
ar
X

iv
:1

00
7.

36
63

v1
 [

cs
.A

I]
 2

1
Ju

l 2
01

0

Under consideration for publication in Theory and Practiceof Logic Programming 1

A decidable subclass of finitary programs

Sabrina Baselice, Piero A. Bonatti
Università di Napoli “Federico II”, Italy

submitted 1 January 2003; revised 1 January 2003; accepted 1January 2003

Abstract

Answer set programming – the most popular problem solving paradigm based on logic programs –
has been recently extended to support uninterpreted function symbols (Syrjänen 2001; Bonatti 2004;
Simkus and Eiter 2007; Gebser et al. 2007; Baselice et al. 2009; Calimeri et al. 2008). All of these
approaches have some limitation. In this paper we propose a class of programs called FP2 that en-
joys a different trade-off between expressiveness and complexity. FP2 is inspired by the extension
of finitary normal programs with local variables introducedin (Bonatti 2004, Sec. 5). FP2 programs
enjoy the following unique combination of properties: (i) the ability of expressing predicates with
infinite extensions; (ii) full support for predicates with arbitrary arity; (iii) decidability of FP2 mem-
bership checking; (iv) decidability of skeptical and credulous stable model reasoning for call-safe
queries. Odd cycles are supported by composing FP2 programswith argument restricted programs.

KEYWORDS: Answer set programming with function symbols, Infinite stable models, Norms.

1 Introduction

Answer set programming has become the most popular problem solving paradigm based on
logic programs. It is founded on the stable model semantics (Gelfond and Lifschitz 1991)
and supported by well-engineered implementations such as SMODELS (Niemelä and Simons 1997)
and DLV (Eiter et al. 1997), just to name a few. Recent developments of the paradigm and
its implementations include support for uninterpreted function symbols, pioneered by the
work on finitary programs (Bonatti 2004; Bonatti 2008). These works gave rise to fur-
ther developments, including argument restricted programs (Lierler and Lifschitz 2009)
and FDNC programs (Simkus and Eiter 2007), that address three limitations of finitary
programs: a restriction on the number of odd-cycles in the dependency graph; the unde-
cidability of the class of finitary programs; the dependencyof reasoning on the set of odd-
cycles, for which there is currently no general algorithm (Bonatti 2008). The drawback of
these approaches, in turn, is that either they cannot express predicates with infinite exten-
sions such as the standard list and tree manipulation predicates (Calimeri et al. 2008), or
they have to restrict predicate arity and rule structure in such a way that - roughly speaking
- only models shaped like labelled trees can be characterized (Simkus and Eiter 2007).

In this paper we propose a class of programs called FP2 that enjoys a different trade-off
between expressiveness and complexity. FP2 is inspired byU -bounded programs (the ex-
tension of finitary normal programs with bounded local variables introduced in (Bonatti 2004,
Sec. 5)). FP2 programs retain the ability of expressing predicates with infinite extensions,

http://arxiv.org/abs/1007.3663v1

2 S. Baselice, P.A. Bonatti

and fully support predicates with arbitrary arity; moreover, deciding whether a program
belongs to FP2 is decidable, as well as skeptical and credulous stable model reasoning,
provided that the query iscall-safe. Odd cycles are supported by composing FP2 programs
with argument restricted programs.

The paper is organized as follows. After some preliminarieson logic programming, in
Sec. 3 we introduceterm comparisonrelations based on a measure of term size called
norm, and show how to compute those relations. In Sec. 4 we apply the term comparison
relations to definerecursion patterns, that is, distinguished sets of arguments whose size
almost never increases during recursion; we prove that if a recursion pattern exists then
acyclic recursion depth is bounded, and there can be no odd-cycles. Then, in Sec. 6 we
define FP2 and show that a form of SLD resolution with loop checking calledacyclic
derivationssuffice to compute a representative set of supports for each subgoal relevant to
a given query. The output of this phase is a finite ground program that can be fed to an ASP
solver to answer credulous and skeptical queries, in the same spirit as finitary programs.
To re-introduce odd-cycles (and hence the ability to express constraints) in FP2, we show
in Sec. 7 how to compose FP2 programs with argument restricted programs. Two sections,
on related work and a final discussion, conclude the paper. Many proofs are omitted due to
space limitations.

2 Preliminaries and notation

We assume the reader to be familiar with classical logic programming (Lloyd 1984).(Nor-
mal) logic programsare finite sets of rulesA ← L1, ..., Ln (n ≥ 0), whereA is a
logical atom and eachLi (i = 1, ..., n) is a literal, that is, either a logical atomB or a
negated atomnotB. If R is a rule with the above structure, then lethead(R) = A and
body(R) = {L1, ..., Ln}. Moreover, letbody+(R) (respectivelybody−(R)) be the set of
all atomsB s.t.B (respectivelynotB) belongs tobody(R). For all predicate symbolsp,
a p-atomA is an atom whose predicate, denoted bypred(A), is p. Similarly ap-literal L
is a literal whose predicate, denoted bypred(L), is p. The ground instantiation of a pro-
gramP is denoted byGround(P). A Herbrand modelM of P is astable modelof P iff
M is the least Herbrand model ofPM andPM is theGelfond-Lifschitz transformationof
P (Gelfond and Lifschitz 1991), obtained fromGround(P) by (i) removing all rulesR
such thatbody−(R) ∩M 6= ∅, and (ii) removing all negative literals from the body of the
remaining rules. Askepticalconsequence of a programP is a formula satisfied by all the
stable models ofP . A credulousconsequence ofP is a formula satisfied by at least one
stable model ofP .

The atom dependency graph of a programP is a labelled directed graph, denoted by
DGa(P), whose vertices are the ground atoms ofP ’s language. Moreover,

i) there exists an edge labelled ‘+’ (called positive edge) fromA toB iff for some rule
R ∈ Ground(P), A = head(R) andB ∈ body(R);

ii) there exists an edge labelled ‘-’ (called negative edge)fromA toB iff for some rule
R ∈ Ground(P), A = head(R) andnotB ∈ body(R).

An atomA dependsonB if there is a directed path fromA to B in DGa(P). Similarly,
thepredicate dependency graph of a programP is a labelled directed graph, denoted by

A decidable subclass of finitary programs 3

DGp(P), whose vertices are the predicate symbols ofP ’s language. Edges are defined
by analogy with the atom dependency graph. Anodd-cycleis a cycle in an atom (resp.
predicate) dependency graph with an odd number of negative edges. A ground atom (resp.
a predicate symbol) isodd-cyclicif it occurs in an odd-cycle. Given a graphG, we denote
by SCC(G) the set of all strongly connected components inG. We say that a ruleR is in a
componentC of a predicate dependency graph ifpred(head(R)) is a vertex inC.

3 Norms and term comparisons

Norms have been introduced for the static termination analysis of logic programs, see for
example (Bossi et al. 1994; Genaim et al. 2002). Terminationproofs require certain pred-
icate arguments to decrease strictly during recursion; we admit cyclic programs, instead,
and consider non-strict orderings. For all sets of (possibly nonground) termst, let |t| (the
normof t) be the number of variables and function symbols occurring in t (constants are
regarded as0-ary functions). Norms are extended to term sequences~t = t1, . . . , tn in the
natural way: By|t1, . . . , tn| we denote|t1| + · · · + |tn|. For all vectors of terms~t and
~u, define~t 4 ~u (resp.~t ≺ ~u) iff for all grounding substitutionsσ, |~tσ| ≤ |~uσ| (resp.
|~tσ| < |~uσ|). Moreover, we write~t - ~u iff ~t is almost never larger than~u, that is, there
exist only finitely many (possibly no) grounding substitutionsσ such that|~tσ| > |~uσ|.
Note that~t ≺ ~u⇒ ~t 4 ~u and~t 4 ~u⇒ ~t - ~u. Note also that the norm over term sequences
and the three comparison relations are insensitive to permutations. More precisely, for all
permutations~t1 of ~t, we have|~t1| = |~t|; therefore, if⋖ is any of the relations4,≺, and-,
then for all~u, ~t1 ⋖ ~u⇔ ~t⋖ ~u and~u⋖ ~t1 ⇔ ~u⋖ ~t. All of these relations can be computed
via simple variable occurrence counting.

Theorem 3.1

Let NOcc(s,~t) denote the number of occurrences of symbols in ~t. For all (possibly non-
ground) term vectors~t and~u,

1. ~t ≺ ~u iff |~t | < |~u| and for all variablesx, NOcc(x,~t) ≤ NOcc(x, ~u);

2. ~t 4 ~u iff |~t | ≤ |~u| and for all variablesx, NOcc(x,~t) ≤ NOcc(x, ~u);
3. ~t - ~u iff either~t 4 ~u or for all variablesx, NOcc(x,~t) < NOcc(x, ~u) 1.

Proof. It is easier to prove the contrapositive (which is equivalent).
1) First suppose that|~t | ≥ |~u|. Then for allσ mapping all variables onto constants, we

have|~t | = |~tσ | and|~u| = |~uσ|. This implies|~tσ | ≥ |~uσ|, and hence~t ≺ ~u does not hold.
Second, if for some variablex, NOcc(x,~t) > NOcc(x, ~u), then there exists aσ mapping
all variables butx onto constants, and mappingx on a term with size> |u|. It is not hard
to see that|~tσ | > |~uσ|, and hence~t ≺ ~u does not hold. This concludes the proof of point
1. The proof of points 2 and 3 is based on analogous arguments. ✷

1 We cannot relax this condition. Indeed, let~t = [X,Y, f(a)] and~u = [X,Y, Y]. It holds thatNOcc(X,~t) ≤

NOcc(X, ~u) andNOcc(Y,~t) < NOcc(Y, ~u). However, if we setY = a, for infinitely many substitutionsσ
for X we have that|[X,a, f(a)]σ| > |[X,a, a]σ|.

4 S. Baselice, P.A. Bonatti

Example 3.2
ClearlyX ≺ f(X) 4 g(X). Moreover,f(X, g(a)) - f(X,Y), because|f(X, g(a))σ| <

|f(X,Y)σ| holds whenever|Y σ| > 2 (for a finite programP , the set of terms with norm
1 or 2 is finite). Finally,f(X) andf(Y) are incomparable.

4 Restricting recursion and odd-cycles

In FP2 programs recursion and odd-cycles are restricted, byanalogy with finitary pro-
grams. This is partly achieved by requiring that for some groups of predicate arguments,
norms should not increase “too much” during recursion. Suchgroups of arguments are
formalized via a suitable notion of argumentselection indexes.

An n2k-selection indexis a set of distinct integersa = {a1, . . . , ak} such that1 ≤
a1 < a2 < ... < ak ≤ n. An n-selection indexis anyn2k-selection index. By−a
we denote thecomplementof ann-selection indexa, that is, the set of integers between
1 andn that do not occur ina. A selection index can beapplied to an atom to extract
the corresponding arguments: for all atomsA = p(t1, . . . , tn) andn2k-selection indexes
a, defineA[a] = ta1

, . . . , tak
. Similarly, for all literalsL = not p(t1, . . . , tn) andn2k-

selection indexesa, defineL[a] = ta1
, . . . , tak

.
In FP2 programs each predicate is associated by a selection index to a group of ar-

guments whose size almost never increases during recursion. Formally, aselection index
mappingfor a programP is a functionµ mapping eachn-ary predicate symbolp in P

on an n-selection indexµp. With a slight abuse of notation, ifp is the predicate occurring
in an atomB then we abbreviateB[µp] with B[µ]. Similarly, if L is a p-literal thenL[µ]
abbreviatesL[µp].

We are only left to formalize two requirements: (i) the selected arguments should almost
never increase during top-down evaluations, and (ii) thereshould be no odd-cycles, that in
this context might be a symptom of the presence of infinitely many odd-cycles, thereby vi-
olating one of the essential properties of finitary programs. A preliminary notion is needed
first: a selection index mappingπ is completefor an-ary predicate symbolp if π mapsp
on ann2n-selection indexπp.

Definition 4.1
• A rule R in a programP is decreasingw.r.t. a selection index mappingπ for P iff

for all literalsL ∈ body(R) such thatpred(L) andpred(head(R)) occur in the same
strongly connected component ofDGp(P), L[π] ≺ head(R)[π] .

• A ruleR in a programP is almost never increasingw.r.t. a selection index mapping
π if, for all literalsL ∈ body(R) s.t.pred(L) andpred(head(R)) occur in the same
strongly connected component ofDGp(P), the following conditions hold:

1. L[π] - head(R)[π], and
2. π is complete forpred(L) andpred(head(R)).

Definition 4.2
A recursion patternπ for a programP is a selection index mapping forP s.t. for each
strongly connected componentC ∈ SCC(DGp(P)) at least one of the following conditions
holds:

A decidable subclass of finitary programs 5

1. allR ∈ C are decreasing w.r.t.π;

2. allR ∈ C are almost never increasing w.r.t.π andC does not contain any odd-cycles.

As we anticipated, the existence of recursion patterns implies bounds on recursion depth
and odd-cycle freedom.

Lemma 4.3

If a programP has a recursion pattern then all paths inDGa(P) contain finitely many
different atoms.2

Lemma 4.4

If a normal programP has a recursion pattern thenDGa(P) is odd-cycle-free.

Example 4.5

Consider the classical program for appending lists:

append([], L, L). append([X |Xs], L, [X |Ys])← append(Xs, L, Ys).

Letµ be a selection index mapping for this program. Ifµappend = {1} thenµ is a recursion
pattern; indeed, the first rule is vacuously decreasing because it has an empty body, and the
second rule is decreasing because the selected argument is decreasing:Xs ≺ [X |Xs].
Similarly, if µappend = {3} thenµ is a recursion pattern. On the contraryµappend = {2}

does not yield a recursion pattern; we haveL - L, butµappend is not complete. Finally,
µappend = {1, 2, 3} yields a recursion pattern (both rules are decreasing w.r.t. µ).

5 Acyclic derivations, supports, and stable models

By analogy with the theory of finitary programs, a queryG over an FP2 programP is an-
swered by computing in a top-down fashion a representative,partially evaluated fragment
of Ground(P) that suffices to answerG. FP2 programs will be defined so that such top-
down computations are finite and finitely many, therefore a complete enumeration thereof
is possible. Note that Lemma 4.3 is not enough for this purpose for two reasons. First,
a loop-checking mechanism should be set up to avoid infinite cyclic derivations. Second,
there could still be infinitely many bounded, acyclic derivations (a situation that commonly
arises in the presence of local variables, that makeDGp(P) infinitely branching). We shall
constrain queries and rule bodies to becall safe(see below) so that the selected, almost
never increasing arguments of each predicate are bound whenever the predicate is called;
we shall prove that, as a consequence, every subgoal yields finitely many answer substi-
tutions that are all grounding. In this section, we set up thetechnical machinery for the
acyclic top-down computations which is based on annotatingeach goal with the history of
previously resolved atoms in order to check for loops.

2 It is not hard to see that ifπ were not required to be complete for almost never increasingrules (cf. point 2 in
Def. 4.1) then this lemma would not be valid.

6 S. Baselice, P.A. Bonatti

5.1 Annotated and acyclic derivations

An annotated literal(a-literal for short) is a pairLα whereL is a literal andα is an
annotation, that is, a sequence of atoms. The empty annotation will be denoted withε. Lα
is positive(resp.negative) if L is positive (resp. negative). Anannotated goal(a-goalfor
short) is a finite sequenceG = L1α1, . . . , Lnαn of annotated literals. An annotated goal
is cyclic if some positiveLi occurs inαi , acyclicotherwise.

Given an a-goalG = L1α1, . . . , Lnαn, a positiveLiαi in G (1 ≤ i ≤ n), and a rule
R = A← L′

1, . . . , L
′

m such thatLi andA are unifiable andmgu(Li, A) = θ, the goal
(

L1α1, . . . , Li−1αi−1, L
′

1α
′, . . . , L′

mα′, Li+1αi+1, . . . , Lnαn

)

θ

whereα′ = Li ·αi is called theannotated resolventof G, Li, andR with mguθ. The atom
Li is calledselected atom, and in this paper it will always be theleftmost positive literalof
G. Accordingly, the selected literal will frequently be omitted.

An annotated derivation(a-derivationfor short) ofG0 from a programP with rules
R1, . . . , Ri, . . . and mgu’sθ1, . . . , θi, . . . is a (possibly infinite) sequence of a-goals
G0, . . . , Gi, . . . such that eachGj in the sequence withj > 0 is the annotated resolvent
of Gj−1 andRj with mguθj , for some standardized apart variantRj of a rule inP . An
a-derivation isacyclicif all of its a-goals are, possibly with the exception of the last goal if
the derivation is finite. Intuitively, an acyclic derivation fails as soon as a cycle is detected.

An a-derivation issuccessfulif it is finite and its last element contains no positive a-
literals. IfG0, . . . , Gn is a successful a-derivation with mgu’sθ1, . . . , θn, then we call the
compositionθg = θ1 ◦ · · · ◦ θn a global answerto G0, and the restriction ofθg to the
variables ofG0 ananswer substitutionto G0.

Example 5.1

Consider the programP consisting of the rulesp(X) ← q(X), q(X) ← p(X), andp(a).
The goalp(a) has both a successful acyclic a-derivationp(a)ε,✷ (where✷ denotes the
empty goal) wherep(a) is resolved with the third rule, and a failed acyclic derivation using
the first two rules:p(a)ε, q(a)p(a), p(a)(q(a) · p(a)). The underlined literals show that
the last goal is cyclic.

The main results of the paper will need the following technical definitions and lemmata.
Let G0 be an a-goal with at leastk positive a-literals. Anembedded a-derivation of

degreek for G0 is an a-derivation∆ = G0, G1, . . . such that for some suffixG′′ of G0:

• for all i = 0, 1, . . ., it holdsGi = G′

iG
′′, for someG′

i;
• the number of positive a-literals inG′

0 is k;
• if ∆ is finite andGn is its last goal, eitherG′

n has no positive a-literals orG′

n is
failed; in the former case, the embedded a-derivation issuccessful, otherwise it is
failed.

Intuitively, an embedded derivation of degreek, if successful, resolves the firstk positive
literals of the initial goal. In the following sections, we will sometimes split derivations
into multiple embedded derivations to apply the induction hypotheses. The following two
lemmata help.

A decidable subclass of finitary programs 7

Lemma 5.2(Decomposition 1)
∆ is an embedded a-derivation ofG0 from P with degree1 iff either (i) G0 is failed and
∆ = G0, or (ii) G0 has an annotated resolventG1 with ruleR and mguθ, and∆ = G0 ·∆′,
where∆′ is an embedded a-derivation ofG1 with degreek andk is the number of positive
literals in the body ofRθ.

Given two a-derivations∆ = G0, . . . , Gm and∆′ = G′

0, . . . , G
′

n such thatGm = G′

0,
the join of ∆ and∆′ is G0, . . . , Gm, G′

1, . . . , G
′

n.

Lemma 5.3(Decomposition 2)
∆ is an embedded a-derivation ofG0 from P with degreek iff either (i) ∆ is the join of
an embedded a-derivation∆′ of G0 from P with degree1 and an embedded a-derivation
of Gn fromP with degreek − 1, whereGn is the last a-goal of∆′; or (ii) ∆ is an infinite
embedded a-derivation forG0 of degree 1.

5.2 Finiteness and groundness properties of call-safe, acyclic a-derivations

The good finiteness and termination properties we need acyclic derivations to enjoy in order
to prove the termination of our algorithms can be enforced bya “call safeness” property
that ensures that the arguments selected by recursion pattern are always bound when a
predicate is called.

Definition 5.4(Call-safeness)
An a-goalL1α1, ..., Lnαn is call-safew.r.t. a selection index mappingµ iff for all variables
X occurring in someLi[µ] or in a negative literalLi (1 ≤ i ≤ n), X occurs also in a
positive literalLj, with 1 ≤ j < i. Similarly, a ruleR : A ← L1, L2, ..., Ln is call-safe
w.r.t.µ iff for each variableX occurring inR, some of the following conditions hold:

1. X occurs inA[µ];
2. X occurs inbody(R); moreover, ifX occurs inLi[µ] or in a negative literalLi, for

somei = 1, . . . , n, thenX occurs also in a positive literalLj , with 1 ≤ j < i.

Finally, a programP is call-safew.r.t.µ iff for all R ∈ P , R is call-safe w.r.t.µ.

Example 5.5
Consider the following program for reversing a list:

reverse([], []). reverse([X |Y], Z)← reverse(Y,W), append(W, [X], Z).

The first rule is trivially call safe w.r.t. any selection index mapping. Ifµreverse = {1}

andµappend = {1} then the second rule is call-safe w.r.t.µ. To see this, note that: (i)X
andY satisfy condition (1); (ii)Z satisfies (2) because it occurs in the body but not in any
selected argument nor in any negative literal; (iii)W , the selected argument of the second
subgoal, satisfies condition (2) because it occurs also in the first subgoal.

If both P andG are call-safe, then call-safeness is preserved along all the steps of a
derivation:

8 S. Baselice, P.A. Bonatti

Lemma 5.6
LetP be a normal logic program andG an a-goal. IfP andG are call-safe w.r.t. a selection
index mappingµ, then all resolvents ofG and a ruleR ∈ P are call-safe w.r.t.µ, too.

Proof. Let G′ be an annotated resolvent of the first positive a-literalLα in G and a rule
R = A ← L1, ..., Lk in P with a substitutionθ = mgu(L,A). SinceG is call-safe,
L[µ] is ground, and so must beAθ[µ]. It follows – sinceP is call-safe – that the a-goal
L1(L · α), ..., Lk(L · α) must be call-safe w.r.t.µ. ThenG′ is call-safe w.r.t.µ, too. ✷

Furthermore, the binding propagation schema imposed by call-safeness ensures that global
answers are grounding:

Lemma 5.7
Let P be a normal logic program andG0 an a-goal. Assume thatP andG0 are call-safe
w.r.t. a selection index mappingµ. If G0 has a successful a-derivation∆ = G0, ..., Gn

fromP with global answerθ, then for alli = 0, ..., n, the a-goalGiθ is ground.

Proof.By induction on the length of∆.

Base case (the length of ∆ is 0): Let∆ = G0. SinceG0 is call-safe, all its a-literals have
to be negative and ground. Then,G0θ is ground.

Inductive step (the length of ∆ is n+ 1): Let ∆ = G0, G1, ..., Gn+1. By Lemma 5.6,
G1 is call-safe w.r.t.µ. Moreover,∆′ = G1, ..., Gn+1 is a successful a-derivation of
lengthn for G1 with global answerθ′ more general thanθ. By inductive hypohesis,
for all i = 1, ..., n + 1, the a-goalGiθ

′ is ground. SinceG1 is a resolvent ofG0 and
both goals are call-safe, all variables inG0θ must be also inG1θ

′. Consequently,G0θ is
ground.

✷

The proof of the main theorem – that we need to prove the termination of our reasoning
algorithm – will be based on inductions over the three indices defined below.

Let the height of a predicateq be the cardinality of the set of predicates reachable fromq

in DGp(P). Theheightof an atomA is the height ofpred(A). Note that (i)height(A) ≥ 1;
(ii) if pred(A) depends onpred(A′) but not viceversa, thenheight(A) > height(A′); (iii)
if pred(A) andpred(A′) belong to the same strongly connected component ofDGp(P),
thenheight(A) = height(A′). By convention, the height of a negative literal is0.

Let π be a recursion pattern forP , andA be an atom such thatA[π] is ground. Thecall
sizeof A is |A[π]| (the norm ofA[π]).

For the strongly connected componentsC of DGp(P) in which the call size does not
decrease during recursion, we adopt a “loop saturation” index. Let aC-atombe an atom
A with pred(A) ∈ C. Given a groundC-atomA, let maxA be the number of groundC-
atomsB such thatA depends onB. Such an integermaxA exists due to the following
lemma (that shows whyπ should be complete over suchC):

Lemma 5.8
Let P be a program with a recursion patternπ andC be a strongly connected component
of DGp(P) s.t. π is complete for predicates inC. Every groundC-atomA depends on
finitely manyC-atoms inP .

A decidable subclass of finitary programs 9

ClearlymaxA is an upper bound to the number of consecutive groundC-atoms occurring
in an acyclic annotation. Theloop saturationindex of an a-literalAα is maxA minus the
length of the longest prefix ofα consisting ofC-atoms only. If the loop saturation index of
Aα is 0, then every resolvent ofAα that contains aC-atom is cyclic; if the loop saturation
index isℓ > 0, then all theC-atoms in the resolvents ofAα have loop saturation index
ℓ− 1.

Theorem 5.9(Strong finiteness)
LetP be a program with a recursion patternπ. LetG0 be an a-goal withk or more positive
a-literals. Assume thatP andG0 are call-safe w.r.t.π. ThenG0 has finitely many acyclic
embedded a-derivations of degreek fromP . Moreover, they are all finite.

Proof.By induction on the maximum height of the literals inG0. The base case is trivial.
Now assume that the theorem holds for all heights≤ n; let A1α1, . . . , Akαk be the firstk
positive a-literals ofG0, and assume that the maximum height ofA1, . . . , Ak is n+ 1.

We first prove the theorem for “homogeneous” cases where the atoms with maximum
height belong to a same strongly connected componentC of DGp(P), that is, the members
of {A1, . . . , Ak} with heightn + 1 are allC-atoms. This case is further divided in two
subcases:

SC1 all rulesR ∈ C are decreasing w.r.t. the recursion patternπ;
SC2 all rulesR ∈ C are almost never increasing w.r.t.π.

Proof of SC1. By induction on the maximum call size of the members of{A1, . . . , Ak}

with heightn+ 1.
Base case for SC1(the maximum call size is0). By induction onk. If k = 1, then for

all resolventsG1 of G0 with ruleR and mguθ, consider the positive literalsA′

1 . . . A
′

j in
the body ofRθ. Since the call size ofA1 is 0, R is decreasing w.r.t.π, and the call size
is non-negative, it follows that the height ofA′

1 . . . A
′

j must be smaller thann+ 1. By the
induction hypothesis relative to height, the embedded a-derivations forG1 of degreej are
finite and finitely many. Then the same property holds for the embedded a-derivations for
G0 of degree1, by Lemma 5.2. This completes the proof fork = 1.

Now assumek > 1. By Lemma 5.3, every embedded a-derivations forG0 of degreek
is the join of two embedded a-derivations of degree1 andk − 1, respectively. Then the
theorem easily follows from the induction hypothesis for degreesk′ < k.

Induction step for SC1(the maximum call size isc > 0). The proof is similar to the
proof of the base case. The only difference is that the the positive literalsA′

1 . . . A
′

j in the
body ofRθ may belong toC and have degreen+1, however their maximum call size must
be smaller thanc becauseR is decreasing w.r.t.π. Then it suffices to apply the induction
hypothesis relative to the maximum call size instead of the one relative to height. This
completes the proof of SC1.

Proof of SC2. Analogous to the proof of SC1. In this case the induction is on the maxi-
mum loop saturation indexℓ of the first positive a-literalsA1α1, . . . , Akαk. Call safeness,
Lemma 5.6, and the completeness ofτ overC ensure that allC-atoms occurring in the
derivation are ground, so that the loop saturation index is well-defined. Details are omitted
due to space limitations. This completes the proof of the homogeneous case.

10 S. Baselice, P.A. Bonatti

Finally, we are left to prove the theorem for “non homogeneous” goals where the atoms
with maximum height amongA1, . . . , Ak may belong to different strongly connected com-
ponents. The proof is by induction onk; the induction step relies on Lemma 5.3. ✷

Corollary 5.10
LetP be a program with a recursion patternπ andG0 be an a-goal. Assume thatP andG0

are call-safe w.r.t.π. ThenG0 has finitely many acyclic a-derivations fromP . Moreover,
they are all finite.

5.3 Acyclic supports and stable models

It is well-known that the stable models of a programP are completely characterized by
the supports ofP ’s ground atoms. In our setting, asupportfor an a-goalG with answer
substitutionθ is a set of negative literals{L1, . . . , Ln} such thatG has a successful a-
derivation fromGround(P) with answer substitutionθ and last goalL1α1, . . . , Lnαn. A
support for an atomA is a support for the a-goalAε. The set of (negative) literals occurring
in the last a-goal of a successful a-derivation∆ is called thesupport of∆. By acyclic
supportwe mean a support generated by an acyclic derivation. The first result tells that by
adopting acyclic a-derivations, only redundant supports can be lost:

Theorem 5.11(Completeness of acyclic derivations w.r.t. supports)
If G0 has a successful a-derivation∆ from P with global answerθ, thenG0 has a suc-
cessful acyclic a-derivation∆a fromP with global answerθa such thatθa is more general
thanθ and the support of∆a is more general than a subset of the support of∆.

A-derivations and the related notion of support are in closecorrespondence with the P-
proofs of (Marek and Remmel 2008) and the corresponding supports. By exploiting these
relationships and the previous lemma, one can easily prove the following characterization
of stable models in terms of the supports of acyclic a-derivations.

Theorem 5.12
Let P be a normal program. A setM of ground atoms is a stable model ofP iff M is the
set of all ground atoms that have a ground acyclic support inGround(P) satisfied byM .

6 The class FP2

We are finally ready to introduce the class of FP2 programs. Ifπ andτ are two selection
index mappings, we say thatτ containsπ (in symbols,τ ⊇ π) iff, for each predicate
symbolp, it holds thatτp ⊇ πp.

Definition 6.1(Call patterns)
A selection index mappingτ for a normal programP is a call pattern for P iff (i) τ

contains a recursion pattern ofP , and (ii) for each ruleR ∈ P there exists a permutation
L1, L2, ..., Ln of body(R) such thathead(R)← L1, L2, ..., Ln is call-safe w.r.t.τ .

Definition 6.2(FP2)
A normal logic program belongs to the classFP2 iff it has a call pattern.

A decidable subclass of finitary programs 11

Example 6.3

The append program of Example 4.5 is in FP2. It is easy to verify that if τappend = {3} then
τ is not only a recursion pattern (see Ex. 4.5), but also a call pattern. On the contrary, the
recursion pattern yielded byτappend = {1} is not a call pattern because the variableL in
the first rule occurs neither in the selected argument (the first one) nor in the body. However
this recursion pattern is contained in two call patterns, defined byτappend = {1, 2} and
τappend = {1, 3}.

For an example of a cyclic FP2 program with negation see the blocks world program in
(Bonatti 2004, Fig.4). To make it an FP2 program, uniformly replaceT + 1 with T in the
second arguments of predicateab. Then the (unique) selection index that is complete for
all predicates is a call pattern for the program.

In general, it may be necessary to use different call patterns for different initial goals,
in order to satisfy call safeness. In the above example a goalappend(t1, t2, t3) is call safe
w.r.t. some call pattern iff eithert3 is ground or at least two arguments are ground; different
situations require different call patterns.

6.1 Inference in FP2

The ground skeptical and credulous consequences of finitaryprograms can be computed by
using a ground “relevant” fragment of their ground instantiation (Bonatti 2004). Similarly,
we can reason overFP2 programs by answering queries over finite and ground programs
called support subprograms.

We start by defining a functionSsup(G,P) that, for all call-safe a-goalsG and FP2
programsP , returns a representative set of supports forG w.r.t. P . More precisely, let
Ssup(G,P) be the set of all pairs(θ, s) such thats is an acyclic support ofG in P with
global answerθ.

Proposition 6.4

Let P ∈ FP2 be a program with a call patternτ . The restriction ofSsup(G,P) to all G
that are call-safe w.r.t.τ is computable.

Proof.(Sketch) By Corollary 5.10, acyclic a-derivations ofG fromP are finite and finitely
many. Then, it suffices to enumerate all acyclic a-derivations ofG fromP . ✷

Definition 6.5

Let P be a program andQ be an atom. Thesupport subprogramS(P,Q) for Q w.r.t.P is
the set computed by the algorithmSUPPORTSUBPROGRAM (P,Q) below.

For allFP2 programs and suitably instantiated atomsQ, the support subprogramS(P,Q)

is finite, ground, and computable.

Theorem 6.6

LetP ∈ FP2 be a program with a call patternτ . For all atomsQ such thatQ[τ] is ground,
the algorithmSUPPORTSUBPROGRAM (P,Q) terminates and returns a ground program.

12 S. Baselice, P.A. Bonatti

Algorithm SUPPORTSUBPROGRAM(P,Q)

1: SSUP = Ssup(Qε,P);
2: T = {(Qθ,G) | (θ, G) ∈ SSUP};
3: T̄ = ∅;
4: S = ∅;
5: while T 6= ∅ do
6: CHOOSE(A,G) ∈ T ;
7: T = T \ {(A,G)};
8: T̄ = T̄ ∪ {(A,G)};
9: S = S ∪ {A← G};

10: for all notB ∈ G do
11: SSUP = Ssup(Bε, P);
12: T = T ∪ ({(B,G′) | (θ, G′) ∈ SSUP} \ T̄);
13: return S;

Proof. (Sketch) It can be proved by simultaneous induction that thecontents ofT are
always ground, the atomA selected at step 6 is always call-safe, and the input goal ofSsup

is call-safe thereforeSsup is computable. The induction argument relies on the following
observations: (i) the initial a-goalQε is call-safe w.r.t.τ by hypothesis, (ii) by Lemma 5.7,
all the supports returned bySsup are ground if the input goal is call-safe, and (iii) ground
atoms are vacuously call-safe. We are left to show that the loop at lines 5-12 terminates.
Observe that the atoms occurring inT during the computation belong to the following
forest: The roots are the finitely many instancesQθ inserted at step 2; the children of each
(ground) nodeA are atomsB occurring in the acyclic supports ofA and different fromA
and its ancestors. By Corollary 5.10, this tree is finitely branching; by Theorem 4.3 all the
paths are finite. Then the tree must be finite. It follows that the algorithm cannot produce
infinitely many different atomsB, and hence after a finite number of steps all the pairs
(B,G′) at line 12 shall be already contained in̄T and the while statement terminates.✷

We are only left to show thatS(P,Q) can be used to answerQ. By using the properties of
relevant subprograms (Bonatti 2004) and Theorem 5.12, we can prove that:

Theorem 6.7
Let P ∈ FP2 be a program with a call patternτ and letQ be an atom s.t.Q[τ] is ground.
For all grounding substitutionsθ, Qθ is a credulous/skeptical consequence ofP iff it is a
credulous/skeptical consequence ofS(P,Q).

It follows that call-safe queries are computable over FP2 programs. In general, this prop-
erty does not hold if call safeness does not hold, as proved bythe following theorem that
is based on an FP2 encoding of a Turing machine similar to those used in (Bonatti 2004):

Theorem 6.8
The problems of deciding whether anFP2 programP credulously/skeptically entails an
existentially quantified goal∃G are both r.e.-complete.

Moreover, the class of FP2 programs is decidable because thespace of call patterns
and recursion patterns for every given programP is finite, and a simple generate and test
algorithm can be used for FP2 membership checking. Then we get:

Proposition 6.9
Deciding whether a programP is in FP2 is decidable.

A decidable subclass of finitary programs 13

7 Extending FP2 with odd-cycles

By Lemma 4.4, FP2 programs cannot be inconsistent nor express denials (that require odd-
cycles). This restriction can be relaxed simply by composing FP2 programs with argument
restricted programs (Lierler and Lifschitz 2009), that arecurrently the largest known de-
cidable class of programs with thepersistent CFSP propertyand have no restriction on
odd-cycles.

Definition 7.1

(Baselice and Bonatti 2008) A class of programsC has thecomputable finite semantics
property (CFSP for short) iff (i) for allP in C, P has finitely many stable models each
of which is finite, and (ii) there exists a computable function f mapping each member of
C onto its set of stable models. Moreover, the CFSP property ispersistentiff C is closed
under language extensions (i.e., adding more constants or function symbols to the language
of a programP ∈ C yields another program inC).

The CFSP property abstracts a number of program classes withfunction symbols:ω-
restricted programs (Syrjänen 2001),λ-restricted programs (Gebser et al. 2007), argument
restricted programs, and more generally the semidecidableclass of finitely-ground pro-
grams (Calimeri et al. 2008). The persistent CFSP property is important because, under
suitable hypotheses, programs with this property can be composed with finitary programs
without affecting the decidability of inference (Baseliceand Bonatti 2008). We need a pre-
liminary result:

Proposition 7.2

Argument restricted programs have the persistentCFSP .

The forms of composition studied in (Baselice and Bonatti 2008) are the following. Let
Def(P) denote the set of predicatesdefined inP , that is, the set of all predicate symbols
occurring in the head of some rule inP . Let Called(P) be the set of predicatescalled by
P , that is, the set of all predicate symbols occurring in the body of some rule inP . Then
we say thatP1 depends onP2, in symbolsP1 ✄ P2, if and only if

Def(P1) ∩ Def(P2) = ∅ , Def(P1) ∩ Called(P2) = ∅ , Called(P1) ∩ Def(P2) 6= ∅ .

Moreover,P1 andP2 are independent, in symbolsP1‖P2, if and only if

Def(P1) ∩Def(P2) = ∅ , Def(P1) ∩ Called(P2) = ∅ ,Called(P1) ∩ Def(P2) = ∅ .

Now the techniques of (Baselice and Bonatti 2008), based on the splitting theorem, can be
easily adapted to prove the following result:

Theorem 7.3

For all programsP andQ such thatP is in FP2 andQ has the persistent CFSP, ifP ✄ Q

orP‖Q, then both credulous and skeptical consequences fromP ∪Q are decidable.

In particular, this result shows that it is theoretically possible to add the expressiveness of
FP2 programs to argument restricted (actually, all finitelyground) programs.

14 S. Baselice, P.A. Bonatti

Fig. 1. List processing

member(X, [X|Y]).
member(X, [Y |Z])← member(X,Z).

reverse(L,R)← reverse(L, [], R).
reverse([], R, R).
reverse([X|Xs], A, R)← reverse(Xs, [X|A],R).

Fig. 2. SAT problem
s(and(X, Y))← s(X), s(Y). s(not(X))← not s(X).
s(or(X, Y))← s(X). s(A)← member(A, [p, q, r]), notns(A).
s(or(X, Y))← s(Y). ns(A)← member(A, [p, q, r]), not s(A).

8 Related work

ASP programs with function symbols are able to encode infinite domains and recursive
data structures, such as lists, trees, XML/HTML documents,time. However, some restric-
tions are needed to keep inference decidable and, to this end, ASP researchers have recently
made several proposals (Syrjänen 2001; Bonatti 2004; Simkus and Eiter 2007; Gebser et al. 2007;
Baselice et al. 2009; Calimeri et al. 2008; Calimeri et al. 2009). We will discuss finitely-
ground and FDNC programs, as they include all the other classes mentioned above.

Finitely-ground programsare DLP programs with function symbols introduced in (Calimeri et al. 2008).
If we compare this class withFP2 programs, we note that:

• Ground and nonground queries are computable for finitely-ground programs; call-
safe queries are computable forFP2 programs while, in general, nonground queries
are r.e.-complete.
• The answer sets of finitely-ground programs are computable because their semantics

is finite. Infinite stable models are ruled out. On the contrary, FP2 programs may
have infinite and infinitely many answer sets.
• Finitely-ground programs are safe, whileFP2 programs admit unsafe rules.
• Odd-cycles may occur in finitely-ground programs but not inFP2 programs. The

latter can be extended with odd-cyclic predicates through composition with CFSP
programs as shown in Section 7.
• Deciding whether a program is finitely-ground is semidecidable, while the class of
FP2 programs is decidable.
• Finitely-ground programs are disjunctive, whileFP2 is currently restricted to normal

programs.

Finitely-ground andFP2 programs are not comparable due to the different recursion modes
that they admit and that make finitely-ground programs suitable for a bottom-up evaluation
andFP2 programs suitable for a top-down evaluation. Figures 1, 2 and 3 and Example 4.5
illustrate some programs that areFP2 but not finitely-ground.

FDNC programs(Simkus and Eiter 2007) achieve inference decidability by exploiting
a tree-model property, by analogy with decidable fragmentsof first-order logic such as
description logics and the guarded fragment. The tree-model property derives from syn-
tactic restrictions on predicate arity and on the occurrences of function symbols (modelled
around the skolemization of guarded formulae). FDNC programs can be applied to en-
code ontologies expressed in description logics, and are suitable to model a wide class of
planning problems. Summarizing:

A decidable subclass of finitary programs 15

Fig. 3. Satisfiability check for Quantified Boolean Formulas

qbf(A, I)← atomic(A), curr value(A/t, I).
qbf(or(F,G), I)← qbf(F, I).
qbf(or(F,G), I)← qbf(G, I).
qbf(and(F,G), I)← qbf(F, I), qbf(G, I).
qbf(not(F), I)← not qbf(F, I).
qbf(exists(X,F), I)← qbf(F, [X/t|I]).
qbf(exists(X,F), I)← qbf(F, [X/f |I]).
qbf(forall(X, F), I)← qbf(F, [X/t|I]), qbf(F, [X/f |I]).
curr value(B, [B|L]).
curr value(X/V, [Y/W |L])← notX = Y, curr value(X/V, L).

• Both FDNC andFP2 programs may have infinite and infinitely many answer sets.
• Unlike FP2 programs, the answer sets of FDNC programs can be finitely repre-

sented.
• Ground and nonground queries over FDNC programs are always computable; only

call-safe queries are computable forFP2 programs.
• FDNC programs are safe, whileFP2 programs admit unsafe rules.
• Odd-cycles may occur in FDNC programs but not inFP2 programs.
• FDNC programs are disjunctive.

Therefore, FDNC andFP2 programs are incomparable. The programs in Figures 1, 2 and 3
and in Example 4.5 are examples ofFP2 programs that are not FDNC.

9 Summary and conclusions

We have introduced FP2, a decidable class of well-behaved normal programs whose prop-
erties are orthogonal to those of the other decidable classes of ASP programs with function
symbols.

Inference is decidable, too. We have shown a method based on apartial evaluation of
the program w.r.t. a queryQ (algorithmSUPPORTSUBPROGRAM) that produces a ground
programS(P,Q) that can be fed to any ASP reasoner in order to answerQ. The query
Q needs not be ground: it can be call-safe, and it is not hard to see that the method can
produce answer substitutions by unifyingQ with the stable models ofS(P,Q).

Note that currently this mixed top-down/ASP solving methodis not intended to be an ef-
ficient implementation; it is only a proof method for decidability results. In future work the
potential of top-down computations as an implementation technique should be evaluated
and compared with the magic-set approach adopted in (Calimeri et al. 2008).

The norm-based definition of FP2 programs is actually a simplification of the (approx-
imate) static analysis method for recognizingU -bounded finitary programs described in
(Bonatti 2001; Bonatti 2004). The binding propagation analysis of the old recognizer is
more powerful, and we are planning to improve FP2 to cover more programs accepted
with the old method. Further interesting issues for future work comprise: a precise com-
plexity analysis of FP2 membership checking and inference;support for disjunctive pro-
grams; more general forms of composition with persistentlyCFSP programs; integration
with FDNC programs for more general support to odd-cycles.

16 S. Baselice, P.A. Bonatti

References

BASELICE, S.AND BONATTI , P. A. 2008. Composing normal programs with function symbols. See
de la Banda and Pontelli (2008), 425–439.

BASELICE, S., BONATTI , P. A., AND CRISCUOLO, G. 2009. On finitely recursive programs.
TPLP 9,2, 213–238.

BONATTI , P. 2001. Prototypes for reasoning with infinite stable models and function symbols. In
Logic Programming and Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001.
LNCS, vol. 2173. Springer, 416–419.

BONATTI , P. A. 2004. Reasoning with infinite stable models.Artif. Intell. 156,1, 75–111.

BONATTI , P. A. 2008. Erratum to: Reasoning with infinite stable models [Artificial Intelligence 156
(1) (2004) 75-111].Artif. Intell. 172,15, 1833–1835.

BOSSI, A., COCCO, N., AND FABRIS, M. 1994. Norms on terms and their use in proving universal
termination of a logic program.Theor. Comput. Sci. 124,2, 297–328.

CALIMERI , F., COZZA, S., IANNI , G., AND LEONE, N. 2008. Computable functions in ASP:
Theory and implementation. See de la Banda and Pontelli (2008), 407–424.

CALIMERI , F., COZZA, S., IANNI , G., AND LEONE, N. 2009. Magic sets for the bottom-up eval-
uation of finitely recursive programs. InLPNMR, E. Erdem, F. Lin, and T. Schaub, Eds. Lecture
Notes in Computer Science, vol. 5753. Springer, 71–86.

DE LA BANDA , M. G. AND PONTELLI , E., Eds. 2008.Logic Programming, 24th International Con-
ference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings. Lecture Notes in Computer
Science, vol. 5366. Springer.

EITER, T., LEONE, N., MATEIS, C., PFEIFER, G.,AND SCARCELLO, F. 1997. A deductive system
for non-monotonic reasoning. InLogic Programming and Nonmonotonic Reasoning, 4th Interna-
tional Conference, LPNMR’97, Proceedings. LNCS, vol. 1265. Springer, 364–375.

GEBSER, M., SCHAUB, T., AND THIELE, S. 2007. Gringo : A new grounder for answer set pro-
gramming. InLPNMR, C. Baral, G. Brewka, and J. S. Schlipf, Eds. Lecture Notes inComputer
Science, vol. 4483. Springer, 266–271.

GELFOND, M. AND L IFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases.New Generation Computing 9,3-4, 365–386.

GENAIM , S., CODISH, M., GALLAGHER , J.,AND LAGOON, V. 2002. Combining norms to prove
termination. InVerification, Model Checking, and Abstract Interpretation, Third International
Workshop, VMCAI 2002. LNCS, vol. 2294. Springer, 126–138.

L IERLER, Y. AND L IFSCHITZ, V. 2009. One more decidable class of finitely ground programs. In
ICLP, P. M. Hill and D. S. Warren, Eds. Lecture Notes in Computer Science, vol. 5649. Springer,
489–493.

LLOYD , J. W. 1984.Foundations of Logic Programming, 1st Edition. Springer.

MAREK, V. W. AND REMMEL , J. B. 2008. On the continuity of Gelfond-Lifschitz operator and
other applications of proof-theory in ASP. See de la Banda and Pontelli (2008), 223–237.

NIEMELÄ , I. AND SIMONS, P. 1997. Smodels – an implementation of the stable model andwell-
founded semantics for normal LP. InLogic Programming and Nonmonotonic Reasoning, 4th
International Conference, LPNMR’97, Proceedings. LNCS, vol. 1265. Springer, 421–430.

SIMKUS , M. AND EITER, T. 2007. FDNC: Decidable non-monotonic disjunctive logicprograms
with function symbols. In14th Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2007. Lecture Notes in Computer Science, vol. 4790. Springer, 514–530.

SYRJÄNEN, T. 2001. Omega-restricted logic programs. InLPNMR, T. Eiter, W. Faber, and
M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 2173. Springer, 267–279.

	1 Introduction
	2 Preliminaries and notation
	3 Norms and term comparisons
	4 Restricting recursion and odd-cycles
	5 Acyclic derivations, supports, and stable models
	5.1 Annotated and acyclic derivations
	5.2 Finiteness and groundness properties of call-safe, acyclic a-derivations
	5.3 Acyclic supports and stable models

	6 The class FP2
	6.1 Inference in FP2

	7 Extending FP2 with odd-cycles
	8 Related work
	9 Summary and conclusions
	References

