated components are distinguished: a syntactic part, which is captured by the

notion of entailment system, and a semantic one, captured by Goguen and Burstall’s

concept of institution (Goguen and Burstall 1992).

We will begin by studying derivability and, for that, we will try to associate en-

tailment systems to both logics and to relate them by means of a map of entailment

systems. Unfortunately, it will be proved that there is none corresponding to deduc-

tion in CRWL, so we will be forced to leave this formal framework and undertake

more informal simulations of the logics in each other. Although such simulations

are always possible by making use of suitable low-level encodings, relying on the

analogies between both logics our interest resides in finding natural and simple sim-

ulations that at the very least would show that their expressive power is the same.

In addition, these results will be used to study reflective properties of CRWL.

After the comparison at the syntactic level, the next step is the study of the

corresponding models. Now we will be able to associate an institution to each

logic, so this study will take place within the formal framework of the theory of

institutions. The main result we will obtain is that models in these logics bear

no relation at all. Along the way, we generalize the notions of derivability and

satisfaction in Meseguer’s rewriting logic to conditional rewrite rules, and clarify

some subtle points regarding the definition of models in this logic.

As implied by the previous presentation, this paper does not consider the op-

erational semantics of the logics, but focus instead of comparing them at a more

abstract level by considering both its provability and satisfaction relations. We refer

to works like Bosco et al. (1988), where such operational issues related to resolution

or narrowing are pursued in similar contexts.

Meseguer’s rewriting logic is parameterized with respect to an underlying equa-

tional logic; although this can be typed and as general as the membership equational

logic from Meseguer (1998), in this paper we concentrate on the version of rewrit-

ing logic which uses unsorted and unconditional equational logic and write RL for it.

Likewise, there are also typed versions of CRWL (Arenas-Sánchez and Rodŕıguez-Artalejo 2001;

González-Moreno et al. 2001). Here we have chosen to focus on the untyped versions

because this work is mainly foundational and the addition of types, while not intro-

ducing any new fundamental concepts, would force us to deal with many details that

A comparison between two logical formalisms for rewriting 3

would obscure the presentation (for example, quantifiers would have to be consid-

ered explicitly). The typed cases are considered in some detail in Palomino (2001).

In what follows we assume familiarity with some basic ideas of category theory

(Barr and Wells 1999), that do not go beyond natural transformations and equal-

izers. Only in Section 3.2 we use a less standard construction, that of subequalizer,

that we describe in the text.

2 Relations at the Syntactic Level

In the first part of the paper we focus on the syntactic aspects of the logics, and try

to abstractly study derivability in them at the level of entailment systems. After

ruling out this possibility, we develop some simulations that will allow us to prove

some reflective properties of the logics. We start by reviewing the main concepts

and definitions that we will use.

2.1 Entailment systems

Syntax is typically given by a signature Σ providing a grammar on which sentences,

collected in a set sen(Σ), are built. For a given signature Σ, entailment (also called

provability) of a sentence ϕ ∈ sen(Σ) from a set of axioms Γ ⊆ sen(Σ) is a relation

Γ ⊢ ϕ which holds if and only if we can prove ϕ from the axioms Γ using the rules

of the logic. We make this relation relative to a signature. In the rest of the paper,

let |C| denote the collection of objects of a category C.

An entailment system (Meseguer 1989) is a triple E = (Sign, sen,⊢) such that:

• Sign is a category whose objects are called signatures.

• sen : Sign → Set is a functor associating to each signature Σ a corresponding

set of Σ-sentences.

• ⊢ is a function which associates to each Σ ∈ |Sign| a binary relation ⊢Σ⊆

P(sen(Σ))×sen(Σ) called Σ-entailment such that the following properties are

satisfied:

1. reflexivity: for any ϕ ∈ sen(Σ), {ϕ} ⊢Σ ϕ,

2. monotonicity: if Γ ⊢Σ ϕ and Γ′ ⊇ Γ then Γ′ ⊢Σ ϕ,

3. transitivity: if Γ ⊢Σ ϕi , for all i ∈ I , and Γ ∪ {ϕi | i ∈ I } ⊢Σ ψ, then

Γ ⊢Σ ψ,

4. ⊢-translation: if Γ ⊢Σ ϕ, then for anyH : Σ → Σ′ in Sign, sen(H)(Γ) ⊢Σ′

sen(H)(ϕ).

Given an entailment system E , its category Th of theories has as objects pairs

T = (Σ,Γ), with Σ a signature and Γ ⊆ sen(Σ). A theory morphism H : (Σ,Γ) →

(Σ′,Γ′) is a signature morphism H : Σ → Σ′ such that if ϕ ∈ Γ, then Γ′ ⊢Σ′

sen(H)(ϕ). A theory morphism is axiom-preserving if, in addition, it satisfies the

condition sen(H)(Γ) ⊆ Γ′. This defines a subcategory Th0 with the same objects

as Th but with morphisms restricted to be axiom-preserving theory morphisms,

that does not depend on the entailment relation.

Although we will not be able to use it, there is also a notion of map of entailment

4 M. Palomino

[t] → [t]
Reflexivity

[t] → [t ′] [t ′] → [t ′′]
[t] → [t ′′]

Transitivity

[t1] → [t ′1] . . . [tn] → [t ′n]
[f (t1, . . . , tn)] → [f (t ′1, . . . , t

′

n)]
Congruence

r : [t] → [t ′] if [a1] → [b1] ∧ . . . ∧ [am] → [bm] ∈ Γ

[w1] → [w ′

1] . . . [wn] → [w ′

n]
[a1(w/x)] → [b1(w/x)] . . . [am (w/x)] → [bm (w/x)]

[t(w/x)] → [t ′(w ′/x)]
Replacement

Fig. 1. Rules of deduction for an RL-theory (Σ,E ,L,Γ)

systems, allowing us to relate logics in a general and systematic way. Basically, a

map of entailment systems E → E ′ maps signatures of E to signatures of E ′ (or, more

generally, theories to theories), and sentences of E to sentences of E ′, respecting the

entailment relations ⊢ of E and ⊢′ of E ′. See Meseguer (1989) for details.

2.2 Rewriting logic

A signature in RL is a pair (Σ,E) with Σ a ranked alphabet of function symbols and

E a set of Σ-equations. Rewriting operates on equivalence classes of terms modulo

the set of equations E . We denote by TΣ(X) the Σ-algebra of Σ-terms with variables

in a set X , and by [t]E or just [t] the E -equivalence class of t ∈ TΣ(X). To indicate

that {x1, . . . , xn} is the set of variables occurring in t we write t(x1, . . . , xn). Given

t(x1, . . . , xn), and terms u1, . . . , un , t(u1/x1, . . . , un/xn) denotes the term obtained

from t by simultaneously substituting ui for xi , i = 1, . . . , n. To simplify notation we

denote a sequence of objects a1, . . . , an by a; with this notation, t(u1/x1, . . . , un/xn)

can be abbreviated to t(u/x).

An RL-theory R is a 4-tuple R = (Σ,E ,L,Γ), where (Σ,E) is a signature and Γ

is a set of rewrite rules, labeled with elements of L, of the form

r : [t] → [t ′] if [a1] → [b1] ∧ . . . ∧ [am] → [bm] .

We writeR ⊢ [t] → [t ′] if [t] → [t ′] can be derived using the rules of deduction shown

in Figure 1; for a complete exposition of RL we refer the reader to Meseguer (1992).

2.3 CRWL

CRWL uses signatures with constructors Σ = CΣ ∪ FΣ, where CΣ =
⋃

n∈IN C n
Σ

and FΣ =
⋃

n∈IN Fn
Σ are disjoint sets of constructor and defined function symbols

respectively, each of them with an associated arity. Σ⊥ refers to the signature which

is obtained from Σ by adding a new constructor ⊥ of arity 0. Given a set X of

variables, we will write Expr(Σ,X) for the set of total expressions which can be

built with Σ and X , and Term(Σ,X) for those total terms which only make use of

A comparison between two logical formalisms for rewriting 5

e → ⊥
Bottom e → e Reflexivity

e1 → e
′

1 . . . en → e
′

n

h(e1, . . . , en) → h(e ′

1, . . . , e
′

n)
Monotonicity

θ : X −→ Term⊥(Σ,X)

l → r ⇐ a1 ⊲⊳ b1, . . . , an ⊲⊳ bn ∈ Γ

θ(a1) ⊲⊳ θ(b1) . . . θ(an) ⊲⊳ θ(bn)
θ(l) → θ(r)

Reduction

e → e
′

e
′
→ e

′′

e → e
′′ Transitivity a → t b → t t a total term

a ⊲⊳ b
Join

Fig. 2. Rules of deduction for a CRWL-theory (Σ,Γ)

CΣ and X . Expr⊥(Σ,X) and Term⊥(Σ,X), the sets of partial expressions and terms,

are defined analogously using Σ⊥. A signature morphism (Molina-Bravo 2000) σ :

Σ → Σ′ from a signature Σ = CΣ ∪ FΣ to another Σ′ = CΣ′ ∪ FΣ′ is a pair of

functions (denoted with the same σ)

σ : CΣ → CΣ′ and σ : FΣ → FΣ′ ,

mapping n-ary symbols to n-ary symbols.

A CRWL-theory is a pair (Σ,Γ), where Σ is a signature with constructors and Γ

is a set of conditional rewrite rules of the form

f (t1, . . . , tn) → r ⇐ a1 ⊲⊳ b1, . . . , am ⊲⊳ bm (m ≥ 0),

with f ∈ FΣ of arity n, t1, . . . , tn ∈ Term(Σ,X), r , ai , bi ∈ Expr(Σ,X), i = 1, . . . ,m,

r and each variable occurring in t1, . . . , tn having a single ocurrence.

From a given theory T , two kinds of sentences can be derived using the CRWL-

calculus in Figure 2 (where variables range over partial expressions): reduction

statements of the form a → b, and joinability statements a ⊲⊳ b (meaning that there

exists a total term to which both a and b reduce). We denote them by T ⊢ a → b

and T ⊢ a ⊲⊳ b, respectively. Again, we refer to González-Moreno et al. (1999) for

a complete presentation of CRWL. (Note that the names “term” and “constructor

term” are used there instead of “expression” and “term.”)

2.4 An entailment system for RL

In order to associate an entailment system to RL, note that the rules of inference in

Figure 1 only allow us to derive unconditional rules but that the requirements on an

entailment system (reflexivity) require the ability to derive conditional ones as well.

We then have two possibilities: either we restrict ourselves to unconditional rewrite

rules and define ⊢Σ by means of derivation in the RL-calculus, or we also consider

conditional rules, in which case the RL-calculus in Figure 1 must be extended to

be able to derive them. We consider the second, more general case.

6 M. Palomino

Actually, not only is derivability undefined for conditional rules, but also is sat-

isfaction. However, we would like to rest on a natural definition of satisfaction to

support the claim that our extended notion of derivability is a suitable one. The

semantics of RL is presented in Section 3.2 and the extension of the satisfaction

relation discussed in Section 3.5; here we just assume that such an extension exists.

Given an RL-theory R = (Σ,E ,L,Γ) and a set of variables X disjoint from

Σ, we define R(X) = (Σ(X),E ,L,Γ′) where Σ(X) is the set of function symbols

obtained by adding the elements of X as constants to Σ, and Γ′ is obtained from Γ

by renaming with fresh variables. In Section 3.5 it is proved that, for an RL-theory

R and [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)] a conditional

rewrite rule, the following statements are equivalent:

1. R |= [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)];

2. R(x) ∪ {[a1(x)] → [b1(x)], . . . , [am(x)] → [bm(x)]} |= [t(x)] → [t ′(x)].

A straightforward consequence of this equivalence is a sound and complete ex-

tension of the RL-calculus with the following rule of deduction:

• Implication introduction.

R(x) ∪ {[a1(x)] → [b1(x)], . . . , [am(x)] → [bm(x)]} ⊢ [t(x)] → [t ′(x)]

R ⊢ [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am (x)] → [bm(x)]
·

We can now focus again on the main purpose of this section. For that, we associate

to RL the entailment sytem ERL = (Sign, sen,⊢) given by:

• Sign: the category of equational theories and theory morphisms;

• sen: the functor assigning to an equational theory the set of conditional

rewrite rules that can be built over it, and mapping a theory morphism to its

natural extension to rewrite rules;

• ⊢ is defined as provability in the extended RL-calculus.

Proposition 1

ERL = (Sign, sen,⊢) is an entailment system.

The proof of this result uses concepts from the model theory of RL that are not

introduced until later in the text, so we postpone the details to the appendix.

Before finishing, it should be emphasized that throughout this section no mention

at all has been made of the labels in an RL-theory. They could have been safely

included within the signature part; however, they do not play any role as far as the

entailment relation is concerned and, if only for ease of exposition, we have preferred

to omit then. This situation will change drastically when we shift to models and

try to assign an institution to RL; then, we will be forced to distinguish between

labeled and unlabeled sentences, as described in Section 3.5.

2.5 An entailment system for CRWL

At first sight, an entailment system can be associated to CRWL following the same

steps as for RL. The category of signatures is immediately obtained, as it is not

A comparison between two logical formalisms for rewriting 7

difficult to check that composition of signature morphisms is associative, and for

the set of sentences we have the same two possibilities as for RL.

However, a closer look reveals that derivation in the CRWL-calculus does not

satisfy the transitivity condition for the provability relation in entailment systems.

Consider, for example, a signature Σ with c, d , h ∈ Σ, function symbols of arities

0, 0, and 1, respectively. Then it can be proved that

{ c → h(c), h(x) → h(d) ⇐ x ⊲⊳ x } ⊢CRWL h(x) → h(d)

and

{ c → h(c), h(x) → h(d) ⇐ x ⊲⊳ x , h(x) → h(d) } ⊢CRWL c → h(d),

but

{ c → h(c), h(x) → h(d) ⇐ x ⊲⊳ x } 6⊢CRWL c → h(d) .

The first statement is proved by instantiating h(x) → h(d) ⇐ x ⊲⊳ x with x ;

for the second, noting that h(c) → h(⊥) (using Bottom and Congruence), just

instantiate h(x) → h(d) with ⊥ and apply Transitivity (note that c cannot be

used to instantiate this rule since it is not a term). The third statement is formally

proved by induction on derivations: let us just note that the crucial point is that the

rule h(x) → h(d) ⇐ x ⊲⊳ x cannot be instantiated with ⊥ because ⊥ ⊲⊳ ⊥ cannot

be derived. What lies behind is the fact that the CRWL-calculus is sound and

complete with respect to validity in models only under totally defined valuations

(González-Moreno et al. 1999). In particular, in the first entailment above, h(x) →

h(d) means that h(t) rewrites to h(d) just for those instances where a total term

t is substituted for x .

This proves that the relation ⊢CRWL is not transitive and, therefore, we are not

going to be able to build an entailment system based on the CRWL-calculus, as

any sensible one should contain, at least, the conditional rewrite rules among its

sentences. (Let us note, however, that there is an entailment system corresponding

to the institution that will be associated to CRWL in Section 3.4; the previous

example is no longer a counterexample due to the partiality of the soundness and

completeness results for CRWL mentioned above. The reason for not comparing it

to RL’s entailment system is that, since it is not based on deduction, they do not

stand “on the same ground.”)

2.6 Simulating CRWL in RL

Since there is no entailment system corresponding to the CRWL-calculus, we cannot

define a map of entailment systems as intended. In the following we will be pleased

just with presenting how entailment in CRWL can be simulated in RL. The set of

labels of an RL-theory does not take part in the entailment process, and so it is

omitted; the same convention will also be adopted in Section 2.7.

Of course, every CRWL-theory T can be trivially “simulated” in RL by means

of an RL-theory T ′ with a constant ct for each term (and each expression) t in T ,

and with axioms ct → ct′ whenever T ⊢ t → t ′. But such a T ′, apart from not

8 M. Palomino

exploiting the analogies between RL and CRWL, is not computable in general. And

so we must look for another construction.

The idea is to associate to every CRWL-theory T = (Σ,Γ) a theory T ′ in RL

(whose set of equational axioms will be empty) in which all the operations in T ,

together with a new constant⊥, are available, plus one rule for each axiom in T and,

perhaps, some more rules coping with the rules of deduction of the CRWL-calculus.

Since rules in CRWL can only be instantiated with terms and not expressions and

there is no such distinction in RL, we introduce a unary relation pterm (technically,

a unary function symbol) and a constant true to distinguish them in RL. One

immediate rule defining pterm is pterm(⊥) → true; however, how to express that

variables are also partial terms? The obvious rule pterm(x) → true is clearly not

valid: everything would be a partial term! This means that we must consider the

CRWL variables at the object level, add them to the signature of T ′ as constants,

and use a new set X of variables for RL. Using constants for variables we will

be able to distinguish those terms in RL representing terms in CRWL from those

representing expressions, hence allowing us to capture, by carefully translating the

rules of deduction of the CRWL-calculus (using, perhaps, a different representation

for the terms appearing in them), the corresponding entailment relation.

Then, assuming variables in CRWL belong to a set V , the rules defining pterm

are:

pterm(⊥) → true

pterm(vi) → true (∀vi ∈ V)

pterm(h(x1, . . . , xn)) → true

if pterm(x1) → true ∧ . . . ∧ pterm(xn) → true (∀h ∈ C n
Σ , n ∈ IN)

In a similar way, two more predicates, tterm and pexpr, dealing with total terms

and partial expressions, are defined:

tterm(vi) → true (∀vi ∈ V)

tterm(h(x1, . . . , xn)) → true

if tterm(x1) → true ∧ . . . ∧ tterm(xn) → true (∀h ∈ C n
Σ , n ∈ IN)

pexpr(⊥) → true

pexpr(vi) → true (∀vi ∈ V)

pexpr(h(x1, . . . , xn)) → true

if pexpr(x1) → true ∧ . . . ∧ pexpr(xn) → true (∀h ∈ C n
Σ ∪ Fn

Σ , n ∈ IN)

As a side effect, rewriting in CRWL can no longer be simulated in RL directly

through the rewriting relation. Consider, for example, the theory of natural numbers

in CRWL, with 0 a constructor and + a function symbol. In RL, pterm(0 + 0)

should not rewrite to true; however, with the usual definitions, 0 + 0 → 0 and by

Congruence pterm(0 + 0) → pterm(0), and this last term must reduce to true.

Therefore, a rewrite in CRWL will be simulated through a binary relation R so

that e → e ′ in CRWL if and only if R(e, e ′) → true in RL. In a similar way, strict

equalities a ⊲⊳ b will be simulated through a binary relation ⊲⊳.

It just remains to translate the rules of deduction of the CRWL-calculus, which

A comparison between two logical formalisms for rewriting 9

is straightforward. For example, the Bottom rule stating that every expression is

reducible to ⊥ is written

R(x ,⊥) → true if pexpr(x) → true,

whereas the Join rule

a → t b → t t is a total term

a ⊲⊳ b

results in

x ⊲⊳ y → true if R(x , z) → true ∧ R(y, z) → true ∧ tterm(z) → true .

Reflexivity, Transitivity, and Monotonicity are taken care of by, respectively:

R(x , x) → true if pexpr(x) → true

R(x , y) → true if R(x , z) → true ∧ R(z , y) → true

R(h(x1, . . . , xn), h(y1, . . . , yn)) → true

if R(x1, y1) → true ∧ . . . ∧ R(xn , yn) → true (∀h ∈ C n
Σ ∪ Fn

Σ , n ∈ IN)

It is not necessary to include pexpr explicitly in all the rules because these conditions

can be derived as logical consequences.

Finally, to every rule l(v) → r(v) ⇐ a1(v) ⊲⊳ b1(v), . . . , am(v) ⊲⊳ bm(v) in the

CRWL-theory, we associate the following rule in RL,

R(l(x), r(x)) → true

if a1(x) ⊲⊳ b1(x) → true ∧ . . . ∧ am(x) ⊲⊳ bm(x) → true ∧

pterm(x1) → true ∧ . . . ∧ pterm(xn) → true ,

where each CRWL variable vi (a constant in the RL-theory) has been replaced by

the variable xi . The set of all these last rules corresponds to the Reduction rule

in the CRWL-calculus, and the condition that program rules in CRWL can only be

instantiated with terms is taken care of by demanding pterm(x) → true for all the

variables appearing in it.

We will write α(T) = (Σ′, ∅,Γ′) for the RL-theory associated to a CRWL-theory

T in this fashion, with Σ′ = Σ ∪ V ∪ {true, pterm, pexpr, tterm,R, ⊲⊳,⊥} and Γ′

consisting of all the rules described above. The following proposition ensures that

the translation is correct. Note that we use = to denote both syntactic and semantic

equality: the context will always make clear to which one we refer.

Proposition 2

For a CRWL-theory T = (Σ,Γ) with α(T) = (Σ′, ∅,Γ′), if l , r , a, b ∈ TΣ′(X):

l , r ∈ Expr⊥(Σ,V) and T ⊢CRWL l → r ⇔ α(T) ⊢RL R(l , r) → true ;

a, b ∈ Expr⊥(Σ,V) and T ⊢CRWL a ⊲⊳ b ⇔ α(T) ⊢RL a ⊲⊳ b → true .

The following two lemmas, which can be easily proved by structural induction

on derivations, are needed for its proof. In particular, Lemma 1 is used in the most

difficult part, which corresponds to Transitivity in the (⇐)-direction.

10 M. Palomino

Lemma 1

Let T = (Σ,Γ) be a CRWL-theory, α(T) = (Σ′, ∅,Γ′), and e, e ′ ∈ TΣ′(X).

1. If α(T) ⊢RL e → e ′ and e ∈ Expr⊥(Σ,V) or e ′ ∈ Expr⊥(Σ,V), then e = e ′.

2. If α(T) ⊢RL tterm(e) → e ′, then e ′ is either true or tterm(e ′′) for some e ′′

such that α(T) ⊢RL e → e ′′.

Lemma 2

If T = (Σ,Γ) is a CRWL-theory, α(T) = (Σ′, ∅,Γ′), and e ∈ TΣ′(X), then:

1. e ∈ Term(Σ,V) ⇔ α(T) ⊢RL tterm(e) → true,

2. e ∈ Term⊥(Σ,V) ⇔ α(T) ⊢RL pterm(e) → true,

3. e ∈ Expr⊥(Σ,V) ⇔ α(T) ⊢RL pexpr(e) → true.

Proof of Proposition 2

Both directions are proved by induction on the derivation, studying the last rule

applied. Let us first consider the (⇒) part.

• Bottom. We have T ⊢CRWL l → ⊥. Since l ∈ Expr⊥(Σ,V), by Lemma 2 it is

α(T) ⊢RL pexpr(l) → true so, by the translation of the Bottom rule, we have

α(T) ⊢RL R(l ,⊥) → true.

• Reflexivity. By Lemma 2, α(T) ⊢RL pexpr(l) → true, so the result follows by

applying the third rule associated to the relation R.

• Transitivity. We have that the last step in the derivation is

a → t t → r

l → r
·

By induction hypothesis, α(T) ⊢RL R(l , t) → true and α(T) ⊢RL R(t , r) → true,

and by the fourth rule associated to R we can derive α(T) ⊢RL R(l , r) → true.

• Monotonicity. Similarly to the previous case.

• Join. From

a → t b → t

a ⊲⊳ b
t ∈ Term(Σ,V),

we get, by induction hypothesis, α(T) ⊢RL R(a, t) → true and α(T) ⊢RL R(b, t) →

true, and by Lemma 2, α(T) ⊢RL tterm(t) → true, so we can apply the rule

associated to ⊲⊳ to reach the result.

• Reduction. Assume that for some rule l(v) → r(v) ⇐ a1(v) ⊲⊳ b1(v), . . . , am(v) ⊲⊳

bm(v) in Γ and partial terms w1, . . . ,wn , the last step in the derivation is

a1(w/v) ⊲⊳ b1(w/v) . . . am(w/v) ⊲⊳ bm(w/v)

l(w/v) → r(w/v)
·

Then, by induction hypothesis, α(T) ⊢ ai(w/v) ⊲⊳ bi(w/v) → true for i = 1, . . . ,m

and, by Lemma 2, α(T) ⊢ pexpr(wi) → true for i = 1, . . . , n. Then the result follows

by using the rule associated to l(v) → r(v) ⇐ a1(v) ⊲⊳ b1(v), . . . , am(v) ⊲⊳ bm(v)

in α(T).

Let us now consider the converse (⇐). Note that even though the names of some

of the rules are the same, the induction proceeds now over derivations in RL.

A comparison between two logical formalisms for rewriting 11

• Reflexivity and Congruence are not possible.

• Transitivity. Assume that

R(l , r) → e e → true

R(l , r) → true
·

(The case for a ⊲⊳ b is analogous.) By induction on the derivation of α(T) ⊢RL

R(l , r) → e and using the fact that true only rewrites to itself, it follows easily

that e must be either true, or R(l ′, r ′) with α(T) ⊢RL l → l ′ and α(T) ⊢RL r →

r ′. In the first case the result follows from the induction hypothesis applied to

R(l , r) → e. In the second, again by the induction hypothesis, l ′, r ′ ∈ Expr⊥(Σ,V)

and T ⊢CRWL l ′ → r ′, and by Lemma 1 we have l = l ′ and r = r ′.

• Replacement. The result follows because the rules associated to the relation R

reflect faithfully the rules of deduction of CRWL. For example, consider the rule

associated to Join. If

R(a, c) → true R(b, c) → true tterm(c) → true

a ⊲⊳ b → true
,

then c ∈ Term(Σ,V) by Lemma 2, and T ⊢CRWL a → c and T ⊢CRWL b → c by

the induction hypothesis, whence follows that T ⊢CRWL a ⊲⊳ b.

2.7 Simulating RL in CRWL

We now embark ourselves on finding the converse simulation of RL in CRWL. We

are again interested in a computable and simple translation, and the idea for this

is very similar to that of the previous section. Now, however, there are no terms

and expressions to distinguish, and therefore predicates such as pterm are no longer

necessary; as a consequence, we will be able to use the same set X of variables for

both logics. The fact that only joinability statements are allowed to appear in the

condition of a rewrite rule in CRWL forces us to represent, as in Section 2.6, the

rewriting relation in RL through a binary relation R in CRWL, so that t → t ′ in

RL if and only if R(t , t ′) → true in CRWL. Rewriting modulo a set of equations

will be handled by transforming each equation t = t ′ into the rewrites t → t ′ and

t ′ → t .

More precisely, given a signature (Σ,E) in RL we associate to it a CRWL-theory

over the signature Σ′ with CΣ′ = Σ ∪ {true} and FΣ′ = {R}, with true and R of

arities 0 and 2, respectively. The rules in the theory include

R(x1, x2) → true ⇐ x1 ⊲⊳ x2 ,

R(x , y) → true ⇐ R(x , z) ⊲⊳ true,R(z , y) ⊲⊳ true ,

and, for each f ∈ Σ of arity n ∈ IN,

R(f (x1, . . . , xn), f (y1, . . . , yn)) → true

⇐ R(x1, y1) ⊲⊳ true, . . . ,R(xn , yn) ⊲⊳ true,

mimicking the Reflexivity, Transitivity, and Congruence rules in the RL-

calculus, together with

R(t , t ′) → true ,

R(t ′, t) → true ,

12 M. Palomino

for every t = t ′ ∈ E . The goal of the condition in the rule corresponding to

Reflexivity is to avoid instantiating it with terms containing ⊥, which have no

meaning in RL.

A conditional rewrite rule

[l] → [r] if [a1] → [b1] ∧ . . . ∧ [am] → [bm]

over (Σ,E) in RL is then translated to

R(l , r) → true ⇐ R(a1, b1) ⊲⊳ true, . . . ,R(am , bm) ⊲⊳ true ,

where l , r , ai , bi are arbitrary members of [l], [r], [ai], and [bi], respectively. Then,

given an RL-theory T = (Σ,E ,Γ) we associate to it the CRWL-theory β(T) ob-

tained by adding to the CRWL-theory corresponding to (Σ,E) the translation of

the rules in Γ.

Actually, the previous definitions must be slightly modified due to some technical

details. Recall from Section 2.3 that in a conditional rewrite rule l → r ⇐ C in

CRWL l must be linear, and it is obvious that with the above definitions this prop-

erty is not ensured for the translation of equations and rewrite rules; therefore, those

rules must be “linearised” (Arenas-Sánchez and Rodŕıguez-Artalejo 2001). The lin-

earised version of a conditional rewrite rule l → r ⇐ C is given by l ′ → r ⇐ C ,Cl ,

where l ′ and Cl are calculated as follows: for every variable x appearing k > 1 times

in l , its j -th occurrence, 2 ≤ j ≤ k , is replaced with a new variable yj and x ⊲⊳ yj is

added to Cl . Moreover (and this is simply a feature of our translation), even when

a variable x appears only once, x ⊲⊳ x will be added to the conditional part so that

x cannot be instantiated with a partial term. The treatment of linearised rules in

the rest of the section, though rigorous, will not be too formal.

The following proposition shows that our translation correctly reflects provability

in the equational part of a rewrite theory.

Proposition 3

If (Σ′,E ′) is the CRWL theory corresponding to a signature (Σ,E) in RL and if

t , t ′ ∈ TΣ(X) are such that E ⊢ t = t ′, then

E ′ ⊢CRWL R(t , t ′) → true and E ′ ⊢CRWL R(t ′, t) → true .

Proof

By induction on the derivation of E ⊢ t = t ′. The rules of a deduction system for

equational logic include those in Figure 1 (replacing the arrow with an equality

symbol) together with a Symmetry rule. Let us just consider the case of the

Replacement rule. Since our equational logic is unconditional, we have

θ(t1) = θ(t2)
(t1 = t2) ∈ E ,

for some assignment θ : X → TΣ(X). Associated to t1 = t2 we have the linearised

versions of the two rules R(t1, t2) → true and R(t2, t1) → true in E ′ and, since

TΣ(X) ⊆ Term⊥(Σ
′,X), we can instantiate them with θ (mapping those x which

arose in the linearization process to the same term as the original variable) to obtain

the result.

A comparison between two logical formalisms for rewriting 13

With this in hand we are ready to prove the first half of the main proposition,

which guarantees the correctness of the translation.

Proposition 4

Given any RL-theory T = (Σ,E ,Γ), and l , r ∈ TΣ(X):

T ⊢RL [l] → [r] ⇒ (∃l ′ ∈ [l], ∃r ′ ∈ [r]) β(T) ⊢CRWL R(l ′, r ′) → true

⇔ (∀l ′ ∈ [l], ∀r ′ ∈ [r]) β(T) ⊢CRWL R(l ′, r ′) → true

Proof

Let us first prove the equivalence. There is nothing to prove in the right-to-left

direction; in the opposite one, the result is a consequence of Proposition 3 and the

rule R(x , y) → true ⇐ R(x , z) ⊲⊳ true,R(z , y) ⊲⊳ true that, by construction, is in

β(T). Now we prove the first implication by induction on the derivation, according

to the last rule used:

• Reflexivity. T ⊢RL [l] → [l], and the result follows by instantiating R(x1, x2) →

true ⇐ x1 ⊲⊳ x2 with l for both variables.

• Congruence. From

[l1] → [r1] . . . [ln] → [rn]

[f (l1, . . . , ln)] → [f (r1, . . . , rn)]

and the induction hypothesis, β(T) ⊢CRWL R(l ′i , r
′
i) → true for some l ′i ∈ [li],

r ′i ∈ [ri], 1 ≤ i ≤ n. Then, using the rule R(f (x1, . . . , xn), f (y1, . . . , yn)) → true ⇐

R(x1, y1) ⊲⊳ true, . . . ,R(xn , yn) ⊲⊳ true, we get

β(T) ⊢CRWL R(f (l ′1, . . . , l
′
n), f (r

′
1, . . . , r

′
n)) → true ,

verifying f (l ′1, . . . , l
′
n) ∈ [f (l1, . . . , ln)] and f (r ′1, . . . , r

′
n) ∈ [f (r1, . . . , rn)].

• Transitivity. From

[l] → [t] [t] → [r]

[l] → [r]

and the induction hypothesis, β(T) ⊢CRWL R(l ′, t ′) → true and β(T) ⊢CRWL

R(t ′′, r ′) → true, with l ′ ∈ [l], t ′, t ′′ ∈ [t], and r ′ ∈ [r]. Then, due to the equivalence

proved above, β(T) ⊢CRWL R(l , t) → true and β(T) ⊢CRWL R(t , r) → true and we

get the result using the translation of the Transitivity rule.

• Replacement. We have, for some [l(x)] → [r(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧

[am(x)] → [bm(x)] in Γ,

[w1] → [w ′
1] . . . [wn] → [w ′

n]

[a1(w/x)] → [b1(w/x)] . . . [am (w/x)] → [bm(w/x)]

T ⊢RL [l(w/x)] → [r(w ′/x)]
·

By induction hypothesis, there exist a′
i ∈ [ai (w/x)], b

′
i ∈ [bi(w/x)] such that

β(T) ⊢CRWL R(a′
i , b

′
i) → true for i = 1, . . . ,m. Again by the equivalence shown

above, β(T) ⊢CRWL R(ai(w/x), bi(w/x)) → true, for i = 1, . . . ,m. We can then

use the linearised version of R(l , r) → true ⇐ R(a1, b1) ⊲⊳ true, . . . ,R(am , bm) ⊲⊳

true, substituting all variables which arose from the same one during the lin-

earisation process with the same wi (so that the conditions x ⊲⊳ x , x ⊲⊳ yj are

14 M. Palomino

trivially verified), to get β(T) ⊢CRWL R(l(w/x), r(w/x)) → true. In a similar

way, β(T) ⊢CRWL R(wi ,w
′
i) → true, i = 1, . . . , n, is also obtained, and repeated

aplication of the translation of the Transitivity and Congruence rules would

show, first, that β(T) ⊢CRWL R(r(w/x), r(w ′/x)) → true, and then β(T) ⊢CRWL

R(l(w/x), r(w ′/x)) → true, as desired.

Our next goal will be to prove the converse of the last proposition. However,

more care is needed here since, for example, an equation of the form x ∗ 0 = 0 will

allow us to derive R(true ∗ 0, 0) → true. Even more bizarre derivations are possible

by repeated application of transitivity, e.g. R(R(true, true), true) → true. To prove

that these rewrites, however, do not allow us to derive anything in CRWL that

was not already derivable in the original RL-theory, we concentrate first on some

preliminary results. The first one is proved by an easy induction for each fact in

the statement.

Lemma 3

LetT = (Σ,E ,Γ) be an RL-theory, β(T) = (Σ′,Γ′), and e, e1, . . . , en ∈ Expr⊥(Σ
′,X)

expressions in CRWL.

1. If β(T) ⊢CRWL ⊥ → e, then e = ⊥.

2. For all x ∈ X , if β(T) ⊢CRWL x → e, then either e = ⊥ or e = x .

3. If β(T) ⊢CRWL R(e1, e2) → e, then either e = ⊥, or e = true, or e = R(e ′1, e
′
2)

with β(T) ⊢CRWL ei → e ′i , i = 1, 2.

4. For every f ∈ C n
Σ′ , if β(T) ⊢CRWL f (e1, . . . , en) → e then either e = ⊥, or

e = f (e ′1, . . . , e
′
n) with β(T) ⊢CRWL ei → e ′i for some e ′i ∈ Expr⊥(Σ

′,X),

i = 1, . . . , n.

In what follows this lemma will be used mostly without explicit reference to it: for

example, when deducing β(T) ⊢CRWL R(t , t ′) → true from β(T) ⊢CRWL R(t , t ′) ⊲⊳

true.

Lemma 4

Let T be an RL-theory and β(T) = (Σ′,Γ′).

1. For all e, e ′ ∈ Expr⊥(Σ
′,X), if β(T) ⊢CRWL e → e ′ and e ′ is total, then e is

total.

2. For all t ∈ Term⊥(Σ
′,X), e ′ ∈ Expr⊥(Σ,X), if β(T) ⊢CRWL t → e ′ and e ′ is

total, then t = e ′.

3. For all t , t ′ ∈ Term⊥(Σ
′,X), if β(T) ⊢CRWL t ⊲⊳ t ′, then t is total and t ′ = t .

Proof

1. By induction on the last rule of the derivation. Rules Bottom and Join are not

possible, and Reflexivity is immediate. For Transitivity, if the last step of the

derivation is

e → e ′′ e ′′ → e ′

e → e ′
,

then, by induction hypothesis, e ′′ is total, and again by induction hypothesis e

is total. The situation is similar for Monotonicity. For Reduction we have to

distinguish all these cases:

A comparison between two logical formalisms for rewriting 15

• If R(x1, x2) → true ⇐ x1 ⊲⊳ x2 has been used, then e = R(e1, e2) and

β(T) ⊢CRWL e1 → t , β(T) ⊢CRWL e2 → t for some t , total, have been

previously obtained in the derivation. By induction hypothesis, both e1

and e2 are total and so is e.

• If a rule of the form R(f (x1, . . . , xn), f (y1, . . . , yn)) → true ⇐ R(x1, y1) ⊲⊳

true, . . . ,R(xn , yn) ⊲⊳ true or R(x , y) → true ⇐ R(x , z) ⊲⊳ true,R(z , y) ⊲⊳

true has been used, the result follows by induction hypothesis.

• If the last rule applied has been one of those corresponding to equations or

rewrite rules then e = R(l , r) and a condition of the form x ⊲⊳ x or x ⊲⊳ yj
for every variable appearing in it must have been satisfied. If x has been

instantiated with t , then those conditions imply that β(T) ⊢CRWL t → t ′

for some total t ′, so by induction hypothesis t is total, and so will be the

expression e.

2. By (1), t ∈ Term(Σ′,X). By structural induction on t :

• t = x , then e ′ = ⊥ (absurd) or e ′ = x and the result holds;

• t = f (t1, . . . , tn), then either e ′ = ⊥ (absurd) or e ′ = f (e ′1, . . . , e
′
n) with

β(T) ⊢CRWL ti → e ′i . In this last case, by induction hypothesis, ti = e ′i for

i = 1, . . . , n and so t = e ′.

3. There exists t ′′ ∈ Term(Σ′,X) with β(T) ⊢CRWL t → t ′′ and β(T) ⊢CRWL t ′ →

t ′′, and by (2), t = t ′′ = t ′.

We are now ready to prove our goal and we will do so in two steps. The next

proposition shows that if R(l , r) → true can be proved in β(T) then [l] → [r] can

also be proved in T , but extending the signature with the constant true. After that,

we show that we can forget about this extra constant.

Proposition 5

Let T = (Σ,E ,Γ) be an RL-theory, β(T) = (Σ′,Γ′), and let l , r ∈ Term⊥(Σ
′,X).

If β(T) ⊢CRWL R(l , r) → true then l , r ∈ Term(Σ′,X) (recall that Term(Σ′,X) =

TΣ∪{true}(X)) and (Σ ∪ {true},E , Γ) ⊢RL [l] → [r].

Proof

By Lemma 4.1, l , r ∈ Term(Σ′,X). For the second part, we proceed by induction

on the proof of β(T) ⊢CRWL R(l , r) → true. The last rule applied must have been

Transitivity or Reduction.

• For Transitivity we have

R(l , r) → e e → true

R(l , r) → true
·

If e = true the result follows by induction hypothesis. Otherwise it must be e =

R(l ′, r ′), total by Lemma 4.1, with β(T) ⊢CRWL l → l ′ and β(T) ⊢CRWL r → r ′.

Hence, by Lemma 4.2, l = l ′, r = r ′, and the result holds by induction hypothesis.

• For Reduction there are five different cases, corresponding to each of the condi-

tional rewrite rules simulating the RL-calculus in β(T). Recall that rules in CRWL

are instantiated only with members of Term⊥(Σ
′,X).

16 M. Palomino

1. If the last step of the derivation is

l ⊲⊳ r

R(l , r) → true
,

then by Lemma 4.3 it is l = r and therefore (Σ ∪ {true},E ,Γ) ⊢RL [l] → [r].

2. If we have

R(l , t) ⊲⊳ true R(t , r) ⊲⊳ true

R(l , r) → true
,

then, by induction hypothesis, (Σ ∪ {true},E ,Γ) ⊢RL [l] → [t] and (Σ ∪

{true},E ,Γ) ⊢RL [t] → [r], so (Σ∪{true},E ,Γ) ⊢RL [l] → [r] by Transitivity

of RL.

3. For the translation of the Congruence rule the result also follows immedi-

ately by the induction hypothesis.

4. Assume that the result is obtained by using one of the (linearised) rules as-

sociated to an equation t = t ′ ∈ E . The conditions of the form x ⊲⊳ x and

x ⊲⊳ yj in the rule together with Lemma 4.3 imply that all the variables which

arose from the same one must have been instantiated with the same element

of Term(Σ′,X). This way E ⊢ l = r , so [l] = [r] and (Σ ∪ {true},E ,Γ) ⊢RL

[l] → [r] by Reflexivity of RL.

5. If the last rule applied is one of those associated to an element of Γ then, as in

the previous case, all variables have been instantiated properly and the result

follows by the induction hypothesis and using Replacement.

These results, combined with the completeness of RL, are enough to prove the

converse of Proposition 4; again, since the semantics of RL is not explained until

Section 3.2, we postpone the proof to the appendix.

Proposition 6

Given any RL-theory T = (Σ,E ,Γ), and l , r ∈ TΣ(X):

T ⊢RL [l] → [r] ⇔ (∃l ′ ∈ [l], ∃r ′ ∈ [r]) β(T) ⊢CRWL R(l ′, r ′) → true

⇔ (∀l ′ ∈ [l], ∀r ′ ∈ [r]) β(T) ⊢CRWL R(l ′, r ′) → true

3 Relations at the Semantic Level

In this section we leave behind our study of the entailment relations and turn

our attention to models and satisfaction. Our interest lies in associating suitable

institutions to both CRWL and RL and, thereafter, to relate them via maps of

institutions with “good” properties.

3.1 Institutions

The notion of model is based on Goguen and Burstall’s work on institutions (Goguen and Burstall 1992).

An institution is a 4-tuple I = (Sign, sen,Mod, |=) such that:

• Sign is a category whose objects are called signatures.

A comparison between two logical formalisms for rewriting 17

• sen : Sign → Set is a functor associating to each signature Σ a set of Σ-

sentences.

• Mod : Signop → Cat is a functor that gives for each signature Σ a category

whose objects are called Σ-models.

• |= is a function associating to each Σ ∈ |Sign| a binary relation |=Σ ⊆

|Mod(Σ)| × sen(Σ) called Σ-satisfaction, in such a way that the following

property holds for any H : Σ → Σ′, M ′ ∈ |Mod(Σ′)|, and all ϕ ∈ sen(Σ):

M ′ |=Σ′ sen(H)(ϕ) ⇔ Mod(H)(M ′) |=Σ ϕ

Given a set Γ of Σ-sentences, the category Mod(Σ,Γ) is defined as the full

subcategory of Mod(Σ) determined by those models M ∈ |Mod(Σ)| that satisfy

all the sentences in Γ. A relation between sets of sentences and sentences, also

denoted as |=, can be defined by

Γ |=Σ ϕ ⇔ M |=Σ ϕ for each M ∈ |Mod(Σ,Γ)| .

We can then associate an entailment system to each institution I = (Sign, sen,

Mod, |=) in a natural way by means of the triple I+ = (Sign, sen, |=), where |=

now denotes the previously defined relation between sets of sentences and sentences;

I+ is easily seen to satisfy the conditions to be an entailment system.

Given an institution I, its category Th of theories is defined as the category of

theories associated to the entailment system I+. If H : (Σ,Γ) → (Σ′,Γ′) is a theory

morphism and M ′ ∈ Mod(Σ′,Γ′), it is not difficult to check that Mod(H)(M ′) ∈

Mod(Σ,Γ). The model functor Mod can then be extended to a functor Mod :

Thop → Cat.

There are many different notions of morphisms between institutions in the lit-

erature; a good survey can be found in Goguen and Roşu (2002). Although it will

not play a crucial role in what follows, to give the reader a flavour of the idea

we present here the definition introduced in Meseguer (1989). Given institutions

I = (Sign, sen,Mod, |=) and I ′ = (Sign′, sen′,Mod′, |=′), a map of institutions

(Φ, α, β) : I → I ′ consists of a natural transformation α : sen ⇒ sen′ ◦Φ, an α-

sensible functor1 Φ : Th0 → Th′
0, and a natural transformation β : Mod′

◦Φop ⇒

Mod such that for each Σ ∈ |Sign|, ϕ ∈ sen(Σ), and M ′ ∈ |Mod′(Φ(Σ, ∅))| the

following property is satisfied:

M ′ |=′
Σ′ αΣ(ϕ) ⇔ β(Σ,∅)(M

′) |=Σ ϕ

3.2 The models of RL

Before proceeding to R-systems, the models of RL, we need the categorical no-

tion of subequalizer (Lambek 1970), a notion generalizing that of equalizer of two

functors.2

1 Essentially, this means that Φ is determined by its restriction to empty theories and α.
2 In Miyoshi (1996), subequalizers are shown to coincide with inserters, a special kind of weighted
limit, in the 2-category Cat. This allows the author to generalize the models of RL, building
them over arbitrary 2-categories and even enriched categories.

18 M. Palomino

Given a family of pairs of functors {Fi ,Gi : A → Bi | i ∈ I }, the (simultaneous)

subequalizer of this family is a category Subeq((Fi ,Gi)i∈I) together with a functor

J : Subeq((Fi ,Gi)i∈I) → A

and a family of natural transformations {αi : Fi ◦ J ⇒ Gi ◦ J | i ∈ I } satisfying the

following universal property: given a functor H : C → A and a family of natural

transformations {βi : Fi ◦H ⇒ Gi ◦H | i ∈ I }, there exists a unique functor

(H , {βi}i∈I) : C → Subeq((Fi ,Gi)i∈I) such that

J ◦(H , {βi}i∈I) = H and αi ◦(H , {βi}i∈I) = βi (i ∈ I) .

The construction of Subeq((Fi ,Gi)i∈I) is quite simple. Its objects are pairs (A,

{bi}i∈I) with A an object in A and bi : Fi(A) → Gi(A) a morphism in Bi . Mor-

phisms a : (A, {bi}i∈I) → (A′, {b′i}i∈I) are morphisms a : A → A′ in A such that

for each i ∈ I , Gi(a) ◦ bi = b′i ◦Fi(a). The functor J is just projection into the first

component. The natural transformations αj are defined by

αj (A, {bi}i∈I) = bj (j ∈ I) .

Then, given an RL-theory R = (Σ,E ,L,Γ), an R-system S is a category S

together with:

• A (Σ,E)-algebra structure given by a family of functors

{fS : Sn → S | f ∈ Σ of arity n}

satisfying the equations E , i.e., for any t(x1, . . . , xn) = t ′(x1, . . . , xn) in E

we have an identity of functors tS = t ′S , where the functor tS is defined

inductively from the functors fS in the obvious way.

• For each rewrite rule

r : [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)]

in Γ, a natural transformation

rS : tS ◦JS ⇒ t ′S ◦ JS ,

where JS : Subeq((ajS , bjS)1≤j≤m) → Sn is the subequalizer functor.

An R-homomorphism F : S → S ′ between two R-systems is then a functor F :

S → S ′ such that:

• It is a Σ-algebra homomorphism, i.e., F ◦ fS = fS′ ◦Fn , for each f in Σ of

arity n.

• “F preserves Γ,” i.e., for each rewrite rule r : [t(x)] → [t ′(x)] if C in Γ we

have the identity of natural transformations

F ◦ rS = rS′ ◦F •,

where F • : Subeq(CS) → Subeq(CS′) is the unique functor induced by the

universal property of Subeq(CS′) by the composition functor

Subeq(CS)
JS−→ Sn Fn

−→ S ′n

A comparison between two logical formalisms for rewriting 19

and the natural transformations F ◦αj , 1 ≤ j ≤ m, where the condition C

hasm rewrites [aj] → [bj], and αj is the j th natural transformation associated

to the subequalizer Subeq(CS). Despite the somewhat complicated definition

of F •, its behavior on objects is quite simple; it is given by the equation

F •(C
n
, cm) = (Fn(C

n
),Fm (cm)) .

This defines a category R-Sys in the obvious way.

A sequent [t(x1, . . . , xn)] → [t ′(x1, . . . , xn)] is satisfied by an R-system S if there

exists a natural transformation

α : tS ⇒ t ′S

between the functors tS , t
′
S : Sn → S. We use the notation

S |= [t(x1, . . . , tn)] → [t ′(x1, . . . , xn)] .

With respect to this definition of satisfaction, the proof calculus is sound and com-

plete (Meseguer 1992). Completeness is obtained by means of an initial model con-

struction.

3.3 The models of CRWL

Before defining models we review some definitions. A partially ordered set (in short,

poset) with bottom ⊥ is a set S equipped with a partial order ⊑ and a least element

⊥. We say that an element x ∈ S is totally defined if x is maximal with respect

to ⊑. The set of all totally defined elements of S will be denoted Def(S). D ⊆ S

is a directed set if for all x , y ∈ D there exists z ∈ D with x ⊑ z , y ⊑ z . A subset

A ⊆ S is a cone if ⊥ ∈ A and, for all x ∈ A and y ∈ S , if y ⊑ x then y ∈ A.

An ideal I ⊆ S is a directed cone. For x ∈ S , the principal ideal generated by x is

〈x 〉 = {y ∈ S | y ⊑ x}. We write C(S) for the set of cones of S .

Given a signature Σ, a CRWL-algebra over Σ is a triple

A = (DA, {cA}c∈CΣ
, {f A}f∈FΣ

),

where DA is a poset with bottom, and cA and f A are monotone mappings from

(DA)n to C(DA), with n the corresponding arity. In addition, for c ∈ C n
Σ and for all

u1, . . . , un ∈ DA, there exists a v ∈ DA such that cA(u1, . . . , un) = 〈v〉. Moreover,

v ∈ Def(DA) in case that all ui ∈ Def(DA).

Note that any h : S → C(S ′) can be extended to a function ĥ : C(S) → C(S ′)

defined by ĥ(x) =
⋃

x∈S h(x). By abuse of notation, we will write ĥ also as h.

A valuation over A is any mapping η : X → DA, and we say that η is totally

defined if η(x) ∈ Def(DA) for all x ∈ X . The evaluation of an expression e ∈

Expr⊥(Σ,X) in A under η yields [[e]]Aη ∈ C(DA), which is defined recursively as

follows:

• [[⊥]]Aη = 〈⊥A〉.

• [[x]]Aη = 〈η(x)〉, for x ∈ X .

• [[h(e1, . . . , en)]]
Aη = hA([[e1]]

Aη, . . . , [[en]]
Aη), for all h ∈ C n

Σ ∪ Fn
Σ .

20 M. Palomino

We are now prepared to define models. Let A be CRWL-algebra A:

• A satisfies a reduction statement a → b under a valuation η, (A, η) |= a → b,

if [[a]]Aη ⊇ [[b]]Aη.

• A satisfies a joinability statement a ⊲⊳ b under η, (A, η) |= a ⊲⊳ b, if [[a]]Aη ∩

[[b]]Aη ∩Def(DA) 6= ∅.
• A satisfies a rule l → r ⇐ C if every valuation η such that (A, η) |= C verifies

(A, η) |= l → r .

• A is a model of Γ, A |= Γ if A satisfies all the rules in Γ.

As mentioned in Section 2.5, the CRWL-calculus is partially sound and complete

(González-Moreno et al. 1999) with respect to this notion of satisfaction:

• If ϕ is a reduction or a joinability statement, Γ ⊢CRWL ϕ implies that (A, η) |=

ϕ, for every A |= Γ and every totally defined valuation η.

• If ϕ is a joinability statement or a reduction statement in which the righthand

expression is a partial term, the previous implication becomes an equivalence.

Finally, we can also define homomorphisms between CRWL-algebras. Let A, B

be two CRWL-algebras over a signature Σ. A CRWL-homomorphism H : A → B

is a monotone function H : DA → C(DB) which satisfies the following conditions:

1. H is element-valued: for all u ∈ DA there exists v ∈ DB such that H (u) = 〈v〉.
2. H is strict: H (⊥A) = 〈⊥B〉.
3. H preserves constructors: for all c ∈ C n

Σ , ui ∈ DA, is H (cA(u1, . . . , un)) =

cB(H (u1), . . . ,H (un)).

4. H loosely preserves defined functions: that is, for all f ∈ Fn
Σ , ui ∈ DA,

H (f A(u1, . . . , un)) ⊆ f B(H (u1), . . . ,H (un)).

CRWL-algebras as objects with CRWL-homomorphisms as arrows form a category.

3.4 An institution for CRWL

An institution for CRWL was first defined in Molina-Bravo (2000). This institution,

however, was defined with the goal of providing a basis for the semantics of modules

in CRWL, and restricts its attention to a class of particular term algebras. Since

our goal is more general, we do not place such a limitation and define ICRWL =

(Sign, sen,Mod, |=) as follows:

• Sign: the category of signatures with constructors and signature morphisms.

• sen : Sign → Set the functor assigning to each signature Σ the set of all

conditional rewrite rules over it, and to each signature morphism σ its homo-

morphic extension to rewrite rules, with σ(⊥) = ⊥.

• Mod : Signop → Cat the functor assigning to each signature the category

of CRWL-algebras and homomorphisms over it, and to each σ : Σ → Σ′ the

forgetful functor mapping A′ ∈ |Mod(Σ′)| to the CRWL-algebra A′
σ with the

same underlying poset and such that hA′

σ = σ(h)A
′

for all h ∈ Σ, and which

is the identity over homomorphisms.

• |= the satisfaction relation in CRWL.

A comparison between two logical formalisms for rewriting 21

Proposition 7

ICRWL is an institution.

Proof

It is not difficult to check that Sign is a category, and that sen and Mod are indeed

functors. As for the satisfaction condition, let σ : Σ → Σ′ be a signature morphism,

A′ ∈ |Mod(Σ′)|, and ϕ ∈ sen(Σ); we have to prove that

A′ |= σ(ϕ) ⇔ A′
σ |= ϕ .

It is easy to show, by structural induction on e, that

[[e]]A
′

ση = [[σ(e)]]A
′

η

for every e ∈ Expr⊥(Σ,X) and valuation η over A′. Let ϕ = e → e ′ be a reduction

statement. Then, for any valuation η,

(A′, η) |= σ(ϕ) ⇔ [[σ(e ′)]]A
′

η ⊆ [[σ(e)]]A
′

η

⇔ [[e ′]]A
′

ση ⊆ [[e]]A
′

ση ⇔ (A′
σ, η) |= ϕ

and analogously for ϕ a joinability statement. Now, if l → r ⇐ C is a conditional

rewrite rule, it follows that A′
σ |= C ⇔ A′ |= σ(C) and A′

σ |= l → r ⇔ A′ |= σ(l →

r), and thus the satisfaction condition is indeed verified.

It can be proved that the categoryMod(T) has products for every CRWL-theory

T ; it is not complete, however, as in Section 3.6 it is shown that, in general,Mod(T)

does not have equalizers. ICRWL is also a semiexact institution (Palomino 2001).

3.5 An institution for RL

The task of assigning an institution to RL is harder than expected. The first and

most natural idea is to define the category of signatures Sign as the category of

equational theories and theory morphisms, and the functor sen to map any such

theory to the set of conditional rewrite rules over it. Since there are also notions of

model and satisfaction in RL, the desired institution seems to be at hand. However,

when one tries to put together the various components of the institution, problems

start to arise.

In the first place, the notion of satisfaction in RL is defined only for unconditional

rewrite rules, so our first task must be to extend its definition so as to encompass

the conditional ones. Taking the definition of R-systems as a guide, we say that a

conditional rewrite rule

[t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)]

is satisfied by an R-system S if there exists a natural transformation

α : tS ◦ JS ⇒ t ′S ◦JS ,

where JS : Subeq((ajS , bjS)1≤j≤m) → Sn . (Alternatively, one could also think of

defining satisfaction by

S |= [t] → [t ′] if [a1] → [b1] ∧ . . . ∧ [am] → [bm]

22 M. Palomino

if

S |= [ai] → [bi] i = 1, . . . ,m =⇒ S |= [t] → [t ′] .

This option looks natural, but it is too loose in the sense that it requires the

consequent to hold only if the condition is true for all possible instances. Note that,

in our definition, the subequalizer is playing the same role valuations have in the

definition of satisfaction in CRWL.)

We can now prove the following proposition, that justifies the soundness and

completeness of the extended RL-calculus presented in Section 2.4.

Proposition 8

Let R be an RL-theory and [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] →

[bm(x)] a conditional rewrite rule; then, the following statements are equivalent:

1. R |= [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)];

2. R(x) ∪ {[a1(x)] → [b1(x)], . . . , [am(x)] → [bm(x)]} |= [t(x)] → [t ′(x)];

3. R(x) ∪ {[a1(x)] → [b1(x)], . . . , [am(x)] → [bm(x)]} ⊢ [t(x)] → [t ′(x)].

Proof

Statements (2) and (3) are equivalent by the soundness and completeness of the

RL-calculus (Meseguer 1992). We will now prove that (1) implies (2) and then, that

(3) implies (1).

To see that (1) implies (2), let S be an R(x) ∪ {[a1(x)] → [b1(x)], . . . , [am(x)] →

[bm(x)]}-system. There exist, therefore, natural transformations

hj : aj (x)S → bj (x)S

for j = 1, . . . ,m. Since in this context, that is, over Σ(x), both t(x) and t ′(x) (as

well as all the aj (x) and bj (x)) are ground terms, we only need to find a morphism

t(x)S → t ′(x)S in S to prove that S |= [t(x)] → [t ′(x)], and it turns out that each hj

is just a single morphism. Let us write S|Σ for the restriction of S to the signature

Σ (that is, S|Σ is like S but we forget the interpretations for x). Clearly, S|Σ is an

R-system and therefore, by hypothesis, there exists a natural transformation

α : tS|Σ
◦ JS|Σ ⇒ t ′S|Σ

◦JS|Σ ,

where JS|Σ : Subeq((ajS|Σ , bjS|Σ)1≤j≤m) → S|Σ
n . Because of the hj , 1 ≤ j ≤ m, and

noting that aj (x)S = ajS|Σ(xS) (and analogously for bj), the interpretation xS of

the variables x in S belongs to the subequalizer: (xS , h) ∈ Subeq((ajS|Σ , bjS|Σ)1≤j≤m).

But then α(xS , h) is a morphism tS|Σ(xS) → t ′S|Σ
(xS) in S|Σ, and therefore a mor-

phism t(x)S → t ′(x)S in S, as required.

To show that (3) implies (1), given an R-system S we will prove by induction on

the derivation that

S |= [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am (x)] → [bm(x)] .

According to the last rule of deduction employed:

• Reflexivity. It must be [t] = [t ′] and the result is immediate.

A comparison between two logical formalisms for rewriting 23

• Congruence. If the last step in the derivation is

[t1] → [t ′1] . . . [tp] → [t ′p]

[f (t1, . . . , tp)] → [f (t ′1, . . . , t
′
p)]
,

we have, by the induction hypothesis,

S |= [ti] → [t ′i] if [a1] → [b1] ∧ . . . ∧ [am] → [bm] 1 ≤ i ≤ p,

and there exist natural transformations αi : tiS ◦ JS ⇒ t ′iS ◦ JS , 1 ≤ i ≤ p, where

JS : Subeq((ajS , bjS)1≤j≤m) → Sn . Let (s ,m) ∈ Subeq((ajS , bjS)1≤j≤m); if we

define

α(s ,m) = fS(α1(s ,m), . . . , αp(s ,m)),

we obtain a natural transformation α : f (t1, . . . , tp) ◦ JS ⇒ f (t ′1, . . . , t
′
n) ◦ JS and

the result is proved. Some warning words are in order here. In the functor JS :

Subeq((ajS , bjS)1≤j≤m) → Sn , the n appearing as superscript depends on the actual

number of variables in the sentence [ti] → [t ′i] if [a1] → [b1]∧ . . .∧ [am] → [bm] and,

although the aj and bj are fixed, this is not the case for ti and t ′i and thus the n may

vary with each i . This would imply that the category Subeq((ajS , bjS)1≤j≤m) could

vary as well, since its objects are pairs whose first component is an object of Sn , and

then the definition of α given above would no longer be valid. However, this is only

a technical nuisance because the extra variables that ti and t ′i may add are simply

ignored by the functors ajS and bjS , and everything could be made to fit properly

by using projection functors that would preserve the natural transformations. This

same remark applies to the remaining cases, too.

• Transitivity. If we have

[t] → [t ′] [t ′] → [t ′′]

[t] → [t ′′]
,

by induction hypothesis there exist natural transformations

α1 : tS ◦ JS ⇒ t ′S ◦JS and α2 : t ′S ◦ JS ⇒ t ′′S ◦ JS ,

where JS : Subeq((ajS , bjS)1≤j≤m) → Sn ; the composition α2 ◦α1 gives the result.

• Replacement. We distinguish two cases:

1. The rule employed is one of the [aj (x)] → [bj (x)]. Since the terms are ground

we must have

[aj (x)] → [bj (x)]
·

But in this case, S |= [ai] → [bi] if [a1] → [b1] ∧ . . . ∧ [am] → [bm] follows be-

cause the construction of the subequalizer produces a natural transformation

αj : ajS ◦ JS ⇒ bjS ◦ JS .

2. For some rule [l(y)] → [r(y)] if [u1(y)] → [v1(y)] ∧ . . . ∧ [uq(y)] → [vq(y)] in

R, we have

[w1] → [w ′
1] . . . [wp] → [w ′

p]

[u1(w/y)] → [v1(w/y)] . . . [uq(w/y)] → [vq(w/y)]

[l(w/y)] → [r(w ′/y)]
·

24 M. Palomino

By the induction hypothesis there exist natural transformations

αi : wiS ◦ JS ⇒ w ′
iS ◦ JS 1 ≤ i ≤ p,

and

βi : ui(w)S ◦ JS ⇒ vi(w)S ◦ JS 1 ≤ i ≤ q,

where JS : Subeq((ajS , bjS)1≤j≤m) → Sn . Since S is an R-system, there also

exists a natural transformation

γ : lS ◦ J ′
S ⇒ rS ◦ J ′

S

where J ′
S : Subeq((ujS , vjS)1≤j≤q) → Sp . We now need to find a natural

transformation α : l(w)S ◦ JS ⇒ r(w ′)S ◦ JS . For that, let (s ,m) be an object

in Subeq((ajS , bjS)1≤j≤m); due to the morphisms βi(s ,m) it turns out that

(wS(s), β(s ,m)) belongs to Subeq((ujS , vjS)1≤j≤q) and we can define

α(s ,m) = rS
(

α(s ,m)
)

◦ γ(wS(s), β(s ,m)),

which finishes the proof.

A more serious problem, as far as the definition of an institution for RL is con-

cerned, is posed by the functor Mod : Signop → Cat mapping signatures to

models. The difficulty resides in the fact that, in RL, models are assigned directly

to RL-theories instead of signatures, as it is customary in other logics. One obvious

solution would be to consider a signature (Σ,E) as a theory R = (Σ,E , ∅, ∅) with

empty set of axioms (and labels), and to map (Σ,E) to the categoryR-Sys of mod-

els of R. But this approach presents an important drawback. Up to this point in the

paper, we have omitted any explicit mention of the set of labels of an RL-theory.

Although this was a safe convention when talking about deduction, it is no longer

the case when our interest shifts to models. Thanks to the set of labels L in an RL-

theory R = (Σ,E ,L,Γ), the elements of Γ become special, labeled rewrite rules.

These rules force R-systems to have a certain internal structure: not only must

R-systems satisfy them, but must also associate to them a distinguished interpre-

tation (natural transformation) that must be preserved by homomorphisms. (In

particular, the same rule could appear twice in an RL-theory R under two different

labels. R-systems are then forced to provide two, possibly different, interpretations

for the same rule, each of them to be preserved by the homomorphisms.) When

considering a signature as a theory with empty sets of axioms, we are not taking

into account labeled rewrite rules. This way, homomorphisms are not subjected to

preserve any rewrite rule and the categories Mod(Γ) of models of Γ and R-Sys of

R-systems, that we expected to be the same, turn out to be different.

In Palomino (2001), some others attempts at defining an institution with Sign

as the category of equational theories are explored but, since they cannot reflect the

distinction between labeled rules belonging to RL-theories and unlabeled rules, all

of them are bound to failure. For this reason we are led to an institution in which

the category Sign subsumes all the information of an RL-theory. More precisely,

we define IRL = (Sign, sen,Mod, |=) where:

A comparison between two logical formalisms for rewriting 25

• Sign is the discrete category of RL-theories.
• sen : Sign → Set maps each RL-theory to the set of conditional rewrite rules

that can be built over its signature.
• Mod : Signop → Cat maps an RL-theory R to the category R-Sys.
• |= the satisfaction relation conveniently extended to conditional rewrite rules

as discussed above.

Since Sign is discrete, this trivially defines an institution. Admittedly, this restric-

tion seems to be not justified. In fact, two types of morphisms of RL-theories are

proposed in Meseguer (1990). Basically, they are morphisms of equational theories

“preserving” the rules in the RL-theories. For our purposes, however, the present

definition is general enough as it stands and its extension would not modify the use

we will make of it in the next section.

There exist other institutions associated to (variants of) RL in the literature,

e.g., (Cengarle 1998; Diaconescu and Futatsugi 2002); in these papers, the objects

in the category of signatures are the sets of function symbols, without any rules.

As a consequence of this simplicity and the reasons we have mentioned above, the

general categorical models of RL must be somehow restricted and the choice in

these two works is to require them to be preorders instead of arbitrary categories.

3.6 Searching for embeddings

Now that we have institutions associated to both RL and CRWL capturing formally

their semantics, we would like to relate them by means of maps of institutions having

“nice properties.” In particular, due to the generality of RL and its R-systems, a

natural question to ask is whether ICRWL can be considered as a subinstitution of

IRL.

The formal definition of subinstitution appeared originally in Meseguer (1989)

and has been further generalized in subsequent works. One of those extensions was

introduced in Meseguer (1998), where it is called an embedding. Embeddings are

very general: the only requirement they impose on a map of institutions (Φ, α, β) :

I → I ′ is that for each T ∈ |ThI |, the functor βT : Mod′(Φ(T)) → Mod(T) has

to be an equivalence of categories.

We will show, however, that there is no embedding from ICRWL into IRL. For

that, it will be enough to find a categorical property which is preserved by an

equivalence of categories and a theory T ∈ |ThCRWL| such that ModRL(Φ(T))

satisfies it whereas ModCRWL(T) does not.

Let Σ be a signature with constructors such that CΣ = ∅ and FΣ consists of

just two constants f1 and f2, Γ = {f2 → x ⇐ f1 ⊲⊳ f1}, and consider the CRWL-

theory T = (Σ,Γ). We define two CRWL-algebras over Σ: A given by the set DA =

{⊥, a1, a2} with partial order ⊥ ⊑ a1 ⊑ a2, and the cones f A1 = 〈a1〉 and f A2 = 〈⊥〉;

and B with DB = {⊥, b1}, and the cones f B1 = f B2 = 〈⊥〉. A,B ∈ |ModCRWL(T)|

trivially, because they do not satisfy the condition f1 ⊲⊳ f1.

Let us now define two CRWL-homomorphisms F ,G : A → B, given by:

F (x) = 〈⊥〉 and G(x) =

{

〈⊥〉 if x = ⊥, a1
〈b1〉 if x = a2.

26 M. Palomino

Clearly, F and G preserve both f1 and f2, so that they are actually homomorphisms;

we will prove that there is no equalizer of F andG. For let us assume that E : E → A

is such an equalizer and let H : A → A be the homomorphism given by

H (x) =

{

〈⊥〉 if x = ⊥

〈a1〉 if x = a1, a2,

satisfying F ◦H = G ◦H . Then, there must exist a unique homomorphism M :

A → E such that E ◦M = H . Let e1 be the element in E such that M (a1) = 〈e1〉

and E (e1) = 〈a1〉. Since E and M loosely preserve defined functions,

E (f E2) ⊆ f A2 = 〈⊥〉

and hence e1 /∈ f E2 , and 〈e1〉 = M (f A1) ⊆ f E1 . Therefore, since E ∈ ModCRWL(T),

there must exist e2 ∈ E such that e1 ❁ e2: otherwise, E would satisfy f1 ⊲⊳ f1

but, since e1 /∈ f E2 , not Γ. Besides, due to the monotonicity of E and the equality

F ◦E = G ◦E , it is E (e2) = 〈a1〉. But then we have M1,M2 : B → E given by

M1(x) =

{

〈⊥〉 if x = ⊥

〈e1〉 if x = b1
and M2(x) =

{

〈⊥〉 if x = ⊥

〈e2〉 if x = b1,

two different homomorphisms satisfying E ◦M1 = E ◦M2, a contradiction with the

universal property of equalizers.

In contrast with what happens in CRWL, the following proposition shows a

construction for equalizers in RL.

Proposition 9

For all RL-theories R = (Σ,E ,L,Γ), the category R-Sys has equalizers.

Proof

Let S1 and S2 be two R-systems and let F ,G : S1 → S2 be two R-homomorphisms

between them; let us build their equalizer E : E → S1.

The objects in the category E are those s ∈ S1 such that F (s) = G(s); the arrows,

those f : s → s ′ in S1 such that F (f) = G(f) (which implies, in particular, that

F and G also coincide over s and s ′); composition is that of S1. E is well-defined

because functors preserve identities and composition.

Next, we assign a (Σ,E)-algebra structure to E . For each f ∈ Σ of arity n we

define fE to be fS1
|E , the restriction of fS1

to E . Let us check that this is a valid

definition. If e1, . . . , en ∈ |E| then

F (fS1
(e1, . . . , en)) = fS2

(F (e1), . . . ,F (en)) (F is homomorphism)

= fS2
(G(e1), . . . ,G(en)) (ei ∈ |E|)

= G(fS1
(e1, . . . , en)) (G is homomorphism)

and thus fS1
(e1, . . . , en) ∈ |E|. Analogously for arrows. With this definition it is

easy to prove by structural induction that tE = tS1
|En for all t(x1, . . . , xn) ∈ TΣ(X).

Therefore, for each t = t ′ ∈ E it is tE = t ′E .

The only thing missing in the definition of E are the natural transformations

associated to the rewrite rules. Let

r : [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)]

A comparison between two logical formalisms for rewriting 27

be a rule in R. We have to define a natural transformation

rE : tE ◦ JE ⇒ t ′E ◦ JE ,

where JE : Subeq((ajE , bjE)1≤j≤m) → En is the subequalizer functor. Using the con-

struction of Section 3.2 and the fact that ajE = ajS1
|En and bjE = bjS1

|En , 1 ≤ j ≤

m, it follows that Subeq((ajE , bjE)1≤j≤m) is a subcategory of Subeq((ajS1
, bjS1

)1≤j≤m)

and that JE is just the restriction of the corresponding JS1
. Then we can define

rE simply by restricting rS1
, which is obviously a natural transformation, and this

finishes our construction of E as an R-system.

Let us now move to the definition of E and the proof that it is anR-homomorphism.

E is simply the inclusion functor. If f ∈ Σ and e1, . . . , en ∈ |E|, then

E (fE (e1, . . . , en)) = fE (e1, . . . , en) = fE(E (e1), . . . ,E (en)),

so E is a Σ-algebra homomorphism.

For a rewrite rule r : [t(x)] → [t ′(x)] if [a1(x)] → [b1(x)]∧. . .∧[am(x)] → [bm(x)]

in Γ, we have to show that the natural transformation E ◦ rE is equal to rS1
◦E•.

Let (en , um) ∈ Subeq((ajE , bjE)1≤j≤m). Regarding E•, we only need to know that

E•(en , um) = (En(en),Em (um)). Now,

(E ◦ rE)(e
n , um) = E (rE(e

n , um)) = rE(e
n , um)

= rS1
(en , um) = rS1

(En (en),Em(um))

= rS1
(E•(en , um)) = (rS1

◦E•)(en , um) ,

so E is an R-homomorphism.

We already know that E is an R-system and that E is an R-homomorphism;

the only missing thing is the equalizer property. Let then H : C → S1 be an R-

homomorphism such that F ◦H = G ◦H ; we have to find a unique M : C → E such

that E ◦M = H . As E is the inclusion functor the uniqueness is clear, because the

only possibility for all objects c and arrows u in C is M (c) = H (c) and M (u) =

H (u). It remains to prove that this is a valid definition. First, because of the equality

F ◦H = G ◦H the image of H is included in E and M is well-defined; as H is a

functor, so is M . Given f ∈ Σ and c1, . . . , cn ∈ |C|, we have

M (fC(c1, . . . , cn)) = H (fC(c1, . . . , cn))

= fS1
(H (c1), . . . ,H (cn))

= fE(M (c1), . . . ,M (cn))

and M is a Σ-algebra homomorphism. Finally, if r : [t(x)] → [t ′(x)] if [a1(x)] →

[b1(x)] ∧ . . . ∧ [am(x)] → [bm(x)] is a rewrite rule in Γ and (cn , um) is an object of

Subeq((ajC , bjC)1≤j≤m), then

rE(M
•(cn , um)) = rE(M

n(cn),Mm(um)) = rS1
(H n(cn),Hm(um))

= rS1
(H •(cn , um)) = H (rC(c

n , um))

= M (rC(c
n , um))

and we have M ◦ rC = rE ◦M •.

Note that, in the above proof, the equalizer E is a model of all the rewrite rules

that S1 satisfies. Therefore the result is still valid when R-Sys is replaced by the

category ModRL(Γ) for some set Γ of rewrite rules in the institution IRL. Since an

equivalence of categories preserves limits, we have:

28 M. Palomino

Proposition 10

ICRWL is not embeddable in IRL.

Proof

Let T be the CRWL-theory defined at the beginning of this section. It has been

shown thatModCRWL(T) does not have all equalizers, whereasModRL(Φ(T)) has,

regardless of the actual definition of Φ. Therefore, there cannot exist an equivalence

of categories βT : ModRL(Φ(T)) → ModCRWL(Φ).

What about the other way around? Can we embed IRL in ICRWL? When we

began preparing this work our intuition was that we would be able to view CRWL

as a “sublogic” of RL in the first place, but also that the converse would not be

true. The previous discussion has shown that our intuition was wrong about the

first point and our goal now is to deal with the second.

In order to prove that RL cannot be embedded in CRWL we have to find an

RL-theory T such that ModRL(T) has a categorical property that no category

of models in CRWL has. In order to do that, note that for any CRWL-theory

T there exists a CRWL-algebra A ∈ |ModCRWL(T)| with an infinite number of

automorphisms. Simply consider A given by DA = {⊥, a, b1, b2, . . .} with ⊥ ⊑ a,

⊥ ⊑ b1 ⊑ b2 ⊑ . . ., the image of all functions associated to constructor symbols to

be 〈a〉, and the corresponding one for all defined function symbols to be DA. This

way A is clearly a CRWL-algebra, satisfies all conditional rewrite rules, and the set

{Fi : A → A}i∈IN, where

Fi(x) =

〈⊥〉 if x = ⊥

〈a〉 if x = a

〈bi〉 if x = bj (j ∈ IN)

is an infinite family of automorphisms of A. On the other hand, in RL, if R is

the RL-theory given by ({c}, {x = c}, ∅, ∅) then, for all R-systems S, the equality

idS = cS , where cS is a constant functor, forces S to be a category with just one

object and one arrow, and no infinite family of homomorphisms can exist. Therefore

(as an equivalence of categories is full and faithful), ModRL(R) is not categorically

equivalent to ModCRWL(Φ(R)), whatever Φ might be, and we have:

Proposition 11

IRL is not embeddable in ICRWL.

Let us note that Propositions 10 and 11 still hold even if the general semantics

of RL is replaced by the preorder semantics mentioned on page 25. On the other

hand, maps of institutions could be given for the trivial semantics in which either

everything or nothing can be proven in both logics.

4 Conclusions

The main outcome of the research carried out in this paper has been the clarification

of the relationship between RL and CRWL. Both logics have been proved to be

expressive enough to simulate deduction in each other in a simple way, though

A comparison between two logical formalisms for rewriting 29

resorting to binary predicates. On the other hand, the results on institutions have

shown that neither can RL be considered as a sublogic of CRWL, nor can CRWL

with respect to RL.

During the preparation of this work we have been forced to take a close look at

the notions of entailment system and institution, and the difficulties we have found

have shown us that intuition can be misleading in this field. The conclusion we have

reached is that it would be very convenient to develop some kind of generalization

of these concepts. One reason supporting this claim is the fact that, although it

seems clear that CRWL should fit within the framework of entailment systems, the

lack of the transitivity property forbids it to be considered so. In addition, there

have been several occasions wherein we have had to make a distinction between

two types of sentences within the same logic. The most outstanding case was that

of labeled and unlabeled rewrite rules in RL, but we should also emphasize that

rules in CRWL-theories are a restricted class of the more general class of reduction

statements. What all these examples have in common is that sentences belonging

to a theory are given a different treatment from the rest of sentences and, with the

current definitions of entailment system and institution, there is no way of taking

this distinction into account.

Finally, though not presented in the paper due to lack of space, the results in

Section 2 can be used to show that CRWL is reflective (Palomino 2001). Intuitively,

this property means that the logic can reason about itself and has been fruitfully

exploited in RL in the design of programs; thus, an interesting open line of research

consists in the study of ways by which reflection can be exploited in CRWL.

Acknowledgments

The author warmly thanks Narciso Mart́ı-Oliet, Mario Rodŕıguez-Artalejo, and José

Meseguer for their help in the preparation of this work.

References

Arenas-Sánchez, P. and Rodŕıguez-Artalejo, M. 2001. A general framework for lazy
functional logic programming with algebraic polymorphic types. Theory and Practice

of Logic Programming 1, 2, 185–245.

Barr, M. and Wells, C. 1999. Category Theory for Computing Science. Third Edition.
Centre de Recherches Mathématiques.

Bosco, P. G., Giovannetti, E., and Moiso, C. 1988. Narrowing vs. SLD-resolution.
Theoretical Computer Science 59, 3–23.

Cengarle, M. V. 1998. The rewriting logic institution. Tech. Rep. 9801, Ludwig-
Maximilians-Universität München, Institut für Informatik. May.

Diaconescu, R. and Futatsugi, K. 2002. Logical foundations of CafeOBJ. Theoretical
Computer Science 285, 2, 289–318.

Goguen, J. and Burstall, R. 1992. Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery 39, 1, 95–146.

Goguen, J. and Roşu, G. 2002. Institution morphisms. Formal Aspects of Comput-

ing 13, 3-5, 274–307.

30 M. Palomino

González-Moreno, J. C., Hortalá-González, M. T., López-Fraguas, F. J., and
Rodŕıguez-Artalejo, M. 1999. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming 40, 47–87.

González-Moreno, J. C., Hortalá-González, M. T., and Rodŕıguez-Artalejo,

M. 2001. Polymorphic types in functional logic programming. Jour-

nal of Functional and Logic Programming 2001, 1. Special Issue 1,
http://danae.uni-muenster.de/lehre/kuchen/JFLP.

Lambek, J. 1970. Subequalizers. Canadian Mathematical Bulletin 13, 337–349.

Mart́ı-Oliet, N. and Meseguer, J. 2002a. Rewriting logic as a logical and semantic
framework. In Handbook of Philosophical Logic. Second Edition, D. Gabbay, Ed. Vol. 9.
Kluwer Academic Press, 1–81.

Mart́ı-Oliet, N. and Meseguer, J. 2002b. Rewriting logic: Roadmap and bibliography.
Theoretical Computer Science 285, 2, 121–154.

Meseguer, J. 1989. General logics. In Logic Colloquium’87, H.-D. Ebbinghaus,
J. Fernández-Prida, M. Garrido, D. Lascar, and M. Rodŕıguez-Artalejo, Eds. North-
Holland, 275–329.

Meseguer, J. 1990. Rewriting as a unified model of concurrency. Tech. Rep. SRI-CSL-
90-02, SRI International, Computer Science Laboratory. Feb. Revised June 1990.

Meseguer, J. 1992. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96, 1, 73–155.

Meseguer, J. 1998. Membership algebra as a logical framework for equational speci-
fication. In Recent Trends in Algebraic Development Techniques, 12th International

Workshop, WADT’97, Tarquinia, Italy, June 3 - 7, 1997, Selected Papers, F. Parisi-
Presicce, Ed. Lecture Notes in Computer Science, vol. 1376. Springer-Verlag, 18–61.

Meseguer, J. 2000. Rewriting logic and Maude: Concepts and applications. In Rewriting

Techniques and Applications, 11th International Conference, RTA 2000, Norwich, UK,

July 10–12, 2000, Proceedings, L. Bachmair, Ed. Lecture Notes in Computer Science,
vol. 1833. Springer-Verlag, 1–26.

Miyoshi, H. 1996. Modelling conditional rewriting logic in structured categories.
In Proceedings First International Workshop on Rewriting Logic and its Ap-

plications, WRLA’96, Asilomar, California, September 3–6, 1996, J. Meseguer,
Ed. Electronic Notes in Theoretical Computer Science, vol. 4. Elsevier, 20–34.
http://www.elsevier.com/locate/entcs/volume4.html .

Molina-Bravo, J. M. 2000. Modularidad en programación lógico-funcional de primer
orden. Ph.D. thesis, Universidad de Málaga, Spain.

Palomino, M. 2001. Relating Meseguer’s rewriting logic and the constructor-based rewrit-
ing logic. M.S. thesis, Facultad de Matemáticas, Universidad Complutense de Madrid.
http://maude.cs.uiuc.edu/papers.

Thati, P., Sen, K., and Mart́ı-Oliet, N. 2002. An executable specification of asyn-
chronous pi-calculus. In Proceedings Fourth International Workshop on Rewriting Logic

and its Applications, WRLA’02, Pisa, Italy, September 19–21, 2002, F. Gadducci and
U. Montanari, Eds. Electronic Notes in Theoretical Computer Science, vol. 71. Elsevier.

Verdejo, A. 2003. Técnicas de especificación formal de sistemas orientados a objetos
basadas en lógica de reescritura. Ph.D. thesis, Universidad Complutense de Madrid,
Spain.

Verdejo, A. and Mart́ı-Oliet, N. 2002. Implementing CCS in Maude2. In Proceedings

Fourth International Workshop on Rewriting Logic and its Applications, WRLA’02,

Pisa, Italy, September 19–21, 2002, F. Gadducci and U. Montanari, Eds. Electronic
Notes in Theoretical Computer Science, vol. 71. Elsevier.

http://danae.uni-muenster.de/lehre/kuchen/JFLP
http://www.elsevier.com/locate/entcs/volume4.html
http://maude.cs.uiuc.edu/papers

A comparison between two logical formalisms for rewriting 31

Appendix A Proofs

Proposition 1

ERL = (Sign, sen,⊢) is an entailment system.

Proof

The fact that composition of signature morphisms is associative (for equational

logics in general, and for our unsorted and unconditional case in particular) is all

that is needed to check that Sign is a category and sen a functor. Regarding the

properties that ⊢ must satisfy:

1. reflexivity: By Replacement (combined with Implication introduction for

conditional rules).
2. monotonicity: Immediate by the definition of the entailment relation.
3. transitivity: Assume Γ ⊢ ϕi for all i ∈ I and Γ ∪ {ϕi | i ∈ I } ⊢ ψ. The easiest

way to prove Γ ⊢ ψ is by resorting to the soundness and completeness of the

RL-calculus. Let S be a Γ-system, so S |= ϕi for all i ∈ I . Therefore Γ can also

be considered a Γ ∪ {ϕi | i ∈ I }-system and then S |= ψ.
4. ⊢-translation: Suppose Γ ⊢ ϕ. Given a theory morphism H , it can be proved

by induction on the derivation that sen(H)(Γ) ⊢ sen(H)(ϕ). The only non-

trivial case is the one corresponding to Replacement and we illustrate it with

an unconditional rule. If, for some [t(x)] → [t ′(x)] ∈ Γ, the last step in the

derivation of Γ ⊢ ϕ is

[w1] → [w ′
1] . . . [wn] → [w ′

n]

[t(w/x)] → [t ′(w ′/x)]

then, by the induction hypothesis, sen(H)(Γ) ⊢ sen(H)([wi] → [w ′
i]) for i =

1, . . . , n, and, since sen(H)([t] → [t ′]) = [H (t)] → [H (t ′)] belongs to sen(H)(Γ),

we can build a derivation for sen(H)([t(w/x)] → [t ′(w ′/x)]) from sen(H)(Γ) by

applying Replacement.

Proposition 6

Given any RL-theory T = (Σ,E ,Γ), and l , r ∈ TΣ(X):

T ⊢RL [l] → [r] ⇔ (∃l ′ ∈ [l], ∃r ′ ∈ [r]) β(T) ⊢CRWL R(l ′, r ′) → true

⇔ (∀l ′ ∈ [l], ∀r ′ ∈ [r]) β(T) ⊢CRWL R(l ′, r ′) → true

Proof

By Propositions 4 and 5, it is enough to see that if (Σ ∪ {true},E ,Γ) ⊢RL [l] → [r]

then (Σ,E ,Γ) ⊢RL [l] → [r]. The easiest way of proving this implication is by using

the completeness of the RL-calculus.

Note that, since true does not belong to Σ (and hence it appears neither in E

nor in Γ), a model of (Σ ∪ {true},E ,Γ) is just a model of (Σ,E ,Γ) together with

an interpretation for the constant true, and therefore either both satisfy [l] → [r]

or none does. But then

(Σ,E ,Γ) ⊢ [l] → [r] ⇔ (Σ,E ,Γ) |= [l] → [r]

⇔ (Σ ∪ {true},E ,Γ) |= [l] → [r]

⇔ (Σ ∪ {true},E ,Γ) ⊢ [l] → [r]

whence (Σ,E ,Γ) ⊢ [l] → [r] follows.

	Introduction
	Relations at the Syntactic Level
	Entailment systems
	Rewriting logic
	CRWL
	An entailment system for RL
	An entailment system for CRWL
	Simulating CRWL in RL
	Simulating RL in CRWL

	Relations at the Semantic Level
	Institutions
	The models of RL
	The models of CRWL
	An institution for CRWL
	An institution for RL
	Searching for embeddings

	Conclusions
	References
	Appendix A Proofs

