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Abstract

Recently, there has been a lot of interest in the integraifddescription Logics and rules on the
Semantic Web. We defirguarded hybrid knowledge basgs g-hybrid knowledge basgas knowl-
edge bases that consist of a Description Logic knowledge &ag aguardedlogic program, similar
to theDL+1og knowledge bases from (Rosati 2006). G-hybrid knowledgedasable an integra-
tion of Description Logics and Logic Programming where,ikein other approaches, variables in
the rules of a guarded program do not need to appear in positim-DL atoms of the body, i.e. DL
atoms can act aguardsas well. Decidability of satisfiability checking of g-hydrknowledge bases
is shown for the particular DIDLRO~{=}, which is close to OWL DL, by a reduction to guarded
programs under the open answer set semantics. Moreovehawe ZEXPTIME-completeness for
satisfiability checking of such g-hybrid knowledge basésaly, we discuss advantages and disad-
vantages of our approach compared viiti+/og knowledge bases.

KEYWORDSg-hybrid knowledge bases, open answer set programmiragdgd logic programs,
description logics

1 Introduction

The integration of Description Logics with rules has rebemeceived a lot of atten-
tion in the context of the Semantic Web_(Rosati 2005a; R@&6; | Eiter et al. 2004;
Motik et al. 2004; Horrocks and Patel-Schneider 2004b; Matid Rosati 2007; de Bruijn et al. 2007).
R-hybrid knowledge base5 (Rosati 2005a), and its exterBifa-log (Rosati 2006), is

* A preliminary version of this paper appeared in the progggsliof thelCLP'06 Workshop on Applications
of Logic Programming in the Semantic Web and Semantic Walic8enALPSWS200@pges 39-54, Seattle,
Washington, USA, August 16 2006.
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Ireland under the DERI-Lion Grant No.SFI/02/CE1/113 ; bg fAFG Qsterreichische Forschungsfrderungs-
geselleschaft mbH) under the projects Grisino, R@emNetMan, SEnSE, TSC and OnTourism. Davy Van
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an elegant formalism based on combined models for Desmniptbgic knowledge bases
and nonmonotonic logic programs. We propose a variant gforil knowledge bases,
calledg-hybrid knowledge basgwhich do not require standard names or a special safe-
ness restriction on rules, but instead require the progmbetguarded We show sev-
eral computational properties by a reduction to guarded greswer set programming
(Heymans et al. 2005a; Heymans et al. 2006b).

Open answer set programming (OASP) (Heymans et al. 2005anatss et al. 2006b)
combines the logic programming and first-order logic payadi. From the logic pro-
gramming paradigm it inherits a rule-based presentati@haanonmonotonic semantics
by means of negation as failure. In contrast with usual lpgagramming semantics, such
as the answer set semantics (Gelfond and Lifschitz 19885 Ra&llows for domains con-
sisting of other objects than those present in the logic famogat hand. Such open do-
mains are inspired by first-order logic based languages asi@bescription Logics (DLS)
(Baader et al. 2003) and make OASP a viable candidate forepdnal reasoning. Due to
its rule-based presentation and its support for nonmomoteasoning and open domains,
OASP can be used to reason with both rule-based and cont&ptwaledge on the Se-
mantic Web, as illustrated ih (Heymans et al. 2005b).

A major challenge for OASP is to control undecidability otisBability checking, a
challenge it shares with DL-based languages. In (Heymaals 20054; Heymans et al. 2006b),
we identify a decidable class of programs, the so-cafjedrded programsfor which
decidability of satisfiability checking is obtained by artstation to guarded fixed point
logic (Gradel and Walukiewicz 1999). Ih (Heymans et al. @00ve show the expressive-
ness of such guarded programs by simulating a DL witry roles and nominals. In par-
ticular, we extend the DIDLR (Calvanese et al. 1997) with bottoncept nominalgo}
androle nominals{(o1, . ..,0,)}, resulting inDLRO. We denote the DIDLRO with-
out number restrictions aBLRO~{=}. Satisfiability checking of concept expressions
w.r.t. DLRO ™=} knowledge bases can be reduced to checking satisfiabiliguafded
programs/(Heymans et al. 2006b).

A g-hybrid knowledge base consists of a Description Logiowdedge base and a
guarded program. Th®L+log knowledge bases from_(Rosati 2006) aveakly safe
which means that the interaction between the program andth&nowledge base is
restricted by requiring that variables which appear in Bdnatoms, appear in positive
non-DL atoms in the body, where DL atoms are atoms involviegracept or role symbol
from the DL knowledge base. G-hybrid knowledge bases doatptire such a restriction;
instead, variables must appear igw@ard of the rule, but this guard can be a DL atom as
well. In this paper, we show decidability of g-hybrid knoate bases fobLRO (=}
knowledge bases by a reduction to guarded programs, and tslabwwatisfiability check-
ing of g-hybrid knowledge bases isexPTIME-complete. The DIDLRO~{=} is close to
SHOIN, the Description Logic underlying OWL DL{Horrocks and ReBehneider 2004a).
Compared withSHOIN, DLRO{=} does not include transitive roles and number re-
strictions, but does include-ary roles and complex role expressions.

To see why a combination of rules and ontologies, as propiosg¢hybrid knowledge
bases, is useful, and why the safeness conditions condiderar in the literature are not
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appropriate in all scenarios, consider the Descriptionit.ogtology
FraternityMember = Drinker M FhasDrinkingBuddy. FraternityMember

which says that fraternity members are drinkers who havery buddies, which are also
fraternity members. Now consider the logic program

problemDrinker(X) < Drinker(X), not socialDrinker(X)
socialDrinker(X) < Drinker(X), not problemDrinker(Y),

hasDrinkingBuddy(X, Y)
FraternityMember(John) +

which says that drinkers are by default problem drinkertgsmit is known that they are
social drinkers; drinkers with drinking buddies who are podblem drinkers are social
drinkers; and John is a fraternity member. From the comiinaif the ontology and the
logic program, one would expect to derive that John is a $adciaker, and not a prob-
lem drinker. This logic program cannot be expressed usimgpbrid knowledge bases, or
DL+Ilog, because the rules in the program are not weakly safe . Howtéeelogic pro-
gram isguarded and thus part of a valid g-hybrid knowledge base, which hagkpected
conseqguences.

The remainder of the paper starts with an introduction tongeswer set programming
and Description Logics in Sectigh 2. Sectidn 3 defines g-ymmowledge bases, translates
them to guarded programs when the DILRO~{=} is considered, and provides a com-
plexity characterization for satisfiability checking oke#e particular g-hybrid knowledge
bases. In Sectidd 5, we discuss the relation of g-hybrid kedge bases witt £+ log and
other related work. We conclude and give directions forfertresearch in Secti@n 6.

2 Preliminaries

In this section we introduce Open Answer Set Programmingrdgd programs, and the
Description LogicDLRO~{=},

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from (Heymah28i0ba, Heymans et al. 2006b),
modified as in[(Heymans et al. 2006) such that it does not assumigqueness of names by
default.Constantsvariables terms andatomsare defined as usual. leral is an atom
p(i) or anaf-literal not p(#), with i a tuple of term& The positive partof a set of literals
aisat = {p() | p(t) € a} and thenegative parof ais a~ = {p(t) | not p(t) € a}.
We assume the existence of the (in)equality predicatesid#, usually written in infix
notation;t = s is an atom and # s is short fornot t = s. A regular atom is an atom
without equality. For a sefl of atomsnot A = {notl |1 € A}.

A programis a countable set of rules < 3, wherea andg are finite sets of literals,
|aT] < 1 (buta™ may be of arbitrary size), and every atomuin is regular, i.e« contains

1 We do not allow “classical” negation, however, programs witk: can be reduced to programs without it, see
e.g. [Lifschitz et al. 2001).
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at most one positive atom, which may not contain the equpl'&'yiicat@ The setx is the
headof the rule and represents a disjunction of literals, while thebodyand represents
a conjunction of literals. I« = (, the rule is called &onstraint Free rulesare rules of the
form ¢(X) V not ¢(X) «; they enable a choice for the inclusion of atoms in a model. We
call a predicate freeif there is a free ruI@(X') V not p(X) +. Atoms, literals, rules, and
programs that do not contain variables greund

For a literal, rule, or program, let cts(o), vars(o), preds(o) be the constants, variables,
and predicates, respectively,dnA pre-interpretationU for a programP is a pair(D, o)
where D is a non-emptydomainando : cts(P) — D is a function which maps all
constants inP to elements froerE Py is the ground program obtained fromby sub-
stituting every variable it® with every possible element frofd and every constamtwith
o(c). E.g., foraruler : p(X) « f(X,c)andU = ({x,y}, o) whereo(c) = =, we have
that the grounding w.r.U is:

— fla.a)
ply) + fly.o)

Let Bp be the set of regular atoms obtained from the language ofrthwng progranP.
An interpretation/ of a ground progran® is a subset ofSp. For a ground regular atom
p(t), we write I |= p(t) if p(t) € I; for an equality atomt = s, we write] = t = s if
s andt are equal terms. We write |= not p(f) if I |~ p(t), for p(t) an atom. For a set
of ground literals4, I = A holds if I = [ for everyl € A. A groundruler : o < §8
is satisfiedw.r.t. I, denoted |= r, if I = [ for somel € « wheneverd = 3. A ground
constraint« (3 is satisfied w.r.tI if I (= 5.

For a ground progran® without not, an interpretation’ of P is a modelof P if I
satisfies every rule irP; it is ananswer sebf P if it is a subset minimal model oP.
For ground program® containingnot, thereduct(Inoue and Sakama 1998) w.dtis P/,
whereP! consists oh ™ «+ 5+ for everya < 3in P suchthatl = not 3~ andl |= a~.

I is ananswer sebf P if I is an answer set a?’. Note that allowing negation in the head
of rules leads to the loss of tlamti-chain property(Inoue and Sakama 1998) which states
that no answer set can be a strict subset of another answBrget rules Vv not a < has
the answer setdand{a} . However, negation in the head is required to ensure fidor
behavior for certain predicates, e.g., when simulatingcBipson Logic reasoning.

In the following, a program is assumed to be a finite set ofs;uldinite programs only
appear as byproducts of grounding a finite program usingfamtapre-interpretation. An
open interpretatiorof a programP is a pair(U, M) whereU is a pre-interpretation for
P and M is an interpretation of;;. An open answer saif P is an open interpretation
(U, M) of P with M an answer set aPy;. An n-ary predicate in P is satisfiablef there
is an open answer sétD, o), M) of P and a € D™ such thap(#) € M. A programP
is satisfiable iff it has an open answer set. Note that sdiikfiachecking of programs can
be easily reduced to satisfiability checking of predicatess satisfiable iffp is satisfiable

2 The condition|at| < 1 makes the GL-reduct non-disjunctive, ensuring thatithmediate consequence
operatoris well-defined, se¢ (Heymans et al. 2006b).

3 In (Heymans et al. 2006b), we only use the dom&iwhich is there defined as a non-empty superset of the
constants inP. This corresponds to a pre-interpretatigD, o) whereo is the identity function orD.
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w.r.t. P U {p(X) V not p(X) <}, wherep is a predicate symbol not used fhand X is
a tuple of variables. In the following, when we speak of $iatislity checking, we refer to
satisfiability checking of predicates, unless specifie@ntlise.

Satisfiability checking w.r.t. the open answer set semarisicindecidable in general.
In (Heymans et al. 2006b), we identify a syntactically riegtd fragment of programs, so-
calledguarded programsfor which satisfiability checking is decidable, which isosm
through a reduction to guarded fixed point lodic (GradelAfadukiewicz 1999). The de-
cidability of guarded programs relies on the presence gbiard in each rule, where a
guard is an atom that contains all variables of the rule. Rdlyma ruler : o < S is
guardedif there is an atomy, € 8% such thatvars(r) C vars(v); v, is theguard of r.

A programP is aguarded program (GPIif every non-free rule inP is guarded. E.g., a
rule a(X,Y) < not f(X,Y) is not guarded, bu(X,Y) + ¢g(X,Y),not f(X,Y)is
guarded with guard(X,Y"). Satisfiability checking of predicates w.r.t. guarded pamgs
is 2-EXPTIME-complete/(Heymans et al. 2006b) — a result that stems fremdlrespond-
ing complexity in guarded fixed point logic.

2.2 The Description Logic DLRO (=

DLR (Calvanese et al. 1997; Baader et al. 2003) is a DL which stppales of arbitrary
arity, whereas most DLs only support binary roles. We inicaan extension @ LR with
nominals, called>LRO (Heymans et al. 2006). The basic building blockSad RO are
concept namegl andrelation namesP whereP denotes an arbitrary-ary relation for
2 < n < N andn,,,, is a given finite non-negative integer. Role expressiBnand
concept expressior(s are defined as:

R— T |P|(Si/n:C)|-R|RaMRs| {(01,... 00)}

wherei is betweerl andn in ($:/n : C); similarly in 3[$i]R and< k[$:]R for R ann-ary
relation. Moreover, we assume that the above constructweltdyped e.g.,R; M Ry is
defined only for relations of the same arity. The semantid® 6RO is given by interpre-
tationsZ = (AZ,-7) whereA” is a non-empty set, thdomain and-Z is an interpretation
function such thatZ C AZ, RT C (AZ)" for ann-ary relationR, and the following
conditions are satisfied; R, R, andR: have arityn):

T Canhr
pPfc Tz
(-R)* = TZ\R”
(RiMRy)f =RINRE
($i/n:C)VE ={(di,...,d,) € TE| d; € CT}
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TT = A*
AT c At
(~C)F = AT\CT
(CinC)f =cinct
3$iR)" ={d € AT | 3(dy, ..., dn) € RT. d; = d}
(SKSIR)T = {d € AT | [{(dy,....d) € R | d; = d}| < k}
{o}" ={o"y C &7
{(013 cee aon)}z = {(O%a EREE) 0%)}
Note thatirDLRO the negation of role expressions is defined wirf.and not w.r.t(AZ)".
A DLRO knowledge bas& is a set of terminological axioms and role axioms, which de-
note subset relations between concept and role expregsidhe same arity), respectively.
A terminological axionC; C C, is satisfiedoy Z iff C¥ C CZ. Arole axiomR, C R» is
satisfiedoy Z iff R C RZ. Aninterpretatiorf is amodelof a knowledge basE (i.e. X is
satisfied byZ) if all axioms inY: are satisfied by; if > has a model, theh is satisfiable
A concept expressio€t' is satisfiable w.r.t. a knowledge basef there is a model of &
such thatC? # ().
Note that for every interpretatidh,

({(o1,...,00))F =($1/n:{o}) ... ($n/n : {on}))*.

Therefore, in the remainder of the paper, we will restriatselves to nominals of the form
{o}. We denote the fragment @LRO without the number restrictiort k[$:]R with
DLROIS),

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are combinations of Descriptiogic.(DL) knowledge bases
and guarded logic programs (GP). They are a variant of thgorith knowledge bases
introduced in[(Rosati 2005a).

Definition 1
Given a Description Logi®L, ag-hybrid knowledge bass a pair(%, P) whereX is a
DL knowledge base an# is a guarded program.

Note that in the above definition there are no restrictiontheruse of predicate symbols.
We call the atoms and literals iR that have underlying predicate symbols which cor-
respond to concept or role names in the DL knowledge BdsatomsandDL literals,
respectively. Variables in rules are not required to appepositive non-DL atoms, which

is the case in, e.g., tHRL+log knowledge bases in (Rosati 2006), the r-hybrid knowledge
bases in(Rosati 2005a), and the DL-safe rulels in (Motik.2@04). DL-atoms can appear
in the head of rules, thereby enabling a bi-directional fldwnformation between the DL
knowledge base and the logic program.

Example 1
Consider theDLRO~{=} knowledge bas& wheresocialDrinker is a conceptdrinks is
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a ternary role such that, intuitively, y, z) is in the interpretation oflrinks if a personc
drinks some drink with a persory. X consists of the single axiom

socialDrinker T 3[$1](drinks 1 ($3/3 : {wine}))

which indicates that social drinkers drink wine with someo@onsider a G that
indicates that someone has an increased risk of alcohdligra person is a social drinker
and knows someone from the association of Alcoholics Ananys{AA). Furthermore,
we state thajohnis a social drinker and knowsichaelfrom AA:

problematic(X) <  socialDrinker(X), knowsFromAA(X,Y)
knowsFromAA(john, michael) <+
socialDrinker(john) <+

TogetherX and P form a g-hybrid knowledge base. The literalg:ialDrinker(X ) and
socialDrinker(john) are DL atoms where the latter appears in the head of a ruteThe
literal knowsFromAA(X,Yappears only in the prograi (and is thus not a DL atom).

Given a DL interpretatio = (AZ,-) and a ground program, we defindI(P,Z) as
theprojectionof P with respect tdZ, which is obtained as follows: for every rutén P,

o if there exists a DL literal in the head of the form
— A(t) with £ € A%, or
— not A(t) with t ¢ A7,
then deleter,
o if there exists a DL literal in the body of the form

— A(t)with ' ¢ A%, or
— not A(t) with £’ e A7,

then delete,
e otherwise, delete all DL literals from

Intuitively, the projection “evaluates” the program withspect tdZ by removing (evalu-
ating) rules and DL literals consistently wif) conceptually this is similar to the reduct,
which removes rules and negative literals consistenth it interpretation of the pro-
gram.

Definition 2
Let (3, P) be a g-hybrid knowledge base. An interpretatioiXf P) is a tuple(U,Z, M)
such that

U = (D, o) is a pre-interpretation faP,

T = (D, 1) is an interpretation of,

M is an interpretation ofl( Py, Z), and

bt = o(b) for every constant symbaélappearing both ift and in P.

Then,(U = (D,o0),Z, M) is amodelof a g-hybrid knowledge basg, P) if Z is a
model of¥ and M is an answer set di(Py,Z).

For p a concept expression frobd or a predicate fronP, we say thap is satisfiable
w.rt. (X, P) if there is a model{U, Z, M) such thap” # () or p(&) € M for somez from
D, respectively.
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Example 2
Consider the g-hybrid knowledge base in Exanaple 1. Take (D, o) with D = {john,

michael, wine, x} ando the identity function on the constant symbolg iy P). Further-
more, define’ as follows:

e socialDrinker™ = {john},

o drinks™ = {(john, z, wine)},

o winel = wine.
If M = {knowsfromAA(john, michael), problematic(john)}, then(U,Z, M) is a model
of this g-hybrid knowledge base. Note that the projectig#, Z) does not contain the rule
socialDrinker(john) < .

4 Translation to Guarded Logic Programs

In this section we introduce a translation of g-hybrid knedde bases to guarded logic
programs (GP) under the open answer set semantics, shothithé&tanslation preserves
satisfiability, and use this translation to obtain complesésults for reasoning in g-hybrid
knowledge bases. Before introducing the translation tadgdprograms formally, we
introduce the translation through an example.

Consider the knowledge base in Exanigle 1. The axiom

socialDrinker T 3[$1](drinks 1 ($3/3 : {wine}))
translates to the constraint
« socialDrinker(X), not (3[$1](drinks 1 ($3/8 : {wine})))(X)

Thus, the concept expressions on either side ofilsymbol are associated with a new
unary predicate name. For convenience, we name the newcptesliaccording to the orig-

inal concept expressions. The constraint simulates thab@thof theDLRO ™=} axiom.

If the left-hand side of the axiom holds and the right-hamt gloes not hold, there is a
contradiction.

It remains to ensure that those newly introduced predidsbave according to the DL
semantics. First, all the concept and role names occumirigel axiom above need to be
defined as free predicates, in order to simulate the firstra@mantics of concept and role
names in DLs. In DLs, a tuple is either true or false in a givetaripretation (cf. the law of
the excluded middle); this behavior can be captured exagtihe free predicates:

socialDrinker(X) V not socialDrinker(X) <«
drinks(X,Y,Z)V not drinks(X,Y,Z) <«

Note that concept names are translated to unary free ptedjcahilen-ary role names
are translated te-ary free predicates.

The definition of the truth symbol$; and T3 which are implicit in ourDLRO~ =}
axiom (since the axiom contains a concept name and a terakeyare translated to free
predicates as well. Note that we do not need a predicaté {@mince the axiom does not
contain binary predicates.

TJ(X)\/TLOtT1(X)

<_
Ts(X,Y,Z)Vnot Ts(X,Y,Z) +
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We ensure that, for the ternaByC RO~ {=} role drinks, drinks™ C T% holds by adding
the constraint:

+— drinks(X,Y,Z),not Tg(X,Y,Z)
To ensure thal 7 = AZ, we add the constraint:

+— not T;(X)

For rules containing only one variable, we can always asghateX = X is in the body
and acts as the guard of the rule, so that the latter rule isdlgdacf. the equivalent rule
+—not T;(X),X =X.

We translate the nomindlwine} to the rule

{wine}(wine) <+

Intuitively, since this rule will be the only rule with thegulicate{ wine} in the head, every
open answer set of the translated program will confaitve } (z) with o(wine) = z if
and only if the corresponding interpretatipmine}* = {x} for wine” = .
TheDLRO™{=) role expression$3/3 : {wine}) indicates the ternary tuples for which
the third argument belongs to the extensiofoine}, which is translated to the following

rule:
(83/3 : {wine})(X,Y,Z) + T3(X,Y,Z),{wine}(Z)
Note that the above rule is guarded by theliteral.

Finally, the concept expressiddrinks M ($3/3 : {wine})) can be represented by the
following rule:

(drinks 1 ($3/3 : {wine}))(X,Y,Z) <+ drinks(X,Y,Z),
($3/3 : {wine})(X,Y, Z)

As we can see, the DL construtts translated to conjunction in the body of a rule.
The DLRO{=} role 3[$1] (drinks M ($3/3 : {wine})) can be represented using the
following rule:

(3[$1](drinks M ($3/3 : {wine})))(X) « (drinks ($3/3 : {wine}))(X,Y, Z)

Indeed, the elements which belong to the extensiof{®f](drinks M (33/3 : {wine}))
are exactly those that are connected to the (®%¢3 : {wine}), as specified in the rule.

This concludes the translation of the DL knowledge base éngthybrid knowledge
base of ExamplEl1. The program can be considered as is, bindefinition of g-hybrid
knowledge bases, it is already a guarded program.

We now proceed with the formal translation. Ttiesureclos (%) of aDLRO ™=} knowl-
edge bas& is defined as the smallest set satisfying the following ciboms:

o Ty € clos(X),

e foreachC C D an axiom inX (role or terminological){C, D} C clos(%),

e for everyD in clos(X), clos(X) contains every subformula which is a concept ex-
pression or a role expression,

e if clos(X) contains am-ary relation name, it contains,,.

We define®(X) as the smallest logic program satisfying the following dtinds:
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e For each terminological axioi C D € ¥, &(X) contains the constraint:
+— C(X),not D(X)
e Foreach role axiorR C S € ¥ whereR andS aren-ary, (%) contains:
«— R(Xy,...,X,),not S(X1,...,X,)
e For eachT,, € clos(X), ®(X) contains the free rule:
To(X1, .., Xn) Vot To(X1,. .., Xn) «
Furthermore, for each-ary relation nam@ < clos(X), ®(X) contains:

+—P(Xy,...,Xpn),not Tp(X1,...,Xn)

1)

(2)

3)

(4)

Intuitively, the latter rule ensures thR C TZ. Additionally, ®(X) has to contain

the constraint:
+ not T1(X)

(5)

which ensures that, for every elementn the pre-interpretation] ; (x) is true in
the open answer set. The latter rule ensures Tfat= D for the corresponding

interpretation. The rule is implicitly guarded wifti = X .

e Next, we distinguish between the types of concept and rgleessions that appear

in clos(X). For eachD € clos(X):
— if D is a concept nomindlo}, ®(X) contains the fact:

D(o) +

(6)

This fact ensures thdb} (z) holds in any open answer set iff= o(0) = o*

for an interpretation of%, P).
— if D is a concept name(X) contains:

D(X)Vnot D(X) +
— if D is ann-ary relation namep(X) contains:
D(Xi,...,X,) Voot D(Xy,...,X,) +
— if D = —F for a concept expressiafi, ¢(X) contains the rule:
D(X) + not E(X)

Note that we can again assume that such a rule is guard&d-byX .
— if D = =R for ann-ary role expressioR, ®(X) contains:

D(X1,...,Xn) & Tu(X1,..., Xn),not R(X1, ..., Xn)

(7)

(8)

(9)

(10)

Note that if negation would have been defined wit instead of TZ, we

would not be able to write the above as a guarded rule.
— if D = E N F for concept expressions andF', &(X) contains:

D(X) + E(X),F(X)

(11)
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— if D =EnNF for n-ary role expressionB andF, ®(X) contains:
D(X1,...,Xn) < E(X1,...,X,), F(X1,...,X,) (12)
— if D = ($i/n: C), ®(X) contains:
D(X1,.... Xiy. o, Xn) & To(X1, .., X4y, X0), C(X5) (13)
— if D = 3[${]R, &(X) contains:
D(X)+R(X1,...,Xi 1, X, Xit1,..., X,) (14)
The following theorem shows that this translation presesatisfiability.

Theorem 1

Let (X, P) be a g-hybrid knowledge base witha DLRO~{=} knowledge base. Then, a
predicate or concept expressiois satisfiable w.r.t(, P) iff p is satisfiable w.r.td(3) U
P.

Proof

(=) Assumeyp is satisfiable w.r.t(X, P), i.e., there exists a modéU, Z, M) of (X, P),

with U = (D, o), in which p has a non-empty extension. Now, we construct the open
interpretation’V, N) of ®(%, P) as follows.V = (D, ¢’) with o’ : ¢ts(®(X) U P) — D,
ando’(x) = o(z) for every constant symbai from P ando’(z) = =% for every constant
symbolz from X. Note thatr’ is well-defined, since, for a constant symbakhich occurs

in bothY: and P, we have that(x) = xZ. We define the seV as follows:

N=MU{C(x) |z CT C € cls(X)}
U{R(z1,..., %) | (z1,...,2,) € RT,R € clos(X)}

with C' andR. concept expressions and role expressions respectively.
Itis easy to verify thatV, V) is an open answer set (%) U P and(V, V) satisfiegp.
(<) Assumeg(V, N) is an open answer set @(X) U P with V = (D, ¢’) such thap is
satisfied. We define the interpretati@, Z, N) of (X, P) as follows.

e U = (D,o) whereo : cts(P) — D with o(z) = ¢'(x) (note that this is possible since
cts(P) C cts(®(X) U P)). U is then a pre-interpretation fdr.

e 7 = (D,-T) is defined such that? = {z | A(z) € N} for concept names, PZ =
{(x1,...,2,) | P(21,...,2,) € N} for n-ary role name® ando? = o'(0), foro a
constant symbol il (note that’ is indeed defined o). 7 is then an interpretation af.

o M = N\{p(Z) | p € clos(£)}, such thatM is an interpretation ofl( Py, Z).

Moreover, for every constant symbiplvhich appears in botl and P, b* = o(b). As a
consequencél/,Z, M) is an interpretation of%, P).
Itis easy to verify thatU, Z, M) is a model of(3, P) which satisfiep. [

Theorem 2
Let (X, P) be a g-hybrid knowledge base whexeis aDLRO™Is) knowledge base.
Then,®(X) U P is a guarded program with a size polynomial in the siz&fP).
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Proof
The rules in®(X) are obviously guarded. Sinde is a guarded progran®(X) U P is a
guarded program as well.

The size ofclos(X) is of the ordem logn wheren is the size off. Intuitively, given
that the size of an expressionviswe have that the size of the set of its subexpressions is
at most the size of a tree with deftig n where the size of the subexpressions at a certain
level of the tree is at most.

The size ofb(X) is clearly polynomial in the size @fos(X), assuming that the arity of
an added role expression is polynomial in the size of the makarity of role expressions
in X. If we were to add a relation nank® with arity 2", wheren is the maximal arity of
relation names il andx, the size o= would increase linearly, but the size ®fX) U P
would increase exponentially: one needs to add, e.g., rules

TQn(Xl,.. .7X2n) V not Tgn(Xl,.. .,Xgn) —

which introduce an exponential number of arguments whaesthe of the roldR does not
depend on its arity. [

Note that in g-hybrid knowledge bases, we consiB&dRO~{<}, which is DLRO
without expressions of the form k[$i]R, since such expressions cannot be simulated
with guarded programs. E.g., consider the concept exressi 1[$1]R whereR is a
binary role. One can simulate tkeéby negation as failure:

< 1[31]R(X) + not q(X)
for some new, with ¢ defined such that there are at least 2 diffef@rguccessors:
q(X) « R(X, Y1), R(X,Y2), Y1 # Y2

However, the latter rule is not guarded — there is no atomdbiatiainsX, Y, andYs. So,
in general, expressing number restrictions suck &§5i|R is out of reach for GPs. From
Theorem§l and 2 we obtain the following corollary.

Corollary 1
Satisfiability checking w.r.t. g-hybrid knowledge basés P), with . a DLRO ™=}
knowledge base, can be polynomially reduced to satisfigloiiecking w.r.t. GPs.

Since satisfiability checking w.r.t. GPs iss3PTIME-complete[(Heymans et al. 2006b),
we obtain the same xPTIME characterization for g-hybrid knowledge bases. We first
make explicit a corollary of Theorel 1.

Corollary 2
Let P be a guarded program. Then, a concept or role exprepsosatisfiable w.r.tP iff
p is satisfiable w.r.t((), P).

Theorem 3
Satisfiability checking w.r.t. g-hybrid knowledge baseswehthe DL partis DLRO (<}
knowledge base is BXPTIME-complete.
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Proof
Membership in 2ExPTIME follows from Corollary’l. Hardness follows from2xpPTIME-

hardness of satisfiability checking w.r.t. GPs and the rédnto satisfiability checking in
Corollary2. O

5 Relation with DL+log and other Related Work

In (Rosati 2006), so-calleBL+log knowledge bases combine a Description Logic knowl-
edge base with weakly-safelisjunctive logic program. Formally, for a particular Depe
tion Logic DL, aDL+1log knowledge bases a pair(X, P) whereX is aDL knowledge
base consisting of 8BBox(a set of terminological axioms) and ABox(a set ofassertional
axiomg, andP contains rulesx < 3 such that for everyrule: a < g € P:

e o =10,

e 3~ does not contain DL atom®(-positiveness

e each variable im occurs in3™ (Datalog safenegsand

e each variable i which occurs in a non-DL atom, occurs in a non-DL atonBin

(weak safenejs

The semantics foDL+log is the same as that of g-hybrid knowledge b@swh the
following exceptions:

¢ We do not require thetandard name assumptiowhich basically says that the do-
main of every interpretation is essentially the same irdlpitountable set of con-
stants. Neither do we have the impliedique name assumptipmaking the seman-
tics for g-hybrid knowledge bases more in line with currestrantic Web standards
such as OWL (Dean and Schreiber 2004) where neither theathndmes assump-
tion nor the unigue names assumption applies. Note thattRalsa presented a
version of hybrid knowledge bases which does not adheregatiique name as-
sumption in an earlier work (Rosati 2005b). However, thaugding of the program
part is with the constant symbols explicitly appearing ie firogram or DL part
only, which yields a less tight integration of the progrand @ne DL part than in
(Rosati 2006) or in g-hybrid knowledge bases.

e We define an interpretation as a tripl€,Z, M) instead of a pai(U,Z’) where
1’ = 7T U M; this is, however, equivalent tBL+log.

The key differences of the two approaches are:

e The programs consideredTnC+log may have multiple positive literals in the head,
whereas we allow at most one. However, we allow negativealgein the head,
whereas this is not allowed L +1og. Additionally, since DL-atoms are interpreted
classically, we may simulate positive DL-atoms in the hdadugh negative DL-

atoms in the body.

4 strictly speaking, we did not define answer sets of disjuaqirograms, however, the definitions of Subsection
[2 can serve for disjunctive programs without modificatibiso, we did not consider ABoxes in our definition
of DLs in Subsectiofi 2]2. However, the extension of the séicgio DL knowledge bases with ABoxes is

straightforward.
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¢ Instead of Datalog safeness we reqgjuardednessVhereas with Datalog safeness

every variable in the rule should appear in some positiveatfthe body of the rule,
guardedness requires that there is a positive atom thatiosravery variable in the
rule, with the exception of free rules. E.q(X) < b(X), ¢(Y) is Datalog safe
since X appears irb(X) andY appears ire(Y'), but this rule is not guarded since
there is no atom that contains bathandY . Note that we could easily extend the
approach taken in this paperlwosely guarded programghich require that every
two variables in the rule should appear together in a pesdiom, However, this
would still be less expressive than Datalog safeness.

We do not have the requirement for weak safeness, i.e., re@bles do not need
to appear positively in a non-DL atom. The guardedness mayrdgded by a DL
atom.

Example 3
Exampldl contains the rule

problematic(X) <  socialDrinker(X), knowsFromAA(X,Y)

This allows to deduce that might be a problem case evenif knows someone
from the AA but is not drinking with that person. Indeed, &sstrated by the model
in Exampl€el john is drinking wine with some anonymousand knowsmichael
from the AA. More correct would be the rule

problematic(X,Z) <« drinks(X,Y,Z), knowsFromAA(X,Y)

where we explicitly say thak” andY” in the drinks and knowsFromA A relations
should be the same, and we extendgheblematic predicate with the kind of drink
that X has a problem with. Then, the head variallés guarded by the DL atom
drinks and the rule is thus not weakly-safe, but is guarded noretkelThus, the
resulting knowledge base is noT¥+log knowledge base, but is a g-hybrid knowl-
edge base.

We do not have the requirement for DL-positiveness, i.e.,ddms may appear
negated in the body of rules (and also in the heads of rulesjeMer, one could
allow this in DL+Ilog knowledge bases as well, sineet A(X) in the body of
the rule has the same effect 4$X) in the head, where the latter is allowed in
(Rosati 2005). Vice versa, we can also loosen our restriaiio the occurrence of
positive atoms in the head (which allows at most one pos#teen in the head), to
allow for an arbitrary number of positive DL atoms in the héhdt still keep the
number of positive non-DL atoms limited to one). E.g., a (&) vV A(X) « S,
whereA(X) is a DL atom, is not a valid rule in the programs we consideirstesthe
head contains more than one positive atom. However, we gayalrewrite such a
ruletop(X) « 8, not A(X), which contains at most one positive atom in the head.
Arguably, DL atoms should not be allowed to occur negativiegcause DL pred-
icates are interpreted classically and thus the negatidrom of the DL atom is
not nonmonotonic. However, Datalog predicates which dépanDL predicates
are also (partially) interpreted classically, and DL atavasurring negatively in the



G-Hybrid Knowledge Bases 15

body are equivalent to DL atoms occurring positively in tieadh which allows us to
partly overcome our limitation of rule heads to one posititem.

e We do not take into account ABoxes in the DL knowledge basevédyer, the DL
we consider includes nominals such that one can simulataBlos using termino-
logical axioms. Moreover, even if the DL does not include muats, the ABox can
be written as ground facts in a program and ground facts a@yalguarded.

o Decidability for satisfiability checki@of DL+log knowledge bases is guaranteed
if decidability of the conjunctive query containment preinl is guaranteed for the
DL at hand. In contrast, we relied on a translation of DLs targied programs
for establishing decidability, and, as explained in thevjanés section, not all DLs
(e.g. those with number restrictions) can be translateddb a GP.

We briefly mentionAL£-log (Donini et al. 1998), which is a predecessorldf+log.
AL-log considersd£C knowledge bases for the DL part and a set of positive Horrselau
for the program part. Every variable must appear in a pasittem in the body, and concept
names are the only DL predicates which may be used in the, mhekthey may only be
used in rule bodies.

(Hustadt et al. 2004) and (Swift 2004) simulate reasonirglis with an LP formalism
by using an intermediate translation to first-order clausefHustadt et al. 2004 5H7Z QO
knowledge bases are reduced to first-order formulas, tohwthie basic superposition cal-
culus is applied.[(Swift 2004) translatesCC Q7 concept expressions to first-order for-
mulas, grounds them with a finite number of constants, amdtoams the result to a logic
program. One can use a finite number of constants by the fimiteehproperty ofALC OT.

In the presence of terminological axioms this is no longessitde since the finite model
property is not guaranteed to hold.

In (Cevy and Rousset 1996), the DULCANR (R stands for role intersection) is ex-
tended with Horn clauseY) < p1(X1),...,pn(X,) where the variables it must
appear inX; U...U Xy p1,...,pn are either concept or role names, or ordinary pred-
icates not appearing in the DL part, apds an ordinary predicate. There is no safeness
in the sense that every variable must appear in a hon-DL aftwn semantics is defined
through extended interpretations that satisfy both the Bd @auses part (as FOL formu-
las). Query answering is undecidable if recursive Hornsgguare allowed, but decidabil-
ity can be regained by restricting the DL part or by enfordimat the clauses are role safe
(each variable in a role atoR(X,Y) for a role R must appear in a non-DL atom). Note
that the latter restriction is less strict than the DL-saﬁof (Motik et al. 2004), where
also variables in concept atom$ X ) need to appear in non-DL atoms. On the other hand,
(Matik et al. 2004) allows for the more expressive BEHOZN (D), and the head predi-
cates may be DL atoms as well. Finally, SWRL (Horrocks anélPathneider 2004b) can
be seen as an extension of (Motik et al. 2004) without anyngse restriction, which re-
sults in the loss of decidability of the formalism. Compatedur work, we consider a
slightly less expressive Description Logic, but we considgic programs with nonmono-

5 (Rosati 2005) considers checking satisfiability of knowetases rather than satisfiability of predicates. How-
ever, the former can easily be reduced to the latter.
6 DL-safeness is a restriction of the earlier mentioned weddress.
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tonic negation, and require guardedness, rather than oolBL-safeness, to guarantee
decidability.

In (Eiter et al. 2004 Pescription Logic programare introduced; atoms in the program
component may bel-atomswith which one can query the knowledge in the DL com-
ponent. Suchdl-atomsmay specify information from the logic program which needs t
be taken into account when evaluating the query, yieldingdirbctional flow of infor-
mation. This leads to a minimal interface between the DL Kadge base and the logic
program, enabling a very loose integration, based on arlreta relation. In contrast,
we propose a much tighter integration between the rulestandritology, with interaction
based on single models rather than entailment. For a de¢tigeussion of these two kinds
of interaction, we refer to (de Bruijn et al. 2006).

Two recent approaches (Motik and Rosati 2007; de Bruijn.€2G07) use an embed-
ding in a nonmonotonic modal logic for integrating nonmam¢ logic programs and
ontologies based on classical logic (e.g. DL). (Motik and&b2007) use the nonmono-
tonic logic of Minimal Knowledge and Negation as Failure (MK) for the combination,
and show decidability of reasoning in case reasoning in ¢msidered description logic
is decidable, and the DL safeness condition (Motik et al420®lds for the rules in the
logic program. In our approach, we do not require such a safecondition, but require the
rules to beguarded and make a semantic distinction between DL predicatesidagred-
icates.|(de Bruijn et al. 2007) introduce several embeddaigion-ground logic programs
in first-order autoepistemic logic (FO-AEL), and comparerthunder combination with
classical theories (ontologies). However, (de Bruijn e28D7) do not address the issue of
decidability or reasoning of such combinations.

Finally, (de Bruijn et al. 2006) use Quantified Equilibriunedic as a single unifying
language to capture different approaches to hybrid knaydduhses, including the ap-
proach presented in this paper. Although we have presenteainalation of g-hybrid
knowledge bases to guarded logic programs, our direct sireds still based on two
modules, relying on separate interpretations for the Dlvkadge base and the logic pro-
gram, whereas (de Bruijn et al. 2006) define equilibrium nt&dehich serve to give a
unifying semantics to the hybrid knowledge base. The apgbroé (de Bruijn et al. 2006)
may be used to define a notion of equivalence between, andendytd new algorithms
for reasoning with, g-hybrid knowledge bases.

6 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Desoritogic (DL) knowledge
bases with guarded logic programs. In particular, we costiknowledge bases of the
DL DLRO~{=} which is close to OWL DL, with guarded programs, and showetia}
ability of this framework by a reduction to guarded programsler the open answer set
semantics (Heymans et al. 2005a; Heymans et al. 2006b). $geastied the relation with
DL+log knowledge bases: g-hybrid knowledge bases overcome sothe lirhitations of
DL+Ilog, such as the unique names assumption, Datalog safenesseak®L-safeness,
but introduce the requirement of guardedness. At presaign#icant disadvantage of our
approach is the lack of support for DLs with number reswitsi which is inherent to the
use of guarded programs as our decidability vehicle. A soiuor this would be to con-
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sider other types of programs, suchcasceptual logic program@Heymans et al. 2006a).
This would allow for the definition of a hybrid knowledge b&&k P) whereX isaSHZQ
knowledge base anB is a conceptual logic program sinég{Z Q knowledge bases can
be translated to conceptual logic programs.

Although there are known complexity bounds for severalritagts of open answer set
programming (OASP), including the guarded fragment carsid in this paper, there are
no known effective algorithms for OASP. Additionally, atesence, there are no imple-
mented systems for open answer set programming. Theserad figure work.
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Abstract

Recently, there has been a lot of interest in the integraifdDdescription Logics and rules on the
Semantic Web. We defirguarded hybrid knowledge bas@s g-hybrid knowledge baspas knowl-
edge bases that consist of a Description Logic knowledge &ad aguardedlogic program, similar

to theDL+log knowledge bases fron?). G-hybrid knowledge bases enable an integration of De-
scription Logics and Logic Programming where, unlike inestpproaches, variables in the rules of
a guarded program do not need to appear in positive non-Dhsatd the body, i.e. DL atoms can
act asguardsas well. Decidability of satisfiability checking of g-hydrknowledge bases is shown
for the particular DLDLRO~{=}, which is close to OWL DL, by a reduction to guarded programs
under the open answer set semantics. Moreover, we stexP2+ME-completeness for satisfiability
checking of such g-hybrid knowledge bases. Finally, weudisadvantages and disadvantages of our
approach compared witRL+log knowledge bases.

KEYWORDSg-hybrid knowledge bases, open answer set programmiragdgd logic programs,
description logics

1 Introduction

The integration of Description Logics with rules has reterdceived a lot of attention in
the context of the Semantic We®, @2; ?; ?; ?; ?; ?). R-hybrid knowledge base8)( and its
extensiorDL+log (?), is an elegant formalism based on combined models for Dx&nT
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Logic knowledge bases and nonmonotonic logic programs. Wpgse a variant of r-

hybrid knowledge bases, callgghybrid knowledge basewhich do not require standard
names or a special safeness restriction on rules, but thsespiire the program to be
guarded We show several computational properties by a reductign#wded open answer
set programmingd; ?).

Open answer set programming (OASP) ?) combines the logic programming and
first-order logic paradigms. From the logic programminggaligm it inherits a rule-based
presentation and a nonmonotonic semantics by means ofiolegest failure. In contrast
with usual logic programming semantics, such as the ansstesesnantics), OASP al-
lows for domains consisting of other objects than thosequem the logic program at
hand. Such open domains are inspired by first-order logied#mguages such as De-
scription Logics (DLs) ?) and make OASP a viable candidate for conceptual reasoning.
Due to its rule-based presentation and its support for normtemic reasoning and open
domains, OASP can be used to reason with both rule-basedaicdgtual knowledge on
the Semantic Web, as illustrated P (

A major challenge for OASP is to control undecidability otisBability checking, a
challenge it shares with DL-based languages.?n?j, we identify a decidable class of
programs, the so-calleglarded programdor which decidability of satisfiability checking
is obtained by a translation to guarded fixed point lo@ic [n (?), we show the expres-
siveness of such guarded programs by simulating a DL m4#iny roles and nominals. In
particular, we extend the DDLR (?) with bothconcept nominal§o} androle nominals
{(01,...,04)}, resulting iNDLRO. We denote the DIDLRO without number restric-
tions asDLRO (=}, Satisfiability checking of concept expressions wRLRO (=}
knowledge bases can be reduced to checking satisfiabilgyafded program#Y.

A g-hybrid knowledge base consists of a Description Logiowedge base and a
guarded program. ThBL+log knowledge bases fron?) areweakly safewhich means
that the interaction between the program and the DL knovédsitse is restricted by re-
quiring that variables which appear in non-DL atoms, appeguositive non-DL atoms
in the body, where DL atoms are atoms involving a concept ler spmbol from the DL
knowledge base. G-hybrid knowledge bases do not requifesuestriction; instead, vari-
ables must appear in guard of the rule, but this guard can be a DL atom as well. In
this paper, we show decidability of g-hybrid knowledge Isfse DLRO 1=} knowledge
bases by a reduction to guarded programs, and show thdieality checking of g-hybrid
knowledge bases is 2xpTIME-complete. The DIDLRO =} is close taSHOZN, the
Description Logic underlying OWL DL7). Compared wittSHOZN, DLRO 1=} does
not include transitive roles and number restrictions, lmésdinclude:-ary roles and com-
plex role expressions.

To see why a combination of rules and ontologies, as propiosg¢hybrid knowledge
bases, is useful, and why the safeness conditions condiderr in the literature are not
appropriate in all scenarios, consider the Descriptionit.ogtology

FraternityMember T Drinker M JhasDrinkingBuddy. FraternityMember

which says that fraternity members are drinkers who haveirg buddies, which are also
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fraternity members. Now consider the logic program

problemDrinker(X) < Drinker(X), not socialDrinker(X)
socialDrinker(X) < Drinker(X), not problemDrinker(Y),

hasDrinkingBuddy(X, Y)
FraternityMember(John) +

which says that drinkers are by default problem drinkertgessit is known that they are
social drinkers; drinkers with drinking buddies who are podblem drinkers are social
drinkers; and John is a fraternity member. From the comhmnatf the ontology and the
logic program, one would expect to derive that John is a $dciaker, and not a prob-
lem drinker. This logic program cannot be expressed usimgprid knowledge bases, or
DL+Ilog, because the rules in the program are not weakly safe . Howtbeelogic pro-
gram isguarded and thus part of a valid g-hybrid knowledge base, which hagkpected
conseguences.

The remainder of the paper starts with an introduction tonagreswer set programming
and Description Logics in Sectiéh 2. Sectidn 3 defines g-dymowledge bases, translates
them to guarded programs when the DILRO 1=} is considered, and provides a com-
plexity characterization for satisfiability checking okette particular g-hybrid knowledge
bases. In Sectidd 5, we discuss the relation of g-hybrid kedge bases witv £+ log and
other related work. We conclude and give directions forfertresearch in Sectidn 6.

2 Preliminaries

In this section we introduce Open Answer Set Programmingrdgd programs, and the
Description LogicDLRO~{=},

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics fren?), modified as in 9) such that it
does not assume uniqueness of names by defaolftstantsvariables terms andatoms
are defined as usual. Weral is an atomp(t) or anaf-literal not p(t), with ¢ a tuple of
terms] Thepositive partof a set of literalsy is o™ = {p(t) | p(t) € a} and thenegative
part of a is a™ = {p(t) | not p(t) € a}. We assume the existence of the (in)equality
predicates= and #, usually written in infix notationf = s is an atom and # s is
short fornot t = s. A regular atom is an atom without equality. For a sétof atoms,
not A= {notl|l e A}.

A programis a countable set of rules < 3, wherea andg are finite sets of literals,
|aT] < 1 (buta™ may be of arbitrary size), and every atomuin is regular, i.e« contains
at most one positive atom, which may not contain the equpﬁajdicat@ The setu is the
headof the rule and represents a disjunction of literals, while thebodyand represents

1 We do not allow “classical” negation, however, programs witk can be reduced to programs without it, see
e.g. @)

2 The condition|at| < 1 makes the GL-reduct non-disjunctive, ensuring thatithmediate consequence
operatoris well-defined, se€?).
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a conjunction of literals. Ix = (, the rule is called @onstraint Free rulesare rules of the
form ¢(X) V not ¢(X) +; they enable a choice for the inclusion of atoms in a model. We
call a predicate freeif there is a free ruI@(X') V not p(X) +. Atoms, literals, rules, and
programs that do not contain variables greund

For a literal, rule, or program, let cts(o), vars(o), preds(o) be the constants, variables,
and predicates, respectively,dnA pre-interpretationU for a programP is a pair(D, o)
where D is a non-emptydomainando : cts(P) — D is a function which maps all
constants inP to elements fronDE Py is the ground program obtained fromby sub-
stituting every variable itP with every possible element frofd and every constamtwith
o(c). E.g., foraruler : p(X) « f(X,c)andU = ({x,y}, o) whereo(c) = =, we have
that the grounding w.r.t/ is:

— flz,x)
« fly,z)

Let Bp be the set of regular atoms obtained from the language ofrthwng progranP.

An interpretation/ of a ground progran® is a subset ofSp. For a ground regular atom
p(t), we write I |= p(t) if p(t) € I; for an equality atont = s, we write = t = s if

s andt are equal terms. We write |= not p(f) if I [~ p(t), for p(t) an atom. For a set
of ground literalsA, I = A holds if I |= [ for everyl € A. A ground ruler : o + 3
is satisfiedw.r.t. I, denoted = r, if I |= [ for somel € « wheneverl = 3. A ground
constraint«+ (S is satisfied w.r.tl if I [~ §.

For a ground progran® without not, an interpretation’ of P is amodelof P if I
satisfies every rule iP; it is ananswer sebf P if it is a subset minimal model oP.

For ground program#® containingnot, thereduct(?) w.r.t. I is P!, whereP! consists of

at « BT for everya « Bin P suchthatl = not 3~ andl = o~ . I is ananswer set

of Pif I is an answer set aP’. Note that allowing negation in the head of rules leads to
the loss of thenti-chain property(?) which states that no answer set can be a strict subset
of another answer set. E.g, a rule/ not a <+ has the answer sefisand{a} . However,
negation in the head is required to ensure first-order beh&mi certain predicates, e.g.,
when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set ofs;uldinite programs only
appear as byproducts of grounding a finite program usingfaitapre-interpretation. An
open interpretatiorof a programP is a pair(U, M) whereU is a pre-interpretation for
P and M is an interpretation of’;. An open answer seif P is an open interpretation
(U, M) of P with M an answer set aP;. An n-ary predicate in P is satisfiabldf there
is an open answer sétD, o), M) of P and af € D™ such thap(%) € M. A programP
is satisfiable iff it has an open answer set. Note that sdiisfiachecking of programs can
be easily reduced to satisfiability checking of predicatess satisfiable iffp is satisfiable
w.rt. P U {p(X) V not p(X) <}, wherep is a predicate symbol not used fhand X is
a tuple of variables. In the following, when we speak of $iatislity checking, we refer to
satisfiability checking of predicates, unless specifie@ntlise.

3 1n (?), we only use the domai which is there defined as a non-empty superset of the coastaft. This
corresponds to a pre-interpretatiof, o) whereo is the identity function orD.
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Satisfiability checking w.r.t. the open answer set semarnsiaindecidable in general.
In (?), we identify a syntactically restricted fragment of pragrs, so-calleduarded pro-
grams for which satisfiability checking is decidable, which isogm through a reduction
to guarded fixed point logic?j. The decidability of guarded programs relies on the pres-
ence of aguardin each rule, where a guard is an atom that contains all Vesatf the
rule. Formally, a ruler : o < S is guardedif there is an atomy, € 3% such that
vars(r) C vars(v); Y is theguardof r. A programP is aguarded program (GPif ev-
ery non-free rule irP is guarded. E.g., arulg( X, Y") « not f(X,Y) is not guarded, but
a(X,Y) + g(X,Y),not f(X,Y) is guarded with guard(X, Y"). Satisfiability checking
of predicates w.r.t. guarded programs is 2P TIME-complete ?) — a result that stems from
the corresponding complexity in guarded fixed point logic.

2.2 The Description Logic DLRO (=

DLR (?;?)is a DL which supports roles of arbitrary arity, whereas tialss only support
binary roles. We introduce an extension®fR with nominals, calledLRO (?). The
basic building blocks ofDLRO are concept names! andrelation namesP whereP
denotes an arbitrary-ary relation for2 < n < n,,.; andn,,., is a given finite non-
negative integer. Role expressidRsand concept expressiofsare defined as:
R—=>T,|P|@®i/n:C)| -R|R1MRa|{(01,...,00)}
C—oT1|A|-C|CiNCy| TSR | <k[$]R | {0}
wherei is betweenl andn in ($i/n : C); similarly in 3[$:]R and< k[$i]|R for R ann-ary
relation. Moreover, we assume that the above constructweltdyped e.g.,.R; MRz is
defined only for relations of the same arity. The semantid® 6RO is given by interpre-
tationsZ = (AZ, %) whereAZ is a non-empty set, thdomain and-Z is an interpretation
function such thaC? C AZ, RT C (AZ)" for ann-ary relationR, and the following
conditions are satisfie®; R, R, andR; have arityn):
TLC@n)”
PfCcTE
(-R)T = TI\R?
(Ri NR2)? =RINRS
($i/n:C)Y ={(d1,...,d,) € TL | d; € CT}

T =A"
Az C AZ
(-C)F = AT\C*
(CyNCy) =ctnc?
A$IR)T = {d e AT |I(dy,...,d,) € RT. d; = d}
(<E[$iR)T ={d e AT | |{(d1,...,d,) € RT | d; = d}| < k}
{o}f = {o"} Cc A*
{(01,...,00)} ={(01,...,00)}
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Note thatinDLRO the negation of role expressions is defined wirt.and not w.r.t(AZ)".
A DLRO knowledge basg& is a set of terminological axioms and role axioms, which de-
note subset relations between concept and role expregsidhe same arity), respectively.
A terminological axionC; C C, is satisfiedby Z iff C¥ C C%. Arole axiomR, C R» is
satisfiedoy Z iff R C RZ. Aninterpretatiorf is amodelof a knowledge basE (i.e. X is
satisfied byZ) if all axioms inX. are satisfied byZ; if > has a model, theR is satisfiable
A concept expressio€' is satisfiable w.r.t. a knowledge basef there is a model of &
such thatC? # (.

Note that for every interpretatidh,

({(o1,...,00) T =($1/n:{o1}) ... ($n/n: {o.}))*.

Therefore, in the remainder of the paper, we will restriatselves to nominals of the form
{o}. We denote the fragment @LRO without the number restrictiort k[$:]R with
DLROIS),

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are combinations of Descriptiogic.(DL) knowledge bases
and guarded logic programs (GP). They are a variant of thgorith knowledge bases
introduced in ?).

Definition 1
Given a Description Logi®L, ag-hybrid knowledge bass a pair(%, P) whereX is a
DL knowledge base an# is a guarded program.

Note that in the above definition there are no restrictiontheruse of predicate symbols.
We call the atoms and literals iR that have underlying predicate symbols which cor-
respond to concept or role names in the DL knowledge BdsatomsandDL literals,
respectively. Variables in rules are not required to apepositive non-DL atoms, which

is the case in, e.g., thHBL+log knowledge bases ir?}, the r-hybrid knowledge bases in
(?), and the DL-safe rules ir?]. DL-atoms can appear in the head of rules, thereby en-
abling a bi-directional flow of information between the DLdwledge base and the logic
program.

Example 1

Consider thedLRO~{=} knowledge bas& wheresocialDrinker is a conceptdrinks is
a ternary role such that, intuitivelyr, y, z) is in the interpretation oflrinks if a personc
drinks some drink with a persory. X consists of the single axiom

socialDrinker T 3[$1](drinks 1 ($3/3 : {wine}))

which indicates that social drinkers drink wine with someo@onsider a GRP that
indicates that someone has an increased risk of alcohdligra person is a social drinker
and knows someone from the association of Alcoholics Ananysr{AA). Furthermore,
we state thajohnis a social drinker and knowsichaelfrom AA:

problematic(X) <  socialDrinker(X), knowsFromAA(X,Y)
knowsFromAA(john, michael) <+
socialDrinker(john) <+
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TogetherX and P form a g-hybrid knowledge base. The literalg:ialDrinker(X ) and
socialDrinker(john) are DL atoms where the latter appears in the head of a ruteThe
literal knowsFromAA(X,Yappears only in the prograi (and is thus not a DL atom).

Given a DL interpretatio = (AZ,-Z) and a ground prograr, we defindI(P,Z) as
theprojectionof P with respect tdZ, which is obtained as follows: for every rutén P,

o if there exists a DL literal in the head of the form

— A(i) with £ € AZ, or
— not A(t) with £ ¢ AT,

then deleter,
o if there exists a DL literal in the body of the form

— A(f) with ' ¢ AT, or
— not A(t) with £’ e A7,

then delete,
e otherwise, delete all DL literals from

Intuitively, the projection “evaluates” the program withspect tdZ by removing (evalu-
ating) rules and DL literals consistently wifh) conceptually this is similar to the reduct,
which removes rules and negative literals consistenti it interpretation of the pro-
gram.

Definition 2
Let (3, P) be a g-hybrid knowledge base. An interpretationi®f P) is a tuple(U,Z, M)
such that

U = (D, o) is a pre-interpretation faP,

T = (D, -T) is an interpretation of,

M is an interpretation ofl( Py, Z), and

bT = o(b) for every constant symbaélappearing both ift and in P.

Then,(U = (D,o0),Z, M) is amodelof a g-hybrid knowledge basg, P) if Z is a
model of¥ and M is an answer set di(Py,Z).

For p a concept expression frob or a predicate fronP, we say thap is satisfiable
w.rt. (X, P) if there is a model{U, Z, M) such thap” # () or p(&) € M for somez from
D, respectively.

Example 2

Consider the g-hybrid knowledge base in Exaniple 1. Take (D, ¢) with D = {john,
michael, wine, x} ando the identity function on the constant symbolg ¥, P). Further-
more, define” as follows:

o socialDrinker® = {john},
o drinks™ = {(john, z, wine)},
e wine” = wine.

If M = {knowsfromAA(john, michael), problematic(john)}, then(U,Z, M) is a model

of this g-hybrid knowledge base. Note that the projectig#®, Z) does not contain the rule
socialDrinker(john) < .



8 S. Heymans et al.

4 Translation to Guarded Logic Programs

In this section we introduce a translation of g-hybrid knedde bases to guarded logic
programs (GP) under the open answer set semantics, shothisatanslation preserves
satisfiability, and use this translation to obtain comlesésults for reasoning in g-hybrid
knowledge bases. Before introducing the translation tadgdprograms formally, we
introduce the translation through an example.

Consider the knowledge base in Exarrgle 1. The axiom

socialDrinker T 3[$1](drinks 1 ($3/3 : {wine}))
translates to the constraint
« socialDrinker(X), not (3[$1](drinks 1 ($3/8 : {wine})))(X)

Thus, the concept expressions on either side ofilsymbol are associated with a new
unary predicate name. For convenience, we name the newcptesliaccording to the orig-

inal concept expressions. The constraint simulates thavietof theDLRO ™=} axiom.

If the left-hand side of the axiom holds and the right-hamt gloes not hold, there is a
contradiction.

It remains to ensure that those newly introduced predidsbave according to the DL
semantics. First, all the concept and role names occumirigel axiom above need to be
defined as free predicates, in order to simulate the firstra@mantics of concept and role
names in DLs. In DLs, a tuple is either true or false in a givetaripretation (cf. the law of
the excluded middle); this behavior can be captured exagtihe free predicates:

socialDrinker(X) V not socialDrinker(X) <«
drinks(X,Y,Z)V not drinks(X,Y,Z) <«

Note that concept names are translated to unary free ptedjcahilen-ary role names
are translated te-ary free predicates.

The definition of the truth symbol$; and T 5 which are implicit in ourDLRO ™11
axiom (since the axiom contains a concept name and a terokyare translated to free
predicates as well. Note that we do not need a predicaté f@ince the axiom does not
contain binary predicates.

TZ(X)\/TZOtTJ(X) —
Ts(X, Y, Z)Vnot Tg(X,Y,Z) «

We ensure that, for the ternaBL RO~ {=} role drinks, drinks® C T% holds by adding
the constraint:

+— drinks(X,Y,Z),not T3(X,Y,Z)
To ensure that 7 = AZ, we add the constraint:

— not T;(X)

For rules containing only one variable, we can always asghateX = X is in the body
and acts as the guard of the rule, so that the latter rule isdlgdacf. the equivalent rule
+—not T;(X),X =X.
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We translate the nomindkvine} to the rule
{wine}(wine) <+

Intuitively, since this rule will be the only rule with thegulicate{ wine} in the head, every
open answer set of the translated program will confaitne} (x) with o(wine) = z if
and only if the corresponding interpretatipmine}* = {z} for wine’ = .

TheDLRO™ =) role expression$3/3 : {wine}) indicates the ternary tuples for which
the third argument belongs to the extensiofoine}, which is translated to the following
rule:

(83/3 : {wine})(X,Y,Z) <+ T3(X,Y,Z),{wine}(Z)
Note that the above rule is guarded by theliteral.

Finally, the concept expressiddrinks M ($3/3 : {wine})) can be represented by the
following rule:

(drinks 1 ($3/3 : {wine}))(X,Y,Z) <+ drinks(X,Y,Z),
($3/3 : {wine})(X,Y, Z)

As we can see, the DL construtts translated to conjunction in the body of a rule.
The DLRO =} role 3[$1](drinks 1 ($3/3 : {wine})) can be represented using the
following rule:

(3[$1](drinks M ($3/3 : {wine})))(X) « (drinks ($3/3 : {wine}))(X,Y, Z)

Indeed, the elements which belong to the extensiof{®f] (drinks M ($3/3 : {wine}))
are exactly those that are connected to the (33 : {wine}), as specified in the rule.

This concludes the translation of the DL knowledge base éngthybrid knowledge
base of Examplgl1. The program can be considered as is, bydefinition of g-hybrid
knowledge bases, it is already a guarded program.

We now proceed with the formal translation. Ttiesureclos (%) of aDLRO ™=} knowl-
edge bas& is defined as the smallest set satisfying the following ciboms:

o Ty € clos(X),

for eachC' C D an axiom inX (role or terminological){C, D} C clos(%),

for every D in clos(X), clos(X) contains every subformula which is a concept ex-
pression or a role expression,

if clos(X) contains am-ary relation name, it contains,,.

We define® (%) as the smallest logic program satisfying the following dtinds:
e For each terminological axio® C D € ¥, (%) contains the constraint:
+ C(X),not D(X) (1)
e For each role axionR C S € ¥ whereR andS aren-ary, ®(X) contains:
«— R(Xy,...,X,),not S(X1,...,X,) (2)
e For eachT,, € clos(X), ®(X) contains the free rule:

To(X1,..., Xn) Vot Tp(Xq,...,Xn) < 3)
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Furthermore, for each-ary relation nam@ < clos(X), ®(X) contains:
—P(X1,...,Xy),not Tp(X1,...,X,) 4)

Intuitively, the latter rule ensures thR C TZ. Additionally, ®(X) has to contain
the constraint:

+ not T1(X) 5)

which ensures that, for every elementn the pre-interpretation] ; (z) is true in
the open answer set. The latter rule ensures Tfat= D for the corresponding
interpretation. The rule is implicitly guarded wifti = X.

e Next, we distinguish between the types of concept and rgleessions that appear
in clos(X). For eachD € clos(X):

— if D is aconcept nomindlo}, ®(X) contains the fact:
D(o0) + (6)

This fact ensures thdb} (z) holds in any open answer set iff= o(0) = o*
for an interpretation of%, P).
— if D is a concept name(X) contains:

D(X)Vnot D(X) + (7)
— if D is ann-ary relation namep(X) contains:
D(Xi,...,X,)Vnot D(Xq,...,X,) + (8)
— if D = —F for a concept expressiafi, ¢(X) contains the rule:
D(X) + not E(X) 9)

Note that we can again assume that such a rule is guard&d-byX .
— if D = =R for ann-ary role expressioR, ®(X) contains:

D(Xy,...,X,) + To(X1,..., Xpn),not R(X1,..., X,) (10)

Note that if negation would have been defined wit instead of TZ, we
would not be able to write the above as a guarded rule.
— if D = E N F for concept expressions andF', &(X) contains:

D(X)+ E(X),F(X) (11)
— if D =EnNF forn-ary role expressionk andF, ®(X) contains:
D(Xy,...,X,) «+ E(Xy,...,X,),F(Xy,...,X,) (12)
— = ($i/n: C), 2(X) contains:

— if D = 3[${]R, &(X) contains:
D(X)(—R(Xl,...,Xifl,X,XiJrl,...,Xn) (14)

The following theorem shows that this translation presesatisfiability.
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Theorem 1

Let (2, P) be a g-hybrid knowledge base witha DLRO ™=} knowledge base. Then, a
predicate or concept expressiois satisfiable w.r.t(X, P) iff p is satisfiable w.r.td(3) U
P.

Proof

(=) Assumep is satisfiable w.r.t(X, P), i.e., there exists a modéU, Z, M) of (X, P),

with U = (D, o), in which p has a non-empty extension. Now, we construct the open
interpretation’V, N) of ®(%, P) as follows.V = (D, ¢’) with ¢’ : ¢ts(®(X) U P) — D,
ando’(z) = o(z) for every constant symbal from P ando’(x) = o for every constant
symbolx from X. Note that’ is well-defined, since, for a constant symbalhich occurs

in bothY: and P, we have that(x) = 2Z. We define the se¥ as follows:

N=MU{C(x) |z Ct C € cls(X)}
U{R(x1,..., %) | (x1,...,7,) € R, R € clos(2)}

with C' andR. concept expressions and role expressions respectively.
Itis easy to verify thatV, V) is an open answer set (%) U P and(V, N) satisfiegp.
(<) Assumeg(V, N) is an open answer set @(X) U P with V = (D, ¢’) such thap is
satisfied. We define the interpretati@, Z, V) of (X, P) as follows.

e U = (D,o) whereo : cts(P) — D with o(z) = ¢'(x) (note that this is possible since
cts(P) C cts(®(X) U P)). U is then a pre-interpretation fdr.

e 7 = (D,-T) is defined such that? = {z | A(z) € N} for concept namesgl, PT =
{(z1,...,2,) | P(x1,...,2,) € N} for n-ary role name® ando’ = o’(0), foro a
constant symbol i (note that’ is indeed defined o). 7 is then an interpretation af.

o M = N\{p(Z) | p € clos(X)}, such that\! is an interpretation ofl( Py, T).

Moreover, for every constant symbiplvhich appears in botk and P, b = o(b). As a
consequencél/,Z, M) is an interpretation of%, P).
Itis easy to verify thatU, Z, M) is a model of(3, P) which satisfiep. O

Theorem 2
Let (X, P) be a g-hybrid knowledge base whe¥eis a DLRO~{=} knowledge base.
Then,®(X) U P is a guarded program with a size polynomial in the siz&fP).

Proof
The rules in®(X) are obviously guarded. Sinde is a guarded progran®(X) U P is a
guarded program as well.

The size ofclos(X) is of the ordem logn wheren is the size ofY. Intuitively, given
that the size of an expressiorviswe have that the size of the set of its subexpressions is
at most the size of a tree with degtiy n where the size of the subexpressions at a certain
level of the tree is at most.

The size ofb(X) is clearly polynomial in the size @fos(X), assuming that the arity of
an added role expression is polynomial in the size of the makarity of role expressions
in . If we were to add a relation nani® with arity 2", wheren is the maximal arity of
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relation names il andX, the size o would increase linearly, but the size ®fX) U P
would increase exponentially: one needs to add, e.g., rules

TQn(Xl,.. .,Xgn) V not TQn(Xl,.. .,XQn) —

which introduce an exponential number of arguments whaesthe of the roldR does not
depend on its arity. [

Note that in g-hybrid knowledge bases, we consiBRO (=} which is DLRO
without expressions of the forrd k[$i|R, since such expressions cannot be simulated
with guarded programs. E.g., consider the concept exressi1[$1]R where R is a
binary role. One can simulate tkeéby negation as failure:

< 1[$1]R(X) + not ¢(X)
for some new, with ¢ defined such that there are at least 2 diffef@rguccessors:
q(X) < R(X, V1), R(X,Y2),Y1 # Y2

However, the latter rule is not guarded — there is no atomadhiatainsX, Y;, andY;. So,
in general, expressing number restrictions suck &8:]R is out of reach for GPs. From
Theorem§1l anld 2 we obtain the following corollary.

Corollary 1
Satisfiability checking w.r.t. g-hybrid knowledge basés P), with ¥ a DLRO ™=}
knowledge base, can be polynomially reduced to satisfigloiiecking w.r.t. GPs.

Since satisfiability checking w.r.t. GPs issxPTIME-complete ?), we obtain the same
2-EXPTIME characterization for g-hybrid knowledge bases. We firstereiplicit a corol-
lary of TheorenfIL.

Corollary 2
Let P be a guarded program. Then, a concept or role exprepsosatisfiable w.r.tP iff
p is satisfiable w.r.t((), P).

Theorem 3
Satisfiability checking w.r.t. g-hybrid knowledge base®wdthe DL partis DLrRoO- =}
knowledge base is BxPTIME-complete.

Proof

Membership in 2ExPTIME follows from Corollary’l. Hardness follows from2xpPTIME-
hardness of satisfiability checking w.r.t. GPs and the rédn¢o satisfiability checking in
Corollaryi2. O

5 Relation with DL+log and other Related Work

In (?), so-calledDL+log knowledge bases combine a Description Logic knowledge base
with aweakly-safalisjunctive logic program. Formally, for a particular Daption Logic

DL, aDL+log knowledge basks a pair(X, P) whereX is aDL knowledge base consist-
ing of aTBox(a set of terminological axioms) and aBox(a set ofassertional axions
and P contains rulesv «+ 3 such that for every rule : o« + 5 € P:
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a” =10,
B~ does not contain DL atom®(-positiveness
each variable im occurs in3* (Datalog safenegsand

each variable inr which occurs in a non-DL atom, occurs in a non-DL atonBin
(weak safenejs

The semantics foPL+log is the same as that of g-hybrid knowledge b@saﬂih the
following exceptions:

e We do not require thetandard name assumptiowhich basically says that the do-
main of every interpretation is essentially the same irdlpitountable set of con-
stants. Neither do we have the impliedique name assumptipmaking the seman-
tics for g-hybrid knowledge bases more in line with currestrantic Web standards
such as OWL?) where neither the standard names assumption nor the uméapoies
assumption applies. Note that Rosati also presented aowesshybrid knowledge
bases which does not adhere to the unique name assumptiorearleéer work @).
However, the grounding of the program part is with the camtstgmbols explicitly
appearing in the program or DL part only, which yields a légisttintegration of the
program and the DL part than if)(or in g-hybrid knowledge bases.

e We define an interpretation as a tripl€,Z, M) instead of a pai(U,Z’) where
1’ = 7 U M; this is, however, equivalent tBL+log.

The key differences of the two approaches are:

e The programs consideredInC+log may have multiple positive literals in the head,
whereas we allow at most one. However, we allow negativealigein the head,
whereas this is not allowed L+ log. Additionally, since DL-atoms are interpreted
classically, we may simulate positive DL-atoms in the hdadugh negative DL-
atoms in the body.

¢ Instead of Datalog safeness we reqgjuardednessVhereas with Datalog safeness
every variable in the rule should appear in some positivenatfthe body of the rule,
guardedness requires that there is a positive atom thadiosrevery variable in the
rule, with the exception of free rules. E.gq.(X) + b(X), ¢(Y) is Datalog safe
sinceX appears i(X) andY appears ire(Y'), but this rule is not guarded since
there is no atom that contains bathandY . Note that we could easily extend the
approach taken in this paperhwosely guarded program&hich require that every
two variables in the rule should appear together in a pesdiom, However, this
would still be less expressive than Datalog safeness.

e We do not have the requirement for weak safeness, i.e., fe@bies do not need
to appear positively in a non-DL atom. The guardedness mayrdaded by a DL
atom.

4 Strictly speaking, we did not define answer sets of disjuaqirograms, however, the definitions of Subsection
[2 can serve for disjunctive programs without modificatibiso, we did not consider ABoxes in our definition
of DLs in Subsectiofl 2]2. However, the extension of the séicgto DL knowledge bases with ABoxes is
straightforward.
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Example 3
Exampldl contains the rule

problematic(X) <+  socialDrinker(X), knowsFromAA(X,Y)

This allows to deduce that might be a problem case evenif knows someone
from the AA but is not drinking with that person. Indeed, &sstrated by the model
in Exampl€ john is drinking wine with some anonymousand knowsmichael
from the AA. More correct would be the rule

problematic(X,Z) <« drinks(X,Y,Z), knowsFromAA(X,Y)

where we explicitly say thak” andY” in the drinks and knowsFromA A relations
should be the same, and we extendgheblematic predicate with the kind of drink
that X has a problem with. Then, the head variallés guarded by the DL atom
drinks and the rule is thus not weakly-safe, but is guarded noretkelThus, the
resulting knowledge base is noT¥+log knowledge base, but is a g-hybrid knowl-
edge base.

We do not have the requirement for DL-positiveness, i.e.,dddms may appear
negated in the body of rules (and also in the heads of rulesjeMer, one could
allow this inDL+log knowledge bases as well, sineet A()?) in the body of the
rule has the same effect ag X) in the head, where the latter is allowed ).(
Vice versa, we can also loosen our restriction on the ocoaeref positive atoms
in the head (which allows at most one positive atom in the headallow for
an arbitrary number of positive DL atoms in the head (but kékep the number
of positive non-DL atoms limited to one). E.g., a ryleX) v A(X) <« S, where
A(X) is a DL atom, is not a valid rule in the programs we consideigeksthe head
contains more than one positive atom. However, we can alweyste such a rule
to p(X) « 8, not A(X), which contains at most one positive atom in the head.
Arguably, DL atoms should not be allowed to occur negativiegcause DL pred-
icates are interpreted classically and thus the negatidrom of the DL atom is
not nonmonotonic. However, Datalog predicates which dépanDL predicates
are also (partially) interpreted classically, and DL atausurring negatively in the
body are equivalent to DL atoms occurring positively in tieadh which allows us to
partly overcome our limitation of rule heads to one posititem.

We do not take into account ABoxes in the DL knowledge basevéyer, the DL
we consider includes nominals such that one can simulatéBlos using termino-
logical axioms. Moreover, even if the DL does not include nuats, the ABox can
be written as ground facts in a program and ground facts a&yalguarded.
Decidability for satisfiability checki@of DL+log knowledge bases is guaranteed
if decidability of the conjunctive query containment preinl is guaranteed for the
DL at hand. In contrast, we relied on a translation of DLs targied programs
for establishing decidability, and, as explained in thevjines section, not all DLs
(e.g. those with number restrictions) can be translated¢b a GP.

5 (?) considers checking satisfiability of knowledge baseserathan satisfiability of predicates. However, the
former can easily be reduced to the latter.
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We briefly mentionA£-log (?), which is a predecessor &1L+ log. AL-log considers
ALC knowledge bases for the DL part and a set of positive Hornseladior the program
part. Every variable must appear in a positive atom in theybadd concept names are
the only DL predicates which may be used in the rules, and ey only be used in rule
bodies.

(?) and ) simulate reasoning in DLs with an LP formalism by using aerimediate
translation to first-order clauses. IP){SHZQ knowledge bases are reduced to first-order
formulas, to which the basic superposition calculus isiadp[?) translates4£C Q7 con-
cept expressions to first-order formulas, grounds them aviihite number of constants,
and transforms the result to a logic program. One can useta finimber of constants by
the finite model property aALCQZ. In the presence of terminological axioms this is no
longer possible since the finite model property is not guaesthto hold.

In (?), the DLALCNR (R stands for role intersection) is extended with Horn clauses
q(}_}) — pl(Xl), . ,pn(Xn) where the variables il must appear i, U...U X,
p1,---,Pn are either concept or role names, or ordinary predicateapus#aring in the DL
part, andg is an ordinary predicate. There is no safeness in the seatewuéry variable
must appear in a non-DL atom. The semantics is defined threxigimded interpretations
that satisfy both the DL and clauses part (as FOL formulasgranswering is undecid-
able if recursive Horn clauses are allowed, but decidgtilin be regained by restricting
the DL part or by enforcing that the clauses are role safeh(@adable in a role atom
R(X,Y) for a role R must appear in a non-DL atom). Note that the latter restricts
less strict than the DL—safen%Sm (?), where also variables in concept ator&X ) need
to appear in non-DL atoms. On the other har®®), dllows for the more expressive DL
SHOIN (D), and the head predicates may be DL atoms as well. Finally, S{®Rcan
be seen as an extension 8f (vithout any safeness restriction, which results in the lofs
decidability of the formalism. Compared to our work, we ddes a slightly less expres-
sive Description Logic, but we consider logic programs witthmonotonic negation, and
require guardedness, rather than role- or DL-safenessia@agtee decidability.

In (?) Description Logic programare introduced; atoms in the program component may
bedl-atomswith which one can query the knowledge in the DL componenthSilratoms
may specify information from the logic program which needse taken into account
when evaluating the query, yielding a bi-directional flowimformation. This leads to a
minimal interface between the DL knowledge base and the& lpgigram, enabling a very
loose integration, based on an entailment relation. Inreshtwe propose a much tighter
integration between the rules and the ontology, with irtiépa based on single models
rather than entailment. For a detailed discussion of theséinds of interaction, we refer
to (?).

Two recent approache8;(?) use an embedding in a nonmonotonic modal logic for in-
tegrating nonmonotonic logic programs and ontologiesdbaseclassical logic (e.g. DL).
(?) use the nonmonotonic logic of Minimal Knowledge and Negatks Failure (MKNF)
for the combination, and show decidability of reasoninggeecreasoning in the considered
description logic is decidable, and the DL safeness camdifl) holds for the rules in the

6 DL-safeness is a restriction of the earlier mentioned westress.
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logic program. In our approach, we do not require such a safenondition, but require
the rules to beyuarded and make a semantic distinction between DL predicateswrd r
predicates.¥) introduce several embeddings of non-ground logic programiirst-order
autoepistemic logic (FO-AEL), and compare them under comtimn with classical theo-
ries (ontologies). However?] do not address the issue of decidability or reasoning df suc
combinations.

Finally, (?) use Quantified Equilibrium Logic as a single unifying laage to capture
different approaches to hybrid knowledge bases, inclutiegapproach presented in this
paper. Although we have presented a translation of g-hyriviedge bases to guarded
logic programs, our direct semantics is still based on twaluahes, relying on separate
interpretations for the DL knowledge base and the logic mog whereas?) define equi-
librium models, which serve to give a unifying semanticshte hybrid knowledge base.
The approach ofq) may be used to define a notion of equivalence between, andeady
to new algorithms for reasoning with, g-hybrid knowledgsdss

6 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Desoritogic (DL) knowledge
bases with guarded logic programs. In particular, we coetbknowledge bases of the DL
DLRO~{=} which s close to OWL DL, with guarded programs, and showexidhbility
of this framework by a reduction to guarded programs undeioghen answer set seman-
tics (?; ?). We discussed the relation withL+log knowledge bases: g-hybrid knowledge
bases overcome some of the limitationgf+log, such as the unique names assumption,
Datalog safeness, and weak DL-safeness, but introducethérement of guardedness.
At present, a significant disadvantage of our approach iattieof support for DLs with
number restrictions which is inherent to the use of guardednams as our decidability
vehicle. A solution for this would be to consider other typéprograms, such asoncep-
tual logic programg(?). This would allow for the definition of a hybrid knowledgesea
(X, P) whereX is aSHZQ knowledge base an# is a conceptual logic program since
SHZQ knowledge bases can be translated to conceptual logicamegr

Although there are known complexity bounds for severalifragts of open answer set
programming (OASP), including the guarded fragment carsid in this paper, there are
no known effective algorithms for OASP. Additionally, ategence, there are no imple-
mented systems for open answer set programming. Theserad figure work.
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