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Abstract

An important issue towards a broader acceptance of answer-set programming (ASP) is the deploy-
ment of tools which support the programmer during the codingphase. In particular, methods for
debuggingan answer-set program are recognised as a crucial step in this regard. Initial work on
debugging in ASP mainly focused on propositional programs,yet practical debuggers need to han-
dle programs with variables as well. In this paper, we discuss a debugging technique that is directly
geared towards non-ground programs. Following previous work, we address the central debugging
question why some interpretation is not an answer set. The explanations provided by our method are
computed by means of a meta-programming technique, using a uniform encoding of a debugging
request in terms of ASP itself. Our method also permits programs containing comparison predicates
and integer arithmetics, thus covering a relevant languageclass commonly supported by all state-of-
the-art ASP solvers.

KEYWORDS: answer-set programming, program analysis, debugging

1 Introduction

During the last decade, answer-set programming (ASP) has become a well-acknowledged
paradigm for declarative problem solving. Although there exist efficient solvers (see, e.g.,
Denecker et al. (2009) for an overview) and a considerable body of literature concerning
the theoretical foundations of ASP, comparably little effort has been spent on methods to
support the development of ASP programs. Especially noviceprogrammers, tempted by
the intuitive semantics and expressive power of ASP, may getdisappointed and discour-
aged soon when some observed program behaviour diverges from his or her expectations.
Unlike for other programming languages like Java or C++, there is currently little sup-
port for debugginga program in ASP, i.e., methods toexplain and localise unexpected
observations. This is a clear shortcoming of ASP and work in this direction has already
started (Brain and De Vos 2005; Syrjänen 2006; Brain et al. 2007; Mikitiuk et al. 2007; Caballero et al. 2008;
Gebser et al. 2008; Pontelli et al. 2009; Wittocx et al. 2009).

∗ This work was partially supported by the Austrian Science Fund (FWF) under grant P21698.
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Most of the current debugging approaches for ASP rely on declarative strategies, focus-
ing onconceptual errorsof programs, i.e., mismatches between the intended meaningand
the actual meaning of a program. In fact, an elegant realisation of declarative debugging is
to use ASP itself to debug programs in ASP. This has been put forth, e.g., in the approaches
of Brain et al. (2007) and Gebser et al. (2008). While the former uses a “tagging” method
to decompose a program and applying various debugging queries, the latter is based on a
meta-programming technique, i.e., using a program over a meta-language to manipulate a
program over an object language (in this case, both the meta-language and the object lan-
guage are instances of ASP). Such techniques have the obvious benefits of allowing (i) to
use reliable state-of-the-art ASP solvers as back-end reasoning engines and (ii) to stay
within the same paradigm for both the programming and debugging process. Indeed, both
approaches are realised by the systemspock (Gebser et al. 2009). However, like most
other ASP debugging proposals,spock can deal only with propositional programs which
is clearly a limiting factor as far as practical applications are concerned.

In this paper, we present a debugging method for non-ground programs following the
methodology of the meta-programming approach of Gebser et al. (2008) for propositional
programs. That is to say, we deal with the problem of finding reasons why some inter-
pretation isnot an answer set of a given program. This is addressed by referring to a
model-theoretic characterisation of answer sets due to Lee(2005): An interpretationI is
not an answer set of a programP iff (i) some rule inP is not classically satisfied byI
or (ii) I contains some loop ofP that is unfounded byP with respect toI . Intuitively,
Item (ii) states that some atoms inI are not justified byP in the sense that no rules inP
can derive them or that some atoms are inI only because they are derived by a set of rules
in a circular way—like theOuroboros, the ancient symbol of a dragon biting its own tail
that represents cyclicality and eternity. This characterisation seems to be quite natural and
intuitive for explainingwhy some interpretation is not an answer set. Furthermore, apar-
ticular benefit is that it can ease the subsequentlocalisationof errors since the witnesses
why an interpretation is not an answer set, like rules which are not satisfied, unfounded
atoms, or cyclic rules responsible for unfounded loops, canbe located in the program or
the interpretation.

Although, at first glance, one may be inclined to directly apply the original approach of
Gebser et al. (2008) to programs with variables by simply grounding them in a preprocess-
ing step, one problem in such an endeavour is that then it is not immediate clear how to
relate explanations for the propositional program to the non-ground program. The more se-
vere problem, however, is that the grounding step requires exponential space and time with
respect to the size of the problem instance which yields a mismatch of the overall complex-
ity as checking whether an interpretation is an answer set ofsome (non-ground) program
is complete forΠP

2 (Eiter et al. 2004), and thus the complementary problem why some in-
terpretation is not an answer set is complete forΣP

2 —our method to decide this problem
accounts for this complexity bound and avoids exponential space requirements. Indeed, we
devise auniform encoding of our basic debugging problem in terms of afixed disjunctive
logic programΓ and an efficient reification of a problem instance as a set∆(P , I ) of facts,
whereP is the program to be debugged andI is the interpretation under consideration.
Explanations whyI is not an answer set ofP are then obtained by the answer sets of
Γ ∪∆(P , I ).
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We stress that the definition ofΓ is non-trivial: while the meta-program in the approach
of Gebser et al. (2008) for debugging propositional disjunctive programs could be achieved
in terms of a normal non-ground program,by uniformly encoding aΣP

2 property, we reach
the very limits of disjunctive ASPand have to rely on advanced saturation techniques that
inherently require disjunctions in rule heads (Eiter et al.1997).

Currently, our approach handles disjunctive logic programs with constraints, integer
arithmetic, comparison predicates, and strong negation, thus covering a practically relevant
program class. Further language constructs, in particularaggregates and weak constraints,
are left for future work.

2 Preliminaries

We deal withdisjunctive logic programswhich are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am , not am+1, . . . , not an ,

wheren ≥ m ≥ l ≥ 0, “not” denotesdefault negation, and allai are literals over a
function-free first-order language Ł. A literal is an atom possibly preceded by thestrong
negationsymbol¬. In the sequel, we assume that Ł will be implicitly defined by the con-
sidered programs. For a ruler as above, we define theheadof r asH (r) = {a1, . . . , al},
the positive bodyas B+(r) = {al+1, . . . , am}, and thenegative bodyas B−(r) =

{am+1, . . . , an}. If n = l = 1, r is a fact; if r contains no disjunction,r is normal;
and if l = 0 andn > 0, r is aconstraint. For facts, we will omit the symbol←. A literal,
rule, or program isgroundif it contains no variables. Furthermore, a program is normal if
all rules in it are normal. Finally, we allow arithmetic and comparison predicate symbols
+, ∗, =, 6=, ≤, <, ≥, and> in programs, but these may appear only positively in rule
bodies.

Let C be a set of constants. Asubstitution overC is a functionϑ assigning each vari-
able an element ofC . We denote byeϑ the result of applyingϑ to an expressione. The
groundingof a programP relative to its Herbrand universe, denoted bygrd(P), is defined
as usual.

An interpretationI (over some language Ł) is a finite and consistent set of groundlit-
erals (over Ł) that does not contain any arithmetic or comparison predicates. Recall that
consistency means that{a,¬a} 6⊆ I , for any atoma. The satisfaction relation,I |= α,
betweenI and a ground atom, a literal, a rule, a set of literals, or a programα is defined in
the usual manner. Note that the presence of arithmetic and comparison operators implies
that the domain of our language will normally include natural numbers as well as a lin-
ear ordering,�, for evaluating the comparison relations (which coincideswith the usual
ordering in case of constants which are natural numbers).

For any ground programP and any interpretationI , thereduct, P I , of P with respect
to I (Gelfond and Lifschitz 1991) is defined asP I = {H (r) ← B+(r) | r ∈ P , I ∩

B−(r) = ∅}. An interpretationI is ananswer setof a programP iff I is a minimal model
of grd(P).

We will base our subsequent elaboration on an alternative characterisation of answer
sets following Lee (2005), described next. Given a programP , the positive dependency
graphis a directed graph(V ,A), where (i)V equals the Herbrand base of the considered
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language Ł and (ii)(a, b) ∈ A iff a ∈ H (r) andb ∈ B+(r), for some ruler ∈ grd(P).
A non-empty setL of ground literals is aloop1 of a programP iff, for each paira, b ∈ L,
there is a pathπ of length greater than or equal to 0 froma to b in the positive dependency
graph ofP such that each literal inπ is in L.

Let P be a program andI andJ interpretations. Then,J is externally supported byP
with respect toI iff there is a ruler ∈ grd(P) such that (i)I |= B+(r) andI ∩B−(r) = ∅,
(ii) H (r) ∩ J 6= ∅, (iii) (H (r) \ J ) ∩ I = ∅, and (iv)B+(r) ∩ J = ∅.

Intuitively, Items (i)–(iii) express thatJ is supported byP with respect toI , in the sense
that the grounding ofP contains some ruler whose body is satisfied byI (Item (i)) and
which is able to derive some literal inJ (Item (ii)), while all head atoms ofr not contained
in J are false underI . Moreover, Item (iv) ensures that this support is external as it is
without reference to the setJ itself.

Answer sets are now characterised thus:

Proposition 1(Lee 2005)

LetP be a program andI an interpretation. Then,I is an answer set ofP iff (i) I |= P and
(ii) every loop ofP that is contained inI is externally supported byP with respect toI .

We actually make mainly use of the complementary relation ofexternal support: Follow-
ing Leone et al. (1997), we callJ unfounded byP with respect toI iff J is not externally
supported byP with respect toI .

3 The basic debugging approach

As discussed in the introduction, we view an error as a mismatch between the intended
answer sets and the observed actual answer sets of some program. More specifically, our
basic debugging question is why a given interpretationI is not answer set of some program
P , and thus we deal with finding explanations forI not being an answer set ofP . Proposi-
tion 1 allows us to distinguish between two kinds of such explanations: (i) instantiations of
rules inP that are not satisfied byI and (ii) loops ofP in I that are unfounded byP with
respect toI . Although our basic debugging question allows for different, multi-faceted,
answers, we see two major benefits of referring to this kind ofcategorisation: First, in view
of Proposition 1, these kinds of explanations are always sufficient to explain whyI is not
an answer set ofP , and second, this method providesconcrete witnesses, e.g., unsatisfied
rules or unfounded atoms, that can help to localise the reason for an error in a program or
an interpretation in a rather intuitive way.

Before we introduce the details of our approach, we discuss its virtues compared to a
method for debugging non-ground programs which can be obtained using the previous
meta-programming technique for propositional programs due to Gebser et al. (2008).

1 Note that loops have first been studied by Lin and Zhao (2004);different definitions of loops for non-ground
programs were given by Chen et al. (2006) and Lee and Meng (2008). For our purposes, it suffices to refer to
the basic definition for ground programs.
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3.1 Prelude: A case for directly debugging non-ground programs

Explaining why some interpretation is not an answer set of some program based on the
characterisation of Lee (2005) has been dealt with in previous work for debugging propo-
sitional disjunctive logic programs (Gebser et al. 2008). In principle, we could use this
method for debugging non-ground programs as well by employing a preparatory ground-
ing step. However, such an undertaking comes at a higher computational cost compared to
our approach which respects the inherent complexity of the underlying tasks. We lay down
our arguments in what follows.

To begin with, let us recall that Gebser et al. (2008) defined afixed normal non-ground
programγ and a mappingδ from disjunctive propositional programs and interpretations to
sets of facts. Given a disjunctive programP without variables and some interpretationI ,
explanations whyI is not an answer set ofP can then be extracted from the answer sets of
γ ∪ δ(P , I ). Such a problem encoding isuniform in the sense thatγ does not depend on
the problem instance determined byP andI .

To find reasons why some interpretationI is not an answer set of a non-ground program
P , the above approach can be used by computing the answer sets of γ ∪ δ(grd(P), I ).
However, in general, the size ofgrd(P) is exponential in the size ofP , and the computation
of the answer sets of a ground program requires exponential time with respect to the size
of the program, unless the polynomial hierarchy collapses.Hence, this outlined approach
to compute explanations using a grounding step requires, all in all, exponential spaceand
double-exponential timewith respect to the size ofP . But this is a mismatch to the inherent
complexity of the overall task, as the following result shows:

Proposition 2
Given a programP and an interpretationI , deciding whetherI is not an answer set ofP
isΠP

2 -complete.

This property is a consequence of the well-known fact that the complementary problem,
i.e., checking whether some given interpretation is an answer set of some program, isΣP

2 -
complete (Eiter et al. 2004). Hence, checking whether an interpretation is not an answer
set of some program can be computed inpolynomial space.

Our approach takes this complexity property into account. We exploit the expressive
power of disjunctive non-ground ASP by providing a uniform encoding that avoids both
exponential space and double-exponential time requirements: Given a programP and an
interpretationI , we define an encodingΓ ∪∆(P , I ), whereΓ is a fixed disjunctive non-
ground program, and∆(P , I ) is an efficient encoding ofP andI by means of facts. Expla-
nations whyI is not an answer set ofP are determined by the answer sets ofΓ∪∆(P , I ).
SinceΓ is fixed, the grounding ofΓ ∪∆(P , I ) is bounded by a polynomial in the size of
P andI . Thus, our approach requires only polynomial space and single-exponential time
with respect toP andI .

Note that disjunctions can presumably not be avoided inΓ due to theΠP
2 -hardness of

deciding whether an interpretation is not an answer set of some program. One may ask,
however, whetherΓ could be normal in caseP is normal. We have to answer in the nega-
tive: answer-set checking for normal programs is complete for DP , even if no negation is
used or negation is only used in a stratified way (Eiter et al. 2004). (We recall that DP is



6 J. Oetsch, J. P̈uhrer, and H. Tompits

the class of problems that can be decided by a conjunction of an NP and an independent
co-NP property.) Hence,Γ cannot be normal unless NP= co-NP. However, one could use
two independent normal meta-programs to encode our desiredtask.

A further benefit of debugging a program directly at the non-ground level is that we
can immediately relate explanations for errors to first-order expressions in the considered
program, e.g., to rules or literals with variables instead of their ground instantiations.

In what follows, we give details ofΓ and∆ and describe their main properties.

3.2 Construction of the meta-program

3.2.1 Reification of input instances

For realising the encoding∆(P , I ) for programP and interpretationI , we rely on a reifi-
cation̺prg(P) of P and a reification̺ int(I ) of I . The former is, in turn, constructed from
reifications̺rule(r) of each individual ruler ∈ P . We introduce the mappings̺rule(·),
̺prg(·), and̺int(·) in the following.

To begin with, we need unique names for certain language elements. By anextended
predicate symbol(EPS) we understand a predicate symbol, possibly preceded by the sym-
bol for strong negation. Let·′ be an injectivelabelling functionfrom the set of program
rules, literals, EPSs, and variables to a set of labels from the symbols in our language Ł.
Note that we do not need labels for constant symbols since they will serve as unique names
for themselves.

A single program rule is reified by means of facts according tothe following definition.

Definition 1
Let r be a rule. Then,

̺rule(r) = {rule(r ′)} ∪ {head(r ′, a′) | a ∈ H (r)}∪

{posbody(r ′, a′) | a ∈ B+(r)} ∪ {negbody(r ′, a′) | a ∈ B−(r)}∪

{pred(a′,L′) | a = L(x1, . . . , xn) is a literal inr ,L is an EPS}∪
{struct(a′, i , var, x ′

i
) | a=L(x1, . . . , xn) is a literal inr , L is an EPS,

i ∈ {1, . . . , n}, andxi is a variable}∪
{struct(a′, i , const, xi) | a = L(x1, . . . , xn) is a literal inr , L is an EPS,
i ∈ {1, . . . , n}, andxi is a constant symbol}∪
{var(r ′, x ′) | x is a variable occurring inr}.

The first fact states that labelr ′ denotes a rule. The next three sets of facts associate labels
of the literals in the head, the positive body, and the negative body to the respective parts
of r . Then, each label of some literal inr is associated with a label for its EPS. The
following two sets of facts encode the positions of variables and constants in the literals of
the rule. Finally, the last set of facts states which variables occur in the ruler .

A program is encoded as follows:

Definition 2
LetP be a program. Then,

̺prg(P) =
⋃

r∈P
̺rule(r) ∪ {dom(c) | c is a constant symbol inP}∪

{arity(L′, n) | a =L(x1, . . . , xn) is a literal inP ,L is an EPS}.
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γ
guess
unsat = {guessRule(R) ∨ nguessRule(R)← rule(R),

someRule← guessRule(R),
← not someRule, rule(R),
← guessRule(R1), guessRule(R2),R1 6= R2,

subst(X ,C ) ∨ nsubst(X ,C )← guessRule(R), var(R,X ), dom(C ),
assigned(X )← subst(X ,C ),
← not assigned(X ), guessRule(R), var(R,X ),
← subst(X ,C1), subst(X ,C2),C1 6= C2}.

γ
check
unsat = {unsatisfied← satBody,not satHead,

satBody← not unsatPosbody,not unsatNegbody,
satHead← guessRule(R),head(R,A), true(A),
unsatPosbody← guessRule(R),posbody(R,A), false(A),
unsatNegbody← guessRule(R), negbody(R,A), true(A)}.

Fig. 1. Modulesγguess
unsat andγcheck

unsat.

The first union of facts stem from the reification of the singlerules in the program. The
remaining facts represent the Herbrand universe of the program and associate the EPSs
occurring in the program with their arities.

The translation from an interpretation to a set of facts is formalised by the next definition.

Definition 3
Let I be an interpretation. Then,

̺int(I ) = {int(a′) | a ∈ I } ∪ {pred(a′,L′) | a = L(x1, . . . , xn) is a literal inI ,
L is an EPS}∪
{struct(a′, i , const, xi) | a = L(x1, . . . , xn) is a literal inI , L is an EPS,
i ∈ {1, . . . , n}, andxi is a constant symbol}.

The first two sets of facts associate the literals inI with their respective labels and EPSs.
The last set of facts reifies the internal structure of the literals occurring inI .

Definition 4
Let P be a program andI an interpretation. Furthermore, letN be the the maximum of
|I | and the arities of all predicate symbols inP . Then,∆(P , I ) = ̺prg(P) ∪ ̺int(I ) ∪

{natNumber(n) | n ∈ {0, . . . ,N }}.

The literalsnatNumber(·) are necessary to add sufficiently many natural numbers to the
Herbrand universe of∆(P , I ) to carry out correctly all computations in the subsequent
program encodings. Note that the size of∆(P , I ) is always linear in the size ofP andI .

3.2.2 The meta-programΓ

We proceed with the definition of the central meta-programΓ. The complete program
consists of more than 160 rules. For space reasons, we only present the relevant parts and
omit modules containing simple auxiliary definitions. The full encodings can be found at

www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.gz.

www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.gz
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The meta-programΓ consists of the following modules: (i)γunsat, related to unsatisfied
rules, (ii)γloop, related to loops, (iii)γunfd, for testing unfoundedness of loops, and (iv)γcons,
integrating Parts (i)–(iii) for performing the overall test of whether a given interpretationI
is not an answer set of a given programP .

We first introduce the program moduleγunsat to identify unsatisfied rules.

Definition 5
By γunsatwe understand the programγguess

unsat∪γ
check
unsat∪γ

aux
unsat, whereγguess

unsat andγcheck
unsat are given

in Figure 1, andγaux
unsatdefines the auxiliary predicatestrue(·) andfalse(·).

Intuitively, for a programP and an interpretationI , γguess
unsat guesses a ruler ∈ P , repre-

sented by predicateguessRule, and a substitutionϑ, represented bysubst, andγcheck
unsat defines

thatunsatisfiedholds ifI 6|= rϑ. Moduleγaux
unsat(omitted for space reasons) defines the aux-

iliary predicatestrue(·) andfalse(·) such thattrue(l ′) holds if I |= lϑ, for some literall ,
andfalse(l ′) holds if I 6|= lϑ.

Moduleγunsathas the following central property:

Theorem 1
Let P be a program andI an interpretation. Then,I 6|= P iff some answer set ofγunsat∪

∆(P , I ) containsunsatisfied. More specifically, for each ruler ∈ P with I 6|= rϑ, for
some substitutionϑ over the Herbrand universe ofP , γunsat∪∆(P , I ) has an answer setS
such that (i){unsatisfied, guessRule(r ′)} ⊆ S and (ii)subst(x ′, c) ∈ S iff ϑ(x ) = c.

We next define moduleγloop for identifying loops of a program.

Definition 6
By γloop we understand the programγguess

loop ∪γ
check
loop ∪γ

aux
loop, whereγguess

loop andγcheck
loop are given

in Figure 2, andγaux
loop defines the auxiliary predicatesloopSz(·) anddifferSeq(·, ·, ·).

Intuitively, for a programP and an interpretationI , γguess
loop guesses a non-empty subset

L of I , represented byinLoop(·), as a candidate for a loop, andγcheck
loop defines thatisLoop

holds if L is a loop ofP . More specifically, this check is realised as follows. Assume L

containsn literals.

1. Guess a setG of n pairs(r , ϑ), wherer is a rule fromP andϑ is a substitution over
the Herbrand universe ofP .

2. Check, for eacha, b ∈ L, whether there is a pathπ in the positive dependency graph
of the ground program consisting of rules{rϑ | (r , ϑ) ∈ G} such thatπ starts with
a and ends withb, and all literals inπ are inL. A pathπ is represented by the binary
predicatepath(·, ·).

Moduleγaux
loop (again omitted for space reasons) defines that (i)loopSz(n) holds if|L| = n

and (ii)differSeq(i , a′, b′) holds ifaϑ 6= bϑ, wherea, b are literals andϑ is the substitution
stemming from a pair inG that is associated with an indexi by γloop.

Theorem 2
For any programP and any interpretationI , L ⊆ I is a loop ofP iff, for some answer set
S of γloop∪∆(P , I ), isLoop∈ S andL = {x | inLoop(x ′) ∈ S}.
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γ
guess
loop = {inLoop(X ) ∨ outLoop(X )← int(X ),

someInLoop← inLoop(X ),
← not someInLoop, int(X )}.

γ
check
loop = {inRuleSet(N ,R) ∨ outRuleSet(N ,R)← 1 ≤ N ,N ≤ S , loopSz(S), rule(R),

natNumber(N ),
someRule(N )← inRuleSet(N ,R),
← not someRule(N ), 1 ≤ N ,N ≤ S , loopSz(S), rule(R), natNumber(N ),
← inRuleSet(N ,R1), inRuleSet(N ,R2),R1 6= R2,

← inRuleSet(N1,R1), inRuleSet(N2,R2),N1 ≤ N2,R1 > R2,

loopSubst(N ,X ,C ) ∨ nloopSubst(N ,X ,C )← var(R,X ), dom(C ),
inRuleSet(N ,R),

loopAssigned(N ,X )← loopSubst(N ,X ,C ),
← not loopAssigned(N ,X ), inRuleSet(N ,R), var(R,X ),
← loopSubst(N ,X ,C1), loopSubst(N ,X ,C2),C1 6= C2,

isLoop← not unreachablePair, inLoop(X ),
unreachablePair← inLoop(X ), inLoop(Y ),not path(X ,Y ),
path(X ,X )← inLoop(X ),
path(X ,Y )← inLoop(X ), inLoop(Y ), pred(X ,T1), pred(Y ,T2), loopSz(S),

1 ≤ N ,N ≤ S , head(R,H ), inRuleSet(N ,R),posbody(R,B),
pred(H ,T1), pred(B ,T2),not differSeq(N ,X ,H ),
not differSeq(N ,Y ,B),

path(X ,Z )← inLoop(X ), inLoop(Z ), path(X ,Y ), path(Y ,Z )}.

Fig. 2. Modulesγguess
loop andγcheck

loop .

γ
guess
unfd = {variable(X )← var(R,X ),

suppSubst(X ,C ) ∨ nsuppSubst(X ,C )← variable(X ), dom(C ),
saturate← suppSubst(X ,C1), suppSubst(X ,C2),C1 6= C2,

saturate← unassigned(X ),
unass(X ,C )← first(C ),nsuppSubst(X ,C ),
unass(X ,C2)← succ(C1,C2), unass(X ,C1), nsuppSubst(X ,C2),
unassigned(X )← last(C ), unass(X ,C ) }.

γ
check
unfd = {unfounded← unsupp(R), lastR(R),

unsupp(R)← firstR(R), unsuppRule(R),
unsupp(R2)← succR(R1,R2), unsupp(R1), unsuppRule(R2),
saturate← unfounded,
suppSubst(X ,C )← variable(X ), dom(C ), saturate,
nsuppSubst(X ,C )← variable(X ),dom(C ), saturate}∪
{unsuppRule(R)← ci(R) | i ∈ {1, . . . , 5}}.

Fig. 3. Modulesγguess
unfd andγcheck

unfd .

We proceed with moduleγunfd for checking whether some setJ of ground literals is un-
founded byP with respect to an interpretationI . We later combine this co-NP check with
γloop to identify unfounded loops, i.e., we will integrate a loop guess with a co-NP check,
thus reaching the very limits of disjunctive ASP by uniformly encoding aΣP

2 property.

Definition 7
By γunfd we understand the programγguess

unfd ∪γ
check
unfd ∪γ

aux
unfd, whereγguess

unfd andγcheck
unfd are given
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in Figure 3, andγaux
unfd defines the auxiliary predicatessucc(·, ·), succR(·, ·), first(·), last(·),

firstR(·), lastR(·), andc1(·), . . . , c5(·).

The intuition behind this definition is as follows. Considera programP , some setJ
of ground literals, encoded viainLoop(·), and an interpretationI . Module γ

guess
unfd non-

deterministically guesses a binary relationsuppSubst(·, ·) between the variables and the
constant symbols inP . In case this relation is not a function,γguess

unfd establishessaturate.
Module γcheck

unfd , in turn, encodes whether, for each substitutionϑ and each ruler ∈ P ,
some of the conditions from the definition ofJ being externally supported byP is vi-
olated. In fact,unfoundedis derived if some of these conditions is violated. Moreover,
saturateholds if unfoundedholds, andγcheck

unfd saturates the relation defined by predicate
suppSubst(·, ·) if saturateholds. Moduleγaux

unfd (omitted for space reasons) definessucc(·, ·)
andsuccR(·, ·), which express the immediate successor relation, based on�, for the con-
stant symbols and rules inP , respectively, as well as the predicatesfirst(·), firstR(·), last(·),
andlastR(·), which mark the first and the last elements in the order definedbysucc(·, ·) and
succR(·, ·), respectively. Moreover, the moduleγaux

unfd defines predicatesc1(·), . . . , c5(·), ex-
pressing failure of one of the conditions forJ being externally supported byP with respect
to I .

The rough idea behind the encoded saturation technique is tosearch, viaγguess
unfd , for coun-

terexample substitutions that witness that the setJ of ground literals isnot unfounded. For
such a substitution, neithersaturatenorunfoundedcan become true which implies that no
answer set can containunfoundeddue to the saturation ofsuppSubst(·, ·) and the minimal-
ity of answer sets.

Theorem 3
Consider a programP , an interpretationI , and a setJ of ground literals. Then,J is un-
founded byP with respect toI iff the unique answer set ofγunfd∪∆(P , I ) ∪ {inLoop(x ′) |

x ∈ J} contains the literalunfounded.

Given the above defined program modules, we arrive at the uniform encoding of the
overall programΓ.

Definition 8
Let γunsat, γloop, andγunfd be the programs from Definitions 5, 6, and 7, respectively. Then,
Γ = γunsat ∪ γloop ∪ γunfd ∪ γcons, where

γcons= {notAnswerSet← unsatisfied, notAnswerSet← isLoop, unfounded,
← not notAnswerSet}.

Moduleγcons encodes that each answer set ofΓ witnesses eitherI 6|= P or that some
loopL ⊆ I of P is unfounded byP with respect toI .

We finally obtain our main result, which follows essentiallyfrom the semantics of mod-
uleγconsand Theorems 1, 2, and 3.

Theorem 4
Given a programP and an interpretationI , Π = Γ ∪ ∆(P , I ) satisfies the following
properties:

(i) Π has no answer set iffI is an answer set ofP .
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(ii) I is not an answer set ofP iff, for each answer setS of Π, {unsatisfied, unfounded}∩
S 6= ∅.

(iii) I 6|= P iff unsatisfied∈ S , for some answer setS of Π. Moreover, for each rule
r ∈ P with I 6|= rϑ, for some substitutionϑ over the Herbrand universe ofP ,
there is some answer setS of Π such that (a){unsatisfied, guessRule(r ′)} ⊆ S and
(b) subst(x ′, c) ∈ S iff ϑ(x ) = c.

(iv) A loop L ⊆ I is unfounded byP with respect toI iff some answer setS of Π
contains bothisLoopandunfounded, andL = {x | inLoop(x ′) ∈ S}.

4 Applying the debugging approach

In this section, we first describe a simple scenario with different debugging tasks and show
how the meta-program defined in the previous section can be used to solve them. After-
wards, we discuss some pragmatic aspects relevant for realising a prospective user-friendly
debugging system based on our approach.

4.1 A simple debugging scenario

We assume that students have to encode the assignments of papers to members of a pro-
gram committee (PC) based on some bidding information in terms of ASP. We consider
three cases, each of them illustrates a different kind of debugging problem. In the first case,
an answer set is expected but the program is inconsistent. Inthe second case, multiple an-
swer sets are expected but the program yields only one answerset. In the third case, it is
expected that a program is inconsistent, but it actually yields some answer set. We illus-
trate that, in all cases, our approach gives valuable hints how to debug the program in an
iterative way.

Assume thatpc(X ) means thatX is a member of the PC,paper(X ) means thatX is a
paper, andbids(X ,Y ,Z ) means that PC memberX bids on paperY with valueZ , where
Z is a natural number ranging from0 to 3 expressing a degree of preference for that paper.

To start with, Lucy wants to express that the default bid for apaper is1. That is, if a
PC member does not bid on a paper, then it is assumed that the PCmember bids1 on that
paper per default. Lucy’s first attempt looks as follows:

L1 = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2), bid(m2, p1, 3),

somebid(M ,P)← bid(M ,P ,X ),

bid(M ,P , 1)← not somebid(M ,P), pc(M ), paper(P)}.

Lucy’s intention is thatsomebid(M ,P) is true if PC memberM bids on paperP , and
bid(M ,P , 1) is true if there is no evidence that PC memberM has bid on that paper.
Indeed, the unique answer set ofL1 is

S1 = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2), bid(m2, p1, 3),

somebid(m1, p1), somebid(m2, p1)}.

The answer setS1 is indeed as expected: We have that each PC member bids on some
paper inL1 and the last rule is inactive. Lucy’s next step is to delete the factbid(m2, p1, 3)

from L1—let us denote the resulting program byL2. Lucy expects that the answer set of
L2 containsbid(m2, p1, 1). However, it turns out thatL2 yields no answer set at all!
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To find out what went wrong, Lucy defines her expected answer set as

E1 = (S1 ∪ {bid(m2, p1, 1)}) \ {somebid(m2, p1), bid(m2, p1, 3)}

and inspects the answer sets ofΓ∪∆(L2,E1). It turns out that one answer set contains the
factsunsatisfiedandguessRule(r ′1), wherer ′1 is the label for the rule

r1 = somebid(M ,P)← bid(M ,P ,X ).

Hence,r1 is not satisfied byE1: bid(m2, p1, 1) is in E1 and thus satisfies the body ofr1,
but the head ofr1 is not satisfied sinceE1 does not containsomebid(m2, p1).

Now that Lucy sees thatL2’s answer set has to containsomebid(m2, p1), she defines
E2 asE1 plus the factsomebid(m2, p1). The answer sets ofΓ ∪ ∆(L2,E2) reveal that
E2 is not an answer set ofL2 because the singleton loopbid(m2, p1, 1) is contained inE2

but it is unfounded byL2 with respect toE2. The reason is clear: the only rule that could
supportbid(m2, p1, 1) is

r2 = bid(M ,P , 1)← not somebid(M ,P), pc(M ), paper(P).

However,r2 is blocked sinceE2 containssomebid(m2, p1).
Lucy concludes that, to maker2 work as expected,somebid(m2, p1) must not be con-

tained in the answer set. To achieve this, Lucy changesr1, the only rule with predicate
somebid in the head, into

somebid(M ,P)← bid(M ,P ,X ),X 6= 1.

The resulting program works as expected and containsbid(m2, p1, 1) in its answer set.
The next student who is faced with a mystery is Linus. He triedto formalise that each

paper is non-deterministically assigned to at least one member of the PC. His program
looks as follows:

P1 = {pc(m1), pc(m2), paper(p1), paper(p2), bid(m1, p1, 2),

bid(m1, p2, 3), bid(m2, p1, 1), bid(m2, p2, 1),

assigned(P ,M ) ∨ ¬assigned(P ,M )← paper(P), pc(M ),

← paper(P), pc(M ), not assigned(P ,M )}.

Linus expects that the disjunctive rule realises the non-deterministic guess, and then the
constraint prunes away all answer set candidates where a paper is not assigned to some
PC member. Now, poor Linus is desperate since the non-deterministic guess seems not to
work correctly; the only answer set ofP1 is

S3 = {paper(p1), paper(p2), pc(m1), pc(m2), bid(m1, p1, 2), bid(m1, p2, 3),

bid(m2, p1, 1), bid(m2, p2, 1), assigned(p1,m1), assigned(p1,m2),

assigned(p2,m1), assigned(p2,m2)},

although Linus expected one answer set for each possible assignment. In particular, Linus
expected

E3 = (S3 ∪ {¬assigned(p1,m2)}) \ {assigned(p1,m2)}

to be an answer set as well. Hence, Linus inspects the answer sets ofΓ ∪ ∆(P1,E3) and
learns that the constraint inP1 is not satisfied byE3. In particular, it is the substitution that
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maps the variableP to p1 andM to m2 that is responsible for the unsatisfied constraint,
which can be seen from thesubst(·) atoms in each answer set that containsunsatisfied.

Having this information, Linus observes that the constraint in its current form is un-
satisfied if some paper is not assigned toeach PC member. However, he intended it to
be unsatisfied only when a paper is assigned tono PC member. Hence, he replaces the
constraint by the two rules

← paper(P), pc(M ), not at leastone(P) and at leastone(P)← assigned(P ,M ).

The resulting program yields the nine expected answer sets.
Meanwhile, Peppermint Patty encounters a strange problem.Her task was to write a

program that expresses the following issue: If a PC memberM bids 0 on some paperP ,
then this means that there is a conflict of interest with respect to M andP . In any case,
there is a conflict of interest ifM (co-)authoredP . A PC member can only be assigned to
some paper if there is no conflict of interest with respect to that PC member and that paper.
This is Peppermint Patty’s solution:

Q1 = {pc(m1), paper(p1), bid(m1, p1, 2), assigned(p1,m1), author(p1,m1),

conflict of interest(M ,P)← bid(M ,P , 0),

conflict of interest(M ,P)← pc(M ), paper(P), author(M ,P),

bid(M ,P , 0)← pc(M ), paper(P), conflict of interest(M ,P),

← assigned(P ,M ), bid(M ,P , 0)}.

The facts inQ1 should model a scenario where a PC member authored a paper andis as-
signed to that paper. According to the specification from above, this should not be allowed.
Since Patty is convinced that her encoding is correct, she expects thatQ1 has no answer
sets. ButQ1 has the unique answer set

S4 = {assigned(p1,m1), pc(m1), paper(p1), author(p1,m1), bid(m1, p1, 2)}.

What Peppermint Patty finds puzzling is thatS4 does not contain any atoms signalling a
conflict of interest. Hence, she decides to analyse why

E4 = S4 ∪ {conflict of interest(m1, p1), bid(m1, p1, 0)}

is not an answer set ofQ1. If Q1 was correct, then the only reason whyE4 is not an answer
set ofQ1 would be that the (only) constraint inQ1 is unsatisfied.

As expected, some answer sets ofΓ∪∆(Q1,E4) containunsatisfiedandguessRule(r ′),
wherer ′ is the label of the constraint inQ1. However, some answer sets contain the atom
unfoundedas well—a surprising observation. Patty learns, by inspecting the inLoop(·)
atoms in the respective answer set, thatE4 contains the loop

{conflict of interest(m1, p1), bid(m1, p1, 0)}

which is unfounded byQ1 with respect toE4: bid(m1, p1, 0) seems to be justified only by
the literalconflict of interest(m1, p1) and vice versa. This should not be the case sinceQ1

contains the rule

conflict of interest(M ,P)← pc(M ), paper(P), author(M ,P)

that should supportconflict of interest(m1, p1) because all the factspc(m1), paper(p1),
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andauthor(m1, p1) should be contained inQ1. Now, the error is obvious:Q4 does not con-
tain the factauthor(m1, p1) but author(p1,m1)—the order of the arguments was wrong.
After Peppermint Patty fixed that bug, her program is correct.

4.2 Some pragmatic issues and future prospects

For a debugging system of practical value, certain pragmatic aspects have to be taken into
account which we briefly sketch in what follows. To start with, our encodings can be seen
as a “golden design”—tailored towards clarity and readability—which leaves room for
optimisations. Related to this issue, solver features likelimiting the number of computed
answer sets or query answering are needed to avoid unnecessary computation and to limit
the amount of information presented to the user.

Our debugging approach requires information about the intended semantics in form of
the interpretation representing a desired answer set. Typically, answer sets of programs en-
coding real-world problems tend to be large which makes it quite cumbersome to manually
create interpretations from scratch. It is therefore vitalto have convenient means for obtain-
ing an intended answer set in the first place. For this purpose, we envisage a tool-box for
managing interpretations that allows for their manipulation and storage. In such a setting,
answer sets of previous versions of the debugged program could be a valuable source of in-
terpretations which are then tailored towards an intended answer set of the current version.
In addition to manual adaptations, partial evaluation of the program could significantly ac-
celerate the creation of interpretations. We plan to further investigate these issues and aim
at incorporating our debugging technique, along with an interpretation management sys-
tem as outlined, in an integrated development environment (IDE). Here, an important issue
is to achieve a suitable user interface for highlighting theidentified unsatisfied rules and
unfounded loops in the source code and for visualising the involved variable substitutions.

5 Related work

Besides the debugging approach by Gebser et al. (2008), as already discussed earlier, other
related approaches on debugging include the work of Pontelli et al. (2009) onjustifications
for non-ground answer-set programs that can be seen as a complementary approach to ours.
Their goal is to explain the truth values of literals with respect to a given actual answer set
of a program. Explanations are provided in terms ofjustificationswhich are labelled graphs
whose nodes are truth assignments of possibly default-negated ground atoms. The edges
represent positive and negative support relations betweenthese truth assignments such that
every path ends in an assignment which is either assumed or known to hold. The authors
have also introduced justifications for partial answer setsthat emerge during the solving
process (online justifications), being represented by three-valued interpretations.

The question why atoms are contained or are not contained in an answer set has also
been raised by Brain and De Vos (2005) who provide algorithmsfor recursively comput-
ing explanations in terms of satisfied supporting rules. Note that these problems can in
principle also be handled by our approach, as illustrated inSection 4.1. Indeed, consider
some programP with answer setI and suppose we want to know why a certain setL of
literals is contained inI . Using our approach, explanations whyI \ L is not an answer
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set ofP will reveal rules which are unsatisfied underI \ L but which support literals in
L underI . Likewise, we can answer the question why expected atoms aremissing in an
answer set.

Syrjänen (2006) aims at finding explanations why some propositional program has no
answer sets. His approach is based on finding minimal sets of constraints such that their
removal yields consistency. Hereby, it is assumed that a program does not involve circular
dependencies between literals through an odd number of negations which might also cause
inconsistency. Finding reasons for program inconsistencycan be handled by our approach
when an intended answer set is known, as illustrated by programL2 in Section 4.1. Oth-
erwise, an interpretation can be chosen from the answer setsresulting from temporarily
removing all constraints from the considered program (providing this yields consistency).

Brain et al. (2007) rewrite a program using some additional control atoms, calledtags,
that allow, e.g., for switching individual rules on or off and for analysing the resulting
answer sets. Debugging requests in this approach can be posed by adding further rules that
can employ tags as well. One such extension allows also for detecting atoms in unfounded
loops. However, as opposed to our current approach, the individual loops themselves are
not identified.

Caballero et al. (2008) developed a declarative debugging approach for datalog using
a classification of error explanations similar to the one by Gebser et al. (2008) and our
current work. Their approach is tailored towards query answering and, in contrast to our
approach, the language is restricted to stratified datalog.However, Caballero et al. provide
an implementation that is based on computing a graph that reflects the execution of a query.

Wittocx et al. (2009) show how a calculus can be used for debugging first-order theories
with inductive definitions in the context of model expansionproblems, i.e., problems of
finding models of a given theory that expand some given interpretation. The idea is to trace
the proof of inconsistency of such an unsatisfiable model expansion problem. The authors
provide a system that allows for interactively exploring the proof tree.

Besides the mentioned approaches which rely on the semantical behaviour of programs,
Mikitiuk et al. (2007) use a translation from logic-programrules to natural language in
order to detect program errors more easily. This seems to be apotentially useful feature for
an IDE as well, especially for novice and non-expert ASP programmers.

6 Conclusion

Our approach for declaratively debugging non-ground answer-set programs aims at pro-
viding intuitive explanations why a given interpretation fails to be an answer set of the
program in development. To answer this question, we localise, on the one hand, unsatisfied
rules and, on the other hand, loops of the program that are unfounded with respect to the
given interpretation. As underlying technique, we use a sophisticated meta-programming
method that reflects the complexity of the considered debugging question which resides on
the second level of the polynomial hierarchy.

Typical errors in ASP may have quite different reasons and many of them could be
avoided rather easily in the first place, e.g., by a compulsory declaration of predicates
(Brain and De Vos 2005), forbidding uneven loops through negation (Syrjänen 2006), in-
troducing type checks, or defining program interfaces. We plan to realise these kinds of
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simple prophylactic techniques for our future IDE for ASP that will incorporate our current
debugging approach. In this context, courses on logic programming at our institute shall
provide a permanent testbed for our techniques. Moreover, as part of an ongoing research
project on methods and methodologies for developing answer-set programs (Oetsch et al. 2010),
we want to put research efforts into methodologies that avoid or minimise debugging needs
right from the start. As a next direct step regarding our efforts towards debugging, we plan
to extend our approach to language features like aggregates, function symbols, and optimi-
sation techniques such as minimise-statements or weak constraints.
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