
ar
X

iv
:0

90
1.

12
30

v1
 [

cs
.P

L
]

 9
 J

an
 2

00
9

Under consideration for publication in Theory and Practice of Logic Programming 1

Logical Algorithms meets CHR

A Meta-Complexity Result for Constraint Handling Rules with Rule Priorities

Leslie De Koninck

Department of Computer Science, K.U.Leuven, Belgium

(e-mail: FirstName.LastName@cs.kuleuven.be)

submitted 20 December 2007; revised 20 December 2008; accepted 9 January 2009

Abstract

This paper investigates the relationship between the Logical Algorithms language (LA) of
Ganzinger and McAllester and Constraint Handling Rules (CHR). We present a translation
schema from LA to CHRrp: CHR with rule priorities, and show that the meta-complexity
theorem for LA can be applied to a subset of CHRrp via inverse translation. Inspired by the
high-level implementation proposal for Logical Algorithm by Ganzinger and McAllester
and based on a new scheduling algorithm, we propose an alternative implementation for
CHRrp that gives strong complexity guarantees and results in a new and accurate meta-
complexity theorem for CHRrp. It is furthermore shown that the translation from Logical
Algorithms to CHRrp combined with the new CHRrp implementation, satisfies the required
complexity for the Logical Algorithms meta-complexity result to hold.

KEYWORDS: Constraint Handling Rules, Logical Algorithms, complexity analysis.

1 Introduction

Constraint Handling Rules (CHR) (Frühwirth 1998) is a high-level rule based lan-

guage, originally designed for the implementation of constraint solvers, but also

increasingly used as a general purpose programming language. Recently, it was

shown that all algorithms can be implemented in CHR while preserving both time

and space complexity (Sneyers et al. 2005). We assume some familiarity with CHR

and refer to (Frühwirth 1998) for more details.

In “Logical Algorithms” (LA) (Ganzinger and McAllester 2002) (and based on

previous work in (Ganzinger and McAllester 2001; McAllester 1999)), Ganzinger

and McAllester present a bottom-up logic programming language for the pur-

pose of facilitating the derivation of complexity results of algorithms described

by logical inference rules. This problem is far from trivial because the runtime

is not necessarily proportional to the derivation length (i.e., the number of rule

applications), but also includes the cost of pattern matching for multi-headed

rules, as well as the costs related to high-level execution control which is spec-

ified using rule priorities in the Logical Algorithms language. The language of

Ganzinger and McAllester resembles CHR in many ways and has often been referred

to in the discussion of complexity results of CHR programs (Christiansen 2005;

http://arxiv.org/abs/0901.1230v1

2 Leslie De Koninck

Frühwirth 2002b; Schrijvers and Frühwirth 2006; Sneyers et al. 2006a). In partic-

ular, in (Christiansen 2005), Christiansen uses the meta-complexity theorem that

accompanies the Logical Algorithms language, and notes that the CHR system used

(SICStus CHR by Holzbaur et al. (Holzbaur and Frühwirth 1998)) does not always

exhibit the right complexity because previously computed partial rule matches are

not stored.

The aim of this paper is to investigate the relationship between both languages.

More precisely, we look at how the meta-complexity theorem for Logical Algo-

rithms can be applied to (a subset of) CHR, and how CHR can be used to imple-

ment Logical Algorithms with the correct complexity. First, we present a transla-

tion schema from Logical Algorithms to CHRrp: CHR extended with rule priorities

(De Koninck et al. 2007b). Logical Algorithms derivations of the original program

correspond to CHRrp derivations in the translation and vice versa. We also show

how to translate a subclass of CHRrp programs into Logical Algorithms. This al-

lows us to apply the meta-complexity theorem for Logical Algorithms to these

CHRrp programs as well. Because the Logical Algorithms meta-complexity theo-

rem is based on an optimized implementation, it gives more accurate results than

the implementation independent meta-complexity theorem of (Frühwirth 2002a;

Frühwirth 2002b) while being more general than the ad-hoc complexity derivations

in (Schrijvers and Frühwirth 2006; Sneyers et al. 2006a).

Our current implementation of CHRrp as presented in (De Koninck et al. 2008)

does not guarantee the complexity required for the meta-complexity theorem for

Logical Algorithms to hold via translation to CHRrp. Another issue is that the

translation from CHRrp to Logical Algorithms is restricted to a subset of CHRrp.

Therefore, we propose a new implementation of CHRrp, designed such that it sup-

ports a new meta-complexity theorem for the complete CHRrp language, while also

ensuring that Logical Algorithms programs translated into CHRrp are executed

with the correct complexity.

The implementation is based on the high-level implementation proposal for Logi-

cal Algorithms as given in (Ganzinger and McAllester 2002), and on a new schedul-

ing data structure proposed in (De Koninck 2007). By using a CHR system with ad-

vanced indexing support, such as the K.U.Leuven CHR system (Schrijvers and Demoen 2004),

our implementation achieves the complexity required to enable a new and accurate

meta-complexity result for the whole CHRrp language.

Overview The rest of this paper is organized as follows. In Section 2, the syntax

and semantics of the Logical Algorithms language and CHRrp are reviewed and the

known meta-complexity theorems for both languages are presented. In Section 3 a

translation of LA programs to CHRrp programs is presented and in Section 4, the

opposite is done for a subset of CHRrp. Section 5 proposes an alternative implemen-

tation for CHRrp which enables a new meta-complexity theorem for this language,

given in Section 6. Some concluding remarks are given in Section 7.

Logical Algorithms meets Constraint Handling Rules 3

2 Logical Algorithms and CHRrp

In this section, we give an overview of the syntax and semantics of Logical Al-

gorithms (Section 2.1) and CHRrp (Section 2.2). In Section 2.3, we review the

meta-complexity results that are known for both languages.

2.1 Logical Algorithms

This subsection gives an overview of the syntax and semantics of the Logical Algo-

rithms language.

2.1.1 Syntax

A Logical Algorithms programP = {r1, . . . , rn} is a set of rules. In (Ganzinger and McAllester 2002),

a graphical notation is used to represent rules. We use a new textual representation

that is closer to the syntax of CHR. A Logical Algorithms rule is an expression

r @ p : A1, . . . , An ⇒ C

where r is the rule name, the atoms Ai (for 1 ≤ i ≤ n) are the antecedents and

C is the conclusion, which is a conjunction of atoms whose variables appear in

the antecedents. Rule r has priority p where p is an arithmetic expression whose

variables (if any) occur in the first antecedent A1. If p contains variables, then

r is called a dynamic priority rule. Otherwise, it is called a static priority rule.

In the graphical notation of (Ganzinger and McAllester 2002), the above rule is

represented as shown below.

A1

...

An

(r,p)

C

The arguments of an atom are either Herbrand terms or (integer) arithmetic ex-

pressions. There are two types of atoms: comparisons and user-defined atoms. A

comparison has the form x < y, x ≤ y, x = y or x 6= y with x and y arithmetic

expressions or, in case of (=)/2 and (6=)/2, Herbrand terms. Comparisons are only

allowed in the antecedents of a rule and all variables in a comparison must appear

in earlier antecedents. A user-defined atom can be positive or negative. A negative

user-defined atom has the form del(A) where A is a positive user-defined atom. A

ground user-defined atom is called an assertion.

Example 1

An example rule (from Dijkstra’s shortest path algorithm as presented in (Ganzinger and McAllester 2002))

with name d2 and priority 1 is

d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).

4 Leslie De Koninck

The antecedent D2 < D1 is a comparison, the atoms dist(V,D1) and dist(V,D2)

are positive user-defined antecedents. The negative ground atom del(dist(a,5))

is an example of a negative assertion.

2.1.2 Operational Semantics

A Logical Algorithms state σ consists of a set of (positive and negative) assertions. A

state can simultaneously contain the positive assertion A and the negative assertion

del(A). In the rest of this paper, we sometimes use the word database as a synonym

for a LA execution state. Let D be the usual interpretation for the comparisons.

Given a program P , the following transition converts one state into the next:

1. Apply σ
LA
P σ ∪ θ(C) if there exists a (renamed apart) rule r in P of

priority p of the form

r @ p : A1, . . . , An ⇒ C

and a ground substitution θ such that for every antecedent Ai,

• D |= θ(Ai) if Ai is a comparison

• θ(Ai) ∈ σ and del(θ(Ai)) /∈ σ if Ai is a positive user-defined atom

• θ(Ai) ∈ σ if Ai is a negative user-defined atom

Furthermore, θ(C) * σ and no rule of priority p′ and substitution θ′ exists

with θ′(p′) < θ(p) for which the above conditions hold.

A state is called final if no more transitions apply to it. A non-final state has priority

p if the next firing rule instance has priority p. The condition θ(C) * σ ensures

that no rule instance fires more than once and prevents trivial non-termination. This

condition, combined with the fact that each transition only creates new assertions,

causes the consecutive states in a derivation to be monotone increasing. Although

the priorities restrict the possible derivations, the choice of which rule instance to

fire from those with equal priority is non-deterministic.

2.2 CHRrp: CHR with Rule Priorities

CHRrp is CHR extended with user-definable rule priorities. It is introduced in

(De Koninck et al. 2007b) as a solution to the lack of high-level execution control

in CHR. In this section, we review the syntax and semantics of CHRrp.

2.2.1 Syntax

A constraint c(t1, . . . , tn) is an atom of predicate c/n with ti a host language value

(e.g., a Herbrand term in Prolog) for 1 ≤ i ≤ n. There are two types of constraints:

built-in constraints and CHR constraints (also called user-defined constraints). The

CHR constraints are solved by the CHR program whereas the built-in constraints

are solved by an underlying constraint solver (e.g., the Prolog unification algorithm).

Logical Algorithms meets Constraint Handling Rules 5

There are three types of Constraint Handling Rules: simplification rules, propa-

gation rules and simpagation rules. They have the following form:

Simplification p :: r @ Hr ⇐⇒ g | B

Propagation p :: r @ Hk =⇒ g | B

Simpagation p :: r @ Hk \ Hr ⇐⇒ g | B

where p is the rule priority, r is the rule name, Hk and Hr are non-empty sequences

of CHR constraints and are called the heads of the rule. The rule guard g is a

sequence of built-in constraints and the rule body B is a sequence of both CHR and

built-in constraints. The rule priority is either a number in which case the rule is

called a static priority rule, or an arithmetic expression whose variables appear in

the heads Hk and/orHr in which case the rule is called a dynamic priority rule. We

say that priority p is higher than priority p′ if p < p′. For simplicity, we sometimes

assume priorities are integers and the highest priority is 1. Finally, a program P is

a set of CHR rules. Apart from the rule priorities, CHRrp is identical to CHR.

2.2.2 Operational Semantics

Operationally, CHR constraints have a multi-set semantics. To distinguish between

different occurrences of syntactically equal constraints, CHR constraints are ex-

tended with a unique identifier. An identified CHR constraint is denoted by c#i

with c a CHR constraint and i the identifier. We write chr(c#i) = c and id(c#i) = i

and pointwise extend these functions to sets and sequences of constraints.

The operational semantics of CHRrp, called the priority semantics and denoted

by ωp, is given in (De Koninck et al. 2007b) as a state transition system, similar

to the approach of (Duck et al. 2004) for the theoretical and refined operational

semantics of CHR. A CHR execution state σ is represented as a tuple 〈G,S,B, T 〉n
where G is the goal, a multi-set of constraints to be solved; S is the CHR constraint

store, a set of identified CHR constraints; B is the built-in store, a conjunction of

built-in constraints; T is the propagation history, a set of tuples denoting the rule

instances that have already fired; and n is the next free identifier, used to identify

new CHR constraints. The transitions of ωp are shown in Table 1 where D denotes

the built-in constraint theory and ∃̄XY denotes the existential closure of Y apart

from the variables in X . The transitions are exhaustively applied starting from the

state 〈G, ∅, true, ∅〉1 with G the initial goal. We have used the simpagation rule

form to denote any type of rule in the Apply transition. For simplification rules,

H1 and H ′
1 are empty, and for propagation rules, H2 and H ′

2 are empty.

The following theorem on the correspondence between the ωp semantics of CHRrp

and the theoretical operational semantics ωt of CHR (see e.g. (Duck et al. 2004)),

is proven in (De Koninck et al. 2007b).

Theorem 1

Every derivation D under ωp is also a derivation under ωt. If a state σ is a final

state under ωp, then it is also a final state under ωt.

In the refined operational semantics of CHR (Duck et al. 2004), the textual order

6 Leslie De Koninck

1. Solve 〈{c} ⊎G,S,B, T 〉n
ωp

P 〈G,S, c ∧ B, T 〉n where c is a built-in constraint.

2. Introduce 〈{c} ⊎ G,S,B, T 〉n
ωp

P 〈G, {c#n} ∪ S,B, T 〉n+1 where c is a CHR
constraint.

3. Apply 〈∅,H1 ∪H2 ∪ S,B, T 〉n
ωp

P 〈θ(C),H1 ∪ S,B, T ∪ {t}〉n where P contains
a rule of priority p of the form

p :: r @ H ′

1\H
′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′

1), chr(H2) = θ(H ′

2), D |=
B → ∃̄Bθ(g); θ(p) is a ground arithmetic expression and t = 〈r, id(H1) ++ id(H2)〉 /∈
T . Furthermore, no rule of priority p′ and substitution θ′ exists with θ′(p′) < θ(p)
for which the above conditions hold.

Table 1. Transitions of ωp

of the program rules determines which rule is tried next for the current active

constraint. However, only rule instances in which the active constraint takes part

are considered, and so a higher priority fireable rule instance in which the active

constraint does not participate, will not fire. The textual rule order also does not

support dynamic rule priorities.

2.2.3 Differences compared to Logical Algorithms

CHRrp differs from Logical Algorithms in the following ways:

• A Logical Algorithms state is a set of ground assertions, while the CHR

constraint store is a multi-set and may also contain non-ground constraints.

• In Logical Algorithms, built-in constraints are restricted to ask constraints

and only include comparisons; CHRrp supports any kind of built-in con-

straints.

• A removed CHR constraint may be reasserted and can then participate again

in rule firings whereas a removed LA assertion cannot be asserted again.

• A Logical Algorithms rule may contain negated heads. In contrast, CHRrp

requires all heads to be positive.1

• In the Logical Algorithms language, the priority of a dynamic priority rule is

determined by the variables in the left-most head, whereas in CHRrp it may

depend on multiple heads.

We note that rules for which the priority depends on more than one head, can easily

be transformed into the correct form as follows. Given a Logical Algorithms rule of

the form

r @ p : A1, . . . , Am, Am+1, . . . , An ⇒ C

1 See (Van Weert et al. 2006) for an extension of CHR with negation as absence. However, the
semantics of that form of negation is different from the one in Logical Algorithms.

Logical Algorithms meets Constraint Handling Rules 7

where the priority expression p is fully determined by the variables from the an-

tecedents A1, . . . , Am. This rule can be transformed into the equivalent rules

r1 @ 1 : A1, . . . , Am ⇒ priorityr(p)

r2 @ p : priorityr(p), A1, . . . , Am, Am+1, . . . , An ⇒ C

where priorityr/1 is a new user-defined predicate. Now the first head of the dynamic

priority rule determines the rule priority. The above transformation causes the

creation of priorityr/1 assertions. We have that every execution state of the trans-

formed program can be mapped on a corresponding execution state of the original

program (assuming rule priorities are allowed to depend on multiple heads) by

removing these priorityr/1 assertions.

2.3 Meta-Complexity Results

The Logical Algorithms language was designed with a meta-complexity result in

mind. Such a result has also been formulated for CHR. In this subsection, we review

both results and give a first intuition on how they relate to each other.

2.3.1 The Logical Algorithms Meta-Complexity Result

A prefix instance of a Logical Algorithms rule r @ p : A1, . . . , An ⇒ C is a tuple

〈r, i, θ〉 with θ a ground substitution defined on the variables occuring in A1, . . . , Ai

and 1 ≤ i ≤ n. Its antecedents are θ(A1), . . . , θ(Ai). A strong prefix firing is a prefix

instance whose antecedents hold in a state with priority lower or equal to the prefix’

rule priority. In (Ganzinger and McAllester 2002), also the concept of a weak prefix

firing is defined, but it is of no importance for our purposes. The time complexity for

running Logical Algorithms programs is given in (Ganzinger and McAllester 2002)

as O(|σ0|+Ps+(Pd+Ad) · logN) where σ0 is the initial state and |σ0| is its size. Ps

is the number of strong prefix firings of static priority rules and Pd is the number of

strong prefix firings of dynamic priority rules; Ad is the number of assertions that

may participate in a dynamic priority rule instance; and N is the number of distinct

priorities. The following example is adapted from (Ganzinger and McAllester 2002).

Example 2 (Dijkstra’s Shortest Path)

The rules below implement Dijkstra’s single source shortest path algorithm.

d1 @ 1 : source(V) => dist(V,0).

d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).

d3 @ D+2 : dist(V,D), e(V,C,U) => dist(U,D+C).

A source(V) assertion means that V is the (unique) source node for the algorithm.

A dist(V ,D) assertion means that the shortest path distance from the source node

to node V does not exceed D. Finally, an e(V ,C,U) assertion means that there

is an edge from node V to node U with cost (weight) C. Given an initial state

consisting of one source/1 assertion and e e/3 assertions, we can derive that the

8 Leslie De Koninck

number of strong prefix firings is O(1) for rule d1, and O(e) for both rules d2 and

d3, and so both Ps and Pd are O(e). This result is based on the fact that at priority

2 and lower (numerically larger), there is at most one (positive) dist/2 assertion

for each node, and each of these assertions represent the shortest path distance

from the source node to this node. This means that at most e dist/2 assertions are

ever created, and Ad = O(e). Finally, the number of distinct priorities is bounded

by the number of dist/2 assertions, i.e., N = O(e). Using the meta-complexity

theorem, we find that the total complexity is O(e+ e+ (e+ e) · log e) = O(e log e).

2.3.2 The “As Time Goes By” Approach

In (Frühwirth 2002a; Frühwirth 2002b), an upper bound on the worst case time

complexity of a CHR program P is given as

O

(

D
∑

r∈P

(cnr

max (OHr
+OGr

) + (OCr
+OBr

))

)

(1)

where D is the maximal derivation length (i.e., the maximal number of rule firings),

cmax is the maximal number of CHR constraints in the store, and for each rule

r ∈ P :

• nr is the number of heads in r

• OHr
is the cost of head matching, i.e. checking that a given sequence of nr

constraints match with the nr heads of rule r

• OGr
is the cost of checking the guard

• OCr
is the cost of adding built-in constraints after firing

• OBr
is the cost of adding and removing CHR constraints after firing

For programs with simplification and simpagation rules only, the maximal deriva-

tion length can be derived using an appropriate ranking on constraints that de-

creases after each rule firing (Frühwirth 2000a). We note that finding such a ranking

is not trivial. The meta-complexity result is based on a naive CHR implementa-

tion, and therefore on the one hand gives an upper bound on the time complexity

for any reasonable implementation of CHR, but on the other hand often largely

overestimates the worst case time complexity on optimized implementations.2 The

following example is adapted from (Frühwirth 2002a).

Example 3 (Boolean)

The rules below implement the boolean and(X,Y,X ∧ Y) constraint given that 1

represents true and 0 represents false.

and(0,Y,Z) <=> Z = 0. and(X,0,Z) <=> Z = 0.

and(X,1,Z) <=> X = Z. and(1,Y,Z) <=> Y = Z.

and(X,X,Z) <=> X = Z. and(X,Y,1) <=> X = 1, Y = 1.

2 Built-in constraints may lead to a worse complexity in practical optimized implementations if
many constraints are repeatedly reactivated without this resulting in new rule firings. We return
to this issue in Section 6.3.

Logical Algorithms meets Constraint Handling Rules 9

Let the rank of an and/3 constraint be one, then the rank of the head of each rule

equals one, and the rank of the body equals zero because by definition, all built-in

constraints have a rank of zero. For a goal consisting of n and/3 constraints, the

derivation length is n, which is also the maximal number of CHR constraints in

the store. The cost of head matching, (implicit) guard checking, removing CHR

constraints and asserting built-in constraints can all be considered constant. Then

using (1), we derive that the total runtime complexity is O(n2).

2.3.3 A First Comparison

Although at this point we do not intend to make a complete comparison between

both results, we can already show that the Logical Algorithms result in a sense is at

least as accurate as Frühwirth’s approach, at least as far as programs without built-

in tell constraints are concerned. The reasoning is as follows. In each derivation step,

a constant number of atoms (constraints) are asserted. Let cmax be the maximal

number of (strictly) positive assertions in any given state. Furthermore assume rules

have positive heads only, then each of the asserted atoms can participate in at most
∑

r∈P

(

nr · cnr−1
max

)

strong prefix firings. Because only O(c+D) constraints are ever

asserted where c is the number of CHR constraints in the initial goal and D is the

derivation length, the total number of strong prefix firings Ps + Pd is

O

(

(c+D) ·
∑

r∈P

cnr−1
max

)

and because c = O(cmax) we also have the following bound

O

(

D ·
∑

r∈P

cnr

max

)

(2)

In absence of (dynamic) priorities, the total runtime complexity according to the

Logical Algorithms meta-complexity result is bounded by the same formula (2) and

hence is at least as accurate as the result of (Frühwirth 2002b) given that the cost

of both head matching (OHr
) and adding and removing CHR constraints (OBr

) is

constant for each rule r.

3 Translating Logical Algorithms into CHRrp

In this section, we show how Logical Algorithms programs can be translated into

CHRrp programs. CHR states of the translated program can be mapped onto LA

states of the original. With respect to this mapping, both programs have the same

derivations.

3.1 The Translation Schema

The translation of a LA program P is denoted by T (P) = TS/D(P) ∪ TR(P). The

definitions of TS/D(P) and TR(P) are given below.

10 Leslie De Koninck

3.1.1 Set and Deletion Semantics

We represent Logical Algorithms assertions as CHR constraints consisting of the

assertion itself and an extra argument, called the mode indicator, denoting whether

it is positively asserted (“p”), negatively asserted (“n”) or both (“b”). For every

user-defined predicate a/n occurring in P , TS/D(P) contains the following rules to

deal with a new positive or negative assertion:

1 :: ar(X̄,M) \ a(X̄) ⇐⇒ M 6= n | true

1 :: ar(X̄, n), a(X̄) ⇐⇒ ar(X̄, b)

2 :: a(X̄) ⇐⇒ ar(X̄, p)

1 :: ar(X̄,M) \ del(a(X̄)) ⇐⇒ M 6= p | true

1 :: ar(X̄, p), del(a(X̄)) ⇐⇒ ar(X̄, b)

2 :: del(a(X̄)) ⇐⇒ ar(X̄, n)

If a representation already exists, one of the priority 1 rules updates this represen-

tation. Otherwise, one of the priority 2 rules generates a new representation. At

lower (numerically larger) priorities, it is guaranteed that every assertion, whether

asserted positively, negatively or both, is represented by exactly one constraint in

the store.

3.1.2 Rules

Given a LA rule r ∈ P of the form

r @ p : A1, . . . , An ⇒ C

We first split up the antecedents into user-defined antecedents and comparison

antecedents by using the split function defined below.

split([A|T]) =

{

〈[A|Au], Ac〉 if A is a user-defined atom

〈Au, [A|Ac]〉 if A is a comparison

where split(T) = 〈Au, Ac〉

split([]) =〈[], []〉

In the Logical Algorithms language, a given assertion may participate multiple

times in the same rule instance, whereas in CHR all constraints in a single rule

instance must be different. To overcome this semantic difference, a single LA rule

is translated as a set of CHR rules such that every CHR rule covers a case of

syntactically equal head constraints. Let 〈Au, Ac〉 = split([A1, . . . , An]) with Au =

[Au
1 , . . . , A

u
m] and Ac = [Ac

1, . . . , A
c
l]. Let P be the set of all partitions of {1, . . . ,m}.

For a given partition ρ ∈ P , the following function returns the most general unifier

that unifies all antecedents {Ai | i ∈ S} for every S ∈ ρ where mgu(S) is the most

general unifier of all elements in S.

partition to mgu(ρ, [Au
1 , . . . , A

u
m]) = ◦

S∈ρ
mgu({Au

i | i ∈ S})

Logical Algorithms meets Constraint Handling Rules 11

Let PU = {〈ρ, θ〉 | ρ ∈ P∧θ = partition to mgu(ρ,Au)∧D |= ∃̄∅θ(A
c)}. PU contains

all partitions for which partition to mgu is defined and for which the comparison

antecedents Ac are still satisfiable after applying the unifier. The next step is to

filter out antecedents so that every set in the partition has only one representative.

This is done by computing filter(θ(Au), ρ) for each 〈ρ, θ〉 ∈ PU where the filter

function is as follows:

filter([θ(Au
i)|T], ρ) =

{

[θ(Au
i)|filter(T, ρ)] if ∃S ∈ ρ : i = min(S)

filter(T, ρ) otherwise

filter([],) =[]

Finally, we add mode indicators to all remaining user-defined antecedents:

modes([Au′

|T]) =

{

〈[ar(X̄, p)|Am], N〉 if Au′

= a(X̄)

〈[ar(X̄,N ′)|Am], [N ′ 6= p|N]〉 if Au′

= del(a(X̄))

where 〈Am, N〉 = modes(T)

modes([]) =〈[], []〉

The modes function returns both the resulting antecedents and the necessary con-

ditions on the mode indicators of these antecedents. For every 〈ρ, θ〉 ∈ PU , the

CHR translation TR(P) contains a rule

p+ 2 :: rρ @ H =⇒ g1, g2 | C′

where 〈H, g1〉 = modes(filter(θ(Au), ρ)), g2 = θ(Ac) and C′ = θ(C).

3.1.3 Examples

We illustrate the translation schema on some examples.

Example 4

A LA implementation of Dijkstra’s shortest path algorithm is

d1 @ 1 : source(V) => dist(V,0).

d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).

d3 @ D+2 : dist(V,D), e(V,C,U) => dist(U,D+C).

Its translation is

1 :: er(V,C,U,M) \ e(V,C,U) <=> M \= n | true.

1 :: er(V,C,U,n) , e(V,C,U) <=> er(V,C,U,b).

2 :: e(V,C,U) <=> er(V,C,U,p).

1 :: er(V,C,U,M) \ del(e(V,C,U)) <=> M \= p | true.

1 :: er(V,C,U,p) , del(e(V,C,U)) <=> er(V,C,U,b).

2 :: del(e(V,C,U)) <=> er(V,C,U,n).

... % (similar rules for source/1 and dist/2)

3 :: d11 @ sourcer(V,p) ==> dist(V,0).

12 Leslie De Koninck

3 :: d21/2 @ distr(V,D1,p), distr(V,D2,p) ==> D2 < D1 | del(dist(V,D1)).

D+4 :: d31/2 @ distr(V,D,p), er(V,C,U,p) ==> dist(U,D+C).

Example 5

A rule from the union-find implementation of (Ganzinger and McAllester 2002) is

the following:

uf4 @ 1 : union(X,Y), find(X,Z), find(Y,Z) => del(union(X,Y)).

Because antecedents find(X,Z) and find(Y,Z) are unifiable, this leads to the

following two CHR rules:

3 :: uf41/2/3 @ unionr(X,Y,p), findr(X,Z,p), findr(Y,Z,p) ==> del(union(X,Y)).

3 :: uf41/23 @ unionr(X,X,p), findr(X,Z,p) ==> del(union(X,X)).

3.2 The Correspondence between LA and CHRrp Derivations

In this subsection, we show that every derivation of the original program under

the Logical Algorithms semantics, corresponds to a derivation of the translation

under the ωp semantics of CHRrp. In order to do so, we introduce a mapping

function chr to la between reachable CHR execution states and Logical Algorithms

states; see (Duck et al. 2007) for a formal definition of reachability. Reachability is

considered with respect to initial states of the form 〈G, ∅, true, ∅〉n where the user-

defined constraints in G are of the form a(X̄) and del(a(X̄)) and do not include

constraints of the form ar(X̄,M).

chr to la(σ) = {a(X̄) | a(X̄) ∈ A ∨ (ar(X̄,M) ∈ A ∧M 6= n)}

∪ {del(a(X̄)) | del(a(X̄)) ∈ A ∨ (ar(X̄,M) ∈ A ∧M 6= p)}

where σ = 〈G,S,B, T 〉n and A = G ∪ chr(S). The mapping function also takes

into account the constraints that are still in the goal and those for which the

set and deletion semantics rules have not yet fired. In the rest of this section,

we first show how CHR execution states are normalized and then show that in a

Logical Algorithms state and its corresponding normalized CHR execution state,

corresponding rule instances can fire. We start by defining a pre-normal form.

Definition 1 (Pre-normal Form)
A (reachable) state σ is in pre-normal form if and only if σ = 〈∅, S, true, T 〉n,

all constraints in S are of the form ar(X̄,M)#i, and if ar(X̄,M1)#i1 ∈ S and

ar(X̄,M2)#i2 ∈ S then i1 = i2 (and consequently M1 = M2).

The following lemma shows that every reachable state is pre-normalized before rules

are tried with priority > 2.

Lemma 1 (Pre-normalization)

For every reachable state σ, there exists a finite derivation D = σ
ωp

∗
T (P) σ∗ such

that σ∗ is in pre-normal form, chr to la(σ) = chr to la(σ∗), and all rules fired in D

have priority 1 or 2. Every state has a unique pre-normal form with respect to the

chr to la mapping function.

Logical Algorithms meets Constraint Handling Rules 13

Proof

We introduce the following ranking function on CHR states:

‖σ‖ = 2 ·
∣

∣{a(X̄) | a(X̄) ∈ A} ⊎ {del(a(X̄)) | del(a(X̄)) ∈ A}
∣

∣ + |G|

where σ = 〈G,S, true, T 〉n, A = G ⊎ chr(S) and if X is a (multi-)set, |X | is its

cardinality. Clearly, the rank of any state is positive, and if ‖σ‖ = 0, state σ is in pre-

normal form. If σ is not in pre-normal form, then there exists at least one transition

σ
ωp

T (P) σ
′. We show that for all such transitions chr to la(σ) = chr to la(σ′) and

‖σ′‖ < ‖σ‖, which ensures termination.

If the goal G is not empty, then only the Introduce transition is applicable.

Every application of this transition moves a CHR constraint from the goal to the

CHR constraint store, so ‖σ′‖ = ‖σ‖− 1. By definition, chr to la(σ′) = chr to la(σ)

(because the chr to la function does not distinguish between the goal and the CHR

constraint store).

If the goalG is empty then given that σ is not in pre-normal form, chr(S) contains

a constraint of the form a(X̄) or del(a(X̄)). We look into detail to the case of

a(X̄) ∈ chr(S); the case of del(a(X̄)) ∈ chr(S) is similar. We start by showing

that at least one rule of priority 1 or 2 is applicable. Next, we show that each rule

application decreases the norm and maintains the invariance with respect to the

chr to la function.

Assume a(X̄) ∈ chr(S). If ar(X̄, p) ∈ chr(S) or ar(X̄, b) ∈ chr(S) then the

following rule of T (P) is applicable:

1 :: ar(X̄,M) \ a(X̄) ⇐⇒ M 6= n | true

If ar(X̄, n) ∈ chr(S) then the rule below applies:

1 :: ar(X̄, n), a(X̄) ⇐⇒ ar(X̄, b)

Finally, if no rule of priority 1 can be applied, which implies that no constraint of

the form ar(X̄,M) ∈ chr(S), then the following T (P) rule can fire:

2 :: a(X̄) ⇐⇒ ar(X̄, p)

This covers all possibilities. Now we look at what happens after firing one of the

priority 1 or 2 rules. The rule

1 :: ar(X̄,M) \ a(X̄) ⇐⇒ M 6= n | true

removes a constraint a(X̄)#i from S and has an empty body, so ‖σ′‖ = ‖σ‖ − 2.

Since M 6= n the removed constraint was already represented by the ar(X̄,M)

constraint and so chr to la(σ′) = chr to la(σ). Firing

1 :: ar(X̄, n), a(X̄) ⇐⇒ ar(X̄, b)

causes the removal of two constraints from S, namely ar(X̄, n)#i and a(X̄)#j.

Furthermore, it adds a new constraint ar(X̄, b) to G. This results in ‖σ′‖ = ‖σ‖−1.

The new constraint represents the combined mode of both removed constraints and

hence chr to la(σ′) = chr to la(σ). Finally, the rule

2 :: a(X̄) ⇐⇒ ar(X̄, p)

14 Leslie De Koninck

is only applicable if chr(S) does not contain a constraint of the form ar(X̄,M).

It removes a constraint a(X̄)#i from S and adds a new constraint ar(X̄, p) to G,

resulting in ‖σ′‖ = ‖σ‖ − 1. The new representation covers the positive assertion

and so chr to la(σ′) = chr to la(σ).

In summary, if the goal is empty and σ is not in pre-normal form, a rule of

priority 1 or 2 can fire and so no rule with lower priority is applicable. All ap-

plicable transitions strictly decrease the value of the ranking function and so the

pre-normalization terminates. Finally, none of the possible transitions changes the

value of chr to la.

The state σ∗ is called a pre-normalization of σ.

Definition 2 (Implied Rule Instance)

A rule instance θ(r) is implied in a state σ if θ(C) ⊆ chr to la(σ) with θ(σ) the

conclusion of θ(r).

Lemma 2 (Normalization)

Let there be given a pre-normalized state σ = 〈∅, S, true, T 〉n. If there exists

a transition σ
ωp

T (P) σ′ in which an implied rule instance fires, then the pre-

normalization of σ′ has the form 〈∅, S, true, T ′〉n′ with T ′) T . In other words

chr to la(σ) = chr to la(σ′) and the CHR constraint store after pre-normalization is

unchanged from the one before the implied rule instance fired while the propagation

history is increased.

Proof

Let θ(r) be the implied rule instance with conclusion θ(C). Since θ(C) ⊆ chr to la(σ)

with σ = 〈∅, S, true, T 〉n, we have σ′ = 〈θ(C), S, true, T ∪ {t}〉n and chr to la(σ) =

chr to la(σ′) with t the propagation history tuple corresponding to θ(r). The goal

G of σ′ equals θ(C) and so it holds that if a(X̄) ∈ G then a(X̄, p) ∈ chr(S) or

a(X̄, b) ∈ chr(S) and if del(a(X̄)) ∈ G then a(X̄, n) ∈ chr(S) or a(X̄, b) ∈ chr(S).

Now all constraints in the goal are first introduced in the CHR constraint store.

Next, the newly introduced CHR constraints are removed one by one using one of

the following rules:

1 :: ar(X̄,M) \ a(X̄) ⇐⇒ M 6= n | true

1 :: ar(X̄,M) \ del(a(X̄)) ⇐⇒ M 6= p | true

These rules remove all the constraints that were introduced from the goal and do

not change the rest of the CHR constraint store, hence after pre-normalization, the

CHR constraint store equals that of state σ again.

Because the CHR constraint store remains unchanged after firing an implied rule

instance and pre-normalizing the resulting state, only finitely many such rule in-

stances can fire before either reaching a final execution state, or a state in which a

non-implied rule instance can fire. We call such a state normalized.

Logical Algorithms meets Constraint Handling Rules 15

Definition 3 (Normal Form)

A pre-normalized CHR execution state σ is in normal form if it is a final state

(σ
ωp

6T (P)) or there exists a transition σ
ωp

T (P) σ′ such that chr to la(σ′) +
chr to la(σ), i.e., in which a non-implied rule instance is fired.

Lemma 3

For every Logical Algorithms state σLA and every normalized CHR execution state

σ = 〈∅, S, true, T 〉n such that σLA = chr to la(σ), there exists a transition σLA
LA
P

σ′
LA if and only if there exists a transition σ

ωp

T (P) σ′ firing a non-implied rule

instance such that σ′
LA = chr to la(σ′).

Proof

A transition of σLA to σ′
LA implies there exists a fireable rule instance θ(r) of a

rule r in P with priority p of the form

r @ p : A1, . . . , An ⇒ C

Let 〈Au, Ac〉 = 〈[Au
1 , . . . , A

u
m], [Ac

1, . . . , A
c
l]〉 = split([A1, . . . , An]) where we use the

split function defined in Section 3.1. The user-defined antecedents can be partitioned

into sets of syntactically equal antecedents with respect to the matching substitution

θ. The following function returns this partition:

substitution to partition(θ, [Au
1 , . . . , A

u
m]) = {S1, . . . , Sm}

where Si = {j | θ(Au
i) = θ(Au

j)}. Let ρ = substitution to partition(θ, Au). From the

partition, we find the most general unifier θ′ that unifies all antecedents {Au
i | i ∈ S}

for every S ∈ ρ: θ′ = partition to mgu(ρ,Au) with partition to mgu as defined in

Section 3.1. Clearly, θ′ exists and is more general than θ. The applicability of the

Apply transition means that for all comparison antecedents Ac
i with 1 ≤ i ≤ l,

D |= θ(Ac
i) and so it holds that D |= ∃̄∅θ

′(Ac
1 ∧ . . .∧Ac

l) and consequently a rule rρ
exists. This rule looks as follows:

p+ 2 :: rρ @ H1, . . . , Hk =⇒ g1, g2 | C′

with 〈[H1, . . . , Hk], g1〉 = modes(Af), Af = [Af
1 , . . . , A

f
k] = filter(θ′(Au), ρ), g2 =

θ′(Ac) and C′ = θ′(C). The modes and filter functions are as defined in Section 3.1.

Let θ′′ be a ground matching substitution such that θ = θ′′|vars(θ) ◦ θ′ where

θ′′|vars(θ) is the projection of θ′′ on the variables in θ. Since θ′ is more general

than θ, θ′′ exists. For all i ∈ {1, . . . , k}, if Af
i = a(X̄) then Hi = ar(X̄, p). Be-

cause of the applicability of Logical Algorithms rule r in state σLA, θ
′′(a(X̄)) ∈

σLA and θ′′(del(a(X̄))) /∈ σLA, so H ′
i = θ′′(ar(X̄, p))#idi ∈ S and θ′′(Hi) =

chr(H ′
i). Similarly, if Af

i = del(a(X̄)) then Hi = ar(X̄,N) and g1 contains N 6= p;

θ′′(del(a(X̄))) ∈ σLA and as a result H ′
i = θ′′(ar(X̄,N ′))#idi ∈ S with N ′ = n or

N ′ = b. Since N only appears in Hi and the guard N 6= p, we can further impose

that θ′′(N) = N ′ and then θ′′(Hi) = chr(H ′
i).

All θ′′(Af
i) are different for 1 ≤ i ≤ k, and therefore, all idi must be different.

From D |= ∃̄∅θ(A
c
i) for 1 ≤ i ≤ l and because θ′′(g1) = [N1 6= p, . . . , No 6= p] with

16 Leslie De Koninck

Nj = n or Nj = b for 1 ≤ j ≤ o, D |= true → ∃̄∅θ
′′(g1 ∧ g2). We conclude that θ′′

is a ground matching substitution that matches the head with constraints from S

and for which the guard is entailed.

It is not possible that 〈rρ, id(H)〉 ∈ T because chr to la grows monotonically,

which implies that θ(C) = θ′′(C′) ∈ chr to la(σ) = σLA which contradicts with the

applicability of θ(r) in σLA.

If we ignore rule priorities, all conditions are satisfied so that rule instance θ(rρ)

can fire. The resulting state σ′ has the form 〈θ(C), S, true, T ∪ {〈rρ, id(H)〉}〉n.

Clearly, if σLA = chr to la(〈∅, S, true, T 〉n) and σ′
LA = σLA ∪ θ(C) then σ′

LA =

chr to la(σ′). We now prove that every CHR transition firing a non-implied rule

instance corresponds to a Logical Algorithms transition, also ignoring rule priorities.

Both results combined give us that the priority of the highest priority rule instance

is equal in both σ and σLA.

A transition of σ = 〈∅, S, true, T 〉n to σ′ implies that T (P) contains a rule

p+ 2 :: rρ @ H =⇒ g1, g2 | C′

and so the Logical Algorithms program P contains a rule

r @ p : A1, . . . , An ⇒ C

Let 〈Au, Ac〉 = split([A1, . . . , An]) and θ = partition to mgu(ρ,Au). If Ai = a(X̄) ∈

Au then θ(ar(X̄, p)) ∈ H . If Ai = del(a(X̄)) ∈ Au then θ(ar(X̄,N)) ∈ H and

(N 6= p) ∈ g1. Finally, if Ai ∈ Ac then θ(Ai) ∈ g2. There exists a (ground)

matching substitution θ′ such that θ′(H) ∈ chr(S) and D |= ∃̄∅θ
′(g1 ∧ g2).

Let θ′′ = θ′ ◦ θ and let σLA = chr to la(σ). Because θ′ is a ground substitution,

D |= ∃̄∅θ
′(g1 ∧ g2) implies that for all Ai ∈ Ac, D |= θ′′(Ai). For all positive user-

defined antecedents Ai = a(X̄) ∈ Au, we have that θ′′(a(X̄, p)) ∈ chr(S) and so

θ′′(Ai) ∈ σLA and del(θ′′(Ai)) /∈ σLA. For all negative user-defined antecedents

Ai = del(a(X̄)) ∈ Au, we have that θ′′(ar(X̄,N)) ∈ chr(S) with N = b or N = n

and so θ′′(Ai) ∈ σLA. We have assumed that θ′(rρ) is not an implied rule instance

and so θ′(C′) = θ′′(C) * σLA.

If we again ignore rule priorities, all conditions are satisfied so that rule instance

θ′′(r) can fire in state σLA and it holds that σ′
LA = σLA ∪ θ′′(C) = chr to la(σ′)

since σ′ = 〈θ′(C′), S, true, T ∪ {〈rρ, id(H)〉}〉n. Now we have that both the original

program P and its translation T (P) can fire corresponding rule instances if we

ignore priorities, and so their highest priority rule instances also correspond.

Theorem 2

For every reachable CHRrp state σ, if σ
ωp

T (P) σ′ then either chr to la(σ) =

chr to la(σ′) or chr to la(σ)
LA
P chr to la(σ′).

Proof

Implied by Lemmas 1, 2 and 3.

Logical Algorithms meets Constraint Handling Rules 17

Theorem 3

For every Logical Algorithms state σi and reachable CHRrp state σ′
i such that

chr to la(σ′
i) = σi, there exists a finite CHRrp derivation σ′

i

ωp

∗
T (P) σ′

i∗ for which

holds that chr to la(σ′
i∗) = σi such that if σi

LA
P σj then σ′

i∗

ωp

T (P) σ′
j with

chr to la(σ′
j) = σj and if σi is a final state then σ′

i∗ is also a final state.

Proof

Implied by Lemmas 1, 2 and 3.

Given a Logical Algorithms state σ, we can use 〈σ, ∅, true, ∅〉1 as initial state for

the CHRrp derivation. Theorem 3 is illustrated by the figure below.

σi

〈σi, ∅, true, ∅〉1
ωp

∗
T (P) σ

′
i

ωp

∗
T (P) σ

′
i∗

σi
LA
P σj

σ′
i∗

ωp

T (P) σ
′
j

σi

LA

6P

σ′
i∗

ωp

6T (P)

3.3 Weak Bisimulation

To capture the meaning of the above correspondence results, we relate them to the

notion of (weak) bisimulation. A bisimulation is a relation between the states of a

labeled transition system (LTS). A relation R ⊆ S1 × S2 between the states in S1

and those in S2 is a bisimulation if p R q and p
α
→ p′ implies that q

α
→ q′ with

p′ R q′, and similarly, p R q and q
α
→ q′ implies that p

α
→ p′ with p′ R q′. Here, α is

the label of the transition p
α
→ p′ from state p to state p′. If a transition from p to

p′ has no observable effect, it is called a silent transition and denoted by p
τ
→ p′.

A relation R ⊆ S1 × S2 is a weak bisimulation if p R q and p
α
→ p′ implies that

q
τ
→

∗
q∗

α
→ q′∗

τ
→

∗
q′ with p′ R q′, and vice versa with the roles of p and q swapped.

Here p
τ
→

∗
p′ means p and p′ are linked by zero or more silent transitions.

Let S1 be the set of valid Logical Algorithms states for program P and let S2 =

{chr to la(σ) | 〈G, ∅, true, ∅〉1
ωp

∗
T (P) σ ∧ G ∈ S1}, i.e., S2 is found by applying

the chr to la mapping function all reachable CHRrp states for program T (P). We

transform the state transition systems for Logical Algorithms and CHRrp to labeled

transition systems as follows: a Logical Algorithms transition σ
LA
P σ′ corresponds

to an LTS transition σ
α
→ σ′ with α = σ′ \ σ, i.e., α represents the state change

from σ to σ′. A CHRrp transition σ
ωp

T (P) σ′ corresponds to an LTS transition

chr to la(σ)
α
→ chr to la(σ′) with α = chr to la(σ′) \ chr to la(σ) if this set is not

empty and α = τ otherwise.

Corollary 1

The equality relation between the states of S1 and S2 is a weak bisimulation.

18 Leslie De Koninck

4 Translating a subset of CHRrp into Logical Algorithms

In the previous section, we have shown that Logical Algorithms programs can be

translated into equivalent CHRrp programs. In this section, we show how to do

the opposite, i.e., how CHRrp programs can be translated into equivalent Logical

Algorithms programs. This allows us to apply the meta-complexity theorem for

Logical Algorithms to the translation of these CHRrp programs.

We impose some restrictions on the CHRrp programs that can be translated.

These restrictions result from the fact that the Logical Algorithms language does

not have the concept of an underlying constraint solver that offers both ask and tell

built-in constraints. In principle, the complete CHRrp language could be translated

into LA, as the subset of CHRrp for which we propose a translation is already

Turing complete (Sneyers 2008, Chapter 10), and therefore so is the LA language.

However, in general, this requires a LA implementation of the built-in constraint

solver used by the CHRrp program. Since this built-in solver is not part of the

CHRrp program, we restrict our translation schema to programs that do not make

use of such a solver. In particular, we only support the translation of the positive

range-restricted ground segment of CHRrp (Betz 2007):

1. In all reachable states σ = 〈G,S,B, T 〉n: vars(S) = ∅. In words, all (stored)

CHR constraints are ground.
2. All built-in constraints are comparisons; there are no built-in tell constraints.

The first property holds if the initial goal is ground and all rules are variable re-

stricted, which means that all variables in the body of a rule, also appear in one

of the rule heads. The second property implies that all reachable states are of the

form 〈G,S, true, T 〉n, i.e., the built-in constraint store always equals true.

To simplify the presentation, we also assume that the priority of dynamic priority

rules is determined by the arguments of its left-most head. In general, we can use the

transformation schema given in Section 2.2.3 to ensure that the resulting Logical

Algorithms rules have the correct syntactical form.

4.1 The Translation Schema

We now show how the rules of a CHRrp program P are transformed into Logical

Algorithms rules that form a program T (P). To increase readability, we distinguish

between simplification and simpagation rules on the one hand, and propagation

rules on the other. A simpagation rule of the form

p :: r @ H1, . . . , Hl−1\Hl, . . . , Hm ⇐⇒ g | B1, . . . , Bo

is transformed into

r′ @ p : H id
1 , . . . , H id

m ,Alldiff, g, next id(Idnext) ⇒

del(H id
l), . . . , del(H id

m), del(next id(Idnext)),

Bid
1 , . . . , Bid

o , next id(Idnext + o)

where Hid
i = c(X̄,Idi) if Hi = c(X̄), Bid

i = c(X̄,Idnext + i− 1) if Bi = c(X̄)

and Alldiff = {(Idi 6= Idj) | D |= ∃̄∅Hi = Hj ∧ g}. The disequalities in Alldiff are

Logical Algorithms meets Constraint Handling Rules 19

between those heads that are unifiable and for which the guard is still satisfiable

after this unification. The next_id/1 antecedent is used to retrieve the next free

identifier to be used to identify constraints in the body, cf. the ωp operational

semantics of CHRrp. The case of a simplification rule is similar. A propagation rule

of the form

p :: r @ H1, . . . , Hm =⇒ g | B1, . . . , Bo

is transformed into the following two rules

r′1 @ p : H id
1 , . . . , H id

m ,Alldiff, g ⇒ token(r, [Id1, . . . , Idm])

r′2 @ p : H id
1 , . . . , H id

m ,Alldiff, g, token(r, [Id1, . . . , Idm]), next id(Idnext) ⇒

del(token(r, [Id1, . . . , Idm])), del(next id(Idnext)),

Bid
1 , . . . , Bid

o , next id(Idnext + o)

where Hid
i , Bid

i and Alldiff are as before. The first of these rules generates a token.

This token is removed by the second rule. The tokens are needed to prevent a

given rule instance from firing more than once.3 Note that the transformation into

two rules and the use of tokens does not increase the complexity compared to the

original rule, as there is only one token for each combination of rule and constraint

identifiers (as well as only one positive next_id/1 assertion in any state).

The initial database consists of the goal (where each constraint is extended with

a unique identifier) and a next_id(Idnext) assertion (with Idnext the next free

identifier).

Example 6 (Merge Sort)

The following CHRrp program implements a merge sort algorithm. Its input consists

of a series of n (a power of 2) number/1 constraints. Its output is a sorted list of

the numbers in the input, represented as arrow/2 constraints, where arrow(X,Y)

indicates that X is right before Y .

1 :: ms1 @ arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B).

2 :: ms2 @ merge(N,A), merge(N,B) <=> A < B | merge(2*N+1,A), arrow(A,B).

3 :: ms3 @ number(X) <=> merge(0,X).

Its Logical Algorithms translation is

ms1′ @ 1 : arrow(X,A,Id1), arrow(X,B,Id2), A < B, next_id(NId) =>

del(arrow(X,B,Id2)), del(next_id(NId)),

arrow(A,B,NId), next_id(NId+1).

ms2′ @ 2 : merge(N,A,Id1), merge(N,B,Id2), A < B, next_id(NId) =>

del(merge(N,A,Id1)), del(merge(N,B,Id2)), del(next_id(NId)),

merge(2*N+1,A,NId), arrow(A,B,NId+1), next_id(NId+2).

ms3′ @ 3 : number(X,Id), next_id(NId) => del(number(X,Id)),

del(next_id(NId)), merge(0,X,NId), next_id(NId+1).

3 In (De Koninck et al. 2007a), an erroneous translation was presented which did not use tokens,
and in which a propagation rule could fire infinitely many times because the constraints in the
body are assigned new identifiers each time the rule is fired.

20 Leslie De Koninck

Note that in rules ms1 and ms2, the guard prevents the constraints matching the

heads from being equal, and so there are no disequality constraints between the

CHR constraint identifiers. In (De Koninck et al. 2007a) it is derived that the total

runtime of this Logical Algorithms program is O(n logn). We defer the complexity

analysis of the merge sort algorithm to Section 6.1 where we analyse the CHRrp

implementation directly using a new meta-complexity theorem for CHRrp.

Example 7 (Less-or-Equal)

To illustrate how propagation rules are dealt with, we show the translation of a

rule of the leq program which is given further on in Example 9. The rule

3 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

is translated into

transitivity′1 @ 3 : leq(X,Y,Id1), leq(Y,Z,Id2), Id1 \= Id2 =>

token(transitivity,[Id1,Id2]).

transitivity′2 @ 3 : leq(X,Y,Id1), leq(Y,Z,Id2), Id1 \= Id2,

token(transitivity,[Id1,Id2]), next_id(NId) =>

del(token(transitivity,[Id1,Id2])), del(next_id(NId)),

leq(X,Z,NId), next_id(NId+1).

Note that since in the original rule, the two heads leq(X,Y) and leq(Y,Z) are

unifiable (and there is furthermore no guard to prevent this from happening), we

have to add an explicit disequality between the constraint identifiers for these heads:

Id1 \= Id2.

4.2 Correspondence

In this subsection, we prove that a CHRrp program and its translation to Logical

Algorithms are operationally equivalent. Again we introduce a mapping function:

la to chr(σ) = 〈∅, S, true, T 〉n

where the CHR constraint store S = {c(X̄)#Id | c(X̄, Id) ∈ σ ∧ del(c(X̄, Id)) /∈ σ},

the propagation history T = {〈R, Ids〉 | del(token(R, Ids)) ∈ σ}, and the next free

identifier n is such that next id(n) ∈ σ and del(next id(n)) /∈ σ. In the following, we

consider a Logical Algorithms state σ reachable with respect to program T (P) if it

can be derived from an initial state consisting of CHR constraints extended with

unique identifiers, and a single next_id/1 assertion with as argument the next free

identifier. In this case, reachability amongst others implies that there can be only

one (strictly) positive next_id/1 assertion in any state, and no two CHR constraint

representations share their identifier.

First, we define the priority-ignoring operational semantics LA′ of Logical Algo-

rithms, as being the same as its regular operational semantics except that priorities

are ignored, i.e., the next applicable rule instance in any state is independent of

the priorities. Next, we state two lemmas that relate a CHRrp program P and

its translation T (P) under respectively the theoretical operational semantics ωt of

Logical Algorithms meets Constraint Handling Rules 21

CHR and this priority-ignoring operational semantics LA′ of Logical Algorithms.

Note that the ωt semantics of CHR also ignores rule priorities.

Lemma 4

For every reachable Logical Algorithms state σi it holds that if σi
LA′

 T (P) σj , then

either it holds that la to chr(σi) = la to chr(σj) or there exists a finite CHR deriva-

tion la to chr(σi) = 〈∅, S, true, T 〉n
ωt

P 〈C, S′, true, T ′〉n
ωt

∗
P 〈∅, S′′, true, T ′〉n′ =

la to chr(σj) consisting of anApply transition, followed by zero or more Introduce

transitions.

Proof

Consider a transition σi
LA′

 T (P) σj . The only type of transition in Logical Algo-

rithms is the Apply transition which fires a rule. If la to chr(σi) = la to chr(σj),

then this rule must be of the form

r′1 @ p : H id
1 , . . . , H id

m ,Alldiff, g ⇒ token(r, [Id1, . . . , Idm])

because all other types of rules either delete the representation of a CHR constraint

which changes the CHR constraint store, or remove a token which results in an

extended propagation history. We call the fired rule a token generation rule.

If la to chr(σi) 6= la to chr(σj) and the rule fired is of the form

r′ @ p : H id
1 , . . . , H id

m ,Alldiff, g, next id(Idnext) ⇒

del(H id
l), . . . , del(H id

m), del(next id(Idnext)),

Bid
1 , . . . , Bid

o , next id(Idnext + o)

which corresponds to a simplification (l = 1) or simpagation (l > 1) rule. We further

assume the case of a simpagation rule; the case of a simplification rule is similar. If

r′ ∈ T (P) (with l > 1), then P contains a rule

p :: r @ H1, . . . , Hl−1\Hl, . . . , Hm ⇐⇒ g | B1, . . . , Bo

Since the conditions for the Logical Algorithms Apply transition are satisfied,

there exists a ground matching substitution θ such that for each antecedent H id
i =

c(X̄, Idi) (1 ≤ i ≤ m) it holds that θ(H id
i) ∈ σ and del(θ(H id

i)) /∈ σ and so by

definition of the la to chr function, θ(Hi#Idi) ∈ S where la to chr(σi) = σ′
i =

〈∅, S, true, T 〉n. For each comparison gi ∈ g, it holds that D |= θ(gi) and so D |=

true → ∃̄∅θ(g). Since r is a simpagation rule, the propagation history T does not

contain any element of the form 〈r, 〉. In summary, all conditions are satisfied such

that the rule instance θ(r) can fire in state σ′
i under operational semantics ωt.

After firing θ(r) in state σ′
i, the resulting state equals 〈θ(B1∧. . .∧Bo), S

′, true, T 〉n
where S′ = S \ {θ(Hl#Idl), . . . , θ(Hm#Idm)}. In this state, we can apply the In-

troduce o times before reaching a state with an empty goal. There are o! pos-

sible orders in which the introductions can be applied; the one we need is the

order in which the Bi constraints appear in the rule body. Following this order,

the state resulting from the introductions equals σ′
j = 〈∅, S′′, true, T 〉(n+o) where

S′′ = S′ ∪ {θ(B1)#n, . . . , θ(Bo)#(n + o − 1)}. It is easy to see that this state σ′
j

22 Leslie De Koninck

equals la to chr(σj), the state resulting from firing Logical Algorithms rule instance

θ(r′) in state σi.

If la to chr(σi) 6= la to chr(σj) and the rule fired is not of the form shown above,

then it must have the following form

r′2 @ p : H id
1 , . . . , H id

m ,Alldiff, g, token(r, [Id1, . . . , Idm]), next id(Idnext) ⇒

del(token(r, [Id1, . . . , Idm])), del(next id(Idnext)),

Bid
1 , . . . , Bid

o , next id(Idnext + o)

the corresponding CHRrp rule in P looks like

p :: r @ H1, . . . , Hm =⇒ g | B1, . . . , Bo

Again, since the conditions for the Logical Algorithms Apply transition are satis-

fied, there exists a ground matching substitution θ such that for each antecedent

H id
i = c(X̄, Idi) (1 ≤ i ≤ m) in rule r′2 it holds that θ(H

id
i) ∈ σ and del(θ(H id

i)) /∈ σ

and so by definition of the la to chr function, θ(Hi#Idi) ∈ S where la to chr(σi) =

σ′
i = 〈∅, S, true, T 〉n. For each comparison gi ∈ g, it holds that D |= θ(gi) and so

D |= true → ∃̄∅θ(g). The propagation history T cannot contain 〈r, θ([Id1, . . . , Idm])〉

because by definition of the la to chr function this would imply that the atom

token(r, θ([Id1, . . . , Idm)) was deleted in some earlier state, which contradicts with

the applicability of the Apply transition on rule instance θ(r′2). Again, all condi-

tions are satisfied such that θ(r) can fire in state σ′
i.

After firing θ(r) in state σ′
i, the resulting state equals 〈θ(B1∧. . .∧Bo), S, true, T

′〉n
where T ′ = T ∪ {〈r, [Id1, . . . , Idm]〉}. In this state, we can apply the Introduce

transition o times before reaching a state with an empty goal. Given again that

these introductions are applied in the order in which the Bi constraints appear

in the rule body, then the resulting state equals σ′
j = 〈∅, S′, true, T ′〉(n+o) where

S′ = S∪{θ(B1)#n, . . . , θ(Bo)#(n+o−1)}. It is again easy to see that this state σ′
j

equals la to chr(σj), the state resulting from firing Logical Algorithms rule instance

θ(r′2) in state σi.

Lemma 5

For every reachable CHRrp state σi and reachable Logical Algorithms state σ′
i with

la to chr(σ′
i) = σi, there exists a finite Logical Algorithms derivation σ′

i

LA′

∗
T (P) σ

′
i∗

with la to chr(σ′
i∗) = σi such that if σi = 〈∅, S, true, T 〉n

ωt

P 〈C, S′, true, T ′〉n
ωt

∗
P

〈∅, S′′, true, T ′〉n′ = σj where the derivation consists of a single Apply transi-

tion, followed by zero or more Introduce transitions, then σ′
i∗

LA′

 T (P) σ′
j with

la to chr(σ′
j) = σj and if σi is a final state then σ′

i∗ is also a final state.

Proof

Let there be given a reachable Logical Algorithms state σ′
i with la to chr(σ′

i) = σi.

Because of Lemma 4, state σi is also reachable in CHRrp with respect to program

P . Assume σi = 〈∅, S, true, T 〉n
ωt

P 〈C, S′, true, T ′〉n
ωt

∗
P 〈∅, S′′, true, T ′〉n′ = σj

where the derivation consists of a single Apply transition, followed by zero or more

Logical Algorithms meets Constraint Handling Rules 23

Introduce transitions, and let θ(r) be the CHRrp rule instance that fired in state

σi. If r is simplification (l = 1) or simpagation (l > 1) rule

p :: r @ H1, . . . , Hl−1\Hl, . . . , Hm ⇐⇒ g | B1, . . . , Bo

then θ(Hi)#idi ∈ S for 1 ≤ i ≤ m with idi 6= idj if i 6= j, and D |= ∃̄∅θ(g).

Furthermore, T (P) contains a rule

r′ @ p : H id
1 , . . . , H id

m ,Alldiff, g, next id(Idnext) ⇒

del(H id
l), . . . , del(H id

m), del(next id(Idnext)),

Bid
1 , . . . , Bid

o , next id(Idnext + o)

Now let θ′ be a ground matching substitution such that θ′|vars(θ) = θ where θ′vars(θ)
is the projection of θ′ on the variables in θ, and such that both θ′(Idi) = idi

for 1 ≤ i ≤ m and θ′(Idnext) = n. Since for 1 ≤ i ≤ m, H id
i = c(X̄, Id i) if

Hi = c(X̄), it holds that θ′(H id
i) ∈ σ′

i and del(θ′(H id
i)) /∈ σ′

i. Also, D |= ∃̄∅θ(g)

implies D |= θ(gi) for each comparison gi ∈ g. Note that because θ(g) is ground,

there is no existential quantification. The Alldiff conditions hold because θ′(Id i) =

θ′(Id j) implies that i = j. Finally, because of the reachability of state σ′
i, there is

exactly one strictly positive next_id/1 assertion in σ′
i whose argument equals n.

Finally, the rule conclusion cannot be already included in the state σ′
i because it

includes amongst others the deletion of at least one of the antecedents. Therefore,

all conditions are satisfied such that rule instance θ′(r′) can fire in state σ′
i, resulting

in a state σ′
j = la to chr(σj).

Now assume that in the CHRrp state σi, a rule instance θ(r) fires where r is a

propagation rule:

p :: r @ H1, . . . , Hm =⇒ g | B1, . . . , Bo

In this case the Logical Algorithms translation T (P) contains the following rules:

r′1 @ p : H id
1 , . . . , H id

n ,Alldiff, g ⇒ token(r, [Id1, . . . , Idn])

r′2 @ p : H id
1 , . . . , H id

n ,Alldiff, g, token(r, [Id1, . . . , Idn]), next id(Idnext) ⇒

del(token(r, [Id1, . . . , Idn])), del(next id(Idnext)),

Bid
1 , . . . , Bid

l , next id(Idnext + l)

A similar analysis as above shows that there exists a matching substitution θ′ with

θ′|vars(θ) = θ and both θ′(Idi) = idi for 1 ≤ i ≤ m and θ′(Idnext) = n, such that rule

instance θ′(r′1) can fire (ignoring priorities) if token(r, [id1, . . . , idn]) /∈ σ′
i and θ′(r′2)

otherwise. If θ′(r′1) fires then the resulting state σ′
i∗ = σ′

i∪{token(r, [id1, . . . , idn])}

and clearly la to chr(σ′
i∗) = la to chr(σ′

i). Moreover, in state σ′
i∗ , rule instance θ

′(r′2)

can fire and for the resulting state σ′
j it holds that la to chr(σ′

j) = σj . If already

token(r, [id1, . . . , idn]) ∈ σ′
i then the same reasoning holds with σ′

i = σ′
i∗ .

Finally, assume that CHRrp state σi is a final state. If σ′
i is not a final Logical

Algorithms state, then because of Lemma 4, the only applicable rules are those

that do not change the result of the la to chr function. Only the token generation

rules satisfy this property. Since they only generate tokens and these tokens do not

24 Leslie De Koninck

appear in their antecedents, these rules can fire only finitely many times before a

final Logical Algorithms state σi∗ is reached.

Finally, we state two theorems that essentially are the same as the lemmas above,

except that they do take into account rule priorities.

Theorem 4

For every reachable Logical Algorithms state σi it holds that if σi
LA
T (P) σj , then

either it holds that la to chr(σi) = la to chr(σj) or there exists a finite CHR deriva-

tion la to chr(σi) = 〈∅, S, true, T 〉n
ωp

P 〈C, S′, true, T ′〉n
ωp

∗
P 〈∅, S′′, true, T ′〉n′ =

la to chr(σj) consisting of anApply transition, followed by zero or more Introduce

transitions.

Theorem 5

For every reachable CHRrp state σi and reachable Logical Algorithms state σ′
i with

la to chr(σ′
i) = σi, there exists a finite Logical Algorithms derivation σ′

i

LA

∗
T (P) σ

′
i∗

with la to chr(σ′
i∗) = σi such that if σi = 〈∅, S, true, T 〉n

ωp

P 〈C, S′, true, T ′〉n
ωp

∗
P

〈∅, S′′, true, T ′〉n′ = σj where the derivation consists of a single Apply transi-

tion, followed by zero or more Introduce transitions, then σ′
i∗

LA
T (P) σ′

j with

la to chr(σ′
j) = σj and if σi is a final state then σ′

i∗ is also a final state.

Proof

Both theorems are implied by Lemmas 4 and 5, combined with the fact that in

corresponding states, corresponding rules can fire which have the same priority.

Therefore, the highest priority applicable rule instances are also equal in corre-

sponding states.

5 Implementing CHRrp, the Logical Algorithms way

This section presents a new implementation for CHRrp, based on the implementa-

tion proposal for Logical Algorithms presented in (Ganzinger and McAllester 2002),

as well as on the scheduling algorithm presented in (De Koninck 2007). The purpose

of this implementation is not to replace our existing CHRrp implementation as pre-

sented in (De Koninck et al. 2008), but to support a new meta-complexity theorem

for CHRrp, based on the result for Logical Algorithms, and extended towards the

full CHRrp language. This includes in particular support for non-ground constraints

and a built-in constraint theory. We note that a better worst case complexity for

certain operations is not always worthwhile in practice due to larger constant factors

in the average case. Also, the proposed implementation may not always achieve a

better complexity than the existing implementation. The main purpose remains to

have a relatively straightforward way to derive for a given CHRrp program, a bound

that is guaranteed to be an upper bound for at least the implementation proposed.

Since the meta-complexity result is insensitive to constant factors, we can present

the new implementation as a source-to-source transformation to regular CHR.

The proposed implementation consists of the compilation of the CHRrp rules

Logical Algorithms meets Constraint Handling Rules 25

of the input program into regular CHR rules in which matching is made explicit,

combined with a scheduler module that is responsible for the execution control.

The implementation is correct if it is executed according to the refined opera-

tional semantics of CHR (Duck et al. 2004), which describes the execution strat-

egy followed by most current CHR implementations. We have based our imple-

mentation on the high-level implementation proposal for Logical Algorithm of

(Ganzinger and McAllester 2002), extended where necessary to support general

built-in constraints. By using a CHR implementation with advanced indexing sup-

port, like for example the K.U.Leuven CHR system (Schrijvers and Demoen 2004),

our implementation also offers strong complexity guarantees that facilitate a new

meta-complexity theorem for CHRrp, similar to the one for Logical Algorithms (see

Section 6). In the following, we make use of Prolog as CHR’s host language, but

the implementation can easily be adapted to work with a different host language.

5.1 Overview

The implementation is based on a form of lazy (on-demand) matching with retain-

ment of previously computed partial matches. It combines the concept of alpha

and beta memories from the RETE algorithm (Forgy 1982), with lazy matching

as for example implemented by the LEAPS algorithm (Miranker et al. 1990).4 The

basic idea is as follows. A new constraint can function both as a single headed

partial or full match, and as an extension of an existing partial match into either a

new (larger) partial match or a full match. In order to extend partial matches, all

previously computed matches are stored. A scheduler decides which partial match

is extended with which constraint, or which full match has its corresponding rule

instance fired. More details on the scheduler are given in Section 5.3.

First, to simplify the presentation, we propose an alternative syntax for CHRrp

rules. An intermediate form CHRrp rule looks as follows:

p :: r @ s1A1, . . . , snAn ⇐⇒ B

where si ∈ {+,−, ?} and Ai is an atom for 1 ≤ i ≤ n. If si = + or si = − then

Ai must be a CHR constraint and if si =? then Ai must be a built-in constraint.

An intermediate form CHRrp rule corresponds to a regular CHRrp rule as follows:

a term +A corresponds to a kept head A, a term −A corresponds to a removed

head A, and a term ?A corresponds to a conjunct of the rule guard. The main

advantage of the intermediate form is that it supports specifying a join order for

the heads, as well as an evaluation order for the guards. In particular it supports

specifying the evaluation of part of the guard after having computed only a partial

rule match. The intermediate form gives us the same syntactical flexibility as exists

in the Logical Algorithms language where comparisons are interleaved with the

(kept and removed) user-defined antecedents.

4 Most current CHR systems, including the K.U.Leuven CHR system and the CHRrp system of
(De Koninck et al. 2008), use a variant of the LEAPS algorithm for rule matching.

26 Leslie De Koninck

Consider, in general, a simpagation rule of the form

p :: r @ H1, . . . , Hi\Hi+1, . . . , Hn ⇐⇒ g | B

where the guard g is a conjunction of atomic guards g1, . . . , gm. We can rewrite this

rule in intermediate form syntax (amongst others) as follows:

p :: r @ +H1, . . . ,+Hi,−Hi+1, . . . ,−Hn, ?g1, . . . , ?gm ⇐⇒ B

In the following, we assume that all rules have the following form

p :: r @ ±H1, ?g1,±H2, ?g2, . . . ,±Hn, ?gn ⇐⇒ B

where ± means + or −. Each gi (1 ≤ i ≤ n) can be a conjunction of primitive

built-in constraints, and can in particular also be equal to true. The transformation

from regular CHRrp syntax to intermediate form syntax can be done automatically

using the above transformation schema, or by hand.

Using terminology similar to that of (Ganzinger and McAllester 2002), we refer

to a partial match, matching the heads H1, . . . , Hi and satisfying the partial guard

g1 ∧ . . . ∧ gi−1, as a suspended strong prefix firing. If also the partial guard gi is

satisfied, we speak of a regular (or non-suspended) strong prefix firing. A constraint

matching the next head Hi+1 is called a prefix extension of such a (regular) strong

prefix firing. A prefix firing that consists of all heads is (also) called a (suspended

or regular) rule firing. Here, a rule firing actually means a rule instance that is

fireable. To avoid confusion, we refer to the actual firing of such a rule firing as

firing a rule instance. Every prefix firing contains the left-most head and hence

determines the rule priority. In our implementation, we assume that all guards

are monotone, i.e., once they are entailed by the built-in constraint store, they

remain entailed in any later state. This is in fact required by the CHR operational

(and declarative) semantics, although most current CHR systems also support non-

monotone (impure) guards like for example var/1 in CHR on top of Prolog.

5.2 Program-Dependent Part

The program-dependent part of our implementation (i.e., the part that depends on

the actual program to be implemented) consists of rules for

• generating a representation for CHR constraint occurrences and deleting them

when the represented constraint is removed;
• generating and scheduling constraints representing prefix firings, prefix ex-

tensions and rule firings and deleting them when a constituent constraint is

removed;
• matching prefix firings with prefix extensions, firing rule instances, and man-

aging suspended prefix and rule firings.

The different types of rules of the program-dependent part are illustrated by using

a running example program, namely Dijkstra’s shortest path algorithm, already

given in the Logical Algorithms language in Example 2 and given here in CHRrp

intermediate form syntax. To illustrate non-trivial head matching, we have added

a rule d1 that removes simple loops from the input graph.

Logical Algorithms meets Constraint Handling Rules 27

1 :: d1 @ -e(V,_,V), ?true <=> true.

1 :: d2 @ +source(V), ?true <=> dist(V,0).

1 :: d3 @ -dist(V,D1), ?true, +dist(V,D2), ?(D2 < D1) <=> true.

D + 2 :: d4 @ +dist(V,D), ?true, +e(V,C,U), ?true <=> dist(U,D+C).

5.2.1 Constraint Occurrence Representation

Although CHRrp constraints and CHR constraints obviously have the same syntax

and semantics (i.e., multi-set semantics with non-monotone deletion), we introduce

a new representation for them to allow unambiguous reference, reduce work in

case of constraint reactivation, and support the efficient deletion of those prefix

firings, prefix extensions, and rule firings in which they participate (see further).

For each CHRrp constraint of predicate c/n, we create a set of unique occurrence

representations c_occ_i/(n+ 1), one for each occurrence of the predicate in a rule

head. The arguments of a c_occ_i/(n+1) constraint consist of the arguments of the

original c/n constraint, together with a unique constraint identifier that is shared by

all occurrence representations. This identifier is an uninstantiated variable as long

as the constraint is in the store and is instantiated the moment that the constraint

is to be deleted. For each user-defined constraint predicate c/n with m occurrences,

the occurrence representations are generated using rules of the following form.

c(X1,...,Xn) <=> c_occ_1(X1,...,Xn,Id), ..., c_occ_m(X1,...,Xn,Id).

For the example program, these rules look as follows.

source(V) <=> source_occ_1(V,Id).

dist(V,D) <=> dist_occ_1(V,D,Id), dist_occ_2(V,D,Id), dist_occ_3(V,D,Id).

e(V,C,U) <=> e_occ_1(V,C,U,Id), e_occ_2(V,C,U,Id).

5.2.2 RETE Memory Constraints

Regular and suspended prefix firings as well as prefix extensions are represented as

CHR constraints. We call them RETE memory constraints because they coincide

with the alpha and beta memories of the RETE algorithm. The RETE memory

constraints contain all arguments of their constituent CHR constraints, as well

as their identifiers. Each RETE memory constraint moreover has its own unique

identifier. We use the following functors for RETE memory constraints:

• r_pf_i for a regular (non-suspended) prefix firing of rule r, consisting of i

heads, and r_pf_i_suspended for its suspended version
• r_pe_i for a prefix extension, consisting of the i+ 1th head of rule r
• r_rf for a (regular) rule firing of rule r and r_rf_suspended for its suspended

version.

If in a rule r, the partial guard after the ith head equals true, then there is no

suspended version of the i-headed prefix firings of r, or of its rule firings if r is an

i-headed rule. In the example program, the following prefix firings, prefix extensions

and rule firings are defined:

28 Leslie De Koninck

• d1_rf/4

• d2_rf/3

• d3_pf_1/4, d3_pe_1/3, d3_rf/6 and d3_rf_suspended/6

• d4_pf_1/4, d4_pe_1/4 and d4_rf/7

5.2.3 Suspended Prefix and Rule Firings

Suspended prefix and rule firings are converted into regular prefix and rule firings

as soon as the relevant part of the guard is entailed. If on the other hand this partial

guard is disentailed, the suspended prefix or rule firing is removed. Given a rule in

intermediate form syntax

p :: r @ ±H1, ?g1,±H2, ?g2, . . . ,±Hn, ?gn ⇐⇒ B

we generate the following rules:

• For each i-headed suspended prefix firing:

r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=>

gi | r_pf_i(X1,...,Xm,Id1,...,Idi,SId),

schedule_pf(r_i(Y1,...,Yl),p,SId).
r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=> \+ gi | true.

where Y1, . . . ,Yl are those variables in X1, . . . ,Xm that also appear in Hi+1

• For each rule firing:

r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> gn |

r_rf(X1,...,Xm,Id1,...,Idn,SId), schedule_rf(p,SId).
r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> \+ gn | true.

Note that if gi or gn equals true, then we can apply unfolding to replace occurrences

of respectively r_pf_i_suspended/(m+ i+1) and r_rf_suspended/(m+n+1) by

the bodies of the corresponding rules above (see (Tacchella et al. 2007)). After this

unfolding step, some of the above rules may be removed. In the example program,

only a rule firing of rule d3 can be suspended. The code below is generated for such

a rule firing.

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=>

D2 < D1 | d3_rf(V,D1,D2,Id1,Id2,SId), schedule_rf(1,SId).

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=> \+ (D2 < D1) | true.

In the second rule above, \+ (C) is a safe approximation of the negation of con-

straint C, i.e., it is only entailed if constraint C cannot possibly hold. In the Prolog

context, the built-in negation as failure can be used.

Suspended constraints are attached to all guarded variables so that they are

reactivated whenever one of these variables is affected by a built-in constraint. We

assume that both attaching and detaching can be done in constant time, although

certain current CHR implementations like the K.U.Leuven CHR system do not

support detaching in constant time.

Logical Algorithms meets Constraint Handling Rules 29

5.2.4 Scheduling

Each constraint occurrence corresponds to a (potentially suspended) rule firing if

it is the only head of a single headed rule, a (potentially suspended) prefix firing if

it is the first head of a multi-headed rule, and a prefix extension in all other cases.

A conversion between constraint occurrence and rule firing, prefix firing or prefix

extension is made as soon as the constraint in question matches with the head. If

such a match is shown to be impossible, the constraint occurrence is discarded. Let

there be given a head constraint c(X1, . . . , Xn). The following function is used to

construct a head match.

head match([X |X̄]) =

{

〈[X |Ȳ], g〉 if X is a variable and X /∈ vars(X̄)

〈[Y |Ȳ], (Y = X) ∧ g〉 otherwise

where 〈Ȳ , g〉 = head match(X̄)

head match([]) =〈[], true〉

Now, for each rule in intermediate form syntax

p :: r @ ±H1, ?g1,±H2, ?g2, . . . ,±Hn, ?gn ⇐⇒ B

and for 1 ≤ i ≤ n we generate the rules below where Hi = c(X ′
1, . . . , X

′
n) is

the jth occurrence of the user-defined constraint predicate c/n, 〈[X1, . . . ,Xn], g〉 =

head match([X ′
1, . . . , X

′
n]), and {Y1, . . . ,Ym} = vars(Hi) \ vars({H1, . . . , Hi−1}).

• If i = n = 1:

c_occ_j(X1,...,Xn,Id) <=> g | r_rf_suspended(Y1,...,Ym,Id,SId).

c_occ_j(X1,...,Xn,Id) <=> \+ g | true.

• If i = 1 and n > 1:

c_occ_j(X1,...,Xn,Id) <=> g | r_pf_1_suspended(Y1,...,Ym,Id,SId).

c_occ_j(X1,...,Xn,Id) <=> \+ g | true.

• Otherwise, if i > 1:

c_occ_j(X1,...,Xn,Id) <=> g |

r_pe_i− 1(Y1,...,Ym,Id,SId), schedule_pe(r_i − 1(Z1,...,Zl),SId).
c_occ_j(X1,...,Xn,Id) <=> \+ g | true.

where {Z1, . . . ,Zl} = vars(Hi) ∩ vars({H1, . . . , Hi−1}).

In the above, if g = true then the second rule of each pair of rules can be discarded.

The suspended prefix and rule firings can sometimes be replaced by regular prefix

and rule firings by unfolding (see Section 5.2.3).

In the example program, only the first occurrence of the e/3 constraint has a

non-trivial head match (the first and last argument must be the same). All prefix

and rule firings are followed by the trivial guard true and so we only generate

regular prefix and rule firings. They are scheduled using the schedule_pf/3 and

schedule_rf/2 predicates.

source_occ_1(V,Id) <=> d2_rf(V,Id,SId), schedule_rf(1,SId).

30 Leslie De Koninck

dist_occ_1(V,D,Id) <=> d3_pf_1(V,D,Id,SId), schedule_pf(d3_1(V),1,SId).

dist_occ_2(V,D,Id) <=> d3_pe_1(D,Id,SId), schedule_pe(d3_1(V),SId).

dist_occ_3(V,D,Id) <=> d4_pf_1(V,D,Id,SId), schedule_pf(d4_1(V),D+2,SId).

e_occ_1(V,C,U,Id) <=> V = U | d1_rf(V,C,Id,SId), schedule_rf(1,SId).

e_occ_1(V,C,U,Id) <=> \+ (V = U) | true.

e_occ_2(V,C,U,Id) <=> d4_pe_1(C,U,Id,SId), schedule_pe(d3_1(V),SId).

Prefix firings and extensions are scheduled using a key containing their shared

variables. For example for the prefix firings consisting of the first head of rule d3

and the corresponding prefix extensions consisting of the second head of the same

rule, the key equals d3_1(V).

Similar to the suspended prefix and rule firings, the constraint occurrences are at-

tached to all guarded variables. We again assume that both attaching and detaching

can be done in constant time.

5.2.5 Matching and Firing

The scheduler initiates the firing of a rule instance by asserting a fire/1 constraint,

and the matching of a prefix firing with a prefix extension by asserting a match/2

constraint. These constraints have as arguments the identifiers of the corresponding

RETE memory constraints. After matching a prefix firing with a prefix extension,

a new suspended prefix or rule firing is generated. For a given n-headed rule r with

n > 1 and for 1 ≤ i ≤ n− 2, we generate the following rule

r_pf_i(X1,...,Xm,Id1,...,Idi,SId1), r_pe_i(Xm+1,...,Xl,Idi+1,SId2) \

match(SId1,SId2) <=> Idi+1 \== Id1, ..., Idi+1 \== Idi |

r_pf_i+ 1_suspended(X1,...,Xl,Id1,...,Idi+1).

and similarly for i = n− 1:

r_pf_n− 1(X1,...,Xm,Id1,...,Idn−1,SId1), r_pe_n − 1(Xm+1,...,Xl,Idn,SId2) \

match(SId1,SId2) <=> Idn \== Id1, ..., Idn \== Idn−1 |

r_rf_suspended(X1,...,Xl,Id1,...,Idn).

A rule firing of an n-headed rule r with body B is fired as follows:

r_rf_i(X1,...,Xm,Id1,...,Idn,SId), fire(SId) <=>

Idr(1) = dead, ..., Idr(l) = dead, B.

where r(1), . . . , r(l) are the indices of the removed heads of the rule (if any). We

furthermore add the following rules at the end of the code, to make sure the CHR

compiler detects that the match/2 and fire/1 constraints are never to be stored.

match(_,_) <=> true.

fire(_) <=> true.

For the example program, the generated code is as follows:

d1_rf(V,C,Id,SId), fire(SId) <=> Id = dead.

d2_rf(V,Id,SId), fire(SId) <=> dist(V,0).

d3_pf_1(V,D1,Id1,SId1), d3_pe_1(D2,Id2,SId2) \ match(SId1,SId2) <=>

Logical Algorithms meets Constraint Handling Rules 31

Id2 \== Id1 | d3_rf_suspended(V,D1,D2,Id1,Id2,SId).

d3_rf(V,D1,D2,Id1,Id2,SId), fire(SId) <=> Id1 = dead.

d4_pf_1(V,D,Id1,SId1), d4_pe_1(C,U,Id2,SId2) \ match(SId1,SId2) <=>

Id2 \== Id1 | d4_pf(V,D,C,U,Id1,Id2,SId), schedule_rf(D+2,SId).

d4_rf(V,D,C,U,Id1,Id2,SId), fire(SId) <=> dist(U,D+C).

match(_,_) <=> true.

fire(_) <=> true.

5.2.6 Clean-up

Whenever a constraint’s identifier variable is instantiated, its occurrence represen-

tations, as well as those RETE memory constraints in which it participates, are

removed. The rules look as follows.

• For the ith occurrence representation for constraint predicate c/n:

c_occ_i(X1,...,Xn,Id) <=> nonvar(Id) | true.

• For an i-headed suspended prefix firing of rule r:

r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Id1) | true.

...

r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Idi) | true.

• For an i-headed regular prefix firing of rule r:

r_pf_i(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Id1) | remove_pf(SId).

...

r_pf_i(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Idi) | remove_pf(SId).

• For a prefix extension of an i-headed prefix firing of rule r:

r_pe_i(X1,...,Xm,Id,SId) <=> nonvar(Id) | remove_pe(SId).

• For a suspended rule firing of an n-headed rule r:

r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Id1) | true.

...

r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Idn) | true.

• For a regular rule firing of an n-headed rule r:

r_rf(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Id1) | remove_rf(SId).

...

r_rf(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Idn) | remove_rf(SId).

The predicates remove_pf/1, remove_pe/1 and remove_rf/1 remove respectively

a prefix firing, prefix extension and rule firing from the schedule. The following

clean-up rules are generated for the example program.

source_occ_1(V,Id) <=> nonvar(Id) | true.

dist_occ_1(V,D,Id) <=> nonvar(Id) | true.

dist_occ_2(V,D,Id) <=> nonvar(Id) | true.

dist_occ_3(V,D,Id) <=> nonvar(Id) | true.

32 Leslie De Koninck

e_occ_1(V,C,U,Id) <=> nonvar(Id) | true.

e_occ_2(V,C,U,Id) <=> nonvar(Id) | true.

d1_rf(V,C,Id,SId) <=> nonvar(Id) | remove_rf(SId).

d2_rf(V,Id,SId) <=> nonvar(Id) | remove_rf(SId).

d3_pf_1(V,D1,Id1,SId) <=> nonvar(Id1) | remove_pf(SId).

d3_pe_1(D2,Id2,SId) <=> nonvar(Id2) | remove_pe(SId).

d3_rf(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id1) | remove_rf(SId).

d3_rf(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id2) | remove_rf(SId).

d4_pf_1(V,D,Id1,SId) <=> nonvar(Id1) | remove_pf(SId).

d4_pe_1(C,U,Id2,SId) <=> nonvar(Id2) | remove_pe(SId).

d4_rf(V,D,C,U,Id1,Id2,SId) <=> nonvar(Id1) | remove_rf(SId).

d4_rf(V,D,C,U,Id1,Id2,SId) <=> nonvar(Id2) | remove_rf(SId).

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id1) | true.

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id2) | true.

5.3 Program-Independent Part: the Scheduler

The scheduler implements the schedule_rf/2, remove_rf/1, schedule_pf/3,

remove_pf/1, schedule_pe/2 and remove_pe/1 predicates. It furthermore imple-

ments the execute/0 predicate which retrieves and executes the highest priority

scheduled task. This task either is the firing of a rule instance by asserting a fire/1

constraint, or the matching of a prefix firing with a prefix extension by asserting a

match/2 constraint. The execute/0 predicate recursively calls itself until no more

tasks are scheduled. It is first called after processing the initial goal.

For the implementation of the scheduler, we use a variant of the scheduling al-

gorithm presented in (De Koninck 2007). This algorithm can be used to maintain

which prefix firings are still to match with which prefix extensions. It is roughly

based on theW(r, t) data structures used in (Ganzinger and McAllester 2002). Such

a data structure consists of a series (implemented as a linear linked list) of prefix

blocks, which are sets of prefix firings and (apart from the last one) are associated

with a prefix extension.

The semantics of the W(r, t) data structure is that the prefix firings of a given

prefix block are still to match with the prefix extension associated to it, as well

as with all prefix extensions associated to subsequent prefix blocks. The last prefix

block has no associated prefix extension, and represents those prefix firings that have

been matched with all prefix extensions and hence are passive (or completed using

the terminology of (Ganzinger and McAllester 2002)). Whenever a prefix extension

is deleted, its prefix block is merged with the next prefix block.

There is one W(r, t) data structure for each prefix length of each rule and for

each combination of arguments shared between a prefix firing and prefix extension.

Each prefix block is represented as a (local) priority queue whose items are the

block’s prefix firing. The highest priority item of each prefix block, together with

its associated prefix extension, is also represented in a global priority queue. This

prefix block representative is updated whenever the highest priority prefix firing

of the prefix block is removed, a new prefix firing has the highest priority, or the

Logical Algorithms meets Constraint Handling Rules 33

associated prefix extension is removed. The global priority queue furthermore con-

tains a representative for each rule firing. The reason for using two layers of priority

queues is to reduce the amount of work needed when the prefix firings of a prefix

block all become passive due to a prefix extension removal. It is the global priority

queue that determines the next task to perform, i.e., matching a prefix firing with

a prefix extension, or firing a rule instance.

In the context of CHRrp, built-in constraint (in particular equality constraints) on

the arguments shared between a prefix firing and extension, may require merging of

W(r, t) data structures. The data structure of (De Koninck 2007) supports sched-

ule merges in quasi constant time. The most notable difference with the W(r, t)

data structure of (Ganzinger and McAllester 2002) is that the prefix blocks form a

circular linked list. Using this representation, merging schedules consists of cross-

linking the circular lists and reactivating the prefix firings that were passive before

the merge. Special care is taken to prevent both that a prefix firing is being matched

with the same prefix extension more than once, and that a prefix firing ‘misses’ a

prefix extension.

One consequence of using a circular linked list instead of a linear one to represent

the prefix blocks, is that it is unclear (or more precisely, too expensive to decide)

which prefix firings become passive whenever a prefix extension is deleted. There-

fore, this decision is postponed until the scheduler tries to match the prefix firing

with the next prefix extension in line. For complexity reasons, it is important that all

prefix firings that have simultaneously been reactivated, and have not been matched

with a prefix extension since this reactivation, are simultaneously made passive in

time independent of the number of prefix firings affected. In (De Koninck 2007),

a so-called element schedule based on a stack is proposed to supports this. In our

context, we need an element schedule that is based on priority queues. It works as

follows.

We use three types of priority queues. The first one is a single global priority

queue which contains an item for each rule firing, for each active prefix firings that

either has not been passive before or has been matched with at least one prefix

extension since its last activation, and finally, for each set of prefix firings that have

been simultaneously activated and have not been matches with a prefix extension

since. A second type of priority queues is called a local queue and represents the

above mentioned sets of prefix firings. Finally, the third type of queues is the passive

queue which contains an item for each passive (completed) prefix firing. There is

one passive queue for each schedule. Essentially, we again use two layers of priority

queues. Whenever a set of previously passive prefix firings, represented as a passive

priority queue, is reactivated because of a new prefix extension or because of a

schedule merge, this passive priority queue becomes a local priority queue and has

a representative inserted into the global priority queue. If such a representative

is the highest priority item in the global priority queue, and an execute/0 call

is made, then the highest priority prefix firing of the represented local priority is

removed and dealt with as an ordinary prefix firing. The representatives of local

priority queues are updated (and potentially removed) similarly to how this is done

in the W(r, t) data structure of (Ganzinger and McAllester 2002).

34 Leslie De Koninck

{ , , }

{ , }

global queue

passive queuelocal queue

rule firing

prefix block

RF1

LQ1

PF4

PF8

PF5

RF2

PF1 PF1 PF2 PF3

PF4 PF5

PE1

PE2

PF6

PF7

PF2

PF3

Figure 1. Example schedule with global, local and passive priority queues

Example 8

Figure 1 illustrates the prefix blocks, the different types of priority queues, and their

contents. The global queue, which is shared by all schedules, contains the rule firings

RF1 and RF2, the prefix firings PF 1, PF 4, PF 5 and PF 8 (the last of which belongs

to another schedule), and the local queue representative LQ1. The represented local

queue contains the prefix firings PF 2 and PF 3 which are by definition also in the

same prefix block. The schedule’s passive queue contains the prefix firings PF 6 and

PF 7. The schedule has two prefix blocks, which are associated with respectively

the prefix extensions PE1 and PE2.

Using our approach, the cost of deleting items from the global priority queue can

be amortized to one of the following events: a new rule firing, a new prefix firing, a

new prefix extension (for each representative of a local priority queue), or a match

between a prefix firing and a prefix extension (which corresponds to either a new

larger prefix firing, or a rule firing).

In (Ganzinger and McAllester 2002), retrieving the schedule for a given prefix

firing or prefix extension is done by hashing. In our approach, we use a variant

of hashing, which we call non-ground hashing and which consists of first replacing

all variables by a unique identifier, and then using the resulting (ground) term for

hashing. Unifications may require rehashing the affected keys and potentially also

the merging of schedules.

5.4 Priority Queues

A priority queue or heap is a data structure that contains a set of prioritized items

and supports the following operations: inserting and removing an item, finding a

highest priority item and merging with another queue. The implementation proposal

in (Ganzinger and McAllester 2002) suggests the use of two types of priority queues,

one for the fixed priorities, where each of the supported operations takes constant

time, and Fibonacci heaps for the dynamic priorities.

Fibonacci heaps (Fredman and Tarjan 1987) are a type of priority queue that of-

Logical Algorithms meets Constraint Handling Rules 35

fer O(1) amortized time insertion, heap merging and finding a highest priority item,

and O(log n) amortized time item removal with n the number of items in the queue.

It is suggested in (Ganzinger and McAllester 2002) that by using only one node per

priority, using linked lists to represent the items that share this priority, the item

removal cost can be reduced to O(logN) with N the number of distinct priorities.

However, this increases the cost of heap merging from O(1) for a single merge oper-

ation to a total cost of O(n logN) for merging heaps when there are n items in total

andN distinct priorities (as is shown in an Appendix of (De Koninck et al. 2007a)).

A CHR implementation of Fibonacci heaps is described in (Sneyers et al. 2006a).

It can easily be extended to support multiple heaps that can be merged and to use

only one node for each distinct priority per heap.

6 A New Meta-Complexity Result for CHRrp

In this section, we give a new meta-complexity result for CHRrp. It extends the

result via translation to Logical Algorithms, by also supporting built-in constraints

and non-ground CHR constraints. We make the following assumptions:

• Hash tables support O(1) insertion, removal, and retrieval of all elements that

match a given (ground) key.

• The inverse of the Ackermann function (α(n)) is a constant.

The first assumption is also made in (Ganzinger and McAllester 2002) and holds

on average as long as the hash function is good enough. The second assumption is

needed for our scheduling data structure (De Koninck 2007) which internally makes

use of the union-find algorithm. The inverse of the Ackermann function is positive

and less than 5 for all practical purposes.

We start by looking at the complexity of the different operations supported by

our scheduler.

Lemma 6 (Scheduler Costs)

Let N be the number of distinct priorities, and assume that a priority queue merge

takes some abstract time T , then the schedule operations have the following amor-

tized cost:

• O(1) and O(logN) for each schedule_pf/3, remove_pf/1, remove_pe/1,

remove_rf/1 and execute/0 operation involving respectively a static and

dynamic priority rule

• O(T + 1) and O(T + logN) for each schedule_pe/2 operation involving

respectively a static and dynamic priority rule

• O(1) for each schedule merge and schedule_rf/2 operation

Proof

We only consider the costs related to the priority queue operations. The other costs

are shown to be (quasi) constant in (De Koninck 2007). We now look at the different

operations in detail:

36 Leslie De Koninck

• A schedule_pf/3 call consists of inserting the new prefix firing into the global

priority queue. We also account to this event, the cost of making the new prefix

instance passive the first time. That operation consists of a removal from the global

priority queue and an insertion into the schedule’s passive queue. The total cost is

O(1) if the element has a static priority, and O(logN) if it has a dynamic priority.

• A schedule_pe/2 call requires the insertion of a new representative for the local

priority queue of reactivated prefix firings, into the global priority queue. We also

take into account here, the cost of making all the reactivated prefix firings passive

that have not been matched with a prefix extension since the reactivation. That

operation consists of removing the representative and merging the local priority

queue with the schedule’s passive queue. The cost is O(T + 1) for a static priority

rule and O(T + logN) time for a dynamic priority one.

• A schedule_rf/2 call requires an insertion into the global priority queue which

takes O(1) time.

• A remove_pf/1 call consists of deleting the prefix firing from the global priority

queue, from a local priority queue or from a passive queue. A deletion from a local

queue may moreover require an update of the global queue (removal and insertion).

In total, this takes O(1) time for a static priority rule and O(logN) time for a

dynamic priority rule.

• A remove_pe/1 call does not require any priority queue operations, and so the cost

is O(1).

• A remove_rf/1 call requires a removal from the global priority queue which takes

O(1) time if it involves a static priority rule and O(logN) time if it involves a

dynamic priority rule.

• An execute/0 call requires retrieval and potential removal (if the retrieved item

corresponds to a rule firing, or to a prefix firing that becomes passive) of the highest

priority item in the global priority queue. If the retrieved item represents a prefix

firing or set of prefix firings that need to be made passive, the cost of this operation

is already accounted for by a previous schedule_pf/3 or schedule_pe/2 operation.

In such case, we call the execute/0 call unsuccessful. An unsuccessful execute/0

call is followed by another execute/0 call until either such a call is successful, or

the global priority queue is empty and thus a final state is reached. The cost of

all unsuccessful execute/0 calls can be amortized to previous events. If in case

of a successful execute/0 call, the item retrieved from the global priority queue

corresponds to the representative of a local priority queue, the operation requires a

removal of the highest priority item (prefix firing) from this local queue, an insertion

of the prefix firing into the global priority queue, and potentially the insertion of a

new representative for the local queue into the global queue. The cost of a successful

execute/0 call therefore equalsO(1) if it involves a static priority rule and O(logN)

otherwise.

• A schedule merge requires the reactivation of the passive prefix firings of the merged

schedules. The cost analysis is similar to that of a schedule_pe/2 call. Moreover,

each schedule merge can be accounted for by at least one schedule_pe/2 call as

the resulting schedule contains at least one prefix extension more than each of the

original schedules, and so the number of schedule merges is bounded by the number

Logical Algorithms meets Constraint Handling Rules 37

of prefix extensions. Therefore, the cost of a single schedule merge can be considered

constant.

In the above lemma, we have made abstraction of the cost of priority queue merge

operations. Such merges take place when the prefix firings in a local priority queue

all become passive. In such an event, the local priority queue is merged with the

schedule’s passive queue. It is easy to see that the cost of merging priority queues

for static priorities takes constant time per merge operation. In Section 5.4 a bound

is given on the total cost of merging Fibonacci heaps with one node per distinct

priority, given the number of items ever inserted into the heaps. The following

lemma makes use of this result.

Lemma 7 (Fibonacci Heap Merging Cost)

The total cost of Fibonacci heap merges is O((Pd + Ad) · logN) where Pd is the

number of strong prefix firings of dynamic priority rules, Ad is the number of

constraints that may participate in a dynamic priority rule instance, and N is the

number of distinct rule priorities.

Proof

We count the number of items ever inserted into the local and passive Fibonacci

heaps, and then apply the result of Section 5.4. A local priority queue basically is the

same as a passive priority queue in which items are no longer inserted. Therefore,

a merge between a local queue and a passive queue can be seen as a special case of

a merge between two passive queues and so we only need to consider these passive

priority queues. Each item inserted in such a queue is either a prefix firing that has

never been passive before, or a prefix firing that has been matched with a prefix

extension at least once since its last activation. The total number of these items is

O(Pd+Ad) because each prefix firing that has been matched with a prefix extension

is by definition a strong prefix firing, and each new prefix firing either results from

matching a (smaller) strong prefix firing and extension and hence corresponds to

a (potentially suspended) strong prefix firing, or consists of a single head in which

case it corresponds to a constraint assertion. Now given the number of items ever

inserted into the passive priority queues, the total cost of merging Fibonacci heaps

hence is O((Pd +Ad) · logN)).

We are now ready to formulate the new meta-complexity theorem.

Theorem 6

Let As and Ad be the number of assertions of constraints with an occurrence in

respectively a static and dynamic priority rule. Let Ps and Pd be the number of

strong prefix firings of respectively static and dynamic priority rules. The time

complexity of a CHRrp program executed using our implementation is

O((1 + Cask
B) · (As + Ps + (Ad + Pd) · logN) +B · Ctell

B · (K + Cask
B · S))

where N is the number of distinct priorities, Cask
B is the cost of evaluating a built-

in ask constraint, Ctell
B is the cost of solving a built-in tell constraint, and B is

38 Leslie De Koninck

the number of built-in tell constraints asserted in rule bodies; K is the maximum

number of distinct combinations (keys) of arguments shared between prefix firings

and extensions in which any given variable occurs, and S is the maximum number of

suspended strong prefix firings (i.e., those that are followed by a non-trivial guard)

and suspended instances of constraint occurrences (i.e., whose arguments are not

mutually distinct variables) in which any given variable occurs.

Proof

Each new CHR constraint causes the creation of constraint occurrences which are

converted into RETE memory constraints as soon as the implicit guard on the

constraint arguments is entailed (i.e., the constraint matches the head in ques-

tion). These RETE memory constraints are scheduled using schedule_pf/3 for

the single-headed prefix firings, schedule_rf/2 for the single-headed rule firings,

and schedule_pe/2 for the prefix extensions. The total cost of these operations,

including the cost of priority queue merges (for the schedule_pe/2 calls), equals

O((1+Cask
b) · (As +(Ad+Pd) logN)). Each constraint deletion causes the deletion

of those RETE memory constraints in which the deleted constraint participated.

The total cost related to deletion therefore is O(As + Ps + (Ad + Pd) logN). Each

prefix firing is inserted into its schedule at most once and hence it can also be

removed from this schedule only once (when one of its constituent constraints is

removed). Those prefix firings that consist of at least two heads, correspond to a

strong prefix firing as they are generated at a priority higher or equal to that of the

highest priority rule firing. Thus, using Lemma 6 and including the cost of checking

the relevant parts of the guard, the cost for inserting (and deleting) these prefix

firings is O((1 + Cask
b) · (Ps + Pd logN)).

A built-in tell constraint is processed as follows. The keys used to identify the

schedules and that are affected by the built-in constraint, are rehashed. If the built-

in constraint causes two or more schedules to have the same key, these schedules are

merged. The cost of rehashing is proportional to the number of affected keys and the

cost of a schedule merge is constant by Lemma 6. A built-in constraint moreover

requires the reactivation of the suspended prefix firings and rule firings, as well

as those constraint occurrences for which it is not decided whether they match

with the corresponding head or not. The reactivated prefix and rule firings have

their guard checked and are potentially scheduled as regular (non-suspended) prefix

and rule firings. The reactivated constraint occurrences also have their (implicit)

guard checked, and are potentially scheduled as single-headed prefix firings, single-

headed rule firings, or prefix extensions. The cost of the scheduling operations was

already taken into account above. The remaining cost per built-in tell constraint is

O(Ctell
b · (K + Cask

b · S)).

The values of S and K might be difficult to determine in practice, but we can

use an upper bound of O(As +Ad + Ps + Pd) for both parameters. The reasoning

for S is that the number of suspended prefix firings is smaller than the number of

prefix firings and the number of suspended constraint occurrences is smaller than

the number of assertions times the number of rule heads in the program. For K,

Logical Algorithms meets Constraint Handling Rules 39

we have that the number of keys shared between prefix firings and extensions is

limited by the total number of prefix firings and extensions. We have used the cost

of solving a built-in tell constraint as an upper bound on the number of variables

that are affected.

The meta-complexity theorem also applies to (regular) CHR programs, which

can be seen as a special case of CHRrp programs in which all rules have the same

(static) priority; see Theorem 3 of (De Koninck et al. 2007b) for more details.

6.1 Examples

We illustrate the meta-complexity theorem on some examples, and compare with

the results obtained by using the approach of (Frühwirth 2002b).

Example 9 (Less-or-Equal)

The less-or-equal (leq) program is classic CHR example. It implements a less-

than-or-equal-to constraint by eventually translating it into equality constraints. A

CHRrp implementation of the program consists of the following rules.

1 :: idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

2 :: reflexivity @ leq(X,X) <=> true.

2 :: antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.

3 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Given an initial goal consisting of n leq/2 constraints where the arguments are

taken from a set of n distinct variables, we derive the following values for the

parameters:

• Ps: the number of strong prefix firings isO(n2) for the idempotence rule,O(n)

for the reflexivity rule, O(n2) for the antisymmetry rule, and O(n3) for

the transitivity rule. These numbers are found by looking at the degrees of

freedom for each constraint occurrence, based on the domain of the arguments,

and given those arguments that are already fixed by the left-most heads. For

example for the transitivity rule, we know that there are O(n2) constraints

matching the first head, and O(n) constraints matching the second head,

given the first. Our reasoning is based on the fact that at priority 2 and lower

(numerically larger), all leq/2 constraints have set semantics because of the

idempotence rule.

• As: the number of leq/2 constraints asserted is O(n3) (by the transitivity

rule).

• B: the number of built-in constraints is bounded by the number of rule firings

of the antisymmetry rule, and hence is O(n2).

• K: the schedule keys are the combination of X and Y in both the antisymmetry

rule and the idempotence rule, and Y in the transitivity rule. There are

at most O(n) different keys in which any given variable occurs.

• S: for any variable, and in a state in which a built-in constraint can be as-

serted, there are up to O(n) suspended instances of the leq/2 occurrence in

the reflexivity rule. There can be no suspended prefix or rule firings.

40 Leslie De Koninck

• Cask
b and Ctell

b : the cost of evaluating a built-in ask constraint and the cost

of solving a built-in tell constraint is constant (at least for the given query

pattern).

Filling in these parameters in the formula given by Theorem 6 gives us a worst case

time complexity of

O((1 + 1) · (n3 + n3 + (0 + 0) · log 3) + n2 · 1 · (n+ 1 · n)) = O(n3)

This corresponds to the actual worst-case complexity for an initial goal of the form

{leq(X1,X2), . . . , leq(Xn−1,Xn), leq(Xn,X1)}

The approach of (Frühwirth 2002b) does not apply since the transitivity rule is

a propagation rule and hence no suitable ranking function can be found.

Example 10 (Merge Sort)

Consider the CHRrp implementation of the merge sort algorithm, first given in

Example 6 (Section 4) and repeated here for easy reference.

1 :: ms1 @ arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B).

2 :: ms2 @ merge(N,A), merge(N,B) <=> A < B | merge(2*N+1,A), arrow(A,B).

3 :: ms3 @ number(X) <=> merge(0,X).

We show that the total runtime of the algorithm is O(n logn) given an initial goal

consisting of n number/1 constraints.

No new number/1 constraints are ever asserted. Rule ms3 converts one number/1

constraint into one merge/2 constraint each time it fires. The number of (strong)

prefix firings for rule ms3 hence is O(n). Rule ms2 decreases the number of merge/2

constraints by one and so it can fire n − 1 times. In any state, there are at most

two merge/2 constraints with the same first argument. This invariant holds in the

initial state because there are no merge/2 constraints in the initial goal and rule

ms2 can fire after each new merge/2 constraint assertion, enforcing the invariant.

Because of the invariant, the number of prefix firings for rule ms2 is limited to O(n).

Using similar reasoning it holds that in any state, there are at most two arrow/2

constraints in the store with the same first argument. Now we define that in a

given state, two numbers X1 and Xm are connected by a chain of length m − 1

if the following constraints are in the store: arrow(X1,X2), arrow(X2,X3), . . . ,

arrow(Xm−1,Xm). At priority 2 it holds that for each merge(N,X) constraint

in the store, the maximal length of a chain starting in X is N . Indeed, this holds

for the initial merge(0,) constraints and if it holds for merge(N,) constraints,

it also holds for merge(2 · N + 1,) constraints, because when such a constraint

is asserted, two chains of length N are linked with an extra arrow/2 constraint

and merged by up to 2 · N firings of rule ms1. Two merge(N,) constraints are

combined into a merge(2 · N + 1,) constraint, so the n merge(0,) constraints

asserted by rule ms3 are replaced by n/2 merge(1,) constraints, which in turn are

combined into n/4 merge(3,) constraints and so on until finally 1 merge(n−1,)

constraint remains. The sum of allN in these merge(N,) constraints isO(n logn).

Logical Algorithms meets Constraint Handling Rules 41

Rule ms1 fires O(N) times after every new merge(N,) constraint assertion and

because there are at most two arrow/3 constraints with the same first argument,

there are O(n logn) strong prefix firings of rule ms1.

In conclusion, for an initial goal consisting of n number/1 constraints, there are

O(n logn) strong prefix firings for rule ms1, O(n) for rule ms2 and O(n) for rule ms3.

Using the meta-complexity theorem, which simplifies to the one for Logical Algo-

rithms because there are no built-in tell constraints, the total runtime is O(n logn),

which is also a tight complexity bound. We now compare this result with the result

found by using the meta-complexity theorem of (Frühwirth 2002b).

Using a similar analysis as above, we can derive that D = O(n log n) and cmax =

O(n) where n is the number of number/1 constraints in the query. Note that in

Theorem 4.2 of (Frühwirth 2002b), a worst case upper bound of cmax = O(c +D)

is used, with c the number of constraints in the query, which becomes cmax =

O(n logn) in this example. The bound we use is tight, i.e., cmax = Θ(n). The cost

of head matching (OHr
), guard checking (OGr

), adding built-in constraints (OCr
),

and adding and removing CHR constraints (OBr
), can all be assumed constant.

The number of heads nr of a rule r ∈ P is at most 2. Filling in these numbers, we

derive a total worst case complexity of O(n3 logn), which is clearly suboptimal.

Example 11 (Dijkstra’s Shortest Path)

A Logical Algorithms implementation of Dijkstra’s shortest path algorithm is given

in (Ganzinger and McAllester 2002) and in Example 2. A very similar implemen-

tation in CHRrp is given in (De Koninck et al. 2007b) and shown below.

1 :: d1 @ source(V) ==> dist(V,0).

1 :: d2 @ dist(V,D1) \ dist(V,D2) <=> D1 < D2 | true.

D + 2 :: d3 @ dist(V,D), e(V,C,U) ==> dist(U,D+C).

Given a goal consisting of one source/1 constraint and e e/3 constraints, the

runtime complexity of this implementation is O(e log e). The analysis is essen-

tially the same as the one for the Logical Algorithms implementation as given

in (Ganzinger and McAllester 2002); see also Example 2.

6.2 Comparison with the Logical Algorithms meta-complexity result

In (De Koninck et al. 2007a), we have presented a direct implementation of the

Logical Algorithms language into CHR that satisfies the complexity requirements

needed for the Logical Algorithms meta-complexity result to hold. In this subsec-

tion, we show that this implementation has become somewhat obsolete because we

can achieve the same result by combining the translation from Logical Algorithms

to CHRrp of Section 3, with the CHRrp implementation presented in Section 5. We

assume here that the comparison antecedents in Logical Algorithms programs are

scheduled after the corresponding user-defined antecedents in the translation, and

that the guards on the mode indicators (these have the form N 6= p) are scheduled

right after the head to which they apply.

42 Leslie De Koninck

Theorem 7

The time complexity of Logical Algorithms programs executed by first translating

them into CHRrp programs using the translation schema of Section 3, and then

executing the resulting CHRrp program using the implementation of Section 5, is

O(|σ0|+Ps+(Pd+Ad)·logN) with S0, Ps, Pd, Ad and N as defined in Section 2.3.1.

Proof

The translation of a Logical Algorithms program P consists of two parts as defined

in Section 3. The first part, denoted by TS/D(P), contains for each user-defined

predicate a/n the following rules:

1 :: ar(X̄,M) \ a(X̄) ⇐⇒ M 6= n | true

1 :: ar(X̄, n), a(X̄) ⇐⇒ ar(X̄, b)

2 :: a(X̄) ⇐⇒ ar(X̄, p)

1 :: ar(X̄,M) \ del(a(X̄)) ⇐⇒ M 6= p | true

1 :: ar(X̄, p), del(a(X̄)) ⇐⇒ ar(X̄, b)

2 :: del(a(X̄)) ⇐⇒ ar(X̄, n)

It is easy to see that for an initial goal containing no constraints of the form

ar(X̄,M) and since these are the only rules that assert such a constraint, in any

state it holds that if ar(X̄,M1)#i1 and ar(X̄,M2)#i2 are in the CHR constraint

store, then i1 = i2 and M1 = M2. This implies that the number of strong prefix

firings for these rules is bounded by the number of assertions of a(X̄) or del(a(X̄)).

The second part of the translation, denoted by TR(P), contains for each Logical

Algorithms rule

r @ p : A1, . . . , An ⇒ C

a set of rules

p+ 2 :: rρ @ H =⇒ g1, g2 | C′

as shown in the translation schema of Section 3.1.2. Amongst these rules is one,

say rρ′ , with a maximal number of heads, namely as many as there are user-defined

antecedents in A1, . . . , An. Because the (implicit and explicit) guards on the mode

indicators of the head constraints are scheduled as soon as they are decidable, and

because the comparisons are scheduled at corresponding places, it is easy to see

that the number of strong prefix firings of rule rρ′ is the same as the number of

strong prefix firings of Logical Algorithms rule r. The other rρ rules are restricted

versions of rρ′ and therefore have at most as many strong prefix firings as rρ′ .

The assertions with occurrences in dynamic priority rules are of the form ar(X̄,).

The set and deletion semantics rules ensure that the number of these assertions is

the same in the original program and in its translation. Finally, we note that the

number of assertions with occurrences in a static priority rule, As, is bounded by the

number of assertions in the initial goal |σ0| plus the number of rule firings times the

maximal number of body literals in any rule. Therefore,As = O(|σ0|+Ps+Pd). Now

using our new meta-complexity result for CHRrp (Theorem 6), we derive that the

Logical Algorithms meets Constraint Handling Rules 43

total runtime complexity of the translated program is O(|σ0|+Ps+(Pd+Ad)·logN).

6.3 Comparison with the “As Time Goes By” approach

In Section 2.3.3 we already briefly compared the Logical Algorithms meta-complexity

theorem with the theorem given by Frühwirth in (Frühwirth 2002b). In this sub-

section, we make the comparison complete by also considering built-in constraints,

using the new meta-complexity theorem presented in Section 6.

Let there be given a CHRrp program P in which each rule has the same (static)

priority. Theorem 3 in (De Koninck et al. 2007b) states that such a CHRrp pro-

gram and its corresponding CHR program (which is found by removing the rule

priorities) have the same derivations. Therefore, such programs are suitable for com-

paring the result of (Frühwirth 2002b) with the result of Theorem 6 in Section 6.

In Section 2.3.3 we have already shown that the number of strong prefix firings is

O
(

D ·
∑

r∈P cnr
max

)

where D is the derivation length (i.e., the number of rule fir-

ings), and cmax is the maximal number of CHR constraints in the store in any state.

The number of constraint assertions is O(cmax +D). If we assume that the initial

goal does not contain any built-in constraints (as is done in (Frühwirth 2002b)),

then the number of built-in constraints is O(D). The number of suspended prefix

firings is bounded by O
(
∑

r∈P cnr

max

)

in any state and the number of suspended as-

sertions by O(cmax). Now, filling in these parameters in the CHRrp meta-complexity

result gives us that the total runtime complexity is

O

(

(1 +OC) ·D
∑

r∈P

(cnr

max ·OGr
)

)

(3)

whereOC =
∑

r∈P (OCr
). This formula strongly resembles the result of (Frühwirth 2002b)

which, assuming the cost of head matching OHr
and adding and removing CHR

constraints OBr
is constant, equals

O

(

D
∑

r∈P

(cnr

max · OGr
+OCr

)

)

(4)

The difference lies in how built-in tell constraints are dealt with. In our CHRrp

implementation, as well as in any CHR implementation based on the refined opera-

tional semantics of CHR, a built-in tell constraint causes the constraints or matches

whose variables are affected, to be reconsidered.5 Because each individual (atomic)

built-in constraint is dealt with separately, this may cost more in total than the

naive approach taken in (Frühwirth 2002b) in which after each rule firing, all con-

straints or matches are reconsidered once. So, while in certain rather exceptional

cases, a naive approach to dealing with built-in tell constraints might in fact be bet-

ter than the usual approach of selective reactivation (as can be seen by comparing

5 Which constraints are reactivated depends on the wake-up policy used for the Solve transition,
see also (Schrijvers 2005, Section 5.4.2).

44 Leslie De Koninck

Formulas (3) and (4)), in general we expect the latter approach to be an improve-

ment over the naive one. Moreover, in these exceptional cases, the meta-complexity

theorem of (Frühwirth 2002b) does not apply to optimized CHR implementations

like the K.U.Leuven CHR system, i.e., in these cases it does not overestimate the

actual worst case time complexity.

Noteworthy is that the approach of (Frühwirth 2002b) only considers simplifi-

cation (and implicitly also simpagation) rules. This restriction is related to the

termination analysis which is used to find an upper bound on the number of rule

applications. However, if we can find such an upper bound by other means, also

propagation rules can be supported. For instance, the termination analysis pre-

sented in (Pilozzi and De Schreye 2008) can be used for this purpose.

7 Conclusions

In this paper, we have investigated the relationship between the Logical Algorithms

language and Constraint Handling Rules. We have presented an elegant translation

schema from Logical Algorithms to CHRrp: CHR extended with user-definable rule

priorities. The original program and its translation are shown to be essentially

weakly bisimilar. However, our current CHRrp system (De Koninck et al. 2008)

does not give the complexity guarantees needed for the Logical Algorithms meta-

complexity theorem to hold via this translation.

As a first step towards applying the Logical Algorithms meta-complexity result

to CHRrp programs, we have shown how a subclass of CHRrp can be translated

into Logical Algorithms. By using this translation, we can directly apply the meta-

complexity theorem for Logical Algorithms to the translated CHRrp programs. A

drawback is that the CHRrp programs that can be translated this way, are restricted

to those that do not make use of an underlying constraint solver.

In order to remedy both the limitation that the translation from Logical Algo-

rithms to CHRrp does not exhibit the required complexity when executing trans-

lated Logical Algorithms programs using our CHRrp system, and the restriction

of those CHRrp programs that can be translated to Logical Algorithms and hence

to which the Logical Algorithms meta-complexity result can be applied, we have

proposed a new implementation for the complete CHRrp language that gives strong

complexity guarantees. The implementation is based on the high-level implementa-

tion proposal of (Ganzinger and McAllester 2002) as well as on the scheduling data

structure of (De Koninck 2007), and consists of the compilation of CHRrp rules into

(regular) CHR rules, combined with a scheduler that controls the execution. The

implementation supports a new and accurate meta-complexity theorem for CHRrp.

When combining the translation from Logical Algorithms to CHRrp with the new

implementation, the new meta-complexity theorem implies the Logical Algorithms

meta-complexity result. Moreover, it is shown that in general – apart from some

rather exceptional cases, see Section 6.3 – the new theorem is at least as accurate

as the meta-complexity result for CHR given by Frühwirth in (Frühwirth 2002b).

This is illustrated on two non-trivial examples, one of which contains both built-

Logical Algorithms meets Constraint Handling Rules 45

in constraints and propagation rules and therefore cannot be analyzed using the

Logical Algorithms approach or Frühwirth’s result.

7.1 Related Work

The time complexity of programs is in general expressed in terms of the number of

elementary operations, e.g., the number of logical inferences in Prolog, function ap-

plications in a functional programming language, or rule applications in a language

such as CHR. However, while in most languages, these elementary operations all

take constant time, this is not the case in a language like CHR where each rule

application results from a complex matching phase.

In this work, we have made a mapping from the number of elementary oper-

ations (like prefix and rule firings or constraint assertions) to time complexity.

To the best of our knowledge, and apart from the results in (McAllester 1999;

Ganzinger and McAllester 2001; Ganzinger and McAllester 2002) and (Frühwirth 2002a;

Frühwirth 2002b), there is no other work with a similar goal. There are many

other formalisms though in which elementary operations take more than constant

time. One such formalism is term rewriting, as implemented by the Maude system

(Clavel et al. 1999) or the ACD term rewriting language (Duck et al. 2006). It is

known that AC matching, which is used by most of these languages, is NP-complete.

Another formalism is that of production rule systems like Drools (Proctor et al. 2007)

or Jess (Friedman-Hill 2007). Production rules are in many ways similar to Con-

straint Handling Rules. However unlike CHR, these systems are not often used as

general purpose programming language, and therefore, algorithmic complexity has

never been much of a concern. More work exists on the derivation of the number of

elementary operations. In the context of CHR, this mostly concerns the number of

rule firings, which is often derived as part of termination analysis (Frühwirth 2000b;

Pilozzi et al. 2007; Voets et al. 2007).

Another related topic is that of space complexity, an issue that is not dealt with

in this paper. In the context of CHR, the memory reuse techniques developed in

(Sneyers et al. 2006b) are crucial to achieve optimal space complexity as is shown in

(Sneyers et al. 2008). The latter also introduces a space complexity meta-theorem

for CHR, stating that the space complexity is O(D + p) where D is the derivation

length and p is the number of propagation rule firings (which takes into account

the size of the propagation history).

7.2 Future Work

For a previous version of this paper (De Koninck et al. 2007a), we have made an

actual implementation for the Logical Algorithms language in CHR. This imple-

mentation satisfies the complexity requirements needed for the Logical Algorithms

meta-complexity theorem to hold, when executed using the K.U.Leuven CHR sys-

tem on top of SWI-Prolog. However, the very large constant factors and the high

memory consumption makes that the system is not very useful in practice. Cur-

rently, we have no running version of the alternative implementation for CHRrp

46 Leslie De Koninck

presented in Section 5. The reason is that this implementation proposal is based

on a similar approach as the Logical Algorithms one, and in particular the more

complicated scheduler is expected to be slow in practice. However, we do intend

to investigate the advantages and disadvantages of a lazy RETE based matching

algorithm for CHR(rp) compared to the LEAPS style matching that is currently

used by almost all systems. A simplified version of the scheduling data structure

of (De Koninck 2007) which would offer less complexity guarantees, but might be

faster in the average case, could be used for this purpose.

We have already mentioned in the related work discussion that a space complex-

ity result for our alternative implementation is currently lacking. The RETE style

matching we used is in general far from optimal as far as memory usage is con-

cerned, in particular compared to LEAPS style matching as is used by most CHR

systems. However, in the CHR context, built-in constraints may require maintain-

ing a propagation history which in the worst case requires as much memory as the

alpha and beta memories in RETE matching. Therefore, it would be interesting to

more formally compare both styles of matching in terms of memory consumption

in the context of CHR.

Acknowledgements

The author would like to thank Tom Schrijvers, Bart Demoen and the anonymous

reviewers for their helpful and insightful comments. This research is funded by a

Ph.D. grant of the Institute for the Promotion of Innovation through Science and

Technology in Flanders (IWT-Vlaanderen).

References

Betz, H. 2007. Relating coloured Petri nets to Constraint Handling Rules. In 4th Work-
shop on Constraint Handling Rules, K. Djelloul, G. J. Duck, and M. Sulzmann, Eds.
U.Porto, 33–47.

Christiansen, H. 2005. CHR grammars. Theory and Practice of Logic Programming 5, 4-
5, 467–501.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
and Quesada, J. F. 1999. The Maude system. In 10th International Conference on
Rewriting Techniques and Applications, P. Narendran and M. Rusinowitch, Eds. Lecture
Notes in Computer Science, vol. 1631. Springer, 240–243.

De Koninck, L. 2007. Mergeable schedules for lazy matching. Tech. Rep. CW 505,
Department of Computer Science, K.U.Leuven.

De Koninck, L., Schrijvers, T., and Demoen, B. 2007a. The correspondence between
the Logical Algorithms language and CHR. In 23rd International Conference on Logic
Programming, V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer Science, vol.
4670. Springer, 209–223.

De Koninck, L., Schrijvers, T., and Demoen, B. 2007b. User-definable rule priorities
for CHR. In 9th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, M. Leuschel and A. Podelski, Eds. ACM Press, 25–36.

De Koninck, L., Stuckey, P. J., and Duck, G. J. 2008. Optimizing compilation of
CHR with rule priorities. In 9th International Symposium on Functional and Logic
Programming.

Logical Algorithms meets Constraint Handling Rules 47

Duck, G. J., Stuckey, P. J., and Brand, S. 2006. ACD term rewriting. In 22nd
International Conference on Logic Programming, S. Etalle and M. Truszczynski, Eds.
Lecture Notes in Computer Science, vol. 4079. Springer, 117–131.

Duck, G. J., Stuckey, P. J., Garćıa de la Banda, M., and Holzbaur, C. 2004.
The refined operational semantics of Constraint Handling Rules. In 20th International
Conference on Logic Programming, B. Demoen and V. Lifschitz, Eds. Lecture Notes in
Computer Science, vol. 3132. Springer, 90–104.

Duck, G. J., Stuckey, P. J., and Sulzmann, M. 2007. Observable confluence for
Constraint Handling Rules. In 23rd International Conference on Logic Programming,
V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer Science, vol. 4670. Springer,
224–239.

Forgy, C. L. 1982. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19, 1, 17–37.

Fredman, M. L. and Tarjan, R. E. 1987. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM 34, 3, 596–615.

Friedman-Hill, E. 2007. JESS 7.0p2: The rule engine for the Java platform.
http://herzberg.ca.sandia.gov/jess.

Frühwirth, T. 1998. Theory and practice of Constraint Handling Rules. Journal of
Logic Programming 37, 1-3, 95–138.

Frühwirth, T. 2000a. Proving termination of constraint solver programs. In New Trends
in Contraints, Joint ERCIM/Compulog Net Workshop, Paphos, Cyprus, October 1999,
Selected papers, K. R. Apt, A. C. Kakas, E. Monfroy, and F. Rossi, Eds. Lecture Notes
in Computer Science, vol. 1865. Springer, 298–317.

Frühwirth, T. 2000b. Proving termination of constraint solver programs. In Joint
ERCIM/Compulog Net Workshop on New Trends in Contraints, K. R. Apt, A. C. Kakas,
E. Monfroy, and F. Rossi, Eds. Lecture Notes in Computer Science, vol. 1865. Springer,
298–317.

Frühwirth, T. 2002a. As time goes by: Automatic complexity analysis of simplification
rules. In 8th International Conference on Principles of Knowledge Representation and
Reasoning, D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-A. Williams, Eds.
Morgan Kaufmann, 547–557.

Frühwirth, T. 2002b. As time goes by II: More automatic complexity analysis of con-
current rule programs. In Quantitative Aspects of Programming Languages, Selected
Papers. Electronic Notes in Theoretical Computer Science, vol. 59.

Ganzinger, H. and McAllester, D. A. 2001. A new meta-complexity theorem for
bottom-up logic programs. In 1st International Joint Conference on Automated Rea-
soning, R. Goré, A. Leitsch, and T. Nipkow, Eds. Lecture Notes in Computer Science,
vol. 2083. Springer, 514–528.

Ganzinger, H. and McAllester, D. A. 2002. Logical algorithms. In 18th International
Conference on Logic Programming, P. J. Stuckey, Ed. Lecture Notes in Computer Sci-
ence, vol. 2401. Springer, 209–223.

Holzbaur, C. and Frühwirth, T. 1998. Constraint Handling Rules reference man-
ual, release 2.2. Tech. Rep. TR-98-01, Österreichisches Forschungsinstitut für Artificial
Intelligence, Wien.

McAllester, D. A. 1999. On the complexity analysis of static analyses. In 6th Inter-
national Symposium on Static Analysis, A. Cortesi and G. Filé, Eds. Lecture Notes in
Computer Science, vol. 1694. Springer, 312–329.

Miranker, D. P., Brant, D. A., Lofaso, B., and Gadbois, D. 1990. On the perfor-
mance of lazy matching in production systems. In 8th National Conference on Artificial
Intelligence. AAAI Press / The MIT Press, 685–692.

48 Leslie De Koninck

Pilozzi, P. and De Schreye, D. 2008. Termination analysis of CHR revisited. In 24th
International Conference on Logic Programming, M. Garćıa de la Banda and E. Pontelli,
Eds. Lecture Notes in Computer Science, vol. 5366. Springer, 501–515.

Pilozzi, P., Schrijvers, T., and De Schreye, D. 2007. Proving termination of CHR in
Prolog: A transformational approach. In 9th International Workshop on Termination,
D. Hofbauer and A. Serebrenik, Eds. 30–33.

Proctor, M., Neale, M., Frandsen, M., Griffith, Jr, S., Tirelli, E.,
Meyer, F., and Verlaenen, K. 2007. Drools Documentation, Version 4.0.3.
http://www.jboss.com/products/rules.

Schrijvers, T. 2005. Analyses, optimizations and extensions of Constraint Handling
Rules. Ph.D. thesis, K.U.Leuven, Leuven, Belgium.

Schrijvers, T. and Demoen, B. 2004. The K.U.Leuven CHR system: implementation
and application. In First Workshop on Constraint Handling Rules: Selected Contri-
butions, T. Frühwirth and M. Meister, Eds. Ulmer Informatik-Berichte, vol. 2004-01.
Universität Ulm, 1–5.

Schrijvers, T. and Frühwirth, T. 2006. Optimal union-find in Constraint Handling
Rules. Theory and Practice of Logic Programming 6, 1&2.

Sneyers, J. 2008. Optimizing compilation and computational complexity of Constraint
Handling Rules. Ph.D. thesis, K.U.Leuven, Leuven, Belgium.

Sneyers, J., Schrijvers, T., and Demoen, B. 2005. The computational power and
complexity of Constraint Handling Rules. In 2nd Workshop on Constraint Handling
Rules, T. Schrijvers and T. Frühwirth, Eds. Reports CW, vol. 421. Departement of
Computer Science, K.U.Leuven, Belgium, 3–17.

Sneyers, J., Schrijvers, T., and Demoen, B. 2006a. Dijkstra’s algorithm with Fi-
bonacci heaps: An executable description in CHR. In 20th Workshop on Logic Pro-
gramming, M. Fink, H. Tompits, and S. Woltran, Eds. INFSYS Research Report, vol.
1843-06-02. TU Wien, 182–191.

Sneyers, J., Schrijvers, T., and Demoen, B. 2006b. Memory reuse for CHR. In 22nd
International Conference on Logic Programming, S. Etalle and M. Truszczynski, Eds.
Lecture Notes in Computer Science, vol. 4079. Springer, 72–86.

Sneyers, J., Schrijvers, T., and Demoen, B. 2008. The computational power and com-
plexity of Constraint Handling Rules. http://www.cs.kuleuven.be/∼jon/ – Submitted
to ACM TOPLAS.

Tacchella, P., Meo, M. C., and Gabbrielli, M. 2007. Unfolding in CHR. In 9th
International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, M. Leuschel and A. Podelski, Eds. ACM Press, 179–186.

Van Weert, P., Sneyers, J., Schrijvers, T., and Demoen, B. 2006. Extending CHR
with negation as absence. In 3rd Workshop on Constraint Handling Rules, T. Schri-
jvers and T. Frühwirth, Eds. Reports CW, vol. 452. Department of Computer Science,
K.U.Leuven, Belgium, 125–140.

Voets, D., Pilozzi, P., and De Schreye, D. 2007. A new approach to termination
analysis of Constraint Handling Rules. In 4th Workshop on Constraint Handling Rules,
K. Djelloul, G. J. Duck, and M. Sulzmann, Eds. U.Porto, 77–89.

	Introduction
	Logical Algorithms and CHRrp
	Logical Algorithms
	CHRrp: CHR with Rule Priorities
	Meta-Complexity Results

	Translating Logical Algorithms into CHRrp
	The Translation Schema
	The Correspondence between LA and CHRrp Derivations
	Weak Bisimulation

	Translating a subset of CHRrp into Logical Algorithms
	The Translation Schema
	Correspondence

	Implementing CHRrp, the Logical Algorithms way
	Overview
	Program-Dependent Part
	Program-Independent Part: the Scheduler
	Priority Queues

	A New Meta-Complexity Result for CHRrp
	Examples
	Comparison with the Logical Algorithms meta-complexity result
	Comparison with the ``As Time Goes By'' approach

	Conclusions
	Related Work
	Future Work

	References

