
ar
X

iv
:0

80
9.

32
04

v1
 [

cs
.A

I]
 1

8
Se

p
20

08

Under onsideration for publiation in Theory and Pratie of Logi Programming
1

Extended ASP Tableaux and

Rule Redundany in Normal Logi Programs∗

MATTI JÄRVISALO and EMILIA OIKARINEN

Helsinki University of Tehnology (TKK)

Department of Information and Computer Siene

P.O. Box 5400, FI-02015 TKK, Finland

(e-mail: matti.jarvisalo�tkk.fi, emilia.oikarinen�tkk.fi)

submitted 20 February 2008; revised 12 September 2008; aepted 18 September 2008

Abstrat

We introdue an extended tableau alulus for answer set programming (ASP). The proof

system is based on the ASP tableaux de�ned in [Gebser&Shaub, ICLP 2006℄, with an

added extension rule. We investigate the power of Extended ASP Tableaux both theo-

retially and empirially. We study the relationship of Extended ASP Tableaux with the

Extended Resolution proof system de�ned by Tseitin for sets of lauses, and separate Ex-

tended ASP Tableaux from ASP Tableaux by giving a polynomial-length proof for a family

of normal logi programs {Πn} for whih ASP Tableaux has exponential-length minimal

proofs with respet to n. Additionally, Extended ASP Tableaux imply interesting insight

into the e�et of program simpli�ation on the lengths of proofs in ASP. Closely related

to Extended ASP Tableaux, we empirially investigate the e�et of redundant rules on

the e�ieny of ASP solving.

KEYWORDS: Answer set programming, tableau method, extension rule, proof omplexity,

problem struture

1 Introdution

Answer set programming (ASP) (Marek and Truszzy«ski 1999; Niemelä 1999; Gelfond and Leone 2002;

Lifshitz 2002; Baral 2003) is a delarative problem solving paradigm whih has

proven suessful for a variety of knowledge representation and reasoning tasks

(see (Soininen et al. 2001; Nogueira et al. 2001; Erdem et al. 2006; Brooks et al. 2007)

for examples). The suess has been brought forth by e�ient solver implementa-

tions suh as smodels (Simons et al. 2002), dlv (Leone et al. 2006), noMore++ (Anger et al. 2005),

cmodels (Giunhiglia et al. 2006), assat (Lin and Zhao 2004), and clasp (Gebser et al. 2007).

However, there has been an evident lak of theoretial studies into the reasons for

the e�ieny of ASP solvers.

Solver implementations and their inferene tehniques an be seen as determinis-

ti implementations of the underlying rule-based proof systems. A solver implements

∗ This is an extended version of a paper (Järvisalo and Oikarinen 2007) presented at the 23rd

International Conferene on Logi Programming (ICLP 2007) in Porto, Portugal.

http://arxiv.org/abs/0809.3204v1

2 M. Järvisalo and E. Oikarinen

a partiular proof system in the sense that the propagation mehanisms applied by

the solver apply the deterministi dedution rules in the proof system, whereas the

nondeterministi branhing/splitting rule of the proof system is made deterministi

through branhing heuristis present in typial solvers. From the opposite point of

view, a solver an be analyzed by investigating the power of an abstration of the

solver as the proof system the solver implements. Due to this strong interplay be-

tween theory and pratie, the study of the relative e�ieny of these proof systems

reveals important new viewpoints and explanations for the suesses and failures

of partiular solver tehniques.

A way of examining the best-ase performane of solver algorithms is provided by

(propositional) proof omplexity theory (Cook and Rekhow 1979; Beame and Pitassi 1998),

whih onentrates on studying the relative power of the proof systems underlying

solver algorithms in terms of the shortest existing proofs in the systems. A large (su-

perpolynomial) di�erene in the minimal length of proofs available in di�erent proof

systems for a family of Boolean expressions reveals that solver implementations of

these systems are inherently di�erent in strength. While suh proof omplexity the-

oreti studies are frequent in the losely related �eld of propositional satis�ability

(SAT), where typial solvers have been shown to be based on re�nements of the

well-known Resolution proof system (Beame et al. 2004), this has not been the ase

for ASP. Espeially, the inferene tehniques applied in urrent state-of-the-art ASP

solvers have been haraterized by a family of tableau-style ASP proof systems for

normal logi programs only very reently (Gebser and Shaub 2006b), with some

related proof omplexity theoreti investigations (Anger et al. 2006) and generaliza-

tions (Gebser and Shaub 2007). The lose relation of ASP and SAT and the respe-

tive theoretial underpinning of pratial solver tehniques has also reeived little at-

tention up until reently (Giunhiglia and Maratea 2005; Gebser and Shaub 2006a),

although the �elds ould gain muh by further studies on these onnetions.

This work ontinues in part bridging the gap between ASP and SAT. In�uened

by Tseitin's Extended Resolution proof system (Tseitin 1969) for lausal formu-

las, we introdue Extended ASP Tableaux, an extended tableau alulus based on

the proof system in (Gebser and Shaub 2006b). The motivations for Extended

ASP Tableaux are many-fold. Theoretially, Extended Resolution has proven to

be among the most powerful known proof systems, equivalent to, for example, ex-

tended Frege systems; no exponential lower bounds for the lengths of proofs are

known for Extended Resolution. We study the power of Extended ASP Tableaux,

showing a tight orrespondene with Extended Resolution.

The ontributions of this work are not only of theoretial nature. Extended ASP

Tableaux is in fat based on adding struture into programs by introduing addi-

tional redundant rules. On the pratial level, the struture of problem instanes has

an important role in both ASP and SAT solving. Typially, it is widely believed that

redundany an and should be removed for pratial e�ieny. However, the power

of Extended ASP Tableaux reveals that this is not generally the ase, and suh

redundany removing simpli�ation mehanisms an drastially hinder e�ieny.

In addition, we ontribute by studying the e�et of redundany on the e�ieny of

a variety of ASP solvers. The results show that the role of redundany in programs

Theory and Pratie of Logi Programming 3

is not as simple as typially believed, and ontrolled addition of redundany may in

fat prove to be relevant in further strengthening the robustness of urrent solver

tehniques.

The rest of this artile is organized as follows. After preliminaries on ASP and

SAT (Setion 2), the relationship of Resolution and ASP Tableaux proof systems

and onepts related to the omplexity of proofs are disussed (Setion 3). By in-

troduing the Extended ASP Tableaux proof system (Setion 4), proof omplexity

and simpli�ation are then studied with respet to Extended ASP Tableaux (Se-

tion 5). Experimental results related to Extended ASP Tableaux and redundant

rules in normal logi programs are presented in Setion 6.

2 Preliminaries

As preliminaries we review basi onepts related to answer set programming (ASP)

in the ontext of normal logi programs, propositional satis�ability (SAT), and

translations between ASP and SAT.

2.1 Normal Logi Programs and Stable Models

We onsider normal logi programs (NLPs) in the propositional ase. In the following

we will review some standard onepts related to NLPs and stable models.

A normal logi program Π onsists of a �nite set of rules of the form

r : h← a1, . . . , an,∼b1, . . . ,∼bm, (1)

where eah ai and bj is a propositional atom, and h is either a propositional atom,

or the symbol ⊥ that stands for falsity. A rule r onsists of a head, head(r) = h,

and a body, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. The symbol �∼� denotes default

negation. A default literal is an atom a, or its default negation ∼a.

The set of atoms ourring in a program Π is atom(Π), and

dlit(Π) = {a,∼a | a ∈ atom(Π)}

is the set of default literals in Π. We use the shorthands L+ = {a | a ∈ L} and

L− = {a | ∼a ∈ L} for a set L of default literals, and ∼A = {∼a | a ∈ A} for a

set A of atoms. This allows the shorthand

head(r)← body(r)+ ∪∼body(r)−

for (1). A rule r is a fat if body(r) = ∅. Furthermore, we use the shorthands

head(Π) = {head(r) | r ∈ Π} and

body(Π) = {body(r) | r ∈ Π}.

In ASP, we are interested in stable models (Gelfond and Lifshitz 1988) (or an-

swer sets) of a program Π. An interpretation M ⊆ atom(Π) de�nes whih atoms of

Π are true (a ∈M) and whih are false (a 6∈ M). An interpretation M ⊆ atom(Π)

is a (lassial) model of Π if and only if body(r)+ ⊆ M and body(r)− ∩M = ∅

4 M. Järvisalo and E. Oikarinen

imply head(r) ∈ M for eah rule r ∈ Π. A model M of a program Π is a stable

model of Π if and only if there is no model M ′ ⊂M of ΠM , where

ΠM = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩M = ∅}

is alled the Gelfond-Lifshitz redut of Π with respet to M . We say that a pro-

gram Π is satis�able if it has a stable model, and unsatis�able otherwise.

The positive dependeny graph of Π, denoted by Dep+(Π), is a direted graph

with atom(Π) and

{〈b, a〉 | ∃r ∈ Π suh that b = head(r) and a ∈ body(r)+}

as the sets of verties and edges, respetively. A non-empty set L ⊆ atom(Π) is a

loop in Dep+(Π) if for any a, b ∈ L there is a path of non-zero length from a to b

in Dep+(Π) suh that all verties in the path are in L. We denote by loop(Π) the

set of all loops in Dep+(Π). A NLP is tight if and only if loop(Π) = ∅. Furthermore,

the external bodies of a set A of atoms in Π is

eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩ A = ∅}.

A set U ⊆ atom(Π) is unfounded if eb(U) = ∅. We denote the greatest unfounded

set, that is, the union of all unfounded sets, of Π by gus(Π).

A splitting set (Lifshitz and Turner 1994) for a NLP Π is any set U ⊆ atom(Π)

suh that for every r ∈ Π, if head(r) ∈ U , then body(r)+ ∪ body(r)− ⊆ U . The

bottom of Π relative to U is

bottom(Π, U) = {r ∈ Π | atom({r}) ⊆ U},

and the top of Π relative to U is

top(Π, U) = Π \ bottom(Π, U).

The top an be partially evaluated with respet to an interpretation X ⊆ U . The

result is a program eval(top(Π, U), X) that ontains the rule

head(r)← (body(r)+ \ U),∼(body(r)− \ U)

for eah r ∈ top(Π, U) suh that body(r)+ ∩ U ⊆ X and (body(r)− ∩ U) ∩X = ∅.

Given a splitting set U for a NLP Π, a solution to Π with respet to U is a pair 〈X,Y 〉

suh that X ⊆ U , Y ⊆ atom(Π) \ U , X is a stable model of bottom(Π, U), and Y

is a stable model of eval(top(Π, U), X). In this work we will apply the splitting set

theorem (Lifshitz and Turner 1994) that relates solutions with stable models.

Theorem 2.1 ((Lifshitz and Turner 1994)) Given a normal logi program Π

and a splitting set U for Π, an interpretation M ⊆ atom(Π) is a stable model of Π

if and only if 〈M ∩ U,M \ U〉 is a solution to Π with respet to U .

2.2 Propositional Satis�ability

Let X be a set of Boolean variables. Assoiated with every variable x ∈ X there

are two literals, the positive literal, denoted by x, and the negative literal, denoted

Theory and Pratie of Logi Programming 5

by x̄. A lause is a disjuntion of distint literals. We adopt the standard onvention

of viewing a lause as a �nite set of literals and a CNF formula as a �nite set of

lauses. The set of variables appearing in a lause C (a set C of lauses, respetively)

is denoted by var(C) (var(C), respetively).

A truth assignment τ assoiates a truth value τ(x) ∈ {false, true} with eah

variable x ∈ X . A truth assignment satis�es a set of lauses if and only if it satis�es

every lause in it. A lause is satis�ed if and only if it ontains at least one satis�ed

literal, where a literal x (x̄, respetively) is satis�ed if τ(x) = true (τ(x) = false,

respetively). A set of lauses is satis�able if there is a truth assignment that satis�es

it, and unsatis�able otherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of lauses to normal logi pro-

grams so that the stable models of the enoding represent the satisfying truth

assignments of the original set of lauses faithfully, that is, there is a bijetive

orrespondene between the satisfying truth assignments and stable models of the

translation (Niemelä 1999). Given a set C of lauses, this translation nlp(C) in-

trodues a new atom c for eah lause C ∈ C, and atoms ax and âx for eah

variable x ∈ var(C). The resulting NLP is then

nlp(C) = {ax ← ∼âx. âx ← ∼ax | x ∈ var(C)} ∪ (2)

{⊥ ← ∼c | C ∈ C} ∪ (3)

{c← ax | x ∈ C, C ∈ C, x ∈ var(C)} ∪ (4)

{c← ∼ax | x̄ ∈ C, C ∈ C, x ∈ var(C)}. (5)

The rules (2) enode that eah variable must be assigned an unambiguous truth

value, the rules in (3) that eah lause in C must be satis�ed, while (4) and (5)

enode that eah lause is satis�ed if at least one of its literals is satis�ed.

Example 2.2 The set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of lauses is represented

by the normal logi program

nlp(C) = { ax ← ∼âx. âx ← ∼ax. ay ← ∼ây. ây ← ∼ay.

⊥ ← ∼c1. ⊥ ← ∼c2. ⊥ ← ∼c3. ⊥ ← ∼c4.

c1 ← ax. c1 ← ay. c2 ← ax. c2 ← ∼ay.

c3 ← ∼ax. c3 ← ay. c4 ← ∼ax. c4 ← ∼ay }.

2.4 ASP as SAT

Contrarily to the ase of translating SAT into ASP, there is no modular

1
and faith-

ful translation from normal logi programs to propositional logi (Niemelä 1999).

1
Intuitively, for a modular translation, adding a set of fats to a program leads to a loal hange

not involving the translation of the rest of the program (Niemelä 1999).

6 M. Järvisalo and E. Oikarinen

Moreover, any faithful translation is potentially of exponential size when additional

variables are not allowed (Lifshitz and Razborov 2006)

2
. However, for any tight

program Π it holds that the answer sets of Π an be haraterized faithfully by the

satisfying truth assignments of a linear-size propositional formula alled Clark's

ompletion (Clark 1978; Fages 1994) of Π, de�ned using a Boolean variable xa for

eah a ∈ atom(Π) as

C(Π) =
∧

h∈atom(Π)∪{⊥}

(

xh ↔
∨

r∈rule(h)

(

∧

b∈body(r)+

xb ∧
∧

b∈body(r)−

x̄b

))

, (6)

where rule(h) = {r ∈ Π | head(r) = h}. Notie that there are the speial ases

(i) if h is ⊥ then the equivalene beomes the negation of the right hand side,

(ii) if h is a fat, then the equivalene redues to the lause {xh}, and (iii) if an

atom h does not appear in the head of any rule then the equivalene redues to the

lause {x̄h}.

In this work, we will onsider the lausal representation of Boolean formulas.

A linear-size lausal translation of C(Π) is ahieved by introduing additionally a

new Boolean variable xB for eah B ∈ body(Π). Using the new variables for the

bodies, we arrive at the lausal ompletion

comp(Π) =
⋃

B∈body(Π)

{

xB ≡
∧

a∈B+

xa ∧
∧

b∈B−

x̄b

}

∪
⋃

B∈body(rule(⊥))

{{x̄B}} (7)

∪
⋃

h∈head(Π)\{⊥}

{

xh ≡
∨

B∈body(rule(h))

xB

}

(8)

∪
⋃

a∈atom(Π)\head(Π)

{{x̄a}}, (9)

where the shorthands x ≡
∧

xi∈X xi and x ≡
∨

xi∈X xi stand for the sets of lauses

{x, x̄1, . . . , x̄n} ∪
⋃

xi∈X{x̄, xi} and
⋃

xi∈X{x, x̄i} ∪ {x̄, x1, . . . , xn}, respetively.

Example 2.3 For the normal logi program Π = {a← b,∼a. b← c. c← ∼b}, the

lausal ompletion is

comp(Π) = {{x{b,∼a}, xa, x̄b}, {x̄{b,∼a}, x̄a}, {x̄{b,∼a}, xb},

{x{c}, x̄c}, {x̄{c}, xc}, {x{∼b}, xb}, {x̄{∼b}, x̄b}, {xa, x̄{b,∼a}},

{x̄a, x{b,∼a}}, {xb, x̄{c}}, {x̄b, x{c}}, {xc, x̄{∼b}}}, {x̄c, x{∼b}}.

2
However, polynomial-size propositional enodings using extra variables are known,

see (Ben-Eliyahu and Dehter 1994; Lin and Zhao 2003; Janhunen 2006). Also, ASP as Propo-

sitional Satis�ability approahes for solving normal logi programs have been developed, for

example, assat (Lin and Zhao 2004) (based on inrementally adding�possibly exponentially

many�loop formulas) and asp-sat (Giunhiglia et al. 2006) (based on generating a supported

model (Brass and Dix 1995) of the program and testing its minimality�thus avoiding exponen-

tial spae onsumption).

Theory and Pratie of Logi Programming 7

3 Proof Systems for ASP and SAT

In this setion we review onepts related to proof omplexity (Cook and Rekhow 1979;

Beame and Pitassi 1998) in the ontext of this work, and disuss the relationship

of Resolution and ASP Tableaux (Gebser and Shaub 2006b).

3.1 Propositional Proof Systems and Complexity

Formally, a (propositional) proof system is a polynomial-time omputable predi-

ate S suh that a propositional expression E is unsatis�able if and only if there

is a proof P for whih S(E,P) holds. A proof system is thus a polynomial-time

proedure for heking the orretness of proofs in a ertain format. While proof

heking is e�ient, �nding short proofs may be di�ult, or, generally, impossible

sine short proofs may not exist for a too weak proof system. As a measure of

hardness of proving unsatis�ability of an expression E in a proof system S, the

(proof) omplexity of E in S is the length of the shortest proof for E in S. For a

family {En} of unsatis�able expressions over inreasing number of variables, the

(asymptoti) omplexity of {En} is measured with respet to the sizes of En.

For two proof systems S and S′
, we say that S′

polynomially simulates S if

for all families {En} it holds that CS′(En) ≤ p(CS(En)) for all En, where p is a

polynomial, and CS and CS′
are the omplexities in S and S′

, respetively. If S

simulates S′
and vie versa, then S and S′

are polynomially equivalent. If there is

a family {En} for whih S′
does not polynomially simulate S, we say that {En}

separates S from S′
. If S simulates S′

, and there is a family {En} separating S

from S′
, then S is more powerful than S′

.

3.2 Resolution

The well-known Resolution proof system (RES) for sets of lauses is based on the

resolution rule. Let C,D be lauses, and x a Boolean variable. The resolution rule

states that we an diretly derive C ∪ D from {x} ∪ C and {x̄} ∪ D by resolving

on x.

A RES derivation of a lause C from a set C of lauses is a sequene of lauses

π = (C1, C2, . . . , Cn), where Cn = C and eah Ci, where 1 ≤ i < n, is either

(i) a lause in C (an initial lause), or (ii) derived with the resolution rule from two

lauses Cj , Ck, where j, k < i (a derived lause). The length of π is n, the number

of lauses ourring in it. Any derivation of the empty lause ∅ from C is a RES

proof for (the unsatis�ability of) C.

Any RES proof π = (C1, C2, . . . , Cn = ∅) an be represented as a direted ayli

graph, in whih the leafs are initial lauses and other nodes are derived lauses.

There are edges from Ci and Cj to Ck if and only if Ck has been diretly derived

from Ci and Cj using the resolution rule. Many Resolution re�nements, in whih

the struture of the graph representation is restrited, have been proposed and

studied. Of partiular interest here is Tree-like Resolution (T-RES), in whih it is

required that proofs are represented by trees. This implies that a derived lause,

8 M. Järvisalo and E. Oikarinen

if subsequently used multiple times in the proof, must be derived anew eah time

from initial lauses.

T-RES is a proper RES re�nement, that is, RES is more powerful than T-RES (Ben-Sasson et al. 2004).

On the other hand, it is well known that the DPLL method (Davis and Putnam 1960;

Davis et al. 1962), the basis of most state-of-the-art SAT solvers, is polynomially

equivalent to T-RES. However, on�it-learning DPLL is more powerful than T-RES,

and polynomially equivalent to RES under a slight generalization (Beame et al. 2004).

3.3 ASP Tableaux

Although ASP solvers for normal logi programs have been available for many

years, the dedution rules applied in suh solvers have only reently been for-

mally de�ned as a proof system, whih we will here refer to as ASP Tableaux

or ASP-T (Gebser and Shaub 2006b).

An ASP tableau for a NLP Π is a binary tree of the following struture. The

root of the tableau onsists of the rules Π and the entry F⊥ for apturing that ⊥

is always false. The non-root nodes of the tableau are single entries of the form Ta

or Fa, where a ∈ atom(Π) ∪ body(Π). As typial for tableau methods, entries are

generated by extending a branh (a path from the root to a leaf node) by applying

one of the rules in Figure 1; if the prerequisites of a rule hold in a branh, the

branh an be extended with the entries spei�ed by the rule. For onveniene, we

use shorthands tl and f l for default literals:

tl =

{

Ta, if l = a is positive,

Fa, if l = ∼a is negative; and

f l =

{

Ta, if l = ∼a is negative,

Fa, if l = a is positive.

A branh is losed under the dedution rules (b)�(i) if the branh annot be

extended using the rules. A branh is ontraditory if there are the entries Ta

and Fa for some a. A branh is omplete if it is ontraditory, or if there is the

entry Ta or Fa for eah a ∈ atom(Π) ∪ body(Π) and the branh is losed under

the dedution rules (b)�(i). A tableau is ontraditory, if all its branhes in are

ontraditory, and non-ontraditory otherwise. A tableau is omplete if all its

branhes are omplete. A ontraditory tableau from Π is an ASP-T proof for (the

unsatis�ability of) Π. The length of an ASP-T proof is the number of entries in it.

Example 3.1 An ASP-T proof for the NLP Π = {a ← b,∼a. b ← c. c ← ∼b} is

shown in Figure 2, with the rule applied for deduing eah entry given in paren-

theses. For example, the entry Fa has been dedued from a ← b,∼a in Π and the

entry T{b,∼a} in the left branh by applying the rule (g) Bakward True Body. On

the other hand, T{b,∼a} has been dedued from a← b,∼a in Π and the entry Ta

in the left branh by applying the rule (i§), that is, rule (i) by the fat that the

ondition § �Bakward True Atom� is ful�lled (in Π, the only body with atom a in

the head is {b,∼a}). The tableau in Figure 2 has two losed branhes:

(Π ∪ {F⊥},Ta,T{b,∼a},Fa) and

Theory and Pratie of Logi Programming 9

Tφ Fφ

(♮)

(a) Cut

h← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}
(b) Forward True Body

F{l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
() Bakward False Body

h← l1, . . . , ln
T{l1, . . . , ln}

Th

(d) Forward True Atom

h← l1, . . . , ln
Fh

F{l1, . . . , ln}
(e) Bakward False Atom

h← l1, . . . , li, . . . , ln
f li

F{l1, . . . , li, . . . , ln}
(f) Forward False Body

T{l1, . . . , li, . . . , ln}

tli
(g) Bakward True Body

FB1, . . . ,FBm

Fh

(♭)

(h)

FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

Th

TBi

(♯)

(i)

(♮): Appliable when φ ∈ atom(Π) ∪ body(Π).
(♭): Appliable when one of the following onditions holds:

§ (�Forward False Atom�), † (�Well-Founded Negation�), or ‡ (�Forward Loop�).

(♯): Appliable when one of the following onditions holds:

§ (�Bakward True Atom�), † (�Well-Founded Justi�ation�), or ‡ (�Bakward Loop�).

(§): Appliable when body(rule(h)) = {B1, . . . , Bm}.
(†): Appliable when
{B1, . . . , Bm} ⊆ body(Π) and h ∈ gus({r ∈ Π | body(r) 6∈ {B1, . . . Bm}}).

(‡): Appliable when h ∈ L, L ∈ loop(Π), and eb(L) = {B1, . . . , Bm} all hold.

Fig. 1. Rules in ASP Tableaux.

(Π ∪ {F⊥},Fa,F{b,∼a},Fb,T{∼b},Tc,T{c},Tb).

These branhes share the ommon pre�x (Π ∪ {F⊥}).

Any branh B desribes a partial assignment A on atom(Π) ∪ body(Π) in a

natural way, that is, if there is an entry Ta (Fa, respetively) in B for a ∈

atom(Π) ∪ body(Π), then (a, true) ∈ A ((a, false) ∈ A, respetively). ASP-T is

a sound and omplete proof system for normal logi programs, that is, there is

a omplete non-ontraditory ASP tableau from Π if and only if Π is satis�-

able (Gebser and Shaub 2006b). Thus the assignment A desribed by a omplete

10 M. Järvisalo and E. Oikarinen

Ta Fa

F{b,∼a}
Fb
T{∼b}
Tc
T{c}
Tb
×

(e)

()

(b)

(d)

(b)

(d)

Fa (g)

×

F⊥

a← b,∼a
b← c

T{b,∼a} (i�)

c← ∼b

Fig. 2. An ASP-T proof for Π = {a← b,∼a. b← c. c← ∼b}.

non-ontraditory branh gives a stable model M = {a ∈ atom(Π) | (a, true) ∈ A}

of Π.

As argued in (Gebser and Shaub 2006b), urrent ASP solver implementations

are tightly related to ASP-T, with the intuition that the ut rule is made determin-

isti with deision heuristis, while the dedution rules desribe the propagation

mehanism in ASP solvers. For instane, the noMore++ system (Anger et al. 2005)

is a deterministi implementation of the rules (a)�(g),(h§),(h†), and (i§), while

smodels (Simons et al. 2002) applies the same rules with the ut rule restrited

to atom(Π).

Interestingly, ASP-T and T-RES are polynomially equivalent under the transla-

tions comp and nlp. Although the similarity of unit propagation in DPLL and propa-

gation in ASP solvers is disussed in (Giunhiglia and Maratea 2005; Gebser and Shaub 2006a),

here we want to stress the diret onnetion between ASP-T and T-RES. In detail,

T-RES and ASP-T are equivalent in the sense that (i) given an arbitrary NLP Π,

the length of minimal T-RES proofs for comp(Π) is polynomially bounded in the

the length of minimal ASP-T proofs for Π, and (ii) given an arbitrary set C of

lauses, the length of minimal ASP-T proofs for nlp(C) is polynomially bounded in

the length of minimal T-RES proofs for C.

Theorem 3.2 T-RES and ASP-T are polynomially equivalent proof systems in the

sense that

(i) onsidering tight normal logi programs, T-RES under the translation comp polyno-

mially simulates ASP-T, and

(ii) onsidering sets of lauses, ASP-T under the translation nlp polynomially simulates

T-RES.

In the following we give detailed proofs for the two parts of Theorem 3.2 followed

by illustrating examples.

In the proof of the �rst part of Theorem 3.2, we use a onept of a (binary) ut

tree orresponding to an ASP-T proof. Given an ASP-T proof T for a normal logi

Theory and Pratie of Logi Programming 11

program Π, the orresponding ut tree is obtained as follows. Starting from the

root of T , we replae eah non-leaf entry generated by a dedution rule in T by an

appliation of the ut rule on the orresponding entry. For example, the ut tree T ′

orresponding to the ASP-T proof T in Figure 2 is given in Figure 3 (left).

Proof of Theorem 3.2 (i)

Let T be an ASP-T proof for a tight normal logi program Π. Without loss of

generality, we will assume that branhes in T have not been extended further after

they have beome ontraditory. We now show that we an onstrut a T-RES

proof π for comp(Π) using the ut tree T ′
orresponding to T . Furthermore, we

show that for suh a proof π it holds that, given any pre�x p of an arbitrary

branh B in T ′
there is a lause C ∈ π ontraditory to the partial assignment

in p, that is, there is the entry Fa (Ta) for a ∈ atom(Π) ∪ body(Π) in p for eah

orresponding positive literal xa (negative literal x̄a) in C.

Consider �rst the partial assignment in an arbitrary (full) branhB in T ′
. Assume

that there is no lause in comp(Π) ontraditory to the partial assignment in B,

that is, we an obtain a truth assignment τ based on the entries in B suh that every

lause in comp(Π) is satis�ed in τ . But this leads to ontradition sine comp(Π) is

satis�ed if and only if Π is satis�ed. Thus there is a lause C ∈ comp(Π) ontradi-

tory to the partial assignment in B, and we take the lause C into our resolution

proof π.

Assume that we have onstruted π suh that for any pre�x p of length n for any

branh B in T ′
, there is a lause C ∈ π ontraditory to the partial assignment in p.

Consider an arbitrary pre�x p of length n− 1. Now, in T ′
we have the pre�xes p′

and p′′ of length n whih have been obtained through extending p by applying the

ut rule on some a ∈ atom(Π)∪ body(Π). In other words, p′ is p with Ta appended

in the end (p′′ is p with Fa appended in the end). Sine p′ (p′′, respetively) is

of length n, there is a lause C (D, respetively) in π ontraditory to the partial

assignment in p′ (p′′, respetively). Now there are two possibilities. If C = {x̄a}∪C′

and D = {xa} ∪ D′
, we an resolve on xa adding C′ ∪ D′

to π. Thus we have a

lause C′∪D′ ∈ π ontraditory to the partial assignment in the pre�x p. Otherwise

we have that x̄a 6∈ C or xa 6∈ D, and hene either C ∈ π or D ∈ π is ontraditory

to the partial assignment in the pre�x p.

When reahing the root of T ′
, we must have derived ∅ sine it is the only lause

ontraditory with the empty assignment. Furthermore, the T-RES derivation π is

of polynomial length with respet to T ′
(and T).

The following example illustrates the RES proof onstrution used above in the

proof of Theorem 3.2 (i).

Example 3.3 Consider again the tight NLP Π = {a ← b,∼a. b ← c. c ← ∼b}

from Example 2.3 and the ASP-T proof T for Π in Figure 2. We now onstrut

a T-RES proof for the ompletion comp(Π) (see Example 2.3 for details) using

the strategy from the proof of Theorem 3.2 (i). First, T is transformed into a ut

tree T ′
given in Figure 3 (left). Consider now the two leftmost branhes in T ′

. The

partial assignment in the branh with entries Ta and F{b,∼a} is ontraditory

12 M. Järvisalo and E. Oikarinen

Ta Fa

T{∼b}

F{b,∼a}

Tb

F{∼b}

Fb

FcTc

F{c}T{c}

T{b,∼a}

T{b,∼a}F{b,∼a}

{xa}

{xb} {x{b,∼a}, xa, x̄b}

{xb, x̄{∼b}} {x{∼b}, xb}

{xc, x̄{∼b}}

{x{c}, x̄c}

{xa, x̄{b,∼a}}

∅

{x̄a}

{x̄a, x{b,∼a}} {x{b,∼a}, xa}

{xb, x̄{c}}

{x̄{b,∼a}, x̄a}

{xb, x̄c}

Fig. 3. Left: ut tree based on the ASP-T proof in Figure 2. Right: resulting T-RES

proof.

to lause {x̄a, x{b,∼a}} in comp(Π), and the partial assignment in the branh with

entries Ta and T{b,∼a} is ontraditory to lause {x̄{b,∼a}, x̄a} in comp(Π). Thus

we resolve on x{b,∼a} and obtain the lause {x̄a}, whih is ontraditory to the

single entry Ta in the pre�x of the two leftmost branhes in T ′
. Similarly, we an

onstrut a resolution tree for lause {xa} orresponding to the right side of T ′
. We

�nish the proof by resolving on xa. The omplete T-RES proof orresponding to the

ut tree T ′
is shown in Figure 3 (right).

Proof of Theorem 3.2 (ii)

Let π = (C1, . . . , Cn = ∅) be a T-RES refutation of a set C of lauses. Reall that

eah derived lause Ci in π is obtained by resolving on x from Cj = C ∪ {x} and

Ck = D ∪ {x̄} for some j, k < i.

An ASP-T proof T for nlp(C) is obtained from π as follows. We start from Cn,

whih is obtained from lauses Cj = {x} and Ck = {x̄} by resolving on x ∈ var(C),

and apply in T the ut rule on ax orresponding to x. Then we reursively ontinue

the same way with Cj (Ck, respetively) in the generated branh with Fax (Tax,

respetively). Sine π is tree-like, eah lause in the pre�x (C1, . . . , Cmax{j,k}) of π

is either used in the derivation of Cj or Ck, but not in both. By onstrution when

reahing C1 the branhes of T orrespond one-to-one to the paths in π (seen as a

tree) from Cn to the leaf lauses of π. For a partiular leaf lause C, we have for

eah literal l ∈ C (l = x or l = x̄) ontraditing entries for ax in the orresponding

branh of T , that is, Fax if l = x and Tax if l = x̄. Now we an diretly dedue

for eah Fax the entry F{ax} and for eah Tax the entry F{∼ax}. These entries

together will allow us to diretly dedue Fc (all the bodies of rules with atom c as

the head are false). Sine we have ⊥ ← ∼c ∈ nlp(C), we an dedue Tc, and the

branh beomes ontraditory.

The following example illustrates the strategy used in the proof of Theorem 3.2 (ii).

Theory and Pratie of Logi Programming 13

Example 3.4 Reall the set C = {{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}} of lauses and the

orresponding normal logi program nlp(C) presented in Example 2.2. The set C of

lauses has a T-RES refutation π = ({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅). Now

we onstrut an ASP-T proof T for nlp(C) from π as done in the proof of Theo-

rem 3.2 (ii). The resulting ASP-T proof T is presented in Figure 4. In the tableau

we have omitted entries of the form T{l} and F{l} for bodies onsisting of a single

default literal. The empty lause is obtained resolving on y from {y} and {ȳ}, and

thus we start with applying the ut rule on ay. The lause {ȳ} is obtained resolving

on x from {x, ȳ} and {x̄, ȳ}. We ontinue in the branh with Tay by applying the

ut rule on ax. Consider now the branh with Tay and Tax in the tableau. The

branh orresponds to the lause {x̄, ȳ} in C. Thus we arrive in a ontradition

by deduing Fc4 from c4 ← ∼ax and c4 ← ∼ay, and Tc4 from ⊥ ← ∼c4. Other

branhes beome ontraditory similarly.

Fc1
Tc1
×

Fay

nlp(C)
F⊥

Fax

Tay

Tax Fax
Tax

×
Tc3
×

Fc3Fc2
Tc2
×

Fc4
Tc4

Fig. 4. An ASP-T proof for nlp(C) resulting from a T-RES proof π =

({x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}, {y}, {ȳ}, ∅) for C in Example 3.4.

4 Extended ASP Tableaux

We will now introdue an extension rule

3
to ASP-T, whih results in Extended ASP

Tableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is that

one an de�ne names for onjuntions of default literals.

De�nition 4.1 Given a normal logi program Π and two literals l1, l2 ∈ dlit(Π),

the (elementary) extension rule in E-ASP-T adds the rule p ← l1, l2 to Π, where

p 6∈ atom(Π) ∪ {⊥}.

It is essential that p is a new atom for preserving satis�ability. After an appliation

of the extension rule one onsiders the program Π′ = Π∪{p← l1, l2} instead of the

original programΠ. Notie that atom(Π′) = atom(Π)∪{p}. Thus when the extension

rule is applied several times, the atoms introdued in previous appliations of the

rule an be used in de�ning further new atoms (see the forthoming Example 4.2).

3
Notie that the extension rule introdued here di�ers from the one proposed in (Hai et al. 2003)

in the ontext of theorem proving.

14 M. Järvisalo and E. Oikarinen

When onvenient, we will apply a generalization of the elementary extension rule.

By allowing one to introdue multiple bodies for p, the general extension rule adds

a set of rules

⋃

i

{p← li,1, . . . , li,ki
| p 6∈ atom(Π) ∪ {⊥} and li,k ∈ dlit(Π) for all 1 ≤ k ≤ ki}

into Π. Notie that equivalent onstruts an be introdued with the elementary

extension rule. For example, bodies with more than two literals an be deomposed

with balaned parentheses using additional new atoms.

Example 4.2 Consider a normal logi program Π suh that atom(Π) = {a, b}.

We apply the general extension rule and add a de�nition for the disjuntion of

atoms a and b, resulting in a program Π ∪ {c← a. c← b}. An equivalent onstrut

an be introdued by applying the elementary extension rule twie: add �rst a rule

d← ∼a,∼b, and then add a rule c← ∼d,∼d.

An E-ASP-T proof for (the unsatis�ability of) a program Π is an ASP-T proof

T for Π ∪ E, where E is a set of extending (program) rules generated with the

extension rule in E-ASP-T. The length of an E-ASP-T proof is the length of T plus

the number of program rules in E.

A key point is that appliations of the extension rule do not a�et the existene

of stable models.

Theorem 4.3 Extended ASP Tableaux is a sound and omplete proof system for

normal logi programs.

Proof

Let T be an E-ASP-T proof for normal logi program Π with the set E of extend-

ing rules, that is, an ASP-T proof for Π ∪ E. Sine ASP-T is sound and omplete,

there is a omplete non-ontraditory branh in T if and only if Π ∪ E is satis�-

able. The set atom(Π) is a splitting set for Π ∪ E, sine head(r) 6∈ atom(Π) ∪ {⊥}

for every extending rule r ∈ E. Furthermore, bottom(Π ∪ E, atom(Π)) = Π and

top(Π ∪ E, atom(Π)) = E. By Theorem 2.1, Π ∪E is satis�able if and only if there

is a solution to Π ∪ E with respet to atom(Π), that is, there is a stable model

M ⊆ atom(Π) for Π and a stable model N for eval(E,M). Sine the rules in E are

generated using the extension rule (reall also⊥ 6∈ head(E)), there is a unique stable

model for eval(E,M) for eahM ⊆ atom(Π). Thus there is a solution to Π∪E with

respet to atom(Π) if and only if Π is satis�able, and moreover, Π∪E is satis�able

if and only if Π is satis�able, and E-ASP-T is sound and omplete.

4.1 The Extension Rule and Well-Founded Dedution

An interesting question regarding the possible gains of applying the extension rule

in E-ASP-T with the ASP tableau rules is whether the additional extension rule

allows one to simulate well-founded dedution (rules (h†),(h‡),(i†), and (i‡)) with

Theory and Pratie of Logi Programming 15

the other dedution rules ((b)�(g),(h§),(i§))4. We now show that this is not the ase;

the extension rule does not allow us to simulate reasoning related to unfounded

sets and loops. This is implied by Theorem 4.4, whih states that, by removing

rules (h†),(h‡),(i†), and (i‡) from E-ASP-T, the resulting tableau method beomes

inomplete for NLPs.

Theorem 4.4 Using only tableau rules (a)�(g), (h§) and (i§), and the extension

rule does not result in a omplete proof system for normal logi programs.

Proof

Consider the NLP Π = {⊥ ← ∼a. a ← b. b ← a}. Although Π is unsatis�able,

in the proof system having only the tableau rules (a)�(g),(h§), and (i§), we an

onstrut a omplete and non-ontraditory tableau with a single branh

T = (Π ∪ {F⊥},F{∼a} (e),Ta (),T{b} (i§),Tb (g),T{a} (i§))

for Π.

Consider an arbitrary set E of extending rules generated using the extension rule

in E-ASP-T. Reall that head(E) ∩ (atom(Π) ∪ {⊥}) = ∅. We an form a omplete

non-ontraditory tableau T ′
for Π ∪ E as follows.

First, de�ne H0 = atom(Π) ∪ {⊥} and

Hi = {h ∈ head(E) |
⋃

r∈rule(h)

(body(r)+ ∪ body(r)−) ⊆
⋃

j<i

Hj}.

Thus the sets Hi are used to de�ne a level numbering for the atoms de�ned in the

extension E. Furthermore, we de�ne

Ei = {r ∈ Π ∪ E | head(r) ∈
⋃

j≤i

Hj}

for all i ≥ 0. Notie that E0 = Π, and Π ∪ E =
⋃

i≥0 Ei. We now show using

indution that for eah i ≥ 0, the only branh B in T an be extended into a

omplete non-ontraditory branh for Ei using tableau rules (b)�(g), (h§), and (i§).

The base ase (i = 0) holds by de�nition. Assume that the laim holds for i− 1,

that is, B an be extended into a omplete non-ontraditory branh B′
for Ei−1.

Consider now arbitrary r ∈ Ei. By de�nition body(r)+∪body(r)− ⊆ atom(Ei−1) for

eah r ∈ Ei. Sine B′
is omplete, it ontains entries for eah a ∈ atom(Ei−1), and

we an dedue an entry for body(r) using ASP tableau rule (b) or (f) (depending

on the entries in B′
). If the entry T(body(r)) has been dedued, we an dedue Th

for h = head(r) using (d). Otherwise, we have dedued the entries F(body(r′)) for

every r′ ∈ Ei suh that h = head(r′), and we an dedue Fh using (h§). Thus

we have dedued entries for all a ∈ atom(Ei) ∪ body(Ei) and the branh is non-

ontraditory. Furthermore it is easy to hek that the branh is losed under the

tableau rules (b)�(g),(h§), and (i§).

4
Notie that the proof system onsisting of tableau rules (a)�(g),(h§), and (i§) amounts to om-

puting supported models (Gebser and Shaub 2006b).

16 M. Järvisalo and E. Oikarinen

Thus we obtain a omplete and non-ontraditory tableau for Π ∪ E. Sine we

annot generate a ontraditory tableau for Π with tableau rules (a)�(g),(h§), and

(i§), we annot generate one for Π∪E either. This is in ontradition with the fat

that Π is unsatis�able.

5 Proof Complexity

In this setion we study proof omplexity theoreti issues related to E-ASP-T from

several viewpoints: we will

• onsider the relationship between E-ASP-T and the Extended Resolution proof

system (Tseitin 1969),

• give an expliit separation of E-ASP-T from ASP-T, and

• relate the extension rule to the e�et of program simpli�ation on proof

lengths in ASP-T.

5.1 Relationship with Extended Resolution

The system E-ASP-T is motivated by Extended Resolution (E-RES), a proof system

originally introdued in (Tseitin 1969). The system E-RES onsists of the resolution

rule and an extension rule that allows one to expand a set of lauses by iteratively

introduing equivalenes of the form x ≡ l1 ∧ l2, where x is a new variable, and l1

and l2 are literals in the urrent set of lauses. In other words, given a set C of

lauses, one appliation of the extension rule adds the lauses {x, l̄1, l̄2}, {x̄, l1},

and {x̄, l2} to C. The system E-RES is known to be more powerful than RES; in

fat, E-RES is polynomially equivalent to, for example, extended Frege systems, and

no superpolynomial proof omplexity lower bounds are known for E-RES. We will

now relate E-ASP-T with E-RES, and show that they are polynomially equivalent

under the translations comp and nlp.

Theorem 5.1 E-RES and E-ASP-T are polynomially equivalent proof systems in

the sense that

(i) onsidering tight normal logi programs, E-RES under the translation comp polyno-

mially simulates E-ASP-T, and

(ii) onsidering sets of lauses, E-ASP-T under the translation nlp polynomially simu-

lates E-RES.

Proof

(i): Let T be an E-ASP-T proof for a tight NLP Π, that is, T is an ASP-T proof

for Π ∪ E, where E is the set of extending rules generated in the proof. We use

the shorthand xl for the variable orresponding to default literal l in comp(Π∪E),

that is, xl = xa (xl = x̄a, respetively) if l = a (l = ∼a, respetively) for a ∈

atom(Π ∪ E). By Theorem 3.2 there is a polynomial RES proof for comp(Π ∪ E).

Now onsider comp(Π). We apply the extension rule in E-RES in the same order

in whih the extension rule in E-ASP-T is applied when generating the set E of

Theory and Pratie of Logi Programming 17

extending rules. In other words, we apply the extension rule in E-RES as follows for

eah rule r = h ← l1, l2 in E. If body(r) = {l1, l2} ∈ body(Π), then there are the

lauses x{l1,l2} ≡ xl1 ∧ xl2 in comp(Π). If this is the ase, we generate the lauses

xh ≡ x{l1,l2} with the extension rule in E-RES. Otherwise, that is, if body(r) does

not have a orresponding propositional variable in comp(Π), we generate the lauses

xh ≡ x{l1,l2} and x{l1,l2} ≡ xl1 ∧ xl2 . Denote the resulting set of extending lauses

by E′
. Now we notie that comp(Π) ∪ E′ = comp(Π ∪ E), and therefore the RES

proof for comp(Π ∪ E) is an E-RES proof for comp(Π) in whih the extension rule

in E-RES is applied to generate the lauses in E′
.

(ii): Let π = (C1, . . . , Cn = ∅) be an E-RES proof for a set C of lauses. Let E be

the set of lauses in π generated with the extension rule. We introdue shorthands

for atoms orresponding to literals, that is, al = ax (al = ∼ax) if l = x (l = x̄) for

x ∈ var(C ∪E). Now, an E-ASP-T proof for nlp(C) is generated as follows. First, we

add the following rules to nlp(C) with the extension rule in E-ASP-T:

ax ← al1 , al2 for eah extension x ≡ l1 ∧ l2; (10)

c← al for eah literal l ∈ C for a lause C ∈ π suh that C 6∈ C; and (11)

p1 ← c1 and pi ← ci, pi−1 for eah Ci ∈ π and 2 ≤ i < n. (12)

Then, from i = 1 to n − 1 apply the ut rule on pi in the branh with Tpj for

all j < i. We now show that for eah i the branh with Fpi and Tpj for all j < i

beomes ontraditory without further appliation of the ut rule. First, dedue Fci
from Fpi using the rule (12) for i. One of the following holds for Ci ∈ π: either

(a) Ci ∈ C, (b) Ci is a derived lause, or () Ci ∈ E.

(a) If Ci ∈ C we an dedue Tci from ⊥ ← ∼ci ∈ nlp(C), and the branh beomes

ontraditory.

(b) If Ci is a derived lause, that is, Ci is obtained from Cj and Ck for j, k < i resolving

on x, then Ci = (Ck ∪Cj)\{x, x̄}. For all the literals l ∈ Ci we dedue fal from the

rules (11) in the extension. From Tpj and Tpk we dedue Tcj and Tck using the

rule (12) in the extension for j and k, respetively. Furthermore beause we have

entries fal for eah l in (Ck ∪Cj) \ {x, x̄}, we dedue Tax and Fax and the branh

beomes ontraditory. Reall that there is a rule c← al for eah lause C ∈ π and

literal l ∈ C either in nlp(C) or in the extension (rules in (11)).

() If Ci ∈ E, then Ci is of the form {x, l̄1, l̄2}, {x̄, l1}, or {x̄, l2} for x ≡ l1 ∧ l2.

For instane, if Ci = {x̄, l1}, then from ci ← ∼ax and ci ← al1 we dedue Tax

and fal1 . The branh beomes ontraditory as T{al1 , al2} and tal1 are dedued

from a rule (10) in the extension. The branh beomes ontraditory similarly, if Ci

is of the form {x, l̄1, l̄2} or {x̄, l2}.

Finally, onsider the branh with Tpi for all i = 1 . . . n−1. The empty lause Cn in π

is obtained by resolving Cj = {x} and Ck = {x̄} in π for some j, k < n. Thus we an

dedue Tcj and Tck from rules (12) for j and k, respetively, and furthermore, Tax

and Fax from cj ← ax and ck ← ∼ax, resulting in a ontradition in the branh.

The obtained ontraditory ASP tableau is of linear length with respet to π.

18 M. Järvisalo and E. Oikarinen

5.2 Pigeonhole Priniple Separates Extended ASP Tableaux from ASP

Tableaux

To exemplify the strength of E-ASP-T, we now onsider a family of normal logi

programs {Πn} whih separates E-ASP-T from ASP-T, that is, we give an expliit

polynomial-length proof for Πn for whih ASP-T has exponential-length minimal

proofs with respet to n. We will onsider this family also in the experiments re-

ported in this artile.

The program family {PHPn+1
n } in question is the following typial enoding of

the pigeonhole priniple as a normal logi program:

PHPn+1
n = {⊥ ← ∼pi,1, . . . ,∼pi,n | 1 ≤ i ≤ n+ 1} ∪ (13)

{⊥ ← pi,k, pj,k | 1 ≤ i < j ≤ n+ 1, 1 ≤ k ≤ n} ∪ (14)

{pi,j ← ∼p
′
i,j . p′i,j ← ∼pi,j | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n}. (15)

In the program above, pi,j has the interpretation that pigeon i sits in hole j. The

rules in (13) require that eah pigeon must sit in some hole, and the rules in (14)

require that no two pigeons an sit in the same hole. The rules in (15) enfore that

for eah pigeon and eah hole, the pigeon either sits in the hole or does not sit in

the hole. Eah PHPn+1
n is unsatis�able sine there is no bijetive mapping from an

(n+ 1)-element set to an n-element set.

Theorem 5.2 The omplexity of {PHPn+1
n } with respet to n is

(i) polynomial in E-ASP-T, and

(ii) exponential in ASP-T.

Proof

(i): In (Cook 1976) an extending set of lauses is added to a lausal enoding CPHP of

the pigeonhole priniple

5
so that RES has polynomial-length proofs for the resulting

set of lauses. By Theorem 5.1 (ii) there is a polynomial-length E-ASP-T proof for

nlp(CPHP) = {pi,j ← ∼p
′
i,j. p′i,j ← ∼pi,j | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n} ∪

{⊥ ← ∼ci | 1 ≤ i ≤ n+ 1} ∪

{⊥ ← ∼cijk | 1 ≤ i < j ≤ n+ 1, 1 ≤ k ≤ n} ∪

{ci ← pi,j | 1 ≤ j ≤ n, 1 ≤ i ≤ n+ 1} ∪

{cijk ← ∼pi,k. cijk ← ∼pj,k | 1 ≤ i < j ≤ n+ 1, 1 ≤ k ≤ n}.

For simpliity, we keep the names of the atoms pi,j unhanged in the translation.

In more detail, let π = (C1, C2, . . . , Cm = ∅) be the polynomial-length E-RES

5
The partiular enoding, for whih there are no polynomial-length RES proofs (Haken 1985), is

CPHP =
S

1≤i≤n+1
{{

Wn
j=1

pi,j}} ∪
S

1≤i<j≤n+1,1≤k≤n{{¬pi,k ∨ ¬pj,k}}.

Theory and Pratie of Logi Programming 19

proof

6
for the lausal representation CPHP. Let

EXTl = {eli,j ← el+1
i,j . eli,j ← el+1

i,l , el+1
l+1,j | 1 ≤ i ≤ l and 1 ≤ j ≤ l − 1}

for 1 < l ≤ n, where eah en+1
i,j is pi,j . The extension EXTl

orresponds the set of

extending lauses in (Cook 1976) similarly to the set of rules (10) in part (ii) of the

proof of Theorem 5.1. Furthermore, E(π) onsists of the sets of rules (11) and (12)

de�ned in the proof of Theorem 5.1 (ii). By applying the strategy from the proof

of Theorem 5.1 (ii), we obtain a polynomial-length ASP-T proof for

nlp(CPHP) ∪
⋃

1<l≤n

EXTl ∪ E(π).

Now, we use the same strategy to onstrut a polynomial ASP-T proof for the

program

EPHPn+1
n = PHPn+1

n ∪
⋃

1<l≤n

EXTl ∪ E′(π),

where E′(π) onsists of rules c← al for eah literal l ∈ C for eah lause C ∈ π (that

is, rules as in (11) but without the restrition C 6∈ CPHP) together with the rules

in (12). The only di�erene omes in step (a) in the proof of Theorem 5.1 (ii), that

is, when we have dedued Fc orresponding to C ∈ CPHP. Sine we do not have the

rule ⊥ ← ∼c in EPHPn+1
n , we annot dedue Tc to obtain a ontradition. Instead,

we an dedue a ontradition without using the ASP-T ut rule through a program

rule in PHPn+1
n that orresponds to the lause C. For instane, if C = {¬pi,k,¬pj,k},

we have the rules c ← ∼pi,k and c ← ∼pj,k in E′(π) and the rule ⊥ ← pi,k, pj,k in

PHPn+1
n . From Fc, we dedue Tpi,k and Tpj,k. From F⊥ and ⊥ ← pi,k, pj,k, we de-

due F{pi,k, pj,k}, and furthermore, from Tpi,k and F{pi,k, pj,k}, we dedue Fpj,k.

This results in a polynomial-length E-ASP-T proof for PHPn+1
n .

(ii): Assume now that there is a polynomial ASP-T proof for PHPn+1
n . By The-

orem 3.2, there is a polynomial T-RES proof for comp(PHPn+1
n). Notie that the

ompletion comp(PHPn+1
n) onsists of the lausal enoding CPHP of the pigeonhole

priniple and additional lauses (tautologies) for rules of the form pi,j ← ∼p
′
i,j,

p′i,j ← ∼pi,j . It is easy to see that these additional tautologies do not a�et the

length of the minimal T-RES proofs for comp(PHPn+1
n). Thus there is a polynomial-

length T-RES proof for the lausal pigeonhole enoding. However, this ontradits

the fat that the omplexity of the lausal pigeonhole priniple is exponential with

respet to n for (Tree-like) Resolution (Haken 1985).

We an also easily obtain a non-tight program family to witness the separation

demonstrated in Theorem 5.2. Consider the family

{PHPn+1
n ∪ {pi,j ← pi,j | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n}},

6
The polynomial-length E-RES proof for CPHP is not desribed in detail in (Cook 1976). Details

on the struture of the RES proof an be found in (Järvisalo and Junttila 2008). The intuitive

idea is that the extension allows for reduing PHP
n+1
n to PHP

n
n−1 with a polynomial number

of resolution steps.

20 M. Järvisalo and E. Oikarinen

whih is non-tight with the additional self-loops {pi,j ← pi,j}, but preserves (un)satis-

�ability of PHPn+1
n for all n. Sine the self-loops do not ontribute to the proofs

for PHPn+1
n , ASP-T still has exponential-length minimal proofs for these programs,

while the polynomial-length E-ASP-T proof presented in the proof of Theorem 5.2

is still valid.

The generality of the arguments used in the proof of Theorem 5.2 is not limited to

the spei� family PHPn+1
n of NLPs. For understanding the general idea behind the

expliit onstrution of EPHPn+1
n , it is informative to notie the following. Instead

of onsidering PHPn+1
n , one an apply the argument in the proof Theorem 5.2

using any tight NLP Π whih represents a set of lauses C for whih (i) there is no

polynomial-length RES proof, but for whih (ii) there is a polynomial-length E-RES

proof . By property (ii) we know from Theorem 5.1 (ii) that there is a polynomial-

length E-ASP-T proof for Π.

5.3 Program Simpli�ation and Complexity

We will now give an interesting orollary of Theorem 5.2, addressing the e�et of

program simpli�ation on the length of proofs in ASP-T.

Tightly related to the development of e�ient solver implementations for ASP

programs arising from pratial appliations is the development of tehniques for

simplifying programs. Pratially relevant programs are often generated automat-

ially, and in the proess a large number of redundant onstraints is produed.

Therefore e�ient program simpli�ation through loal transformation rules is im-

portant. While various satis�ability-preserving loal transformation rules for sim-

plifying logi programs have been introdued (see (Eiter et al. 2004) for example),

the e�et of applying suh transformations on the lengths of proofs has not reeived

attention.

Taking a �rst step into this diretion, we now show that even simple transfor-

mation rules may have a drasti negative e�et on proof omplexity. Consider the

loal transformation rule

red(Π) = Π \ {r ∈ Π | head(r) 6∈
⋃

B∈body(Π)

(B+ ∪B−) and head(r) 6= ⊥}.

A polynomial-time simpli�ation algorithm red∗(Π) is obtained by losing pro-

gram Π under red. Notie that we have red∗(EPHPn+1
n) = PHPn+1

n . Thus, by

Theorem 5.2, red∗ transforms a program family having polynomial omplexity in

ASP Tableaux into one with exponential omplexity with respet to n.

The rules removed by red∗ are redundant with respet to satis�ability of the

program in the sense that red∗ preserves visible equivalene (Janhunen 2006). The

visible equivalene relation takes the interfaes of programs into aount: atom(Π)

is partitioned into v(Π) and h(Π) determining the visible and the hidden atoms in Π,

respetively. Programs Π1 and Π2 are visibly equivalent, denoted by Π1 ≡v Π2, if

and only if v(Π1) = v(Π2) and there is a bijetive orrespondene between the stable

models of Π1 and Π2 mapping eah a ∈ v(Π1) onto itself. Now if one de�nes v(Π) =

atom(red∗(Π)) = v(red∗(Π)), that is, assuming that the atoms removed by red∗ are

Theory and Pratie of Logi Programming 21

hidden in Π, one an see that red∗(Π) ≡v Π. Hene, even though there is a bijetive

orrespondene between the stable models of EPHPn+1
n and red∗(EPHPn+1

n) =

PHPn+1
n , red∗ auses a superpolynomial blow-up in the length of proofs in ASP-T

and the related solvers, if applied before atually proving EPHPn+1
n .

6 Experiments

We experimentally evaluate how well urrent state-of-the-art ASP solvers an make

use of the additional struture introdued to programs using the extension rule. For

the experiments, we ran the solvers

7 smodels (Simons et al. 2002) (version 2.33, a

widely used lookahead solver), clasp (Gebser et al. 2007) (version 1.1.0, with many

tehniques�inluding on�it learning�adopted from DPLL-based SAT solvers),

and cmodels (Giunhiglia et al. 2006) (version 3.77, a SAT-based ASP solver run-

ning the on�it-learning SAT solver zCha� (Moskewiz et al. 2001) version 2007.3.12

as the bak-end). The experiments were run on standard PCs with 2-GHz AMD

3200+ proessors under Linux. Running times were measured using /usr/bin/time.

First, we investigate whether ASP solvers are able to bene�t from the extension

in EPHPn+1
n . We ompare the number of deisions and running times of eah of

the solvers on PHPn+1
n , CPHPn+1

n = PHPn+1
n ∪

⋃

1<l≤n EXT
l
, and EPHPn+1

n . By

Theorem 5.2 the solvers should in theory be able to exhibit polynomially saling

numbers of deisions for EPHPn+1
n . In fat with on�it-learning this might also

be possible for CPHPn+1
n due to the tight orrespondene with on�it-learning

SAT solvers and RES (Beame et al. 2004). The results for n = 10 . . .12 are shown

in Table 1. While the number of deisions for the on�it-learning solvers clasp

and cmodels is somewhat redued by the extensions, the solvers do not seem to be

7
We note that the detailed results reported here di�er somewhat from those reported in the

onferene version of this work (Järvisalo and Oikarinen 2007). This is due to the fat that, for

the urrent artile, we used more reent versions of the solvers.

Table 1. Results on PHPn+1
n , CPHPn+1

n , and EPHPn+1
n with timeout (-) of 2 hours.

Time (s) Deisions

Solver n PHPn+1
n CPHPn+1

n EPHPn+1
n PHPn+1

n CPHPn+1
n EPHPn+1

n

smodels 10 34.02 119.69 8.65 164382 144416 0

smodels 11 486.44 1833.48 21.70 1899598 1584488 0

smodels 12 - - 49.28 - - 0

clasp 10 6.81 7.29 10.05 337818 216894 38863

clasp 11 58.48 45.00 82.07 1840605 882393 203466

clasp 12 579.28 509.43 941.23 12338982 6434939 1467623

cmodels 10 1.60 1.69 7.87 8755 8579 12706

cmodels 11 8.20 8.51 43.96 24318 23758 42782

cmodels 12 46.33 54.26 122.72 88419 94917 88499

22 M. Järvisalo and E. Oikarinen

able to reprodue the polynomial-length proofs, and we do not observe a dramati

hange in the running times. With a timeout of 2 hours, smodels gives no answer for

n = 12 on PHPn+1
n or CPHPn+1

n . However, for EPHPn+1
n smodels returns without

any branhing, whih is due to the fat that smodels' omplete lookahead noties

that by branhing on the ritial extension atoms (as in part (ii) of the proof of

Theorem 5.2) the false branh beomes ontraditory immediately. With this in

mind, an interesting further study out of the sope of this work would be the

possibilities of integrating on�it learning tehniques with (partial) lookahead.

In the seond experiment, we study the e�et of having a modest number of

redundant rules on the behavior of ASP solvers. For this we apply the proedure

AddRandomRedundany(Π, n, p) shown in Algorithm 1. Given a program Π,

the proedure iteratively adds rules of the form ri ← l1, l2 to Π, where l1, l2 are

random default literals urrently in the program and ri is a new atom. The number

of introdued rules is p% of the integer n.

Algorithm 1 AddRandomRedundany(Π, n, p)

1. For i = 1 to ⌊ p
100n⌋:

1a. Randomly selet l1, l2 ∈ dlit(Π) suh that l1 6= l2.

1b. Π := Π ∪ {ri ← l1, l2}, where ri 6∈ atom(Π) ∪ {⊥}.

2. Return Π

In Figure 5, the median, minimum, and maximum number of deisions and run-

ning times for the solvers on AddRandomRedundany(PHPn+1
n , n, p) are shown

for p = 50, 100, . . . , 450 over 15 trials for eah value of p. The mean number of

deisions (left) and running times (right) on the original PHPn+1
n are presented

by the horizontal lines. Notie that the number of added atoms and rules is linear

to n, whih is negligible to the number of atoms (in the order of n2
) and rules (n3

)

in PHPn+1
n . For similar running times, the number of holes n is 10 for clasp and

smodels and 11 for cmodels. The results are very interesting: eah of the solvers

seems to reat individually to the added redundany. For cmodels (b), only a few

added redundant rules are enough to worsen its behavior. For smodels (), the num-

ber of deisions dereases linearly with the number of added rules. However, the

running times grow fast at the same time, most likely due to smodels' lookahead.

We also ran the experiment for smodels without using lookahead (d). This had a

visible e�et on the number of deisions ompared to smodels on PHPn+1
n .

The most interesting e�et is seen for clasp (a); clasp bene�ts from the added

rules with respet to the number of deisions, while the running times stay similar

on the average, ontrarily to the other solvers. In addition to this robustness against

redundany, we believe that this shows promise for further exploiting redundany

added in a ontrolled way during searh; the added rules give new possibilities to

branh on de�nitions whih were not available in the original program. However,

for bene�ting from redundany with running times in mind, optimized lightweight

propagation mehanisms are essential.

Theory and Pratie of Logi Programming 23

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(a) clasp deisions (left), time in seonds (right)

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(b) cmodels deisions (left), time in seonds (right)

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

() smodels deisions (left), time in seonds (right)

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 0 100 200 300 400 500

D
ec

is
io

ns

p

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 0 100 200 300 400 500

D
ec

is
io

ns

p

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(d) smodels without lookahead: deisions (left), time in seonds (right)

Fig. 5. E�ets of adding randomly generated redundant rules to PHPn+1
n .

24 M. Järvisalo and E. Oikarinen

As a �nal remark, an interesting observation is that the e�et of the transfor-

mation presented in (Anger et al. 2006), whih enables smodels to branh on the

bodies of rules, having an exponential e�et on the proof omplexity of a partiular

program family, an be equivalently obtained by applying the ASP extension rule.

This may in part explain the e�et of adding redundany on the number of deision

made by smodels.

7 Conlusions

We introdue Extended ASP Tableaux, an extended tableau alulus for normal

logi programs under the stable model semantis. We study the strength of the

alulus, showing a tight orrespondene with Extended Resolution, whih is among

the most powerful known propositional proof systems. This sheds further light on

the relation of ASP and propositional satis�ability solving and their underlying

proof systems, whih we believe to be for the bene�t of both of the ommunities.

Our experiments show the intriate nature of the interplay between redundant

problem struture and the hardness of solving ASP instanes. We onjeture that

more systemati use of the extension rule is possible and may even yield perfor-

mane gains by onsidering in more detail the strutural properties of programs in

partiular problem domains. One ould also onsider implementing branhing on

any possible formula inside a solver. However, this would require novel heuristis,

sine hoosing the formula to branh on from the exponentially many alternatives

is nontrivial and is not applied in urrent solvers. We �nd this an interesting future

diretion of researh. Another important researh diretion set forth by this study

is a more in-depth investigation into the e�et of program simpli�ation on the

hardness of solving ASP instanes.

8 Aknowledgements

The authors thank Ilkka Niemelä for omments on a manusript of this artile.

Finanial support from Helsinki Graduate Shool in Computer Siene and Engi-

neering, Aademy of Finland (grants #211025 and #122399), Emil Aaltonen Foun-

dation, Nokia Foundation, Finnish Foundation for Tehnology Promotion TES,

Jenny and Antti Wihuri Foundation (MJ), and Finnish Cultural Foundation (EO)

is gratefully aknowledged.

Referenes

Anger, C., Gebser, M., Janhunen, T., and Shaub, T. 2006. What's a head without

a body? In Proeedings of the 17th European Conferene on Arti�ial Intelligene (ECAI

2006), G. Brewka, S. Coradeshi, A. Perini, and P. Traverso, Eds. IOS Press, 769�770.

Anger, C., Gebser, M., Linke, T., Neumann, A., and Shaub, T. 2005. The

nomore++ approah to answer set solving. In Proeedings of the 12th International

Conferene on Logi for Programming, Arti�ial Intelligene, and Reasoning (LPAR

2005), G. Sutli�e and A. Voronkov, Eds. Leture Notes in Computer Siene, vol.

3835. Springer, 95�109.

Theory and Pratie of Logi Programming 25

Baral, C. 2003. Knowledge Representation, Reasoning and Delarative Problem Solving.

Cambridge University Press.

Beame, P., Kautz, H., and Sabharwal, A. 2004. Towards understanding and har-

nessing the potential of lause learning. Journal of Arti�ial Intelligene Researh 22,

319�351.

Beame, P. and Pitassi, T. 1998. Propositional proof omplexity: Past, present, and

future. Bulletin of the EATCS 65, 66�89.

Ben-Eliyahu, R. and Dehter, R. 1994. Propositional semantis for disjuntive logi

programs. Annals of Mathematis and Arti�ial Intelligene 12, 1�2, 53�87.

Ben-Sasson, E., Impagliazzo, R., and Wigderson, A. 2004. Near optimal separation

of tree-like and general resolution. Combinatoria 24, 4, 585�603.

Brass, S. and Dix, J. 1995. Charaterizations of the stable semantis by partial eval-

uation. In Proeedings of the 3rd International Conferene on Logi Programming and

Nonmonotoni Reasoning (LPNMR 1995), V. W. Marek and A. Nerode, Eds. Leture

Notes in Computer Siene, vol. 928. Springer, 85�98.

Brooks, D. R., Erdem, E., Erdogan, S. T., Minett, J. W., and Ringe, D. 2007.

Inferring phylogeneti trees using answer set programming. Journal of Automated Rea-

soning 39, 4, 471�511.

Clark, K. L. 1978. Negation as failure. In Logi and Data Bases, H. Gallaire and

J. Minker, Eds. Plenum Press, 293�322.

Cook, S. A. 1976. A short proof of the pigeon hole priniple using extended resolution.

SIGACT News 8, 4, 28�32.

Cook, S. A. and Rekhow, R. A. 1979. The relative e�ieny of propositional proof

systems. Journal of Symboli Logi 44, 1, 36�50.

Davis, M., Logemann, G., and Loveland, D. 1962. A mahine program for theorem

proving. Communiations of the ACM 5, 7, 394�397.

Davis, M. and Putnam, H. 1960. A omputing proedure for quanti�ation theory.

Journal of the ACM 7, 3, 201�215.

Eiter, T., Fink, M., Tompits, H., and Woltran, S. 2004. Simplifying logi programs

under uniform and strong equivalene. In Proeedings of the 7th International Confer-

ene on Logi Programming and Nonmonotoni Reasoning (LPNMR 2004), V. Lifshitz

and I. Niemelä, Eds. Leture Notes in Computer Siene, vol. 2923. Springer, 87�99.

Erdem, E., Lifshitz, V., and Ringe, D. 2006. Temporal phylogeneti networks and

logi programming. Theory and Pratie of Logi Programming 6, 5, 539�558.

Fages, F. 1994. Consisteny of Clark's ompletion and existene of stable models. Journal

of Methods of Logi in Computer Siene 1, 51�60.

Gebser, M., Kaufmann, B., Neumann, A., and Shaub, T. 2007. Con�it-driven an-

swer set solving. In Proeedings of the 20th International Joint Conferene on Artii�al

Intelligene (IJCAI 2007), M. M. Veloso, Ed. 286�392.

Gebser, M. and Shaub, T. 2006a. Charaterizing ASP inferenes by unit propaga-

tion. In ICLP Workshop on Searh and Logi: Answer Set Programming and SAT,

E. Giunhiglia, V. Marek, D. Mithell, and E. Ternovska, Eds. 41�56.

Gebser, M. and Shaub, T. 2006b. Tableau aluli for answer set programming. In

Proeedings of the 22nd International Conferene on Logi Programming (ICLP 2006),

S. Etalle and M. Truszzynski, Eds. Leture Notes in Computer Siene, vol. 4079.

Springer, 11�25.

Gebser, M. and Shaub, T. 2007. Generi tableaux for answer set programming. In

Proeedings of the 23rd International Conferene on Logi Programming (ICLP 2007),

V. Dahl and I. Niemelä, Eds. Leture Notes in Computer Siene, vol. 4670. Springer,

119�133.

26 M. Järvisalo and E. Oikarinen

Gelfond, M. and Leone, N. 2002. Logi programming and knowledge representation

� the A-Prolog perspetive. Arti�ial Intelligene 138, 1�2, 3�38.

Gelfond, M. and Lifshitz, V. 1988. The stable model semantis for logi program-

ming. In Proeedings of the 5th International Conferene and Symposium on Logi

Programming (ICLP/SLP 1988), R. A. Kowalski and K. A. Bowen, Eds. MIT Press,

1070�1080.

Giunhiglia, E., Lierler, Y., and Maratea, M. 2006. Answer set programming based

on propositional satis�ability. Journal of Automated Reasoning 36, 4, 345�377.

Giunhiglia, E. and Maratea, M. 2005. On the relation between answer set and SAT

proedures (or, between CMODELS and SMODELS). In Proeedings of the 21st Inter-

national Conferene on Logi Programming (ICLP 2005), M. Gabbrielli and G. Gupta,

Eds. Leture Notes in Computer Siene, vol. 3668. Springer, 37�51.

Hai, L., Jigui, S., and Yimin, Z. 2003. Theorem proving based on the extension rule.

Journal of Automated Reasononing 31, 1, 11�21.

Haken, A. 1985. The intratability of resolution. Theoretial Computer Siene 39, 2�3,

297�308.

Janhunen, T. 2006. Some (in)translatability results for normal logi programs and propo-

sitional theories. Journal of Applied Non-Classial Logis 16, 1-2, 35�86.

Järvisalo, M. and Junttila, T. 2008. Limitations of restrited branhing in lause

learning. Constraints. in press.

Järvisalo, M. and Oikarinen, E. 2007. Extended ASP tableaux and rule redundany

in normal logi programs. In Proeedings of the 23rd International Conferene on Logi

Programming (ICLP 2007), V. Dahl and I. Niemelä, Eds. Leture Notes in Computer

Siene, vol. 4670. Springer, 134�148.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Sar-

ello, F. 2006. The DLV system for knowledge representation and reasoning. ACM

Transations on Computational Logi 7, 3, 499�562.

Lifshitz, V. 2002. Answer set programming and plan generation. Arti�ial Intelli-

gene 138, 1�2, 39�54.

Lifshitz, V. and Razborov, A. 2006. Why are there so many loop formulas? ACM

Transations on Computational Logi 7, 2, 261�268.

Lifshitz, V. and Turner, H. 1994. Splitting a logi program. In Proeedings of the

11th International Conferene on Logi Programming, P. V. Hentenryk, Ed. MIT Press,

23�37.

Lin, F. and Zhao, J. 2003. On tight logi programs and yet another translation from

normal logi programs to propositional logi. In Proeedings of the 18th International

Joint Conferene on Arti�ial Intelligene (IJCAI 2003), G. Gottlob and T. Walsh,

Eds. Morgan Kaufmann, 853�858.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logi program by SAT

solvers. Arti�ial Intelligene 157, 1�2, 115�137.

Marek, V. W. and Truszzy«ski, M. 1999. Stable models and an alternative logi

programming paradigm. In The Logi Programming Paradigm: a 25-Year Perspetive,

K. R. Apt, V. W. Marek, M. Truszzy«ski, and D. S. Warren, Eds. Springer, 375�398.

Moskewiz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. 2001.

Cha�: Engineering an e�ient SAT solver. In Proeedings of the 38th Design Automation

Conferene (DAC 2001). ACM, 530�535.

Niemelä, I. 1999. Logi programs with stable model semantis as a onstraint program-

ming paradigm. Annals of Mathematis and Arti�ial Intelligene 25, 3�4, 241�273.

Nogueira, M., Balduini, M., Gelfond, M., Watson, R., and Barry, M. 2001.

An A-Prolog deision support system for the spae shuttle. In Proeedings of the 3rd

Theory and Pratie of Logi Programming 27

International Symposium on Pratial Aspets of Delarative Languages (PADL 2001),

I. V. Ramakrishnan, Ed. Leture Notes in Computer Siene, vol. 1990. Springer, 169�

183.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the

stable model semantis. Arti�ial Intelligene 138, 1�2, 181�234.

Soininen, T., Niemelä, I., Tiihonen, J., and Sulonen, R. 2001. Representing on�g-

uration knowledge with weight onstraint rules. In Proeedings of the 1st International

Workshop on Answer Set Programming: Towards E�ient and Salable Knowledge (ASP

2001), A. Provetti and T. C. Son, Eds.

Tseitin, G. S. 1969. On the omplexity of derivation in propositional alulus. In

Studies in Construtive Mathematis and Mathematial Logi, Part II, A. Slisenko, Ed.

Seminars in Mathematis, V.A. Steklov Mathematial Institute, Leningrad, vol. 8. Con-

sultants Bureau, 115�125. English translation appears in Automation of Reasoning 2:

Classial Papers on Computational Logi 1967�1970 J. Siekmann and G. Wrightson,

Eds. Springer (1983), 466�483.

	Introduction
	Preliminaries
	Normal Logic Programs and Stable Models
	Propositional Satisfiability
	SAT as ASP
	ASP as SAT

	Proof Systems for ASP and SAT
	Propositional Proof Systems and Complexity
	Resolution
	ASP Tableaux

	Extended ASP Tableaux
	The Extension Rule and Well-Founded Deduction

	Proof Complexity
	Relationship with Extended Resolution
	Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux
	Program Simplification and Complexity

	Experiments
	Conclusions
	Acknowledgements
	References

