
ar
X

iv
:c

s/
07

02
08

3v
1

 [c
s.

S
E

]
14

 F
eb

 2
00

7

Under consideration for publication in Theory and Practice of Logic Programming 1

Improving Prolog Programs: Refactoring for
Prolog

ALEXANDER SEREBRENIK
Laboratory of Quality of Software (LaQuSo), T.U. Eindhoven

HG 5.91, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(e-mail: A.Serebrenik@tue.nl)

TOM SCHRIJVERS∗
Department of Computer Science, K.U. Leuven

Celestijnenlaan 200A, B-3001, Heverlee, Belgium
(e-mail: Tom.Schrijvers@cs.kuleuven.ac.be)

BART DEMOEN
Department of Computer Science, K.U. Leuven

Celestijnenlaan 200A, B-3001, Heverlee, Belgium
(e-mail: Bart.Demoen@cs.kuleuven.ac.be)

Abstract

Refactoringis an established technique from the object-oriented (OO) programming community to
restructure code: it aims at improving software readability, maintainability and extensibility. Al-
though refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied to
Logic Programming until now.

This paper applies the ideas of refactoring to Prolog programs. A catalogue is presented listing
refactorings classified according to scope. Some of the refactorings have been adapted from the
OO-paradigm, while others have been specifically designed for Prolog. The discrepancy between
intended and operational semantics in Prolog is also addressed by some of the refactorings.

In addition,ViPReSS, a semi-automatic refactoring browser, is discussed and the experience with
applyingViPReSS to a large Prolog legacy system is reported. The main conclusion is that refactoring
is both a viable technique in Prolog and a rather desirable one.

1 Introduction

Maintaining and adapting software takes up a substantial part of the entire programming
effort, both in time and money. Erlikh (2000) and Moad (1990)both report on the pro-
portion of maintenance costs exceeding 90% of the budget. About 75% of these costs
are spent on providing enhancements (in the form of adaptiveor perfective maintenance)
(Nosek and Palvia 1990; van Vliet 2000).

Before providing enhancements, it is recommended to improve the design of the soft-
ware in a preliminary step. This methodology, calledrefactoring, emerged from a number
of pioneer results in the OO-community (Fowler et al. 1999; Opdyke 1992; Roberts et al. 1997)

∗ Research Assistant of the Fund for Scientific Research-Flanders (Belgium)(F.W.O.-Vlaanderen)

http://arxiv.org/abs/cs/0702083v1

2 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

and recently came to prominence for functional (Li et al. 2003) and procedural (Garrido and Johnson 2003)
languages.

Refactoring is a disciplined technique for restructuring an existing body of code, alter-
ing its internal structure without changing its external behavior. Its heart is a series of small
source-to-source program transformations, calledrefactorings, that change program struc-
ture and organization, but not program functionality. The major aim of refactoring is to
improve readability, maintainability and extensibility of the existing software.

While performance improvement is not considered as a crucial issue for refactoring,
it can be noted that well-structured software is more amenable to performance tuning.
We also observe that certain techniques that were developedin the context of program
optimization, such as dead-code elimination and redundantargument filtering, can improve
program organization and, hence, can be used as refactoringtechniques.

In this paper we study refactoring techniques for Prolog. Our goals are threefold. Firstly,
we want to show that refactoring is a viable technique for Prolog and many of the existing
techniques developed for refactoring in general are applicable. Secondly, Prolog-specific
refactorings are possible and the application of some general techniques may be highly
specialized towards Prolog. Finally, it should be clear that refactoring is not only viable for
Prolog but also very useful for the maintenance of Prolog programs.

In order to achieve our goals we present a catalogue of refactoring techniques for Pro-
log. The listed refactorings are a mix of general and Prolog-specific ones. Most of the
refactorings proposed have been implemented in a prototyperefactoring browserViPReSS.
ViPReSS has been successfully applied for refactoring a 50,000 lines-long legacy system.

As completeness of the catalogue is clearly not possible, weaimed to show a wide range
of possibilities for future work on combining the formal techniques of program analysis
and transformation with software engineering. The formal elaboration of a particular topic
may be a substantial study on its own, as shows the work on detecting duplicate code by
Vanhoof (2004) that was inspired by a preliminary version ofour work.

Outline of the Paper First, Section 2 provides a brief overview of the refactoring process.
Next, the use of several refactoring techniques is illustrated on a small example in Section
3. Then a catalogue of Prolog refactorings is given in Section 4. In Section 5 we introduce
ViPReSS, and discuss its application in a case study. Finally, in Section 6 we conclude.

2 The Refactoring Process

The refactoring process consists of applying a number of refactorings, with both localized
and global impact, to a software system. The individual significance of a refactoring may
be apparent, but often a refactoring seems trivial on its ownand only in conjunction with
other refactorings or intended changes does the usefulnessbecome clear. That is the reason
why it is not feasible to fully automate refactorings. They must be carefully considered in
view of the programmer’s intentions.

For this reason the process of applying a single refactoringis to be split into a number of
distinct activities (Mens and Tourwé 2004). These activities involve decisions to be made
by the programmer.

The first decision iswherethe software should be refactored. Making this decision auto-

Improving Prolog Programs: Refactoring for Prolog 3

matically can be a difficult task on its own. Several ways to resolve this may be considered.
For instance, one can aim at identifying so calledbad smells, i.e., “structures of the code
that suggest (sometimes scream for) the possibility of refactoring” (Fowler et al. 1999). To
this end program analysis can be used. For example, it is common practice while ordering
predicate arguments to start with the input arguments and end with the output arguments.
Mode information can be used to detect when this rule is violated.

Next, one should determinewhich refactorings should be applied. Sometimes, the cor-
respondence between bad smells and refactorings is clear. For instance, if the predicate
arguments are not ordered according to the “input first output last” rule, one can suggest
to the user to reorder the arguments. This refactoring is further discussed in Section 4.3.
In more complex situations the relation becomes less obvious: a number of different refac-
torings are applicable and the user has to choose between them. For example, let module
A contain a predicate that is mutually recursive with predicatep from moduleB, and mod-
ule C contain a predicate that is mutually recursive with predicate q from moduleB. This
situation can be identified as problematic since no clear hierarchy can be defined between
these modules. One possible solution would be to merge the three modules (Section 4.2).
Alternatively, one may try to first splitB into B1, containingp, andB2 containingq such
that there are no circular dependencies betweenB1 andB2 (Section 4.2). If this split is
possible,A could be merged withB1, andC with B2 (Section 4.2). Automatic refactoring
tools, so calledrefactoring browsers, can be expected to make suggestions on where refac-
toring transformations should be applied. These suggestions can then be either confirmed
or rejected by the programmer.

By definition, refactorings should preserve the software’sfunctionality. Hence, the next
step consists ofensuringthat the behavior is indeed preserved. This step, of course,de-
pends on the definition of behavior. In the case of logic programming, behavior comprises
computed answers semantics, termination, and side effectssuch as input/output. It should
be observed that particular application domains might require extending the notion of be-
havior to include such concepts as efficiency or memory use. Moreover, in order for some
refactorings to be applicable certain preconditions should hold, like absence of user-defined
meta-predicates for dead-code elimination discussed in Section 4.1. Sometimes verification
of the preconditions cannot be done automatically, but mustbe delegated to the user.

Subsequently,the chosen transformation is applied. This step might also require user
input. Consider for example a refactoring that renames a predicate: while automatic tools
can hardly be expected to guess the new predicate name, they should be able to detect all
program points affected by the change. This refactoring is further studied in Section 4.3.

Finally, theconsistencybetween the refactored program code and other related artifacts
should be maintained. By artifacts we understand among others software documentation,
specifications and test descriptions. The ability to perform this task automatically strongly
depends on the formalisms used to express the correspondingartifacts. For instance, doc-
umentation generators such aslpdoc (Hermenegildo 2000) make it possible to keep the
documentation consistent automatically, whereas ad hoc unstructured comments are much
harder to update automatically. Ensuring consistency is considered as future work.

4 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

3 Detailed Prolog Refactoring Example

We illustrate some of the techniques proposed by a detailed refactoring example. Con-
sider the following code fragment from O’Keefe’s “The Craftof Prolog” (1994), p. 195.
It describes three operations on areaderdata structure used to sequentially read terms
from a file. The three operations aremake reader/3, which initializes the data structure,
reader done/1, which checks whether no more terms can be read, andreader next/3,
which gets the next term and advances the reader.

Listing 3.1 - O’Keefe’s original version

make_reader(File,Stream,State) :-

open(File,read,Stream),

read(Stream,Term),

reader_code(Term,Stream,State).

reader_code(end_of_file,_,end_of_file) :- ! .

reader_code(Term,Stream,read(Term,Stream,Position)) :-

stream_position(Stream,Position).

reader_done(end_of_file).

reader_next(Term,read(Term,Stream,Pos),State)) :-

stream_position(Stream,_,Pos),

read(Stream,Next),

reader_code(Next,Stream,State).

We will now apply several refactorings to the above program in order to improve its
readability.

Firstly, we use if-then-else introduction (Section 4.4) toget rid of the red cut1 in the
reader code/3 predicate (modified code is underlined):

Listing 3.2 - Replace cut by if-then-else

reader_code(Term,Stream,State) :-

(Term = end_of_file,

State = end_of_file ->

true

;

State = read(Term,Stream,Position),

stream_position(Stream,Position)

).

The result of this automatic transformation reveals two malpractices: the first is produc-
ing output before the commit, something O’Keefe himself disapproves of in (1994). This
malpractice and the ways to resolve it are further investigated in 4.4. The problem is fixed
to:

Listing 3.3 - Output after commit

reader_code(Term,Stream,State) :-

(Term = end_of_file ->

State = end_of_file

;

State = read(Term,Stream,Position),

1 As defined in e.g. (O’Keefe 1994): a cut that alters the meaning.

Improving Prolog Programs: Refactoring for Prolog 5

stream_position(Stream,Position)

).

The second malpractice is a unification in the condition of the if-then-else where an
equality test is meant. Consider the case that theTerm argument is a variable. Then the
binding of Term to the atomend of file is certainly unwanted behavior. The transfor-
mation in question is discussed in Section 4.4. The following code does not exhibit the
problematic behavior:

Listing 3.4 - Equality test

reader_code(Term,Stream,State) :-

(Term == end_of_file ->

State = end_of_file

;

State = read(Term,Stream,Position),

stream_position(Stream,Position)

).

Next, we notice that the conjunctionread/2, reader code/3 occurs twice. By apply-
ing predicate extraction (Section 4.4) of this common sequence, we get:

Listing 3.5 - Predicate extraction

make_reader(File,Stream,State) :-

open(File,read,Stream),

read_next_state(Stream,State).

reader_next(Term,read(Term,Stream,Pos),State)) :-

stream_position(Stream,_,Pos),

read_next_state(Stream,State).

read_next_state(Stream,State) :-

read(Stream,Term),

reader_code(Term,Stream,State).

Next we put the input argument first and the output arguments last (Section 4.3 below),
a principle also advocated in (O’Keefe 1994):

Listing 3.6 - Argument reordering

reader_next(read(Term,Stream,Pos),Term,State) :-

stream_position(Stream,_,Pos),

read_next_code(Stream,State).

Finally, note that the naming of the two builtinsstream position/[2,3] may be con-
fusing to the user. It is easier to distinguish between theirfunctionality based on predicate
name than based on arity. We introduce the less confusing namesget stream position/2

andset stream position/3 respectively. In addition, we provide a more consistent nam-
ing for make reader, more in line with the other two predicates in the interface.The im-
portance of consistent naming conventions is also stressedin (O’Keefe 1994).

Note that direct renaming of built-ins such asstream position is not possible, but a
similar effect can be achieved by extracting the built-in into a new predicate with the de-
sired name. Extracting a predicate and renaming predicatesare considered in Sections 4.4
and 4.3, respectively.

6 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

In order to avoid confusion between a built-in predicateread and a functorread we
rename the latter functor toreader.

Listing 3.7 - Renaming

reader_init(File,Stream,State) :-

open(File,read,Stream),

reader_next_state(Stream,State).

reader_next(reader(Term,Stream,Pos),Term,State)) :-

set_stream_position(Stream,Pos),

reader_next_state(Stream,State).

reader_done(end_of_file).

reader_next_state(Stream,State) :-

read(Stream,Term),

build_reader_state(Term,Stream,State).

build_reader_state(Term,Stream,State) :-

(Term == end_of_file ->

State = end_of_file

;

State = reader(Term,Stream,Position),

get_stream_position(Stream,Position)

).

set_stream_position(Stream,Position) :-

stream_position(Stream,_,Position).

get_stream_position(Stream,Position) :-

stream_position(Stream,Position).

This example demonstrates how the code readability can be ameliorated by performing
a series of relatively simple transformation steps. We haveseen that some of these steps
required user’s input. Clearly the changes can be performedmanually. However, refac-
toring browsers should be able to guarantee consistency, correctness and furthermore can
automatically single out opportunities for refactoring.

Techniques applied above are well-suited for local code improvement, i.e., the objects
modified are predicates and clauses. In the next section we also consider techniques for
global code restructuring such as duplicate predicates removal (Section 4.1).

4 A Catalogue of Prolog refactorings

In this section we present the refactorings that we have found to be useful for Prolog
programs. The considered Prolog programs are not limited topure logic programs, but
may contain various built-ins such as those defined in the ISOstandard (1995). The only
exception are higher-order constructs that are not dealt with automatically, but manually.
This is done due to the fact that higher order constructs suchascall make it impossible
to decide at the compile-time which predicate is going to be called at the corresponding
program point during execution. Automating the detection and handling of higher-order
predicates is an important part of future work.

Improving Prolog Programs: Refactoring for Prolog 7

The refactorings in this catalogue are grouped by their scope. The scope expresses the
user-selected target of a particular refactoring. Hence, refactoring starts by choosing an
object in the specified scope. For instance,split module(Section 4.2) starts with selecting
a module. Then the object is transformed. For us, this means that the module is split.
Finally, the changes propagate to the affected code outsidethe selected scope. The latter
might happen when there is a dependency outside the scope. This corresponds to updating
import declarations in other modules of the system.

For Prolog programs we distinguish the following four scopes, based on the code units of
Prolog:systemscope (Section 4.1),modulescope (Section 4.2),predicatescope (Section
4.3) andclausescope (Section 4.4).

As a starting point for this catalogue we used Fowler’s (2003) for object-oriented lan-
guages. We selected those with clear Prolog counterparts, extended the list with Prolog-
specific transformations and some well-known program transformations, such as dead code
elimination.

In the current technical note we only include a short summaryof the refactorings here
and refer to the companion technical report (Schrijvers et al. 2003). This report contains
the full catalogue with detailed description of the refactorings, examples, preconditions
and automatization techniques.

4.1 System Scope Refactorings

The system scope encompasses the entire code base. The user wants to consider the system
as a whole.

4.1.1 Eliminate explicit module qualification
In many Prolog systems, such as Quintus (Intelligent Systems Laboratory 2003a), the

module system is non-strict, i.e. the normal visibility rules can be overridden by a special
construct, calledexplicit module qualificationand written asm:q , wherem is a module that
contains definition of the predicateq/0. The refactoring proposed adds import and export
declarations to get rid of these special syntax constructions. By forcing the code to conform
to a strict module system a number of quality characteristics are improved. First of all, a
strict module system better expresses the idea of information hiding, which is important
for software maintainability and readability (Parnas 1972). Moreover, since not all Prolog
systems support the above construct, code portability is improved.

4.1.2 Extract common code into predicates
This refactoring looks for common functionality across thesystem and extracts it into

new predicates. The common functionality consists of identical subsequences of goals that
are called in different predicate bodies, and extracts theminto new predicates. The overall
readability of the program improves as the affected predicate bodies get shorter, and the
calls to the new predicates can be more meaningful than what they replace. Moreover the
increased sharing simplifies maintenance as now only one copy needs to be modified.

The problem of identifying identical subsequences of of goals is related to determining
longest repeated subsequences (Crow and Smith 1992; Pitkowand Pirolli 1999).

4.1.3 Hide predicates

8 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

This refactoring removes export declarations for predicates that are not imported in any
other module. It simplifies the program by reducing the number of entry points into mod-
ules and hence the intermodule dependencies.

4.1.4 Remove dead code
Dead code is code that can never be executed and therefore canbe safely eliminated

without affecting correctness of the execution. Dead code elimination is sometimes per-
formed in compilers for efficiency reasons, but it is also useful for developers: dead code
clutters the program. We consider a predicate definition as the unit of dead code.

4.1.5 Remove duplicate predicates
Predicate duplication or cloning is a well-known problem, prominently caused by “copy

& paste” and unawareness of available libraries and exported predicates in other modules.
The main problem with duplication is its bad maintainability. It is up to the user to decide
whether to throw away some of the duplicates and to use one of the remaining definitions
instead or to replace all the duplicate predicates by a new version in a new module.

4.1.6 Rename functor
This refactoring renames a term functor across the system. If the functor has several

different meanings and only one should be renamed, it is up tothe user to identify what
occurrence corresponds with what meaning.

4.2 Module Scope Refactorings

The module scope considers a particular module. Usually a module is implementing a
well-defined functionality and is typically contained in one file.

4.2.1 Merge modules
Merging several modules into one can be advantageous in caseof strong interdepen-

dency of the modules involved. Moreover, merging existing modules and splitting the re-
sulting module can lead to an improved module structure.

4.2.2 Remove dead intra-module code
Similar to dead code removalfor an entire system (see Section 4.1), this refactoring

works at the level of a single module. It is useful for incomplete systems or library modules
with an unknown number of uses. Recall that determining the liveness of the code requires
knowledge of top-level predicates. In the case of intra-module dead code elimination, the
set of top level predicates is extended with, or replaced by,the exported predicates of the
module.

4.2.3 Rename module
This refactoring applies when the name of the module no longer corresponds to the

functionality it implements e.g. due to other refactorings.

4.2.4 Split module

Improving Prolog Programs: Refactoring for Prolog 9

The refactoring is useful to split unrelated parts of a module or make a large module
more manageable.

Moores (Moores 1998) has shown that the number of user-defined predicates correlates
with the number of errors detected. Based on an empirical study he suggested a threshold
of around 35±5 predicates per program. While this is hardly reasonable asa requirement
for an entire Prolog system, trespassing the threshold should be used as a guideline when
the Split Module refactoring can be applied.

4.3 Predicate Scope Refactorings

The predicate scope targets a single predicate. The code that depends on the predicate may
need updating as well. But this is considered an implicationof the refactoring of which
either the user is alerted or the necessary transformationsare performed automatically.

4.3.1 Add argument
This refactoring should be applied when a callee needs more information from its (direct

or indirect) caller, which is very common in Prolog program development. Given a variable
in the body of the caller and the name of the callee, the refactoring browser should prop-
agate this variable along all possible computation paths from the caller to the callee. This
refactoring is an important preliminary step preceding additional functionality integration
or efficiency improvement.

4.3.2 Move predicate
This refactoring moves a predicate definition from one module to another. It can improve

the overall structure of the program by bringing together interdependent or related predi-
cates, hence improving both cohesion of each one of the modules involved, and coupling
of the pair.Move predicateappears often after predicate extraction, i.e.,extract common
codeor extract predicate locally, discussed in Sections 4.1 and 4.4, respectively.

4.3.3 Rename predicate
This refactoring can improve readability and should be applied when the name of a

predicate does not reveal its purpose.

4.3.4 Reorder arguments
Our experience suggests that while writing predicate definitions Prolog programmers

tend to begin with the input arguments and to end with the output arguments. This habit
has been identified as a good practice and even further refinedby O’Keefe (1994) to more
elaborate rules. Unfortunately, this practice is difficultto maintain when additional argu-
ments are added later. We observed that failure to confirm to this “input first output last”
expectation pattern is experienced as very confusing.

4.3.5 Specialize predicate
By specializing a predicate we mean producing a (number of) more specific version(s)

of a given predicate provided some knowledge on the intendeduses of the predicate. Spe-

10 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

cialisation can simplify code as well as make a meaningful distinction between different
uses of a predicate.

4.3.6 Remove redundant arguments
The basic intuition here is that parameters that are no longer used by a predicate should

be dropped. It improves readability.
Leuschel and Sørensen (1996) established that the redundancy property is undecid-

able and suggested two techniques to find safe and effective approximations: top-down
goal-oriented RAF (Redundant Argument Filtering) and bottom-up goal-independent FAR
(RAF “upside-down”). In the context of refactoring FAR is the more useful technique,
since only FAR deals correctly with exported predicates used in unknown goals.

4.4 Clause Scope Refactorings

The clause scope affects a single clause in a predicate. Usually, this does not affect any
code outside the clause directly.

4.4.1 Extract predicate locally
This refactoring is similar to the system-scope refactoring with the same name. However,

it does not aim to automatically discover useful candidatesfor replacement. The user is
responsible for selecting the subgoal that should be extracted, in order to improve the
readability.

4.4.2 Invert if-then-else
The order of “then” and “else” branches can be important for code readability. To en-

hance readability it might be worthwhile putting the shorter branch as “then” and the longer
one as “else”. Alternatively, the negation of the conditionmay be more readable because,
for example, a double negation can be eliminated.

4.4.3 Replace cut by if-then-else
This technique aims at improving program readability by replacing cuts (!) by the more

declarative if-then-else (-> ;). More detailed discussion on replacing cut by if-then-else
is deferred toRelated work and extensions.

4.4.4 Replace unification by (in)equality test
Often full unifications are used instead of equality or othertests. O’Keefe in (1994)

advocates the importance of steadfast code. Recall, that steadfast code produces the right
answers for all possible modes and inputs. A more moderate approach is to write code that
works for the intended mode only. Unification succeeds in several modes and so does not
convey a particular intended mode. Equality (==, =:=) and inequality (\==, =\=) checks
usually only succeed for one particular mode and fail or raise an error for other modes.
Hence their presence makes it easier in the code and at runtime to see the intended mode.
Moreover, if only a comparison was intended, then full unification may lead to unwanted
behaviour in unforeseen cases.

4.4.5 Produce output after commit

Improving Prolog Programs: Refactoring for Prolog 11

This refactoring addresses a similar issue as the previous one. Producing output before
the commit (cut) does not properly convey the intended mode of a predicate. Moreover it
may lead to unexpected results when used in the wrong mode.

5 The ViPReSS refactoring browser

The refactoring techniques presented in Section 4 have beenimplemented in the prototype
refactoring browserViPReSS2. It has been implemented on the basis of VIM, a popular
clone of the well-known VI editor. The text editing facilities of VIM make it easy to im-
plement techniques likemove predicate(Section 4.3).

Most of the refactoring tasks have been implemented as SICStus Prolog (Intelligent Systems Laboratory 2003b)
programs inspecting source files and/or call graphs. Updates to files have been imple-
mented either directly in the scripting language of VIM or, when many files need updating
at once, throughed scripts. VIM functions were written to initiate the refactorings and to
get user input.
ViPReSS has been successfully applied to a large (more than 53 KLOC) legacy system

used at the Computer Science department of the Katholieke Universiteit Leuven to manage
the educational activities. The system, calledBTW, has been developed and extended since
the early eighties by more than ten programmers, many of whomare no longer employed
by the department. The implementation has been done in MasterProLog (IT Masters 2000),
which is no longer supported. Therefore, preparing the codefor migration to a more mod-
ern Prolog dialect and general structure improvement were essential for further evolution
of the system.

By using the refactoring techniques we succeeded in obtaining a better understanding of
this real-world system, in improving its structure and maintainability, and in preparing it
for intended changes: porting it to a state-of-the-art Prolog system and adapting it to new
educational tasks the department is facing as a part of the unified Bachelor-Master system
in Europe.

A preliminary study revealed that many modules were unused.We brought in an expert
to help us identify the bulk of these unused modules, including out-of-fashion user inter-
faces and outdated versions of program files. This reduced the system size to a mere 20,000
lines.

Next, the actual refactoring process was started. As the first phase we applied system-
scope refactorings.ViPReSS was used to clean up after the bulk dead code removal: 299
predicates in the remaining modules were identified as dead.This reduced the size by
another 1,500 lines. MoreoverViPReSS discovered 79 pairwise identical predicates. In
most of the cases, identical predicates were moved to new modules used by the original
ones. The previous steps allowed us to improve the overall structure of the program by
reducing the number of files from 294 to 116 with a total of 18,000 lines. Very little time
was spent to bring the system into this state. The experts were sufficiently familiar with the
system to identify obsolete parts. The system-scope refactorings took only a few minutes

2 Vi(m) P(rolog) Re(factoring) (by) S(chrijvers) (and) S(erebrenik)

12 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

each. During this phase most of the work has been done byViPReSS, while the user’s
involvement was limited to choosing a way to deal with duplicate predicates.

The second phase of refactoring consisted of a thorough codeinspection aimed at local
improvement. Many malpractices were identified: excessiveuse of cut (Section 4.4) com-
bined with output construction before commit (Section 4.4)being the most notable one.
Additional “bad smells” discovered include bad predicate names such asq, unused argu-
ments and unifications instead of identity checks or numerical equalities (Sections 4.3,and
4.4, respectively). Some of these were located byViPReSS , others were recognised by the
users, whileViPReSS performed the corresponding transformations. This step ismore de-
manding of the user. She has to consider all potential candidates for refactoring separately
and decide on what transformations apply. Hence, the lion’sshare of the refactoring time
is spent on these local changes.

In summary, from the case study we learned that automatic support for refactoring tech-
niques is essential and thatViPReSS is well-suited for this task. As the result of applying
refactoring toBTW we obtained better-structured lumber-free code. Now it is not only more
readable and understandable but it also simplifies implementing the intended changes.
From our experience with refactoring this large legacy system and the relative time in-
vestments of the global and the local refactorings, we recommend starting out with the
global ones and then selectively apply local refactorings as the need occurs.

The current version ofViPReSScan be downloaded from
http://www.cs.kuleuven.ac.be/˜toms/vipress.

6 Conclusions

In this paper we have studied refactoring techniques for Prolog. Firstly, we have shown
that refactoring is a viable technique for Prolog and that many of the existing techniques
developed for refactoring in general are applicable. Our refactoring catalogue contains
many such refactorings.

Secondly, Prolog-specific refactorings are possible and the application of some general
techniques may be highly specialized towards Prolog. In this context, the companion tech-
nical report (Schrijvers et al. 2003) shows how refactoringfits in with existing work on
program analysis and transformation in the context of Prolog and how many of these ex-
isting techniques may be adapted for the purpose of partially automating the refactoring
process. Also,ViPReSS, our refactoring browser integrates several automatable parts of
the presented refactorings in the VIM editor.

Finally, it should be clear that refactoring Prolog programs is not just viable but very
useful for the maintenance of Prolog programs. Refactoringhelps bridge the gap between
prototypes and real-world applications. Indeed, extending a prototype to provide additional
functionality often leads to cumbersome code. Refactoringallows software developers both
to clean up code after changes and to prepare code for future changes. These are important
benefits that also apply to logic programming.

As completeness of the catalogue is clearly not possible, weaimed to show a wide range
of possibilities for future work on combining the formal techniques of program analysis
and transformation with software engineering. Throughoutthe catalogue many specific

Improving Prolog Programs: Refactoring for Prolog 13

issues for future work have been mentioned. Below we list related work and more general
challenges for the future.

6.1 Related and Future Work

Logic programming has often been used to implement refactorings for other languages,
e.g. a meta-logic very similar to Prolog is used to detect, for instance, obsolete parameters
in (Tourwé and Mens 2003).

Seipelet al.(2003) include refactoring among the analysis and visualization techniques
that can be easily implemented by means of FNQUERY, a Prolog-inspired query language
for XML. However, the discussion stays at the level of an example. The M.Sc. thesis of
Steinke (2003) was dedicated to refactoring of logic programs. A Catalogue of refactor-
ings has been composed and a prototype system has been implemented. However, only
predicate-scope refactorings have been considered and only the transformation step has
been implemented.

In the logic programming community questions related to refactoring have been inten-
sively studied in the context of program transformation andspecialisation. There are two
important differences with this line of work. Firstly, refactoring improves readability, main-
tainability and extensibility rather than performance. Secondly, for refactoring user input is
essential while in the mentioned literature strictly automatic approaches were considered.
However, some of the transformations developed for programoptimization, e.g.dead code
elimination, can be considered as refactorings and have an important function in refactor-
ing browsers.

To further increase the level of automation of particular refactorings additional informa-
tion such as types and modes can be used.

Future refactoring tools can also benefit from integration with Prolog development en-
vironments. Modern Prolog systems are often equipped with features extending the ISO
Standard such as constraint solving over different domainsand Constraint Handling Rules,
coroutining, interfaces to foreign languages, GUI-development systems and databases. In
most of the cases, the refactoring techniques described above can still be applied to im-
prove the code. Certain refactorings may be specially designed for particular extensions.
For instance, our experience suggests that simplifying primitive constraints may be useful
in the case of CLP.

References

1995. Information technology—Programming languages—Prolog—Part 1: General core. ISO/IEC.
ISO/IEC 13211-1:1995.

CROW, D. AND SMITH , B. 1992. Dbhabits: comparing minimal knowledge and knowledge-based
approaches to pattern recognition in the domain of user-computer interactions. 39–63.

ERLIKH , L. 2000. Leveraging legacy system dollars for e-business.IT Professional 2,3 (May),
17–23.

FOWLER, M. 2003. Refactorings in alphabetical order. Available at
http://www.refactoring.com/catalog/.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND ROBERTS, D. 1999.Refactoring: improv-
ing the design of existing code. Object Technology Series. Addison-Wesley.

14 Alexander Serebrenik, Tom Schrijvers and Bart Demoen

GARRIDO, A. AND JOHNSON, R. 2003. Refactoring C with conditional compilation. In18th IEEE
International Conference on Automated Software Engineering, H. Kirchner and C. Ringeissen,
Eds. IEEE, 323–326.

HERMENEGILDO, M. V. 2000. A documentation generator for (c)lp systems. InComputational
Logic - CL 2000, First International Conference, London, UK, July 2000, Proceedings, J. Lloyd,
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L.Moniz Pereira, Y. Sagiv, and P. J.
Stuckey, Eds. Lecture Notes in Artificial Intelligence, vol. 1861. Springer Verlag, 1255–1269.

INTELLIGENT SYSTEMS LABORATORY. 2003a. Quintus Prolog User’s Manual. PO Box 1263,
SE-164 29 Kista, Sweden.

INTELLIGENT SYSTEMS LABORATORY. 2003b. SICStus Prolog User’s Manual. PO Box 1263,
SE-164 29 Kista, Sweden.

IT M ASTERS. 2000.MasterProLog Programming Environment. www.itmasters.com.

LEUSCHEL, M. AND SØRENSEN, M. H. 1996. Redundant argument filtering of logic programs.In
Proceedings of the6th International Workshop on Logic Program Synthesis and Transformation,
J. Gallagher, Ed. LNCS, vol. 1207. Springer Verlag, 83–103.

L I , H., REINKE, C., AND THOMPSON, S. 2003. Tool support for refactoring functional programs.
In Haskell Workshop 2003, J. Jeuring, Ed. Association for Computing Machinery.

MENS, T. AND TOURWÉ, T. 2004. A survey of software refactoring.IEEE Transactions on Software
Engineering 30,2 (February), 126–138.

MOAD, J. 1990. Maintaining the competitive edge.Datamation 36,4 (February), 61–66.

MOORES, T. T. 1998. Applying complexity measures to rule-based Prolog programs.The Journal
of Systems and Software 44, 45–52.

NOSEK, J. T. AND PALVIA , P. C. 1990. Software maintenance management: changes in the last
decade.Journal of Software Maintenance: Research and Practice 2,3 (September), 157–174.

O’K EEFE, R. A. 1994.The Craft of Prolog. MIT Press, Cambridge, MA, USA.

OPDYKE, W. F. 1992. Refactoring object-oriented frameworks. Ph.D. thesis, University of Illinois
at Urbana-Champaign.

PARNAS, D. L. 1972. On the criteria to be used in decomposing systemsinto modules.Communi-
cations of the ACM 15,12 (Dec.), 1053–1058.

PITKOW, J. AND PIROLLI , P. 1999. Removing redundant arguments of functions. In2nd USENIX
symposium on Internet technologies and systems. 1–12.

ROBERTS, D., BRANT, J.,AND JOHNSON, R. 1997. A refactoring tool for Smalltalk.Theory and
Practice of ObjectSystems (TAPOS) 3,4, 253–263.

SCHRIJVERS, T., SEREBRENIK, A., AND DEMOEN, B. 2003. Refactoring Prolog programs. Tech.
Rep. CW 373, Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Bel-
gium.

SEIPEL, D., HOPFNER, M., AND HEUMESSER, B. 2003. Analysing and visualizing Prolog pro-
grams based on XML representations. InProceedings of the 13th International Workshop on
Logic Programming Environments, F. Mesnard and A. Serebrenik, Eds. 31–45. Published as tech-
nical report CW371 of Katholieke Universiteit Leuven.

STEINKE, D. 2003. Refactoring von logischen Program-
men. M.S. thesis, Universität Rostock. Available at
http://e-lib.informatik.uni-rostock.de/fulltext/2003/diploma/SteinkeDirk-2003.ps.gz.

TOURWÉ, T. AND MENS, T. 2003. Identifying refactoring opportunities using logic meta program-
ming. In 7th European Conference on Software Maintenance and Reengineering, Proceedings.
IEEE Computer Society, 91–100.

VAN VLIET, H. 2000. Software engineering: principles and practice. John Wiley & sons. Second
edition.

Improving Prolog Programs: Refactoring for Prolog 15

VANHOOF, W. 2004. Searching semantically equivalent code fragments in logic programs. In
Logic-based Program Synthesis and Transformation. 14th international workshop, LOPSTR 2004,
Verona, Italy, August 26-28, 2004, Pre-Proceedings, S. Etalle, Ed. 1–18.

	Introduction
	The Refactoring Process
	Detailed Prolog Refactoring Example
	A Catalogue of Prolog refactorings
	System Scope Refactorings
	Module Scope Refactorings
	Predicate Scope Refactorings
	Clause Scope Refactorings

	The ViPReSS refactoring browser
	Conclusions
	Related and Future Work

	References

