
ar
X

iv
:0

90
5.

38
02

v1
  [

cs
.L

O
] 

 2
5 

M
ay

 2
00

9

Under consideration for publication in Theory and Practice of Logic Programming 1

On the complexity of identifying Head

Elementary Set Free programs ∗

Fabio Fassetti†

ICAR/CNR
via P. Bucci, 41C

87036, Rende (CS), Italy
E-mail: f.fassetti@deis.unical.it

Luigi Palopoli

DEIS, University of Calabria
via P. Bucci, 41C

87036, Rende (CS), Italy
E-mail: palopoli@deis.unical.it

submitted 11 December 2008; revised 29 April 2009; accepted 22 May 2009

Abstract

Head-elementary-set-free programs were proposed in (Gebser et al. 2007) and shown to
generalize over head-cycle-free programs while retaining their nice properties. It was left
as an open problem in (Gebser et al. 2007) to establish the complexity of identifying head-
elementary-set-free programs. This note solves the open problem, by showing that the
problem is complete for coNP.
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1 Introduction

Disjunctive Logic Programming (DLP) is a highly declarative yet powerful knowl-

edge representation and problem solving formalism. However, the high expressive

power of DLP corresponds to a high complexity of the associated entailment prob-

lems (Dantsin et al. 2001). Therefore, the task of defining easily recognizable frag-

ments of DLP characterized by lower complexities than the general language has

been looked at as a relevant problem in the literature, since general DLP resolution

engines can speed up their computation by identifying subprograms matching those

definitions. For instance, the DLV engine (Leone et al. 2006) takes advantage of

identifying head-cycle-free (HCF) (sub)programs (Ben-Eliyahu and Dechter 1994;
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Ben-Eliyahu-Zohary and Palopoli 1997) in resolving disjunctive logic programs un-

der the stable model semantics. Head-elementary-set-free (HEF) programs were

recently introduced in (Gebser et al. 2007) as a strict generalization of HCF pro-

grams featuring the same nice properties of that smaller class. In detail, likewise

HCF programs, HEF programs can be turned into equivalent nondisjunctive pro-

grams in polynomial time and space by shifting. As such, HEF programs can be

regarded as “easy” disjunctive programs, since they actually denote syntactic vari-

ants of nondisjunctive coding. This fact has several formal consequences, which are

precisely accounted for in (Gebser et al. 2007). Just for an example, while checking

for a disjunctive program to have a stable model is ΣP
2 -complete in general, it is

NP-complete for HEF programs.

It is therefore important to devise procedures to identify head-elementary-set-

free programs. However, while checking for a program to be HCF can be done

in linear time (Ben-Eliyahu and Dechter 1994), the complexity of identifying HEF

programs is a problem left open in (Gebser et al. 2007), where it is read that: It is

an open question whether identifying HEF programs is tractable . . . . This note is

intended to solve such an open problem, by showing that identifying HEF programs

is, in fact, coNP-complete. Therefore, while HEF programs share several common

properties with HCF programs, to identify them is much more difficult from the

computational complexity standpoint.

The rest of the note is organized as follows. Preliminaries about DLP are il-

lustrated in the next section. Section 3 recalls the definition of HEF programs and

provides a couple of preliminary results. Section 4 and Section 5 settle the complex-

ity of the problem accounting for the membership in coNP and its coNP-hardness,

respectively.

2 Preliminaries

In this section we recall basic definitions about propositional disjunctive logic pro-

gramming.

A literal is a propositional atom a or its negation not a. A rule is an expression

of the form B ,F → H , where H , B and F are set of literals. In particular, sets H

and B consist of positive atoms, whereas F consists of negated atoms. H and B ∪F

are referred to as, respectively, the head and body of the rule. If |H | > 1 then the

rule is called disjunctive, otherwise it is called non-disjunctive.

A program P is a finite set of rules. If there is some disjunctive rule in P then P

is called disjunctive, otherwise it is called non-disjunctive. A set S of atoms is called

a disjunctive set for P if and only if there exists at least one rule δ : B ,F → H in

P such that |H ∩ S | > 1.

An interpretation I of P is a set of atoms from P . An atom is true in the

interpretation I if a ∈ I . A literal not a is true in I if a 6∈ I . A conjunction C of

literals is true in I if all the literals in C are true in I . A rule B ,F → H is true in

I if either H is true in I or B ∧ F is false in I . An interpretation I is a model for

a program P if all rules occurring in P are true in I . A model M for P is minimal

if no proper subset of M is a model for P . A model M of P is stable if M is a
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minimal model of the reduct of P w.r.t M , denoted by PM , that is the program

built from P by (1) removing all rules that contain a negative literal not a in the

body with a ∈ M , and (2) removing all negative literals from the remaining rules

(Gelfond and Lifschitz 1988).

Example 1

Consider for example the following program:

P = { a → b, c

not a, d → e

c, not b, f → e

not b → a }

and the interpretation M = {a, c}. The ground positive program PM is the follow-

ing:

PM = { a → b, c

c, f → e

→ a }

Since M is a minimal model of PM , M is a stable model of P.

3 Head-elementary-set-free programs

In this section, we recall the definition of HEF programs [Gebser et al. 2006] and

provide a couple of preliminary results which will be useful in the following. We

begin with introducing the concepts of outbound and elementary set.

Definition 1 (Outbound Set[Gebser et al. 2006])

Let P be a disjunctive program. For any set Y of atoms occurring in P , a subset

Z of Y is outbound in Y for P if there is a rule δ : B ,F → H in P such that: (i)

H ∩ Z 6= ∅; (ii) B ∩ (Y \Z ) 6= ∅; (iii) B ∩ Z = ∅ and (iv) H ∩ (Y \Z ) = ∅.

Intuitively, Z ⊆ Y is outbound in Y for P if there exists a rule δ in P such that the

partition of Y induced by Z (thatis , 〈Z ;Y \ Z 〉) separates head from body atoms

of δ.

Example 2

Consider, for example, the program

Pex = { a → b, c

c → b

b → c

b → a

b, c → d }

and the set Eex = {a, b, c}. Consider, now, the subset O = {a, b} of Eex . O is

outbound in Eex for Pex because of the rule c → b, since c ∈ Eex \O , c 6∈ O , b ∈ O

and b 6∈ Eex \O .
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Definition 2 (Elementary Set[Gebser et al. 2006])

Let P be a disjunctive program. For any nonempty set Y of atoms occurring in P,

Y is elementary for P if all nonempty proper subsets of Y are outbound in Y for

P.

For example, the set Eex of Example 2 is elementary for the program Pex , since

each nonempty proper subset of Eex is outbound in Eex for Pex .

Definition 3 (Head-Elementary-Set-Free Program[Gebser et al. 2007])

Let P be a disjunctive program. P is Head Elementary Set Free (HEF) if for each

rule B ,F → H in P , there is no elementary set E for P such that |E ∩ H | > 1.

So, a program P is HEF if there is no elementary set containing two or more

atoms all appearing in the head of one rule of P .

For example, the program Pex of Example 2 is not HEF, because for the rule

δ : a → b, c, and the elementary set Eex : the intersection between the head of δ

and Eex = {a, b, c} is {b, c}.

It follows from the definition that a program P is not HEF if and only if there

exists a set X of atoms of P such that X is both a disjunctive set and an elementary

set for P .

Next, two theorems which are needed to prove our main results, given in the

following sections, are proved. In particular, Theorem 1 tells about the connected-

ness of the subgraph an elementary set induces into a program positive dependency

graph and actually immediately follows from (Gebser et al. 2006). Theorem 2, in-

stead, tells that any atom that occurs in an elementary set must be “justified” by

at least two rules, that atom being the only one in its elementary set occurring in

the head of the first rule and in the body of the second rule, respectively. We begin

by defining the concept of a positive dependency graph of a program.

A directed graph G, called positive dependency graph, can be associated with

a disjunctive program P. Specifically, for each rule B ,F → H of P , each atom

appearing in H or in B is associated with a node in G, and there is a directed edge

(m, n) from a node m to a node n if the atom associated with m is in B , and the

atom associated with n is in H .

Theorem 1

Let E be an elementary set for a program P and let G be the positive dependency

graph associated with P . The subgraph induced by E is strongly connected.

Proof

The proof is given by contraposition. Specifically, it is supposed that the subgraph

induced by E is not strongly connected and it is derived that E is not elementary.

If the subgraph induced by E is not strongly connected, then there exists some

pair of node m and n such that n is not reachable from m. Then consider the

set E ′ ⊂ E of all the nodes reachable from m, and the set E \ E ′. Since n is

not reachable from m, E \ E ′ is not empty, and then E ′ is a proper subset of E .

Moreover, since reachability is a transitive relation, all the nodes in E \ E ′ are not

reachable from any node in E ′. By definition of dependency graph, it follows that
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there is no rule B ,F → H in P such that B ∩ E ′ 6= ∅ and H ∩ (E \ E ′) 6= ∅. Then

E \ E ′ is not outbound and, as a consequence, E is not elementary.

Theorem 2

Let P be a disjunctive program, let E be an elementary set for P such that |E | > 1

and let a be an atom belonging to E . Then: (i) there exists at least one rule

δ1 : B ,F → H , such that a 6∈ B , B ∩E 6= ∅ and H ∩E = {a}, and (ii) there exists

at least one rule δ2 : B ,F → H , such that a 6∈ H , B ∩ E = {a} and H ∩ E 6= ∅.

Proof

(i) Consider the set O = {a}. If no rule δ1 : B ,F → H , such that a 6∈ B , B∩E 6= ∅

and H ∩ E = {a}, existed in P , then O would not be outbound. Since O ⊂ E ,

E would not be elementary.

(ii) Consider the set O = E\{a}. If no rule δ2 : B ,F → H , such that a 6∈ H ,

B ∩ E = {a} and H ∩ E 6= ∅, existed in P, then O would not be outbound in E

and then E would not be elementary.

Theorem 2 closes the preliminary part of this note. In the following Sections 4

and 5, the complexity of identifying HEF programs is analyzed.

4 Complexity Analysis: Membership

In this section, the membership of the problem in the class coNP is proved. To this

end, some new properties of HEF programs are shown next.

Let X be a set of atoms of a disjunctive logic program P. In the following, PX

will denote the disjunctive logic program built as follows: for each rule δ : B ,F → H

of P, add to PX the rule δ′ : B ′ → H ′ obtained as the projection of δ on X , namely

B ′ is B ∩ X and H ′ is H ∩X , if both B ′ and H ′ are not empty.

The following lemma is immediately proved.

Lemma 1

Let P be a logic program. E is an elementary set for P if and only if E is an

elementary set for PE .

As a consequence of the above lemma, the definition of outbound set can be

rewritten as follows: let P be a disjunctive logic program, and let E be a set of

atoms of P . A subset O of E is outbound in E for P if and only if there is a rule

δ : B ′ → H ′ in PE such that ∅ ⊂ H ′ ⊆ O and ∅ ⊂ B ′ ⊆ E\O .

The following lemma states that elementary sets of a program P are preserved

in supersets of P .

Lemma 2

Let P be a logic program, and Pred ⊆ P a logic program consisting of a subset of

the rules of P . If E is an elementary set for Pred , then E is an elementary set for

P as well.
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Proof

If a set E is an elementary set in Pred then, by definition, each nonempty proper

subset S of E is outbound in E for Pred and, therefore, there is a rule δ : B ,F → H

in Pred such that H ∩ S 6= ∅, B ∩ (E \ S ) 6= ∅, B ∩ S = ∅ and H ∩ (E \ S ) = ∅.

Clear enough, if Pred ⊆ P then δ is also in P and, as a consequence, each subset

of E is outbound in E also for P .

Let P be a logic program, and E an elementary set for P . In the following, each

program Pred
E ⊆ PE is called a witness of E if E is elementary in Pred

E . Note, in

particular, that PE is a witness of E .

By Lemma 2, Pred
E shows that E is elementary for PE , and by Lemma 1 also for

P.

An important property of HEF programs is stated in the following theorem.

Theorem 3

Let P be a disjunctive logic program. P is not HEF if and only if there exists a pair

(E ,Pred
E ) such that E is a disjunctive set for P and Pred

E is both a non-disjunctive

program and a witness of E .

Proof

For one direction, note that if such a pair exists, then E is a disjunctive set for P

and, since it has a witness, it is also an elementary set for P and, therefore, P is

not HEF.

Now, consider the case in which P is not HEF. In the following, it is proved that

for each pair (S ,Pred
S ) such that S is a disjunctive set, and Pred

S is a disjunctive

witness of S , there exists a pair (S ′,Pred
S ′ ) such that S ′ is a disjunctive set and Pred

S ′

is a witness of S ′, such that the number of disjunctive rules in Pred
S ′ is strictly less

than that of disjunctive rules occurring in Pred
S .

Note that this would conclude the proof, since it would inductively imply the

existence of a pair (S ∗,Pred
S∗ ) such that S ∗ is a disjunctive set, Pred

S∗ ⊆ PS∗ is a

witness of S ∗ with no disjunctive rules.

Let (S ,Pred
S ) be a pair such that S is a disjunctive set, and Pred

S is a witness of S .

Note that at least one of these pairs exists since, by definition, for each non-HEF

program, there exists an elementary set E and, by Lemma 1, a witness PE of E

therefore exists as well. Assume that Pred
S is a disjunctive program. Then, at least

one rule δ∗ : B → H , |H | > 1 belongs to Pred
S . Two cases are possible: (i) S is not

an elementary set for Pred
S \ {δ∗}; (ii) S is an elementary set for Pred

S \ {δ∗}.

(i) Since S is not elementary for Pred
S \ {δ∗}, then there exists at least one proper

subset of S which is not outbound in S for Pred
S \ {δ∗}. In particular, let S ′ be

a minimal subset of S which is not outbound in S for Pred
S \ {δ∗}. Since S ′ is

outbound in Pred
S , δ∗ is such that H ⊆ S ′ and B ⊆ S \S ′, namely, δ∗ is needed to

prove S ′ to be outbound. It is worth noting that, because of δ∗, S ′ is a disjunctive

set for P . Consider now each nonempty proper subset S ′′ of S ′. Note that one of

such subsets exists, since S ′ contains at least all of the atoms belonging to the

head of δ∗, and then its cardinality is greater than 1.
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Since S ′ is a mimimal subset of S which is not outbound in Pred
S \ {δ∗}, S ′′ is

outbound in Pred
S \{δ∗}. Therefore, there exists a rule δ′ : B ′ → H ′ in Pred

S \{δ∗},

such that ∅ ⊂ H ′ ⊆ S ′′ and ∅ ⊂ B ′ ⊆ S \ S ′′.

Moreover, it must hold that S ′ ∩B ′ 6= ∅. Indeed, were S ′ ∩B ′ = ∅ then δ′ : B ′ →

H ′ would be a rule such that ∅ ⊂ H ′ ⊆ S ′′ ⊂ S ′ and ∅ ⊂ B ′ ⊆ S \ S ′; hence,

because of δ′, S ′ would be outbound also in Pred
S \ {δ∗}, which does not hold by

hypothesis.

Consider, now, the program Pred
S ′ consisting of the projections of the rules δ :

B → H of Pred
S such that B ∩ S ′ 6= ∅ and H ∩ S ′ 6= ∅. Note that, as the rule δ∗

has the body contained in S \ S ′, the projection of δ∗ is not added to Pred
S ′ .

Since, as stated above, the set S ′ is such that for each nonempty proper subset

S ′′ ⊂ S ′ there is a rule δ′ : B ′ → H ′ in Pred
S where ∅ ⊂ H ′ ⊆ S ′′ and ∅ ⊂ B ′ ⊆

S ′ \S ′′, it follows that δ′ is also in Pred
S ′ and, therefore, S ′′ is outbound in S ′; this

implies, in turn, that Pred
S ′ is a witness of S ′.

Summarizing, for each pair (S ,Pred
S ) such that S is an elementary set for P and

Pred
S is a witness of S containing at least one disjunctive rule δ, there exist both

a non-empty disjunctive set S ′ ⊂ S such that S ′ is a disjunctive set for P and a

witness Pred
S ′ of S ′, such that Pred

S ′ contains a number of disjunctive rules strictly

less than the number of disjunctive rules occurring in Pred
S (as the former does

not contain δ∗).

(ii) In this second case, consider the pair (S ′,Pred
S ′ ), where S ′ = S and Pred

S ′ =

Pred
S \ {δ∗}. S ′ is a disjunctive set for P and Pred

S ′ is a witness of S ′ that does not

contain the disjunctive rule δ∗.

Example 3

In order to clarify the proof of the Theorem 3, consider the following example. Let

P be the following program

P = { a → b, c Pred
S ′ = { c → b

c → b b → e

b → d e → f

b → e f → e

d , e → f e → c }

f → e

e → c

d → a }

which is not HEF, since the set E = {a, b, c, d , e, f } is elementary for P . Further-

more, E is a disjunctive set, due to the rule δ∗ : a → b, c and P is a witness of

E . E is not elementary for P \ {δ∗} since S ′ = {b, c, e, f } is not outbound in E

for P \ {δ∗} and, moreover, S ′ is a minimal non-outbound subset of E . Note that

S ′ is outbound in P just for the presence of δ∗, and S ′ is a disjunctive set since it

contains the whole head of δ∗. Consider the program Pred
S ′ . Since S ′ is a minimal

non-outbound subset of E , each nonempty subset of S ′ is outbound in Pred
S ′ , and

then S ′ is elementary for Pred
S ′ . Summarizing, S ′ is a disjuctive set and is also an
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elemetary set for Pred
S ′ and then for P . Thus, Pred

S ′ is a witness of S ′ and it is also

non-disjunctive, since it does not contain δ∗.

Using the result stated in Theorem 3, it is possible to prove the coNP-membership

theorem.

Theorem 4 (HEF Problem-Membership)

Let P be a disjunctive logic program. Deciding if P is HEF is in coNP.

Proof

By Therorem 3, a nondeterministic polynomial-time Turing machine can disqualify

the HEF-Problem by first guessing a pair (Y ,Pred
Y ) where Y is a set of atoms and

Pred
Y is a non-disjunctive program. Next, the machine verifies in polynomial time

that at least two atoms, belonging to the head of a rule in P , are contained in

Y (that is, that Y is a disjunctive set for P) and, finally, checks that Y is an

elementary set for Pred
Y , by verifying that Pred

Y is a witness of Y . This last task can

be accomplished in polynomial time as stated in (Gebser et al. 2006). If this holds,

by Lemmata 1 and 2, it follows that Y is elementary for P and then P is not HEF.

5 Complexity Analysis: Hardness

In this section the coNP-hardness of the problem is proved.

Let Φ = C1 ∧ . . .∧Cn , n ≥ 1 be a 3-CNF formula, namely a conjunctive Boolean

formula where each clause Ci consists exactly of three literals. From Φ, a logic

program PΦ is constructed as follows. Let A1, . . . ,Am be the variables of Φ; and

let AΦ be a set of atoms consisting of: an atom φ; an atom ai and an atom nai
for each variable Ai ; an atom ci for each clause Ci ; and, finally, two further atoms

c0 and cn+1. Thus, note that AΦ is always non-empty. In the following, the atom

nai is referred to as the opposite of the atom ai and vice versa. For each atom ci ,

V (ci) denotes the set of atoms associated with the literals appearing in the clause

Ci . In particular, an atom aj belongs to V (ci) if Aj appears in Ci and naj belongs

to V (ci) if ¬Aj appears in Ci . Moreover, for each atom ci , NV (ci) denotes the set

of the opposites of the atoms in V (ci ), namely the atom aj (resp. naj ) is in NV (ci)

if naj (resp. aj ) is in V (ci ). P
Φ, the disjunctive program associated with Φ and

built on AΦ, consists in the following rules:

1. φ → c0 ∨ cn+1

2. c0 → c1
3. ci ∧ αi

j → ci+1, for each 1 ≤ i ≤ n and for each αi
j ∈ NV (ci), 1 ≤ j ≤ 3

4. cn+1 ∧ na1 → a1
5. cn+1 ∧ a1 → na1
6. ai ∧ nai+1 → ai+1, 1 ≤ i ≤ m − 1;

7. ai ∧ ai+1 → nai+1, 1 ≤ i ≤ m − 1;

8. nai ∧ nai+1 → ai+1, 1 ≤ i ≤ m − 1;

9. nai ∧ ai+1 → nai+1, 1 ≤ i ≤ m − 1;

10. am ∧ nam → c0;
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Theorem 5 (HEF Problem-Hardness)

Let P be a disjunctive logic program. Deciding if P is HEF is coNP-hard.

Proof

The proof is given by reduction of 3-SAT, which is well known to be NP-complete

(Garey and Johnson 1979).

Let Φ = C1 ∧ . . . ∧ Cn be a 3-CNF and PΦ the disjunctive program associated

with Φ. First, we note that the size of PΦ is polynomially bounded in the size of

Φ. Next, it is proved that PΦ is not HEF if and only if Φ is satisfiable.

Since the only rule of PΦ containing more than one atom in the head is φ →

c0 ∨ cn+1, in order to prove that PΦ is not HEF, an elementary set E containing

both c0 and cn+1 must be found.

Before proceeding with the proof of the theorem, some claims are shown about

this.

Claim 1

E does not contain both ai and nai for any i ∈ [1,m].

Proof of Claim 1.

If there existed i such that both ai and nai are in E , then the set {ai , nai} ⊂ E

would not be outbound in E and E would not be elementary.

Claim 2

E contains cj , for all 1 ≤ j ≤ n.

Proof of Claim 2.

Because of Theorem 1, the subgraph induced by the atoms in E must be strongly

connected; then, since E contains both c0 and cn+1 and since the only path from

c0 to cn+1 passes through atoms c1, . . . , cn , all these atoms must belong to E .

Claim 3

E contains at least one atom out of ai and nai , for each i ∈ [1,m].

Proof of Claim 3.

Because of Theorem 1, the subgraph induced by the atoms in E must be strongly

connected; then, since E contains both c0 and cn+1 and since all the paths from

cn+1 to c0 pass through either the atom ai or the atom nai for each i ∈ [1,m],

either the atom ai or the atom nai must belong to E .

Summarizing the results of previous claims, a potential elementary set E for PΦ

consists of:

• the atoms c0, c1 . . . , cn , cn+1;

• either the atom ai or the atom nai (but not both of them), for each i ∈ [1,m].
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Claim 4

Let E be as described above. Then, for each clause Ci , at least one atom in NV (ci)

is not in E .

Proof of Claim 4.

There are only three rules having ci in their body, namely ci ∧ αi
j → ci+1 for each

αi
j ∈ NV (ci). Due to Theorem 2, in order for E to be elementary, at least one

rule B → H such that B ∩ E = {ci} must occur in PΦ; then at least one atom

αi
j ∈ NV (ci) has not to belong in E .

The above claim asserts that, in order for E to be elementary, for each clause Ci

a necessary condition is that at least one atom in NV (ci) must be not in E . It can

be shown that this is also a sufficient condition.

Claim 5

Let E be as described above. Then, if for each clause Ci at least one atom in NV (ci)

is not in E , then E is an elementary set for PΦ.

Proof of Claim 5.

The proof is given by picking a generic nonempty proper subset O of E and by

showing that it is outbound in E for PΦ.

Let Q ⊂ E be the subset of E consisting of exactly one of the atoms ai and

nai for each i ∈ [1,m]; and let Qi be the atom ai (resp., nai), if ai (resp., nai)

belongs to Q . Moreover, let GE denote the subgraph induced by the atoms in E

and consider the path π in GE consisting of: (i) the directed edge from the ci to

ci+1 for each 0 ≤ i ≤ n, (ii) the directed edge from cn+1 to Q1, (iii) the directed

edge from Qi to Qi+1 for each 1 ≤ i ≤ m − 1 and, finally (iv) the directed edge

from Qm to c0. Note that π is an Hamiltonian cycle. Since O is a nonempty proper

subset of E then at least one node of E is not in O . Therefore, there exists a pair

of nodes n1 and n2 in GE such that the atom x1 associated with n1 is in E \O , the

atom x2 associated with n2 is in O and there exists a directed edge from n1 to n2 in

π. Since there exists a directed edge from n1 to n2, then there is a rule δ : B → H

in PΦ such that x1 ∈ B ∩ E and x2 ∈ H ∩ E . In particular, it will be shown next

that there exists a rule δ′ : B ′ → H ′ such that B ′ ∩ E = {x1} and H ′ ∩ E = {x2}.

Note that this will conclude the proof, since O is outbound just by the virtue of δ′.

Since there exists a directed edge from n1 to n2, simply consider all the pairs

of atoms associated with the directed edges in π; the following cases exhaust all

possibilities: (i) x1 = ci and x2 = ci+1 for some 0 ≤ i ≤ n; (ii) x1 = cn+1 and

x2 = Q1; (iii) x1 = Qi and x2 = Qi+1 for some 1 ≤ i ≤ m − 1; (iv) x1 = Qm and

x2 = c0.

Consider case (i). Since for each clause Ci at least one atom in NV (ci) is not in

E , there exists at least one rule δ′ : ci ∧αi
j → ci+1 in PΦ such that the intersection

between E and the body of δ is {ci}. As for case (ii), assume w.l.o.g. that Q1 = a1
and then that na1 6∈ E . Then, the rule δ′ : cn+1 ∧ na1 → a1 is such that the

intersection between E and the body of δ′ is {cn+1}. Consider case (iii), assume

w.l.o.g., that Qi = ai and Qi+1 = ai+1. Then, the rule δ
′ : ai ∧nai+1 → ai+1 is such

that the intersection between E and the body of δ′ is {ai}. Finally, as for case (iv),
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assume w.l.o.g., that Qm = am . The rule δ′ : am → c0 is such that the intersection

between E and the body of δ′ is {am}.

Now, the proof of the theorem can be resumed.

Let X be a truth assignment to the variables in Φ. Let QX be the set of atoms

associated with X . In particular, ai (resp., nai) is in QX , if Ai is true (resp., false)

in X . It is proved that: X is satisfies Φ, if and only if the set E = {c0, . . . , cn+1}∪QX

is elementary for PΦ. Note that this will conclude the theorem proof, since E

contains both c0 and cn+1.

(⇒) If X satisfies Φ then QX contains at least one atom α ∈ V (ci) for each

ci , i ∈ [1, n]. Therefore, at least one atom, in particular the opposite of the atom

α, that belongs to NV (ci) for each ci , i ∈ [1, n], is not in E . Thus, by Claim 5,

E is elementary.

(⇐) By Claim 4, if E is elementary then QX does not contain any α ∈ NV (ci) for

each ci , i ∈ [1, n]. Then, for each clause Ci , Q
X contains one of the atoms asso-

ciated with the literals satisfying Ci . Therefore, the truth assignment associated

with QX satisfies Φ.

6 Conclusions

In this work the complexity of verifying if a disjunctive logic program is head-

elementary-set-free is analyzed. We have proved here that the problem at hand is

coNP-complete, hereby providing an answer to a question left open in (Gebser et al. 2007).

This, basically negative, result leaves open the further problem of singling out a

polynomial-time recognizable fragment of DLP, generalizing over HCF programs,

while sharing their nice computational characteristics. In this respect, a direction

to go is supposedly that of identifying some simple subclasses of programs for which

checking for head-elementary-set-freeness is easier than for the general case5.
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