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Abstract

Recently, there has been a lot of interest in the integrationof Description Logics and rules on the
Semantic Web. We defineguarded hybrid knowledge bases(or g-hybrid knowledge bases) as knowl-
edge bases that consist of a Description Logic knowledge base and aguardedlogic program, similar
to theDL+log knowledge bases from (Rosati 2006). G-hybrid knowledge bases enable an integra-
tion of Description Logics and Logic Programming where, unlike in other approaches, variables in
the rules of a guarded program do not need to appear in positive non-DL atoms of the body, i.e. DL
atoms can act asguardsas well. Decidability of satisfiability checking of g-hybrid knowledge bases
is shown for the particular DLDLRO

−{≤}, which is close to OWL DL, by a reduction to guarded
programs under the open answer set semantics. Moreover, we show 2-EXPTIME-completeness for
satisfiability checking of such g-hybrid knowledge bases. Finally, we discuss advantages and disad-
vantages of our approach compared withDL+log knowledge bases.

KEYWORDS: g-hybrid knowledge bases, open answer set programming, guarded logic programs,
description logics

1 Introduction

The integration of Description Logics with rules has recently received a lot of atten-
tion in the context of the Semantic Web (Rosati 2005a; Rosati2006; Eiter et al. 2004;
Motik et al. 2004; Horrocks and Patel-Schneider 2004b; Motik and Rosati 2007; de Bruijn et al. 2007).
R-hybrid knowledge bases (Rosati 2005a), and its extensionDL+log (Rosati 2006), is
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an elegant formalism based on combined models for Description Logic knowledge bases
and nonmonotonic logic programs. We propose a variant of r-hybrid knowledge bases,
calledg-hybrid knowledge bases, which do not require standard names or a special safe-
ness restriction on rules, but instead require the program to be guarded. We show sev-
eral computational properties by a reduction to guarded open answer set programming
(Heymans et al. 2005a; Heymans et al. 2006b).

Open answer set programming (OASP) (Heymans et al. 2005a; Heymans et al. 2006b)
combines the logic programming and first-order logic paradigms. From the logic pro-
gramming paradigm it inherits a rule-based presentation and a nonmonotonic semantics
by means of negation as failure. In contrast with usual logicprogramming semantics, such
as the answer set semantics (Gelfond and Lifschitz 1988), OASP allows for domains con-
sisting of other objects than those present in the logic program at hand. Such open do-
mains are inspired by first-order logic based languages suchas Description Logics (DLs)
(Baader et al. 2003) and make OASP a viable candidate for conceptual reasoning. Due to
its rule-based presentation and its support for nonmonotonic reasoning and open domains,
OASP can be used to reason with both rule-based and conceptual knowledge on the Se-
mantic Web, as illustrated in (Heymans et al. 2005b).

A major challenge for OASP is to control undecidability of satisfiability checking, a
challenge it shares with DL-based languages. In (Heymans etal. 2005a; Heymans et al. 2006b),
we identify a decidable class of programs, the so-calledguarded programs, for which
decidability of satisfiability checking is obtained by a translation to guarded fixed point
logic (Grädel and Walukiewicz 1999). In (Heymans et al. 2006), we show the expressive-
ness of such guarded programs by simulating a DL withn-ary roles and nominals. In par-
ticular, we extend the DLDLR (Calvanese et al. 1997) with bothconcept nominals{o}
androle nominals{(o1, . . . , on)}, resulting inDLRO. We denote the DLDLRO with-
out number restrictions asDLRO−{≤}. Satisfiability checking of concept expressions
w.r.t.DLRO−{≤} knowledge bases can be reduced to checking satisfiability ofguarded
programs (Heymans et al. 2006b).

A g-hybrid knowledge base consists of a Description Logic knowledge base and a
guarded program. TheDL+log knowledge bases from (Rosati 2006) areweakly safe,
which means that the interaction between the program and theDL knowledge base is
restricted by requiring that variables which appear in non-DL atoms, appear in positive
non-DL atoms in the body, where DL atoms are atoms involving aconcept or role symbol
from the DL knowledge base. G-hybrid knowledge bases do not require such a restriction;
instead, variables must appear in aguardof the rule, but this guard can be a DL atom as
well. In this paper, we show decidability of g-hybrid knowledge bases forDLRO−{≤}

knowledge bases by a reduction to guarded programs, and showthat satisfiability check-
ing of g-hybrid knowledge bases is 2-EXPTIME-complete. The DLDLRO−{≤} is close to
SHOIN , the Description Logic underlying OWL DL (Horrocks and Patel-Schneider 2004a).
Compared withSHOIN , DLRO−{≤} does not include transitive roles and number re-
strictions, but does includen-ary roles and complex role expressions.

To see why a combination of rules and ontologies, as proposedin g-hybrid knowledge
bases, is useful, and why the safeness conditions considered so far in the literature are not
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appropriate in all scenarios, consider the Description Logic ontology

FraternityMember ⊑ Drinker ⊓ ∃hasDrinkingBuddy.FraternityMember

which says that fraternity members are drinkers who have drinking buddies, which are also
fraternity members. Now consider the logic program

problemDrinker(X ) ← Drinker(X ), not socialDrinker(X )

socialDrinker(X ) ← Drinker(X), not problemDrinker(Y ),

hasDrinkingBuddy(X ,Y )

FraternityMember(John) ←

which says that drinkers are by default problem drinkers, unless it is known that they are
social drinkers; drinkers with drinking buddies who are notproblem drinkers are social
drinkers; and John is a fraternity member. From the combination of the ontology and the
logic program, one would expect to derive that John is a social drinker, and not a prob-
lem drinker. This logic program cannot be expressed using r-hybrid knowledge bases, or
DL+log , because the rules in the program are not weakly safe . However, the logic pro-
gram isguarded, and thus part of a valid g-hybrid knowledge base, which has the expected
consequences.

The remainder of the paper starts with an introduction to open answer set programming
and Description Logics in Section 2. Section 3 defines g-hybrid knowledge bases, translates
them to guarded programs when the DLDLRO−{≤} is considered, and provides a com-
plexity characterization for satisfiability checking of these particular g-hybrid knowledge
bases. In Section 5, we discuss the relation of g-hybrid knowledge bases withDL+log and
other related work. We conclude and give directions for further research in Section 6.

2 Preliminaries

In this section we introduce Open Answer Set Programming, guarded programs, and the
Description LogicDLRO−{≤}.

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from (Heymans et al. 2005a; Heymans et al. 2006b),
modified as in (Heymans et al. 2006) such that it does not assume uniqueness of names by
default.Constants, variables, terms, andatomsare defined as usual. Aliteral is an atom
p(~t) or anaf-literal not p(~t), with ~t a tuple of terms.1 Thepositive partof a set of literals
α is α+ = {p(~t) | p(~t) ∈ α} and thenegative partof α is α− = {p(~t) | not p(~t) ∈ α}.
We assume the existence of the (in)equality predicates= and 6=, usually written in infix
notation;t = s is an atom andt 6= s is short fornot t = s. A regular atom is an atom
without equality. For a setA of atoms,not A = {not l | l ∈ A}.

A programis a countable set of rulesα ← β, whereα andβ are finite sets of literals,
|α+| ≤ 1 (butα− may be of arbitrary size), and every atom inα+ is regular, i.e.α contains

1 We do not allow “classical” negation¬, however, programs with¬ can be reduced to programs without it, see
e.g. (Lifschitz et al. 2001).
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at most one positive atom, which may not contain the equalitypredicate.2 The setα is the
headof the rule and represents a disjunction of literals, whileβ is thebodyand represents
a conjunction of literals. Ifα = ∅, the rule is called aconstraint. Free rulesare rules of the
form q( ~X) ∨ not q( ~X)←; they enable a choice for the inclusion of atoms in a model. We
call a predicatep freeif there is a free rulep( ~X) ∨ not p( ~X)←. Atoms, literals, rules, and
programs that do not contain variables areground.

For a literal, rule, or programo, let cts(o), vars(o), preds(o) be the constants, variables,
and predicates, respectively, ino. A pre-interpretationU for a programP is a pair(D, σ)

whereD is a non-emptydomainandσ : cts(P ) → D is a function which maps all
constants inP to elements fromD.3 PU is the ground program obtained fromP by sub-
stituting every variable inP with every possible element fromD and every constantc with
σ(c). E.g., for a ruler : p(X) ← f(X, c) andU = ({x, y}, σ) whereσ(c) = x, we have
that the grounding w.r.t.U is:

p(x ) ← f (x , x )

p(y) ← f (y, x )

LetBP be the set of regular atoms obtained from the language of the ground programP .
An interpretationI of a ground programP is a subset ofBP . For a ground regular atom
p(~t), we writeI |= p(~t) if p(~t) ∈ I; for an equality atomt = s, we writeI |= t = s if
s andt are equal terms. We writeI |= not p(~t) if I 6|= p(~t), for p(~t) an atom. For a set
of ground literalsA, I |= A holds if I |= l for everyl ∈ A. A ground ruler : α ← β

is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α wheneverI |= β. A ground
constraint← β is satisfied w.r.t.I if I 6|= β.

For a ground programP without not, an interpretationI of P is a modelof P if I

satisfies every rule inP ; it is an answer setof P if it is a subset minimal model ofP .
For ground programsP containingnot, thereduct(Inoue and Sakama 1998) w.r.t.I isP I ,
whereP I consists ofα+ ← β+ for everyα← β in P such thatI |= not β− andI |= α−.
I is ananswer setof P if I is an answer set ofP I . Note that allowing negation in the head
of rules leads to the loss of theanti-chain property(Inoue and Sakama 1998) which states
that no answer set can be a strict subset of another answer set. E.g, a rulea ∨ not a ← has
the answer sets∅ and{a} . However, negation in the head is required to ensure first-order
behavior for certain predicates, e.g., when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set of rules; infinite programs only
appear as byproducts of grounding a finite program using an infinite pre-interpretation. An
open interpretationof a programP is a pair(U,M) whereU is a pre-interpretation for
P andM is an interpretation ofPU . An open answer setof P is an open interpretation
(U,M) of P with M an answer set ofPU . An n-ary predicatep in P is satisfiableif there
is an open answer set((D, σ),M) of P and a~x ∈ Dn such thatp(~x) ∈ M . A programP

is satisfiable iff it has an open answer set. Note that satisfiability checking of programs can
be easily reduced to satisfiability checking of predicates:P is satisfiable iffp is satisfiable

2 The condition|α+| ≤ 1 makes the GL-reduct non-disjunctive, ensuring that theimmediate consequence
operator is well-defined, see (Heymans et al. 2006b).

3 In (Heymans et al. 2006b), we only use the domainD which is there defined as a non-empty superset of the
constants inP . This corresponds to a pre-interpretation(D,σ) whereσ is the identity function onD.
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w.r.t.P ∪ {p( ~X) ∨ not p( ~X) ←}, wherep is a predicate symbol not used inP and ~X is
a tuple of variables. In the following, when we speak of satisfiability checking, we refer to
satisfiability checking of predicates, unless specified otherwise.

Satisfiability checking w.r.t. the open answer set semantics is undecidable in general.
In (Heymans et al. 2006b), we identify a syntactically restricted fragment of programs, so-
calledguarded programs, for which satisfiability checking is decidable, which is shown
through a reduction to guarded fixed point logic (Grädel andWalukiewicz 1999). The de-
cidability of guarded programs relies on the presence of aguard in each rule, where a
guard is an atom that contains all variables of the rule. Formally, a ruler : α ← β is
guardedif there is an atomγb ∈ β+ such thatvars(r) ⊆ vars(γb); γb is theguardof r.
A programP is a guarded program (GP)if every non-free rule inP is guarded. E.g., a
rule a(X,Y ) ← not f(X,Y ) is not guarded, buta(X,Y ) ← g(X,Y ), not f(X,Y ) is
guarded with guardg(X,Y ). Satisfiability checking of predicates w.r.t. guarded programs
is 2-EXPTIME-complete (Heymans et al. 2006b) – a result that stems from the correspond-
ing complexity in guarded fixed point logic.

2.2 The Description Logic DLRO−{≤}

DLR (Calvanese et al. 1997; Baader et al. 2003) is a DL which supports roles of arbitrary
arity, whereas most DLs only support binary roles. We introduce an extension ofDLRwith
nominals, calledDLRO (Heymans et al. 2006). The basic building blocks ofDLRO are
concept namesA andrelation namesP whereP denotes an arbitraryn-ary relation for
2 ≤ n ≤ nmax andnmax is a given finite non-negative integer. Role expressionsR and
concept expressionsC are defined as:

R→ ⊤n | P | ($i/n : C) | ¬R | R1 ⊓R2 | {(o1, . . . , on)}

C → ⊤1 | A | ¬C | C1 ⊓ C2 | ∃[$i]R | ≤k[$i]R | {o}

wherei is between1 andn in ($i/n : C); similarly in ∃[$i]R and≤k[$i]R for R ann-ary
relation. Moreover, we assume that the above constructs arewell-typed, e.g.,R1 ⊓ R2 is
defined only for relations of the same arity. The semantics ofDLRO is given by interpre-
tationsI = (∆I , ·I) where∆I is a non-empty set, thedomain, and·I is an interpretation
function such thatCI ⊆ ∆I , RI ⊆ (∆I)n for ann-ary relationR, and the following
conditions are satisfied (P,R,R1, andR2 have arityn):

⊤I
n
⊆ (∆I)n

P
I ⊆ ⊤I

n

(¬R)I = ⊤I
n
\RI

(R1 ⊓R2)
I = R

I
1 ∩R

I
2

($i/n : C)I = {(d1, . . . , dn) ∈ ⊤
I
n | di ∈ CI}
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⊤I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \CI

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ R
I . di = d}

(≤k[$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ R
I | di = d}| ≤ k}

{o}I = {oI} ⊆ ∆I

{(o1, . . . , on)}
I = {(oI1 , . . . , o

I
n)}

Note that inDLRO the negation of role expressions is defined w.r.t.⊤I
n and not w.r.t.(∆I)n.

A DLRO knowledge baseΣ is a set of terminological axioms and role axioms, which de-
note subset relations between concept and role expressions(of the same arity), respectively.
A terminological axiomC1 ⊑ C2 is satisfiedby I iff CI

1 ⊆ CI
2 . A role axiomR1 ⊑ R2 is

satisfiedbyI iff RI
1 ⊆ R

I
2 . An interpretationI is amodelof a knowledge baseΣ (i.e.Σ is

satisfied byI) if all axioms inΣ are satisfied byI; if Σ has a model, thenΣ is satisfiable.
A concept expressionC is satisfiable w.r.t. a knowledge baseΣ if there is a modelI of Σ
such thatCI 6= ∅.

Note that for every interpretationI,

({(o1, . . . , on)})
I = (($1/n : {o1}) ⊓ . . . ⊓ ($n/n : {on}))

I .

Therefore, in the remainder of the paper, we will restrict ourselves to nominals of the form
{o}. We denote the fragment ofDLRO without the number restriction≤ k[$i]R with
DLRO−{≤}.

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are combinations of Description Logic (DL) knowledge bases
and guarded logic programs (GP). They are a variant of the r-hybrid knowledge bases
introduced in (Rosati 2005a).

Definition 1
Given a Description LogicDL, a g-hybrid knowledge baseis a pair(Σ, P ) whereΣ is a
DL knowledge base andP is a guarded program.

Note that in the above definition there are no restrictions onthe use of predicate symbols.
We call the atoms and literals inP that have underlying predicate symbols which cor-
respond to concept or role names in the DL knowledge baseDL atomsandDL literals,
respectively. Variables in rules are not required to appearin positive non-DL atoms, which
is the case in, e.g., theDL+log knowledge bases in (Rosati 2006), the r-hybrid knowledge
bases in (Rosati 2005a), and the DL-safe rules in (Motik et al. 2004). DL-atoms can appear
in the head of rules, thereby enabling a bi-directional flow of information between the DL
knowledge base and the logic program.

Example 1
Consider theDLRO−{≤} knowledge baseΣ wheresocialDrinker is a concept,drinks is
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a ternary role such that, intuitively,(x, y, z) is in the interpretation ofdrinks if a personx
drinks some drinkz with a persony. Σ consists of the single axiom

socialDrinker ⊑ ∃[$1 ](drinks ⊓ ($3/3 : {wine}))

which indicates that social drinkers drink wine with someone. Consider a GPP that
indicates that someone has an increased risk of alcoholism if the person is a social drinker
and knows someone from the association of Alcoholics Anonymous (AA). Furthermore,
we state thatjohn is a social drinker and knowsmichaelfrom AA:

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )

knowsFromAA(john,michael) ←

socialDrinker(john) ←

Together,Σ andP form a g-hybrid knowledge base. The literalssocialDrinker(X ) and
socialDrinker(john) are DL atoms where the latter appears in the head of a rule inP . The
literal knowsFromAA(X,Y)appears only in the programP (and is thus not a DL atom).

Given a DL interpretationI = (∆I , ·I) and a ground programP , we defineΠ(P, I) as
theprojectionof P with respect toI, which is obtained as follows: for every ruler in P ,

• if there exists a DL literal in the head of the form

— A(~t) with ~t ∈ AI , or
— not A(~t) with ~t 6∈ AI ,

then deleter,
• if there exists a DL literal in the body of the form

— A(~t) with ~t 6∈ AI , or
— not A(~t) with ~t ∈ AI ,

then deleter,
• otherwise, delete all DL literals fromr.

Intuitively, the projection “evaluates” the program with respect toI by removing (evalu-
ating) rules and DL literals consistently withI; conceptually this is similar to the reduct,
which removes rules and negative literals consistently with an interpretation of the pro-
gram.

Definition 2
Let (Σ, P ) be a g-hybrid knowledge base. An interpretation of(Σ, P ) is a tuple(U, I,M)

such that

• U = (D, σ) is a pre-interpretation forP ,
• I = (D, ·I) is an interpretation ofΣ,
• M is an interpretation ofΠ(PU , I), and
• bI = σ(b) for every constant symbolb appearing both inΣ and inP .

Then,(U = (D, σ), I,M) is a modelof a g-hybrid knowledge base(Σ, P ) if I is a
model ofΣ andM is an answer set ofΠ(PU , I).

For p a concept expression fromΣ or a predicate fromP , we say thatp is satisfiable
w.r.t. (Σ, P ) if there is a model(U, I,M) such thatpI 6= ∅ or p(~x) ∈M for some~x from
D, respectively.
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Example 2
Consider the g-hybrid knowledge base in Example 1. TakeU = (D, σ) with D = {john,

michael, wine, x} andσ the identity function on the constant symbols in(Σ, P ). Further-
more, define·I as follows:

• socialDrinkerI = {john},
• drinksI = {(john, x ,wine)},
• wineI = wine.

If M = {knowsfromAA(john,michael), problematic(john)}, then(U, I,M) is a model
of this g-hybrid knowledge base. Note that the projectionΠ(P, I) does not contain the rule
socialDrinker(john) ← .

4 Translation to Guarded Logic Programs

In this section we introduce a translation of g-hybrid knowledge bases to guarded logic
programs (GP) under the open answer set semantics, show thatthis translation preserves
satisfiability, and use this translation to obtain complexity results for reasoning in g-hybrid
knowledge bases. Before introducing the translation to guarded programs formally, we
introduce the translation through an example.

Consider the knowledge base in Example 1. The axiom

socialDrinker ⊑ ∃[$1 ](drinks ⊓ ($3/3 : {wine}))

translates to the constraint

← socialDrinker(X ), not (∃[$1 ](drinks ⊓ ($3/3 : {wine})))(X )

Thus, the concept expressions on either side of the⊑ symbol are associated with a new
unary predicate name. For convenience, we name the new predicates according to the orig-
inal concept expressions. The constraint simulates the behavior of theDLRO−{≤} axiom.
If the left-hand side of the axiom holds and the right-hand side does not hold, there is a
contradiction.

It remains to ensure that those newly introduced predicatesbehave according to the DL
semantics. First, all the concept and role names occurring in the axiom above need to be
defined as free predicates, in order to simulate the first-order semantics of concept and role
names in DLs. In DLs, a tuple is either true or false in a given interpretation (cf. the law of
the excluded middle); this behavior can be captured exactlyby the free predicates:

socialDrinker(X ) ∨ not socialDrinker(X ) ←

drinks(X ,Y ,Z ) ∨ not drinks(X ,Y ,Z ) ←

Note that concept names are translated to unary free predicates, whilen-ary role names
are translated ton-ary free predicates.

The definition of the truth symbols⊤1 and⊤3 which are implicit in ourDLRO−{≤}

axiom (since the axiom contains a concept name and a ternary role) are translated to free
predicates as well. Note that we do not need a predicate for⊤2 since the axiom does not
contain binary predicates.

⊤1 (X ) ∨ not ⊤1 (X ) ←

⊤3 (X ,Y ,Z ) ∨ not ⊤3 (X ,Y ,Z ) ←
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We ensure that, for the ternaryDLRO−{≤} roledrinks , drinksI ⊆ ⊤I
3 holds by adding

the constraint:

← drinks(X ,Y ,Z ), not ⊤3 (X ,Y ,Z )

To ensure that⊤I
1 = ∆I , we add the constraint:

← not ⊤1 (X )

For rules containing only one variable, we can always assumethatX = X is in the body
and acts as the guard of the rule, so that the latter rule is guarded; cf. the equivalent rule
← not ⊤1 (X ),X = X .

We translate the nominal{wine} to the rule

{wine}(wine) ←

Intuitively, since this rule will be the only rule with the predicate{wine} in the head, every
open answer set of the translated program will contain{wine}(x) with σ(wine) = x if
and only if the corresponding interpretation{wine}I = {x} for wineI = x.

TheDLRO−{≤} role expression($3/3 : {wine}) indicates the ternary tuples for which
the third argument belongs to the extension of{wine}, which is translated to the following
rule:

($3/3 : {wine})(X ,Y ,Z ) ← ⊤3 (X ,Y ,Z ), {wine}(Z )

Note that the above rule is guarded by the⊤3 literal.
Finally, the concept expression(drinks ⊓ ($3/3 : {wine})) can be represented by the

following rule:

(drinks ⊓ ($3/3 : {wine}))(X ,Y ,Z ) ← drinks(X ,Y ,Z ),

($3/3 : {wine})(X,Y, Z)

As we can see, the DL construct⊓ is translated to conjunction in the body of a rule.
TheDLRO−{≤} role∃[$1](drinks ⊓ ($3/3 : {wine})) can be represented using the

following rule:

(∃[$1](drinks ⊓ ($3/3 : {wine})))(X) ← (drinks ⊓ ($3/3 : {wine}))(X,Y, Z)

Indeed, the elements which belong to the extension of∃[$1](drinks ⊓ ($3/3 : {wine}))

are exactly those that are connected to the role($3/3 : {wine}), as specified in the rule.
This concludes the translation of the DL knowledge base in the g-hybrid knowledge

base of Example 1. The program can be considered as is, since,by definition of g-hybrid
knowledge bases, it is already a guarded program.

We now proceed with the formal translation. Theclosureclos(Σ) of aDLRO−{≤} knowl-
edge baseΣ is defined as the smallest set satisfying the following conditions:

• ⊤1 ∈ clos(Σ),
• for eachC ⊑ D an axiom inΣ (role or terminological),{C,D} ⊆ clos(Σ),
• for everyD in clos(Σ), clos(Σ) contains every subformula which is a concept ex-

pression or a role expression,
• if clos(Σ) contains ann-ary relation name, it contains⊤n.

We defineΦ(Σ) as the smallest logic program satisfying the following conditions:
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• For each terminological axiomC ⊑ D ∈ Σ, Φ(Σ) contains the constraint:

← C(X), not D(X) (1)

• For each role axiomR ⊑ S ∈ Σ whereR andS aren-ary,Φ(Σ) contains:

← R(X1, . . . , Xn), not S(X1, . . . , Xn) (2)

• For each⊤n ∈ clos(Σ), Φ(Σ) contains the free rule:

⊤n(X1, . . . , Xn) ∨ not ⊤n(X1, . . . , Xn)← (3)

Furthermore, for eachn-ary relation nameP ∈ clos(Σ), Φ(Σ) contains:

← P(X1, . . . , Xn), not ⊤n(X1, . . . , Xn) (4)

Intuitively, the latter rule ensures thatPI ⊆ ⊤I
n. Additionally,Φ(Σ) has to contain

the constraint:

← not ⊤1(X) (5)

which ensures that, for every elementx in the pre-interpretation,⊤1(x) is true in
the open answer set. The latter rule ensures that⊤I

1 = D for the corresponding
interpretation. The rule is implicitly guarded withX = X .
• Next, we distinguish between the types of concept and role expressions that appear

in clos(Σ). For eachD ∈ clos(Σ):

— if D is a concept nominal{o}, Φ(Σ) contains the fact:

D(o)← (6)

This fact ensures that{o}(x) holds in any open answer set iffx = σ(o) = oI

for an interpretation of(Σ, P ).
— if D is a concept name,Φ(Σ) contains:

D(X) ∨ not D(X)← (7)

— if D is ann-ary relation name,Φ(Σ) contains:

D(X1, . . . , Xn) ∨ not D(X1, . . . , Xn)← (8)

— if D = ¬E for a concept expressionE, Φ(Σ) contains the rule:

D(X)← not E(X) (9)

Note that we can again assume that such a rule is guarded byX = X .
— if D = ¬R for ann-ary role expressionR, Φ(Σ) contains:

D(X1, . . . , Xn)← ⊤n(X1, . . . , Xn), not R(X1, . . . , Xn) (10)

Note that if negation would have been defined w.r.t.Dn instead of⊤I
n, we

would not be able to write the above as a guarded rule.
— if D = E ⊓ F for concept expressionsE andF , Φ(Σ) contains:

D(X)← E(X), F (X) (11)
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— if D = E ⊓ F for n-ary role expressionsE andF, Φ(Σ) contains:

D(X1, . . . , Xn)← E(X1, . . . , Xn),F(X1, . . . , Xn) (12)

— if D = ($i/n : C), Φ(Σ) contains:

D(X1, . . . , Xi, . . . , Xn)← ⊤n(X1, . . . , Xi, . . . , Xn), C(Xi) (13)

— if D = ∃[$i]R, Φ(Σ) contains:

D(X)← R(X1, . . . , Xi−1, X,Xi+1, . . . , Xn) (14)

The following theorem shows that this translation preserves satisfiability.

Theorem 1
Let (Σ, P ) be a g-hybrid knowledge base withΣ aDLRO−{≤} knowledge base. Then, a
predicate or concept expressionp is satisfiable w.r.t.(Σ, P ) iff p is satisfiable w.r.t.Φ(Σ)∪
P .

Proof
(⇒) Assumep is satisfiable w.r.t.(Σ, P ), i.e., there exists a model(U, I,M) of (Σ, P ),
with U = (D, σ), in which p has a non-empty extension. Now, we construct the open
interpretation(V,N) of Φ(Σ, P ) as follows.V = (D, σ′) with σ′ : cts(Φ(Σ) ∪ P )→ D,
andσ′(x) = σ(x) for every constant symbolx fromP andσ′(x) = xI for every constant
symbolx fromΣ. Note thatσ′ is well-defined, since, for a constant symbolx which occurs
in bothΣ andP , we have thatσ(x) = xI . We define the setN as follows:

N = M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)}

∪ {R(x1, . . . , xn) | (x1, . . . , xn) ∈ R
I , R ∈ clos(Σ)}

with C andR concept expressions and role expressions respectively.
It is easy to verify that(V,N) is an open answer set ofΦ(Σ)∪P and(V,N) satisfiesp.
(⇐) Assume(V,N) is an open answer set ofΦ(Σ)∪P with V = (D, σ′) such thatp is

satisfied. We define the interpretation(U, I, N) of (Σ, P ) as follows.

• U = (D, σ) whereσ : cts(P ) → D with σ(x) = σ′(x) (note that this is possible since
cts(P ) ⊆ cts(Φ(Σ) ∪ P )). U is then a pre-interpretation forP .
• I = (D, ·I) is defined such thatAI = {x | A(x) ∈ N} for concept namesA, PI =

{(x1, . . . , xn) | P(x1, . . . , xn) ∈ N} for n-ary role namesP andoI = σ′(o), for o a
constant symbol inΣ (note thatσ′ is indeed defined ono). I is then an interpretation ofΣ.
• M = N \{p(~x) | p ∈ clos(Σ)}, such thatM is an interpretation ofΠ(PU , I).

Moreover, for every constant symbolb which appears in bothΣ andP , bI = σ(b). As a
consequence,(U, I,M) is an interpretation of(Σ, P ).

It is easy to verify that(U, I,M) is a model of(Σ, P ) which satisfiesp.

Theorem 2
Let (Σ, P ) be a g-hybrid knowledge base whereΣ is aDLRO−{≤} knowledge base.
Then,Φ(Σ) ∪ P is a guarded program with a size polynomial in the size of(Σ, P ).
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Proof
The rules inΦ(Σ) are obviously guarded. SinceP is a guarded program,Φ(Σ) ∪ P is a
guarded program as well.

The size ofclos(Σ) is of the ordern logn wheren is the size ofΣ. Intuitively, given
that the size of an expression isn, we have that the size of the set of its subexpressions is
at most the size of a tree with depthlogn where the size of the subexpressions at a certain
level of the tree is at mostn.

The size ofΦ(Σ) is clearly polynomial in the size ofclos(Σ), assuming that the arityn of
an added role expression is polynomial in the size of the maximal arity of role expressions
in Σ. If we were to add a relation nameR with arity 2n, wheren is the maximal arity of
relation names inC andΣ, the size ofΣ would increase linearly, but the size ofΦ(Σ) ∪ P

would increase exponentially: one needs to add, e.g., rules

⊤2n(X1, . . . , X2n) ∨ not ⊤2n(X1, . . . , X2n)←

which introduce an exponential number of arguments while the size of the roleR does not
depend on its arity.

Note that in g-hybrid knowledge bases, we considerDLRO−{≤}, which isDLRO
without expressions of the form≤ k[$i]R, since such expressions cannot be simulated
with guarded programs. E.g., consider the concept expression ≤ 1[$1]R whereR is a
binary role. One can simulate the≤ by negation as failure:

≤ 1[$1]R(X)← not q(X)

for some newq, with q defined such that there are at least 2 differentR-successors:

q(X)← R(X,Y1), R(X,Y2), Y1 6= Y2

However, the latter rule is not guarded – there is no atom thatcontainsX , Y1, andY2. So,
in general, expressing number restrictions such as≤k[$i]R is out of reach for GPs. From
Theorems 1 and 2 we obtain the following corollary.

Corollary 1
Satisfiability checking w.r.t. g-hybrid knowledge bases(Σ, P ), with Σ a DLRO−{≤}

knowledge base, can be polynomially reduced to satisfiability checking w.r.t. GPs.

Since satisfiability checking w.r.t. GPs is 2-EXPTIME-complete (Heymans et al. 2006b),
we obtain the same 2-EXPTIME characterization for g-hybrid knowledge bases. We first
make explicit a corollary of Theorem 1.

Corollary 2
LetP be a guarded program. Then, a concept or role expressionp is satisfiable w.r.t.P iff
p is satisfiable w.r.t.(∅, P ).

Theorem 3
Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part is aDLRO−{≤}

knowledge base is 2-EXPTIME-complete.
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Proof
Membership in 2-EXPTIME follows from Corollary 1. Hardness follows from 2-EXPTIME-
hardness of satisfiability checking w.r.t. GPs and the reduction to satisfiability checking in
Corollary 2.

5 Relation with DL+log and other Related Work

In (Rosati 2006), so-calledDL+log knowledge bases combine a Description Logic knowl-
edge base with aweakly-safedisjunctive logic program. Formally, for a particular Descrip-
tion LogicDL, aDL+log knowledge baseis a pair(Σ, P ) whereΣ is aDL knowledge
base consisting of aTBox(a set of terminological axioms) and anABox(a set ofassertional
axioms), andP contains rulesα← β such that for every ruler : α← β ∈ P :

• α− = ∅,
• β− does not contain DL atoms (DL-positiveness),
• each variable inr occurs inβ+ (Datalog safeness), and
• each variable inr which occurs in a non-DL atom, occurs in a non-DL atom inβ+

(weak safeness).

The semantics forDL+log is the same as that of g-hybrid knowledge bases4, with the
following exceptions:

• We do not require thestandard name assumption, which basically says that the do-
main of every interpretation is essentially the same infinitely countable set of con-
stants. Neither do we have the impliedunique name assumption, making the seman-
tics for g-hybrid knowledge bases more in line with current Semantic Web standards
such as OWL (Dean and Schreiber 2004) where neither the standard names assump-
tion nor the unique names assumption applies. Note that Rosati also presented a
version of hybrid knowledge bases which does not adhere to the unique name as-
sumption in an earlier work (Rosati 2005b). However, the grounding of the program
part is with the constant symbols explicitly appearing in the program or DL part
only, which yields a less tight integration of the program and the DL part than in
(Rosati 2006) or in g-hybrid knowledge bases.
• We define an interpretation as a triple(U, I,M) instead of a pair(U, I ′) where
I ′ = I ∪M ; this is, however, equivalent toDL+log .

The key differences of the two approaches are:

• The programs considered inDL+log may have multiple positive literals in the head,
whereas we allow at most one. However, we allow negative literals in the head,
whereas this is not allowed inDL+log. Additionally, since DL-atoms are interpreted
classically, we may simulate positive DL-atoms in the head through negative DL-
atoms in the body.

4 Strictly speaking, we did not define answer sets of disjunctive programs, however, the definitions of Subsection
2.1 can serve for disjunctive programs without modification. Also, we did not consider ABoxes in our definition
of DLs in Subsection 2.2. However, the extension of the semantics to DL knowledge bases with ABoxes is
straightforward.
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• Instead of Datalog safeness we requireguardedness. Whereas with Datalog safeness
every variable in the rule should appear in some positive atom of the body of the rule,
guardedness requires that there is a positive atom that contains every variable in the
rule, with the exception of free rules. E.g.,a(X ) ← b(X ), c(Y ) is Datalog safe
sinceX appears inb(X) andY appears inc(Y ), but this rule is not guarded since
there is no atom that contains bothX andY . Note that we could easily extend the
approach taken in this paper toloosely guarded programswhich require that every
two variables in the rule should appear together in a positive atom, However, this
would still be less expressive than Datalog safeness.

• We do not have the requirement for weak safeness, i.e., head variables do not need
to appear positively in a non-DL atom. The guardedness may beprovided by a DL
atom.

Example 3

Example 1 contains the rule

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )

This allows to deduce thatX might be a problem case even ifX knows someone
from the AA but is not drinking with that person. Indeed, as illustrated by the model
in Example 1,john is drinking wine with some anonymousx and knowsmichael

from the AA. More correct would be the rule

problematic(X ,Z ) ← drinks(X ,Y ,Z ), knowsFromAA(X ,Y )

where we explicitly say thatX andY in thedrinks andknowsFromAA relations
should be the same, and we extend theproblematic predicate with the kind of drink
thatX has a problem with. Then, the head variableZ is guarded by the DL atom
drinks and the rule is thus not weakly-safe, but is guarded nonetheless. Thus, the
resulting knowledge base is not aDL+log knowledge base, but is a g-hybrid knowl-
edge base.

• We do not have the requirement for DL-positiveness, i.e., DLatoms may appear
negated in the body of rules (and also in the heads of rules). However, one could
allow this inDL+log knowledge bases as well, sincenot A( ~X) in the body of
the rule has the same effect asA( ~X) in the head, where the latter is allowed in
(Rosati 2006). Vice versa, we can also loosen our restriction on the occurrence of
positive atoms in the head (which allows at most one positiveatom in the head), to
allow for an arbitrary number of positive DL atoms in the head(but still keep the
number of positive non-DL atoms limited to one). E.g., a rulep(X ) ∨ A(X ) ← β,
whereA(X) is a DL atom, is not a valid rule in the programs we considered since the
head contains more than one positive atom. However, we can always rewrite such a
rule top(X )← β, not A(X ), which contains at most one positive atom in the head.
Arguably, DL atoms should not be allowed to occur negatively, because DL pred-
icates are interpreted classically and thus the negation infront of the DL atom is
not nonmonotonic. However, Datalog predicates which depend on DL predicates
are also (partially) interpreted classically, and DL atomsoccurring negatively in the
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body are equivalent to DL atoms occurring positively in the head which allows us to
partly overcome our limitation of rule heads to one positiveatom.
• We do not take into account ABoxes in the DL knowledge base. However, the DL

we consider includes nominals such that one can simulate theABox using termino-
logical axioms. Moreover, even if the DL does not include nominals, the ABox can
be written as ground facts in a program and ground facts are always guarded.
• Decidability for satisfiability checking5 of DL+log knowledge bases is guaranteed

if decidability of the conjunctive query containment problem is guaranteed for the
DL at hand. In contrast, we relied on a translation of DLs to guarded programs
for establishing decidability, and, as explained in the previous section, not all DLs
(e.g. those with number restrictions) can be translated to such a GP.

We briefly mentionAL-log (Donini et al. 1998), which is a predecessor ofDL+log .
AL-log considersALC knowledge bases for the DL part and a set of positive Horn clauses
for the program part. Every variable must appear in a positive atom in the body, and concept
names are the only DL predicates which may be used in the rules, and they may only be
used in rule bodies.

(Hustadt et al. 2004) and (Swift 2004) simulate reasoning inDLs with an LP formalism
by using an intermediate translation to first-order clauses. In (Hustadt et al. 2004),SHIQ
knowledge bases are reduced to first-order formulas, to which the basic superposition cal-
culus is applied. (Swift 2004) translatesALCQI concept expressions to first-order for-
mulas, grounds them with a finite number of constants, and transforms the result to a logic
program. One can use a finite number of constants by the finite model property ofALCQI.
In the presence of terminological axioms this is no longer possible since the finite model
property is not guaranteed to hold.

In (Levy and Rousset 1996), the DLALCNR (R stands for role intersection) is ex-
tended with Horn clausesq(~Y ) ← p1( ~X1), . . . , pn( ~Xn) where the variables in~Y must
appear in~X1 ∪ . . . ∪ ~Xn; p1, . . . , pn are either concept or role names, or ordinary pred-
icates not appearing in the DL part, andq is an ordinary predicate. There is no safeness
in the sense that every variable must appear in a non-DL atom.The semantics is defined
through extended interpretations that satisfy both the DL and clauses part (as FOL formu-
las). Query answering is undecidable if recursive Horn clauses are allowed, but decidabil-
ity can be regained by restricting the DL part or by enforcingthat the clauses are role safe
(each variable in a role atomR(X,Y ) for a roleR must appear in a non-DL atom). Note
that the latter restriction is less strict than the DL-safeness6 of (Motik et al. 2004), where
also variables in concept atomsA(X) need to appear in non-DL atoms. On the other hand,
(Motik et al. 2004) allows for the more expressive DLSHOIN (D), and the head predi-
cates may be DL atoms as well. Finally, SWRL (Horrocks and Patel-Schneider 2004b) can
be seen as an extension of (Motik et al. 2004) without any safeness restriction, which re-
sults in the loss of decidability of the formalism. Comparedto our work, we consider a
slightly less expressive Description Logic, but we consider logic programs with nonmono-

5 (Rosati 2006) considers checking satisfiability of knowledge bases rather than satisfiability of predicates. How-
ever, the former can easily be reduced to the latter.

6 DL-safeness is a restriction of the earlier mentioned weak safeness.
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tonic negation, and require guardedness, rather than role-or DL-safeness, to guarantee
decidability.

In (Eiter et al. 2004)Description Logic programsare introduced; atoms in the program
component may bedl-atomswith which one can query the knowledge in the DL com-
ponent. Suchdl-atomsmay specify information from the logic program which needs to
be taken into account when evaluating the query, yielding a bi-directional flow of infor-
mation. This leads to a minimal interface between the DL knowledge base and the logic
program, enabling a very loose integration, based on an entailment relation. In contrast,
we propose a much tighter integration between the rules and the ontology, with interaction
based on single models rather than entailment. For a detailed discussion of these two kinds
of interaction, we refer to (de Bruijn et al. 2006).

Two recent approaches (Motik and Rosati 2007; de Bruijn et al. 2007) use an embed-
ding in a nonmonotonic modal logic for integrating nonmonotonic logic programs and
ontologies based on classical logic (e.g. DL). (Motik and Rosati 2007) use the nonmono-
tonic logic of Minimal Knowledge and Negation as Failure (MKNF) for the combination,
and show decidability of reasoning in case reasoning in the considered description logic
is decidable, and the DL safeness condition (Motik et al. 2004) holds for the rules in the
logic program. In our approach, we do not require such a safeness condition, but require the
rules to beguarded, and make a semantic distinction between DL predicates and rule pred-
icates. (de Bruijn et al. 2007) introduce several embeddings of non-ground logic programs
in first-order autoepistemic logic (FO-AEL), and compare them under combination with
classical theories (ontologies). However, (de Bruijn et al. 2007) do not address the issue of
decidability or reasoning of such combinations.

Finally, (de Bruijn et al. 2006) use Quantified Equilibrium Logic as a single unifying
language to capture different approaches to hybrid knowledge bases, including the ap-
proach presented in this paper. Although we have presented atranslation of g-hybrid
knowledge bases to guarded logic programs, our direct semantics is still based on two
modules, relying on separate interpretations for the DL knowledge base and the logic pro-
gram, whereas (de Bruijn et al. 2006) define equilibrium models, which serve to give a
unifying semantics to the hybrid knowledge base. The approach of (de Bruijn et al. 2006)
may be used to define a notion of equivalence between, and may lead to new algorithms
for reasoning with, g-hybrid knowledge bases.

6 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Description Logic (DL) knowledge
bases with guarded logic programs. In particular, we combined knowledge bases of the
DL DLRO−{≤}, which is close to OWL DL, with guarded programs, and showed decid-
ability of this framework by a reduction to guarded programsunder the open answer set
semantics (Heymans et al. 2005a; Heymans et al. 2006b). We discussed the relation with
DL+log knowledge bases: g-hybrid knowledge bases overcome some ofthe limitations of
DL+log , such as the unique names assumption, Datalog safeness, andweak DL-safeness,
but introduce the requirement of guardedness. At present, asignificant disadvantage of our
approach is the lack of support for DLs with number restrictions which is inherent to the
use of guarded programs as our decidability vehicle. A solution for this would be to con-
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sider other types of programs, such asconceptual logic programs(Heymans et al. 2006a).
This would allow for the definition of a hybrid knowledge base(Σ, P ) whereΣ is aSHIQ
knowledge base andP is a conceptual logic program sinceSHIQ knowledge bases can
be translated to conceptual logic programs.

Although there are known complexity bounds for several fragments of open answer set
programming (OASP), including the guarded fragment considered in this paper, there are
no known effective algorithms for OASP. Additionally, at presence, there are no imple-
mented systems for open answer set programming. These are part of future work.
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Abstract

Recently, there has been a lot of interest in the integrationof Description Logics and rules on the
Semantic Web. We defineguarded hybrid knowledge bases(or g-hybrid knowledge bases) as knowl-
edge bases that consist of a Description Logic knowledge base and aguardedlogic program, similar
to theDL+log knowledge bases from (?). G-hybrid knowledge bases enable an integration of De-
scription Logics and Logic Programming where, unlike in other approaches, variables in the rules of
a guarded program do not need to appear in positive non-DL atoms of the body, i.e. DL atoms can
act asguardsas well. Decidability of satisfiability checking of g-hybrid knowledge bases is shown
for the particular DLDLRO

−{≤}, which is close to OWL DL, by a reduction to guarded programs
under the open answer set semantics. Moreover, we show 2-EXPTIME-completeness for satisfiability
checking of such g-hybrid knowledge bases. Finally, we discuss advantages and disadvantages of our
approach compared withDL+log knowledge bases.

KEYWORDS: g-hybrid knowledge bases, open answer set programming, guarded logic programs,
description logics

1 Introduction

The integration of Description Logics with rules has recently received a lot of attention in
the context of the Semantic Web (?; ?; ?; ?; ?; ?; ?). R-hybrid knowledge bases (?), and its
extensionDL+log (?), is an elegant formalism based on combined models for Description
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Logic knowledge bases and nonmonotonic logic programs. We propose a variant of r-
hybrid knowledge bases, calledg-hybrid knowledge bases, which do not require standard
names or a special safeness restriction on rules, but instead require the program to be
guarded. We show several computational properties by a reduction toguarded open answer
set programming (?; ?).

Open answer set programming (OASP) (?; ?) combines the logic programming and
first-order logic paradigms. From the logic programming paradigm it inherits a rule-based
presentation and a nonmonotonic semantics by means of negation as failure. In contrast
with usual logic programming semantics, such as the answer set semantics (?), OASP al-
lows for domains consisting of other objects than those present in the logic program at
hand. Such open domains are inspired by first-order logic based languages such as De-
scription Logics (DLs) (?) and make OASP a viable candidate for conceptual reasoning.
Due to its rule-based presentation and its support for nonmonotonic reasoning and open
domains, OASP can be used to reason with both rule-based and conceptual knowledge on
the Semantic Web, as illustrated in (?).

A major challenge for OASP is to control undecidability of satisfiability checking, a
challenge it shares with DL-based languages. In (?; ?), we identify a decidable class of
programs, the so-calledguarded programs, for which decidability of satisfiability checking
is obtained by a translation to guarded fixed point logic (?). In (?), we show the expres-
siveness of such guarded programs by simulating a DL withn-ary roles and nominals. In
particular, we extend the DLDLR (?) with bothconcept nominals{o} androle nominals
{(o1, . . . , on)}, resulting inDLRO. We denote the DLDLRO without number restric-
tions asDLRO−{≤}. Satisfiability checking of concept expressions w.r.t.DLRO−{≤}

knowledge bases can be reduced to checking satisfiability ofguarded programs (?).

A g-hybrid knowledge base consists of a Description Logic knowledge base and a
guarded program. TheDL+log knowledge bases from (?) areweakly safe, which means
that the interaction between the program and the DL knowledge base is restricted by re-
quiring that variables which appear in non-DL atoms, appearin positive non-DL atoms
in the body, where DL atoms are atoms involving a concept or role symbol from the DL
knowledge base. G-hybrid knowledge bases do not require such a restriction; instead, vari-
ables must appear in aguard of the rule, but this guard can be a DL atom as well. In
this paper, we show decidability of g-hybrid knowledge bases forDLRO−{≤} knowledge
bases by a reduction to guarded programs, and show that satisfiability checking of g-hybrid
knowledge bases is 2-EXPTIME-complete. The DLDLRO−{≤} is close toSHOIN , the
Description Logic underlying OWL DL (?). Compared withSHOIN ,DLRO−{≤} does
not include transitive roles and number restrictions, but does includen-ary roles and com-
plex role expressions.

To see why a combination of rules and ontologies, as proposedin g-hybrid knowledge
bases, is useful, and why the safeness conditions considered so far in the literature are not
appropriate in all scenarios, consider the Description Logic ontology

FraternityMember ⊑ Drinker ⊓ ∃hasDrinkingBuddy.FraternityMember

which says that fraternity members are drinkers who have drinking buddies, which are also
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fraternity members. Now consider the logic program

problemDrinker(X ) ← Drinker(X ), not socialDrinker(X )

socialDrinker(X ) ← Drinker(X), not problemDrinker(Y ),

hasDrinkingBuddy(X ,Y )

FraternityMember(John) ←

which says that drinkers are by default problem drinkers, unless it is known that they are
social drinkers; drinkers with drinking buddies who are notproblem drinkers are social
drinkers; and John is a fraternity member. From the combination of the ontology and the
logic program, one would expect to derive that John is a social drinker, and not a prob-
lem drinker. This logic program cannot be expressed using r-hybrid knowledge bases, or
DL+log , because the rules in the program are not weakly safe . However, the logic pro-
gram isguarded, and thus part of a valid g-hybrid knowledge base, which has the expected
consequences.

The remainder of the paper starts with an introduction to open answer set programming
and Description Logics in Section 2. Section 3 defines g-hybrid knowledge bases, translates
them to guarded programs when the DLDLRO−{≤} is considered, and provides a com-
plexity characterization for satisfiability checking of these particular g-hybrid knowledge
bases. In Section 5, we discuss the relation of g-hybrid knowledge bases withDL+log and
other related work. We conclude and give directions for further research in Section 6.

2 Preliminaries

In this section we introduce Open Answer Set Programming, guarded programs, and the
Description LogicDLRO−{≤}.

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from (?; ?), modified as in (?) such that it
does not assume uniqueness of names by default.Constants, variables, terms, andatoms
are defined as usual. Aliteral is an atomp(~t) or a naf-literal not p(~t), with ~t a tuple of
terms.1 Thepositive partof a set of literalsα is α+ = {p(~t) | p(~t) ∈ α} and thenegative
part of α is α− = {p(~t) | not p(~t) ∈ α}. We assume the existence of the (in)equality
predicates= and 6=, usually written in infix notation;t = s is an atom andt 6= s is
short fornot t = s. A regular atom is an atom without equality. For a setA of atoms,
not A = {not l | l ∈ A}.

A programis a countable set of rulesα ← β, whereα andβ are finite sets of literals,
|α+| ≤ 1 (butα− may be of arbitrary size), and every atom inα+ is regular, i.e.α contains
at most one positive atom, which may not contain the equalitypredicate.2 The setα is the
headof the rule and represents a disjunction of literals, whileβ is thebodyand represents

1 We do not allow “classical” negation¬, however, programs with¬ can be reduced to programs without it, see
e.g. (?).

2 The condition|α+| ≤ 1 makes the GL-reduct non-disjunctive, ensuring that theimmediate consequence
operator is well-defined, see (?).
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a conjunction of literals. Ifα = ∅, the rule is called aconstraint. Free rulesare rules of the
form q( ~X) ∨ not q( ~X)←; they enable a choice for the inclusion of atoms in a model. We
call a predicatep freeif there is a free rulep( ~X) ∨ not p( ~X)←. Atoms, literals, rules, and
programs that do not contain variables areground.

For a literal, rule, or programo, let cts(o), vars(o), preds(o) be the constants, variables,
and predicates, respectively, ino. A pre-interpretationU for a programP is a pair(D, σ)

whereD is a non-emptydomainandσ : cts(P ) → D is a function which maps all
constants inP to elements fromD.3 PU is the ground program obtained fromP by sub-
stituting every variable inP with every possible element fromD and every constantc with
σ(c). E.g., for a ruler : p(X) ← f(X, c) andU = ({x, y}, σ) whereσ(c) = x, we have
that the grounding w.r.t.U is:

p(x ) ← f (x , x )

p(y) ← f (y, x )

LetBP be the set of regular atoms obtained from the language of the ground programP .
An interpretationI of a ground programP is a subset ofBP . For a ground regular atom
p(~t), we writeI |= p(~t) if p(~t) ∈ I; for an equality atomt = s, we writeI |= t = s if
s andt are equal terms. We writeI |= not p(~t) if I 6|= p(~t), for p(~t) an atom. For a set
of ground literalsA, I |= A holds if I |= l for everyl ∈ A. A ground ruler : α ← β

is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α wheneverI |= β. A ground
constraint← β is satisfied w.r.t.I if I 6|= β.

For a ground programP without not, an interpretationI of P is a modelof P if I

satisfies every rule inP ; it is an answer setof P if it is a subset minimal model ofP .
For ground programsP containingnot, thereduct(?) w.r.t. I is P I , whereP I consists of
α+ ← β+ for everyα ← β in P such thatI |= not β− andI |= α−. I is ananswer set
of P if I is an answer set ofP I . Note that allowing negation in the head of rules leads to
the loss of theanti-chain property(?) which states that no answer set can be a strict subset
of another answer set. E.g, a rulea ∨ not a ← has the answer sets∅ and{a} . However,
negation in the head is required to ensure first-order behavior for certain predicates, e.g.,
when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set of rules; infinite programs only
appear as byproducts of grounding a finite program using an infinite pre-interpretation. An
open interpretationof a programP is a pair(U,M) whereU is a pre-interpretation for
P andM is an interpretation ofPU . An open answer setof P is an open interpretation
(U,M) of P with M an answer set ofPU . An n-ary predicatep in P is satisfiableif there
is an open answer set((D, σ),M) of P and a~x ∈ Dn such thatp(~x) ∈ M . A programP

is satisfiable iff it has an open answer set. Note that satisfiability checking of programs can
be easily reduced to satisfiability checking of predicates:P is satisfiable iffp is satisfiable
w.r.t.P ∪ {p( ~X) ∨ not p( ~X) ←}, wherep is a predicate symbol not used inP and ~X is
a tuple of variables. In the following, when we speak of satisfiability checking, we refer to
satisfiability checking of predicates, unless specified otherwise.

3 In (?), we only use the domainD which is there defined as a non-empty superset of the constants inP . This
corresponds to a pre-interpretation(D, σ) whereσ is the identity function onD.
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Satisfiability checking w.r.t. the open answer set semantics is undecidable in general.
In (?), we identify a syntactically restricted fragment of programs, so-calledguarded pro-
grams, for which satisfiability checking is decidable, which is shown through a reduction
to guarded fixed point logic (?). The decidability of guarded programs relies on the pres-
ence of aguard in each rule, where a guard is an atom that contains all variables of the
rule. Formally, a ruler : α ← β is guarded if there is an atomγb ∈ β+ such that
vars(r) ⊆ vars(γb); γb is theguardof r. A programP is aguarded program (GP)if ev-
ery non-free rule inP is guarded. E.g., a rulea(X,Y )← not f(X,Y ) is not guarded, but
a(X,Y )← g(X,Y ), not f(X,Y ) is guarded with guardg(X,Y ). Satisfiability checking
of predicates w.r.t. guarded programs is 2-EXPTIME-complete (?) – a result that stems from
the corresponding complexity in guarded fixed point logic.

2.2 The Description Logic DLRO−{≤}

DLR (?; ?) is a DL which supports roles of arbitrary arity, whereas most DLs only support
binary roles. We introduce an extension ofDLR with nominals, calledDLRO (?). The
basic building blocks ofDLRO are concept namesA and relation namesP whereP
denotes an arbitraryn-ary relation for2 ≤ n ≤ nmax andnmax is a given finite non-
negative integer. Role expressionsR and concept expressionsC are defined as:

R→ ⊤n | P | ($i/n : C) | ¬R | R1 ⊓R2 | {(o1, . . . , on)}

C → ⊤1 | A | ¬C | C1 ⊓ C2 | ∃[$i]R | ≤k[$i]R | {o}

wherei is between1 andn in ($i/n : C); similarly in ∃[$i]R and≤k[$i]R for R ann-ary
relation. Moreover, we assume that the above constructs arewell-typed, e.g.,R1 ⊓ R2 is
defined only for relations of the same arity. The semantics ofDLRO is given by interpre-
tationsI = (∆I , ·I) where∆I is a non-empty set, thedomain, and·I is an interpretation
function such thatCI ⊆ ∆I , RI ⊆ (∆I)n for ann-ary relationR, and the following
conditions are satisfied (P,R,R1, andR2 have arityn):

⊤I
n
⊆ (∆I)n

P
I ⊆ ⊤I

n

(¬R)I = ⊤I
n\R

I

(R1 ⊓R2)
I = R

I
1 ∩R

I
2

($i/n : C)I = {(d1, . . . , dn) ∈ ⊤
I
n | di ∈ CI}

⊤I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \CI

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ R
I . di = d}

(≤k[$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ R
I | di = d}| ≤ k}

{o}I = {oI} ⊆ ∆I

{(o1, . . . , on)}
I = {(oI1 , . . . , o

I
n)}
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Note that inDLRO the negation of role expressions is defined w.r.t.⊤I
n and not w.r.t.(∆I)n.

A DLRO knowledge baseΣ is a set of terminological axioms and role axioms, which de-
note subset relations between concept and role expressions(of the same arity), respectively.
A terminological axiomC1 ⊑ C2 is satisfiedby I iff CI

1 ⊆ CI
2 . A role axiomR1 ⊑ R2 is

satisfiedbyI iff RI
1 ⊆ R

I
2 . An interpretationI is amodelof a knowledge baseΣ (i.e.Σ is

satisfied byI) if all axioms inΣ are satisfied byI; if Σ has a model, thenΣ is satisfiable.
A concept expressionC is satisfiable w.r.t. a knowledge baseΣ if there is a modelI of Σ
such thatCI 6= ∅.

Note that for every interpretationI,

({(o1, . . . , on)})
I = (($1/n : {o1}) ⊓ . . . ⊓ ($n/n : {on}))

I .

Therefore, in the remainder of the paper, we will restrict ourselves to nominals of the form
{o}. We denote the fragment ofDLRO without the number restriction≤ k[$i]R with
DLRO−{≤}.

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are combinations of Description Logic (DL) knowledge bases
and guarded logic programs (GP). They are a variant of the r-hybrid knowledge bases
introduced in (?).

Definition 1
Given a Description LogicDL, a g-hybrid knowledge baseis a pair(Σ, P ) whereΣ is a
DL knowledge base andP is a guarded program.

Note that in the above definition there are no restrictions onthe use of predicate symbols.
We call the atoms and literals inP that have underlying predicate symbols which cor-
respond to concept or role names in the DL knowledge baseDL atomsandDL literals,
respectively. Variables in rules are not required to appearin positive non-DL atoms, which
is the case in, e.g., theDL+log knowledge bases in (?), the r-hybrid knowledge bases in
(?), and the DL-safe rules in (?). DL-atoms can appear in the head of rules, thereby en-
abling a bi-directional flow of information between the DL knowledge base and the logic
program.

Example 1
Consider theDLRO−{≤} knowledge baseΣ wheresocialDrinker is a concept,drinks is
a ternary role such that, intuitively,(x, y, z) is in the interpretation ofdrinks if a personx
drinks some drinkz with a persony. Σ consists of the single axiom

socialDrinker ⊑ ∃[$1 ](drinks ⊓ ($3/3 : {wine}))

which indicates that social drinkers drink wine with someone. Consider a GPP that
indicates that someone has an increased risk of alcoholism if the person is a social drinker
and knows someone from the association of Alcoholics Anonymous (AA). Furthermore,
we state thatjohn is a social drinker and knowsmichaelfrom AA:

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )

knowsFromAA(john,michael) ←

socialDrinker(john) ←
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Together,Σ andP form a g-hybrid knowledge base. The literalssocialDrinker(X ) and
socialDrinker(john) are DL atoms where the latter appears in the head of a rule inP . The
literal knowsFromAA(X,Y)appears only in the programP (and is thus not a DL atom).

Given a DL interpretationI = (∆I , ·I) and a ground programP , we defineΠ(P, I) as
theprojectionof P with respect toI, which is obtained as follows: for every ruler in P ,

• if there exists a DL literal in the head of the form

— A(~t) with ~t ∈ AI , or
— not A(~t) with ~t 6∈ AI ,

then deleter,
• if there exists a DL literal in the body of the form

— A(~t) with ~t 6∈ AI , or
— not A(~t) with ~t ∈ AI ,

then deleter,
• otherwise, delete all DL literals fromr.

Intuitively, the projection “evaluates” the program with respect toI by removing (evalu-
ating) rules and DL literals consistently withI; conceptually this is similar to the reduct,
which removes rules and negative literals consistently with an interpretation of the pro-
gram.

Definition 2
Let (Σ, P ) be a g-hybrid knowledge base. An interpretation of(Σ, P ) is a tuple(U, I,M)

such that

• U = (D, σ) is a pre-interpretation forP ,
• I = (D, ·I) is an interpretation ofΣ,
• M is an interpretation ofΠ(PU , I), and
• bI = σ(b) for every constant symbolb appearing both inΣ and inP .

Then,(U = (D, σ), I,M) is a modelof a g-hybrid knowledge base(Σ, P ) if I is a
model ofΣ andM is an answer set ofΠ(PU , I).

For p a concept expression fromΣ or a predicate fromP , we say thatp is satisfiable
w.r.t. (Σ, P ) if there is a model(U, I,M) such thatpI 6= ∅ or p(~x) ∈M for some~x from
D, respectively.

Example 2
Consider the g-hybrid knowledge base in Example 1. TakeU = (D, σ) with D = {john,

michael, wine, x} andσ the identity function on the constant symbols in(Σ, P ). Further-
more, define·I as follows:

• socialDrinkerI = {john},
• drinksI = {(john, x ,wine)},
• wineI = wine.

If M = {knowsfromAA(john,michael), problematic(john)}, then(U, I,M) is a model
of this g-hybrid knowledge base. Note that the projectionΠ(P, I) does not contain the rule
socialDrinker(john) ← .
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4 Translation to Guarded Logic Programs

In this section we introduce a translation of g-hybrid knowledge bases to guarded logic
programs (GP) under the open answer set semantics, show thatthis translation preserves
satisfiability, and use this translation to obtain complexity results for reasoning in g-hybrid
knowledge bases. Before introducing the translation to guarded programs formally, we
introduce the translation through an example.

Consider the knowledge base in Example 1. The axiom

socialDrinker ⊑ ∃[$1 ](drinks ⊓ ($3/3 : {wine}))

translates to the constraint

← socialDrinker(X ), not (∃[$1 ](drinks ⊓ ($3/3 : {wine})))(X )

Thus, the concept expressions on either side of the⊑ symbol are associated with a new
unary predicate name. For convenience, we name the new predicates according to the orig-
inal concept expressions. The constraint simulates the behavior of theDLRO−{≤} axiom.
If the left-hand side of the axiom holds and the right-hand side does not hold, there is a
contradiction.

It remains to ensure that those newly introduced predicatesbehave according to the DL
semantics. First, all the concept and role names occurring in the axiom above need to be
defined as free predicates, in order to simulate the first-order semantics of concept and role
names in DLs. In DLs, a tuple is either true or false in a given interpretation (cf. the law of
the excluded middle); this behavior can be captured exactlyby the free predicates:

socialDrinker(X ) ∨ not socialDrinker(X ) ←

drinks(X ,Y ,Z ) ∨ not drinks(X ,Y ,Z ) ←

Note that concept names are translated to unary free predicates, whilen-ary role names
are translated ton-ary free predicates.

The definition of the truth symbols⊤1 and⊤3 which are implicit in ourDLRO−{≤}

axiom (since the axiom contains a concept name and a ternary role) are translated to free
predicates as well. Note that we do not need a predicate for⊤2 since the axiom does not
contain binary predicates.

⊤1 (X ) ∨ not ⊤1 (X ) ←

⊤3 (X ,Y ,Z ) ∨ not ⊤3 (X ,Y ,Z ) ←

We ensure that, for the ternaryDLRO−{≤} roledrinks , drinksI ⊆ ⊤I
3 holds by adding

the constraint:

← drinks(X ,Y ,Z ), not ⊤3 (X ,Y ,Z )

To ensure that⊤I
1 = ∆I , we add the constraint:

← not ⊤1 (X )

For rules containing only one variable, we can always assumethatX = X is in the body
and acts as the guard of the rule, so that the latter rule is guarded; cf. the equivalent rule
← not ⊤1 (X ),X = X .
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We translate the nominal{wine} to the rule

{wine}(wine) ←

Intuitively, since this rule will be the only rule with the predicate{wine} in the head, every
open answer set of the translated program will contain{wine}(x) with σ(wine) = x if
and only if the corresponding interpretation{wine}I = {x} for wineI = x.

TheDLRO−{≤} role expression($3/3 : {wine}) indicates the ternary tuples for which
the third argument belongs to the extension of{wine}, which is translated to the following
rule:

($3/3 : {wine})(X ,Y ,Z ) ← ⊤3 (X ,Y ,Z ), {wine}(Z )

Note that the above rule is guarded by the⊤3 literal.
Finally, the concept expression(drinks ⊓ ($3/3 : {wine})) can be represented by the

following rule:

(drinks ⊓ ($3/3 : {wine}))(X ,Y ,Z ) ← drinks(X ,Y ,Z ),

($3/3 : {wine})(X,Y, Z)

As we can see, the DL construct⊓ is translated to conjunction in the body of a rule.
TheDLRO−{≤} role∃[$1](drinks ⊓ ($3/3 : {wine})) can be represented using the

following rule:

(∃[$1](drinks ⊓ ($3/3 : {wine})))(X) ← (drinks ⊓ ($3/3 : {wine}))(X,Y, Z)

Indeed, the elements which belong to the extension of∃[$1](drinks ⊓ ($3/3 : {wine}))

are exactly those that are connected to the role($3/3 : {wine}), as specified in the rule.
This concludes the translation of the DL knowledge base in the g-hybrid knowledge

base of Example 1. The program can be considered as is, since,by definition of g-hybrid
knowledge bases, it is already a guarded program.

We now proceed with the formal translation. Theclosureclos(Σ) of aDLRO−{≤} knowl-
edge baseΣ is defined as the smallest set satisfying the following conditions:

• ⊤1 ∈ clos(Σ),
• for eachC ⊑ D an axiom inΣ (role or terminological),{C,D} ⊆ clos(Σ),
• for everyD in clos(Σ), clos(Σ) contains every subformula which is a concept ex-

pression or a role expression,
• if clos(Σ) contains ann-ary relation name, it contains⊤n.

We defineΦ(Σ) as the smallest logic program satisfying the following conditions:

• For each terminological axiomC ⊑ D ∈ Σ, Φ(Σ) contains the constraint:

← C(X), not D(X) (1)

• For each role axiomR ⊑ S ∈ Σ whereR andS aren-ary,Φ(Σ) contains:

← R(X1, . . . , Xn), not S(X1, . . . , Xn) (2)

• For each⊤n ∈ clos(Σ), Φ(Σ) contains the free rule:

⊤n(X1, . . . , Xn) ∨ not ⊤n(X1, . . . , Xn)← (3)
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Furthermore, for eachn-ary relation nameP ∈ clos(Σ), Φ(Σ) contains:

← P(X1, . . . , Xn), not ⊤n(X1, . . . , Xn) (4)

Intuitively, the latter rule ensures thatPI ⊆ ⊤I
n
. Additionally,Φ(Σ) has to contain

the constraint:

← not ⊤1(X) (5)

which ensures that, for every elementx in the pre-interpretation,⊤1(x) is true in
the open answer set. The latter rule ensures that⊤I

1 = D for the corresponding
interpretation. The rule is implicitly guarded withX = X .
• Next, we distinguish between the types of concept and role expressions that appear

in clos(Σ). For eachD ∈ clos(Σ):

— if D is a concept nominal{o}, Φ(Σ) contains the fact:

D(o)← (6)

This fact ensures that{o}(x) holds in any open answer set iffx = σ(o) = oI

for an interpretation of(Σ, P ).
— if D is a concept name,Φ(Σ) contains:

D(X) ∨ not D(X)← (7)

— if D is ann-ary relation name,Φ(Σ) contains:

D(X1, . . . , Xn) ∨ not D(X1, . . . , Xn)← (8)

— if D = ¬E for a concept expressionE, Φ(Σ) contains the rule:

D(X)← not E(X) (9)

Note that we can again assume that such a rule is guarded byX = X .
— if D = ¬R for ann-ary role expressionR, Φ(Σ) contains:

D(X1, . . . , Xn)← ⊤n(X1, . . . , Xn), not R(X1, . . . , Xn) (10)

Note that if negation would have been defined w.r.t.Dn instead of⊤I
n, we

would not be able to write the above as a guarded rule.
— if D = E ⊓ F for concept expressionsE andF , Φ(Σ) contains:

D(X)← E(X), F (X) (11)

— if D = E ⊓ F for n-ary role expressionsE andF, Φ(Σ) contains:

D(X1, . . . , Xn)← E(X1, . . . , Xn),F(X1, . . . , Xn) (12)

— if D = ($i/n : C), Φ(Σ) contains:

D(X1, . . . , Xi, . . . , Xn)← ⊤n(X1, . . . , Xi, . . . , Xn), C(Xi) (13)

— if D = ∃[$i]R, Φ(Σ) contains:

D(X)← R(X1, . . . , Xi−1, X,Xi+1, . . . , Xn) (14)

The following theorem shows that this translation preserves satisfiability.
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Theorem 1
Let (Σ, P ) be a g-hybrid knowledge base withΣ aDLRO−{≤} knowledge base. Then, a
predicate or concept expressionp is satisfiable w.r.t.(Σ, P ) iff p is satisfiable w.r.t.Φ(Σ)∪
P .

Proof
(⇒) Assumep is satisfiable w.r.t.(Σ, P ), i.e., there exists a model(U, I,M) of (Σ, P ),
with U = (D, σ), in which p has a non-empty extension. Now, we construct the open
interpretation(V,N) of Φ(Σ, P ) as follows.V = (D, σ′) with σ′ : cts(Φ(Σ) ∪ P )→ D,
andσ′(x) = σ(x) for every constant symbolx fromP andσ′(x) = xI for every constant
symbolx fromΣ. Note thatσ′ is well-defined, since, for a constant symbolx which occurs
in bothΣ andP , we have thatσ(x) = xI . We define the setN as follows:

N = M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)}

∪ {R(x1, . . . , xn) | (x1, . . . , xn) ∈ R
I , R ∈ clos(Σ)}

with C andR concept expressions and role expressions respectively.
It is easy to verify that(V,N) is an open answer set ofΦ(Σ)∪P and(V,N) satisfiesp.
(⇐) Assume(V,N) is an open answer set ofΦ(Σ)∪P with V = (D, σ′) such thatp is

satisfied. We define the interpretation(U, I, N) of (Σ, P ) as follows.

• U = (D, σ) whereσ : cts(P ) → D with σ(x) = σ′(x) (note that this is possible since
cts(P ) ⊆ cts(Φ(Σ) ∪ P )). U is then a pre-interpretation forP .
• I = (D, ·I) is defined such thatAI = {x | A(x) ∈ N} for concept namesA, PI =

{(x1, . . . , xn) | P(x1, . . . , xn) ∈ N} for n-ary role namesP andoI = σ′(o), for o a
constant symbol inΣ (note thatσ′ is indeed defined ono). I is then an interpretation ofΣ.
• M = N \{p(~x) | p ∈ clos(Σ)}, such thatM is an interpretation ofΠ(PU , I).

Moreover, for every constant symbolb which appears in bothΣ andP , bI = σ(b). As a
consequence,(U, I,M) is an interpretation of(Σ, P ).

It is easy to verify that(U, I,M) is a model of(Σ, P ) which satisfiesp.

Theorem 2
Let (Σ, P ) be a g-hybrid knowledge base whereΣ is aDLRO−{≤} knowledge base.
Then,Φ(Σ) ∪ P is a guarded program with a size polynomial in the size of(Σ, P ).

Proof
The rules inΦ(Σ) are obviously guarded. SinceP is a guarded program,Φ(Σ) ∪ P is a
guarded program as well.

The size ofclos(Σ) is of the ordern logn wheren is the size ofΣ. Intuitively, given
that the size of an expression isn, we have that the size of the set of its subexpressions is
at most the size of a tree with depthlogn where the size of the subexpressions at a certain
level of the tree is at mostn.

The size ofΦ(Σ) is clearly polynomial in the size ofclos(Σ), assuming that the arityn of
an added role expression is polynomial in the size of the maximal arity of role expressions
in Σ. If we were to add a relation nameR with arity 2n, wheren is the maximal arity of
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relation names inC andΣ, the size ofΣ would increase linearly, but the size ofΦ(Σ) ∪ P

would increase exponentially: one needs to add, e.g., rules

⊤2n(X1, . . . , X2n) ∨ not ⊤2n(X1, . . . , X2n)←

which introduce an exponential number of arguments while the size of the roleR does not
depend on its arity.

Note that in g-hybrid knowledge bases, we considerDLRO−{≤}, which isDLRO
without expressions of the form≤ k[$i]R, since such expressions cannot be simulated
with guarded programs. E.g., consider the concept expression ≤ 1[$1]R whereR is a
binary role. One can simulate the≤ by negation as failure:

≤ 1[$1]R(X)← not q(X)

for some newq, with q defined such that there are at least 2 differentR-successors:

q(X)← R(X,Y1), R(X,Y2), Y1 6= Y2

However, the latter rule is not guarded – there is no atom thatcontainsX , Y1, andY2. So,
in general, expressing number restrictions such as≤k[$i]R is out of reach for GPs. From
Theorems 1 and 2 we obtain the following corollary.

Corollary 1
Satisfiability checking w.r.t. g-hybrid knowledge bases(Σ, P ), with Σ a DLRO−{≤}

knowledge base, can be polynomially reduced to satisfiability checking w.r.t. GPs.

Since satisfiability checking w.r.t. GPs is 2-EXPTIME-complete (?), we obtain the same
2-EXPTIME characterization for g-hybrid knowledge bases. We first make explicit a corol-
lary of Theorem 1.

Corollary 2
LetP be a guarded program. Then, a concept or role expressionp is satisfiable w.r.t.P iff
p is satisfiable w.r.t.(∅, P ).

Theorem 3
Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part is aDLRO−{≤}

knowledge base is 2-EXPTIME-complete.

Proof
Membership in 2-EXPTIME follows from Corollary 1. Hardness follows from 2-EXPTIME-
hardness of satisfiability checking w.r.t. GPs and the reduction to satisfiability checking in
Corollary 2.

5 Relation with DL+log and other Related Work

In (?), so-calledDL+log knowledge bases combine a Description Logic knowledge base
with a weakly-safedisjunctive logic program. Formally, for a particular Description Logic
DL, aDL+log knowledge baseis a pair(Σ, P ) whereΣ is aDL knowledge base consist-
ing of aTBox(a set of terminological axioms) and anABox(a set ofassertional axioms),
andP contains rulesα← β such that for every ruler : α← β ∈ P :
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• α− = ∅,
• β− does not contain DL atoms (DL-positiveness),
• each variable inr occurs inβ+ (Datalog safeness), and
• each variable inr which occurs in a non-DL atom, occurs in a non-DL atom inβ+

(weak safeness).

The semantics forDL+log is the same as that of g-hybrid knowledge bases4, with the
following exceptions:

• We do not require thestandard name assumption, which basically says that the do-
main of every interpretation is essentially the same infinitely countable set of con-
stants. Neither do we have the impliedunique name assumption, making the seman-
tics for g-hybrid knowledge bases more in line with current Semantic Web standards
such as OWL (?) where neither the standard names assumption nor the uniquenames
assumption applies. Note that Rosati also presented a version of hybrid knowledge
bases which does not adhere to the unique name assumption in an earlier work (?).
However, the grounding of the program part is with the constant symbols explicitly
appearing in the program or DL part only, which yields a less tight integration of the
program and the DL part than in (?) or in g-hybrid knowledge bases.
• We define an interpretation as a triple(U, I,M) instead of a pair(U, I ′) where
I ′ = I ∪M ; this is, however, equivalent toDL+log .

The key differences of the two approaches are:

• The programs considered inDL+log may have multiple positive literals in the head,
whereas we allow at most one. However, we allow negative literals in the head,
whereas this is not allowed inDL+log. Additionally, since DL-atoms are interpreted
classically, we may simulate positive DL-atoms in the head through negative DL-
atoms in the body.
• Instead of Datalog safeness we requireguardedness. Whereas with Datalog safeness

every variable in the rule should appear in some positive atom of the body of the rule,
guardedness requires that there is a positive atom that contains every variable in the
rule, with the exception of free rules. E.g.,a(X ) ← b(X ), c(Y ) is Datalog safe
sinceX appears inb(X) andY appears inc(Y ), but this rule is not guarded since
there is no atom that contains bothX andY . Note that we could easily extend the
approach taken in this paper toloosely guarded programswhich require that every
two variables in the rule should appear together in a positive atom, However, this
would still be less expressive than Datalog safeness.
• We do not have the requirement for weak safeness, i.e., head variables do not need

to appear positively in a non-DL atom. The guardedness may beprovided by a DL
atom.

4 Strictly speaking, we did not define answer sets of disjunctive programs, however, the definitions of Subsection
2.1 can serve for disjunctive programs without modification. Also, we did not consider ABoxes in our definition
of DLs in Subsection 2.2. However, the extension of the semantics to DL knowledge bases with ABoxes is
straightforward.
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Example 3
Example 1 contains the rule

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )

This allows to deduce thatX might be a problem case even ifX knows someone
from the AA but is not drinking with that person. Indeed, as illustrated by the model
in Example 1,john is drinking wine with some anonymousx and knowsmichael

from the AA. More correct would be the rule

problematic(X ,Z ) ← drinks(X ,Y ,Z ), knowsFromAA(X ,Y )

where we explicitly say thatX andY in thedrinks andknowsFromAA relations
should be the same, and we extend theproblematic predicate with the kind of drink
thatX has a problem with. Then, the head variableZ is guarded by the DL atom
drinks and the rule is thus not weakly-safe, but is guarded nonetheless. Thus, the
resulting knowledge base is not aDL+log knowledge base, but is a g-hybrid knowl-
edge base.

• We do not have the requirement for DL-positiveness, i.e., DLatoms may appear
negated in the body of rules (and also in the heads of rules). However, one could
allow this inDL+log knowledge bases as well, sincenot A( ~X) in the body of the
rule has the same effect asA( ~X) in the head, where the latter is allowed in (?).
Vice versa, we can also loosen our restriction on the occurrence of positive atoms
in the head (which allows at most one positive atom in the head), to allow for
an arbitrary number of positive DL atoms in the head (but still keep the number
of positive non-DL atoms limited to one). E.g., a rulep(X ) ∨ A(X ) ← β, where
A(X) is a DL atom, is not a valid rule in the programs we considered since the head
contains more than one positive atom. However, we can alwaysrewrite such a rule
to p(X )← β, not A(X ), which contains at most one positive atom in the head.
Arguably, DL atoms should not be allowed to occur negatively, because DL pred-
icates are interpreted classically and thus the negation infront of the DL atom is
not nonmonotonic. However, Datalog predicates which depend on DL predicates
are also (partially) interpreted classically, and DL atomsoccurring negatively in the
body are equivalent to DL atoms occurring positively in the head which allows us to
partly overcome our limitation of rule heads to one positiveatom.
• We do not take into account ABoxes in the DL knowledge base. However, the DL

we consider includes nominals such that one can simulate theABox using termino-
logical axioms. Moreover, even if the DL does not include nominals, the ABox can
be written as ground facts in a program and ground facts are always guarded.
• Decidability for satisfiability checking5 of DL+log knowledge bases is guaranteed

if decidability of the conjunctive query containment problem is guaranteed for the
DL at hand. In contrast, we relied on a translation of DLs to guarded programs
for establishing decidability, and, as explained in the previous section, not all DLs
(e.g. those with number restrictions) can be translated to such a GP.

5 (?) considers checking satisfiability of knowledge bases rather than satisfiability of predicates. However, the
former can easily be reduced to the latter.
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We briefly mentionAL-log (?), which is a predecessor ofDL+log. AL-log considers
ALC knowledge bases for the DL part and a set of positive Horn clauses for the program
part. Every variable must appear in a positive atom in the body, and concept names are
the only DL predicates which may be used in the rules, and theymay only be used in rule
bodies.

(?) and (?) simulate reasoning in DLs with an LP formalism by using an intermediate
translation to first-order clauses. In (?), SHIQ knowledge bases are reduced to first-order
formulas, to which the basic superposition calculus is applied. (?) translatesALCQI con-
cept expressions to first-order formulas, grounds them witha finite number of constants,
and transforms the result to a logic program. One can use a finite number of constants by
the finite model property ofALCQI. In the presence of terminological axioms this is no
longer possible since the finite model property is not guaranteed to hold.

In (?), the DLALCNR (R stands for role intersection) is extended with Horn clauses
q(~Y ) ← p1( ~X1), . . . , pn( ~Xn) where the variables in~Y must appear in~X1 ∪ . . . ∪ ~Xn;
p1, . . . , pn are either concept or role names, or ordinary predicates notappearing in the DL
part, andq is an ordinary predicate. There is no safeness in the sense that every variable
must appear in a non-DL atom. The semantics is defined throughextended interpretations
that satisfy both the DL and clauses part (as FOL formulas). Query answering is undecid-
able if recursive Horn clauses are allowed, but decidability can be regained by restricting
the DL part or by enforcing that the clauses are role safe (each variable in a role atom
R(X,Y ) for a roleR must appear in a non-DL atom). Note that the latter restriction is
less strict than the DL-safeness6 of (?), where also variables in concept atomsA(X) need
to appear in non-DL atoms. On the other hand, (?) allows for the more expressive DL
SHOIN (D), and the head predicates may be DL atoms as well. Finally, SWRL (?) can
be seen as an extension of (?) without any safeness restriction, which results in the loss of
decidability of the formalism. Compared to our work, we consider a slightly less expres-
sive Description Logic, but we consider logic programs withnonmonotonic negation, and
require guardedness, rather than role- or DL-safeness, to guarantee decidability.

In (?) Description Logic programsare introduced; atoms in the program component may
bedl-atomswith which one can query the knowledge in the DL component. Suchdl-atoms
may specify information from the logic program which needs to be taken into account
when evaluating the query, yielding a bi-directional flow ofinformation. This leads to a
minimal interface between the DL knowledge base and the logic program, enabling a very
loose integration, based on an entailment relation. In contrast, we propose a much tighter
integration between the rules and the ontology, with interaction based on single models
rather than entailment. For a detailed discussion of these two kinds of interaction, we refer
to (?).

Two recent approaches (?; ?) use an embedding in a nonmonotonic modal logic for in-
tegrating nonmonotonic logic programs and ontologies based on classical logic (e.g. DL).
(?) use the nonmonotonic logic of Minimal Knowledge and Negation as Failure (MKNF)
for the combination, and show decidability of reasoning in case reasoning in the considered
description logic is decidable, and the DL safeness condition (?) holds for the rules in the

6 DL-safeness is a restriction of the earlier mentioned weak safeness.
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logic program. In our approach, we do not require such a safeness condition, but require
the rules to beguarded, and make a semantic distinction between DL predicates and rule
predicates. (?) introduce several embeddings of non-ground logic programs in first-order
autoepistemic logic (FO-AEL), and compare them under combination with classical theo-
ries (ontologies). However, (?) do not address the issue of decidability or reasoning of such
combinations.

Finally, (?) use Quantified Equilibrium Logic as a single unifying language to capture
different approaches to hybrid knowledge bases, includingthe approach presented in this
paper. Although we have presented a translation of g-hybridknowledge bases to guarded
logic programs, our direct semantics is still based on two modules, relying on separate
interpretations for the DL knowledge base and the logic program, whereas (?) define equi-
librium models, which serve to give a unifying semantics to the hybrid knowledge base.
The approach of (?) may be used to define a notion of equivalence between, and maylead
to new algorithms for reasoning with, g-hybrid knowledge bases.

6 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Description Logic (DL) knowledge
bases with guarded logic programs. In particular, we combined knowledge bases of the DL
DLRO−{≤}, which is close to OWL DL, with guarded programs, and showed decidability
of this framework by a reduction to guarded programs under the open answer set seman-
tics (?; ?). We discussed the relation withDL+log knowledge bases: g-hybrid knowledge
bases overcome some of the limitations ofDL+log , such as the unique names assumption,
Datalog safeness, and weak DL-safeness, but introduce the requirement of guardedness.
At present, a significant disadvantage of our approach is thelack of support for DLs with
number restrictions which is inherent to the use of guarded programs as our decidability
vehicle. A solution for this would be to consider other typesof programs, such asconcep-
tual logic programs(?). This would allow for the definition of a hybrid knowledge base
(Σ, P ) whereΣ is aSHIQ knowledge base andP is a conceptual logic program since
SHIQ knowledge bases can be translated to conceptual logic programs.

Although there are known complexity bounds for several fragments of open answer set
programming (OASP), including the guarded fragment considered in this paper, there are
no known effective algorithms for OASP. Additionally, at presence, there are no imple-
mented systems for open answer set programming. These are part of future work.
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