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Abstract

An important issue towards a broader acceptance of anstv@regramming (ASP) is the deploy-
ment of tools which support the programmer during the cogihgse. In particular, methods for
debuggingan answer-set program are recognised as a crucial stepsimegard. Initial work on
debugging in ASP mainly focused on propositional prograyas practical debuggers need to han-
dle programs with variables as well. In this paper, we dis@audebugging technique that is directly
geared towards non-ground programs. Following previoukywwe address the central debugging
question why some interpretation is not an answer set. Tplaeations provided by our method are
computed by means of a meta-programming technique, usimigferm encoding of a debugging
request in terms of ASP itself. Our method also permits @nogr containing comparison predicates
and integer arithmetics, thus covering a relevant langetags commonly supported by all state-of-
the-art ASP solvers.

KEYWORDS answer-set programming, program analysis, debugging

1 Introduction

During the last decade, answer-set programming (ASP) hasea well-acknowledged
paradigm for declarative problem solving. Although thexiseefficient solvers (see, e.g.,
Denecker et dll (2009) for an overview) and a considerabtly lod literature concerning
the theoretical foundations of ASP, comparably little gfftas been spent on methods to
support the development of ASP programs. Especially ngwogrammers, tempted by
the intuitive semantics and expressive power of ASP, maygajppointed and discour-
aged soon when some observed program behaviour divergasfsoor her expectations.
Unlike for other programming languages like Java or C++rdhie currently little sup-
port for debugginga program in ASP, i.e., methods &xplain and localise unexpected
observations. This is a clear shortcoming of ASP and workis direction has already
started|(Brain and De Vos 2005; Syrjanen 2006; Brain etG0./2Mikitiuk et al. 2007; Caballero et al. 2008;
Gebser et al. 2008; Pontelli et al. 2009; Wittocx et al. 2009)
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Most of the current debugging approaches for ASP rely oredatiVe strategies, focus-
ing onconceptual erroref programs, i.e., mismatches between the intended meanithg
the actual meaning of a program. In fact, an elegant realisaf declarative debugging is
to use ASP itself to debug programs in ASP. This has been pht fag., in the approaches
of Brain et all. (20017) and Gebser et al. (2008). While the faroses a “tagging” method
to decompose a program and applying various debuggingegjehe latter is based on a
meta-programming technique, i.e., using a program overtasaaguage to manipulate a
program over an object language (in this case, both the lartprage and the object lan-
guage are instances of ASP). Such techniques have the sthémefits of allowing (i) to
use reliable state-of-the-art ASP solvers as back-ensbngas engines and (ii) to stay
within the same paradigm for both the programming and delbgggrocess. Indeed, both
approaches are realised by the systepock (Gebser et al. 2009). However, like most
other ASP debugging proposaig;ock can deal only with propositional programs which
is clearly a limiting factor as far as practical applicas@re concerned.

In this paper, we present a debugging method for non-grovograms following the
methodology of the meta-programming approach of Gebsél (Q08) for propositional
programs. That is to say, we deal with the problem of findirgsoms why some inter-
pretation isnot an answer set of a given program. This is addressed by mejetoi a
model-theoretic characterisation of answer sets due to(2@@5): An interpretatiod is
not an answer set of a programiff (i) some rule in P is not classically satisfied by
or (i) I contains some loop aP that is unfounded by’ with respect tol. Intuitively,
Item (ii) states that some atoms imare not justified byP in the sense that no rules id
can derive them or that some atoms aré omly because they are derived by a set of rules
in a circular way—like theDuroborosthe ancient symbol of a dragon biting its own tail
that represents cyclicality and eternity. This charas&tion seems to be quite natural and
intuitive for explainingwhy some interpretation is not an answer set. Furthermquara
ticular benefit is that it can ease the subsequmealisationof errors since the witnesses
why an interpretation is not an answer set, like rules whighret satisfied, unfounded
atoms, or cyclic rules responsible for unfounded loops,mafocated in the program or
the interpretation.

Although, at first glance, one may be inclined to directlylggpe original approach of
Gebser et al[ (2008) to programs with variables by simplygding them in a preprocess-
ing step, one problem in such an endeavour is that then ittismoediate clear how to
relate explanations for the propositional program to the-gound program. The more se-
vere problem, however, is that the grounding step requiesreential space and time with
respect to the size of the problem instance which yields enatish of the overall complex-
ity as checking whether an interpretation is an answer ssbiwie (non-ground) program
is complete foll.’ (Eiter et al. 2004), and thus the complementary problem veiyesin-
terpretation is not an answer set is completeXér—our method to decide this problem
accounts for this complexity bound and avoids exponentiats requirements. Indeed, we
devise auniform encoding of our basic debugging problem in terms éikad disjunctive
logic progranT and an efficient reification of a problem instance as a\se, /) of facts,
where P is the program to be debugged ahds the interpretation under consideration.
Explanations why/ is not an answer set o are then obtained by the answer sets of
TUA(P,I).
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We stress that the definition bfis non-trivial: while the meta-program in the approach
oflGebser et all (2008) for debugging propositional disfivegrograms could be achieved
in terms of a normal non-ground prograhy, uniformly encoding &5 property, we reach
the very limits of disjunctive ASRind have to rely on advanced saturation techniques that
inherently require disjunctions in rule heads (Eiter e1807).

Currently, our approach handles disjunctive logic programith constraints, integer
arithmetic, comparison predicates, and strong negatios,dovering a practically relevant
program class. Further language constructs, in partiaggregates and weak constraints,
are left for future work.

2 Preliminaries
We deal withdisjunctive logic programsihich are finite sets of rules of form
a1 V-V a < Q41,..., Qn,N0t Apy1,...,00t ay,

wheren > m > [ > 0, “not” denotesdefault negationand all a; are literals over a
function-free first-order language t.. A literal is an atonsgibly preceded by thetrong
negationsymbol—. In the sequel, we assume that £ will be implicitly defined hg ton-

sidered programs. For a ruleas above, we define theeadof r asH (r) = {a1, ..., a},
the positive bodyas B*(r) = {aj1,...,an}, and thenegative bodyas B~ (r) =
{@m+1,---,an}. If n =1 = 1, ris afact, if r contains no disjunctiony; is normal

and if{ = 0 andn > 0, r is aconstraintFor facts, we will omit the symbai-. A literal,
rule, or program igroundif it contains no variables. Furthermore, a program is ndifna
all rules in it are normal. Finally, we allow arithmetic andnsparison predicate symbols
+, %, =, #, <, <, >, and> in programs, but these may appear only positively in rule
bodies.

Let C be a set of constants. gubstitution overC' is a functiom) assigning each vari-
able an element of’. We denote by the result of applying! to an expressior. The
groundingof a programP relative to its Herbrand universe, denoteddogl( P), is defined
as usual.

An interpretationl (over some language t) is a finite and consistent set of gréitind
erals (over t) that does not contain any arithmetic or comsparpredicates. Recall that
consistency means that, —a} ¢ I, for any atoma. The satisfaction relation, = «,
betweenl and a ground atom, a literal, a rule, a set of literals, or gEm« is defined in
the usual manner. Note that the presence of arithmetic amgp@ason operators implies
that the domain of our language will normally include natumambers as well as a lin-
ear ordering, for evaluating the comparison relations (which coincidé the usual
ordering in case of constants which are natural numbers).

For any ground program® and any interpretation, the reduct P!, of P with respect
to I (Gelfond and Lifschitz 1991) is defined &' = {H(r) < B*(r) | r € P,I N
B~ (r) = 0}. Aninterpretatiory is ananswer sebf a program? iff I is a minimal model
of grd(P).

We will base our subsequent elaboration on an alternatiaeacterisation of answer
sets following Lee (2005), described next. Given a progfanthe positive dependency
graphis a directed graphV, A), where (i) V equals the Herbrand base of the considered
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language £ and (ii{a, b) € Aiff a € H(r) andb € B*(r), for some ruler € grd(P).

A non-empty sef. of ground literals is doo of a programp iff, for each paira, b € L,
there is a pathr of length greater than or equal to O framo b in the positive dependency
graph of P such that each literal in is in L.

Let P be a program and and ./ interpretations. ThenJ is externally supported by
with respect td iff there is aruler € grd(P) suchthat (i) = BT (r)andINB~(r) = 0,
(i) H(r)nJ #0, (i) (H(r)\J)NI=0,and (iv)B*(r)nJ = 0.

Intuitively, Items (i)—(iii) express thaf is supported byP with respect td, in the sense
that the grounding oP contains some rule whose body is satisfied b¥ (Item (i)) and
which is able to derive some literal ih(Item (ii)), while all head atoms aof not contained
in J are false undef. Moreover, Item (iv) ensures that this support is extersait as
without reference to the sdtitself.

Answer sets are now characterised thus:

Proposition 1(Lee’ 200%

Let P be a program andl an interpretation. Therd,is an answer set d? iff (i) 7 = P and
(i) every loop of P that is contained if is externally supported b¥ with respect td.

We actually make mainly use of the complementary relatioextdrnal support: Follow-
ing/Leone et al. (1997), we call unfounded byP with respect td iff J is not externally
supported byP with respect tal.

3 Thebasic debugging approach

As discussed in the introduction, we view an error as a mismbetween the intended
answer sets and the observed actual answer sets of somarprddore specifically, our
basic debugging question is why a given interpretafigmnot answer set of some program
P, and thus we deal with finding explanations fonot being an answer set & Proposi-
tion[d allows us to distinguish between two kinds of such arptions: (i) instantiations of
rules in P that are not satisfied hfand (ii) loops ofP in I that are unfounded b¥ with
respect to/. Although our basic debugging question allows for différenulti-faceted,
answers, we see two major benefits of referring to this kinchtégorisation: First, in view
of Propositiori 1L, these kinds of explanations are alwayficgriit to explain whyf is not
an answer set aP, and second, this method providesncrete witnesses.g., unsatisfied
rules or unfounded atoms, that can help to localise the refas@n error in a program or
an interpretation in a rather intuitive way.

Before we introduce the details of our approach, we disassé@iitues compared to a
method for debugging non-ground programs which can be médaising the previous
meta-programming technique for propositional progranmestdiGebser et al. (2008).

1 Note that loops have first been studied by Lin and Zhao (20fi#fgrent definitions of loops for non-ground
programs were given ky Chen et al. (2006) and Lee and MendB}260r our purposes, it suffices to refer to
the basic definition for ground programs.
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3.1 Prelude: A casefor directly debugging non-ground programs

Explaining why some interpretation is not an answer set afesprogram based on the
characterisation ¢f Lee (2005) has been dealt with in ptesAgork for debugging propo-
sitional disjunctive logic programs (Gebser et al. 2008) ptinciple, we could use this
method for debugging non-ground programs as well by emptpgi preparatory ground-
ing step. However, such an undertaking comes at a higherwa@atignal cost compared to
our approach which respects the inherent complexity of titetlying tasks. We lay down
our arguments in what follows.

To begin with, let us recall that Gebser et al. (2008) definégeal normal non-ground
progranty and a mapping from disjunctive propositional programs and interpretiasito
sets of facts. Given a disjunctive progrdtmwithout variables and some interpretatidbn
explanations why is not an answer set df can then be extracted from the answer sets of
v U (P, I). Such a problem encoding isiiformin the sense that does not depend on
the problem instance determined Byand!.

To find reasons why some interpretatibis not an answer set of a non-ground program
P, the above approach can be used by computing the answerfsets 6(grd(P), I).
However, in general, the size gfd( P) is exponential in the size d?, and the computation
of the answer sets of a ground program requires exponeinti@ivith respect to the size
of the program, unless the polynomial hierarchy collapskesice, this outlined approach
to compute explanations using a grounding step requirkis, all, exponential spacand
double-exponential timgith respect to the size d@?. But this is a mismatch to the inherent
complexity of the overall task, as the following result sisow

Proposition 2
Given a progranP and an interpretatiof, deciding whether is not an answer set a?
is I1Y’-complete.

This property is a consequence of the well-known fact thatcbmplementary problem,
i.e., checking whether some given interpretation is an anset of some program, % -
complete[(Eiter et al. 2004). Hence, checking whether arpnétation is not an answer
set of some program can be computegatynomial space

Our approach takes this complexity property into accourd. &iploit the expressive
power of disjunctive non-ground ASP by providing a unifornteding that avoids both
exponential space and double-exponential time requiresn&iven a progran® and an
interpretation/, we define an encoding U A(P, I), wherel is a fixed disjunctive non-
ground program, and (P, I) is an efficient encoding aP and/ by means of facts. Expla-
nations why/ is not an answer set @ are determined by the answer set§'of A(P, I).
Sincer is fixed, the grounding of U A(P, I) is bounded by a polynomial in the size of
P and!. Thus, our approach requires only polynomial space andesigxponential time
with respect taP and/.

Note that disjunctions can presumably not be avoided @ue to thell -hardness of
deciding whether an interpretation is not an answer set wfesprogram. One may ask,
however, whethel' could be normal in cas® is normal. We have to answer in the nega-
tive: answer-set checking for normal programs is complet®f, even if no negation is
used or negation is only used in a stratified way (Eiter etG042. (We recall that B is
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the class of problems that can be decided by a conjunction dfRaand an independent
co-NP property.) Hencé, cannot be normal unless NP co-NP. However, one could use
two independent normal meta-programs to encode our desiskd

A further benefit of debugging a program directly at the noougd level is that we
can immediately relate explanations for errors to firsteorekpressions in the considered
program, e.g., to rules or literals with variables insteftheir ground instantiations.

In what follows, we give details df andA and describe their main properties.

3.2 Construction of the meta-program
3.2.1 Reification of input instances

For realising the encoding (P, I') for programP and interpretatiord, we rely on a reifi-
cationgpg(P) of P and a reificatiorpine (1) of I. The former is, in turn, constructed from
reificationsorye(r) of each individual ruler € P. We introduce the mappingsue(-),
0prg(+), andoint(+) in the following.

To begin with, we need unique names for certain languageeziesnBy anextended
predicate symbdlEPS) we understand a predicate symbol, possibly precedieisym-
bol for strong negation. Let be an injectivelabelling functionfrom the set of program
rules, literals, EPSs, and variables to a set of labels fl@rsymbols in our language t.
Note that we do not need labels for constant symbols singeniileserve as unique names
for themselves.

A single program rule is reified by means of facts accordintpédfollowing definition.

Definition 1
Letr be arule. Then,

ore(r) = {rule(r")} U {headr’,d’) | a € H(r)}U
{posbodyr’, a’) | a € BT(r)} U {negbodyr’,a’) | a € B~ (r)}U
{predd’, L") | a = L(z1,...,x,)is aliteralinr, Lis an EP$U

{struct(d’, i,var,z}) | a=L(z1,...,z,)is aliteral inr, L is an EPS,
i € {1,...,n}, andz; is a variabléu

{struct{a’, i, constz;) | a = L(x,...,z,)is aliteral inr, Lis an EPS,
i € {1,...,n}, andz; is a constant symbgl

{var(r’,z') | = is a variable occurring im}.

The first fact states that label denotes a rule. The next three sets of facts associate labels
of the literals in the head, the positive body, and the negditody to the respective parts
of r. Then, each label of some literal inis associated with a label for its EPS. The
following two sets of facts encode the positions of varialaiad constants in the literals of
the rule. Finally, the last set of facts states which vagalgiccur in the rule.

A program is encoded as follows:

Definition 2
Let P be a program. Then,

0prg(P) = U, p orule(r) U {dom(c) | ¢ is a constant symbol i# }U
{arity(L’,n) | a=L(z1,...,z,) is aliteral inP, Lis an EP$.
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guess __

Yinsat = {guessRUlER) v nguessRulgR) « rule(R),
someRule— guessRulgR),
< not someRulgrule(R),
<+ guessRuleR, ), guessRuleR:), R1 # Ra,
substX, C) Vv nsubstX, C') « guessRulgR), var(R, X ), dom(C),
assignedX) «+ substXx, C),
<+ not assignedX ), guessRuler), var(R, X ),
« substX, C1),substX, C2), C1 # Ca}.

yéheck— funsatisfied— satBodynot satHead
satBody«— not unsatPosbodynot unsatNegbody
satHead« guessRulgR), head R, A), true(A),
unsatPosbody— guessRuleR), posbodyR, A), falsg A),
unsatNegbody— guessRuleR), negbodyR, A),true(4)}.

Fig. 1. Modulesydhesand~ySheck

The first union of facts stem from the reification of the singlkes in the program. The
remaining facts represent the Herbrand universe of therano@nd associate the EPSs
occurring in the program with their arities.

The translation from an interpretation to a set of factsiigtaised by the next definition.

Definition 3
Let I be an interpretation. Then,

oint(I) ={int(a’) | a € I} U{predd’,L') | a = L(zy,...,z,)is aliteral inl,

Lis an EPSU
{struct(a’,i,constxz;) | a = L(x, ..., z,) is aliteral inI, L is an EPS,
i €{1,...,n}, andz; is a constant symbl

The first two sets of facts associate the literal$ inith their respective labels and EPSs.
The last set of facts reifies the internal structure of thegdits occurring irn/.

Definition 4

Let P be a program and an interpretation. Furthermore, 18t be the the maximum of
|I| and the arities of all predicate symbols ih Then,A(P,I) = gpg(P) U oint(I) U
{natNumbefn) | n € {0,..., N}}.

The literalsnatNumbef-) are necessary to add sufficiently many natural numbers to the
Herbrand universe of\(P, I) to carry out correctly all computations in the subsequent
program encodings. Note that the sizeXdfP, I) is always linear in the size df and!.

3.2.2 The meta-prograiin

We proceed with the definition of the central meta-progdanThe complete program
consists of more than 160 rules. For space reasons, we aggmirthe relevant parts and
omit modules containing simple auxiliary definitions. Tl €ncodings can be found at

www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.gz
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The meta-prograrft consists of the following modules: (insas related to unsatisfied
rules, (ii)yio0p, related to loops, (iii)yuntg, for testing unfoundedness of loops, and ¢ivohs
integrating Parts (i)—(iii) for performing the overall ted whether a given interpretatiah
is not an answer set of a given progrdm

We first introduce the program modujgnsa:to identify unsatisfied rules.

Definition 5
BY YunsarWe understand the prograftsai) vineatU vinsa Wherevinsarandinssiare given
in Figured, andy&:%.;defines the auxiliary predicatésie(-) andfalsg(-).

Intuitively, for a programP and an interpretatiof, vones guesses a rule € P, repre-

sented by predicauessRulgand a substitutiort, represented byubst andyShekdefines
thatunsatisfiecholds if I = . Module~3iX,.(omitted for space reasons) defines the aux-
iliary predicategrue(-) andfalsg-) such thatrue(!’) holds if I |= [9, for some literall,
andfalsgl’) holds if I £ 9.

Module~vynsathas the following central property:

Theorem 1

Let P be a program and an interpretation. Ther, |~ P iff some answer set ofynsatU
A(P,I) containsunsatisfied More specifically, for each rule € P with I [= 9, for
some substitutiod over the Herbrand universe &%, yunsatJ A(P, I') has an answer sét
such that (i){unsatisfiedguessRulg”’)} C S and (i) substz’, ¢) € S iff ¥(z) = c.

We next define moduleop for identifying loops of a program.

Definition 6
BY io0p We understand_the progran%%‘ff% wﬁ,*g‘iff‘u Yinop: Whereyﬁjizssandwﬁ,%%CKare given
in Figure2, andy2¥X defines the auxiliary predicatézopS?-) anddifferSeq:, -, -).

loop

Intuitively, for a programP and an interpretatiof, ~j,, “guesses a non-empty subset

L of I, represented binLoop(-), as a candidate for a loop, anﬂ;%“kdefines thatsLoop
holds if L is a loop of P. More specifically, this check is realised as follows. Assuin

containsr literals.

1. Guess a sél of n pairs(r, ¥), wherer is a rule fromP andd is a substitution over
the Herbrand universe df.
2. Check, foreach, b € L, whether there is a pathin the positive dependency graph
of the ground program consisting of rulésd | (r,9) € G} such thatr starts with
a and ends withb, and all literals inr are inL. A pathr is represented by the binary
predicatepath(-, -).
Module~gr (again omitted for space reasons) defines th&d¢pSzn) holds if | L] = n
and (i) differSedi, o', b’) holds if a¥ # by, wherea, b are literals and is the substitution
stemming from a pair iy that is associated with an indéby vieop.

Theorem 2
For any progranP and any interpretation, L C I is a loop ofP iff, for some answer set
S Of Yioop U A(P, I), isLoope S andL = {z | inLoop(z’) € S}.
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Yoop = {inLoop(X) V outLoo X ) < int(X),
somelnLoop— inLoop(X ),
+ not somelnLoopint(X)}.
Yok = {inRuleSetN, R) V outRuleS&tV, R) «— 1 < N, N < S,loopSzS), rule(R),
natNumbe(N),

someRUuléN) + inRuleSetN, R),

< not someRuléN),1 < N, N < §,loopS%S), rule(R), natNumbefN),

— inRuIeSe(tN, Rl), inRuIeSe(tN, RQ), Ry ;é Ro,

+ inRuleSetN1, R1),inRuleSetNa, R2), N1 < N2, R1 > Ra,

loopSubstN, X, C') V nloopSubstV, X, C') < var(R, X ), dom(C),

inRuleSetN, R),

loopAssigne@N, X') < loopSubstV, X, C),

<+ not loopAssigne(lV, X)), inRuleSetV, R),var(R, X ),

+ loopSubstN, X, C),loopSubst, X, C2), C1 # Cs,

isLoop+ not unreachablePairinLoop(X),

unreachablePairk— inLoop(X ), inLoop( Y'), not path(X, V),

path( X, X) < inLoop(X),

path(X, Y') < inLoop(X), inLoop(Y), pred X, T1),pred( Y, T2),l00pSZS),
1< N,N < S,headR, H),inRuleSetN, R), posbodyR, B),
pred H, T1),pred B, T»), not differSedN, X, H),
not differSeqnN, Y, B),

path(X, Z) + inLoop(X ), inLoop(Z), path( X, Y), path(Y, Z)}.

Fig. 2. Modules)2*%Sand~check

loop loop -

oS = {variable(X) + var(R, X),
suppSubgtX, C) V nsuppSubsty, C') < variable(X ), dom(C),
saturate<— suppSubstX, C), suppSubstX, Cs), C1 # Cs,
saturate<— unassigne@x ),
unasg X, C) « first(C), nsuppSubstx, C),
unasg X, C) < sucdq C1, C2),unasg$ X, C1), nsuppSubstx, Cs),
unassigne(X) « last(C),unas$ X, C) }.

~eheck — funfounded— unsupgR), lastR R),
unsupgR) < firstR(R), unsuppRuléR),
unsupg Rz) < SUCCRR1, Rz), unsupdR: ), unsuppRuléRy),
saturate< unfounded
suppSubgtX, C) < variable( X'), dom(C), saturate
nsuppSubgtX, C') + variable( X), dom(C'), saturate}U
{unsuppRuléR) < ¢;(R) | i € {1,...,5}}.

Fig. 3. ModulesyZ-=>*and~check

We proceed with module,ni for checking whether some sétof ground literals is un-
founded byP with respect to an interpretatidn We later combine this co-NP check with
~oop t0 identify unfounded loops, i.e., we will integrate a loapegs with a co-NP check,
thus reaching the very limits of disjunctive ASP by unifoyrehcoding &% property.

Definition 7
BY ~unfa We understand the prograyfle; U1 EhekU 122, whereyd o%andyheckare given
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in Figurel3, andya', defines the auxiliary predicatsscd-, -), succR:, ), first(-), last(-),
firstR(-), lastR(-), andc; (+), . . ., ¢5(-).

The intuition behind this definition is as follows. ConsideprogramP, some set/
of ground literals, encoded viamLoop(-), and an interpretatiod. Module v3-77° non-
deterministically guesses a binary relatisuppSubst, -) between the variables and the
constant symbols itP. In case this relation is not a functiofyq,  establishesaturate
Module y¢heck in turn, encodes whether, for each substitutiband each rule- € P,
some of the conditions from the definition dfbeing externally supported b¥ is vi-
olated. In factunfoundeds derived if some of these conditions is violated. Morepver
saturateholds if unfoundecholds, andyShetk saturates the relation defined by predicate
suppSubst, -) if saturateholds. Moduley' (omitted for space reasons) defimsesd-, -)
andsuccR:, -), which express the immediate successor relation, based & the con-
stant symbols and rules i, respectively, as well as the predicdfiest(-), firstR(-), last(-),
andlastR-), which mark the first and the last elements in the order defiyesdicq-, -) and
succR:, -), respectively. Moreover, the moduj@-¥, defines predicates (-), .. ., ¢s(-), €x-
pressing failure of one of the conditions fdibeing externally supported by with respect
tol.

The rough idea behind the encoded saturation techniquséateh, viayJ+5 for coun-
terexample substitutions that witness that the/set ground literals igiot unfounded. For
such a substitution, neitheaturatenor unfoundectan become true which implies that no
answer set can contaimfoundediue to the saturation suppSubst, -) and the minimal-
ity of answer sets.

Theorem 3

Consider a progran®, an interpretatior, and a set/ of ground literals. Then/ is un-
founded byP with respect td iff the unique answer set @fnia U A(P, I) U {inLoop(z’) |
z € J} contains the literalinfounded

Given the above defined program modules, we arrive at theumiéncoding of the
overall progrant’.

Definition 8
Let Yunsas Yioops @NAunta be the programs from Definitio$(5, 6, drd 7, respectivelgnlh
I' = yunsat U Yioop U Yunid U Yeons where

~Yeons = {NOtANswerSet- unsatisfied notAnswerSet isLoop unfounded
+ not notAnswerSét

Module ycons €encodes that each answer sefCofvitnesses eithef (= P or that some
loop L C I of P is unfounded by with respect tdl.

We finally obtain our main result, which follows essentidtgm the semantics of mod-
ule veonsand Theorens L] 2, afdl 3.

Theorem 4
Given a programP and an interpretatiod, II = I’ U A(P, I) satisfies the following
properties:

(i) IT has no answer set iff is an answer set af.
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(i) Iisnotananswer setd? iff, for each answer sef of II, {unsatisfiedunfoundedin
S #0.

(i) I P& P iff unsatisfiede S, for some answer st of II. Moreover, for each rule
r € P with I |~ ro, for some substitution) over the Herbrand universe dt,
there is some answer sgtof II such that (afunsatisfiedguessRule”’)} C S and
(b) substz’, ¢) € S iff I(z) = c.

(iv) Aloop L C I is unfounded byP with respect to/ iff some answer sef of II
contains botlisLoopandunfoundedandZ = {z | inLoop(z’) € S}.

4 Applying the debugging approach

In this section, we first describe a simple scenario withedéht debugging tasks and show
how the meta-program defined in the previous section can éa tassolve them. After-
wards, we discuss some pragmatic aspects relevant fosirepéi prospective user-friendly
debugging system based on our approach.

4.1 A smple debugging scenario

We assume that students have to encode the assignmentseo$ papnembers of a pro-
gram committee (PC) based on some bidding information imsesf ASP. We consider
three cases, each of them illustrates a different kind ofiggimg problem. In the first case,
an answer set is expected but the program is inconsistetiite lsecond case, multiple an-
swer sets are expected but the program yields only one ars®idn the third case, it is
expected that a program is inconsistent, but it actualljdgisome answer set. We illus-
trate that, in all cases, our approach gives valuable himtstb debug the program in an
iterative way.

Assume thapc(X) means thafX is a member of the PQiaper X) means tha is a
paper, andids( X, Y, Z) means that PC membét bids on papelt” with valueZ, where
Z is a natural number ranging frobrto 3 expressing a degree of preference for that paper.

To start with, Lucy wants to express that the default bid fgager isl. That is, if a
PC member does not bid on a paper, then it is assumed that theeRBer bidd on that
paper per default. Lucy’s first attempt looks as follows:

Ll = {pc(ml)v pC(TTLQ), pape'(pl)a bld(mlv p1, 2)7 bld(m27 p1, 3)3
somebid(M, P) + bid(M, P, X),
bid(M, P, 1) < not somebid(M, P),pc(M), paper P)}.

Lucy’s intention is thasomebid(M, P) is true if PC membed/ bids on papef, and
bid(M, P,1) is true if there is no evidence that PC memlérhas bid on that paper.
Indeed, the unique answer setlgfis

S1 = {pc(m1), pc(mz), paperp1), bid(mi, p1, 2), bid(mz, p1, 3),
somebid(my, p1), somebid(ms, p1)}.
The answer sef; is indeed as expected: We have that each PC member bids on some
paper inL; and the last rule is inactive. Lucy’s next step is to delegeféttbid(ms, p1, 3)
from L;—Ilet us denote the resulting program by. Lucy expects that the answer set of
L, containgbid(ms, p1,1). However, it turns out thak, yields no answer set at all!
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To find out what went wrong, Lucy defines her expected answiersse
F = (Sl U {bld(mg, P1, 1)}) \ {somebid(mg, pl), bld(mg, p1, 3)}

and inspects the answer setd'af A( Lo, Fy). It turns out that one answer set contains the
factsunsatisfiecandguessRuler ), wherer{ is the label for the rule

r1 = somebid(M, P) < bid(M, P, X).

Hence,r; is not satisfied by, : bid(ms, p1,1) is in E; and thus satisfies the body of,
but the head of4 is not satisfied sinc&; does not contaisomebid(msg, p1).

Now that Lucy sees thal,y's answer set has to contasomebid(ms, p1), she defines
E5 as Ey plus the factsomebid(msz, p1). The answer sets df U A(Ls, F») reveal that
E5 is not an answer set df, because the singleton lodyd(ms, p1, 1) is contained inksy
but it is unfounded by, with respect taF,. The reason is clear: the only rule that could
supportid(ms, p1,1) is

ro = bid(M, P, 1) + not somebid(M, P), pc(M), pape(P).

However,r, is blocked sinceF, containssomebid(ms, p1).

Lucy concludes that, to makg work as expectedsomebid(ms, p1) must not be con-
tained in the answer set. To achieve this, Lucy changethe only rule with predicate
somebid in the head, into

somebid(M, P) « bid(M, P, X), X # 1.

The resulting program works as expected and contzitf(sn,, p1, 1) in its answer set.

The next student who is faced with a mystery is Linus. He ttgetbrmalise that each
paper is non-deterministically assigned to at least one lmeerof the PC. His program
looks as follows:

Py = {pc(m1), pc(mz), paperp: ), paperpz), bid(ma, p1,2),
bid(ma, p2, 3), bid(mz, p1, 1), bid(mg, p2, 1),
assignedP, M) v —assignedP, M) « paper P), pc(M),
+ pape(P),pc(M),not assignedP, M)}.

Linus expects that the disjunctive rule realises the naerdenistic guess, and then the
constraint prunes away all answer set candidates whereex [gapot assigned to some
PC member. Now, poor Linus is desperate since the non-diglistin guess seems not to
work correctly; the only answer set &% is

53 = {pape'(pl)v papel(pQ)a pc(m1)7 pc(mQ)a bld(m17 P, 2)7 bld(mla b2, 3)7
bid(m27 P1, 1)7 bld(m27 b2, 1)5 aSSignedplv m1)7 aSSignedplv m2)7
assignedpz, m1 ), assignedpz, mz)},

although Linus expected one answer set for each possibggassnt. In particular, Linus
expected
E; = (S3 U {—assignedp;, m2)}) \ {assignedp;, ma)}

to be an answer set as well. Hence, Linus inspects the anstgeof§" U A(Py, E5) and
learns that the constraint ify, is not satisfied byFs. In particular, it is the substitution that
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maps the variablé® to p; and M to my that is responsible for the unsatisfied constraint,
which can be seen from theeibst-) atoms in each answer set that containsatisfied

Having this information, Linus observes that the constraints current form is un-
satisfied if some paper is not assignedetchPC member. However, he intended it to
be unsatisfied only when a paper is assigneddd®C member. Hence, he replaces the
constraint by the two rules

+ papel P), pc(M), not at leastong P) and atleastongP) «+ assignedP, M).

The resulting program yields the nine expected answer sets.

Meanwhile, Peppermint Patty encounters a strange proltemtask was to write a
program that expresses the following issue: If a PC menbdrids 0 on some pape?,
then this means that there is a conflict of interest with resfeM and P. In any case,
there is a conflict of interest if/ (co-)authored®. A PC member can only be assigned to
some paper if there is no conflict of interest with respechéd PC member and that paper.
This is Peppermint Patty’s solution:

Q1 = {pc(my), paperp: ), bid(my, p1,2), assignedp:, m1 ), author(p;, my),
conflictof.interesf M, P) « bid(M, P,0),
conflictof.interesf M, P) < pc(M ), pape P), autho( M, P),
bid(M, P,0) «+ pc(M), paper P), conflictof.interest M, P),
+ assignedP, M), bid(M, P,0)}.

The facts inQ; should model a scenario where a PC member authored a paper asd
signed to that paper. According to the specification fromvabthis should not be allowed.
Since Patty is convinced that her encoding is correct, specg that@); has no answer
sets. But@; has the unique answer set

Sy = {assignedp;, m1), pc(m1), paperp; ), author(py, my), bid(my, p1,2)}.

What Peppermint Patty finds puzzling is thiatdoes not contain any atoms signalling a
conflict of interest. Hence, she decides to analyse why

E, = Sy U {conflictof.interes{my, p1), bid(m;, p1,0)}

is not an answer set @;. If Q; was correct, then the only reason whyis not an answer
set of ; would be that the (only) constraint i@; is unsatisfied.

As expected, some answer set§'of A(Qy, E,) containunsatisfiecandguessRule’),
wherer’ is the label of the constraint ip; . However, some answer sets contain the atom
unfoundedas well—a surprising observation. Patty learns, by inspgdhe inLoop(-)
atoms in the respective answer set, thatontains the loop

{conflictof.interestmy, p1), bid(my, p1,0)}

which is unfounded by, with respect tak,: bid(ms, p1, 0) seems to be justified only by
the literalconflictof_interes{m,, p;) and vice versa. This should not be the case sipce
contains the rule

conflictof.interest M, P) « pc(M ), paper P),autho( M, P)

that should supportonflictof_interestm,, p1) because all the facisc(m;), papefp; ),
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andauthor(my, p1 ) should be contained iy;. Now, the error is obvious), does not con-
tain the factauthor(ms, p;) butauthorp;, m;)—the order of the arguments was wrong.
After Peppermint Patty fixed that bug, her program is correct

4.2 Some pragmatic issues and future prospects

For a debugging system of practical value, certain pragnaatbects have to be taken into
account which we briefly sketch in what follows. To start witlir encodings can be seen
as a “golden design"—tailored towards clarity and readtgbitwhich leaves room for
optimisations. Related to this issue, solver featuresliikéing the number of computed
answer sets or query answering are needed to avoid unngcesagputation and to limit
the amount of information presented to the user.

Our debugging approach requires information about thenided semantics in form of
the interpretation representing a desired answer setcalpianswer sets of programs en-
coding real-world problems tend to be large which makesiteqgumbersome to manually
create interpretations from scratch. Itis therefore ¥@dlave convenient means for obtain-
ing an intended answer set in the first place. For this purpesenvisage a tool-box for
managing interpretations that allows for their manipolatand storage. In such a setting,
answer sets of previous versions of the debugged progralt bea valuable source of in-
terpretations which are then tailored towards an intendsdar set of the current version.
In addition to manual adaptations, partial evaluation efgihogram could significantly ac-
celerate the creation of interpretations. We plan to furifiestigate these issues and aim
at incorporating our debugging technique, along with aarjtetation management sys-
tem as outlined, in an integrated development environniBi)( Here, an important issue
is to achieve a suitable user interface for highlightingittentified unsatisfied rules and
unfounded loops in the source code and for visualising the\ied variable substitutions.

5 Related work

Besides the debugging approach by Gebser et al. [2008yeasigldiscussed earlier, other
related approaches on debugging include the work of Poetell| (2009) orjustifications
for non-ground answer-set programs that can be seen as desoergary approach to ours.
Their goal is to explain the truth values of literals withpest to a given actual answer set
of a program. Explanations are provided in termaistificationswhich are labelled graphs
whose nodes are truth assignments of possibly defaulteggmound atoms. The edges
represent positive and negative support relations betteme truth assignments such that
every path ends in an assignment which is either assumedoarrkto hold. The authors
have also introduced justifications for partial answer Hets emerge during the solving
process (online justifications), being represented byetivedued interpretations.

The question why atoms are contained or are not contained anawer set has also
been raised by Brain and De Vos (2005) who provide algoritfonsecursively comput-
ing explanations in terms of satisfied supporting rules.eNbat these problems can in
principle also be handled by our approach, as illustrateBeictior 4.1L.. Indeed, consider
some progranP with answer sef and suppose we want to know why a certain Getf
literals is contained if. Using our approach, explanations why, L is not an answer
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set of P will reveal rules which are unsatisfied undek L but which support literals in
L under!. Likewise, we can answer the question why expected atommsgsng in an
answer set.

Syrjanen (2006) aims at finding explanations why some sibpoal program has no
answer sets. His approach is based on finding minimal setsrsti@ints such that their
removal yields consistency. Hereby, it is assumed that graro does not involve circular
dependencies between literals through an odd number ofioegavhich might also cause
inconsistency. Finding reasons for program inconsisteacybe handled by our approach
when an intended answer set is known, as illustrated by pnoge in Sectior{4.1L. Oth-
erwise, an interpretation can be chosen from the answeresitting from temporarily
removing all constraints from the considered program (joliag this yields consistency).

Brain et al. (200/7) rewrite a program using some additionatl| atoms, calledags
that allow, e.g., for switching individual rules on or off égfor analysing the resulting
answer sets. Debugging requests in this approach can be ppselding further rules that
can employ tags as well. One such extension allows also fectieg atoms in unfounded
loops. However, as opposed to our current approach, theidudil loops themselves are
not identified.

Caballero et al. (2008) developed a declarative debuggipgoach for datalog using
a classification of error explanations similar to the one Bb&er et al. (2008) and our
current work. Their approach is tailored towards query arswg and, in contrast to our
approach, the language is restricted to stratified datélogiever| Caballero et al. provide
an implementation that is based on computing a graph thattsfhe execution of a query.

Wittocx et al. (2008) show how a calculus can be used for dgimgdirst-order theories
with inductive definitions in the context of model expansmmwblems, i.e., problems of
finding models of a given theory that expand some given iné¢ation. The idea is to trace
the proof of inconsistency of such an unsatisfiable modehesgion problem. The authors
provide a system that allows for interactively exploring firoof tree.

Besides the mentioned approaches which rely on the serablpéibaviour of programs,
Mikitiuk et al (2007) use a translation from logic-programles to natural language in
order to detect program errors more easily. This seems t@beeatially useful feature for
an IDE as well, especially for novice and non-expert ASP m@ogners.

6 Conclusion

Our approach for declaratively debugging non-ground ansetprograms aims at pro-
viding intuitive explanations why a given interpretatiail$ to be an answer set of the
program in development. To answer this question, we logadis the one hand, unsatisfied
rules and, on the other hand, loops of the program that aunded with respect to the
given interpretation. As underlying technique, we use astigated meta-programming
method that reflects the complexity of the considered delbgggiestion which resides on
the second level of the polynomial hierarchy.

Typical errors in ASP may have quite different reasons andyntd them could be
avoided rather easily in the first place, e.g., by a compulseclaration of predicates
(Brain and De Vos 2005), forbidding uneven loops throughatieg (Syrjanen 2006), in-
troducing type checks, or defining program interfaces. Vém pb realise these kinds of
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simple prophylactic techniques for our future IDE for ASREttWill incorporate our current
debugging approach. In this context, courses on logic piragring at our institute shall
provide a permanent testbed for our techniques. Moreosgraet of an ongoing research
project on methods and methodologies for developing ansetgrograms (Oetsch et al. 2010),
we want to put research efforts into methodologies thatthlwominimise debugging needs
right from the start. As a next direct step regarding ourngdftowards debugging, we plan

to extend our approach to language features like aggredatesion symbols, and optimi-
sation techniques such as minimise-statements or weakraonts.
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