
ar
X

iv
:c

s/
06

01
07

1v
1

 [
cs

.P
L

]
 1

6
Ja

n
20

06

To appear in Theory and Practice of Logic Programming (TPLP) 1

Constraint Functional Logic Programming over

Finite Domains

ANTONIO J. FERNÁNDEZ ∗

Dpto. de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Spain

E-mail: afdez@lcc.uma.es

TERESA HORTALÁ-GONZÁLEZ†,

FERNANDO SÁENZ-PÉREZ † and RAFAEL DEL VADO-VÍRSEDA ‡

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain
E-mails: {teresa,fernan,rdelvado}@sip.ucm.es

submitted 15 July 2004; revised 1 August 2005; accepted 13 January 2006

Abstract

In this paper, we present our proposal to Constraint Functional Logic Programming over
Finite Domains (CFLP (FD)) with a lazy functional logic programming language which
seamlessly embodies finite domain (FD) constraints. This proposal increases the expres-
siveness and power of constraint logic programming over finite domains (CLP (FD)) by
combining functional and relational notation, curried expressions, higher-order functions,
patterns, partial applications, non-determinism, lazy evaluation, logical variables, types,
domain variables, constraint composition, and finite domain constraints.

We describe the syntax of the language, its type discipline, and its declarative and opera-
tional semantics. We also describe T OY(FD), an implementation for CFLP (FD) , and a
comparison of our approach with respect to CLP (FD) from a programming point of view,
showing the new features we introduce. And, finally, we show a performance analysis which
demonstrates that our implementation is competitive with respect to existing CLP (FD)
systems and that clearly outperforms the closer approach to CFLP (FD) .

KEYWORDS: Constraint Logic Programming, Functional Logic Programming, Finite Do-
mains.

1 Introduction

Constraint logic programming (CLP) (Jaffar and Maher 1994) was born from a

desire to have both a better problem expression and performance than logic pro-

∗ This author was partially supported by Spanish MCyT under contracts TIN2004-7943-C04-01
and TIN2005-08818-C04-01.

† The work of this author has been supported by the Spanish project PR 48/01-9901 funded by
UCM.

‡ The work of this author has been partially supported by the Spanish National Project MELO-
DIAS (TIC2002-01167).

http://arxiv.org/abs/cs/0601071v1

2 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

gramming (LP). Its success lies in that it combines the declarativeness of LP with

the efficiency of the constraint programming (CP) paradigm. The essential com-

ponent of the CLP schema is that it can be parameterized by a computational

domain so that different domains determine different instances of the schema. Con-

straint Programming over finite domains (CP (FD)) (Marriot and Stuckey 1998;

Henz and Müller 2000) has emerged as one of the most exciting paradigms of pro-

gramming in recent decades. There are several reasons for the interest that CP (FD)

has raised: (1) the strong theoretical foundations (Tsang 1993; Apt 2003; Frühwirth and Abdennadher 2003)

that make CP a sound programming paradigm; (2) CP (FD) is a heterogeneous

field of research ranging from theoretical topics in mathematical logic to practical

applications in industry (particularly, problems involving heterogeneous constraints

and combinatorial search) and (3) CP is based on posing constraints, which are ba-

sically true relations among domain variables. For this last reason, the declarative

languages seem to be more appropriate than imperative languages to formulate FD

constraint problems. In particular, one of the most successful instances of CP (FD)

is CLP (FD) .

Another well-known instance of declarative programming (DP) is functional pro-

gramming (FP). The basic operations in functional languages are defined using

functions which are invoked using function applications and put together using

function composition. FP gives great flexibility, different from that provided by

(C)LP , to the programmer, because functions are first-class citizens, that is, they

can be used as any other object in the language (i.e., results, arguments, elements

of data structures, etc). Functional languages provide evident advantages such as

declarativeness, higher-order functions, polymorphism and lazy evaluation, among

others. To increase the performance, one may think of integrating FD constraints

into FP (as already done in LP). However, literature lacks proposals in this sense

and the reason seems to lie in the relational nature of FD constraints, which do

not fit well in FP . In spite of this limitation, it seems clear that the integration of

FD constraints into FP is interesting not only for FP but also for discrete con-

straint programming, as the constraint community may benefit from the multiple

advantages of FP .

More recently, functional logic programming (FLP) emerges with the aim to

integrate the declarative advantages from both FP and LP . FLP gives rise to

new features which cannot be found neither in FP nor in LP (Hanus 1994). FLP

has not the inherent limitations of FP and thus it is an adequate framework

for the integration of functions and constraints. To our best knowledge, the first

proposal for a constraint functional logic programming scheme (CFLP) that at-

tempts to combine constraint logic programming and functional logic programming

is (Darlington et al. 1992). The idea behind this approach can be roughly described

by the equation CFLP (D) = CLP (FP (D)), intended to mean that a CFLP lan-

guage over the constraint domain D is viewed as a CLP language over an extended

constraint domain FP (D) whose constraints include equations between expressions

involving user defined functions, which will be solved via narrowing. Further, the

CFLP scheme proposed by F.J. López-Fraguas in (López-Fraguas 1992) tried to

provide a declarative semantics such that CLP (D) programs could be formally

Constraint Functional Logic Programming over Finite Domains 3

understood as a particular case of CFLP (D) programs. In the classical approach

to CLP semantics, a constraint domain is viewed as a first-order structure D,

and constraints are viewed as first-order formulas that can be interpreted in D.

In (López-Fraguas 1992), CFLP (D) programs were built as sets of constrained

rewriting rules. In order to support a lazy semantics for the user defined functions,

constraint domainsD were formalized as continuous structures, with a Scott domain

(Gunter and Scott 1990) as a carrier, and a continuous interpretation of function

and predicate symbols. The resulting semantics had many pleasant properties, but

also some limitations. In particular, defined functions had to be first-order and de-

terministic, and the use of patterns in function definitions had to be simulated by

means of special constraints.

In a recent work (López-Fraguas et al. 2004a), a new generic scheme CFLP (D)

has been proposed, intended as a logical and semantic framework for lazy Constraint

Functional Logic Programming over a parametrically given constraint domain D,

which provides a clean and rigorous declarative semantics for CFLP (D) languages

as in the CLP (D) scheme, overcoming the limitations of the older CFLP (D)

scheme (López-Fraguas 1992). CFLP (D) programs are presented as sets of con-

strained rewriting rules that define the behavior of possibly higher-order and/or

non-deterministic lazy functions overD. The main novelties in (López-Fraguas et al. 2004a)

were a new formalization of constraint domains for CFLP , a new notion of interpre-

tation for CFLP (D) programs, and a new Constraint Rewriting Logic CRWL(D)

parameterized by a constraint domain, which provides a logical characterization of

program semantics. Further, (López-Fraguas et al. 2004b) has formalized an opera-

tional semantics for the new generic schemeCFLP (D) proposed in (López-Fraguas et al. 2004a).

This work presented a constrained lazy narrowing calculus CLNC(D) for solv-

ing goals for CFLP (D) programs, which was proved sound and strongly complete

with respect to CRWL(D)’s semantics. These properties qualified CLNC(D) as

a convenient computation mechanism for declarative constraint programming lan-

guages. More recently, (del Vado-Vı́rseda 2005) presented an optimization of the

CLNC(D) calculus by means of definitional trees (Antoy 1992) to efficiently control

the computation. This new constrained demanded narrowing calculus CDNC(D)

preserves the soundness and completeness properties of CLNC(D) and maintains

the good properties shown for needed and demand-driven narrowing strategies

(Loogen et al. 1993; Antoy et al. 2000; del Vado-Vı́rseda 2003). These properties

adequately render CDNC(D) as a concrete specification for the implementation of

the computational behavior in existing CFLP (D) systems such as T OY (Caballero et al. 1997)

and Curry (Hanus 1999).

The main contributions of the paper are listed below:

• The paper describes the theoretical foundations for the CFLP (FD) lan-

guage, i.e., a concrete instance of the general scheme CFLP (D) presented in

(López-Fraguas et al. 2004a; López-Fraguas et al. 2004b). First, this instance

includes an explicit treatment of a type system for constraints as well as for

programs, goals and answers. Second, it also presents a new formalization of

the constraint finite domain FD for CFLP that includes a succinct declara-

4 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

tive semantics (similarly as done for CLP) for an enough-expressive primitive

constraints set. Finally, it provides the formal specification of a finite domain

constraint solver defined over those primitive constraints that constitutes the

theoretical basis for the implementation of correct propagation solvers.

• The paper presents an operational semantics for finite domain constraint solv-

ing on declarative languages using a new constraint lazy narrowing calculus

CLNC(FD), consisting of a natural and novel combination of lazy evalua-

tion and FD constraint solving that does not exist, to our knowledge, in any

declarative constraint solver (see (López-Fraguas et al. 2004b) and Section 5).

This operational semantics is defined with respect to a constraint rewriting

logic over a FD setting that makes it very different from the operational

behavior of CLP (FD) languages.

• The paper presents T OY(FD) from a programming point of view, which is

the first CFLP (FD) system that provides a wide set of FD constraints com-

parable to existing CLP (FD) systems and which is competitive with them,

as shown with performance results. Also, the advantages of combining FD

constraints into FLP are highlighted via examples. Our system is therefore a

contribution for increasing the expressiveness and efficiency of FLP by using

FD constraints and a state-of-the-art propagation solver.

The structure of the paper is as follows. Section 2 presents our CFLP (FD)

language by describing its type discipline, patterns and expressions, finite domains,

and constraint solvers. In Section 3, we provide a constraint lazy narrowing calculus

over FD domains (CLNC(FD)) along with the notions of well-typed programs,

admissible goals, and correct answers. Next, Section 4 describes our implementation

of CFLP (FD): T OY(FD), highlighting the advantages obtained from embodying

constraints into a functional logic language with respect to CLP (FD) , and compar-

ing the performance of our CFLP (FD) system with other declarative constraint

systems. Section 5 discusses related work and, finally, Section 6 summarizes some

conclusions and points out future work.

2 The CFLP (FD) Language

We propose a constraint functional logic programming language over finite domains

which is a pure declarative language, typed, lazy, and higher-order, and that pro-

vides support for constraint solving over finite domains. CFLP (FD) aims to the

integration of the best features of existing functional and logic languages into FD

constraint solving.

In this section, we present the basis of our CFLP (FD) language about syntax,

type discipline, and declarative semantics. We also formalize the notion of a con-

straint finite domain and specify the expected behavior that a FD constraint solver

attached to our CFLP (FD) language must hold.

Constraint Functional Logic Programming over Finite Domains 5

2.1 Polymorphic Signatures

We assume a countable set TVar of type variables α, β, . . . and a countable ranked

alphabet TC =
⋃

n∈N
TCn of type constructors C ∈ TCn. Types τ ∈ Type have

the syntax τ ::= α | C τ1 . . . τn | τ → τ ′ | (τ1, . . . , τn).

By convention, C τn abbreviates C τ1 . . . τn, “→” associates to the right, τn → τ

abbreviates τ1 → · · · → τn → τ , and the set of type variables occurring in τ is

written tvar(τ). A type τ is called monomorphic iff tvar(τ) = ∅, and polymorphic

otherwise. (τ1, . . . , τn) is a type intended to denote n-tuples. A type without any

occurrence of “→” is called a datatype. Datatype definitions declare new (possibly

polymorphic) constructed types and determine a set of data constructors for each

type. Our CFLP (FD) language provides predefined types such as [A] (the type of

polymorphic lists, for which Prolog notation is used), bool (with constants true and

false), int for integer numbers, char (with constants a, b, . . .) or success (with

constant ⊤).

A polymorphic signature over TC is a triple Σ = 〈TC, DC, FS〉, where DC =
⋃

n∈N
DCn and FS =

⋃
n∈N

FSn are ranked sets of data constructors and evaluable

function symbols. Evaluable functions can be further classified into domain depen-

dent primitive functions PFn ⊆ FSn and user defined functions DFn = FSn \

PFn for each n ∈ N.

Each n-ary c ∈ DCn comes with a principal type declaration c :: τn → C αk,

where n, k ≥ 0, α1, . . . , αk are pairwise different, τi are datatypes, and tvar(τi) ⊆

{α1,. . . , αk} for all 1 ≤ i ≤ n. Also, every n-ary f ∈ FSn comes with a principal

type declaration f :: τn → τ , where τi, τ are arbitrary types. For any polymorphic

signature Σ, we write Σ⊥ for the result of extending DC0 in Σ with a special

data constructor ⊥, intended to represent an undefined value that belongs to every

type. We also assume that DC0 includes the three constants mentioned above

true, false :: bool, and ⊤ :: success, which are useful for representing the results

returned by various primitive functions. As notational conventions, in the rest of

the paper, we use c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS, and we define the arity

of h ∈ DCn ∪ FSn as ar(h) = n.

2.2 Expressions, Patterns and Substitutions

In the sequel, we always assume a given polymorphic signature Σ, often not made

explicit in the notation. We introduce the syntax of applicative expressions and

patterns, which is needed for understanding the construction of constraint finite

domains and constraint finite domain solvers. We assume a countably infinite set

Var of (data) variables X,Y, . . . and the integer set Z of primitive elements 0, 1,

−1, 2, −2, . . . , mutually disjoint and disjoint from TVar and Σ. Primitive elements

are intended to represent the finite domain specific set of integer values.

An expression e ∈ Exp⊥(Z) has the syntax e ::=⊥ | u | X | h | (e e′) |

(e1, . . . , en) where u ∈ Z, X ∈ Var, h ∈ DC ∪ FS, (e e′) stands for the application

operation which applies the function denoted by e to the argument denoted by

e′ and (e1, . . . , en) represents tuples with n components. The set of data variables

6 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

occurring in e is written var(e). Moreover, e is called linear iff every X ∈ var(e)

has a single occurrence in e, ground iff var(e) = ∅ and total iff is an expression

with no occurrences of ⊥. Partial patterns t ∈ Pat⊥(Z) ⊂ Exp⊥(Z) are built as

t ::= ⊥ | u | X | c t1 . . . tm | f t1 . . . tn where u ∈ Z, X ∈ Var, c ∈ DC with

m ≤ ar(c), and f ∈ FS with n < ar(f). Notice that partial applications (i.e.,

application to less arguments than indicated by the arity) of c and f are allowed as

patterns, which are then called higher-order patterns (González-Moreno et al. 99b),

because they have a functional type. We define the information ordering ⊑ as the

least partial ordering over Pat⊥(Z) satisfying the following properties: ⊥ ⊑ t for

all t ∈ Pat⊥(Z) and h tm ⊑ h t′m whenever these two expressions are patterns and

ti ⊑ t′i for all i ∈ {1, . . . ,m}.

As usual, we define (data) substitutions σ ∈ Sub⊥(Z) as mappings σ : Var →

Pat⊥(Z) extended to σ : Exp⊥(Z) → Exp⊥(Z) in the natural way. By convention,

we write ε for the identity substitution, eσ instead of σ(e) and σθ for the composi-

tion of σ and θ. We define the domain dom(σ) of a substitution σ in the usual way.

A substitution σ such that σσ = σ is called idempotent. For any set of variables

X ⊆ Var we define the restriction σ ↾ X as the substitution σ′ such that dom(σ′)

= X and σ′(X) = σ(X) for all X ∈ X . We use the notation σ =X θ to indicate

that σ ↾ X = θ ↾ X , and we abbreviate σ =Var\X θ as σ =\X θ. Type substitutions

can be defined similarly, as mappings σt : TVar → Type with a unique extension

σ̂t : Type → Type, denoted also as σt. The set of all type substitutions is denoted as

TSubst . Most of the concepts and notations for data substitutions (such as domain,

composition, etc.) make sense also for type substitutions, and we will freely use

them when needed.

2.3 Well-typed Expressions

Inspired by Milner’s type system (Damas and Milner 1982) we now introduce the

notion of well-typed expression. We define a type environment as any set T of type

assumptions X :: τ for data variables s.t. T does not include two different assump-

tions for the same variable. The domain dom(T) of a type environment is the set

of all the data variables that occur in T . For any variable X ∈ dom(T), the unique

type τ s.t. (X :: τ) ∈ T is denoted as T (X). The notation (h :: τ) ∈var Σ is

used to indicate that Σ includes the type declaration h :: τ up to a renaming of

type variables. Type judgements (Σ, T) ⊢WT e :: τ with e ∈ Exp⊥(Z) are derived

by means of the following type inference rules:

(Σ, T) ⊢WT u :: int, for every u ∈ Z.

(Σ, T) ⊢WT X :: τ , if T (X) = τ .

(Σ, T) ⊢WT h :: τσt, if (h :: τ) ∈var Σ⊥, σt ∈ TSubst .

(Σ, T) ⊢WT (e e′) :: τ , if (Σ, T) ⊢WT e :: (τ ′ → τ), (Σ, T) ⊢WT e′ :: τ ′,

for some τ ′ ∈ Type.

(Σ, T) ⊢WT (e1, . . . ,en) :: (τ1, . . . ,τn), if ∀i ∈ {1, . . . ,n} : (Σ, T) ⊢WT ei ::τi.

An expression e ∈ Exp⊥ is called well-typed iff there exist some type environment

T and some type τ , such that the type judgement (Σ, T) ⊢WT e :: τ can be derived.

Constraint Functional Logic Programming over Finite Domains 7

Expressions that admit more than one type are called polymorphic. A well-typed

expression always admits a so-called principal type (PT) that is more general than

any other. A pattern whose PT determines the PTs of its subpatterns is called

transparent.

2.4 The Constraint Finite Domain FD

Adopting the general approach of (López-Fraguas et al. 2004a; López-Fraguas et al. 2004b),

a constraint finite domain FD can be formalized as a structure with carrier set DZ,

consisting of ground patterns built from the symbols in a polymorphic signature Σ

and the set of primitive elements Z. Symbols in Σ are intended to represent data

constructors (e.g., the list constructor), domain specific primitive functions (e.g.,

addition and multiplication over Z) satisfying monotonicity, antimonotonicity and

radicality properties (see (López-Fraguas et al. 2004a) for details), and user defined

functions. Requiring primitives to be radical, which just means that for given ar-

guments, they are expected to return a total result, unless the arguments bear too

few information for returning any result different from ⊥. As we will see in the next

subsection, it is also possible to instantiate this notion of constraint finite domain

by adding a new formal specification of a constraint finite domain solver SolveFD

as the theoretical basis of our operational semantics and implementation.

Assuming then a constraint finite domain FD, we define first the syntax and

semantics of constraints over FD used in this work. In contrast to CLP (FD), our

constraints can include now occurrences of user defined functions and can return

any value of the Type set.

• Primitive constraints have the syntactic form p tn →! t , being p ∈ PFn a

primitive function symbol and t1, . . . , tn, t ∈ Pat⊥(Z) with t total.

• Constraints have the syntactic form p en →! t , with p ∈ PFn, e1, . . . , en ∈

Exp⊥(Z) and t ∈ Pat⊥(Z) total.

In the sequel, we use the notation PCon(FD) for the set of all the primitive con-

straints π over FD. We reserve the capital letter Π for sets of primitive constraints,

often interpreted as conjunctions. The semantics of primitive constraints depends

on the notion of valuation V al(FD) over FD, defined as the set of substitutions of

ground patterns for variables. The set of solutions of π ∈ PCon(FD) is a subset

SolFD(π) ⊆ V al(FD) that satisfy π in FD in the sense of (López-Fraguas et al. 2004a).

Analogously, the set of solutions of Π ⊆ PCon(FD) is defined as SolFD(Π) =
⋂

π∈ Π SolFD(π). Moreover, we define the set of solutions of a pair Π σ with

σ ∈ Sub⊥(Z) as SolFD(Π σ) = SolFD(Π) ∩ Sol(σ), where Sol(σ) is the set of

valuations η such that Xη ≡ tη for each X 7→ t ∈ σ.

The next definition presents a possible specific polymorphic signature with fi-

nite domain constraints constituted by a minimum set of primitive function sym-

bols with their corresponding declarative semantics. By means of this signature,

our CFLP (FD) language allows the management of the usual finite domain con-

straints defined over Z in CLP (FD) and also equality and disequality constraints

8 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

defined over Pat⊥(Z) in a similar way as done in (González-Moreno et al. 99b).

Definition 1

Consider the following usual primitive operators and relations defined over Z:

⊗Z :: int → int → int, where ⊗ ∈ {+,−, ∗, /}

≍Z :: int → int → bool, where ≍ ∈ {=, 6=, <,≤, >,≥}.

Table 1. Primitive Function Symbols in FD and their Declarative Interpretation

Strict Equality seq :: α → α → bool
(on patterns) seqFD : DZ ×DZ → {true, false,⊥}

seqFD t t → true, ∀t ∈ DZ total
seqFD t1 t2 → false,∀t1, t2 ∈ DZ. t1, t2 have no common upper

bound w.r.t. the information ordering ⊑
seqFD t1 t2 → ⊥, otherwise

Less or Equal leq :: int → int → bool
(on integers) leqFD : DZ ×DZ → {true, false,⊥}

leqFD u1 u2 → true, if u1, u2 ∈ Z and u1 ≤Z u2

leqFD u1 u2 → false, if u1, u2 ∈ Z and u1 >Z u2

leqFD u1 u2 → ⊥, otherwise

Operators ⊗ :: int → int → int

(on integers) ⊗FD : DZ ×DZ → DZ

⊗FD u1 u2 → u1 ⊗
Z u2, if u1, u2 ∈ Z

⊗FD u1 u2 → ⊥, otherwise

Finite Domains domain :: int → [int] → bool
domainFD : DZ ×DZ → {true, false,⊥}
domainFD u [u1, . . . , un] → true,

if ∀i ∈ {1, . . . , n−1}.ui ≤
Z ui+1 and ∃i ∈ {1, . . . , n}.u =Z ui

domainFD u [u1, . . . , un] → false,

if ∃i ∈ {1, . . . , n−1}.ui >
Z ui+1 or ∀i ∈ {1, . . . , n}.u 6=Z ui

domainFD u [u1, . . . , un] → ⊥, otherwise

Variable Labeling indomain :: int → success
indomainFD : DZ → {⊤,⊥}
indomainFD u → ⊤, if u ∈ Z

indomainFD u → ⊥, otherwise

Table 1 shows the set of primitive functions p ∈ PFn with their corresponding

type declarations and their declarative interpretation pFD ⊆ Dn
Z
× DZ considered

in our constraint finite domain FD (we use the notation pFDtn → t to indicate that

(tn, t) ∈ pFD). We note that all our primitive functions satisfy the aforementioned

properties. �

Constraint Functional Logic Programming over Finite Domains 9

The function indomain is the basis for a labeling (enumeration or search) strategy,

which is crucial in constraint solving efficiency. labeling is applied when no more

constraint propagation is possible, and its basic step consists of selecting a variable

X with a non-empty, non-singleton domain, selecting a value u of this domain,

and assigning u to X . We note that in our framework, various labeling strategies

(variable and value selection) have all the same declarative semantics, but they may

differ in their operational behavior and therefore in efficiency as it happens in the

CLP (FD) setting (more details can be found in Section 4.5.1). In the rest of the

paper, when opportune, we use the following notations:

• t == s abbreviates seq t s →! true and t \ = s abbreviates seq t s →! false

(the notations = and 6= can be understood as a particular case of the notations

== and \ = when these are applied to integers and/or integer variables).

• a ≤ b abbreviates leq a b →! true (and analogously for the other comparison

primitives <, > and ≥).

• a⊗ b ≍ c abbreviates a⊗ b →! r, r ≍ c.

• u ∈ D abbreviates domain u D →! true and u1, . . . , un ∈ D abbreviates

u1 ∈ D ∧ . . . ∧ un ∈ D. Analogously, u /∈ D abbreviates domain u D →! false

and u1, . . . , un /∈ D abbreviates u1 /∈ D ∧ . . . ∧ un /∈ D.

• domain [u1, . . . , un] a b with a, b ∈ Z (a ≤ b) abbreviates u1, . . . , un ∈ [a .. b],

where [a .. b] represents the integer list [a, a+ 1, . . . , b − 1, b] that intuitively

represents the integer interval [a,b].

• labeling L [u1, . . . , un] abbreviates and extends indomain u1 →! ⊤ ∧ . . . ∧

indomain un →! ⊤ with a list L of predefined constants that allow to specify

different labeling strategies.

Using these notations, a primitive constraint store S ⊆ PCon(FD) can be expressed

as a finite conjunction of primitive constraints of the form t == s, t \ = s, u ∈ D,

u /∈ D, a⊗ b ≍ c, domain [u1, . . . , un] a b and/or labeling L [u1, . . . , un] where t, s

are total patterns, ui, u, a, b, c ∈ Z ∪ Var, and L,D are total patterns representing

a variable or a list.

2.5 Constraint Solvers over FD

The design of a suitable operational semantics over finite domains for goal solving

in CFLP (FD) combines constrained lazy narrowing with constraint solving over

a given constraint finite domain FD. The central notion of lazy narrowing can be

found in the literature, e.g., (Middeldorp and Okui 1998; Middeldorp et al. 2002).

In this subsection, we describe the expected behavior of a constraint solver over the

finite constraint domain FD w.r.t. the semantics given in the previous subsection,

as the basis of our goal solving mechanism.

Definition 2

A constraint solver over a given constraint domain FD is a function named SolveFD

expecting as parameters a finite primitive constraint store S ⊆ PCon(FD) in the

sense of Definition 1 and a finite set of variables χ ⊆ Var called the set of pro-

tected variables. The constraint solver is expected to return a finite disjunction of

10 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

k alternatives: SolveFD(S, χ) =
∨k

i=1(Si σi), where each Si ⊆ PCon(FD) and

each σi ∈ Sub⊥(Z) is a total idempotent substitution satisfying the following re-

quirements: no alternative can bind protected variables, for each alternative either

all the protected variables disappear or some protected variable becomes demanded

(i.e., no solution can bind these variables to an undefined value), no solution is lost

by the constraint solver, and the solution space associated to each alternative is in-

cluded in one of the input constraint stores (i.e., SolFD(S) =
⋃k

i=1 SolFD(Si σi)).

In the case k = 0, the disjunction is understood as failure and SolFD(S) = ∅ (that

means failure detection). �

(López-Fraguas et al. 2004b) describes a constraint solver defined on the domain

Hseq in which the constraints considered are just those for the strict (dis)equality

on pure patterns (i.e. those patterns constructed over an empty set of primitive el-

ements). Now, in this paper, we extend this solver to the constraint domain FD in

which we consider Z as the set of primitive elements. We follow this approach and as-

sume that the solver SolveFD will behave as follows: SolveFD(S, χ) =
∨k

i=1(Si σi)

iff S ε ⊢⊢∗
χ

∨k

i=1(Si σi) 6⊢⊢χ, where the relation ⊢⊢χ expresses a solver resolution

step, and S ε 6⊢⊢χ indicates that S is in solved form w.r.t. the action of the con-

straint solver in the sense of Definition 2. Moreover, the relation ⊢⊢χ manipulates

disjunctions by combining them as follows:

. . . ∨ Si σi ∨ . . . ⊢⊢χ . . . ∨
∨

j(Sj σj) ∨ . . . if Si σi ⊢⊢χ

∨
j(Sj σj)

Tables 2-5 show the sets of rules that define the relation ⊢⊢χ. These rules ex-

tend and complement those presented in (López-Fraguas et al. 2004b) specifically

to work with finite domain constraints defined on the set of integer patterns. For

clarity, we omit the corresponding failure rules, which can be easily deduced from

our tables.

Table 2 captures the operational behavior of the constraint solver SolveFD to

manage constraints of the form seq, leq or domain when these return a variable

as a result. The result variable is instantiated to each of its possible values (i.e.,

true and false) giving rise to different alternatives for each of the possibilities and

propagating the corresponding bind to the remaining alternatives.

Table 2. General Rules for the Constraint Solver

seq t s →! R, S σ ⊢⊢χ (t == s, Sθ1 σθ1) ∨ (t \ = s, Sθ2 σθ2)

leq a b →! R, S σ ⊢⊢χ (a ≤ b, Sθ1 σθ1) ∨ (a > b, Sθ2 σθ2)

domain u [u1, . . . , un] →! R, S σ ⊢⊢χ (u ∈ [u1, . . . , un], Sθ1 σθ1) ∨
(u /∈ [u1, . . . , un], Sθ2 σθ2)

(For the 3 rules) only if R /∈ χ; with θ1 = {R 7→ true} and θ2 = {R 7→ false}

Constraint Functional Logic Programming over Finite Domains 11

Observe that, by applying the rules shown in Table 2, all the constraints based

on the primitive seq are proposed as explicit constraints in form of strict equality

or strict disequality. Then, the solver distinguishes several cases depending on the

syntactic structure of the (integer) patterns used as arguments. Table 3 shows

the rules to cover these cases that reproduce the process of syntactic unification

between equalities and disequalities as it is done in the classical syntactic unification

algorithms (see for example (Fernández 1992)).

Table 3. Rules for Strict (Dis)-Equality

u == u, S σ ⊢⊢χ S σ, if u ∈ Z

X == t, S σ ⊢⊢χ t == t, Sθ σθ, if X /∈ χ ∪ var(t), var(t) ∩ χ = ∅, θ = {X 7→ t}
(h t1 . . . tn) == (h s1 . . . sn), S σ ⊢⊢χ t1 == s1, . . . , tn == sn, S σ

u \ = u′, S σ ⊢⊢χ S σ, if u, u′ ∈ Z, and u 6=Z u′

X \ = (h t1 . . . tn), S σ ⊢⊢χ (
∨

i
(Sθi σθi)) ∨ (

∨n

k=1
(Uk \ = tkθ, Sθ σθ))

if X /∈ χ, var(h t1 . . . tn)∩ χ 6= ∅, θi = {X 7→ hi Y mi
}, with hi 6= h, and

θ = {X 7→ h Un}, Y mi
, Un are new fresh variables.

(h t1 . . . tn) \ = u, S σ ⊢⊢χ S σ if u ∈ Z

(h t1 . . . tn) \ = (h s1 . . . sn), S σ ⊢⊢χ (t1 \ = s1, S σ) ∨ . . . ∨ (tn \ = sn, S σ)
(h t1 . . . tn) \ = (h′s1 . . . sm), S σ ⊢⊢χ S σ, if h 6= h′ or m 6= n

In addition to the rules for the strict (dis)equality over integer patterns, the solver

has also to consider, by contrast to the solver given in (López-Fraguas et al. 2004b),

new rules for the particular treatment of the primitive constraints (specific for FD)

defined over the primitive elements in Z. These rules are shown in Table 4.

Table 4. Rules for the Specific Primitive Constraints of FD

u ≤ u′, S σ ⊢⊢χ S σ, if u, u′ ∈ Z, and u ≤Z u′

u > u′, S σ ⊢⊢χ S σ, if u, u′ ∈ Z, and u >Z u′

a⊗ b ≍ c, S σ ⊢⊢χ S σ, if a, b, c ∈ Z and a⊗Z b ≍Z c

a⊗ b = X, S σ ⊢⊢χ Sθ σθ, if X /∈ χ, a, b ∈ Z and θ = {X 7→ a⊗Z b}

Moreover, the solver also has to cover the domain and indomain classical con-

straints in finite domain constraint programming languages, to respectively fix the

domain of the constrained variables and label them according to their corresponding

domain (Dechter 2003). Table 5 shows the new rules that consider these cases.

After applying the constraint solver SolveFD, a primitive constraint store S ⊆

PCon(FD) is expressed in solved form as a finite conjunction of primitive con-

straints of the form (we use the notations given in Section 2.4) X == t, X \ = t,

12 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

Table 5. Rules for Finite Domain and Variable Labeling

u ∈ [u1, . . . , un], S σ ⊢⊢χ S σ, if u, ui ∈ Z ∪ Var and ∃i ∈ {1, . . . , n}. ui ≡ u.

u /∈ [u1, . . . , un], S σ ⊢⊢χ S σ, if u, ui ∈ Z and ∀i ∈ {1, . . . , n}. ui 6=
Z u.

labeling [. . .] [X], X ∈ [u1, . . . , un], S σ ⊢⊢χ

∨n

i=1
(Sθi σθi),

if X /∈ χ, and ∀i ∈ {1, . . . , n}, ui ∈ Z and θi = {X 7→ ui}
labeling [. . .] [u], S σ ⊢⊢χ S σ, if u ∈ Z

u ∈ D and a⊗ b ≍ c where X ∈ Var, t is a total pattern, u, a, b, c ∈ Z ∪ Var and

D is a total pattern defining a list of variables and/or integers.

Example 1

We illustrate the operational semantics of our finite domain constraint solver pro-

viding a constraint solver derivation from the initial constraint store {seq X (s K)

→! R, A + B < Z} and taking into account the set of protected variables {Z}.

We describe in detail the rules applied by the constraint solver and, at each goal

transformation step, we underline which subgoal is selected:

seq X (s K) →! R, A+B < Z ε ⊢⊢{Z}

({X == s K, A+B < Z} {R 7→ true}) ∨

({X \ = s K, A+B < Z} {R 7→ false}) ⊢⊢{Z}

• ({X == s K, A+B < Z} {R 7→ true}) ⊢⊢{Z}

({s K == s K, A+B < Z} {R 7→ true,X 7→ s K}) ⊢⊢{Z}

({K == K, A+B < Z} {R 7→ true,X 7→ s K}) 6⊢⊢{Z}

• ({X \ = s K, A+B < Z} {R 7→ false}) ⊢⊢{Z}

({A+B < Z} {R 7→ false, X 7→ 0}) ∨

({A+B < Z, M \ = K} {R 7→ false, X 7→ s M}) 6⊢⊢{Z}

Therefore, the constraint solver returns the following solved forms:

SolveFD({ seq X (s K) →! R, A+B < Z }, {Z}) =

({A+B < Z, K == K} {R 7→ true, X 7→ s K}) ∨

({A+B < Z} {R 7→ false, X 7→ 0}) ∨

({A+B < Z, M \ = K} {R 7→ false, X 7→ s M})

As shown in Tables 2-5, our new constraint solver for the finite domain FD with

strict equality and disequality has been designed to hold all the initial assumptions

required in the general framework CFLP for constraint solvers (see Definition 2).

It can be formally proved by means of the following result.

Theorem 1

Let S ⊆ PCon(FD) be a primitive constraint store, σ ∈ Sub⊥(Z) an idempotent

total substitution and χ ⊆ Var a set of protected variables. If S σ satisfies the re-

quirements of Definition 2 and S σ ⊢⊢χ

∨k

i=1(Si σi), then SolFD(S σ) =

Constraint Functional Logic Programming over Finite Domains 13

⋃k

i=1 SolFD(Si σi), where dom(σi) ∩ var(Si) = ∅ and χ ∩ (dom(σi) ∪ ran(σi))

= ∅ for all 1 ≤ i ≤ k. Moreover, if S σ ⊢⊢χ fails then SolFD(S σ) = ∅.

The proof of this theorem (see Appendix A) can be done distinguishing sev-

eral cases from the declarative semantics of each primitive function symbol given

in Table 1 and the requirements of each constraint solver rule in Tables 2-5. Ac-

cording to this result, the relation ⊢⊢χ preserves the requirements of a constraint

solver and the constraint solver steps fail only in case of an unsatisfiable constraint

store. Therefore, if we repeatedly apply this result from an initial constraint store

and a set of protected variables in order to compute a constraint store in solved

form, we directly obtain the correctness of our finite domain constraint solver w.r.t.

CFLP (FD)’s semantics.

3 The CLNC(FD) Calculus

This section describes a lazy narrowing calculus with constraints defined on the

finite domain FD (the Constraint Lazy Narrowing Calculus CLNC(FD) for short)

for the solving of goals from programs. Since we have proved in the previous section

that our finite domain constraint solver holds the properties required in the general

framework, this calculus can be obtained as a simplified instantiation of the general

scheme for CFLP described in (López-Fraguas et al. 2004b), and used in this work

as the formal foundation of the operational semantics in T OY(FD).

In order to understand the main ideas of our operational semantics, we first give a

precise definition for the class of well-typed programs, admissible goals and correct

answers we are going to work with.

3.1 Programs, Goals and Answers

Our well-typed CFLP (FD)-programs are sets of constrained rewriting rules that

define the behavior of possibly higher-order and/or non-deterministic lazy functions

over FD, called program rules. More precisely, a program rule R for a defined

function symbol f ∈ DFn with an associated principal type τ1 → . . . → τn → τ

has the form f t1 . . . tn = r ⇐ C and is required to satisfy the conditions listed

below:

1. t1 . . . tn is a linear sequence of transparent patterns and r ∈ Exp⊥(Z) is a

total expression.

2. C is a finite set of total constraints (in the form of Definition 1), intended to

be interpreted as conjunction, and possibly including occurrences of defined

function symbols.

3. There exists some type environment T with domain var(R) which well-types

the defining rule in the following sense:

(a) For 1 ≤ i ≤ n: (Σ, T) ⊢WT ti :: τi.

(b) (Σ, T) ⊢WT r :: τ .

(c) For each (e == e′) ∈ C: ∃µ ∈ Type s.t. (Σ, T) ⊢WT e :: µ :: e′.

(d) For each (e \ = e′) ∈ C: ∃µ ∈ Type s.t. (Σ, T) ⊢WT e :: µ :: e′.

14 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

(e) For each (u ∈ D) ∈ C: (Σ, T) ⊢WT u :: int,D :: [int].

(f) For each (a⊗ b ≍ c) ∈ C: (Σ, T) ⊢WT a, b, c :: int

where (Σ, T) ⊢WT e :: τ :: e′ denotes (Σ, T) ⊢WT e :: τ, (Σ, T) ⊢WT e′ :: τ .

The left-linearity condition required in item 1 is quite common in functional

and functional logic programming. As in constraint logic programming, the condi-

tional part of a program rule needs no explicit occurrences of existential quantifiers.

Another distinguished feature of our language is that no confluence properties are

required for the programs, and therefore functions can be non-deterministic, i.e.

return several values for given (even ground) arguments.

Example 2

The following example illustrates the previous definition of typed CFLP (FD)-

programs by showing some constrained program rules which will be used for lazy

evaluation of infinite lists in the next subsections.

take :: int → [α] → [α]

(T1) take 0 Xs = []

(T2) take N [] = [] ⇐ N > 0

(T3) take N [X | Xs] = [X|take (N - 1) Xs] ⇐ N > 0

check list :: [int] → int

(CL1) check list [] = 0

(CL2) check list [X|Xs] = 1 ⇐ domain [X] 1 2

(CL3) check list [X|Xs] = 2 ⇐ domain [X] 3 4

(CL4) check list [X|Xs] = 4 ⇐ domain [X] 5 7

generateFD :: int → [int]

(G1) generateFD 0 = []

(G2) generateFD N = [X | generateFD N] ⇐ N > 0, domain [X] 0 N-1

from :: int → [int]

(F) from N = [N | from (N+1)]

According to (López-Fraguas et al. 2004b), we define goals for this kind of pro-

grams in the general form G ≡ ∃U. P C S σ, where the symbol must be

interpreted as conjunction, U is the finite set of so-called existential variables of the

goal G, P is a multiset of so-called productions of the form e1 → t1, . . . , en → tn,

where ei ∈ Exp⊥(Z) and ti ∈ Pat⊥(Z) are totals for all 1 ≤ i ≤ n (the set of pro-

duced variables of G is defined as the set of variables occurring in t1 . . . tn), C is a

finite conjunction of constraints (possibly including occurrences of defined function

symbols), S is a finite conjunction of primitive constraints in the form of Defini-

tion 1, called constraint store, and σ is an idempotent substitution called answer

substitution such that dom(σ) ∩ var(P C S) = ∅.

Additionally, we say that a goal G is an admissible goal iff it is well-typed: satisfies

the same admissibility criteria given above for programs for each constraint in C

Constraint Functional Logic Programming over Finite Domains 15

and S, and the same conditions of compatible types for each production in P and

each binding in σ given in (González-Moreno et al. 99b). Moreover, it must hold

the so-called goal invariants given in (López-Fraguas et al. 2004b): each produced

variable is produced only once, all the produced variables must be existential, the

transitive closure of the relation between produced variables must be irreflexive,

and no produced variable enters the answer substitution. An admissible goal is

called a solved goal iff P and C are empty and S is in solved form w.r.t. the action

of the constraint solver in the sense of Definition 2.

Similarly to (González-Moreno et al. 99a; González-Moreno et al. 99b; del Vado-Vı́rseda 2003),

the CLNC(FD) calculus uses a notion of demanded variable to deal with lazy eval-

uation.

Definition 3

Let G be an admissible goal. We say that X ∈ var(G) is a demanded variable iff

1. X is demanded by the constraint store S of G, i.e. µ(X) 6= ⊥ holds for every

µ ∈ SolFD(S) (for practical use, the calculation of this kind of demanded

variables in FD can be easily done extending the rules given in the appendix

of (López-Fraguas et al. 2004b) in the line of our rules shown in Tables 2-5).

2. X is demanded by a production (Xak → t) ∈ P such that, t /∈ Var or k > 0

and t is a demanded variable in G.

Example 3

We suppose an admissible goal with only the primitive constraint seq X (s K)

→! R in the associated constraint store S. We note that K is not a demanded

variable by S, because µ = {X 7→ 0, K 7→ ⊥, R 7→ false} ∈ SolFD(S) (clearly,

seqFD µ(X) (s K)µ → µ(R) = false where µ(X) = 0 and (s K)µ = s (µ(K)) =

s (⊥) have no common upper bound w.r.t. the information ordering ⊑, according

to Table 1) but µ(K) = ⊥. However, X and R are both demanded variables by

S (according to the radicality property, any µ ∈ SolFD(S) must satisfy µ(R) total

and then µ(R) 6= ⊥ and consequently µ(X) 6= ⊥). In this situation, if we have

also a production F 1 → X in the produced part of the goal involving a higher-

order variable F , automatically F is also a demanded variable (by a production

but not by the constraint store S). Moreover, we note that it is also possible to

have a variable F demanded by both the constraint store (for example, if we add

the primitive constraint F == ⊕ 2 to S) and a production (for example, F 1 → 3

instead of F 1 → X). In this case, F is demanded twice, supplying more relevant

and precise information for goal solving in the produced part and the constraint

store of the goal.

Finally, we describe the notion of correct answer that we want to compute from

goals and programs in our CFLP (FD)-framework. Since the calculus CLNC(FD)

is semantically based on the Constraint ReWriting Calculus CRWL(FD), that

represents a concrete instance over the constraint domain FD of the constraint

rewriting logic described in (López-Fraguas et al. 2004a), this logic can be also used

as a logical characterization of our program semantics. On the basis of this logic,

16 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

we define our concept of correct answer with respect to an admissible goal G and

a given CFLP (FD)-program as a pair of the form Π θ, where Π ⊆ PCon(FD)

and θ ∈ Sub⊥(Z) is an idempotent substitution such that dom(θ) ∩ var(Π) = ∅,

fulfilling the same semantic conditions given in (López-Fraguas et al. 2004b) w.r.t.

CRWL(D)’s semantics.

The following example shows a correct answer for the admissible goal with only

a strict equality take 3 (generateFD 10) == List and the CFLP (FD)-

program given in Example 2:

{X1, X2, X3 ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]} ✷ {List 7→ [X1, X2, X3]}

Analogously, it is also possible to prove that M ∈ [1..2] and M ∈ [3..4] (both of

them with an empty substitution) are correct answers for the admissible goal with

only a user defined finite domain constraint check list (from M) < 3 .

We will see in the next subsection how to compute all of these answers by means

of the constrained lazy narrowing over FD.

3.2 Constrained Lazy Narrowing over FD

The calculus CLNC(FD) can be obtained as a particular instantiation from the

general CLNC(D) calculus because we have proved that our finite domain con-

straint solver satisfies the requirements given in the general framework. Therefore,

the calculus CLNC(FD) can be described as a set of transformation rules for ad-

missible goals of the form G ⊢⊢ G′, specifying one of the possible ways of performing

one step of goal solving. In this sense, derivations are sequences of ⊢⊢-steps where

successful derivations will eventually end with a solved goal and failing derivations

end with an inconsistent goal �. We have two classes of goal transformation rules:

rules for constrained lazy narrowing by means of productions, and rules for con-

straint solving and failure detection.

The goal transformation rules concerning productions are the same rules given

in (López-Fraguas et al. 2004b) for general productions and are designed with the

aim of modeling the behavior of constrained lazy narrowing with sharing, but now

involving only the primitive functions over finite domains given in Definition 1,

possibly higher-order defined functions and functional variables.

The goal transformation rules concerning constraints can also be used to com-

bine (primitive or used defined) finite domain constraints with the action of our

constraint finite domain solver. As the main novelty, we note that only primitive

constraints are sent to the FD constraint solver. This is because non-primitive

constraints are first translated to primitive ones by replacing the non-primitives

arguments by new fresh variables before executing constraint solving and by regis-

tering new productions between the non-primitive arguments and the new variables

for lazy evaluation. Moreover, the constraint solver must protect all the produced

variables of the goal in order to respect the constrained lazy evaluation and the

admissibility conditions of goals. Additionally, the usual failure rules can also be

used for failure detection in constraint solving and failure detection in the syntactic

unification of the produced part of the goal.

Constraint Functional Logic Programming over Finite Domains 17

Finally, we note that since Theorem 1 proves the correctness of our finite domain

constraint solver w.r.t. the general framework, the main properties of the lazy nar-

rowing calculus CLNC(FD), soundness and completeness w.r.t. the declarative se-

mantics ofCRWL(FD), follows directly from the general results of (López-Fraguas et al. 2004b).

Obviously, these properties qualify CLNC(FD) as a convenient computation mech-

anism for constraint functional logic programming over finite domains and pro-

vide a formal foundation for our CFLP (FD) implementation T OY(FD). From

the viewpoint of efficiency, a computation strategy for CLNC(FD) using defini-

tional trees (Antoy 1992) has been proposed recently in (del Vado-Vı́rseda 2005)

and (Estévez-Mart́in and del Vado-Vı́rseda 2005) for ensuring only needed narrow-

ing steps and extend the efficient properties shown in (Loogen et al. 1993; Antoy et al. 2000;

del Vado-Vı́rseda 2003) guiding and avoiding don’t know choices of constrained pro-

gram rules over FD.

3.3 Example of Goal Resolution by Using CLNC(FD)

This section is closed with a simple example which illustrates the process of goal

solving via the narrowing calculus CLNC(FD) and our finite domain constraint

solver SolveFD. We compute all the answers from the goal check list (from M)

< 3 using the CFLP (FD)-programs given in Example 2. Its resolution corre-

sponds to the following sequence of goal transformation rules in (López-Fraguas et al. 2004b)

where, at each goal transformation step, we underline which subgoal is selected. ⊢⊢R

indicates that the rule R in that work is applied.

check list (from M) < 3 ε ⊢⊢AC

∃X. check list (from M) → X X < 3 ε ⊢⊢DF

At this point, we note that X is a variable demanded by the constraint store and

we have several alternatives due to don’t know choice of the program rule check list:

∃X. check list (from M) → X X < 3 ε ⊢⊢DF(CL1)

∃X. from M → [], 0 → X X < 3 ε ⊢⊢SP{X7→0}

from M → [] 0 < 3 ε ⊢⊢CS{∅} (SolveFD({0 < 3}, ∅) = ∅ ε)

from M → [] ε ⊢⊢DF(F)

[M | from (M + 1)] → [] ε ⊢⊢CF �

The application of the first program rule for check list leads to a failure derivation

without answer. We apply now the second program rule of check list:

∃X. check list (from M) → X X < 3 ε ⊢⊢DF(CL2)

∃X ′, Xs′, X. from M → [X ′|Xs′], 1 → X

domain [X ′] 1 2 X < 3 ε ⊢⊢SP{X7→1}

∃X ′, Xs′. from M → [X ′|Xs′] domain [X ′] 1 2 1 < 3 ε ⊢⊢AC

∃X ′, Xs′. from M → [X ′|Xs′] 1 < 3, domain [X ′] 1 2 ε ⊢⊢DF(F)

∃X ′, Xs′. [M | from (M + 1)] → [X ′|Xs′] 1 < 3, domain [X ′] 1 2 ε ⊢⊢DC

18 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

∃X ′, Xs′. M → X ′, from (M + 1) → Xs′

1 < 3, domain [X ′] 1 2 ε ⊢⊢SP{X′ 7→M}

∃Xs′. from (M + 1) → Xs′ 1 < 3, domain [M] 1 2 ε ⊢⊢EL

1 < 3, domain [M] 1 2 ε ⊢⊢CS(∅) M ∈ [1..2] ε, because

SolveFD({1 < 3, domain [M] 1 2}, ∅) = {M ∈ [1..2]} ε

Therefore, we obtain the first computed answer Π1 θ1 ≡ {M ∈ [1..2]} ε.

Analogously, we can apply the third program rule of check list:

∃X. check list (from M) → X X < 3 ε ⊢⊢∗
DF(CL3)

M ∈ [3..4] ε

and we obtain the second computed answer Π2 θ2 ≡ {M ∈ [3..4]} ε. No more

answers can be computed, because if we apply the fourth program rule of check list

we have again a failing derivation:

∃X. check list (from M) → X X < 3 ε ⊢⊢DF(CL4)

∃X ′, Xs′, X. from M → [X ′|Xs′], 4 → X domain [X ′] 5 7 X < 3 ε

⊢⊢SP{X7→4}

∃X ′, Xs′. from M → [X ′|Xs′] domain [X ′] 5 7 4 < 3 ε ⊢⊢AC

∃X ′, Xs′. from M → [X ′|Xs′] 4 < 3, domain [X ′] 5 7 ε ⊢⊢SF{X′,Xs′} �

because SolveFD({4 < 3, domain [X ′] 5 7}, {X ′, Xs′}) = ∅

A detailed explanation of the computation of these answers using definitional

trees in CLNC(FD) to efficiently guide and avoid don’t know choices of constrained

program rules can be found in (Estévez-Mart́in and del Vado-Vı́rseda 2005). More-

over, we will see in the next section that these are exactly the same answers com-

puted by our CFLP (FD) implementation T OY(FD).

4 T OY(FD)

So far, we have introduced the theoretical framework. Now, in this section we in-

troduce T OY(FD), a CFLP (FD) implementation that extends the T OY system

to deal with FD constraints, highlight its advantages, and show its performance.

4.1 Introducing T OY(FD)

In this section, we describe T OY(FD) from a programming point of view, briefly

describing its concrete syntax and some predefined FD constraints.

4.1.1 An Overview of T OY(FD)

T OY(FD) programs consist of datatypes, type alias, infix operator definitions, and

rules for defining functions. The syntax is mostly borrowed from Haskell with the re-

markable exception that variables and type variables begin with upper-case letters,

whereas constructor symbols and type symbols begin with lower-case. In particular,

functions are curried and the usual conventions about associativity of application

Constraint Functional Logic Programming over Finite Domains 19

hold. As usual in functional programming, types are inferred, checked and, op-

tionally, can be declared in the program. To illustrate the datatype definitions, we

present the following examples using the concrete syntax of T OY :

• data nat = zero | suc nat, to define the naturals, and
• the Boolean predefined type as data bool = false | true;

A T OY(FD) program P is a set of defining rules for the function symbols

in its signature. Defining rules for a function f have the syntactic basic form

f t1 . . . tn = r <== C and, informally, its intended meaning is that a call to

f can be reduced to r whenever the actual parameters match the patterns ti, and

the conditions in C are satisfied. T OY(FD) also allows predicates (defined simi-

larly as in logic programming) where predicates are viewed as a particular kind of

functions, with type p :: τn → bool. As a syntactic facility, we can use clauses as

a shorthand for defining rules whose right-hand side is true. This allows to write

Prolog-like predicate definitions, so that a clause p t1 . . . tn : − C abbreviates

a defining rule of the form p t1 . . . tn = true <== C. With this sugaring in

mind and some obvious changes (like currying elimination) it should be clear that

(pure) CLP (FD) -programs can be straightforwardly translated to CFLP (FD) -

programs.

4.1.2 Simple Programming Examples

Table 6 shows introductory programming examples in T OY that do not make use of

the extension overFD, together with some goals and their outcomes (López-Fraguas and Sánchez-Hernández 1999).

Note that infix constraint operators are allowed in T OY(FD) , such as // to

build the expression X // Y, which is understood as // X Y. The goal (a) in

the table sorts a list, in a pure functional computation. The answer for the goal (b)

involves a syntactic disequality. In goal (c), F is a higher-order logic variable, and

the obtained values for this variable are higher-order patterns (permut, sort,...).

4.1.3 FD Constraints in T OY(FD)

Table 7 shows a small subset of the FD constraints supported by T OY(FD) ,

which are typical instances found in CP systems, and covers adequately the prim-

itive constraints summarized in Table 1. In Table 7, int is a predefined type for

integers, and [τ] is the type ‘list of τ ’. The datatype labelType is a predefined type

which is used to define many search strategies for finite domain variable labeling

(Fernández et al. 2004).

Relational constraint operators are applied to integers and return a Boolean

value. Arithmetical constraint operators are applied to and return integer values

(the set of primitive elements). They can be combined with relational constraint

operators to build (non)linear (dis)equations as constraints. Moreover, reified con-

straints1 can be implemented by equating a Boolean variable to a Boolean con-

straint, for all of the constraints built from the operators in this table and the

1 Reified constraints reflect the entailment of a constraint in a Boolean variable. In general,

20 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

Table 6. T OY Programming Basic Examples

% Non-deterministic choice of one of two values

infixr 40 //

X // Y = X

X // Y = Y

% Non-deterministic insertion of an element into a list

insert X [] = [X]

insert X [Y|Ys] = [X,Y|Ys] // [Y|insert X Ys]

% Non-deterministic generation of list permutations

permut [] = []

permut [X|Xs] = insert X (permut Xs)

% Testing whether a list of numbers is sorted

sorted [] = true

sorted [X] = true

sorted [X,Y|Ys] = sorted [Y|Ys] <== X <= Y

% Lazy ‘generate-and-test’ permutation sort. ’check’ calls ’sorted’ which demands its

% argument, which is lazily, non-deterministically generated by ’permut’. As soon as

% the test fails, ’permut’ stops the generation and tries another alternative

sort Xs = check (permut Xs)

check Xs = Xs <== sorted Xs == true

Goal Answers

(a) sort [4,2,5,1,3] == L L == [1,2,3,4,5]; no more solutions

(b) sort [3,2,1] /= L L /= [1,2,3] ; no more solutions

(c) F [2,1,3] == [1,2,3] F == permut; F == sort; . . .

contraint domain (see Example 4). Due to the functional component, we can apply

this technique to equate Boolean expressions to Boolean constraints, as well. Both

relational and arithmetical constraint operators are syntactically distinguished (by

prefixing them with #) from standard relational operators in order to denote its

different operational behavior. Whereas a standard arithmetical operator demands

its arguments, an arithmetical constraint does not. The membership constraint

domain restricts a list of variables (its first argument) to have values in an integer

interval (defined by its two next integer arguments) whenever its return value is

true, whereas it restricts these variables to have values different from the interval

when its return value is false. The enumeration constraint labeling assigns val-

ues to the variables in its input integer list according to the options specified with

the argument of type list of labelType. In this list, search strategies, such as first-

constraints in reified form allow their fulfillment to be reflected back in an FD variable. For
example, X = (Y +Z > V) constrains X to true as soon as the disequation is known to be true
and to false as soon as the disequation is known to be false. On the other hand, constraining X
to true imposes the disequation, and constraining X to false imposes its negation. Usually, in
CLP (FD) languages, the Boolean values false and true directly correspond to the numerical
values 0 and 1, respectively.

Constraint Functional Logic Programming over Finite Domains 21

Table 7. A Subset of Predefined FD Constraints in T OY(FD)

RELATIONAL CONSTRAINT OPERATORS

(# =), (#\=) :: int → int → bool (Strict Equality)
(#<), (#<=), (#>), (#>=) :: int → int → bool (Less or Equal)

ARITHMETICAL CONSTRAINT OPERATORS

(#+), (#−), (#∗), (#/) :: int → int → int (Operators)
MEMBERSHIP CONSTRAINTS

domain :: [int] → int → int → bool (Finite Domains)
ENUMERATION CONSTRAINTS

labeling :: [labelType] → [int] → bool (Variable Labeling)
COMBINATORIAL CONSTRAINTS

all different :: [int] → bool (Global Constraints)

fail (see Section 4.5.1), as well as optimization options for finding minimum and

maximum values for cost functions can be specified. The combinatorial constraint

all different ensures different values for the elements in its list argument and

is an example of the set of global constraints (for which an efficient propagation

algorithm has been developed) supported by T OY(FD) .

We do neither mention nor explain all the predefined constraints in detail and

encourage the interested reader to visit the link proposed in (Fernández et al. 2004)

for a more detailed explanation. We emphasize that all the pieces of code in this

paper are executable in T OY(FD) and the answers for example goals correspond

to actual executions of the programs.

4.1.4 Simple Examples with FD Constraints

Example 4

Below, we show the resolution at the T OY(FD) command line level of a simple

goal that does not involve labeling.

TOY(FD)> domain [X, Y] 10 20, X #<= Y == L

yes L == true, X in 10..20, Y in 10..20;

yes L == false, X in 11..20, Y in 10..19;

no

Also note that this CFLP (FD) implementation only inform about a limited

outcome, which consists of: (1) substitutions of the form Variable == Pattern,

(2) disequality constraints Variable /= Pattern, (3) disjunctions D of constraints

Variable in IntegerRange (these constraints denote the possible values a vari-

able might take, as in common constraint systems; i.e., they do not state D, but

negated D), and (4) success information: yes and no stand for success and failure,

respectively. Finally, ‘;’ separates the solutions which has been explicitly requested

by the user. Primitive constraints in the finite domain constraint store are not

shown.

22 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

Example 5

We show a T OY(FD) program involving labeling to solve the classical N-queens

problem whose objective is to place N queens on an N × N chessboard so that

there are no threatening queens.

include "misc.toy"

include "cflpfd.toy"

queens :: int -> [labelType] -> [int]

queens N Label = L <== length L == N, domain L 1 N,

constrain_all L, labeling Label L

constrain_all :: [int] -> bool

constrain_all [] = true

constrain_all [X|Xs] = true <== constrain_between X Xs 1,

constrain_all Xs

constrain_between :: int -> [int] -> int -> bool

constrain_between X [] N = true

constrain_between X [Y|Ys] N = true <== no_threat X Y N,

constrain_between X Ys (N+1)

no_threat:: int -> int -> int -> bool

no_threat X Y I = true <== X #\= Y, X #+ I #\= Y, X #- I #\= Y

The intended meaning of the functions should be clear from their names and def-

initions, provided that length L returns the length of the list L. The first two lines

are needed to include predefined functions such as length and domain. An example

of solving at the command prompt, where ff stands for the first-fail enumeration

strategy (see Section 4.5.1), is

TOY(FD)> queens 15 [ff] == L

yes L == [1,3,5,14,11,4,10,7,13,15,2,8,6,9,12]

Example 6

We present a T OY(FD) program using syntactic sugaring for predicate-like func-

tions that solves the well-known CLP (FD) program Send+More=Money.

smm :: int -> int -> int -> int -> int -> int -> int -> int

-> [labelType] -> bool

smm S E N D M O R Y Label :-

domain [S,E,N,D,M,O,R,Y] 0 9, S #> 0, M #> 0,

all_different [S,E,N,D,M,O,R,Y], add S E N D M O R Y,

labeling Label [S,E,N,D,M,O,R,Y]

add :: int -> int -> int -> int -> int -> int -> int -> int -> bool

Constraint Functional Logic Programming over Finite Domains 23

add S E N D M O R Y :- 1000#*S #+ 100#*E #+ 10#*N #+ D

#+ 1000#*M #+ 100#*O #+ 10#*R #+ E

#= 10000#*M #+ 1000#*O #+ 100#*N #+ 10#*E #+ Y

For our simple T OY(FD) programs, some examples of goals and answers which

can be computed by T OY(FD) are shown in Table 8.

Table 8. Examples of Goal Solving

Goal Answers

domain [A,B] 1 (1+2), A#>B, A==2,B==1; A==3,B==1;

all different [A,B], labeling [] [A,B] A==3,B==2; no more solutions

domain [X,Y,Z] 1 10, X in 1..2,Y==1,Z in 8..10;

2 #* X #+ 3 #* Y #+ 2 #< Z no more solutions

domain [X,Y,Z] 1 5, X #> Y, X in 4..5,Y in 3..4,Z in 1..3;

2 #* Y #> Z #+ 4, X #>= Z no more solutions

smm S E N D M O R Y [] == T S==9,E==5,N==6,D==7,M==1,O==0,

R==8,Y==2,T==true;

no more solutions

queens 5 [] == [M,A,E,Y,B], M==1,A==3,E==5,Y==2,B==4,S==9,

smm S E N D M O R Y [] N==6,D==7,O==0,R==8;

no more solutions

4.2 CFLP (FD) vs. CLP (FD)

It is commonly acknowledged that CLP (FD) is a successful declarative approach;

hence, we discuss the advantages of CFLP (FD) , focusing on the T OY(FD) im-

plementation, with respect to CLP (FD). This section explains why the addition

of FP features enhances the CLP setting. When necessary, we illustrate different

features of CFLP (FD) by means of examples. Further programming examples in

pure functional logic programming and CFLP (FD) can be found, respectively, in

(López-Fraguas and Sánchez-Hernández 1999) and (Fernández et al. 2004).

4.2.1 CFLP (FD) ⊃ CLP (FD)

As already pointed out, besides other features, CFLP (FD) provides the main

characteristics of CLP (FD), i.e., FD constraint solving, non-determinism and re-

lational form. Moreover, CFLP (FD) provides a sugaring syntax for LP predicates

24 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

and thus, as already commented, any pure CLP (FD)-program can be straightfor-

wardly translated into a CFLP (FD)-program. In this sense, CLP (FD) may be

considered as a strict subset of CFLP (FD) with respect to problem formulation.

As a direct consequence, our language is able to cope with a wide range of applica-

tions (at least with all those applications that can be formulated with a CLP (FD)

language). We will not insist here on this matter, but prefer to concentrate on the

extra capabilities of CFLP (FD) with respect to CLP (FD).

4.2.2 CFLP (FD) \ CLP (FD)

Due to its functional component, CFLP (FD) adds further expressiveness to

CLP (FD) as allows the declaration of functions and their evaluation in the FP

style. In the following, we enumerate and discuss other features not present (or

unusual) in the CLP (FD) paradigm.

Types. Our language is strongly typed and thus involves all the well-known ad-

vantages of a type checking process, enhancing program development and mainte-

nance. Each FD constraint has associated, like any function, a type declaration,

which means that a wrong use can be straightforwardly detected in the typical type

checking process.

Functional Notation. It is well-known that functional notation reduces the num-

ber of variables with respect to relational notation, and thus, CFLP (FD) increases

the expressiveness of CLP (FD) as it combines relational and functional notation.

For instance, in CLP (FD) the constraint conjunction N=2, X ∈ [1,10-N] cannot

be expressed directly and must be written adding a third component, as N=2, Max

is 10-N, domain([X],1,Max) that uses an extra variable. However, T OY(FD)

expresses that constraint directly as N==2, domain [X] 1 (10-N).

Currying. Again, due to its functional component, T OY(FD) allows curried func-

tions (and thus constraints); for instance, see the application of curried FD con-

straint (3#<)/1 in Example 7 later in this section.

Higher-Order and Polymorphism. In T OY(FD) functions are first-class citi-

zens, which means that a function (and thus an FD constraint) can appear in any

place where data do. As a direct consequence, an FD constraint may appear as

an argument (or even as a result) of another function or constraint. The functions

managing other functions are called higher-order (HO) functions. Also, polymorphic

arguments are allowed in CFLP (FD).

Example 7

A traditional example of a polymorphic HO function is

map :: (A -> B) -> [A] -> [B]

map F [] = []

map F [X|Xs] = [(F X) | (map F Xs)]

Constraint Functional Logic Programming over Finite Domains 25

that receives both a function F and a list as arguments and produces a list resulting

from applying the function to each element in the list. Now, suppose that X and

Y are FD variables ranging in the domain [0..100] (expressed, for instance, via the

constraint domain [X,Y] 0 100). Then, the goal map (3#<) [X,Y] returns the

Boolean list [true,true] resulting from evaluating the list [3#<X,3#<Y], and X

and Y are also restricted to have values in the range [4,100] as the constraints

3#<X and 3#<Y are sent to the constraint solver. Note also the use of the curried

function (3#<).

Laziness. In contrast to logic languages, functional languages support lazy evalu-

ation, where function arguments are evaluated to the required extend (the call-by-

value used in LP vs. the call-by-need used in FP). Strictly speaking, lazy evaluation

may also correspond to the notion of only once evaluated in addition to only required

extent (Peyton-Jones 1987). T OY(FD) increases the power of CLP (FD) by in-

corporating a novel mechanism that combines lazy evaluation and FD constraint

solving, in such a way that only the demanded constraints are sent to the solver.

This is a powerful mechanism that opens new possibilities for FD constraint solving.

For example, in contrast to CLP (FD), it is possible to manage infinite structures.

Example 8

Consider the recursive functions take and generateFD from Example 2. An ea-

ger evaluation of the following goal does not terminate as it tries to completely

evaluate the second argument, yielding to an infinite computation. However, a lazy

evaluation generates just the first 3 elements of the list, as shown below:

TOY(FD)> take 3 (generateFD 10) == List

yes List == [_A, _B, _C] _A, _B, _C in 0..9

In general, lazy narrowing avoids computations which are not demanded, there-

fore saving computation time. Example 9 contains a formulation of the typical magic

series (or sequences) problem (Van Hentenryck 1989). This example highlights the

expressive power of T OY(FD) by solving multiple problem instances that can be

described and solved via lazy evaluation of infinite lists.

Example 9

Let S = (s0, s1, ...,sN−1) be a non-empty finite series of non-negative integers.

The series S is said N-magic if and only if there are si occurrences of i in S, for

all i ∈ {0,...,N-1}. Below, we propose a T OY(FD) program to calculate magic

series where the function generateFD is as defined in Example 2.

lazymagic :: int -> [int]

lazymagic N = L <== take N (generateFD N) == L,

constrain L L 0 Cs, sum L (#=) N,

scalar_product Cs L (#=) N, labeling [ff] L

constrain :: [int] -> [int] -> int -> [int] -> bool

constrain [] A B [] = true

26 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

constrain [X|Xs] L I [J|Js] = true <== I==J, count I L (#=) X,

constrain Xs L (I+1) Js

sum/3, scalar product/4 and count/4 are predefined HO constraints (Fernández et al. 2004),

that accept a relational FD constraint operator with type int → int → bool as

argument (e.g., the constraint #=). sum L C N means that the summation of the

elements in the list L is related through C with the integer N (in the example, the

summation is constrained to be equal to N). scalar product and count stand for

scalar product and element counting under the same parameters as sum.

A goal lazymagic N, for some natural N, returns the N-magic series where the

condition take N (generateFD N) is evaluated lazily as (generateFD N) produces

an infinite list. More interesting is to return a list of different solutions starting from

N. This can be done using a recursive definition to produce the infinite list of magic

series (from N) as shown below.

magicfrom :: int -> [[int]]

magicfrom N = [lazymagic N | magicfrom (N+1)]

Now, it is easy to generate a list of magic series by lazy evaluation. For example,

the following goal generates a 3-element list containing, respectively, the solution

to the problems of 7-magic, 8-magic and 9-magic series.

TOY(FD)> take 3 (magicfrom 7) == L

yes L == [[3, 2, 1, 1, 0, 0, 0],

[4, 2, 1, 0, 1, 0, 0, 0],

[5, 2, 1, 0, 0, 1, 0, 0, 0]]

More expressiveness is shown by mixing curried functions, HO functions and func-

tion composition (another nice feature from the functional component of T OY(FD)).

For example, consider the T OY(FD) code shown below:

from :: int -> [int]

from N = [N | from (N+1)]

(.):: (B -> C) -> (A -> B) -> (A -> C)

(F . G) X = F (G X)

lazyseries :: int -> [[int]]

lazyseries = map lazymagic . from

where (.)/2 defines the composition of functions. Observe that lazyseries curries the

composition (map lazymagic) . from. Then, it is easy to generate the 3-element

list shown above by just typing the goal

TOY(FD)> take 3 (lazyseries 7) == L

This simple example gives an idea of the nice features of CFLP (FD) that com-

bines FD constraint solving, management of infinite lists and lazy evaluation, cur-

ried notation of functions, polymorphism, HO functions (and thus HO constraints),

composition of functions and a number of other characteristics that increase the

potentialities with respect to CLP (FD).

Constraint Functional Logic Programming over Finite Domains 27

4.3 Correctness of the CFLP(FD) Implementation

In this section, we briefly discuss the correctness of our T OY(FD) implementation

with respect to our CFLP (FD) framework.

T OY(FD) integrates, as a host language, the higher-order lazy functional logic

language T OY (López-Fraguas and Sánchez-Hernández 1999) and, as constraint

solver, the efficient FD constraint solver of SICStus Prolog (Carlsson et al. 1997).

Under the condition of considering just an empty set of protected variables, the SIC-

Stus Prolog finite domain solver always satisfies the conditions for constraint solvers

required in Section 2.5. Since the CLNC(FD) calculus is strongly complete (see

(López-Fraguas et al. 2004b)) in the sense that the choice of goal transformation

rules can be a don’t care choice, in practice, we can choose a suitable demand-driven

strategy: our FD constraint solver is only applied at the end of the process of goal

solving, when we have an empty set of protected variables (as we have done in the

example in Section 3.3) or when protected variables are not relevant. This strategy

can be performed in the CLNC(FD) calculus in the line of (del Vado-Vı́rseda 2005)

as well as in T OY(FD) in the line of (Estévez-Mart́in and del Vado-Vı́rseda 2005).

Therefore, we can conclude that our operational semantics with this strategy covers

adequately the T OY(FD) implementation.

Additionally, we have run a number of tests in the implementation and have

compared the derivations produced by the calculus CLNC(FD) to the traces ob-

tained from debugging in T OY(FD), and the results show that these are effectively

identical by following an adequate demand-driven strategy in CLNC(FD). For in-

stance, the CFLP (FD) program shown in Example 2 corresponds almost directly

to a T OY(FD) program, and the solving of the goal check list (from M) < 3

in T OY(FD) is shown below (see (Estévez-Mart́in and del Vado-Vı́rseda 2005) for

more details).

Toy(FD)> check_list (from M) < 3

yes

M in 1..2

Elapsed time: 0 ms.

more solutions (y/n/d) [y]?

yes

M in 3..4

Elapsed time: 0 ms.

more solutions (y/n/d) [y]?

no.

Elapsed time: 0 ms.

Note that the computed answers correspond exactly to those obtained in the goal

solving process described in Section 3.3 via the narrowing calculus CLNC(FD).

28 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

4.4 Notes about the Implementation

In T OY(FD), FD constraints are evaluated internally by using mainly two pred-

icates: hnf(E,H), which specifies that H is one of the possible results of narrowing

the expression E into head normal form, and solve/1, which checks the satisfia-

bility of constraints (of rules and goals) before the evaluation of a given rule. This

predicate is, basically, defined as follows2:

(1) solve((ϕ, ϕ′)) :− solve(ϕ), solve(ϕ′).
(2) solve(L == R) :− hnf(L, L′), hnf(R, R′), equal(L′, R′).
(3) solve(L / = R) :− hnf(L, L′), hnf(R, R′), notequal(L′, R′).
(4) solve(L#♦ R) :− hnf(L, L′), hnf(R, R′), {L′#♦R′}.

where ♦ ∈ {=, \=, <,<=, >,>=}.
(5) solve(C A1 . . . An) :− hnf(A1, A

′

1), . . . , hnf(An, A
′

n), {C(A
′

1, . . . , A
′

n)}.
where C is any constraint returning a Boolean.

The interaction with the constraint solver (i.e., SICStus FD constraint solver in

the current T OY(FD) version) is reflected in the last two clauses: every time an

FD constraint appears, the solver is eventually invoked with a goal {G} where G

is the translation of the FD constraint from T OY(FD) to SICStus Prolog. Head

normal forms are required for constraint arguments in order to allow the solver to

solve the constraint.

4.5 Performance

As far as we know, T OY(FD) was the first FLP system integrating a FD con-

straint system. However, we know about the existence of an implementation of

the FLP language Curry (Hanus 1999) that supports a limited set of FD con-

straints (Hanus M. (editor) 2005). This implementation, called PAKCS, provides

the following constraints:

(1) a set of arithmetical operations {*#,+#,-#,=#,/=#,<#,<=#,>#,>=#},

(2) a membership constraint domain /3,

(3) some global constraints3 and

(4) an enumeration constraint labeling /1 that also provides searching options.

In this section, we compare the performance of T OY(FD) with that of the

Curry2Prolog compiler, which is the most efficient implementation of Curry inside

PAKCS (version 1.7.1 of December 2005).

In addition, for evaluating if T OY(FD) is competitive with respect to existing

CLP (FD) systems, we have also considered four well-known CLP (FD) systems:

1. The version 3.12.1 of April 2005 of the FD constraint solver of SICStus Pro-

log (Carlsson et al. 1997; SICStus Prolog 2005). This solver was included in

order to measure the overhead due to the management of functional logic

2 The code does not correspond exactly to the implementation, which is the result of many
transformations and optimizations.

3 Exactly, those named in this paper, i.e. all different/1, count/4, scalar product/4 and sum/3.

Constraint Functional Logic Programming over Finite Domains 29

expressions, which are compiled to SICStus Prolog in T OY(FD), and, there-

fore, including all the stuff needed to handle the FLP characteristics such as

laziness and higher-order functions.

2. The GNU Prolog system (version 1.2.16) (Diaz and Codognet 2001; GNU Prolog 2005),

which is a free Prolog compiler that includes one of the most efficient finite

domain constraint solver. This solver is based on the concept of indexicals

(Codognet and Diaz 1996) and it has been demonstrated that it has a per-

formance comparable to commercial systems.

3. SWI-Prolog (version 5.4.x) (Wielemaker 2003; SWI-Prolog 2005) that it is an

emergent and very promising Prolog system that provides an integer domain

constraint solver implemented with attributed variables.

4. Ciao Prolog (version 1.10#5 of August 2004) which is a full multi-paradigm

programming environment for developing programs in the Prolog language

and in several other languages which are extensions and modifications of

Prolog in several interesting and useful directions. Ciao Prolog provides a

package, based upon the indexical concept, to write and evaluate constraint

programming expressions over finite domains in a Ciao program.

4.5.1 Labeling

Constraint solving can be implemented with a combination of two processes: con-

straint propagation and labeling (i.e., search) (Dechter 2003). The labeling process

consists of (1) choosing a variable (variable ordering) and (2) assigning to the vari-

able a value which belongs to its domain (value ordering). The variable ordering

and the value ordering used for the labeling can considerably influence the efficiency

of the constraint solving when only one solution to the problem is required. It has

little effect when the search is for all solutions. In this study, we consider two label-

ings, the näıve labeling that chooses the leftmost variable of a list of variables and

then selects the smallest value in its domain, and the first-fail labeling that uses

a principle (Haralick and Elliot 1980) which says that to succeed, try first where

you are the most likely to fail. This principle recommends the choice of the most

constrained variable, which often means (for the finite domain) choosing a variable

with the smallest domain. The näıve labeling assures that both variable and value

ordering are the same for all the systems and hence (although less efficient) is better

for comparing the different systems when only one solution is required.

4.5.2 The Benchmarks

We have used a wide set of benchmarks4 and, for the sake of fairness, whenever it

was possible, we used exactly the same formulation of the problems for all systems

as well as the same FD constraints. The benchmarks used are:

• cars: solve a car sequencing problem with 10 cars (Dincbas et al. 1988). This

benchmark deals with 100 Boolean variables (i.e., finite domain variables

4 All the programs used in the comparison are available at http://www.lcc.uma.es/∼afdez/cflpfd/.

http://www.lcc.uma.es/~afdez/cflpfd/

30 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

ranging over [0,1]), 10 finite domain variables ranging over [1,6], 6 atmost

constraints, 50 element constraints, and 49 linear disequations.

• equation 10: a system of 10 linear equations with 7 variables ranging over

[0,10].

• equation 20: a system of 20 linear equations with 7 variables ranging over

[0,10].

• magic series (N): calculate a series of N numbers such that each of them is

the number of occurrences in the series of its position in the series (Codognet and Diaz 1996).

• optimal Golomb ruler (N): find an ordered set of n distinct non-negative

integers, called marks, a1 < ... < an, such that all the differences ai − aj
(i > j) are distinct and an is minimum (Shearer 1990).

• queens (N): place N queens on a N × N chessboard such that no queen

attacks each other (Van Hentenryck 1989).

• pythagoras: calculate the proportions of a triangle by using the Pythagorean

theorem. This problem involves 3 variables ranging over [1,1000], and 7 dise-

quality (non-linear) equations.

• sendmore: a cryptoarithmethic problem with 8 variables ranging over [0,9],

with one linear equation, 2 disequations and 28 inequality constraints (or

alternatively one all different constraint imposed over the whole set of con-

strained variables). It consists of solving the equation SEND + MORE =

MONEY .

• suudoku: the problem is to fill partially filled 9x9 squares of 81 squares such

that each row and column are permutations of [1,...,9], and each 3x3 square,

where the leftmost column modulo 3 is 0, is a permutation of [1,...,9].

The programs equation 10, equation 20 and sendmore test the efficiency of

the systems to solve linear equation problems. The programs cars and suudoku

check the efficiency of specialized constraints such as the all different constraint.

The pythagoras problem deals with non-linear equations.

The queens and magic series programs are scalable and therefore useful to test

how the systems work for bigger instances of the same problem. Note that both

the number of variables and the number of values for each variable grow linearly

with the parameter N in the examples. That is, given a value N , at least N FD

variables must be declared with domains that range between 0 or 1 and N .

The search for optimal Golomb rulers is an extremely difficult task as it

is a combinatorial problem whose bounds grow geometrically with respect to the

solution size (Shearer 1990). This (also scalable) benchmark allows us to check the

optimization capabilities of the system.

4.5.3 Results

All the benchmarks were performed on the same Linux machine (under Fedora Core

system, 2.69-1667) with an Intel(R) Pentium 4 processor running at 2.40 GHz and

with a RAM memory of 512 Mb. For the sake of brevity, we only provide the results

for first solution search.

Constraint Functional Logic Programming over Finite Domains 31

Table 9. T OY(FD) vs. C(F)LP Systems: Näıve Labeling

Benchmark T OY(FD) PAKCS SICStus SWI GNU Ciao

cars 5 N 5 N 1 N
equation10 20 50 10 590 2 -
equation20 35 60 10 1185 4 -
magic(64) 265 340 (430) 260 N (OGS) 134 N
magic(100) 910 980 (1520) 900 N (OGS) 901 N
magic(150) 2700 3180 (4770) 2560 N (OGS) (SO) 4894 N
magic(200) 5970 6540 (10870) 5690 N (OGS) (SO) 14570 N
magic(300) 18365 22750 (RE) 17780 N (OGS) (SO) 68020 N
pythagoras 50 80 20 940 10 902
queens(8) 10 20 10 110 1 31
queens(16) 180 200 170 38720 11 6873
queens(20) 4030 4200 3930 1064130 216 190435
queens(24) 8330 8400 8120 ?? 460 576625
queens(30) 1141760 1141940 1069750 ?? 67745 ??
sendmore 0 5 0 15 0 14
suudoku 10 20 10 60 1 51

Table 10. Speed-Up of T OY(FD) wrt. other C(F)LP Systems for Näıve Labeling

Benchmark PAKCS SICStus SWI GNU Ciao

cars ∞ 1 00 ∞ 0.20 ∞
equation10 2.50 0.50 29.50 0.10 ∞
equation20 1.71 0.28 33.85 0.11 ∞
magic (64) 1.28 (1.62) 0.98 ∞ 0.50 ∞
magic (100) 1.07 (1.67) 0.98 ∞ 0.99 ∞
magic (150) 1.17 (1.76) 0.98 ∞ (∞) 1.81 ∞
magic (200) 1.09 (1.82) 0.99 ∞ (∞) 2.44 ∞
magic (300) 1.23 (∞) 0.96 ∞ (∞) 3.70 ∞
pythagoras 1.60 0.40 18.80 0.20 18.04
queens (8) 2.00 1.00 11.00 0.10 3.12
queens (16) 1.11 0.94 215.11 0.06 38.18
queens (20) 1.04 0.97 264.05 0.05 42.25
queens (24) 1.00 0.97 (?) 0.05 69.22
queens (30) 1.00 0.93 (?) 0.05 (?)
sendmore ≥ 5.00 ≥ 1.00 ≥ 15.00 ≥ 1.00 ≥ 14.00
suudoku 2.00 1.00 6.00 0.10 5.10

Table 9 shows the results using näıve labeling. The meaning for the columns is

as follows. The first column gives the name of the benchmark used in the com-

parison, and the next six columns show the running (elapsed) time (measured in

milliseconds) to find the first answer of the benchmark for each system.

Table 10 shows the results shown in Table 9 in terms of the speed-up of T OY(FD)

32 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

Table 11. T OY(FD) vs. C(F)LP systems: First-Fail Labeling

Benchmark T OY(FD) PAKCS SICStus SWI GNU Ciao

cars 0 N 0 N 0 N
equation10 20 50 10 N 3 N
equation20 30 55 15 N 4 N
magic (64) 90 150 (320) 80 N 18 N
magic (100) 220 310 (1090) 195 N 53 N
magic (150) 470 690 (3440) 465 N (SO) 52 N
magic (200) 870 1480 (7950) 850 N (SO) 125 N
magic (300) 1835 3610 (RE) 1820 N (SO) 568 N
magic (400) 3420 10050 (RE) 3370 N (SO) 1088 N
magic (500) 5510 13100 (RE) 5250 N (SO) 1830 N
pythagoras 50 80 10 N 10 N
queens (8) 10 15 5 N 1 N
queens (16) 20 50 8 N 2 N
queens (20) 45 75 10 N 3 N
queens (24) 40 80 15 N 4 N
queens (30) 150 190 25 N 6 N
sendmore 0 5 0 N 0 N
suudoku 10 20 10 N 1 N

with respect to the rest of the systems (that is, the result of dividing the time of a

given system by the time of T OY(FD)).

Table 11 shows the results of solving the same benchmarks by using first-fail

labeling. Note that the current versions of SWI Prolog and Ciao Prolog do not

provide first-fail labeling. Also, Table 12 shows the speed-up corresponding to the

results in Table 11 and again displays the performance of T OY(FD) with respect

to the rest of the systems. The meaning for the columns is as in Table 10, but a

last column is added in order to show the speed-up of T OY(FD) using first-fail

labeling with respect to the same system with näıve labeling.

Tables 13 and 14 display corresponding results for optimization. Particularly,

Table 13 shows the (elapsed) time measured in milliseconds to solve the optimization

problem considered in the benchmarking process, whereas Table 14 shows the speed-

up of our system with respect to the rest of the systems.

In these tables, all numbers represent the average of ten runs. The symbol ??

means that we did not receive a solution for the benchmark in a reasonable time

and (?) indicates a non-determined value. The symbolN in the PAKCS, SWI Prolog

and Ciao Prolog columns mean that we could not formulate the benchmark because

of insufficient provision for constraints.

Also the notation OGS in the SWI column indicates that we received an error of

Out Of Global Stack and, consequently, no answer was returned. In the GNU Prolog

column, the notation (SO) numbermeans that, in the first execution of the program

no answer was calculated because a Stack Overflow error was raised, and that, after

increasing significantly the corresponding (cstr and trail) environment variables, in

Constraint Functional Logic Programming over Finite Domains 33

Table 12. Speed-Up of T OY(FD) wrt. other C(F)LP Systems for First-Fail La-

beling

Benchmark PAKCS SICStus SWI GNU Ciao T OY(FD)
(näıve)

cars ∞ ≥ 1.00 ∞ ≥ 1.00 ∞ ≥ 5.00
equation10 2.50 0.50 ∞ 0.15 ∞ 1.00
equation20 1.83 0.50 ∞ 0.13 ∞ 1.16
magic (64) 1.66 (3.55) 0.88 ∞ 0.20 ∞ 2.94
magic (100) 1.40 (4.95) 0.88 ∞ 0.24 ∞ 4.13
magic (150) 1.46 (7.31) 0.98 ∞ (∞) 0.11 ∞ 5.74
magic (200) 1.70 (9.13) 0.97 ∞ (∞) 0.14 ∞ 6.86
magic (300) 1.96 (∞) 0.99 ∞ (∞) 0.30 ∞ 10.00
magic (400) 2.93 (∞) 0.98 ∞ (∞) 0.31 ∞ (?)
magic (500) 2.37 (∞) 0.95 ∞ (∞) 0.33 ∞ (?)
pythagoras 1.60 0.20 ∞ 0.20 ∞ 1.00
queens (8) 1.50 0.50 ∞ 0.10 ∞ 1.00
queens (16) 2.50 0.40 ∞ 0.10 ∞ 9.00
queens (20) 1.66 0.22 ∞ 0.06 ∞ 89.55
queens (24) 2.00 0.37 ∞ 0.10 ∞ 208.25
queens (30) 1.26 0.16 ∞ 0.04 ∞ 7611.73
sendmore ≥ 5.0 ≥ 1.00 ∞ ≥ 1.00 ∞ ≥ 1.00
suudoku 2.00 1.00 ∞ 0.10 ∞ 1.00

Table 13. T OY(FD) vs. C(F)LP Systems: Optimization Benchmarks

Benchmark T OY(FD) PAKCS SICStus SWI GNU Ciao

golomb(8) 360 350 280 N 86 N
golomb(10) 26230 27500 25730 N 8595 N
golomb(12) 5280170 5453220 5208760 N 2162863 N

further executions we obtained an answer in the (average) time indicated by number.

The notation RE in the SICStus Prolog column indicates that we also did not

compute an answer because a Resource Error by Insufficient Memory was returned.

The dash (-) in the Ciao Prolog column means that we received an incorrect answer

for this benchmark5.

As already declared, whenever possible we maintained the same formulation for

all the benchmarks in each system. However, this was not always possible in the

magic series benchmark. In the T OY(FD), PAKCS and SICStus Prolog systems,

this problem was coded by using specific constraints (i.e., count/4, sum/3 and

scalar product/4 - see formulation in Example 9). However, the GNU Prolog system

5 This event seems to be caused by a bug existing in the FD constraint package.

34 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

Table 14. Speed-Up of T OY(FD) wrt. other C(F)LP Systems for Optimization

Benchmarks

Benchmark SICStus PAKCS SWI GNU Ciao

golomb(8) 0.77 0.97 ∞ 0.23 ∞
golomb(10) 0.98 1.04 ∞ 0.32 ∞
golomb(12) 0.98 1.03 ∞ 0.40 ∞

lacks these constraints and, therefore, we used a classical formulation that requires

to use reified constraints (Codognet and Diaz 1996). This classical formulation is

somewhat different in T OY(FD) since reification applies to Boolean types (whilst

in GNU Prolog, as in general in CLP (FD) languages, the Boolean values false and

true correspond to the numerical values 0 and 1 respectively). On the other hand,

it was not possible in PAKCS as reified constraints are not available in this system.

However, since SICStus Prolog allows reified constraints, the two formulations were

considered in this system. Then, in the SICStus column and for the magic series

benchmark row, we show between parentheses the (elapsed solving) time associated

with the reified constraints-based formulation followed by the time associated to

the alternative formulation based on the use of specific constraints.

In the speed-up tables, in those cases in which for a particular system either a

problem could not be expressed (e.g., for PAKCS, SWI Prolog or Ciao Prolog), or

an error was returned avoiding to compute a first answer, or an incorrect answer

was returned, we use the symbol ∞ to express that our system clearly outperforms

that system since our system provides constraint support to formulate a solution

for the benchmark and compute an answer. Also, a result ≥ x.00 indicates that

T OY(FD) computed an answer in 0.0 milliseconds and thus no speed-up can be

calculated; in these cases, x.00 indicates that T OY(FD) is, at least, x times faster

than the compared system.

4.5.4 Analysis of the Results

The third column in Tables 10 and 12, and column 2 in Table 14 show that, in

general, our implementation behaves closely to that of SICStus Prolog in both

constraint satisfaction and constraint optimization (in fact, this is not surprising as

current version of T OY(FD) uses SICStus Prolog FD solver) except for solving

linear equations (in these cases it is between two and four times slower). The reason

seems to be in the transformation process previous to the invocation of the FD

solver. Expressions have to be transformed into head normal form, which means

that their arguments are also transformed into head normal form (see Section 4.4).

Thus, there seems to be an overhead when expressions (such as those for linear

equations) involve a high number of arguments and sub-expressions. This may be

the same reason argued to explain the slow-down of T OY(FD) in the solving of

Constraint Functional Logic Programming over Finite Domains 35

the queens benchmark via first-fail labeling, although no appreciable slow-down was

shown in the solving via näıve labeling.

PAKCS is between one and three times slower than our implementation. This

is quite interesting as the PAKCS implementation is fairly efficient and is also

based on the SICStus Prolog FD library. Perhaps the reason of this slowdown with

respect to T OY(FD) is that PAKCS implements an alternative operational model

that also supports concurrency, and this model introduces some kind of overhead

in the solving of goals.

T OY(FD) also performs reasonably well compared to the other CLP (FD) sys-

tems. It clearly outperforms both Ciao Prolog’s and SWI Prolog’s constraint solvers

which are far, in their current versions, from the efficiency of T OY(FD) in the solv-

ing of constraint satisfaction problems (for fairness, we have to say that these results

cannot be extrapolated to the whole Ciao Prolog and SWI Prolog systems which

are quite efficient; in fact, the integer bounds constraint solver of SWI Prolog seems

to be a rather non-optimized simple integer constraint solver that probably will be

largely improved in future versions. This same argument can be applied to the finite

domain constraint solving package currently existing in the Ciao Prolog system that

seems to be non-mature yet). With respect to GNU Prolog’s constraint solver, our

system behaves acceptably well if we take into account that this solver has shown

an efficiency comparable to commercial systems. Except for the N-queens bench-

mark (that seems to be particularly optimized for GNU solver) our system is in

the same order of efficiency. Moreover, it even behaves better on scalable problems

when the size of the problem increases (e.g., in the magic series problem with näıve

labeling). In this sense, again with the exception of the N-queens problem, as the

instance of the problem increases, the performance of T OY(FD) becomes closer

to that of GNU Prolog (this result is confirmed for both constraint satisfaction and

constraint optimization).

Further, with regard to the comparison to the other CFLP (FD) system, we have

to say that PAKCS provides a small set of global constraints (i.e., exactly four) as

mentioned in Section 4.5, whereas T OY(FD) also gives support to specialized con-

straints for particular problems such as scheduling and placements problems. More-

over, PAKCS does not provide FD constraints that help users to recover statistics

of the constraint solving process (e.g., number of domain prunings, entailments de-

tected by a constraint, backtracks due to inconsistencies, constraint resumptions,

etc) which is very useful in practice, as T OY(FD) does. (For the sake of fairness,

we mention again that PAKCS supports the concurrent evaluation of constraints

which is also very convenient in practice.)

Based on the results shown in this Section, we can assure that T OY(FD) is

the first pure CFLP (FD) system that provides a wide set of FD constraints that

makes it really competitive compared to existing CLP (FD) systems. These results

encourage us to continue working on our approach, and we hope to further improve

the results in a close future by means of introducing further optimizations.

36 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

5 Related Work

In addition to already cited related work, in this section we discuss some more re-

lated work. As already said, most of the work to integrate constraints in the declar-

ative programming paradigm has been developed on LP (Codognet and Diaz 1996;

Carlsson et al. 1997). However, there exist some attempts to integrate constraints in

the functional logic framework. For instance, (Arenas et al. 1996; López-Fraguas and Sánchez-Hernández 1999)

show how to integrate both linear constraints over real numbers and disequality

constraints in the FLP language T OY. Also, (Lux 2001) describes the addition of

linear constraints over real numbers to the FLP language Curry (Hanus 1999). Our

work is guided to the FD constraint, instead of real constraints (although they are

preserved), which allows to use non-linear constraints and adapts better to a range

of FD applications.

With respect to FD, the closer proposal to ours is that described in (Antoy and Hanus 2000)

that indicated how the integration of FD constraints in FLP could be carried out.

As already indicated, PAKCS is an implementation that follows these indications.

T OY(FD) may also be considered from a multiparadigmatic view that means

to combine constraint programming with another paradigms in one setting. In this

context, there are some similarities with the language Oz (Van Roy et al. 2003;

Van Roy and Haridi 2004) as this provides salient features of FP such as composi-

tional syntax and first-class functions, and features of LP and constraint program-

ming including logic variables, constraints, and programmable search mechanisms.

However, Oz is quite different to T OY(FD) because of a number or reasons: (1)

Oz does not provide main features of classical functional languages such as ex-

plicit types or curried notation; (2) functional notation is provided in Oz as a syn-

tactic convenience; (3) The Oz computation mechanism is not based on rewriting

logic as that of T OY(FD) ; (4) Oz supports a class of lazy functions based on a

demand-driven computation but this is not an inherent feature of the language (as

in T OY(FD)) and functions have to be made lazy explicitly (e.g., via the concept

of futures); (5) functions and constraints are not really integrated, that is to say,

they do not have the same category as in T OY(FD) (i.e., constraints are func-

tions) and both coexist in a concurrent setting, and (6) Ozprograms follow a far

less concise program syntax than T OY(FD). In fact, Oz generalizes the CLP and

concurrent constraint programming paradigms to provide a very flexible approach

to constraint programming very different to our proposal for CFLP (FD).

Also, LIFE (Aït-kaci and Podelski 1993) is an experimental language aiming to

integrate logic programming and functional programming but, as Oz, the proposal

is quite different to T OY(FD) as firstly, it is considered in the framework of

object-oriented programming, and, secondly, LIFE enables the computation over

an order-sorted domain of feature trees by allowing the equality (i.e., unification)

and entailment (i.e., matching) constraints over order-sorted feature terms.

There exist other constraint systems that share some aspects with

T OY(FD) although they are very different. One of those systems is FaCiLe

(Barnier and Brisset 2001), a constraint programming library that provides con-

straint solving over integer finite domains, HO functions, type inference, strong

Constraint Functional Logic Programming over Finite Domains 37

typing, and user-defined constraints. However, despite these similarities, FaCiLe is

very different to T OY(FD) as it is built on top of the functional language OCaml

that provides full imperative capabilities and does not have a logical component;

also OCaml is a strict language, as opposed to lazy ones. In fact, as Oz , it allows

the manipulation of potentially infinite data structures by explicit delayed expres-

sions, but laziness is not an inherent characteristic of the resolution mechanism as in

T OY(FD). Moreover, FaCiLe is a library and thus it lacks programming language

features.

Other interesting systems are OPL (Van Hentenryck 1999) and AMPL (Fourer et al. 1993)

that cannot be compared to our work because they are algebraic languages which

therefore are not general programming languages. Moreover, these languages do

not benefit neither from complex terms and patterns nor from non-determinism as

T OY(FD) does.

Finally, we mention here another CFLP scheme proposed in the Phd Thesis

of M. Marin (Marin 2000). This approach introduces CFLP (D, S, L), a family of

languages parameterized by a constraint domain D, a strategy S which defines the

cooperation of several constraint solvers overD, and a constraint lazy narrowing cal-

culus L for solving constraints involving functions defined by user given constrained

rewriting rules. This approach relies on solid work on higher-order lazy narrow-

ing calculi and has been implemented on top of Mathematica (Marin et al. 1999;

Marin et al. 2000). Its main limitation from our viewpoint is the lack of declarative

semantics.

Generally speaking, T OY(FD) is, from its nature, different to all the constraints

systems discussed above since T OY(FD) is a pure FLP language that combines

characteristics of pure LP and pure FP paradigms, and its operational mechanism is

the result of combining the operational methods of logic languages (i.e., unification

and resolution) and functional languages (i.e., rewriting).

6 Conclusions and Future Work

In this paper we have presented CFLP (FD), a functional logic programming ap-

proach to FD constraint solving. CFLP (FD) is not only a declarative alternative

to CLP (FD) but also extends its capabilities with new characteristics unusual or

not existing in CLP (FD) such as functional and curried notation, types, curried

and higher-order functions (e.g., higher-order constraints), constraint composition,

higher-order patterns, lazy evaluation and polymorphism, among others. As a con-

sequence, CFLP (FD) provides better tools, when compared to CLP (FD), for a

productive declarative programming as it implicitly enables more expressivity, due

to the combination of functional, relational and curried notation as well as type

system. Moreover, lazy evaluation allows the use of structures hard to manage in

CLP (FD), such as infinite lists.

A CFLP (FD) language is also presented by describing its syntax, type discipline

and both declarative and operational semantics. FD constraints are integrated as

functions to make them first-class citizens and allow their use in any place where a

38 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

data can (e.g., as arguments of functions). This provides a powerful mechanism to

define higher-order constraints.

We have also reported an implementation of the CFLP (FD) proposal which

connects a FLP language to a FD constraint solver, that provides both lazy com-

putation and FD constraint solving. The FD solver is required to hold termination,

soundness and completeness properties. T OY(FD) is our implementation of the

CFLP (FD) language previously described, that connects the functional logic lan-

guage T OY to the efficient FD constraint solver of SICStus Prolog. The result is

that T OY(FD) is a lazy functional logic system with support for FD constraint

solving.

We have also explained the most important contributions by showing the extra

capabilities of CFLP (FD) with respect to CLP (FD) . This comparison points out

the main benefits of integrating FLP and FD in a declarative language.

Moreover, we have also shown that constraint solving in T OY(FD) is fairly

efficient as, in general, behaves closely to SICStus Prolog, which means that the

wrapping of SICStus Prolog by T OY does not increase significantly the computa-

tion time. In addition, T OY(FD) clearly outperforms existing CLP (FD) systems

such as SWI Prolog and Ciao Prolog and also is competitive with respect to GNU

Prolog, one of the most efficient CLP (FD) systems. Furthermore, T OY(FD) is

around one and three times faster than PAKCS, its closer CFLP (FD) implemen-

tation. Practical applications of T OY(FD) can be found in (Fernández et al. 2002;

Fernández et al. 2003).

Throughout the paper it should have been clear that one inherent advantage of

the CFLP (FD) approach is that it enables to solve all the CLP (FD) applications

as well as other problems closer to the functional setting.

We claim that the integration of FD constraints into a FLP language receive

benefits from both worlds, i.e., taking functions, higher-order patterns, partial ap-

plications, non-determinism, lazy evaluation, logical variables, and types from FLP

and domain variables, constraints, and propagators from the FD constraint pro-

gramming.

In addition, we claim that the idea of interfacing a FLP language and con-

straint solvers can be extended to other kind of interesting constraint systems, such

as non-linear constraints, constraints over sets, or Boolean constraints, to name a

few. Observe that T OY(FD) can be thought of as a constraint solving procedure

integrated into a sophisticated, state-of-the-art execution mechanism for lazy nar-

rowing. Operationally speaking, T OY(FD) compiles CFLP (FD)-programs into

Prolog-programs in a system equipped with a constraint solver. This makes both

lazy evaluation and constraint solving be inherent features of the system.

Acknowledgment

We thank the anonymous reviewers for their useful comments and suggestions that

helped us to improve this paper.

Constraint Functional Logic Programming over Finite Domains 39

References

Aït-kaci, H. and Podelski, A. 1993. Towards a meaning of LIFE. Jour-
nal of Logic Programming 16, 3, 195–234. A preliminary version appeared in
(Maluszynski and Wirsing 1991), pp:255-274.

Antoy, S. 1992. Definitional trees. In 3rd International Conference on Algebraic and
Logic Programming (ALP’92). Number 632 in LNCS. Springer-Verlag, Volterra, Italy,
143–157.

Antoy, S., Echahed, R., and Hanus, M. 2000. A needed narrowing strategy. J.
ACM 47, 4, 776–822.

Antoy, S. and Hanus, M. 2000. Compiling multi-paradigm declarative programs into
prolog. In 3rd International Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), H. Kirchner and C. Ringeissen, Eds. Number 1794 in LNCS. Springer,
Nancy, France, 171–185.

Apt, K. 2003. Principles of constraint programming. Cambridge University Press.

Arenas, P., Hortalá, M., López-Fraguas, F., and Ullán, E. 1996. Real constraints
within a functional logic language. In Joint Conference on Declarative Programming
(APPIA-GULP-PRODE’96), P. Lucio, M. Martelli, and M. Navarro, Eds. Donostia-San
Sebastian, Spain.

Barnier, N. and Brisset, P. 2001. FaCiLe: a functional constraint library. ALP Newslet-
ter 14, 2 (May).

Caballero, R., López-Fraguas, F., and Sánchez, J. 1997. User’s manual for T OY.
Technical report SIP-5797, Universidad Complutense de Madrid, Dpto. Lenguajes, Sis-
temas Informáticos y Programación.

Carlsson, M., Ottosson, G., and Carlson, B. 1997. An open-ended finite domain
constraint solver. In 9th International Symposium on Programming Languages: Imple-
mentations, Logics and Programs (PLILP’97), U. Montanari and F. Rossi, Eds. Number
1292 in LNCS. Springer-Verlag, Southampton, UK, 191–206.

Codognet, P. and Diaz, D. 1996. Compiling constraints in clp(FD). The Journal of
Logic Programming 27, 3, 185–226.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In
Ninth ACM Symposium on Principles of Programming Languages (POPL’82). ACM
Press, Albuquerque, New Mexico, 207–212.

Darlington, J., Guo, Y., and Pull, H. 1992. A new perspective on the integration
of functional and logic languages. In International Conference on Fifth Generation
Computer Systems (FGCS’92), I. Staff, Ed. IOS Press, Tokyo, Japan, 682–693.

Dechter, R. 2003. Constraint processing. Morgan Kaufmann.

del Vado-Vı́rseda, R. 2003. A demand-driven narrowing calculus with overlapping defi-
nitional trees. In ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP’03). ACM Press, Uppsala, Sweden, 213–227.

del Vado-Vı́rseda, R. 2005. Declarative constraint programming with definitional trees.
In 5th International Workshop on Frontiers of Combining Systems (FroCoS’05). Lecture
Notes in Computer Science, vol. 3717. Springer, Vienna, Austria, 184–199.

Diaz, D. and Codognet, P. 2001. Design and implementation of the GNU prolog system.
Journal of Functional and Logic Programming 2001, 6 (October).

Dincbas, M., Simonis, H., and Van Hentenryck, P. 1988. Solving the car-sequencing
problem in constraint logic programming. In 8th European Conference on Artificial
Intelligence (ECAI’88), Y. Kodratoff, Ed. Pitmann Publishing, London, Munich, Ger-
many, 290–295.

Estévez-Mart́in, S. and del Vado-Vı́rseda, R. 2005. Designing an efficient computa-
tion strategy in cflp(FD) using definitional trees. In 2005 ACM SIGPLAN workshop

40 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

on Curry and functional logic programming (WCFLP ’05). ACM Press, New York, NY,
USA, 23–31.

Fernández, A. J., Hortalá-González, M. T., and Sáenz-Pérez, F. 2002. A con-
straint functional logic language for solving combinatorial problems. In Research and
Development in Intelligent Systems XIX, A. P. M. Bramer and F. Coenen, Eds. BCS
Conference Series. Springer-Verlag, Cambridge, England, 337–350.

Fernández, A. J., Hortalá-González, M. T., and Sáenz-Pérez, F. 2003. Solving
combinatorial problems with a constraint functional logic language. In 5th International
Symposium on Practical Aspects of Declarative Languages (PADL’2003), P. Wadler and
V. Dahl, Eds. Number 2562 in LNCS. Springer-Verlag, New Orleans, Louisiana, USA,
320–338.

Fernández, A. J., Hortalá-González, T., and Sáenz-Pérez, F. 2004. TOY(FD):
System, Sources and user manual. Available at http://toy.sourceforge.net/.

Fernández, M. 1992. Narrowing based procedures for equational disunification. Appli-
cable Algebra in Engineering Communication and Computing 3, 1–26.

Fourer, R., Gay, D., and Kernighan, B. 1993. AMPL: A modeling language for
mathematical programming. Scientific Press.

Frühwirth, T. and Abdennadher, S. 2003. Essentials of constraint programming.
Cognitive Technologies Series. Springer.

GNU Prolog. 2005. http://pauillac.inria.fr/∼diaz/gnu-prolog/.

González-Moreno, J., Hortalá-González, M., López-Fraguas, F., and
Rodŕıguez-Artalejo, M. 99a. An approach to declarative programming based
on a rewriting logic. The Journal of Logic Programming 40, 1 (July), 47–87.

González-Moreno, J., Hortalá-González, M., and Rodŕıguez-Artalejo, M. 99b.
Polymorphic types in functional logic programming. In 4th International Sympo-
sium on Functional and Logic Programming (FLOPS’99), A. Middeldorp and T. Sato,
Eds. Number 1722 in LNCS. Springer-Verlag, Tsukuba, Japan, 1–20. Also published
in a special issue of the Journal of Functional and Logic Programming, 2001. See
http://danae.uni-muenster.de/lehre/kuchen/JFLP.

Gunter, C. and Scott, D. 1990. Semantic domains. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics, J. van Leeuwen, Ed. Elsevier
and The MIT Press, 633–674.

Hanus, M. 1994. The integration of functions into logic programming: a survey. The
Journal of Logic Programming 19-20, 583–628. Special issue: Ten Years of Logic Pro-
gramming.

Hanus, M. 1999. Curry: a truly integrated functional logic language.
http://www.informatik.uni-kiel.de/∼curry/.

Hanus M. (editor). 2005. PAKCS 1.7.1, User manual (version of De-
cember 2005). The Portland Aachen Kiel Curry System. Available from
http://www.informatik.uni-kiel.de/∼pakcs/.

Haralick, R. and Elliot, G. 1980. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence 14, 263–313.

Henz, M. and Müller, T. 2000. An overview of finite domain constraint programming.
In 5th Conference of the Association of Asia-Pacific Operational Research Societies.
Singapore.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: a survey. The Journal
of Logic Programming 19-20, 503–581.

Loogen, R., López-Fraguas, F. J., and Rodŕıguez-Artalejo, M. 1993. A demand
driven computation strategy for lazy narrowing. In 5th International Symposium on Pro-
gramming Language Implementation and Logic Programming PLILP’93, M. Bruynooghe

Constraint Functional Logic Programming over Finite Domains 41

and J. Penjam, Eds. Lecture Notes in Computer Science, vol. 714. Springer, Tallinn,
Estonia, 184–200.

López-Fraguas, F. 1992. A general scheme for constraint functional logic program-
ming. In 3rd International Conference on Algebraic and Logic Programming (ALP’92),
H. Kirchner and G. Levi, Eds. Number 632 in LNCS. Springer-Verlag, Volterra, Italy,
213–227.

López-Fraguas, F., Rodŕiguez-Artalejo, M., and del Vado-Vírseda, R. 2004a.
Constraint functional logic programming revisited. In 5th International Workshop on
Rewriting Logic and its Applications (WRLA’2004). Barcelona, Spain. An extended
and revised version has also been published in Elsevier ENTCS series 117:5–50, 2005.

López-Fraguas, F., Rodŕiguez-Artalejo, M., and del Vado-Vírseda, R. 2004b.
A lazy narrowing calculus for declarative constraint programming. In 6th ACM-
SIGPLAN International Conference on Principles and Practice of Declarative Program-
ming (PPDP’04). ACM Press, Verona, Italy, 43–54.

López-Fraguas, F. and Sánchez-Hernández, J. 1999. T OY : A multiparadigm declar-
ative system. In 10th International Conference on Rewriting Techniques and Applica-
tions, P. Narendran and M. Rusinowitch, Eds. Number 1631 in LNCS. Springer-Verlag,
Trento, Italy, 244–247.

Lux, W. 2001. Adding linear constraints over real numbers to Curry. In 5th Interna-
tional Symposium on Functional and Logic Programming (FLOPS’2001), A. Middel-
dorp, H. Kuchen, and K. Ueda, Eds. Number 2024 in LNCS. Springer-Verlag, Tokyo,
Japan, 185–200.

Maluszynski, J. and Wirsing, M., Eds. 1991. Programming Language Implementation
and Logic Programming, 3rd International Symposium, PLILP’91, Passau, Germany,
August 26-28, 1991, Proceedings. Lecture Notes in Computer Science, vol. 528. Springer.

Marin, M. 2000. Functional logic programming with distributed constraint solving. Ph.D.
thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler Univer-
sity, Linz.

Marin, M., Ida, T., and Schreiner, W. 1999. CFLP: a mathematica implementation of
a distributed constraint solving system. In 3rd International Mathematical Symposium
(IMS’99). Computational Mechanics Publications. WIT Press, Hagenberg, Austria, 23–
25.

Marin, M., Ida, T., and Suzuki, T. 2000. Cooperative constraint functional logic
programming. In International Symposium on Principles of Software Evolution
(IPSE’2000), T. Katayama, T. Tamai, and N. Yonezaki, Eds. IEEE, Kanazawa, Japan,
223–230.

Marriot, K. and Stuckey, P. J. 1998. Programming with constraints. The MIT Press,
Cambridge, Massachusetts.

Middeldorp, A. and Okui, S. 1998. Deterministic lazy narrowing calculus. Journal of
Symbolic Computation 25, 6, 733–757.

Middeldorp, A., Suzuki, T., and Hamada, M. 2002. Complete selection functions for
a lazy conditional narrowing calculus. Journal of Functional and Logic Programming 3.

Peyton-Jones, S. 1987. The implementation of functional programming languages. Pren-
tice Hall, Englewood Cliffs, N.J.

Shearer, J. 1990. Some new optimum golomb rulers. IEEE Transactions on Information
Theory 36, 183–184.

SICStus Prolog. 2005. http://www.sics.se/isl/sicstus.

SWI-Prolog. 2005. http://www.swi-prolog.org/.

Tsang, E. 1993. Foundations of constraint satisfaction. Academic Press, London and
San Diego.

42 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

Van Hentenryck, P. 1989. Constraint satisfaction in logic programming. The MIT
Press, Cambridge, MA.

Van Hentenryck, P. 1999. The OPL optimization programming language. The MIT
Press, Cambridge, MA.

Van Roy, P., Brand, P., Duchier, D., Haridi, S., Henz, M., and Schulte, C. 2003.
Logic programming in the context of multiparadigm programming: the Oz experience.
Theory and Practice of Logic Programming 3, 6 (November), 717–763.

Van Roy, P. and Haridi, S. 2004. Concepts, techniques and models of computer pro-
gramming. The MIT Press, Cambridge, MA.

Wielemaker, J. 2003. An overview of the SWI-Prolog programming environment. In
Proceedings of the 13th International Workshop on Logic Programming Environments,
F. Mesnard and A. Serebenik, Eds. Katholieke Universiteit Leuven, Heverlee, Belgium,
1–16. CW 371.

Appendix A [Proof of Theorem 1] in Page 12

The proof of theorem 1 can be done distinguishing several cases from the declarative

semantics of each primitive function symbol given in Table 1 and the requirements

of each constraint solver rule or failure rule in Tables 2-5:

Rules of Table 2

We examine for example the first rule in Table 2: seq t s →! R, S σ ⊢⊢χ

(t == s, Sθ1 σθ1) ∨ (t \ = s, Sθ2 σθ2) with R /∈ χ, θ1 = {R 7→ true}

and θ2 = {R 7→ false} (the rest of rules in Table 2 are analogous). We prove that

SolFD(seq t s →! R, S σ) = SolFD(t == s, Sθ1 σθ1) ∪ SolFD(t \ = s, Sθ2
σθ2):

⊆) Let η ∈ SolFD(seq t s →! R, S σ). By definition of SolFD we have η ∈

SolFD(seq t s →! R) and η ∈ SolFD(S σ). Since η ∈ SolFD(seq t s →! R) we

obtain seqFD tη sη → η(R) with η(R) total. According to Table 1, η(R) must be

only true or false. We distinguish two cases:

• If η(R) = true then trivially η ∈ SolFD(seq t s →! true) or equivalently

η ∈ SolFD(t == s). Moreover, since η(R) = true = (true)η we have η ∈

Sol(θ1) and then θ1η = η (because η(θ1(R)) = (true)η = η(R) and η(θ1(X))

= η(X) for all X 6= R). Then, since η ∈ SolFD(S σ) we also have θ1η ∈

SolFD(S σ), or equivalently η ∈ SolFD(Sθ1 σθ1). We can conclude η ∈

SolFD(t == s, Sθ1 σθ1).

• If η(R) = false, using an analogous reasoning, we can also conclude η ∈

SolFD(t \ = s, Sθ2 σθ2).

Therefore, η ∈ SolFD(t == s, Sθ1 σθ1) ∪ SolFD(t \ = s, Sθ2 σθ2).

⊇) Let η ∈ SolFD(t == s, Sθ1 σθ1) ∪ SolFD(t \ = s, Sθ2 σθ2). We dis-

tinguish again two cases:

• If η ∈ SolFD(t == s, Sθ1 σθ1) then, by definition of SolFD we have η ∈

Constraint Functional Logic Programming over Finite Domains 43

SolFD(t == s) and η ∈ SolFD(Sθ1 σθ1) (or equivalently, η ∈ SolFD(Sθ1)

and η ∈ SolFD(σθ1)). Since η ∈ SolFD(σθ1) and R /∈ dom(σ) (by initial

hypothesis, seq t s →! R, S σ satisfy the requirements of Definition 2)

we deduce η ∈ Sol(θ1) and then η(R) = (true)η = true. But then, η ∈

SolFD(seq t s →! R) because seqFD tη sη → η(R) = true and we have η

∈ SolFD(t == s). Moreover, θ1η = η (because η(θ1(R)) = (true)η = η(R)

and η(θ1(X)) = η(X) for all X 6= R) and we can also obtain η ∈ SolFD(S

σ) because η ∈ SolFD(Sθ1 σθ1), or equivalently, θ1η ∈ SolFD(S σ).

Therefore, η ∈ SolFD(seq t s →! R, S σ).

• If η ∈ SolFD(t \ = s, Sθ2 σθ2), using an analogous reasoning, we can also

conclude η ∈ SolFD(seq t s →! R, S σ).

The remaining conditions of the theorem for this rule trivially hold because of the

initial hypothesis seq t s →! R, S σ satisfies the requirements of Definition 2,

and because of the conditions of the rule R /∈ χ.

Rules of Table 3

We examine the first rule in Table 3: u == u, S σ ⊢⊢χ S σ with u ∈ Z.

In this case, trivially SolFD(u == u, S σ) = SolFD(u == u) ∩ SolFD(S σ)

= V al(FD) ∩ SolFD(S σ) = SolFD(S σ). The remaining conditions of the

theorem trivially holds by initial hypothesis. We examine now the second rule in

Table 3: X == t, S σ ⊢⊢χ t == t, Sθ σθ with X /∈ χ ∪ var(t), var(t) ∩ χ =

∅ and θ = {X 7→ t}. We prove that SolFD(X == t, S σ) = SolFD(t == t, Sθ

σθ):

⊆) Let η ∈ SolFD(X == t, S σ). By definition of SolFD we have η ∈ SolFD(X ==

t) and η ∈ SolFD(S σ). Since η ∈ SolFD(X == t) we obtain seqFD η(X) tη →

true. According to Table 1 we obtain η(X) = tη with tη total and then η ∈ Sol(θ).

In this situation, trivially η ∈ SolFD(t == t). Moreover, since η ∈ Sol(θ), we de-

duce θη = η (because η(θ(X)) = tη = η(X) and η(θ(Y)) = η(Y) for all Y 6= X).

Then, since η ∈ SolFD(S σ), we also have θη ∈ SolFD(S σ), or equivalently

η ∈ SolFD(Sθ σθ). Therefore, we can conclude η ∈ SolFD(t == t, Sθ σθ).

⊇) Let η ∈ SolFD(t == t, Sθ σθ). By definition of SolFD we have η ∈

SolFD(t == t) and η ∈ SolFD(Sθ σθ) (or equivalently, η ∈ SolFD(Sθ) and

η ∈ SolFD(σθ)). Since η ∈ SolFD(σθ) and X /∈ dom(σ) (by initial hypothesis,

X == t, S σ satisfies the requirements of Definition 2) we deduce η ∈ Sol(θ)

and then η(X) = tη. But then, η ∈ SolFD(X == t) because η ∈ SolFD(t == t) and

seqFD η(X) tη → true with η(X) = tη total. Moreover, θη = η (because η(θ(X))

= tη = η(X) and η(θ(Y)) = η(Y) for all Y 6= X) and we can obtain η ∈ SolFD(S

σ) because η ∈ SolFD(Sθ σθ), or equivalently, θη ∈ SolFD(S σ). Therefore

η ∈ SolFD(X == t, S σ).

The remaining conditions of the theorem for this rule trivially hold because of

44 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

the initial hypothesis X == t, S σ satisfies the requirements of Definition 2,

and because of the conditions of the rule X /∈ χ ∪ var(t) and var(t) ∩ χ = ∅.

Finally, we examine the main rule in Table 3 for strict disequality (the rest of rules

in Table 3 are analogous or more simples): X \ = h tn, S σ ⊢⊢χ (
∨

i(Sθi σθi))

∨ (
∨n

k=1(Uk \ = tkθ, Sθ σθ)) with X /∈ χ, var(h tn) ∩ χ 6= ∅, θi = {X 7→ hi

Y mi
} with hi 6= h, and θ = {X 7→ h Un} with Y mi

, Un new fresh variables. We

prove that SolFD(X \ = h tn, S σ) = (
⋃

i SolFD(∃Y mi
. (Sθi σθi))) ∪ (

⋃n

k=1 SolFD(∃Un. (Uk \ = tkθ, Sθ σθ))):

⊆) Let η ∈ SolFD(X \ = h tn, S σ). By definition of SolFD we have η ∈

SolFD(X \ = h tn) and η ∈ SolFD(S σ). Since η ∈ SolFD(X \ = h tn) we

obtain seqFD η(X) (h tn)η → false. According to Table 1, η(X) and (h tn)η =

h tnη have no common upper bound w.r.t. the information ordering ⊑, and we can

distinguish two cases:

• η(X) = hi smi
with hi 6= h. Since Y mi

are new variables, we can define η′

=\Y mi

η such that η′(Yk) = sk for all 1 ≤ k ≤ mi and η′(Z) = η(Z) for all

Z /∈ Y mi
. Clearly, η′(X) = η(X) = hi smi

= hi η′(Ymi
) = (hi Y mi

)η′ and

then η′ ∈ Sol(θi). Moreover, θiη
′ =\Y mi

η because η′(θi(X)) = (hi Y mi
)η′

= hi η′(Ymi
) = hi smi

= η(X) and η′(θi(Z)) = η′(Z) = η(Z) for all Z /∈

{X} ∪ Y mi
. Since η ∈ SolFD(S σ) and Y mi

are new variables in S σ,

we also have θiη
′ ∈ SolFD(S σ), or equivalently, η′ ∈ SolFD(Sθi σθi).

Finally, since there exists η′ =\Y mi

η with Y mi
new variables such that η′ ∈

SolFD(Sθi σθi) we can deduce η ∈ SolFD(∃Y mi
. (Sθi σθi)) for any i

such that hi 6= h.
• η(X) = h sn with a pattern sk (1 ≤ k ≤ n) such that sk and tkη have no

common upper bound w.r.t. the information ordering ⊑ (i.e., seqFD sk tkη

→ false). Since Un are new variables, we can define η′ =\Un
η such that

η′(Uk) = sk for all 1 ≤ k ≤ n and η′(Y) = η(Y) for all Y /∈ Un. Clearly,

η′(X) = η(X) = h sn = h η′(Un) = (h Un)η
′ and then η′ ∈ Sol(θ). Moreover,

θη′ =\Un
η because η′(θ(X)) = (h Un)η

′ = h η′(Un) = h sn = η(X) and

η′(θ(Y)) = η′(Y) = η(Y) for all Y /∈ {X} ∪ Un. Therefore, there exists 1 ≤

k ≤ n such that seqFD η′(Uk) tkθη
′ → false because η′(Uk) = sk and tkθη

′

= tkη (since Un are new variables, var(tk) ∩ Un = ∅) and we can deduce η′

∈ SolFD(Uk \ = tkθ). On the other hand, η ∈ SolFD(S σ), or equivalently

θη′ ∈ SolFD(S σ), because Un are again new variables in S σ. We can

also conclude η′ ∈ SolFD(Sθ σθ). Finally, since there exists η′ =\Un
η with

Un new variables such that η′ ∈ SolFD(Uk \ = tkθ, Sθ σθ), we obtain η ∈

SolFD(∃Un. (Uk \ = tkθ, Sθ σθ)) (1 ≤ k ≤ n).

⊇) Let η ∈ (
⋃

i SolFD(∃Y mi
. (Sθi σθi))) ∪ (

⋃n

k=1 SolFD(∃Un. (Uk \ = tkθ,

Sθ σθ))). We distinguish again two cases:

• η ∈ SolFD(∃Y mi
. (Sθi σθi)) for any i such that hi 6= h. By definition of

SolFD, there exists η′ =\Y mi

η such that η′ ∈ SolFD(Sθi σθi) (or equiva-

lently, η′ ∈ SolFD(Sθi) and η′ ∈ SolFD(σθi)). Since η′ ∈ SolFD(σθi) and X

Constraint Functional Logic Programming over Finite Domains 45

/∈ dom(σ) (by initial hypothesis, X \ = h tn, S σ satisfies the requirements

of Definition 2), we deduce η′ ∈ Sol(θi) and then η′(X) = (hi Y mi
)η′ =

hi η′(Ymi
). Moreover, since η′ =\Y mi

η, we also deduce θiη
′ =\Y mi

η because

η′(θi(X)) = (hi Y mi
)η′ = η′(X) = η(X) and η′(θi(Z)) = η′(Z) = η(Z) for

all Z /∈ {X} ∪ Y mi
. In this situation, seqFD η′(X) (h tn)η

′ → false, because

η′(X) = (hi Y mi
)η′ = hi η′(Ymi

) and (h tn)η
′ = h tnη′ with hi 6= h have

no common upper bound w.r.t. the information ordering ⊑. Therefore, η′ ∈

SolFD(X \ = h tn), and we also have η ∈ SolFD(X \ = h tn) because Y mi

are new variables in X \ = h tn and η′ =\Y mi

η. On the other hand, since

η′ ∈ SolFD(Sθi σθi), or equivalently θiη
′ ∈ SolFD(S σ), and Y mi

are

new variables in S σ, we obtain η ∈ SolFD(S σ) because θiη
′ =\Y mi

η.

Therefore, η ∈ SolFD(X \ = h tn, S σ).
• η ∈ SolFD(∃Un. (Uk \ = tkθ, Sθ σθ)) (1 ≤ k ≤ n). By definition of SolFD,

there exists η′ =\Un
η such that η′ ∈ SolFD(Uk \ = tkθ, Sθ σθ) (1 ≤ k

≤ n). By definition of SolFD again we have η′ ∈ SolFD(Uk \ = tkθ) and η′

∈ SolFD(Sθ σθ) (or equivalently, η′ ∈ SolFD(Sθ) and η′ ∈ SolFD(σθ)).

Since η′ ∈ SolFD(σθ) and X /∈ dom(σ) (by initial hypothesis, X \ = h tn,

S σ satisfies the requirements of Definition 2) we deduce η′ ∈ Sol(θ) and

then η′(X) = (h Un)η
′ = h η′(Un). Moreover, since η′ =\Un

η, we also deduce

θη′ =\Un
η because η′(θ(X)) = (h Un)η

′ = η′(X) = η(X) and η′(θ(Z)) =

η′(Z) = η(Z) for all Z /∈ {X} ∪ Un. Since η′ ∈ SolFD(Uk \ = tkθ), and

according to Table 1, we have seqFD η′(Uk) tkθη
′ → false where η′(Uk)

and tkθη
′ = tkη (because var(tk) ∩ Un = ∅) have no common upper bound

w.r.t. the information ordering ⊑. In this situation, we also have seqFD η(X)

(h tn)η → false because η(X) = (h Un)η
′ = h η′(Un), (h tn)η = h tnη, and

clearly η(X) and (h tn)η have no common upper bound w.r.t. the information

ordering ⊑ (there exists 1 ≤ k ≤ n such that η′(Uk) and tkη have no common

upper bound w.r.t. the information ordering ⊑). Therefore, η ∈ SolFD(X \ =

h tn). On the other hand, since η′ ∈ SolFD(Sθ σθ), or equivalently θη′ ∈

SolFD(S σ), and Un are new variables in S σ, we obtain η ∈ SolFD(S

σ) because θη′ =\Un
η. Therefore, η ∈ SolFD(X \ = h tn, S σ).

The remaining conditions of the theorem for this rule trivially hold because of the

initial hypothesis X \ = h tn, S σ satisfies the requirements of Definition 2, and

because of the conditions of the rule X /∈ χ, var(h tn) ∩ χ 6= ∅, and Y mi
, Un are

new fresh variables.

Rules of Table 4

We examine the first rule in Table 4: u ≤ u′, S σ ⊢⊢χ S σ with u, u′ ∈ Z

and u ≤Z u′. In this case, trivially SolFD(u ≤ u′, S σ) = SolFD(u ≤ u′) ∩

SolFD(S σ) = V al(FD) ∩ SolFD(S σ) = SolFD(S σ). The remaining

conditions of the theorem trivially hold by the initial hypothesis. We examine now

the main rule in Table 4 (the rest of rules are analogous or more simples): a ⊗ b =

X, S σ ⊢⊢χ Sθ σθ with X /∈ χ, a, b ∈ Z and θ = {X 7→ a ⊗Z b}. We prove

46 A.J. Fernández,T. Hortalá-González,F. Sáenz-Pérez and R. del Vado-Vı́rseda

that SolFD(a ⊗ b = X, S σ) = SolFD(Sθ σθ):

⊆) Let η ∈ SolFD(a ⊗ b = X, S σ). By definition of SolFD we have η ∈

SolFD(a ⊗ b = X) and η ∈ SolFD(S σ). Since η ∈ SolFD(a ⊗ b = X) we obtain

⊗FD a b → a ⊗Z b, seqFD (a ⊗Z b) η(X) → true where a, b, a ⊗Z b ∈ Z. According

to Table 1, we obtain η(X) = a ⊗Z b = (a ⊗Z b)η and then η ∈ Sol(θ). Moreover,

we deduce θη = η because η(θ(X)) = (a ⊗Z b)η = a ⊗Z b = η(X) and η(θ(Y)) =

η(Y) for all Y 6= X . Since η ∈ SolFD(S σ) we also have θη ∈ SolFD(S σ), or

equivalently, η ∈ SolFD(Sθ σθ).

⊇) Let η ∈ SolFD(Sθ σθ). By definition of SolFD we have η ∈ SolFD(Sθ)

and η ∈ SolFD(σθ). Since by initial hypothesis a ⊗ b = X, S σ satisfies the

requirements of Definition 2, we have X /∈ dom(σ) and then η ∈ Sol(θ) (i.e., η(X)

= (a ⊗Z b)η = (a ⊗Z b) ∈ Z, where a, b ∈ Z). But then ⊗FD a b → a ⊗Z b, seqFD

(a ⊗Z b) η(X) → true, and therefore η ∈ SolFD(a ⊗ b = X). Moreover, θη = η

because η(θ(X)) = (a ⊗Z b)η = a ⊗Z b = η(X) and η(θ(Y)) = η(Y) for all Y 6=

X . Since η ∈ SolFD(Sθ σθ), or equivalently θη ∈ SolFD(S σ), we obtain η ∈

SolFD(S σ). Therefore, η ∈ SolFD(a ⊗ b = X, S σ).

The remaining conditions of the theorem for this rule trivially hold because of

the initial hypothesis a ⊗ b = X, S σ satisfies the requirements of Definition 2,

and because of the conditions of the rule X /∈ χ.

Rules of Table 5

We examine the first rule in Table 5: u ∈ [u1, . . . , un], S σ ⊢⊢χ S σ with

u, ui ∈ Z ∪ Var and ∃i ∈ {1, . . . , n}. ui ≡ u. In this situation, and according to

Table 1, we have SolFD(u ∈ [u1, . . . , un]) = V al(FD): η ∈ SolFD(u ∈ [u1, . . . ,

un]) implies that domainFD uη [u1η, . . . , unη] → true where ∀i ∈ {1, . . . , n−1}.

uiη ≤Z ui+1η and ∃i ∈ {1, . . . , n}. uη =Z uiη. It holds for all η ∈ V al(FD) be-

cause of the initial hypothesis u ∈ [u1, . . . , un], S σ satisfies the requirements of

Definition 2 (i.e., [u1, . . . , un] represents an increasing integer list), and because of

the conditions of this rule (i.e., ∃i ∈ {1, . . . , n}. ui ≡ u). Then, trivially SolFD(u

∈ [u1, . . . , un], S σ) = SolFD(u ∈ [u1, . . . , un]) ∩ SolFD(S σ) = V al(FD) ∩

SolFD(S σ) = SolFD(S σ). The remaining conditions of the theorem for this

rule trivially hold by the initial hypothesis. The second rule in Table 5 is completely

analogous: SolFD(u /∈ [u1, . . . , un]) = V al(FD) because u, ui ∈ Z, ∀i ∈ {1, . . . , n}.

ui 6=Z u, and according to Table 1, domainFD uη [u1η, . . . , unη] → false holds for

all η ∈ V al(FD).

Finally, we examine the main rule for labeling in Table 5: labeling [. . .] [X], X

∈ [u1, . . . , un], S σ ⊢⊢χ

∨n

i=1 (Sθi σθi) with X /∈ χ, and ∀i ∈ {1, . . . , n}, ui

∈ Z, θi = {X 7→ ui}. We prove that SolFD(labeling [. . .] [X], X ∈ [u1, . . . , un], S

σ) =
⋃n

i=1 SolFD(Sθi σθi):

Constraint Functional Logic Programming over Finite Domains 47

⊆) Let η ∈ SolFD(labeling [. . .] [X], X ∈ [u1, . . . , un], S σ). By definition

of SolFD we have η ∈ SolFD(labeling [. . .] [X], X ∈ [u1, . . . , un]) and η ∈ SolFD(S

σ). Then, indomainFD η(X) → ⊤, domainFD η(X) [u1, . . . , un] → true because

ui ∈ Z for all 1 ≤ i ≤ n. According to Table 1, we deduce η(X) ∈ Z, ∀i ∈ {1, . . . ,

n−1}. ui ≤Z ui+1 and ∃i ∈ {1, . . . , n}. η(X) =Z ui. Therefore, η(X) = ui = uiη and

then η ∈ Sol(θi) (1 ≤ i ≤ n). Moreover, we have θiη = η because η(θi(X)) = uiη =

ui = η(X) and η(θi(Y)) = η(Y) for all Y 6= X . Finally, since η ∈ SolFD(S σ) we

can conclude θiη ∈ SolFD(S σ) or equivalently η ∈ SolFD(Sθi σθi) (1 ≤ i ≤ n).

⊇) Let η ∈ SolFD(Sθi σθi) (1 ≤ i ≤ n). By definition of SolFD we have η

∈ SolFD(Sθi) and η ∈ SolFD(σθi). By the initial hypothesis labeling [. . .] [X], X ∈

[u1, . . . , un], S σ satisfies the requirements of Definition 2, we have X /∈ dom(σ)

and then η ∈ Sol(θi) (i.e., η(X) = uiη = ui due to ui ∈ Z). Moreover, we have

θiη = η because η(θi(X)) = uiη = ui = η(X) and η(θi(Y)) = η(Y) for all Y 6=

X . Then, since η ∈ SolFD(Sθi σθi), or equivalently, θiη ∈ SolFD(S σ), we

deduce η ∈ SolFD(S σ). Finally, we prove that η ∈ SolFD(labeling [. . .] [X], X

∈ [u1, . . . , un]). Since η(X), ui ∈ Z for all 1 ≤ i ≤ n, [u1, . . . , un] is an increasing

integer list by the initial hypothesis, and there exists 1 ≤ i ≤ n such that η(X) =

ui ∈ Z, according to Table 1 we can deduce domainFD η(X) [u1, . . . , un] → true.

Moreover, since η(X) ∈ Z, trivially indomainFD η(X) → ⊤ according again to

Table 1. Then, indomainFD η(X) → ⊤, domainFD η(X) [u1, . . . , un] → true, and

we can conclude that η ∈ SolFD(labeling [. . .] [X], X ∈ [u1, . . . , un]). Therefore,

η ∈ SolFD(labeling [. . .] [X], X ∈ [u1, . . . , un], S σ).

The remaining conditions of the theorem for this rule trivially hold because of

the initial hypothesis labeling [. . .] [X], X ∈ [u1, . . . , un], S σ satisfies the re-

quirements of Definition 2, and because of the conditions of the rule X /∈ χ. The

last rule for labeling follows a trivial reasoning because SolFD(labeling [. . .] [u]) =

V al(FD) if u ∈ Z. According to Table 1, indomainFD uη → ⊤ for all η ∈ V al(FD).

Therefore, SolFD(labeling [. . .] [u], S σ) = SolFD(labeling [. . .] [u]) ∩ SolFD(S

σ) = V al(FD) ∩ SolFD(S σ) = SolFD(S σ). The remaining conditions of

the theorem are also trivial by initial hypothesis.

Failure Rules

Finally, we suppose any arbitrary failure rule such that S σ ⊢⊢χ fail and we

prove that SolFD(S σ) = ∅. First, we note that any failure rule must have the

following syntactic form: S1, S2 σ ⊢⊢χ fail with conditions such that SolFD(S1)

= ∅. For example, consider the failure rule associated to Table 4: u ≤ u′, S σ

⊢⊢χ fail with u, u′ ∈ Z and u >Z u′. Clearly, SolFD(u ≤ u′) = ∅. In this situation,

SolFD(S1, S2 σ) = SolFD(S1) ∩ SolFD(S2 σ) = ∅ ∩ SolFD(S2 σ) = ∅. �

	Introduction
	The CFLP(FD) Language
	Polymorphic Signatures
	Expressions, Patterns and Substitutions
	Well-typed Expressions
	The Constraint Finite Domain FD
	Constraint Solvers over FD

	The CLNC(FD) Calculus
	Programs, Goals and Answers
	Constrained Lazy Narrowing over FD
	Example of Goal Resolution by Using CLNC(FD)

	TOY(FD)
	Introducing TOY(FD)
	CFLP(FD) vs. CLP(FD)
	Correctness of the CFLP(FD)Implementation
	Notes about the Implementation
	Performance

	Related Work
	Conclusions and Future Work
	References
	Appendix A [Proof of Theorem 1] in Page 12

