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Abstract

Program slicing has been mainly studied in the context of imperative languages, where
it has been applied to a wide variety of software engineering tasks, like program under-
standing, maintenance, debugging, testing, code reuse, etc. This work introduces the first
forward slicing technique for declarative multi-paradigm programs which integrate features
from functional and logic programming. Basically, given a program and a slicing criterion
(a function call in our setting), the computed forward slice contains those parts of the
original program which are reachable from the slicing criterion. Our approach to program
slicing is based on an extension of (online) partial evaluation. Therefore, it provides a
simple way to develop program slicing tools from existing partial evaluators and helps to
clarify the relation between both methodologies. A slicing tool for the multi-paradigm lan-
guage Curry, which demonstrates the usefulness of our approach, has been implemented
in Curry itself.

KEYWORDS: forward slicing, partial evaluation, functional logic programming.

1 Introduction

Essentially, program slicing is a method for decomposing programs by analyzing

their data and control flow. It was first proposed as a debugging tool to allow a

better understanding of the portion of code which revealed an error. Since this

concept was originally introduced by Weiser (1979; 1984)—in the context of im-

perative programs—it has been successfully applied to a wide variety of software

engineering tasks (e.g., program understanding, maintenance, debugging, merging,

testing, code reuse). Surprisingly, there are very few approaches to program slicing

in the context of declarative programming (see Section 8).

Roughly speaking, a program slice consists of those program statements which

are (potentially) related with the values computed at some program point and/or

∗ A preliminary short version of this paper appeared in the Proceedings of the 12th International
Workshop on Logic Based Program Synthesis and Transformation (LOPSTR 2002).
This work has been partially supported by the EU (FEDER) and the Spanish MEC under
grants TIN2004-00231 and TIN2005-09207-C03-02, and by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054.
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(1) read(n); (1) read(n); (1)

(2) i := 1; (2) i := 1; (2)

(3) sum := 0; (3) (3) sum := 0;

(4) prod := 1; (4) prod := 1; (4)

(5) while i <= n do (5) while i <= n do (5)

(6) sum := sum + i; (6) (6) sum := sum + i;

(7) prod := prod * i; (7) prod := prod * i; (7)

(8) i := i + 1; (8) i := i + 1; (8)

(9) write(sum); (9) (9) write(sum);

(10)write(prod); (10)write(prod); (10)

(a) (b) (c)

Fig. 1. Forward and backward slicing —an example

variable, often given by a pair (line number, variable), referred to as a slic-

ing criterion. Program slices are usually computed from a program dependence

graph (Ferrante et al. 1987; Kuck et al. 1981) that makes explicit both the data

and control dependences for each operation in a program. Program dependences

can be traversed backwards and forwards—from the slicing criterion—giving rise

to so-called backward and forward slicing, respectively.

Essentially, a backward slice consists of the parts of the program that (poten-

tially) affect the values computed at the slicing criterion. In contrast, a forward slice

consists of the statements which are dependent on the slicing criterion, a statement

being dependent on the slicing criterion if the values computed at that statement

depend on the values computed at the slicing criterion or if the values computed

at the slicing criterion determine if the statement under consideration is executed

(Tip 1995). Consider, e.g., the example (Tip 1995) depicted in Fig. 1 (a) for com-

puting the sum and the product of the sequence of numbers 1,2,...,n. Fig. 1 (b)

shows a backward slice of the program w.r.t. the slicing criterion (10,prod) while

Fig. 1 (c) shows a forward slice w.r.t. the slicing criterion (3,sum).

Additionally, slices can be dynamic or static, depending on whether a concrete

program’s input is provided or not. Quasi static slicing was the first attempt to de-

fine a hybrid method ranging between static and dynamic slicing (Venkatesh 1991).

It becomes useful when only the value of some parameters is known. This notion is

closely related to partial evaluation (Jones et al. 1993), a well-known technique to

specialize programs w.r.t. part of their input data. For instance, quasi static slic-

ing has been applied to program understanding by Harman et al. (1995); similarly,

Blazy and Facon (1998) use partial evaluation for the same purpose.

All approaches to slicing mentioned so far are syntax preserving, i.e., they are

mainly obtained from the original program by statement deletion. In contrast,

amorphous slicing (Harman and Danicic 1997) exploits different program transfor-

mations in order to simplify the program while preserving its semantics w.r.t. the

slicing criterion. From this perspective, partial evaluation could straightforwardly

be seen as an amorphous slicing technique. More detailed information on program

slicing can be found in the surveys of Harman and Hierons (2001) and Tip (1995).

The aim of this work is the definition of a forward slicing technique for a multi-
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paradigm declarative language which integrates features from functional and logic

programming, like, e.g., Curry (Hanus 2003) or Toy (López-Fraguas and Sánchez-Hernández 1999).

Similarly to in (Reps and Turnidge 1996), where a first-order functional language is

considered, given a program p and a projection function π, backward slicing should

extract a program that behaves like π(p) (e.g., by symbolically pushing π back-

wards through the body of p). For instance, it can be used to extract a program

slice for computing the number of lines in a string from a more general program

that returns a tuple with both the number of lines and the number of characters

of the string; this is the example that illustrates the backward slicing technique of

Reps and Turnidge (1996). Such a slicing technique is considered backward because

the algorithm proceeds from (part of) the result backwards to the initial function

call, i.e., in the inverse direction of the standard operational semantics. In contrast,

here we consider the definition of a forward slicing technique that, given a program

and a function call, extracts a program containing all the statements which are

reachable from the slicing criterion. Our slicing technique is considered forward be-

cause it proceeds from a given function call to its result, i.e., we follow the control

flow of the standard operational semantics.

Furthermore, rather than defining a new technique from scratch, we exploit the

similarities between slicing and partial evaluation (Jones et al. 1993). Since a par-

tial evaluator for the considered language already exists, our approach provides a

simple way to develop a program slicing tool. The main purpose of partial evaluation

is to specialize a program w.r.t. part of its input data and, hence, it is also known

as program specialization. The partially evaluated program will be (hopefully) exe-

cuted more efficiently since those computations that depend only on the known data

are performed—at partial evaluation time—once and for all. Many (online) partial

evaluation schemes follow a common pattern: given a program and a function call

(possibly containing partial data structures by means of free variables), the partial

evaluator builds a finite representation—generally a graph—of the possible execu-

tions of the initial call and, then, systematically extracts a residual program—the

partially evaluated program—from this graph.

The essence of our approach can be summarized as follows. First, we consider

that, in our functional logic context, a function call—possibly containing free vari-

ables—may also play the role of slicing criterion. Since such a call may have an

infinite computation space, a primary task of both slicing and partial evaluation

is the construction of a finite representation of its possible program executions.

Here, the same algorithm which is used in partial evaluation can be applied for

computing this finite representation, which will be later used to identify the pro-

gram statements that are reachable from the slicing criterion. Then, we only need

to replace the construction of a residual program in partial evaluation by a sim-

pler post-processing stage that extracts an executable program which includes the

reachable program statements.

While partial evaluation usually achieves its effects by compressing paths in the

graph and by renaming expressions in order to remove unnecessary function sym-

bols, slicing should preserve the structure of the original program (here, we do

not consider amorphous slicing): statements can be—totally or partially—deleted
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but no new statements can be introduced. In order to further clarify the relation

between partial evaluation and slicing, let us recall the following classification of

partial evaluators introduced by Glück and Sørensen (1996). According to this clas-

sification, a partial evaluator is

• Monovariant: if each function of the original program gives rise to (at most)

one residual function;

• Polyvariant: if each function of the original program may give rise to one or

more residual functions;

• Monogenetic: if each residual function stems from one function of the original

program;

• Polygenetic: if each residual function may stem from one or more functions

of the original program.

The main contribution of this work is to demonstrate that a forward slicing tech-

nique for functional logic programs can be obtained by slightly extending a mono-

variant and monogenetic partial evaluation scheme. Unfortunately, this kind of

monovariant/monogenetic partial evaluation could be rather imprecise, thus result-

ing in unnecessarily large residual programs (i.e., slices). In order to overcome this

drawback, we consider the definition of an extended operational semantics to per-

form partial evaluations, which helps us to preserve as much information as possible

while maintaining the monovariant/monogenetic nature of the process.

The main contributions of this work can be summarized as follows:

• We define the first forward slicing technique for functional logic programs. Fur-

thermore, the application of our developments to (first-order) lazy functional

programs would be straightforward, since either the syntax and the underlying

(online) partial evaluators—e.g., positive supercompilation (Sørensen et al. 1996)—

share many similarities.

• We do not need to consider separately static and dynamic slicing, since the

underlying partial evaluation scheme naturally accepts partial input data.

• Our method is defined in terms of an existing partial evaluation scheme and,

thus, it is easy to implement by adapting current partial evaluators.

• Finally, our approach helps to clarify the relation between forward slicing and

(online) partial evaluation.

This paper is organized as follows. In the next section we recall some foundations

for understanding the subsequent developments. Section 3 introduces a notion of

forward slicing in the context of functional logic programming. We then recall, in

Section 4, the narrowing-driven approach to partial evaluation. Section 5 defines an

algorithm for computing program dependences by partial evaluation, while Section 6

uses these dependences to extract program slices. Section 7 presents a prototype

implementation of the program slicing tool and show some selected experiments.

Several related works are discussed in Section 8 before we conclude in Section 9.

Proofs of technical results can be found in Appendix A.
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2 Foundations

We recall in this section some basic notions of term rewriting (Baader and Nipkow 1998;

Klop 1992; Terese 2003) and functional logic programming (Hanus 1994).

2.1 Preliminaries

Throughout this paper, we consider a (many-sorted) signature Σ partitioned into

a set C of constructors and a set F of (defined) functions or operations. We write

c/n ∈ C and f /n ∈ F for n-ary constructor and operation symbols, respectively.

There is at least one sort Bool containing the constructors True and False. The

set of terms and constructor terms with variables (e.g., x , y, z ) from X are denoted

by T (C ∪ F ,X ) and T (C,X ), respectively. A term is linear if it does not contain

multiple occurrences of one variable. The set of variables occurring in a term t is

denoted by Var(t). A term t is ground if Var(t) = ∅.

A pattern is a term of the form f (d1, . . . , dn) where f /n ∈ F and d1, . . . , dn ∈

T (C,X ). A term is operation-rooted (constructor-rooted) if it has an operation

(constructor) symbol at the root. A position p in a term t is represented by a

sequence of natural numbers (Λ denotes the empty sequence, i.e., the root position).

t |p denotes the subterm of t at position p, and t [s ]p denotes the result of replacing

the subterm t |p by the term s . We denote a substitution σ by {x1 7→ t1, . . . , xn 7→ tn}

where σ(xi) = ti for i = 1, . . . , n (with xi 6= xj if i 6= j ), and σ(x ) = x for all other

variables x . A substitution σ is constructor, if σ(x ) is a constructor term for all x .

The identity substitution is denoted by id . A substitution θ is more general than σ,

in symbols θ ≤ σ, iff there exists a substitution γ such that γ ◦ θ = σ (“◦” denotes

the composition operator). Term t ′ is a (constructor) instance of term t if there is

a (constructor) substitution σ with t ′ = σ(t).

A set of rewrite rules (or oriented equations) l = r such that l 6∈ X , and Var(r) ⊆

Var(l) is called a term rewriting system (TRS). Terms l and r are called the left-

hand side and the right-hand side of the rule, respectively. A TRS R is left-linear

if l is linear for all l = r ∈ R. A TRS is constructor-based if each left-hand side l is

a pattern. In the following, a functional logic program is a left-linear constructor-

based TRS. A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s

if there exists a position p in t , a rewrite rule R = (l = r) and a substitution σ with

t |p = σ(l) and s = t [σ(r)]p . The instantiated left-hand side σ(l) of a rule l = r

is called a redex (reducible expression). Given a relation →, we denote by →∗ its

transitive and reflexive closure.

Example 1

Consider the following TRS that defines the addition on natural numbers repre-

sented by terms built from Zero and Succ:1

Zero+ y = y (R1)

Succ(x) + y = Succ(x+ y) (R2)

1 In the examples, we write constructor symbols starting with upper case (except for the list
constructors, “[ ]” and “:”, which are a shorthand for Nil and Cons, respectively).
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Given the term Succ(Zero)+Succ(Zero), we have the following sequence of rewrite

steps:

Succ(Zero) + Succ(Zero) →Λ,R2 Succ(Zero+ Succ(Zero)

→1,R1 Succ(Succ(Zero))

2.2 Narrowing

Functional logic programs mainly differ from purely functional programs in that

function calls may contain free variables. In order to evaluate terms containing

free variables, narrowing non-deterministically instantiates these variables so that

a rewrite step is possible. Formally, t ❀(p,R,σ) t
′ is a narrowing step if p is a non-

variable position of t and σ(t) →p,R t ′. We often write t ❀σ t ′ when the position

and the rule are clear from the context. We denote by t0 ❀
n
σ tn a sequence of n

narrowing steps t0 ❀σ1
. . . ❀σn

tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id),

usually restricted to the variables of t0. Due to the presence of free variables, a term

may be reduced to different values after instantiating these variables to different

terms. Given a narrowing derivation t0 ❀
∗
σ tn , we say that tn is a computed value

and σ is a computed answer for t0.

Example 2

Consider again the definition of function “+” in Example 1. Given the term x +

Succ(Zero), narrowing non-deterministically performs the following derivations:

x+ Succ(Zero) ❀Λ,R1,{x 7→Zero} Succ(Zero)

x+ Succ(Zero) ❀Λ,R2,{x 7→Succ(y1)} Succ(y1 + Succ(Zero))

❀1,R1,{y1 7→Zero} Succ(Succ(Zero))

x+ Succ(Zero) ❀Λ,R2,{x 7→Succ(y1)} Succ(y1 + Succ(Zero))

❀1,R2,{y1 7→Succ(y2)} Succ(Succ(y2 + Succ(Zero)))

❀1·1,R1,{y2 7→Zero} Succ(Succ(Succ(Zero)))

. . .

Therefore, x+ Succ(Zero) non-deterministically computes the values

• Succ(Zero) with answer {x 7→ Zero},
• Succ(Succ(Zero)) with answer {x 7→ Succ(Zero)},
• Succ(Succ(Succ(Zero))) with answer {x 7→ Succ(Succ(Succ(Zero)))}, etc.

As in logic programming, narrowing derivations can be represented by a (possibly

infinite) finitely branching tree. Formally, given a program R and an operation-

rooted term t , a narrowing tree for t inR is a tree satisfying the following conditions:

(a) each node of the tree is a term, (b) the root node is t , (c) if s is a node of the

tree then, for each narrowing step s ❀p,R,σ s ′, the node has a child s ′ and the

corresponding arc is labeled with (p,R, σ), and (d) nodes which are constructor

terms have no children.

In order to avoid unnecessary computations and to deal with infinite data struc-

tures, demand-driven generation of the search space has been advocated by a num-

ber lazy narrowing strategies (Giovannetti et al. 1991; Loogen et al. 1993; Moreno-Navarro and Rodŕıguez-Artalejo 1992).
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Due to its optimality properties w.r.t. the length of derivations and the number of

computed solutions, needed narrowing (Antoy et al. 2000) is currently the best lazy

narrowing strategy.

2.3 Needed Narrowing

Needed narrowing (Antoy et al. 2000) is defined on inductively sequential TRSs

(Antoy 1992), a subclass of left-linear constructor-based TRSs. Essentially, a TRS

is inductively sequential when all its operations are defined by rewrite rules that,

recursively, make on their arguments a case distinction analogous to a data type

(or structural) induction. Inductive sequentiality is not a limiting condition for pro-

gramming. In fact, the first-order components of many functional (logic) programs

written in, e.g., Haskell, ML or Curry, are inductively sequential.

We say that s ❀p,R,σ t is a needed narrowing step iff σ(s) →p,R t is a needed

rewrite step in the sense of Huet and Lévy (1992), i.e., in every computation from

σ(s) to a normal form, either σ(s)|p or one of its descendants must be reduced.

Here, we are interested in a particular needed narrowing strategy, denoted by λ

in (Antoy et al. 2000, Def. 13) which is based on the notion of a definitional tree

(Antoy 1992), a hierarchical structure containing the rules of a function definition,

which is used to guide the needed narrowing steps. This strategy is basically equiv-

alent to lazy narrowing (Moreno-Navarro and Rodŕıguez-Artalejo 1992) where nar-

rowing steps are applied to the outermost function, if possible, and inner functions

are only narrowed if their evaluation is demanded by a constructor symbol in the

left-hand side of some rule (i.e., a typical outermost strategy).

Example 3

Consider following rules which define the less-or-equal function on natural numbers:

Zero 6 y = True

Succ(x) 6 Zero = False

Succ(x) 6 Succ(y) = x 6 y

In a term like t1 6 t2, it is always necessary to evaluate t1 to some head normal

form (i.e., a variable or a constructor-rooted term) since all three rules defining

“6” have a non-variable first argument. On the other hand, the evaluation of t2
is only needed if t1 is of the form Succ(t). Thus, if t1 is a free variable, needed

narrowing instantiates it to a constructor, here Zero or Succ(x). Depending on this

instantiation, either the first rule is applied or the second argument t2 is evaluated.

2.4 Declarative Multi-Paradigm Languages

Functional logic languages have recently evolved to so called declarative multi-

paradigm languages like, e.g., Curry (Hanus 2003), Toy (Hortalá-González and Ullán 2001)

and Escher (Lloyd 1994). In order to make things concrete, we consider in this

work the language Curry, a modern multi-paradigm language which integrates fea-

tures from logic programming (partial data structures, built-in search), functional

programming (higher-order functions, demand-driven evaluation) and concurrent
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R ::= D1 . . .Dm (program) t ::= x (variable)
D ::= f (xn ) = e (rule) | c(tn ) (constructor call)
e ::= t (term) | f (tn) (function call)

| case x of {pm → em} (rigid case) p ::= c(xn ) (flat pattern)
| fcase x of {pm → em} (flexible case)

Fig. 2. Syntax of Flat Programs

programming (concurrent evaluation of constraints with synchronization on logical

variables). Curry follows a Haskell-like syntax, i.e., variables and function names

start with lowercase letters and data constructors start with an uppercase letter.

The application of function f to an argument e is denoted by juxtaposition, i.e.,

(f e).

The basic operational semantics of Curry is based on a combination of needed

narrowing and residuation (Hanus 1997). The residuation principle is based on the

idea of delaying function calls until they are ready for a deterministic evaluation.

Residuation preserves the deterministic nature of functions and naturally supports

concurrent computations. The precise mechanism—narrowing or residuation—for

each function is specified by evaluation annotations. The annotation of a function

as rigid forces the delayed evaluation by rewriting, while functions annotated as

flexible can be evaluated in a non-deterministic manner by narrowing.

In actual implementations, e.g., the PAKCS environment (Hanus et al. 2004) for

Curry, programs may also include a number of additional features: calls to external

(built-in) functions, concurrent constraints, higher-order functions, overlapping left-

hand sides, guarded expressions, etc. In order to ease the compilation of programs

as well as to provide a common interface for connecting different tools working on

source programs, a flat representation for programs has recently been introduced.

This representation is based on the formulation of Hanus and Prehofer (1999) to

express pattern-matching by case expressions. The complete flat representation is

called FlatCurry (Hanus et al. 2004) and is used as an intermediate language during

the compilation of source programs.

In order to simplify the presentation, we will only consider the core of the flat

representation. Extending the developments in this work to the remaining features

is not difficult and, indeed, the implementation reported in Section 7 covers many

of these features. The syntax of flat programs is summarized in Fig. 2, where on

stands for the sequence of objects o1, . . . , on . We consider the following domains:

x , y, z ∈ X (variables) a, b, c ∈ C (constructor symbols)

f , g, h ∈ F (defined functions) e1, e2, . . . ∈ E (expressions)

t1, t2, . . . ∈ T (terms) v1, v2, . . . ∈ V (values)

The only difference between terms and expressions is that the latter may con-

tain case expressions. Values are terms in head normal form, i.e., variables or

constructor-rooted terms. A program R consists of a sequence of function defi-

nitions; each function is defined by a single rule whose left-hand side contains only

different variables as parameters. The right-hand side is an expression e composed
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by variables, constructors, function calls, and case expressions for pattern-matching.

The general form of a case expression is:2

(f )case x of {c1(xn1
) → e1; . . . ; cm(xnm

) → em}

where x is a variable, c1, . . . , cm are different constructors of the type of x , and

e1, . . . , em are expressions (possibly containing nested (f )case’s). The variables xni

are local variables which occur only in the corresponding subexpression ei . The dif-

ference between case and fcase only shows up when the argument, x , is a free vari-

able (within a particular computation): case suspends—which corresponds to resid-

uation, i.e., pure functional reduction—whereas fcase nondeterministically binds

this variable to a pattern in a branch of the case expression—which corresponds

to either narrowing (Antoy et al. 2000) and driving (Turchin 1986). Note that our

functional logic language mainly differs from typical (lazy) functional languages in

the presence of flexible case expressions.

Example 4

Consider again the rules defining functions “+” (Example 1) and “6” (Example 3).

These functions can be defined in the flat representation as follows:3

x + y = fcase x of { Zero → y;

Succ n → Succ (n + y) }

x 6 y = fcase x of { Zero → True;

Succ n → fcase y of { Zero → False;

Succ m → n 6 m } }

An automatic transformation from source (inductively sequential) programs to flat

programs has been introduced by Hanus and Prehofer (1999). Translated programs

always fulfill the following restrictions: case expressions in the right-hand sides

of program rules appear always in the outermost positions (i.e., there is no case

expression inside a function or constructor call) and all case arguments are variables,

thus the syntax of Fig. 2 is general enough for our purposes. We shall assume these

restrictions on flat programs in the following.

The operational semantics of flat programs is shown in Fig. 3. It is based on the

LNT—for Lazy Narrowing with definitional Trees—calculus of Hanus and Prehofer

(1999). The one-step transition relation =⇒σ is labeled with the substitution σ

computed in the step. Let us briefly describe the LNT rules:

The select rule selects the appropriate branch of a case expression and continues

with the evaluation of this branch. This rule implements pattern matching.

The guess rule applies when the argument of a flexible case expression is a vari-

able. Then, this rule non-deterministically binds this variable to a pattern in a

branch of the case expression. The step is labeled with the computed binding.

2 We write (f )case for either fcase or case.
3 Although we consider in this work a first-order representation—the flat language—we use a
curried notation in concrete examples (as in Curry).
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(select) (f )case c(tn ) of {pm → em} =⇒id σ(ei)
if pi = c(xn ), c ∈ C, and σ = {xn 7→ tn}

(guess) fcase x of {pm → em} =⇒σ σ(ei)
if σ = {x 7→ pi} and i ∈ {1, . . . ,m}

(case eval) (f )case e of {pm → em} =⇒σ σ((f )case e ′ of {pm → em})
if e is not in head normal form and e =⇒σ e ′

(fun) f (tn ) =⇒id σ(e)
if f (xn ) = e ∈ R and σ = {xn 7→ tn}

Fig. 3. Standard Operational Semantics (LNT calculus)

Observe that there is no rule to evaluate a rigid case expression with a variable

argument. This situation produces a suspension of the evaluation.

The case eval rule can be applied when the argument of the case construct is not

in head normal form (i.e., it is either a function call or another case construct).

Then, it tries to evaluate this expression recursively.

Finally, the fun rule performs the unfolding of a function call. As in proof pro-

cedures for logic programming, we assume that we take a program rule with fresh

variables in each such evaluation step.

Note that there is no rule to evaluate terms in head normal form; in this case,

the computation stops successfully. An LNT derivation is denoted by e0 =⇒∗
σ en ,

which is a shorthand for the sequence e0 =⇒σ1
. . . =⇒σn

en with σ = σn ◦ · · · ◦ σ1

(if n = 0 then σ = id). An LNT derivation e =⇒∗
σ e ′ is successful when e ′ is in

head normal form. Then, we say that e evaluates to e ′ with computed answer σ.

Example 5

Consider the function “6” of Example 4. Given the initial call “(Succ x) 6 y”,

the LNT calculus computes, among others, the following successful derivation:

(Succ x) 6 y

=⇒id fcase (Succ x) of (fun)

{Z → True;

(Succ n) → fcase y of {Z → False; (Succ m) → n 6 m}}

=⇒id fcase y of {Z → False; (Succ m) → x 6 m} (select)

=⇒{y 7→Z} False (guess)

Therefore, (Succ x) 6 y evaluates to False with computed answer {y 7→ Z}.

3 Forward Slicing

In this section, we formalize our notion of forward slice in the context of functional

logic programs. As mentioned before, in our setting any function call may play the

role of slicing criterion. Essentially, given a program R and a (partially instanti-

ated) call t—the slicing criterion—an associated forward slice is a fragment of R

which contains all the statements which are necessary for executing the call t , i.e.,

which are needed to evaluate the slicing criterion. This relation between needed-
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ness—in the sense of Huet and Lévy (1992)—and slicing is not new; indeed, there

exist several approaches to slicing of functional programs which rely on the com-

putation of neededness information (Biswas 1997; Field and Tip 1998). Clearly, t

must compute the same value in R and in the computed slice. In particular, the

original program is always a correct slice w.r.t. any slicing criterion. Our aim is

thus to find smaller slices.4 Furthermore, we do not distinguish between dynamic

and static slicing, since it only depends on the degree of instantiation of the slicing

criterion; in order words, we consider a sort of quasi static slicing (Venkatesh 1991).

As mentioned before, we do not consider the construction of amorphous slices;

otherwise, partial evaluation could straightforwardly be seen as a slicing technique.

Here, we only allow the deletion of some elements of the original program:

Term deletion: This is the simplest kind of deletion. It consists of the removal of

subterms which are not needed to perform computations with the slicing criterion.

Branch deletion: By using the partially known data in the slicing criterion, some

case branches become useless and can be deleted.

Function deletion: Finally, those functions which are not necessary to evaluate the

slicing criterion can be completely deleted from the slice.

Analogously to Schoening and Ducassé (1996), our notion of program slice is formal-

ized in terms of an abstraction relation. In the following, we consider that program

signatures are implicitly augmented with the 0-ary constructor ⊤, a special symbol

which is used to denote that some code fragment is missing.

Definition 1 (term abstraction)

A term t ′ is an abstraction of term t , in symbols t ′ � t , iff t ′ = ⊤ or t ′ = t .

Definition 2 (expression abstraction)

An expression e ′ is an abstraction of an expression e, in symbols e ′ � e, iff one of

the following conditions holds:

• e ′ = ⊤ (i.e., a case structure is completely deleted);

• e ′ = e;

• e ′ = (f )case x of {p′
n → e ′n}, e = (f )case x of {pn → en}, and e ′i � ei for all

i = 1, . . . , n.

Definition 3 (program slice)

A programR′ = (D ′
1, . . . ,D

′
m) is a slice of a programR = (D1, . . . ,Dm), in symbols

R′ � R, iff for all i = 1, . . . ,m, D ′
i = (f (xn) = e ′), Di = (f (xn) = e), and e ′ � e.

Roughly speaking, a program R′ is a slice of program R if it can be obtained by

replacing some subterms, case branches, and right-hand sides of function definitions

by ⊤. Trivially, program slices are steadily executable (and fulfill the syntax of

Fig. 2) by just considering ⊤ as an arbitrary constant of the program’s signature.

The interest in producing executable slices comes from the fact that it facilitates

4 Weiser proved that computing the minimal slice is generally undecidable (Weiser 1984).
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main op xs = fcase op of { Len → fst (lenmax xs);

Max → snd (lenmax xs) }
lenmax xs = (len xs, max xs)

len xs = fcase xs of { [] → Zero;

(x:xs) → Succ (len xs) }
max xs = fcase xs of { (y:ys) → fcase ys of

{ [] → y;

(z:zs) → if (y 6 z) then max (z:zs)

else max (y:zs) } }
x 6 y = fcase x of { Zero → True;

Succ n → fcase y of { Zero → False;

Succ m → n 6 m } }
fst x = fcase x of { (a,b) → a }
snd x = fcase x of { (a,b) → b }

Fig. 4. Example lenmax

program reuse and, more importantly, it allows us to apply a number of existing

techniques to the computed slice (e.g., debugging, program analysis, verification,

program transformation).

So far, we have only considered the shape of a slice. Now, we consider the se-

mantics of the slicing process:

Definition 4 (correct slice)

Let R be a program and t a term. We say that R′ is a correct slice of R w.r.t. t iff

• R′ is a program slice of R (i.e., R′ � R), and

• t =⇒∗
σ1

t1 in R iff t =⇒∗
σ2

t2 in R′, where t1, t2 are values (different from ⊤),

t2 � t1, and σ1 = σ2 (modulo variable renaming).

Observe that evaluations in the slice may produce values with some occurrences of

⊤ at inner positions, which is safe in our context since only the outermost symbol

is observable in the LNT semantics. On the other hand, no abstraction is needed

for substitutions, since the computed bindings can only map variables to patterns

of the form c(xn) with no occurrences of ⊤ (see rule guess in Fig. 3).

Example 6

Consider the program excerpt shown in Fig. 4 for computing the length or the

maximum of a list, depending on the value of the first parameter of main. Standard

functions “len”, “max”, “fst”, and “snd” return the length of a list, the maximum

of a list, the first element of a tuple, and the second element of a tuple, respectively.

Given the slicing criterion “main Len xs”, the following slice can be obtained:

main op xs = fcase op of { Len → fst (lenmax xs);

Max → ⊤ }

lenmax xs = (len xs, ⊤)

len xs = fcase xs of { [] → Zero;

(x:xs) → Succ (len xs) }

max xs = ⊤
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x 6 y = ⊤

fst x = fcase x of { (a,b) → a }

snd x = ⊤

Here, we have performed three different kinds of code deletion:

Term deletion: The evaluation of the call to function “max” in the right-hand side

of “lenmax” is not needed—since function “fst” only demands the evaluation of

the first component of the tuple—and, thus, it has been replaced by ⊤.

Branch deletion: In the definition of function “main”, the second branch of the case

expression is not needed to execute the slicing criterion; therefore, it has also

been replaced by ⊤.

Function deletion: Since functions “max”, “6”, and “snd” are no longer necessary

to evaluate the slicing criterion, their definitions have been replaced by ⊤.

Note that this slice could not be constructed by using a simple graph of functional

dependencies (e.g., functions “snd”, “lenmax”, and “6” depend on function “main”

but they do not appear in the computed slice).

In order to simplify the representation of program slices, in the following we adopt

the following conventions:

• case branches of the form p → ⊤ are deleted and

• function definitions of the form f (xn) = ⊤ are removed from the slice.

Therefore, the slice of Example 6 is simply written as follows:

main op xs = fcase op of { Len → fst (lenmax xs) }

lenmax xs = (len xs, ⊤)

len xs = fcase xs of { [] → Zero;

(x:xs) → Succ (len xs) }

fst x = fcase x of { (a,b) → a }

4 Monovariant/Monogenetic Partial Evaluation

As discussed in the introduction, our developments rely on the fact that forward

slicing can be regarded as a form of monovariant/monogenetic partial evaluation.

This requirement is necessary in order to ensure that there is a one-to-one relation

between the functions of the original and residual programs, which is crucial to

produce a fragment of the original program rather than a specialized version.

In this section, we first recall the basic narrowing-driven partial evaluation (NPE)

scheme (Albert and Vidal 2002) and, then, modify it in order to obtain a mono-

variant and monogenetic partial evaluator.

Essentially, NPE proceeds by iteratively unfolding a set of function calls, testing

the closedness of the unfolded expressions, and adding to the current set those

calls (in the derived expressions) which are not closed. This process is repeated

until all the unfolded expressions are closed, which guarantees the correctness of

the transformation process (Alpuente et al. 1998), i.e., that the resulting set of
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Input: a program R and a term t

Output: a residual program R′

Initialization: i := 0; E0 := {t}
Repeat

E ′ := unfold(Ei ,R);
Ei+1 := abstract(Ei ,E

′);
i := i + 1;

Until Ei = Ei−1 (modulo renaming)
Return:

R′ := build residual program(Ei ,R)

Fig. 5. Narrowing-Driven Partial Evaluation Procedure

expressions covers all the possible computations for the initial call. This iterative

style of performing partial evaluation was first described by Gallagher (1993) for

the partial evaluation of logic programs.

The computation of a closed set of expressions can be regarded as the construction

of a graph containing the program points which are reachable from the initial call.

Intuitively, an expression is closed whenever its maximal operation-rooted subterms

(function calls) are instances of the already partially evaluated terms. Formally, the

closedness condition is defined as follows:

Definition 5 (closedness)

Let E be a finite set of expressions. We say that an expression e is closed w.r.t. E

(or E -closed) iff one of the following conditions hold:

• e is a variable;

• e = c(e1, . . . , en) is a constructor call and e1, . . . , en are recursively E -closed;

• e = (f )case e ′ of {pm → em} is a case expression and e ′, e1, . . . , em are

recursively E -closed;

• e is operation-rooted, there is an expression e ′ ∈ E , a matching substitution

σ with e = σ(e ′), and, for all x 7→ e ′′ ∈ σ, e ′′ is recursively E -closed.

The basic partial evaluation procedure is shown in Fig. 5. Let us explain the oper-

ators in this procedure:

• The operator unfold takes a program and a set of expressionsEi = {e1, . . . , en},

computes a finite set of (possibly incomplete) finite derivations ej =⇒∗ e ′j ,

j = 1, . . . , n, and returns the set of derived expressions E ′ = {e ′1, . . . , e
′
n}.

Here, partial computations are performed with the LNT calculus of Fig. 3

slightly extended to avoid the backpropagation of bindings: the RLNT (for

Residualizing LNT) calculus of Albert et al. (2003). The main difference be-

tween the LNT and the RLNT calculi is that the non-deterministic rule guess

of the LNT calculus is replaced by a deterministic rule that leaves the case

structure untouched and proceeds with the evaluation of the branches.

• Function abstract is then used to properly add the new expressions to the
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current set of (to be) partially evaluated expressions. For instance, a trivial

abstraction operator could be defined as follows:

abstract(Ei ,E
′) = Ei ∪ {e ∈ E ′ | there is no e ′ ∈ Ei such that e = e ′}

Here, only the new expressions that are not equal (modulo variable renaming)

to some expression in the current set Ei are added. This abstraction operator,

however, does not guarantee the termination of the process since an infinite

number of different expressions can be derived. In general, a termination

test is also applied, e.g., Alpuente et al. (1998) consider a variant of the

Kruskal tree condition called “homeomorphic embedding” (Leuschel 2002):

if an expression embeds another expression in the current set, some form of

generalization—usually the most specific generalization operator—is applied

and the generalized term is added to the current set.
• The main loop of the algorithm can be seen as a pre-processing stage whose

aim is to find a closed set of expressions. Note that no residual rules are

actually constructed during this phase. Only when a closed set of expressions

is eventually found, residual rules are built as follows:

build residual program(Ei ,R) = {e = e ′ | e ∈ Ei and e =⇒∗ e ′ in R}

In general, this operator also applies a renaming of expressions and some

post-unfolding transformations which are not relevant for this work; we refer

the interested reader to (Albert and Vidal 2002).

In principle, the NPE scheme has been designed to achieve both polyvariant and

polygenetic specializations. In this work, however, we are interested in the definition

of a less powerful monovariant and monogenetic scheme. For this purpose, we should

impose several restrictions to the procedure of Fig. 5:

1. Firstly, the current set Ei should only contain operation-rooted terms with-

out nested function calls (i.e., of the form f (tn), where f is a defined function

symbol and t1, . . . , tn are constructor terms). This is necessary to ensure that

partial evaluation is monogenetic and, thus, we do not produce residual func-

tions that mix several functions of the original program.
2. Secondly, the unfolding operator should perform only a one-step evaluation

of each call rather than a computation of an arbitrary length. This condi-

tion is required to guarantee that no reachable function is hidden by the

unfolding process. For instance, if we would allow a computation of the form

f x =⇒ g x =⇒ h x, the unfolding operator would only return h x, while

g x should also be part of the slice.
3. Finally, the abstraction operator should ensure that the current set of terms

contains at most one term for each function symbol. In this way, we enforce

the monovariant nature of the partial evaluation process, i.e., that only one

residual definition is produced (at most) for each original function.

Unfortunately, such a monovariant/monogenetic partial evaluator would propagate

information poorly. In order to overcome this drawback, in the next section we

introduce a carefully designed operational mechanism which avoids the loss of in-

formation (i.e., program dependences) as much as possible.
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5 Computing Program Dependences

In this section, we introduce the kernel of a monovariant and monogenetic partial

evaluator that can be used to compute program dependences. In principle, such a

partial evaluator could proceed as follows:

• terms containing nested function symbols are flattened;

• terms in the current set of (to be) partially evaluated terms which are rooted

by the same function symbol are generalized with some appropriate general-

ization operator (e.g., the most specific generalization operator).

However, flattening terms with nested function symbols would imply a serious loss

of precision. For instance, a term of the form “fst (lenmax xs)” would be replaced

by the terms “fst y” and “lenmax xs”, where y is a fresh variable, thus missing

the fact that fst is called with the result of “lenmax xs”.

In order to avoid this loss of precision, we drop the first restriction above, i.e.,

we consider arbitrary operation-rooted terms during partial evaluation. However,

we should still ensure that only a one-step of unfolding is applied to each term in

order to guarantee that no reachable function is hidden by the unfolding process.

In our flat language, function calls are evaluated lazily : a term containing nested

function calls is evaluated by first unfolding the outermost function; inner function

calls are only evaluated on demand, i.e., when they appear as the argument of some

case expression. For instance, “fst (lenmax xs)” is unfolded to

fcase (lenmax xs) of { (a,b) → a }

Then, the evaluation of function “fst” cannot continue until the inner call to

“lenmax” is reduced to a value. Unfortunately, this interleaved evaluation is prob-

lematic in our context since it would give rise to a polygenetic partial evaluation

(i.e., a residual function comprising the evaluation of both fst and lenmax) . In

contrast, we should perform a complete one-step unfolding of each function call sep-

arately, i.e., a function unfolding followed by the reduction of all the case structures

in the unfolded expression.

For this purpose, we extend the partial evaluation mechanism in order to work

on states rather than on expressions.

Definition 6 (state)

A state is a pair of the form 〈e, S 〉, where e is an expression (to be evaluated) and

S is a stack (a list) which represents the current “evaluation context”.5 The empty

stack is denoted by [ ].

For example, the previous expression “fst (lenmax xs)” could now be flattened

as follows (see Example 7): 〈lenmax xs, [(fst x, x)]〉, which means that lenmax xs

is ready to perform a complete one-step unfolding; when this evaluation is per-

formed, the initial term can be reconstructed thanks to the information in the

stack, (fst x, x), which means that the initial term has the form fst x, where x is

5 Similar operational semantics with a stack can be found in (Albert et al. 2005; Sestoft 1997).
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the result of evaluating the first component of the state (i.e., the result of evaluating

lenmax xs). Thanks to the use of states, we do not miss the fact that fst is called

with the result of “lenmax xs”.

Figure 6 shows an extended operational semantics which is appropriate to deal

with states. Let us briefly explain the rules of this operational semantics.

Rules select and guess proceed in a similar way as their counterpart in the stan-

dard semantics of Fig. 3.

Rule flatten is used to avoid the unfolding of those (operation-rooted) terms

whose unfolding would demand the evaluation of some inner call. This is necessary

to ensure that partial evaluation is monogenetic. In this case, we delay the function

unfolding and continue with the evaluation of the demanded inner call. Auxiliary

function flat is used to flatten these states. Here, we use subscripts in the arrows to

indicate the application of some concrete rule(s). Function flat proceeds as follows:

When the expression in the input state can be reduced by using rules select and

guess to a case expression with a function call in the argument position (which

is thus demanded), function flat returns a new state whose first component

is the demanded call, g(t ′m), and whose stack is augmented by adding a new

pair (f (tn)[g(t ′m)/x ], x ). Here, f (tn)[g(t ′m)/x ] denotes the term obtained from

f (tn) by replacing the selected occurrence of the inner call, g(t ′m), with a fresh

variable x . This pair contains all the necessary information to reconstruct the

original expression once the inner call is evaluated to a value (in rule replace).

Example 7

Consider again the program of Example 6. In order to flatten the following expres-

sion: 〈fst (lenmax xs), []〉, we proceed as follows. First, we perform a function

unfolding so that we get:

〈fcase (lenmax xs) of {(a,b)→ a}, [ ]〉

Now, we try to evaluate this state by means of rules select and guess. Since no

reduction is possible and the case structure has a function call in the argument

position, function flat returns the state

〈lenmax xs, [(fst x, x)]〉

where x is a fresh variable. Observe that this state cannot be further flattened since

a function unfolding returns the state

〈(len xs, ⊤), [ ]〉

which cannot be reduced by rules select and guess and which contains no function

call in the argument position of a case expression. Therefore, in this case, function

flat returns ⊥ and no step with rule flatten can be done.

Rule fun performs a simple function unfolding when rule flatten does not apply, i.e.,

when function flat returns ⊥.

Finally, rule replace allows us to retake the evaluation of some delayed function

call once the demanded inner call is reduced to a value.
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(select) 〈 (f )case c(tn ) of {pk → ek}, S 〉 =⇒ 〈 ρ(ei), S 〉

if pi = c(xn ), c ∈ C, and ρ = {xn 7→ tn}

(guess) 〈 (f )case x of {pk → ek}, S 〉 =⇒ 〈 ρ(ei), S 〉

if ρ = {x 7→ pi} and i ∈ {1, . . . , k}

(flatten) 〈 f (tn ), S 〉 =⇒ 〈 g(t ′m ), S f 〉

if flat(f (tn ),S) = 〈g(t ′m),S f 〉

(fun) 〈 f (tn ), S 〉 =⇒ 〈 ρ(e), S 〉

if flat(f (tn ),S) = ⊥, f (xn ) = e ∈ R, and ρ = {xn → tn}

(replace) 〈 v , (f (tn ), x) : S 〉 =⇒ 〈 ρ(f (tn )), S 〉

if v is a value and ρ = {x 7→ v}

where flat(〈f (tn ),S〉) = if 〈ρ(e), [ ]〉 =⇒∗

select/guess 〈(f )case g(t ′m ) of { . . . }, [ ]〉

then 〈g(t ′m), (f (tn )[g(t ′m)/x ], x) : S〉
else ⊥

with f (xn ) = e ∈ R, and ρ = {xn → tn}

Fig. 6. Extended Operational Semantics

The extended operational semantics behaves almost identically to the standard

semantics of Fig. 3. There are, though, the following main differences:

• Now, the one-step relation =⇒ is not labeled with the computed bindings

since we are not interested in computing answers but only in obtaining the

functions which are reachable from the initial call.

• In the standard semantics, rigid case expressions with a free variable in the

argument position suspend. In our case, rule guess proceeds with their evalu-

ation as if they were flexible. This is motivated by the fact that we may have

incomplete information; hence, in order to be on the safe side—and do not

miss any reachable function—we should explore all the alternatives of rigid

case expressions.

• The order of evaluation is slightly changed. In our extended semantics, we

delay those function unfoldings which cannot be followed by the reduction of

all the case expressions in the corresponding right-hand side.

In spite of these differences, both calculi trivially produce the same results for input

expressions involving no suspension. Roughly speaking, the extended semantics is

in between the standard operational semantics and its residualizing version used to

perform partial computations in the NPE framework (Albert et al. 2003).

Example 8

Consider again the program of Example 6. Given the initial term fst (lenmax xs),

we have (among others) the following (incomplete) computation with the standard

semantics of Fig. 3:

fst (lenmax xs) =⇒id fcase (lenmax xs) of {(a,b) → a} (fun)
=⇒id fcase (len xs, max xs) of {(a,b) → a} (fun)
=⇒id len xs (select)
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Input: a program R and an operation-rooted term t

Output: a set of states S
Initialization: i := 0; S0 := {〈t ′,S〉}, where 〈t , [ ]〉 =⇒∗

flatten 〈t ′,S〉 6=⇒flatten

Repeat

S ′ := unfold(Si ,R);
Si+1 := abstract(Si ,S

′);
i := i + 1;

Until Si = Si−1 (modulo renaming)
Return: S := Si

Fig. 7. Computation of Reachable Program Points

On the other hand, the extended operational semantics of Fig. 6 performs the

following equivalent derivation:

〈fst (lenmax xs), [ ]〉 =⇒ 〈lenmax xs, [(fst x, x)]〉 (flatten)
=⇒ 〈(len xs, max xs), [(fst x, x)]〉 (fun)
=⇒ 〈fst (len xs, max xs), [ ]〉 (replace)
=⇒ 〈fcase (len xs, max xs) of {(a,b) → a}, [ ]〉 (fun)
=⇒ 〈len xs, [ ]〉 (select)

The relevance of the extended semantics stems from the fact that computations can

now be split into a number of consecutive sequences of steps of the form:

=⇒∗
flatten =⇒fun=⇒

∗
select/guess

︸ ︷︷ ︸

seq 1

=⇒∗
replace=⇒

∗
flatten =⇒fun=⇒

∗
select/guess

︸ ︷︷ ︸

seq 2

=⇒∗
replace . . .

where each subsequence, seq i, represents a complete one-step unfolding of some

function call. From these sequences, a monogenetic/monovariant partial evaluation

scheme can easily be defined and, thus, the algorithm for computing dependences

in our program slicing technique.

The algorithm of Fig. 5 is now slightly modified in order to work with states.

The new algorithm (depicted in Fig. 7) does not compute a residual program but

only the set of states which are reachable from the initial call. In other words, it

returns the counterpart of the final set of closed terms computed by the algorithm

of Fig. 5. The new algorithm starts by flattening the initial term in order to ensure

that a complete one-step unfolding can be performed. We now tackle the definition

of appropriate unfolding and abstraction operators. First, the one-step unfolding

operator is defined as follows:

Definition 7 (unfold)

Let S be a set of states. The unfolding operator unfold is defined by

unfold(S) =
⋃

s∈S

unf (s)

where

unf (〈t , S 〉) = {〈t ′, S 〉 | 〈t , S 〉 =⇒fun 〈t ′′, S 〉 =⇒∗
select/guess 〈t

′, S 〉 6=⇒select/guess}

This unfolding operator always performs a complete one-step unfolding of each

input expression. The associated stack S remains unchanged since only rules flatten
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and replace can modify the current stack. Function unf returns a set of derived

states because of the non-determinism of the underlying operational semantics.

Example 9

Consider again the program of Example 6. We illustrate function unf by means of

some simple examples:

unf (〈lenmax xs, [(fst x, x)]〉) = 〈(len xs, max xs), [(fst x, x)]〉

unf (〈fst (len xs, max xs), [ ]〉) = 〈len xs, [ ]〉

according to the partial computation in Example 8.

Before defining our abstraction operator, we need the following auxiliary notion:

Definition 8 (flattened state)

Let s be a state returned by the operator unfold with s =⇒∗
replace/flatten s ′ 6=⇒. Then

s ′ is called a flattened state.

Flattened states have a particular form, as stated by the following result:

Lemma 1

Let s be a flattened state. Then s has the form 〈v , [ ]〉, where v is a value, or

〈f (tn), S 〉, where f (tn) is an operation-rooted term.

In order to add new states to the current set of states, we introduce the following

abstraction operator:

Definition 9 (abstract)

Let S and S ′ = {s1, . . . , sn} be sets of states. Our abstraction operator proceeds as

follows: abstract(S,S ′) = abs(abs(. . . abs(S, s ′1) . . . , s
′
n−1), s

′
n), where:

si =⇒
∗
replace/flatten s ′i 6=⇒replace/flatten (for all i = 1, . . . , n)

Basically, function abstract starts by flattening the input states by applying (zero

or one step of) rule replace, followed by (zero or more steps of) rule flatten.

Definition 10 (abs)

Function abs is defined inductively on the structure of flattened states (according

to Lemma 1):

abs(S, 〈x , [ ]〉) = S

abs(S, 〈c(tn), [ ]〉) = abstract(S,S ′)

if t ′m are the maximal operation-rooted subterms of c(tn) and S ′ = {〈t ′m , [ ]〉}

abs(S, 〈f (tn), S 〉) =






S ∪ {〈f (tn), S 〉} if there is no state 〈f (t ′n), S
′〉 in S

S else if 〈f (tn), S 〉 is S-closed

abstract(S∗,S ′′) otherwise, where 〈f (t ′n), S
′〉 ∈ S,

msg(〈f (t ′n), S
′〉, 〈f (tn), S 〉) = (〈f (t ′′n ), S

′〉,S ′′),

and S∗ = (S \ {〈f (t ′n), S
′〉}) ∪ {〈f (t ′′n ), S

′〉}
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Informally speaking, function abs determines the corresponding action depending

on the first component of the new state. If it is a variable, we discard the state. If

it is constructor-rooted, we try to (recursively) add the maximal operation-rooted

subterms. If it is a function call, then we have three possibilities:

• If there is no call to the same function in the current set, the new state is

added to the current set of states.

• If there is a call to the same function in the current set, but the new call is

closed w.r.t. this set, it is discarded.

• Otherwise, we generalize the new state and the existing state with the same

outermost function—which is trivially unique by definition of abstract—and,

then, we try to (recursively) add the states computed by function msg.

The notion of closedness is easily extended from expressions to states: a state 〈t , S 〉

is closed w.r.t. a set of states S iff S [t ] is T -closed (according to Def. 5), with

T = {S ′[t ′] | 〈t ′, S ′〉 ∈ S}. Here, S [t ] denotes the term represented by 〈t , S 〉, i.e.,

inner calls are moved back to their positions in the outer calls of the stack. For

instance, given the state

〈t , S 〉 = 〈y, [(len x2, x2), (fst (x1, snd z), x1)]〉

we have S [t ] = fst (len y, snd z).

The operator msg on states is defined as follows. First, we recall the standard

notion of msg on terms: a term t is a generalization of terms t1 and t2 if both

t1 and t2 are instances of t ; furthermore, term t is the msg of t1 and t2 if t is a

generalization of t1 and t2 and, for any other generalization t ′ of t1 and t2, t is an

instance of t ′. Now, the msg of two states is defined by

msg(〈t1, S1〉, 〈t2, S2〉) = (〈t , S1〉, calls(σ1) ∪ calls(σ2) ∪ calls(S2))

where msg(t1, t2) = t , and σ1 and σ2 are the matching substitutions, i.e., σ1(t) = t1

and σ2(t) = t2. The auxiliary function calls returns a set of states of the form 〈t , [ ]〉

for each maximal operation-rooted term t in (the range of) a substitution or in a

stack.

Example 10

Consider the set of states S = {〈len xs, []〉, 〈fst (a,b), []〉}. We illustrate function

(abs) by means of some simple examples:

abs(S, 〈max xs, [ ]〉) = S ∪ {〈max xs, [ ]〉}

since there is no state rooted by function max in S,

abs(S, 〈len (y:ys), [ ]〉) = S

since 〈len (y:ys), [ ]〉 is S-closed (i.e., len (y:ys) is an instance of len xs), and

abs(S, 〈fst z, [ ]〉) = {〈len xs, [ ]〉, 〈fst w, [ ]〉}

since there is a state 〈fst (a,b), [ ]〉 rooted by function fst, the state 〈fst z, [ ]〉
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is not S-closed (since fst z is not an instance of fst (a,b), the most specific

generalization of the states 〈fst (a,b)〉 and 〈fst z, [ ]〉 returns 〈fst w, [ ]〉, and

abs({〈len xs, [ ]〉}, 〈fst w, [ ]〉) = {〈len xs, [ ]〉, 〈fst w, [ ]〉}

since there is no state in {〈len xs, [ ]〉} rooted by function fst.

Our operator abstract can be seen as an instance of the parametric abstraction

operator introduced by Alpuente et al. (1998) particularized to consider states

(rather than terms) and monovariant partial evaluation (thus, only one operation-

rooted term is allowed for each defined function symbol). Our abstraction operator

is safe in the following sense:

Lemma 2

Let S be a set of flattened states and S ′ a set of unfolded states (as returned by

unfold). Then the states in S ∪ S ′ are closed w.r.t. abstract(S,S ′).

This lemma is a crucial result to ensure the correctness of our approach. In fact,

it will allow us to prove that the generated program is a correct slice according to

Definition 4.

Example 11

Consider again the program of Example 6. Given the slicing criterion “main Len xs”,

the initial set of states is S0 = {〈main Len xs, [ ]〉}. Now, we show the sequence of

iterations performed by the algorithm of Fig. 7:

S ′
0 = {〈fst (lenmax xs), [ ]〉}

S1 = S0 ∪ {〈lenmax xs, [(fst x, x)]〉}

S ′
1 = S ′

0 ∪ {〈(len xs, max xs), [(fst x, x)]〉}

S2 = S1 ∪ {〈fst (len xs, max xs), [ ]〉}

S ′
2 = S ′

1 ∪ {〈len xs, [ ]〉}

S3 = S2 ∪ {〈len xs, [ ]〉}

S ′
3 = S ′

2 ∪ {〈Zero, [ ]〉, 〈Succ (len xs), [ ]〉}

S4 = S3

where S ′
i = unfold(Si ,R) and Si+1 = abstract(Si ,S ′

i), for i = 0, . . . , 3. Therefore,

the algorithm returns the following set of states:

S = { 〈main Len xs, [ ]〉, 〈lenmax xs, [(fst x, x)]〉,

〈fst (len xs, max xs), [ ]〉, 〈len xs, [ ]〉 }

The total correctness of the algorithm in Fig. 7 is stated in the following theorem:

Theorem 1

Given a flat program R and an initial term t , the algorithm in Fig. 7 terminates

computing a set of states S such that 〈t , [ ]〉 is S-closed.
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6 Extraction of the Slice

In this section, we introduce the final step of our slicing process, i.e., the extraction

of the program slice. Let us recall that it must be a fragment of the original pro-

gram—thus no instantiation of variables is allowed—and produce the same outputs

for the slicing criterion as the original program. Here, we follow the simplified form

for program slices, i.e., case branches of the form p → ⊤ are deleted, and function

definitions of the form f (xn) = ⊤ do not appear in the slice.

First, we need the following auxiliary function that returns the terms which are

relevant in order to extract a program slice from the set of states computed by the

algorithm of Fig. 7:

Definition 11 (residual calls)
Let S be a set of states returned by the algorithm of Fig. 7 and let TS = {t |

〈t , S 〉 ∈ S}. Then, the set of residual calls of S is defined as follows:

residual calls(S) = TS ∪ {t ′ | 〈t , S 〉 ∈ S, t ′ ∈ calls(S ), and t ′ is not TS-closed}

Observe that, in the above definition, residual calls should also return the function

calls in the computed stacks when they are not closed w.r.t. the set of first com-

ponents of the states in S. This is mandatory in order to ensure a full equivalence

w.r.t. the standard semantics. Program slices can now be built as follows:

Definition 12 (construction of program slices)
Let S be a set of states returned by the algorithm of Fig. 7. Then, a program slice

is obtained from build slice(residual calls(S)), where function build slice is defined

as follows:

build slice({ }) = { }

build slice({f (tn)} ∪T ′) = {f (xn) = e ′} ∪ build slice(T ′)

where f (xn) = e ∈ R, ρ = {xn 7→ tn},

and [[e]]ρ −→∗ e ′ 6−→

The new calculus which is used to construct the rules of the slice is depicted in

Fig. 8. First, note that the symbols “[[” and “]]” in an expression like [[e]]ρ are purely

syntactical, i.e., they are only used to mark subexpressions where the inference rules

may be applied. The substitution ρ is used to store the bindings for the program

variables. Let us briefly explain the rules of the new calculus.

Rule var simply returns a variable unchanged. Rule cons applies to constructor-

rooted terms; it leaves the outermost constructor symbol and (recursively) inspects

the arguments.

Rules select and guess proceed similarly to their counterpart in Fig. 6 but leave

the case structure untouched; the substitution ρ is used to check the current value of

the case argument. We only deal with variable case arguments since the considered

expression is the right-hand side of some program rule (cf. Fig. 2). Note that rule

guess is now deterministic (and, thus, the entire calculus).

Finally, rules fun and remove are used to reduce function calls: when there is some

term in residual calls(S) with the same outermost function symbol, we proceed as in

rule cons; otherwise, we return ⊤ (which means that the evaluation of this function

call is not needed).
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Rule Expr −→ Expr

var [[x ]]ρ −→ x

cons [[c(tn )]]ρ −→ c([[t1]]ρ, . . . , [[tn ]]ρ)
select [[(f )case x of {pk → ek}]]ρ −→ (f )case x of {pi → [[ei ]]ρ

′}

guess [[(f )case x of {pk → ek}]]ρ −→ (f )case x of {pk → [[ek ]]ρk}
fun [[f (tn )]]ρ −→ f ([[t1]]ρ, . . . , [[tn ]]ρ)
remove [[f (tn )]]ρ −→ ⊤

where in select: ρ(x) = c(tn ), pi = c(xn ), ρ
′ = {xn 7→ tn} ◦ ρ, and i ∈ {1, . . . , k}

guess: ρ(x) ∈ X , ρi = {x 7→ pi} ◦ ρ, and i ∈ {1, . . . , k}
fun: there is some term in residual calls(S) rooted by f

remove: otherwise

Fig. 8. Simplified Unfolding Rules

Example 12

Consider the set of states computed in Example 11. From this set, function resid-

ual calls returns the set of terms:

{main Len xs, lenmax xs, fst (len xs, max xs), len xs}

Now, we construct a residual rule for each term of the set. For instance, for the

term “main Len xs”, the associated residual rule is:

main op xs = fcase op of {Len → fst (lenmax xs)}

since the following derivation can be performed (with ρ = {op 7→ Len}):

[[fcase op of { Len → fst (lenmax xs); Max → snd (lenmax xs) }]]ρ

−→select fcase op of { Len → [[fst (lenmax xs)]]ρ }

−→fun fcase op of { Len → fst ([[lenmax xs]]ρ) }

−→fun fcase op of { Len → fst (lenmax [[xs]]ρ) }

−→var fcase op of { Len → fst (lenmax xs) }

By constructing a residual rule associated to each of the remaining terms, the

computed slice coincides with the (simplified version of the) program slice which is

shown in Example 6.

Now, we show that the result of Definition 12 is a program slice of the original

program according to Definition 3.

Theorem 2

Let R be a flat program and t a term. Let S be a set of states computed by the

algorithm of Fig. 7 from R and t . Then, R′ = build slice(residual calls(S)) is a

program slice of R, i.e., R′ � R.

Finally, the correctness of the computed slices (according to Def. 4) is inherited by

the correctness of the underlying partial evaluation process.

Theorem 3

Let R be a flat program and t a term. Let S be a set of states computed by the

algorithm of Fig. 7 from R and t . If computations for t in R do not suspend, then

t computes the same values and answers in R and in build slice(residual calls(S)).
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Table 1. Partial evaluator vs program slicer — code structure

main global local post util Total

Partial evaluator (lines) 306 403 888 433 316 2346

(functions) 22 43 83 44 38 230

Program slicer (lines) 232 486 249 195 419 1581

(functions) 20 50 29 26 55 180

7 Implementation

In order to check the practicality of the ideas presented so far, a prototype imple-

mentation of the program slicer for Curry programs has been developed in Curry

itself. The resulting tool covers not only the flat programs of Sect. 2 but also

source Curry programs (which are automatically translated to the flat syntax).

Moreover, it also accepts higher-order functions, overlapping left-hand sides, sev-

eral predefined (built-in) functions, etc. The implemented tool is publicly available

from http://www.dsic.upv.es/users/elp/german/slicing/.

It is worthwhile to note that the development of the program slicer required a

small implementation effort since it was developed by extending an existing partial

evaluator for Curry programs (Albert et al. 2002). Table 1 shows the structure of

both the partial evaluator and the program slicer, including the lines of code and

the number of functions for each basic component:

main: basic definitions and data type declarations, reading of source program, writ-

ing of transformed program, etc;

global: global control, including termination tests and generalization operations;

local: local control, i.e., a non-standard meta-interpreter;

post: post-processing transformation, i.e., renaming and post-unfolding compres-

sion in the partial evaluator and extraction of the slice in the program slicer;

util: general utilities and pretty printing.

Basically, components main, local, and utilwere almost straightforwardly adapted

from the partial evaluator to the program slicer. For instance, component local

of the program slicer—which corresponds to the semantics shown in Fig. 6—is a

simplified version of the same component in the partial evaluator, since only a one-

step unfolding is required here. More significant changes were made in component

global. In contrast to the partial evaluator, the program slicer introduces the use

of states and, thus, it required the implementation of rules replace and flatten, as

well as the associated abstraction operator. Finally, component post of the partial

evaluator was entirely replaced, since the program slicer does not perform neither

renaming nor post-unfolding compression but should only extract the residual rules

according to the calculus of Fig. 8.

Our slicing tool is able to compute the slice of Example 6, thus it is strictly

more powerful than naive approaches based on graphs of functional dependences.

http://www.dsic.upv.es/users/elp/german/slicing/
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In general, forward slicing has been proved particularly useful in the areas of pro-

gram understanding, dead code removal, and code reuse. Now, we illustrate the

application of the program slicer with some selected examples. First, we consider

the program of Example 6 (in Curry syntax):

main Len xs = fst (lenmax xs)

main Max xs = snd (lenmax xs)

lenmax xs = (len xs, max xs)

len [] = Z

len (x:xs) = Succ (len xs)

max [x] = x

max (x:y:ys) = if (x 6 y) then max (y:ys)

else max (x:ys)

Z 6 m = True

(Succ n) 6 Z = False

(Succ n) 6 (Succ m) = n 6 m

fst (a,b) = a

snd (a,b) = b

Given the slicing criterion “main Len xs”, our tool returns the following slice:

main Len xs = fst (lenmax xs)

lenmax xs = (len xs, ⊤)

len [] = Z

len (x:xs) = Succ (len xs)

fst (a,b) = a

Here, the second rule of function main as well as the definitions of functions max, 6,

and snd have been sliced away, since they are not needed when the first parameter

of main is the constant Len. Note that the removal of case branches in the flat

language is now viewed in Curry as the removal of rules in a function definition,

e.g.,

main op xs = fcase op of { Len → fst (lenmax xs);

Max → ⊤ }

is simply written as follows:

main Len xs = fst (lenmax xs)

Let us now consider a similar situation but in a higher-order context:

trans p xs = map (f p) xs

map f [] = []

map f (x:xs) = f x : map f xs
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f A = inc

f B = dec

f C = square

...

inc x = Succ x

dec (Succ x) = x

square x = x * x

...

Function trans applies a parametric function, f, to all the elements of a given list.

Now, the computed slice w.r.t. the slicing criterion “trans A xs” is as follows:

trans p xs = map (f p) xs

map f [] = []

map f (x:xs) = f x : map f xs

f A = inc

inc x = Succ x

Again, all functions but inc and the first rule for f have been deleted, which shows

that our approach works well in the presence of higher-order functions. Finally,

let us show an example which illustrates the removal of dead code due to lazy

evaluation. Consider the following program:

lenInc n xs = len (incL n xs)

len [] = Z

len (x:xs) = Succ (len xs)

incL n [] = []

incL n (x:xs) = inc n : incL n xs

inc x = Succ x

Here, function lenInc takes a number and a list, and returns the length of the

list which results from adding the given number to each element of the original

list. Clearly, in a lazy context, function inc will never be executed. Therefore, the

computed slice w.r.t. “lenInc n xs” (i.e., no input data is known) is as follows:

lenInc n xs = len (incL n xs)

len [] = Z

len (x:xs) = Succ (len xs)

incL n [] = []

incL n (x:xs) = ⊤ : incL n xs
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Table 2. Partial evaluator vs program slicer — selected benchmarks

PE Slicing Runtime Size
time time Orig Spec Sliced Orig Spec Sliced

Benchmark ms ms ms % % bytes % %

ackermann 20490 1370 1330 98.50% 99.25% 2039 228.3% 49.93%
allones 5090 1990 1140 111.40% 100.88% 3502 165.25% 63.42%
fibonacci 150 270 380 81.58% 102.63% 2438 64.93 50.82%
filtermap 280 450 1460 84.93% 100.00% 2147 28.50% 69.26%
fliptree 2800 1230 1430 92.31% 93.71% 2619 202.33% 52.20%
foldr.map 80 320 630 60.32% 100.00% 1784 21.41% 64.63%
foldr.sq 70 310 670 65.67% 101.49% 1763 21.10% 64.61%
foldr.sum 6730 1400 1570 80.25% 98.09% 4678 35.85% 13.92%
funinter 504930 2220 — — — 5288 657.19% 61.86%
gauss 11680 950 700 82.86% 98.57% 2115 61.56% 42.36%
iterate 1950 750 890 25.84% 103.37% 1968 117.99% 69.61%
kmpAAB 710 990 380 31.58% 105.26% 3348 42.29% 75.30%
kmpAAAAAAB 9870 3250 790 35.44% 100.00% 3968 104.86% 69.78%
power 12710 890 620 95.16% 103.23% 2830 203.29% 46.93%
quicksort 450 670 260 165.38% 103.85% 2711 84.06% 81.48%
reverse 4590 970 680 98.53% 101.47% 1873 251.09% 53.87%

Average 36411 1127 862 80.65% 100.79% 2817 143.13% 58.12%

The occurrence of ⊤ in the definition of incL shows that the values of the elements

in the list are not needed to compute the length of the given list.

Let us mention that, in contrast to the original partial evaluator, the implemented

program slicer can deal with larger programs efficiently. This is mainly due to the

monovariant/monogenetic nature of the underlying partial evaluator, which simpli-

fies the computation of a closed set of terms. Table 2 shows a summary of the exper-

iments conducted on an extensive set of benchmarks. We used the Curry→Prolog

compiler of PAKCS 1.6.0 (Hanus et al. 2004) running on a 2.4 GHz Linux-PC (Intel

Pentium IV with 512 KB cache). Runtime input goals were chosen to give a rea-

sonably long overall time. Code size was obtained by measuring the intermediate

FlatCurry files (suffix .fcy) generated by PAKCS. The considered benchmarks are

available from http://www.dsic.upv.es/users/elp/german/slicing/.

The results in Table 2 show that the program slicer is in almost all cases much

faster than the partial evaluation tool. As expected, the runtime of the sliced pro-

grams do not significantly differ from the runtimes of the original ones, since only

some program rules (or expressions) have been deleted; this shows that little over-

head has to be paid for adding extra functions to a program. Anyway, the main

purpose of slicing is not speedup, but reducing code size. In this case, slicing has

managed an overall code size reduction of 57.60% whereas the partial evaluator has

increased the code size by 162.26%. Indeed, the slicing never increases the code

size, while the partial evaluator has increased the code size by 657.18% in the worst

case. On the other hand, there are cases where specialization achieves much smaller

code size than slicing, e.g., for filtermap where the specializer has managed to

transform the composition of several higher-order functions into a single first-order

function.

http://www.dsic.upv.es/users/elp/german/slicing/
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8 Related Work

Although program slicing was originally introduced in the imperative programming

setting, it has been applied to almost all programming paradigms, e.g., object-

oriented programs (Tip et al. 1996; Larsen and Harrold 1996; Steindl 1998), logic

programs (Schoenig and Ducasse 1996; Zhao et al. 2001), functional programs (Biswas 1997;

Field and Tip 1998), or algebraic specifications (Woodward and Allen 1998). Al-

though we are not aware of any previous work addressing forward slicing of multi-

paradigm functional logic programs, in the following we review the closest ap-

proaches to our work.

Within imperative programming, the closest approach is that of Blazy and Facon

(1998), who use partial evaluation for program understanding in Fortran. Since they

do not want to change the original structure of the code, no unfolding is performed

(similarly to our one-step unfoldings). Also, they neither introduce new variables

nor rename the existing ones. In this work, we have followed a very similar approach

in order to define a forward slicing algorithm for functional logic programs. In both

approaches, a simplified partial evaluator that does not change the structure of the

original program has been introduced.

Within the logic programming paradigm, Gyimóthy and Paakki (1995) introduce

the first approach to slicing. They define a specific slicing algorithm which com-

putes a slice of the proof tree in order to reduce the number of questions asked by

an algorithmic debugger (Shapiro 1983). The slice is computed from a static depen-

dency graph containing only oriented data dependencies. In contrast to our work,

their algorithm cannot be not used to compute executable programs. Schoening and

Ducassé (1996) define the first (backward) slicing algorithm for Prolog programs

which produce executable slices. They introduce an abstraction relation in order to

formalize the notion of program slice. Our notion of slice in Section 3 is somehow in-

spired by this work. Leuschel and Sørensen (1996) introduce the concept of correct

erasure in order to detect and remove redundant arguments from logic programs.

They present a constructive algorithm for computing correct erasures which can be

used to perform a simple form of slicing. Actually, Leuschel and Vidal (2005) have

very recently introduced a new approach to forward slicing of logic programs which

is based on a combination of the ideas presented in this work and the redundant

argument filtering of Leuschel and Sørensen (1996).

As for functional programs, Field and Tip (1998) present a very detailed study

of the concept of slicing associated with left-linear term rewriting systems (a no-

tion of “program” very close to the one considered in our work). Their definition

of slice is also based on a notion of neededness but, in contrast to our work, they

consider backward slicing (and compute slices that are not executable on the stan-

dard interpreter). Another closely related approach has been introduced by Reps

and Turnidge (1996). They define a backward slicing technique for functional pro-

grams which can be used to perform a sort of program specialization that cannot be

achieved by standard partial evaluation. Their work can be seen as complementary

to ours, since we are interested in the use of partial evaluation to perform program

slicing. On the other hand, Hallgren (2003) reports some experiments with a Haskell
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slicer. It is mainly based on the construction of a graph of functional dependences

and, thus, it is less powerful than our partial evaluation-based slicer.

Very recently, Ochoa et al. (2004) have introduced a novel approach to dynamic

backward slicing of functional logic programs which is based on an extension of

the tracing technique of Braßel et al. (2004). In particular, their approach relies on

constructing a redex trail of a given computation in order to compute all program

dependences. Basically, a redex trail is a directed graph which records copies of all

values and redexes of a computation, with a backward link from each reduct to

the parent redex that created it. Then, a backward slice can easily be obtained by

mapping the relevant nodes of the redex trail to concrete locations of the source

program. This approach has also been applied to Haskell programs by Chitil (2004).

These approaches are not based on partial evaluation but on well-known techniques

for debugging functional programs. Therefore, the implementation of a dynamic

slicer is relatively easy if one already has a debugger based on redex trails. However,

they are not useful in order to develop a static slicing tool. In contrast, our approach

can be used to perform both static and (forward) dynamic slicing.

9 Conclusions and Future Work

This work introduced the first approach to forward slicing of multi-paradigm (func-

tional logic) programs. Although some extensions were needed, our developments

basically rely on adapting and extending an online partial evaluation scheme for

such programs. Thus, the implementation of an associated slicing tool was easily

achieved by extending an existing partial evaluation tool. Moreover, our approach

helps to clarify the relation between program slicing and partial evaluation in a func-

tional logic context. The application of our developments to (first-order) lazy func-

tional programs would be straightforward, since the considered language is a con-

servative extension of a pure lazy functional language and the (online) partial evalu-

ation techniques are similar, e.g., positive supercompilation (Sørensen et al. 1996).

On the other hand, similar ideas have already been applied to define a forward

slicing technique for logic programs (Leuschel and Vidal 2005).

An interesting topic for future work is the extension of our approach to perform

backward slicing. Here, the computed slice should contain those program statements

which are needed to compute some selected fragment of the output. While forward

slicing is useful for program understanding, reuse, maintenance, etc., backward

slicing can be applied to, e.g., program debugging, specialization and merging.
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Appendix A Proofs of technical results

Lemma 1

Let s be a flattened state. Then s has the form 〈v , [ ]〉, where v is a value, or

〈f (tn), S 〉, where f (tn) is an operation-rooted term.

Proof

We prove the claim by contradiction. Let s be a flattened state of the form 〈v , S 〉

where v is a value and S is not empty. Then rule replace could be applied to s , thus

contradicting the hypothesis of the lemma. Thus, s should be of the form 〈v , [ ]〉 or

〈e, S 〉, where e is not a value. To show that e must be an operation-rooted term, it

suffices to consider that rules replace and flatten do not return case expressions (only

operation-rooted terms) and that the initial state cannot contain case expressions

(since it was returned by the operator unfold).

Lemma 2

Let S be a set of flattened states and S ′ a set of unfolded states (as returned by

unfold). Then the states in S ∪ S ′ are closed w.r.t. abstract(S,S ′).

In order to prove this lemma, we first need the following preparatory definitions

and results. We use the notation depth(t) to denote the maximum number of nested

symbols in the term t . Formally, if t is a constant or a variable, then depth(t) = 1.

Otherwise, depth(f (tn)) = 1+max ({depth(t1), . . . , depth(tn )}). The following result

establishes the transitivity of the closedness relation on terms.

Proposition 1 (Alpuente et al. 1998 )

If term t is T1-closed, and the terms in T1 are T2-closed, then t is T2-closed.

We define the complexity MT of a set of terms T as the finite multiset of nat-

ural numbers corresponding to the depth of the elements of T . Formally, MT =

{depth(t) | t ∈ T}. We consider the well-founded total ordering <mul over multiset

complexities by extending the well-founded ordering < on IN to the set M (IN )

of finite multisets over IN . The set M (IN ) is well-founded under the ordering

<mul since IN is well-founded under <. Let M,M′ be multiset complexities, then:

M<mul M
′ ⇔ ∃X ⊆ M,X ′ ⊆ M′ such that M = (M′ − X ′) ∪ X and

∀n ∈ X , ∃n ′ ∈ X ′ such that n < n ′. This ordering is naturally extended to

sets of states by simply considering the terms represented by the states in each set.

Now, we can proceed with proof of Lemma 2. We follow the scheme of the proof

of Lemma 5.13 in (Alpuente et al. 1998) but extend it to deal with states:

Proof

We proceed by structural induction on S ∪ S ′. Since the base case is trivial (S is

always S-closed), we consider the inductive case. Let S ′′ = {s ′1, . . . , s
′
n}, n > 1,

be the set of states resulting from flattening the states in S ′, i.e., S ′′ = {s ′i | si ∈

S ′ and si =⇒∗
replace/flatten s ′i 6=⇒replace/flatten}. Trivially, we have that MS′ = MS′′

and that S ∪ S ′ is closed w.r.t. S ∪ S ′′, since the process of flattening does not
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change the terms represented by the states. By the definition of abstract , we have

the following equalities:

abstract(S,S ′) = abstract(S,S ′′)

= abs(abs(. . . abs(S, s ′1) . . . , s
′
n−1), s

′
n)

= abs(abstract(S,S ′′ \ {s ′n}), s
′
n)

= abs(S∗, s ′n)

where S∗ = abstract(S,S ′′ \ {s ′n}) and s ′n is an arbitrary state of S ′′. By the

inductive hypothesis, we know that S ∪ (S ′′ \ {s ′n}) is closed w.r.t. S∗. Now, we

proceed with the call abs(S∗, s ′n). Here, we distinguish the following cases depending

on the structure of s ′n :

s ′n = 〈x , [ ]〉: Then abs(S∗, s ′n) = S∗ and the claim follows by Lemma 1.

s ′n = 〈c(tn), [ ]〉: Assume that t ′m are the maximal operation-rooted subterms of

c(tn). Then abs(S∗, s ′n) = abstract(S∗,Sc), with Sc = {〈t ′m , [ ]〉}. Since MS∗∪Sc

<mul MS∗∪{s′n}
, the proof follows by Lemma 1 and the inductive hypothesis.

s ′n = 〈f (tn), S 〉: Then, following the definition of function abs , we consider three

possibilities:

• If there is no state in S∗ whose first component is rooted by f , then

abs(S∗, s ′n) = S∗ ∪ {s ′n}. Thus, the claim follows by Lemma 1.

• If the state is ignored (because it is already closed and it is not equal to any

existing state), then abs(S∗, s ′n) = S∗. Again, the claim follows trivially by

Lemma 1.

• Otherwise, there exists some state 〈f (t ′n), S
′〉 and

abs(S∗, s ′n) = abstract((S∗ \ {〈f (t ′n), S
′〉}) ∪ {〈f (t ′′n ), S

′〉},Sf )

where msg(〈f (t ′n), S
′〉, 〈f (tn), S 〉) = (〈f (t ′′n ), S

′〉,Sf ), Sf = calls(σ1)∪

calls(σ2) ∪ calls(S ), msg(f (t ′n), f (tn)) = f (t ′′n ), σ1(f (t ′′n )) = f (t ′n), and

σ2(f (t ′′n )) = f (tn). Now, by definition of function msg, it is easy to check

that S∗ ∪ {s ′n} is closed w.r.t. (S∗ \ {〈f (t ′n), S
′〉}) ∪ {〈f (t ′′n ), S

′〉} ∪ Sf and

that M(S∗ \ {〈f (t′n),S
′〉})∪{〈f (t′′n ),S ′〉}∪Sf <mul MS∗∪{s′n}

. Therefore, the proof

follows by Lemma 1 and the inductive hypothesis.

Theorem 1

Given a flat program R and an initial term t , the algorithm in Fig. 7 terminates

computing a set of states S such that 〈t , [ ]〉 is S-closed.

Proof

The S-closedness of 〈t , [ ]〉 is a direct consequence of Lemma 2 and Proposition 1.

Lemma 2 ensures that the arguments of the operator abstract are always closed

w.r.t. the new set of states, while Proposition 1 guarantees that the closedness of

the initial state is correctly propagated through the whole process.

The termination of the algorithm can be derived from the following facts:
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1. Each iteration of the algorithm is finite. The finiteness of the application of the

unfolding operator is obvious (since only one function unfolding is allowed). The

termination of one application of operator abstract can easily be proved by follow-

ing the scheme of the proof of Lemma 2: the computation terminates since each

recursive call to abstract uses a set of states which is strictly lesser than the previous

call (w.r.t. <mul).

2. The termination of the whole iterative process is a consequence of the following

facts:

• The number of states in the current set Si cannot be greater than the number

of different functions in the original program, since the abstraction operator

ensures that there is only one state for each function symbol of the program.

Thus, it cannot grow infinitely.

• The number of states in the set Si+1 is always equal to or greater than the

number of states in the set Si . This property is immediate, since we only

remove states in the last case of the definition of abstract and, there, we

replace one state by a new (generalized) state.

• Finally, each time one state is replaced by a new one, the new state is equal

to or smaller than the previous state (according to the ordering based on

the depth of the terms). If the new state has the same depth than the old

one, then the process would terminate, since they would be equal (modulo

renaming). If it is strictly smaller, then it will eventually reach an state whose

first component is of the form f (xn) and, hence, it cannot be generalized again.

Theorem 2

Let R be a flat program and t a term. Let S be a set of states computed by the

algorithm of Fig. 7 from R and t . Then, R′ = build slice(residual calls(S)) is a

program slice of R, i.e., R′ � R.

Proof

This result is an easy consequence of Def. 12 and the calculus in Fig. 8:

• If there is a rule f (xn) = e ∈ R and there is no term f (tn) ∈ residual calls(S), then

R′ does not contain a definition for f , i.e., f (xn) = ⊤ ∈ R′ and, trivially, ⊤ � e.

• Otherwise, f (xn) = e ∈ R and f (xn) = e ′ ∈ R′ with [[e]]ρ −→∗ e ′ 6−→ and

ρ = {xn 7→ tn}. Now, we prove that e ′ � e by induction on the length l of the

derivation [[e]]ρ −→∗ e ′:

Base case (l = 1). In this case, we only have the following possibilities:

— e is a variable; thus, e ′ = e and the claim follows trivially.

— e = c() is a constructor constant; then, e ′ = e and the claim follows.

— e = g(t ′m) is operation-rooted and there is no term in residual calls(S) rooted

by g. Then, e ′ = ⊤ and e ′ � e.

Induction case (l > 1). Here, we distinguish the following cases:
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— e = c(t ′1, . . . , t
′
m) with c ∈ C and m > 0. Then, e ′ = c([[t ′1]]ρ, . . . , [[t

′
m ]]ρ) and

the claim follows by induction.

— e = (f )case x of {p1 → e1; . . . ; pk → ek} with ρ(x ) = c(t ′m) and pi = c(ym).

Then, e ′ = (f )case x of {p1 → ⊤; . . . ; pi → [[ei ]]ρ
′; . . . ; pk → ⊤} with ρ′ =

{ym 7→ t ′m} ◦ ρ. By the inductive hypothesis, we have [[ei ]]ρ
′ � ei and, thus,

e ′ � e.

— e = (f )case x of {p1 → e1; . . . ; pk → ek} with ρ(x ) ∈ X . Then, e ′ =

(f )case x of {p1 → [[e1]]ρ1; . . . ; pk → [[ek ]]ρk}, with ρi = {x 7→ pi} ◦ ρ,

i ∈ {1, . . . , k}. By the inductive hypothesis, we have [[ei ]]ρi � ei for all i =

1, . . . , k . Therefore, e ′ � e.

— e = g(t ′1, . . . , t
′
m) with g ∈ F . Then, either e ′ = g([[t ′1]]ρ, . . . , [[t

′
m ]]ρ) and the

claim follows by induction, or there is no term in residual calls(S) rooted by

g and e ′ = ⊤ � e.

Theorem 3

Let R be a flat program and t a term. Let S be a set of states computed by the

algorithm of Fig. 7 from R and t . If computations for t in R do not suspend, then

t computes the same values and answers in R and in build slice(residual calls(S)).

Proof

We present an sketch of the proof; the complete formalization is not difficult

but would require the introduction of many notions and results from the origi-

nal narrowing-driven specialization framework. Basically, the proof proceeds in a

stepwise manner as follows:

• First, we consider the construction of a specialized program from the states in S

following the standard approach to narrowing-driven partial evaluation. Formally,

we construct a residual program R′ by producing a residual rule of the form

ren(S [t ]) = ren(S [t ′])

for each term in {S [t ] | 〈t , S 〉 ∈ S}, where 〈t , S 〉 =⇒fun 〈t ′′, S 〉 =⇒∗
select/guess

〈t ′, S 〉 6=⇒select/guess. Function ren is applied to rename expressions so that the

resulting residual program fulfills the syntax of flat programs (in spite of the form

of S [t ]). Basically, ren(S [t ]) returns a term f (xn) where f is a fresh function symbol

and xn are the different variables of S [t ]. By the correctness of narrowing-driven

partial evaluation (since t is S-closed by Theorem 1), we know that all the com-

putations for 〈t , [ ]〉 in the original program can also be done for 〈ren(t), [ ]〉 in the

residual program constructed so far.
• Then we consider a new programR′′ which is obtained from R′ as follows: each rule

in R′ of the form ren(S [t ]) = ren(S [t ′]) is replaced by a new rule ren(t) = ren(t ′).

This replacement is safe in our context since the one-step unfolding does not affect

to the current stack. A precise equivalence between the computations in R′ and

R′′ can easily be established under the extended operational semantics of Fig. 6.

Note that renaming is still necessary to ensure that residual rules fulfill the syntax

of Fig. 2.
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• Now, we define a new program R′′′ which is obtained from R′′ as follows: each

rule ren(t) = ren(t ′), with t = f (tn), is replaced by a new rule f (xn) = e ′, where

f (xn) = e is a rule of the original program R, xn are fresh variables, [[e]]ρ −→∗

e ′ 6−→, and ρ = {xn 7→ tn}. There is no need to apply a renaming of expressions in

this case, since the program so constructed already fulfills the syntax of Fig. 2 (cf.

Theorem 2). Now, each derivation for 〈ren(t), [ ]〉 in R′′ can also be done for 〈t , [ ]〉

in R′′′ using the extended operational semantics of Fig. 6. This is justified by the

fact that the only difference between the rules of R′′ and R′′′ is that bindings are

applied to program expressions in R′′ while they are represented implicitly in R′′′

by means of case expressions in the right-hand sides of the program rules.

• Finally, we extend R′′′ by adding a residual rule of the form f (xn) = e ′ for

each call f (tn) ∈ {t ′ | 〈t , S 〉 ∈ S, t ′ ∈ calls(S ), and t ′ is not TS -closed}, where

TS = {t | 〈t , S 〉 ∈ S}, f (xn) = e is a rule of the original program R, xn are

fresh variables, [[e]]ρ −→∗ e ′ 6−→, and ρ = {xn 7→ tn}. The extended program coin-

cides with the result of build slice(residual calls(S)). The claim follows by checking

that each derivation for 〈t , [ ]〉 in R′′′ using the extended semantics can also be

performed for t in build slice(T ) using the standard operational semantics. In-

tuitively, this equivalence holds because the only difference—we ignore here the

suspension of flexible case expressions since we only consider computations which

do not suspend—between the standard and the extended operational semantics is

that the unfolding of some outer function call is (possibly) delayed until a complete

one-step evaluation is possible. Therefore, the same computations can be proved

with both calculi, except when there is some inner call which never reduces to a

value (due to an infinite derivation). However, we ensure the equivalence even in

this case by adding residual rules for the calls in the stack components which are not

TS-closed, i.e., for those calls which have some inner call with a non-terminating

derivation.
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