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Abstract

The need for integration of ontologies with nonmonotonic rules has been gaining impor-
tance in a number of areas, such as the Semantic Web. A number of researchers addressed
this problem by proposing a unified semantics for hybrid knowledge bases composed of
both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules.
These semantics have matured over the years, but only provide solutions for the static
case when knowledge does not need to evolve.

In this paper we take a first step towards addressing the dynamics of hybrid knowledge
bases. We focus on knowledge updates and, considering the state of the art of belief update,
ontology update and rule update, we show that current solutions are only partial and
difficult to combine. Then we extend the existing work on ABox updates with rules, provide
a semantics for such evolving hybrid knowledge bases and study its basic properties.

To the best of our knowledge, this is the first time that an update operator is proposed
for hybrid knowledge bases.

KEYWORDS: belief change, belief update, hybrid knowledge bases, ontologies, rules, de-
scription logics, answer set programming, semantic web

1 Introduction

In this paper we address updates of hybrid knowledge bases composed of a Descrip-

tion Logic ontology and Logic Programming rules. We propose an operator to be

used when a hybrid theory is updated by new observations of a changing world,

examine its properties, and discuss open problems pointing to future research.
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The Semantic Web was initiated almost a decade ago with an ambitious plan

regarding the sharing of metadata and knowledge in the Web, enhanced with rea-

soning services for advanced new applications (Berners-Lee et al. 2001). Since then,

the considerable amount of research devoted to this endeavour originated impor-

tant foundational results and a deeper understanding of the issues involved, while

identifying important conclusions regarding future developments, namely that:

1. Ontologies are necessary and useful for knowledge representation in the Se-

mantic Web. The formalisms developed, e.g. OWL, are powerful enough to

capture existing modelling languages used in software engineering, and ex-

tend their capabilities. Ontologies are usually based on decidable, as well as

tractable, fragments of Classical Logic, such as the Description Logics (DL)

(Baader et al. 2003). They adopt the open world assumption (OWA) i.e. they

view a knowledge base, by assumption, to be potentially incomplete, hence a

proposition p is false only if the knowledge base is inconsistent with p. This

suits well the open nature of such systems where complete knowledge about

the environment cannot be assumed.

2. Rules are fundamental to overcome the limitations found in OWL. They enjoy

formal, declarative and well-understood semantics, the stable model seman-

tics (Gelfond and Lifschitz 1988) and its tractable approximation, the three-

valued well-founded semantics (Gelder et al. 1991) being the most prominent

and widely accepted. These semantics adopt the closed world assumption

(CWA) i.e. the knowledge base is assumed to contain complete information.

Consequently, a proposition p is considered false whenever it is not entailed

to be true. This type of negation is usually dubbed default negation or weak

negation, to distinguish it from the classical negation used in Classical Logic.

Rules can naturally express assumptions, policies, preferences, norms and

laws, and provide constructs which are more natural for software developers

(as used in Relational Databases and Logic Programming).

3. The open and dynamic character of the Semantic Web requires new knowledge

based systems to be equipped with mechanisms to evolve.

Indeed, the growing availability of information requires the support of dynamic

data and application integration, automation and interoperation of business pro-

cesses and problem-solving in various domains, to enforce correctness of decisions,

and to allow traceability of the knowledge used and of the decisions taken. In these

scenarios, ontologies provide the logical foundation of intelligent access and infor-

mation integration, while rules are used to represent business policies, regulations

and declarative guidelines about information, and mappings between different in-

formation sources.

Over the last decade, there have been many proposals for integrating DL based

monotonic ontologies with nonmonotonic rules (see (Hitzler and Parsia 2009) for

a survey). Recently, in (Motik and Rosati 2007), Hybrid MKNF Knowledge Bases

were introduced, allowing predicates to be defined concurrently in both an ontol-

ogy and a set of rules, while enjoying several important properties. There is even a

tractable variant based on the well-founded semantics that allows for a top-down
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querying procedure (Alferes et al. 2009), making the approach amenable to practi-

cal applications that need to deal with large ontologies.

But this only addresses part of the problem. The highly dynamic character of the

Semantic Web calls for the development of ways to deal with updates of these hybrid

knowledge bases composed of both rules and ontologies, and the inconsistencies that

may arise. The dynamics of hybrid knowledge bases, to the best of our knowledge,

has never been addressed before.

However, the problems associated with knowledge evolution have been extensively

studied, over the years, by researchers in different research communities, namely

in the context of Classical Logic, and in the context of Logic Programming. They

proved to be extremely difficult to solve, and existing solutions, even within each

community, are still subject of active debate as they do not seem adequate in all

kinds of situations in which their application is desirable.

In the context of Classical Logic, the seminal work by Alchourrón, Gärdenfors

and Makinson (AGM) (Alchourrón et al. 1985) proposed a set of desirable prop-

erties of belief change operators, now called AGM postulates. Subsequently, in

(Katsuno and Mendelzon 1991), update and revision have been distinguished as

two very related but ultimately different belief change operations. While revi-

sion deals with incorporating new information about a static world, update takes

place when changes occurring in a dynamic world are recorded. The authors of

(Katsuno and Mendelzon 1991) formulated a separate set of postulates for updates.

One of the specific update operators that satisfies these postulates is Winslett’s

minimal change update operator (Winslett 1990). Though we believe that revision

operators for hybrid knowledge bases pose an interesting and important research

topic, in this paper we focus on update operators and do not tackle revision any

further.

Further research showed that, in most cases, belief update operators cannot be

directly applied to Description Logic ontologies. The existing work considers only

ABox updates, allowing only for static acyclic TBoxes which are “expanded” before

the update takes place (Liu et al. 2006), or static general TBoxes in the form of

integrity constraints (Giacomo et al. 2007). The main reasons for these restrictions

were expressibility and computability of the updated ontology. But we believe there

is a more fundamental problem with using belief update operators to update TBoxes

because it frequently yields counterintuitive results, as illustrated here:

Example 1.1 (Counterintuitive TBox update)

Suppose we want to update the description logic TBox T = {B ⊑ A } and we want

to update it with the new information U = {C ⊑ B }. In other words, we introduce

a new subconcept C of concept B. Using Winslett’s update operator we obtain

the updated knowledge base {C ⊑ B,B ⊓ ¬C ⊑ A }. Thus, the subconcept axiom

from T is severely weakened. Using other operators (see (Herzig and Rifi 1999) for

a survey) it may even get completely forgotten. Such a forgetful behaviour cannot

be explained by the sole fact that we are recording a change that occurred in

the modelled environment – new subconcepts may arise without disturbing other

relations the target concept may have.
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Thus, appropriate ways of updating ontologies in general, and TBoxes in partic-

ular, still need to be explored and pose an important open problem on its own. In

our current paper we follow the mentioned ontology update literature and focus on

ABox updates, leaving the TBox static throughout the update process.

Updates were also investigated in the context of Logic Programs. Earlier ap-

proaches based on literal inertia (Marek and Truszczynski 1998) proved not suffi-

ciently expressive for dealing with rule updates, leading to the development of rule

update semantics based on different intuitions, principles and constructions, when

compared to their classical counterparts. For example, the introduction of the causal

rejection principle (Leite and Pereira 1997) lead to several approaches to rule up-

dates (Alferes et al. 2000; Leite 2003; Eiter et al. 2002; Alferes et al. 2005), all of

them with a strong syntactic flavour which makes them very hard to combine with

belief update operators that are semantic in their nature. Other existing approaches

to updates of Logic Programs (Sakama and Inoue 2003; Zhang and Foo 2005; Delgrande et al. 2008)

have different problems, such as, for example, not being immune to tautological up-

dates. It has been shown in (Eiter et al. 2002) that the above mentioned rationality

postulates, set forth in the context of Classical Logic, are inappropriate for dealing

with updates of Logic Programs.

In order to develop an appropriate update operator for hybrid knowledge bases,

one has to somehow combine these apparently irreconcilable approaches to updates,

a problem that is far away from having an appropriate solution.

In this paper, we take an important first step in addressing the updates of hybrid

knowledge bases. Following the state of the art in ontology updates (Liu et al. 2006;

Giacomo et al. 2007), we choose a constrained scenario – which is, nevertheless, rich

enough to encompass many practical applications of hybrid theories – in which only

the ABox is allowed to evolve, while the TBox is kept static. We add rule support to

this scenario by augmenting the traditional immediate consequence operator used

in logic programming with the classical update operator. The resulting framework

is significantly more expressive than those of (Liu et al. 2006; Giacomo et al. 2007)

and allows for a seamless two-way interaction between Logic Programming rules

and Description Logic axioms. The consequences of rules are also subject to update

through the ABox updates, making it possible to use rules to represent default

preferences or behaviour and later directly impose exceptions to those rules.

The resulting update semantics enjoys several desirable properties, namely it:

• generalises the stable model semantics (Gelfond and Lifschitz 1988).

• generalises, under reasonable assumptions, the MKNF semantics for hybrid

knowledge bases (Motik and Rosati 2007).

• generalises, under reasonable assumptions, the minimal change update oper-

ator (Winslett 1990).

• adheres to the principle of primacy of new information (Dalal 1988), so every

model resulting from the update by an ABox A is a model of A.

• is syntax-independent w.r.t. the TBox and ABox, i.e. yields the same result

with equivalent TBoxes and when updating by equivalent ABoxes.

To the best of our knowledge, this is the first proposal of an update semantics
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for hybrid knowledge bases in a single framework. This semantics not only provides

an appropriate solution to the constrained scenario we chose, but it unveils a set of

important issues, opening the door for interesting future research endeavours.

The remainder of this paper is structured as follows: In Sect. 2 we introduce the

notions needed throughout the rest of the paper, and discuss some of the choices we

made. Section 3 contains the definition of our operator while in Sect. 4 we examine

its properties. In Sect. 5 we conclude and sketch some directions for future work.

2 Preliminaries

In this section we present the necessary preliminaries that we need to define the

hybrid update operator, and discuss some of the choices we made. As the basis

for the formal part of our investigation, we choose the same notation and notions

as those used for Hybrid MKNF Knowledge Bases (Motik and Rosati 2007). This

makes it possible to treat first-order formulae and nonmonotonic rules in a unified

manner and also compare our semantics to the one of Hybrid MKNF more easily.

2.1 MKNF

The logic of minimal knowledge and negation as failure (MKNF) is an exten-

sion of first-order logic with two modal operators: K and not. In the follow-

ing, we follow the presentation of syntax and semantics of this logic as given in

(Motik and Rosati 2007). We use a function-free first-order syntax extended by the

mentioned modal operators in a natural way. Similarly as in (Motik and Rosati 2007),

we consider only Herbrand interpretations in our semantics.

We begin with the definition of syntax of MKNF formulas. First we need to

introduce the language of MKNF:

Definition 2.1 (MKNF Language)

An MKNF language contains

1. logical connectives ¬ and ∧;

2. the quantifier ∃;

3. modal operators K and not ;

4. punctuation symbols “(”, “)” and “,”;

5. a countably infinite set of variables V = { x,X, y, Y, . . . };

6. a set of constant symbols C = { c, d, . . . } and

7. a set of predicate symbols P = {P,Q, . . . }, each with an associated natural

number that we called its arity.

Each MKNF language is determined by specifying the set of constant symbols C

and the set of predicate symbols P. Such a language is denoted by LMKNF(C,P).

The language is always assumed to contain at least one predicate symbol and at

least one constant symbol.

From now onwards, we assume that the MKNF language L = LMKNF(C,P) is

given and use it implicitly in the text below. Almost all the defined notions are with



6 M. Slota and J. Leite

respect to this language but we do not stress this fact in the definitions. So instead

of defining an “MKNF formula of L”, we simply define an “MKNF formula”, leaving

out the words “of L”. Similarly, instead of defining an “MKNF structure over L”,

we simply define an “MKNF structure”, leaving out the words “over L”. Other

definitions follow this pattern as well.

Furthermore, while in the definitions the notions are defined with their full names

(e.g. “MKNF language”, “MKNF formula”, . . . ), further in the text we occasionally

drop the word “MKNF”.We believe these simplifications do not cause any confusion

while significantly improving the readability of the text.

We continue with the definition of an MKNF formula:

Definition 2.2 (MKNF Formula)

A term is a variable or a constant. A first-order atom is every expression of the

form

P (t1, t2, . . . , tn)

where P is a predicate symbol of arity n and each ti is a term.

The set of MKNF formulas is the smallest set satisfying the following conditions:

1. Every first-order atom is an MKNF formula.

2. If φ, ψ are MKNF formulas and x is a variable, then ¬φ, (φ ∧ ψ), (∃x : φ),

Kφ and notφ are also MKNF formulas.

Where it doesn’t cause confusion, the parenthesis are removed for the sake of read-

ability. Furthermore, (φ∨ψ), (φ ⊃ ψ), (φ ⊂ ψ), (φ ≡ ψ), true, false and (∀x : φ) are

used as shortcuts for ¬(¬φ ∧ ¬ψ), (¬φ ∨ψ), (φ ∨¬ψ), (φ ⊃ ψ)∧ (φ ⊂ ψ), (p∨¬p),

(p ∧ ¬p) and ¬(∃x : ¬φ), respectively, where p is a fixed ground first-order atom

from the language.1

An MKNF formula of the form Kφ is called a modal K-atom, and a formula

of the form notφ is called a modal not-atom; collectively, modal K- and not-

atoms are called modal atoms. An MKNF formula φ is a sentence if it has no

free variable occurences; φ is open if all its variable occurences are free; φ is

ground if it does not contain variables; φ is positive if it does not contain oc-

currences of not; φ is first-order or objective if it does not contain modal opera-

tors. By φ[t1/x1, t2/x2, . . . , tn/xn] we denote the formula obtained by simultane-

ously replacing in φ all free occurences of the variable xi by the term ti for every

i ∈ { 1, 2, . . . , n }.

A set of MKNF sentences is an MKNF theory. An MKNF theory has property X

if all its members do (for instance, an MKNF theory is first-order if all sentences

inside it are first-order).

Now we can define the semantics of MKNF formulas. We use Herbrand interpre-

tations, assuming that apart from the constants from C occurring in the formulas,

the signature contains a coutably infinite supply of constants not occurring in the

1 As stated in above, we assume that at least one predicate symbol and at least one constant
symbol exist in the language, from which at least one ground first-order atom can be formed.
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formulas. The Herbrand Universe of such a signature is denoted by ∆ and has

the property C ⊆ ∆. If not stated otherwise, we assume that one fixed Herbrand

Universe ∆ with these properties is used as the universe for all interpretations.

Definition 2.3 (First-Order Interpretation and Model)

A first-order interpretation I is a relational structure that contains for every pred-

icate symbol P ∈ P of arity n a relation P I ⊆ ∆n. The set of all first-order

interpretations is denoted by I.

Each first-order interpretation determines a unique truth assignment to all first-

order sentences. The satisfiability of a first-order sentence φ in I is defined induc-

tively as follows:

1◦ If φ is a ground first-order atom P (c1, c2, . . . , cn), then φ is true in I if and

only if (c1, c2, . . . , cn) ∈ P I ;
2◦ If φ is a first-order formula of the form ¬ψ, then φ is true in I if and only if

ψ is not true in I;

3◦ If φ is a first-order formula of the form φ1 ∧φ2, then φ is true in I if and only

if φ1 is true in I and φ2 is true in I;

4◦ If φ is a first-order formula of the form (∃x : ψ), then φ is true in I if and

only if ψ[c/x] is true in I for some constant c ∈ ∆.

The fact that φ is true in I is denoted by I |= φ. A formula φ is false in I if and

only if it is not true in I, denoted by I 6|= φ. For a first-order theory S we say that

S is true in I, denoted by I |= S, if I |= φ for each φ ∈ S. Otherwise, S is false in

I, denoted by I 6|= S.

If I |= φ, then we say that I is a model of φ. Similarly, if I |= S, then I is a model

of S. The set of all models of φ is denoted by mod(φ). The set of all models of S is

denoted by mod(S).

The satisfiability of MKNF formulas is defined with respect to MKNF structures.

Definition 2.4 (MKNF Structure)

An MKNF structure is a triple 〈I,M,N〉 where I is a first-order interpretation and

M,N are sets of first-order interpretations.2

Every MKNF structure has three components. The first is a first-order interpre-

tation used to interpret the objective parts of a formula. The second and third are

sets of first-order interpretations used to interpret the parts of a formula under the

K and not modality, respectively.

Definition 2.5 (MKNF Satisfiability)

Let 〈I,M,N〉 be an MKNF structure. The satisfiability of an MKNF sentence φ in

〈I,M,N〉 is defined inductively as follows:

1◦ If φ is a ground first-order atom P (c1, c2, . . . , cn), then φ is true in 〈I,M,N〉

if and only if (c1, c2, . . . , cn) ∈ P I ;

2 In difference to (Motik and Rosati 2007), we allow for empty M,N in this definition as later on
it will be useful to have satisfiability defined even for this marginal case. However, the empty
set is still not considered an MKNF interpretation as can be seen further in Definition 2.6
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2◦ If φ is a first-order formula of the form ¬ψ, then φ is true in 〈I,M,N〉 if and

only if ψ is not true in 〈I,M,N〉;

3◦ If φ is a first-order formula of the form φ1 ∧ φ2, then φ is true in 〈I,M,N〉 if

and only if φ1 is true in 〈I,M,N〉 and φ2 is true in 〈I,M,N〉;

4◦ If φ is a first-order formula of the form (∃x : ψ), then φ is true in 〈I,M,N〉

if and only if ψ[c/x] is true in 〈I,M,N〉 for some constant c ∈ ∆;

5◦ If φ is a formula of the form Kψ, then φ is true in 〈I,M,N〉 if and only if ψ

is true in 〈J,M,N〉 for each J ∈M ;

6◦ If φ is a formula of the form notψ, then φ is true in 〈I,M,N〉 if and only if

ψ is not true in 〈J,M,N〉 for some J ∈ N .

The fact that φ is true in 〈I,M,N〉 is denoted by 〈I,M,N〉 |= φ. A formula φ is

false in 〈I,M,N〉 if and only if it is not true in 〈I,M,N〉, denoted by 〈I,M,N〉 6|= φ.

Now we are ready to introduce the notions of MKNF interpretation and model.

Definition 2.6 (MKNF Interpretation and Model)

An MKNF interpretation M is a non-empty set of first-order interpretations. By

M = 2I we denote the set of all MKNF interpretations together with the empty

set.

Let φ be an MKNF sentence, S an MKNF theory and M ∈M. We say φ is true

in M , denoted by M |= φ, if 〈I,M,M〉 |= φ for each I ∈ M .3 Otherwise φ is false

in M , denoted by M 6|= φ. S is true in M , denoted by M |= S, if M |= φ for each

φ ∈ S. Otherwise, S is false in M , denoted by M 6|= S.

If M ∈ M is non-empty4, then M is

• an S5 model of φ if M |= φ;

• an S5 model of S if M |= S;

• an MKNF model of φ if M is an S5 model of φ and for every MKNF inter-

pretation M ′ )M there is some I ′ ∈M ′ such that 〈I ′,M ′,M〉 6|= φ;

• an MKNF model of S if M is an S5 model of S and for every MKNF in-

terpretation M ′ ) M there is some I ′ ∈ M ′ and some φ ∈ S such that

〈I ′,M ′,M〉 6|= φ.

If there exists the greatest S5 model of φ, then it is denoted by mod(φ). If φ has

no S5 model, then mod(φ) denotes the empty set. For the rest of MKNF sentences,

mod(·) stays undefined. If there exists the greatest S5 model of S, then it is denoted

by mod(S). If S has no S5 model, then mod(S) denotes the empty set. For the rest

of MKNF theories, mod(·) stays undefined.

3 Notice that ifM is empty, this condition is vacuously satisfied for any sentence φ, so any sentence
is true in ∅.

4 As seen above, every formula is true in ∅, so ∅ is not considered an MKNF interpretation and
for the same reason it is never given the status of a model.
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2.2 Description Logics

Description Logics (DLs) (Baader et al. 2003) are (mostly) decidable fragments of

first-order logic that are frequently used for knowledge representation in practical

applications. In the following we assume that some Description Logic is used to

describe an ontology. We do not choose any specific Description Logic, we only

assume that the ontology expressed in it is composed of two distinguishable parts:

a TBox with concept and role definitions using the constructs of the underlying

description logic, and an ABox with individual assertions, i.e. assertions of the form

C(a) and R(a, b) where a, b are constants, C is a concept expression and R is a role

expression of the un derlying description logic. This distinction is important to us

as we treat the two types of knowledge in different ways – the TBox is considered

static while the ABox is allowed to evolve. As was noted in the introduction, our

main reason for this is that we believe existing update operators to be unsuitable

for updating concept definitions contained in the TBox. We also assume that the

axioms of the underlying DL can be translated into first-order logic and for the sake

of simplicity we assume that the TBox and ABox already contain these translations

instead of the syntactic constructs of the underlying DL.

2.3 Hybrid MKNF Knowledge Bases

We make use of the general MKNF framework to give a semantics to hybrid knowl-

edge bases composed of an ontology and a normal logic program. The following

definition introduces the notion of a rule as we use it in the following:

Definition 2.7 (Rule)

A rule is any open MKNF formula of the form

K p ⊂ K q1 ∧K q2 ∧ · · · ∧K qk ∧ not s1 ∧ not s2 ∧ · · · ∧ not sl (1)

where k, l are non-negative integers and p, qi, sj are first-order atoms for any i ∈

{ 1, 2, . . . , k } , j ∈ { 1, 2, . . . , l }. Given a rule r of the form (1), the following notation

is also defined:

H(r) = K p ,

H∗(r) = p ,

B+(r) = {K q1,K q2, . . . ,K qk } ,

B−(r) = { not s1,not s2, . . . ,not sl } ,

B(r) = B+(r) ∪B−(r) .

H(r) is dubbed the head of r, H∗(r) the first-order head of r, B+(r) the positive

body of r, B−(r) the negative body of r and B(r) the body of r. A rule r is called

definite if its negative body is empty. A rule r is called a fact if its body is empty.

A program is a set of rules. A definite program is a set of definite rules.

As was shown in (Lifschitz 1991), the MKNF semantics generalises the stable

model semantics for logic programs. In particular, every logic programming rule of
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the form

p← q1, q2, . . . , qk, not s1, not s2, . . . , not sl.

can be translated into the MKNF formula (1) and the stable models of sets of such

rules (i.e. of normal logic programs) directly correspond to MKNF models of the

set of translated rules.

We are now ready to define a hybrid knowledge base and its semantics.

Definition 2.8 (Hybrid knowledge base)
Let O be an ontology and P a program. The pair K = 〈O,P〉 is then called a hybrid

knowledge base. We say K is definite if P is definite and we say K is P-ground if P

is ground.

The semantics of hybrid knowledge bases is given in terms of a translation π into

a set of MKNF formulas which is defined as follows:

Definition 2.9
For an ontology O, a rule r with the vector of free variables x, a program P and

the hybrid knowledge base K = 〈O,P〉, we define:

π(O) = {Kφ | φ ∈ O } ,

π(r) = (∀x : r) ,

π(P) = { π(r) | r ∈ P } ,

π(K) = π(O) ∪ π(P) .

We say an MKNF interpretation M is an S5 model of K if M is an S5 model of

π(K). We say M is an MKNF model of K if M is an MKNF model of π(K).

In this paper, we are not concerned with decidability of reasoning, so we refrain

from introducing a safety condition on our rules as was done in (Motik and Rosati 2007).

2.4 Classical Updates

As a basis for our update operator, we adopt an update semantics called the

minimal change update semantics (sometimes also called the possible models ap-

proach (PMA)) as defined in (Winslett 1990) for updating first-order theories.

There are a number of reasons for this choice. First, it satisfies all of Katsuno

and Mendelzon’s update postulates (Katsuno and Mendelzon 1991). This means,

for instance, that unlike some other update semantics, such as the standard seman-

tics (Winslett 1990), it is not sensitive to syntax of the original theory or of the

update. Second, it is based on an intuitive idea, treating each classical model of the

original theory as a possible world and modifying it as little as possible in order to

become consistent with the new information. This idea has its roots in reasoning

about action (Winslett 1988) and updates of relational theories (Winslett 1990).

Third, the operator has already been successfully used to deal with ABox updates

(Liu et al. 2006; Giacomo et al. 2007).

This semantics uses a notion of closeness of first-order interpretations w.r.t. a

fixed first-order interpretation I. This notion is based on the set of ground first-

order atoms that are interpreted differently than in I.
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Definition 2.10 (Interpretation distance)

Let P be a predicate symbol and I, J be first-order interpretations. The difference in

the interpretation of P between I and J , written diff (P, I, J), is a relation containing

the set of tuples (P I \ P J) ∪ (P J \ P I).

Given first-order interpretations I, J, J ′, we say that J is at least as close to I as

J ′, denoted by J ≤I J ′, if for every predicate symbol P it holds that diff (P, I, J)

is a subset of diff (P, I, J ′). We also say that J is closer to I than J ′, denoted by

J <I J
′, if J ≤I J ′ and J ′ �I J .

We now give a definition of the minimal change update semantics but in difference

to (Winslett 1990), we use a specific vocabulary which is closer to the setting of

this paper. In particular, we define the semantics of updating an initial theory S by

an ABox A in the context of the TBox T . The TBox is treated as static integrity

constraints for the whole update process. The minimal change update semantics

chooses those models of T ∪ A that are the closest w.r.t. the relation ≤I to some

model I of T ∪ S. Formally:

Definition 2.11 (Winslett’s minimal change update semantics)

Let S be a first-order theory, T a TBox, A an ABox, I a first-order interpretation

and M a set of first-order interpretations. We define:

incorporateT (A, I) = { J ∈ mod(T ∪ A) | (∄J ′ ∈ mod(T ∪ A))(J ′ <I J) } ,

incorporateT (A,M) =
⋃

I∈M

incorporateT (A, I) ,

mod(S ⊕T A) = incorporateT (A,mod(T ∪ S)) .

If mod(S⊕T A) is nonempty, we call it the minimal change update model of S⊕T A.

The previous definition can be naturally generalised to allow for sequences of

ABoxes. Starting from the models of the original theory, for each ABox in the

sequence we transform the set of models according to the minimal change update

semantics defined above. The resulting set of models then determines the updated

theory. Formally:

Definition 2.12 (Update by a sequence of ABoxes)

Let S be a first-order theory, T a TBox,A = (A1,A2, . . . ,An) a sequence of ABoxes

and M a set of first-order interpretations. We inductively define:

incorporateT (A,M) = incorporateT ((A2, . . . ,An), incorporate
T (A1,M)) ,

mod(S ⊕T A) = incorporateT (A,mod(T ∪ S)) .

If mod(S⊕T A) is nonempty, we call it the minimal change update model of S⊕T A.

3 Hybrid Update Operator

Turning to the formal part of our proposal, our aim is to propose a semantics for

a program P updated by a sequence of ABoxes (A1,A2, . . . ,An) in the context of

a TBox T . We assume program P to be finite and ground, a common assumption

when dealing with reasoning under the stable model semantics.
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We follow a path similar to how the stable models of normal logic programs were

originally defined (Gelfond and Lifschitz 1988), and start by defining how a definite

program can be updated by a sequence of ABoxes, and only afterwards deal with

programs containing default negation.

As with the least model of a definite logic program, our resulting model is the

least fixed point of an immediate consequence operator. Our operator is in a way

similar to the usual immediate consequence operator TP commonly used to draw

consequences from a logic program P . The crucial difference between TP and our

operator is that in the latter, the consequences are subsequently updated by the

sequence of ABoxes A using the classical update operator. Formally:

Definition 3.1 (Updating immediate consequence operator TP⊕T A)

Let P be a finite ground definite program, T a TBox and A a sequence of ABoxes.

We define the operator TP⊕T A for any M ⊆ I as follows5:

TP⊕T A(M) = mod({H∗(r) | r ∈ P ∧M |= B(r) } ⊕T A)

An important property of an immediate consequence operator is continuity be-

cause it guarantees the existence of a least fixed point and also provides a way

of computing this least fixed point (using the Kleene Fixed Point Theorem). The

TP⊕T A operator satisfies the condition of continuity:

Proposition 3.2 (Continuity of TP⊕T A)

Let P be a finite ground definite program, T a TBox and A a sequence of ABoxes.

Then TP⊕T A is a continuous function on the complete partial order (M,⊇).

Proof

See Appendix Appendix D, page 34.

Now we can define a minimal change dynamic stable model of P ⊕T A, where P

is a definite program, as the least fixed point of TP⊕T A:

Definition 3.3 (Minimal change dynamic stable model for definite programs)

Let P be a finite ground definite program, T a TBox and A a sequence of ABoxes.

We say an MKNF interpretation M is a minimal change dynamic stable model of

P ⊕T A if it is the least fixed point of TP⊕T A.

Notice that for every definite program P and each sequence of ABoxes A, P⊕T A

has either no minimal change dynamic stable model (when the least fixed point of

TP⊕T A is empty), or exactly one minimal change dynamic stable model.

In order to deal with default negation in the bodies of rules, we use the Gelfond-

Lifschitz transformation which was used to define the stable models of a normal logic

program (Gelfond and Lifschitz 1988). We do this by defining the definite program

PM which is the result of performing the Gelfond-Lifschitz transformation on P –

rules from P with a negative body that is in conflict with M are discarded, while

5 Recall that M |= B(r) holds if and only if M is an S5 model of every modal atom in B(r) (see
also Def. 2.6).
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for all the other rules, their negative bodies are discarded. Then PM is updated by

A using the above definition for definite logic programs and if the result is identical

toM , thenM is given the status of a minimal change dynamic stable model. Hence,

the resulting operator can be used to update an arbitrary normal logic program by

a sequence of ABoxes.

Definition 3.4 (Minimal change dynamic stable model)

Let P be a finite ground program, T a TBox, A a sequence of ABoxes and M

an MKNF interpretation. We say M is a minimal change dynamic stable model of

P ⊕T A if M is a minimal change dynamic stable model of PM ⊕T A where

PM =
{

H(r) ⊂ B+(r)
∣

∣ r ∈ P ∧M |= B−(r)
}

.

The minimal change dynamic stable models can be used to define a consequence

relation from P ⊕T A where P is a finite ground program, T is a TBox and A

a sequence of ABoxes. We offer a definition which adopts a skeptical approach to

inference, credulous and other definitions may be obtained similarly.

Definition 3.5 (Consequence relation)

Let P be a finite ground program, T a TBox, A a sequence of ABoxes and φ an

MKNF sentence. We say that P ⊕T A entails φ, written P ⊕T A |= φ, if and only

if M |= φ for all minimal change dynamic stable models M of P ⊕T A.

We now demonstrate the defined update semantics on a simple example:

Example 3.6

Consider the following TBox T and program P :

T : A ≡ B ⊔C (2)

NegA ≡ ¬A (3)

D ≡ ¬A ⊓ ∃P−.A (4)

P : NegA(X)← not A(X). (5)

P (X,Y )← A(X), E(Y ), not E(X). (6)

TBox assertions (2) and (3) together with rule (5) define the concept A as a union

of concepts B and C and they make this concept interpreted under CWA instead of

OWA, i.e. whenever for some constant c we cannot conclude that A(c) is true, the

rule (5) infers NegA(c) and by (3) we obtain ¬A(c). Assertion (4) defines concept

D as those members d of ¬A for which there exists some c from A with P (c, d).

Rule (6) infers the relation P (c, d) whenever c is in A but not in E and d is in E.

Given the initial definitions, an update by A1 = {A(c) } now yields6

P ⊕T A1 |= {A(c),¬A(d) } .

A further update by A2 = {¬B(c) } introduces a possibility of A(c) not being true

6 In the example we assume that the rules are grounded using all constants explicitly mentioned
in the knowledge base. In this case there are only two: c and d.
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in case B(c) was true before and C(c) was false. Since A is interpreted under the

closed world assumption, we can now conclude that A(c) is false:

P ⊕T (A1,A2) |= {¬A(c),¬B(c),¬A(d) }

Consider now the update A3 = {C(c) ∧ E(d) }. Given (2), this reinstates A(c).

Furthermore, rule (6) can now infer P (c, d) and by (3) we obtain D(d):

P ⊕T (A1,A2,A3) |= {A(c),¬B(c), C(c),¬A(d), E(d), P (c, d), D(d) }

In the next update A4 = {E(c) } we block the body of rule (6), which also prevents

D(d) from being inferred:

P ⊕T (A1,A2,A3,A4) |= {A(c),¬B(c), C(c),¬A(d), E(d), E(c) }

The last update7 A5 = {¬E(c) ∧ ¬P (c, d) } illustrates how the conclusion of a rule

may be overridden through the ABox updates – though the body of rule (6) is true,

its head does not become true since it is in direct conflict with A5:

P ⊕T (A1,A2,A3,A4,A5) |= {A(c),¬B(c), C(c),¬A(d), E(d),¬E(c),¬P (c, d) }

4 Properties and Relations

In this section we investigate a number of formal properties of the defined operator.

The first property guarantees that every minimal change dynamic stable model of

P⊕TA is a model ofA. This is known as the principle of primacy of new information

(Dalal 1988).

Proposition 4.1 (Primacy of new information)

Let P be a finite ground program, T a TBox, A an ABox and M a minimal change

dynamic stable model of P ⊕T A. Then M |= A.

Proof

See Appendix Appendix D, page 35.

The second property guarantees that our operator is syntax-independent w.r.t.

the TBox and the updating ABox. This is a desirable property as it shows that

providing equivalent TBoxes and updating by equivalent ABoxes always produces

the same result. It is inherited from the classical minimal change update operator.

Proposition 4.2 (Syntax independence)

Let P be a finite ground program, T , T ′ be TBoxes such that mod(T ) = mod(T ′),

A,A′ be ABoxes such that mod(A) = mod(A′) andM be an MKNF interpretation.

Then M is a minimal change dynamic stable model of P ⊕T A if and only if M is

a minimal change dynamic stable model of P ⊕T ′

A′.

7 Updating ABoxes could, of course, be more complex since arbitrary concept expressions may
be used (e.g. (∃P.C)(c)). Here, due to limited space, we keep the example very simple.
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Proof

See Appendix Appendix D, page 35.

The following proposition relates the hybrid update operator to the static MKNF

semantics of hybrid knowledge bases. It gives sufficient conditions for the static and

dynamic semantics to coincide. In particular, the sufficient condition requires that

for any set of consequences S of program P in the context of a model M , updating

S by A in the context of T has the same effect as making an intersection of the

models of S with the models of A and T .

Proposition 4.3 (Relation to Hybrid MKNF )

Let P be a finite ground program, O = T ∪ A an ontology with TBox T and

ABox A and M an MKNF interpretation such that for every subset S of the set

{H∗(r) | r ∈ P ∧M |= B(r) } the following condition is satisfied:

mod(S ⊕T A) = mod(S ∪ O) .

ThenM is an MKNF model of 〈O,P〉 if and only ifM is a minimal change dynamic

stable model of P ⊕T A.

Proof

See Appendix Appendix D, page 36.

The precondition of this proposition is satisfied, for example, when predicates

appearing in heads of P do not appear in the ontology O. An important subcase

of this is when O is empty because then the proposition implies that the minimal

change dynamic stable models of P ⊕∅ ∅ are exactly the MKNF models of P . Since

the MKNF semantics generalises the stable model semantics (Lifschitz 1991), the

minimal change dynamic stable models of P ⊕∅ ∅ also coincide with the stable

models of P . In other words, our operator properly generalises stable models.

Corollary 4.4 (Generalisation of stable models)

Let P be a finite ground program. Then M is a stable model of P if and only if M

is a minimal change dynamic stable model of P ⊕∅ ∅.

Proof

See Appendix Appendix D, page 37.

Turning to relations with the minimal change update operator, we show that up-

dating any logic program that can be equivalently translated into first-order logic

has the same effect as updating the translated first-order theory using the mini-

mal change update operator. Hence, our update operator generalises the classical

minimal change update operator.

Proposition 4.5 (Generalisation of the minimal change update operator)

Let P be a finite ground program containing only facts, T a TBox, A a sequence

of ABoxes and M an MKNF interpretation. Then M is a minimal change dynamic

stable model of P ⊕T A if and only if M is a minimal change update model of

SP ⊕
T A where SP = { p | K p ∈ P }.
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Proof

See Appendix Appendix D, page 38.

Another property that our operator inherits from the classical minimal change

update operator is that empty ABoxes in the updating sequence do not influence

the resulting models. Similarly, updating an empty program simply yields the set of

all first-order models of T ∪A. These last two properties ensure that empty program

and updates cannot influence the resulting models under our update operator8.

Proposition 4.6 (Indifference to empty updates)

Let P be a finite ground program, T be a TBox and A = (A1,A2, . . . ,An) a

sequence of ABoxes (where n ≥ 1). Let

A′ = (A1,A2, . . . ,Ai−1,Ai, ∅,Ai+1, . . . ,An)

for some i ∈ { 0, 1, 2, . . . , n }. Then an MKNF interpretationM is a minimal change

dynamic stable model of P ⊕T A if and only if M is a minimal change dynamic

stable model of P ⊕T A′.

Proof

See Appendix Appendix D, page 37.

Proof

See Appendix Appendix D, page 40.

Proposition 4.7 (Updating an empty program)

Let T be a TBox, A an ABox and M an MKNF interpretation. Then M is a

minimal change dynamic stable model of ∅ ⊕T A if and only if M = mod(T ∪ A).

Relation to Katsuno and Mendelzon’s postulates

In the following we briefly discuss the relation of our operator to Katsuno and

Mendelzon’s postulates for updates of propositional knowledge bases formulated

in (Katsuno and Mendelzon 1991). Each propositional knowledge base over a finite

language can be represented by a single propositional formula and the result of

the update can also be represented as a propositional formula. The eight desirable

properties of an update operator ⋄ are as follows:

KM 1: φ ⋄ ψ implies ψ.

KM 2: If φ implies ψ, then φ ⋄ ψ is equivalent to φ.

KM 3: If both φ and ψ are satisfiable, then φ ⋄ ψ is satisfiable.

KM 4: If φ1 is equivalent to φ2 and ψ1 is equivalent to ψ2, then φ1 ⋄ ψ1 is

equivalent to φ2 ⋄ ψ2.

KM 5: (φ ⋄ ψ) ∧ χ implies φ ⋄ (ψ ∧ χ).

8 Perhaps surprisingly, as shown in (Leite 2003), these two properties are violated by many update
operators in the context of Logic Programming.
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KM 6: If φ ⋄ ψ1 implies ψ2 and φ ⋄ ψ2 implies ψ1, then φ ⋄ ψ1 is equivalent to

φ ⋄ ψ2.

KM 7: If for each atom p either φ implies p or φ implies ¬p, then (φ⋄ψ1)∧(φ⋄ψ2)

implies φ ⋄ (ψ1 ∨ ψ2).

KM 8: (φ1 ∨ φ2) ⋄ ψ is equivalent to (φ1 ⋄ ψ) ∨ (φ2 ⋄ ψ).

In order to examine these postulates in our setting, we restrict our attention to

a finite propositional language. In order to interpret the postulates in our setting,

we need to define the semantics of a number of notions used in them. Let P ,P1,P2

be programs, T a TBox and α, α1, α2 be propositional formulae representing ABox

updates. We need to discuss and define, at least:

1. When does P ⊕T α1 imply α2? (used in KM 1 and KM 6)

2. When does P imply α? (used in KM 2 and KM 7)

3. When is P1 ⊕T α equivalent to P2? (used in KM 2)

4. When is P satisfiable? (used in KM 3)

5. When is P ⊕T α satisfiable? (used in KM 3)

6. When is P1 equivalent to P2? (used in KM 4)

7. When is P1 ⊕T α1 equivalent to P2 ⊕T α2? (used in KM 4 and KM 6)

8. What is the semantics of (P ⊕T α1) ∧ α2? (used in KM 5)

9. What is the semantics of (P ⊕T α1) ∧ (P ⊕T α2)? (used in KM 7)

10. What is the semantics of P1 ∨ P2? (used in KM 8)

Most of these questions can be answered in multiple different ways while some of

them are hard to provide answers to at all. In the following, we suggest ways of

answering most of these questions and then analyse whether our operator satisfies

the corresponding postulates.

Question 1. can be answered using the consequence relation from Def. 3.5. A

similar consequence relation can be defined using stable models to answer question

2. A simple answer to question 3. is to say that P1 ⊕T α is equivalent to P2 if the

set of minimal change dynamic stable models of P1⊕T α is equal to the set of stable

models of P2. Regarding questions 4. and 5., we can say that P is satisfiable if it

has at least one stable model and P⊕T α is satisfiable if it has at least one minimal

change dynamic stable model. Question 6. can be answered similarly as question

3. by comparing the sets of minimal change dynamic stable models of P ⊕T α1

and P ⊕T α2. Finally, question 7. can be answered by comparing the sets of stable

models of P1 and P2 or by using strong equivalence (Lifschitz et al. 2001). Providing

reasonable answers to the remaining questions requires more investigation, so, for

now, we do not further examine postulates KM 5, KM 7 and KM 8.

Turning to the rest of the postulates, we note that our operator adheres to KM 1,

which was proved in Proposition 4.1. The same is not the case with postulate KM 2,

as shown by the following counterexample. Consider the program

P : p← not q. r← q, not r.

q ← not p. r← p.
(7)

and an update α = r. The only stable model of P is the maximal S5 model M of
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{ p, r }. Clearly, M |= α. But P ⊕T α has another minimal change dynamic stable

M ′, which is the maximal S5 model of { q, r } and so is not equivalent to P .

In fact, this behaviour is inherited from the stable semantics for logic programs

which does not satisfy the very similar property of cumulativity (Makinson 1988;

Dix 1995). Hence, it is expectable that KM 2 is never satisfied by any update

semantics that properly generalises the stable model semantics.

A similar situation arises with postulate KM 3 because the stable model semantics

allows to express integrity constraints, and these may easily be broken by an update.

For example, the program P = { p← q, not p. }, updated by α = q, of which both

are satisfiable, does not allow for any minimal change dynamic stable model. It is

not clear how an integrity constraint should be updated because, once it is a part of

the knowledge base, which is assumed to be a correct representation of the world, it

should not be violated, and no new information should have the power to override

it. Or should it? That is another open research question worth investigating.

Postulate KM 4 is partially formulated in Proposition 4.2, which shows that

updating by equivalent ABoxes produces the same result. The other half amounts

to proving that updating equivalent logic programs by the same ABox also produces

equivalent results. For the two notions of program equivalence that we proposed

above, this property does not hold. As a counterexample take P1 = { p., q. } and

P2 = { p., q ← p. } which have the same answer sets and are also strongly equivalent.

An update by α = ¬p, produces different results for P1 and P2, respectively, which

we believe is in accord with intuitions regarding these two programs. It may be the

case that for different notions of program equivalence that better suit our scenario,

such as the update equivalence of logic programs proposed in (Leite 2003), this

property holds. Further investigation is needed to answer this question.

Finally, postulate KM 6 is also not satisfied by the operator. As a counterex-

ample we can take the program P defined in (7), α1 = r and α2 = p ∨ q. Then

P ⊕T α1 has two minimal change dynamic stable models: M1 = mod({ p, r }) and

M2 = mod({ q, r }). Hence, P ⊕T α1 |= α2. Furthermore, P⊕T α2 has only one min-

imal change dynamic stable model which is M1 and consequently P ⊕T α2 |= α1.

However, P ⊕T α1 is not equivalent to P ⊕T α2.

5 Conclusion and Future Work

As seen, our operator properly generalises the two main ingredients that it is mo-

tivated by – the stable model semantics of normal logic programs (Corollary 4.4)

and the minimal change update operator (Proposition 4.5). The failure of our op-

erator to satisfy many of Katsuno and Mendelzon’s postulates is not surprising. A

wide range of classical update and revision postulates was already studied in the

context of rule updates, only to find that many of them were inappropriate for

characterising plausible rule update operators (Eiter et al. 2002). Furthermore, in

(Slota and Leite 2010) we show that even under the SE model semantics, which is

strictly more expressive than stable models semantics, update operators satisfying

only some of the basic Katsuno and Mendelzon’s postulates necessarily violate the

property of support which is at the core of most logic programming semantics. The
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search for desirable properties of hybrid update operators is an interesting future

research area.

There are also many more properties still to be examined, among them decid-

ability as well as complexity of reasoning. Since we cannot expect the operator to

perform any better than the stable model semantics and the classical update oper-

ator it is based on, its tractable approximations need to be defined and examined.

The well-founded semantics for logic programs (Gelder et al. 1991) and its version

for hybrid MKNF knowledge bases (Alferes et al. 2009) constitute crucial starting

points. The recent research on ontology evolution (see (Flouris et al. 2008) for a

survey) can help design tractable update operators which, at the same time, offer

the necessary functionality to be interesting for use in practice.

In this paper, the TBox was considered static and was treated in the same

way as integrity constraints in (Winslett 1990). This approach to handling in-

tegrity constraints in the context of updates has been criticized in the literature

(Herzig and Rifi 1999; Herzig 2005), as in certain cases it does not provide the

expected results. However, the proposed solutions are defined only for the proposi-

tional case and a preliminary examination showed that their treatment of equiva-

lences, such as the TBox definitions used in Example 3.6, is not always the expected

one. Further investigation is needed to find suitable solutions to these problems in

the context of ontology updates. Furthermore, in truly dynamic environments, the

TBox should also be allowed to be updated. We believe that finding appropriate

update operators for ontologies is still a largely open research question.

The large body of work on rule updates (Leite 2003; Alferes et al. 2005), and

more recently (Delgrande et al. 2008), also needs to be exploited in the attempts

to define an update operator that can deal with the evolution of both rules and

ontologies.

Finally, while incorporating new knowledge in a knowledge base is important,

the complementary task of removing a certain piece of information is also impor-

tant. Hence, hybrid erasure operators should be studied and related to hybrid up-

date operators. The work on erasure (Giacomo et al. 2007) in description logics as

well as forgetting in both description logics (Wang et al. 2009) and logic programs

(Eiter and Wang 2008) should be the starting points of this research.

To conclude, in this paper, to the best of our knowledge, we proposed the first

update operator for hybrid knowledge bases. We deal with a constrained but inter-

esting scenario in which a TBox and nonmonotonic rules represent static knowledge,

policies, norms and default preferences, and the evolving ABox represents the open

and dynamic environment. We illustrated the behaviour of our operator on a simple

example. The operator can be used in realistic scenarios where the general notions

and rules are relatively fixed, and individuals tend to change their state frequently.

This is the case of many real life institutions where stakeholders change their state

on a regular basis while the general rules and structures change only occasionally.

We proved a number of properties of our operator, among which its relations

with the theories it was based on, such as the stable model semantics for logic pro-

grams (Gelfond and Lifschitz 1988), the MKNF semantics for hybrid knowledge
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bases (Motik and Rosati 2007) and Winslett’s minimal change update operator

(Winslett 1990).

We believe that this new area of research brings exciting new problems to solve

and bridges a number of existing research areas. It will certainly provide useful

results for many applications and perhaps even contribute to finding further philo-

sophical insights into how human knowledge evolves.
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Appendix A Kleene Fixed Point Theorem

Fixed points play an important role in many of the investigations in the area of

logic programming. Many semantics of logic programs are defined by a fixed point

equation, meaning that in order for an interpretationM to be considered a “good”

model of a logic program, it must satisfy some equation of the form M = f(M)

where f is a mapping from interpretations to interpretations, also called an opera-

tor. Such operators were heavily studied in Order Theory and Kleene Fixed Point

Theorem is one of its basic results. Informally, it states that the least fixed point

of a continuous operator can be computed by iterating the operator. It is heavily

used in logic programming.

For the sake of self-containedness, this Appendix introduces the basic notions

of Order Theory necessary to formally state and prove the Kleene Fixed Point

Theorem. For an elaborate study of this topic with many further references, we

refer the reader to (Davey and Priestley 1990).

The first definition is of a partially ordered set, under which we mean any set

with an associated relation “≤” that can be used to compare elements of this set.

This relation is required to obey certain properties that can be naturally expected

from any such ordering relation.

Definition A.1 (Partial Order)

A partial order is a pair (P,≤) where P is a set and ≤ is a reflexive, antisymetric and

transitive relation over P , i.e. the following conditions are satisfied for all a, b, c ∈ P :

a ≤ a

(a ≤ b ∧ b ≤ a)⇒ a = b

(a ≤ b ∧ b ≤ c)⇒ a ≤ c

We also say that P is a partially ordered set (w.r.t. ≤).
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In logic programming, the set of interpretations usually forms a partial order

that is usually ordered by the subset relation. In case of MKNF interpretations, the

partial order is determined by the superset relation.

The following definitions introduce the least and greatest elements and lower and

upper bounds of a subset of a partially ordered set.

Definition A.2 (Least and Greatest Element)

Let P be a partially ordered set, S ⊆ P and a ∈ S. Then a is the least element of

S if for every b ∈ S it holds that a ≤ b, and a is the greatest element of S if for

every b ∈ S it holds that b ≤ a.

Definition A.3 (Lower and Upper Bound)

Let P be a partially ordered set, S ⊆ P and a ∈ P . Then a is a lower bound of S if

for every b ∈ S it holds that a ≤ b, and a is an upper bound of S if for every b ∈ S

it holds that b ≤ a.

Combining the previous notions, we obtain the notion of a least upper bound

(supremum) and greatest lower bound (infimum).

Definition A.4 (Supremum and Infimum)

Let P be a partially ordered set, S ⊆ P and a ∈ P . Then a is the supremum of S,

denoted by a = sup(S), if it is the least element of the set of upper bounds of S,

and a is the infimum of S, denoted by a = inf(S), if it is the greatest element of

the set of lower bounds of S

The next notion of a directed set plays an important role in defining when a

function on a partial order is continuous. It is also required in order to define

a stricter structure than a partial order, the complete partial order. We need to

introduce both these notions in order to formulate the Kleene Fixed Point Theorem

which describes one property of continuous functions on complete partial orders.

Definition A.5 (Directed Set)

A directed set is a pair (D,≤) where D is a non-empty set, ≤ is a reflexive and

transitive relation over D and for any elements a, b ∈ D there exists some c ∈ D

such that a ≤ c and b ≤ c.

As can be seen, in a directed set, every pair of elements has an upper bound that

also belongs to the set. This property can be naturally extended to finite subsets

of the directed set.

Proposition A.6

Let (D,≤) be a directed set and S a finite subset of D. Then D contains an upper

bound of S.
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Proof

Suppose S = { s1, s2, . . . , sn }. Then we can construct a sequence {di}ni=2 of elements

of D such that

s1 ≤ d2 and s2 ≤ d2 ;

si ≤ di and di−1 ≤ di for each i ∈ { 3, 4, . . . , n } .

By induction on i it follows that di ≤ dn for every i ∈ { 2, 3, . . . , n } and by applying

transitivity we obtain si ≤ dn for each i ∈ { 1, 2, . . . , n }. Hence dn is an upper bound

of S in D.

As an important consequence, we obtain that every finite directed set contains

its own supremum.

Corollary A.7

Any finite directed set contains its supremum.

Proof

Let (D,≤) be a finite directed set. Then by Prop. A.6 it contains its own upper

bound d. Consider some other upper bound u of D. Then since d ∈ D, we have

d ≤ u and so d is the least upper bound of D, i.e. the supremum of D.

We can now introduce two properties of functions on partial orders. the weaker

property of monotonicity basically states that the function preserves the partial

order:

Definition A.8 (Monotonic Function)

Let P,Q be two partially ordered sets and f : P → Q. We say f is monotonic if for

every a, b ∈ P such that a ≤ b we have f(a) ≤ f(b).

The property of continuity is stricter and requires that for all directed sets with a

supremum in the domain, the image of that supremum is the same as the supremum

of images of elements of the directed set.

Definition A.9 (Continuous Function)

Let P,Q be two partially ordered sets and f : P → Q. We say f is continuous if

for every directed subset D of P with supremum in P it holds that

sup(f(D)) = f(sup(D))

where f(A) = { f(a) | a ∈ A } for any set A ⊆ P .

The next proposition formally proves that continuity is a stronger property thatn

monotonicity.

Proposition A.10

Every continuous function is monotonic.
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Proof
Consider a continuous function f : P → Q and some a, b ∈ P such that a ≤ b. Then

the set D = { a, b } is a directed subset of P and by continuity of f we obtain

sup(f(D)) = f(sup(D))

Since sup(D) = b, we further obtain sup({ f(a), f(b) }) = f(b) and consequently

f(a) ≤ f(b) as desired.

A complete partial is simply a partial order with a least element in which every

directed set has a supremum. Many partially ordered structures, such as the space

of interpretations, satisfy this property.

Definition A.11 (Complete Partial Order)
A partial order (P,≤) is a complete partial order if P has a least element and every

directed subset S of P has a supremum in P .

Finally, we are able to formulate and prove the main result of this appendix. It

states that the least fixed point of a continuous function on a complete partial order

always exists and can be approximated by iterations of the function applied to the

least element of the complete partial order.

Theorem A.12 (Kleene Fixed Point Theorem)
Let P be a complete partial order with the least element ⊥ and f be a continuous

function on P . Then the least fixed point of f is sup { fn(⊥) | n ≥ 0 }.

Proof
This is a well-established result, even so much that it is not easy to find its original

source. The oldest source we were able to find and verify is the book (Stoy 1977),

pp. 112, Theorem 6.64. The same proof is also presented in the paper (Stoy 1979),

pp. 55 (according to the numbering of the Proceedings). A more recent book on

this topic is (Davey and Priestley 1990) where this result is formulated as Theorem

4.5 on pp. 89.

Now we start with the presentation of the proof. Suppose f is a continuous

function on the complete partial order P . Then by Proposition A.10 it is monotonic

from which it follows easily that the set D = { fn(⊥) | n ≥ 0 } is directed. Hence,

its supremum supD exists in P . We will now show that supD is a fixed point of f :

f(supD) = sup f(D) = sup f({ fn(⊥) | n ≥ 0 }) = sup { fn(⊥) | n ≥ 1 } =

= sup({⊥ } ∪ { fn(⊥) | n ≥ 1 }) = sup { fn(⊥) | n ≥ 0 } =

= supD

Further, suppose a is some fixed point of f . In order to prove that supD is the least

fixed point of f , we need to show that supD ≤ a. By induction on n we can easily

obtain that fn(⊥) ≤ a for all n ≥ 0:

1◦ f0(⊥) = ⊥ ≤ a
2◦ By inductive assumption fn−1(⊥) ≤ a, so by monotonicity of f we obtain fn(⊥) ≤

f(a) = a.

So a is an upper bound of D and, by definition of a supremum, supD ≤ a as

desired.
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Appendix B Properties of MKNF

B.1 General Properties

Lemma B.1 (Models of Positive Sentences)

Let φ be a positive MKNF sentence, I a propositional interpretation and M,N0 ∈

M. If 〈I,M,N0〉 |= φ, then 〈I,M,N〉 |= φ for any N ∈ M.

Proof

Follows directly from Definition 2.6 and the fact that the valuation of a positive

formula in a structure 〈I,M,N〉 is independent of N .

Corollary B.2

Let φ be a positive MKNF sentence. Then the MKNF models of φ are exactly the

subset-maximal S5 models of φ.

Proof

Follows from Definition 2.6 and Lemma B.1.

Lemma B.3

Let ≤ be a binary relation defined on the setM of all sets of first-order interpre-

tations for any M,N ∈ M as follows:

M ≤ N ⇐⇒M ⊇ N

Then (M,≤) is a complete partial order with the least element I.

Proof

Follows from the set-theoretic properties of the subset relation ⊆ and of the set

intersection ∩. Notice that even subsets of M that are not directed have their

supremum (intersection) inM.

Lemma B.4

Let φ be an first-order sentence and M,N ∈M be such that M ≤ N . If M |= Kφ,

then also N |= Kφ.

Proof

Suppose M |= Kφ and consider some interpretation I ∈ N . By the assumption

we obtain I ∈ M and so 〈I,M,M〉 |= Kφ. Hence 〈I,M,M〉 |= φ and since φ is a

first-order formula, its valuation in the structure 〈I,M,M〉 doesn’t depend on M ,

so 〈I,N,N〉 |= φ. Furthermore, our choice of I was arbitrary, so we can conclude

that 〈I,N,N〉 |= φ for all I ∈ N . Consequently, N |= Kφ as desired.

B.2 Models of First-Order Theories
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Lemma B.5 (Greatest Model of a First-Order Theory)
For any first-order theory S it holds that

mod(S) = { I ∈ I | (∀φ ∈ S)(I |= φ) }

Proof
We will prove that

MS = { I ∈ I | (∀φ ∈ S)(I |= φ) }

is the greatest set among the sets M ∈M with the property M |= S.

First we need to prove that MS satisfies this property, i.e. that MS |= S. Take

some φ ∈ S and I ∈ MS . Then I |= φ and since φ is first-order, we also obtain

〈I,MS ,MS〉 |= φ. This holds for any I ∈MS , so MS |= φ.

Now let M ∈M be such that M |= S and suppose I ∈M . Then for every φ ∈ S

we must have 〈I,M,M〉 |= φ and since φ is first-order, this entails I |= φ. Hence,

I ∈MS , so M ⊆MS. This fact finishes our proof.

B.3 Relevant Part of an MKNF Interpretation

Definition B.6 (Predicate Symbols Relevant to a Ground Formula)
Given a ground MKNF formula φ, we define the set P[φ] of predicate symbols rele-

vant to φ inductively as follows:

1◦ If φ is a first-order atom P (c1, c2, . . . , cn), then P[φ] = {P };
2◦ If φ is of the form ¬ψ, then P[φ] = P[ψ];
3◦ If φ is of the form φ1 ∧ φ2, then P[φ] = P[φ1] ∪P[φ2];
4◦ If φ is of the form Kψ, then P[φ] = P[ψ];
5◦ If φ is of the form notψ, then P[φ] = P[ψ].

Definition B.7 (Constant Symbols Relevant to a Ground Formula)
Given a groundMKNF formula φ, we define the set C[φ] of constant symbols relevant

to φ inductively as follows:

1◦ If φ is a first-order atom P (c1, c2, . . . , cn), then C[φ] = { c1, c2, . . . , cn };
2◦ If φ is of the form ¬ψ, then C[φ] = C[ψ];
3◦ If φ is of the form φ1 ∧ φ2, then C[φ] = C[φ1] ∪C[φ2];
4◦ If φ is of the form Kψ, then C[φ] = C[ψ];
5◦ If φ is of the form notψ, then C[φ] = C[ψ].

Definition B.8 (Restriction of an MKNF Interpretation)
Let I ∈ I and M ∈ M. Given a finite set of predicate symbols P′ ⊆ P and a

set of constant symbols C′ ⊆ ∆, we define the restriction of I to P′ and C′ as

the Herbrand first-order interpretation I[P
′,C′] over the Herbrand Universe C′ that

interpretes only the predicates from P′ in such a way that

(c1, c2, . . . , cn) ∈ P
I[P

′,C′]
⇐⇒ (c1, c2, . . . , cn) ∈ P

I

where P ∈ P′ and c1, c2, . . . , cn ∈ C′. We also define the restriction of M to P′ and

C′ as M [P′,C′] =
{

I[P
′,C′]

∣

∣

∣
I ∈M

}

.
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Lemma B.9 (Truth of Ground Formulas under Restriction to Relevant Symbols)

Let φ be a ground MKNF formula, P′ ⊆ P a finite set of predicate symbols such

that P′ ⊇ P[φ], C′ ⊆ ∆ a finite set of constant symbols such that C′ ⊇ C[φ], I a

propositional interpretation and M,N ∈ M. Then

〈I,M,N〉 |= φ⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ .

Proof

We will prove by structural induction on φ:

1◦ If φ is a ground first-order atom of the form P (c1, c2, . . . , cn), then P ∈ P[φ] and

c1, c2, . . . , cn ∈ C[φ], so P ∈ P′ and c1, c2, . . . , cn ∈ C′. The following chain of

equivalences now proves the claim:

〈I,M,N〉 |= φ⇐⇒ (c1, c2, . . . , cn) ∈ P
I ⇐⇒ (c1, c2, . . . , cn) ∈ P

I[P
′,C′]

⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ ;

2◦ If φ is of the form ¬ψ, then P[φ] = P[ψ] and C[φ] = C[ψ], so P′ ⊇ P[ψ] and

C′ ⊇ C[ψ]. Hence, we can use the inductive hypothesis for ψ as follows:

〈I,M,N〉 |= φ⇐⇒ 〈I,M,N〉 6|= ψ ⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

6|= ψ

⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ ;

3◦ If φ is of the form φ1 ∧ φ2, then P[φ] = P[φ1] ∪P[φ2] and C[φ] = C[φ1] ∪C[φ2] and

we can easily verify that the inductive assumption can be used on both φ1 and φ2
and the proposition can be proved for φ as follows:

〈I,M,N〉 |= φ⇐⇒ 〈I,M,N〉 |= φ1 ∧ 〈I,M,N〉 |= φ2

⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ1

∧
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ2

⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ ;

4◦ If φ is of the form Kψ, then P[φ] = P[ψ] and C[φ] = C[ψ], so P′ ⊇ P[ψ] and

C′ ⊇ C[ψ]. The claim now follows from the inductive hypothesis for ψ:

〈I,M,N〉 |= φ⇐⇒ (∀J ∈M) (〈J,M,N〉 |= ψ)

⇐⇒ (∀J ∈M)
(〈

J [P
′,C′],M [P′,C′], N [P′,C′]

〉

|= ψ
)

⇐⇒
(

∀J ∈M [P′,C′]
)(〈

J,M [P′,C′], N [P′,C′]
〉

|= ψ
)

⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ ;

5◦ If φ is of the form notψ, then P[φ] = P[ψ] and C[φ] = C[ψ], so P′ ⊇ P[ψ] and
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C′ ⊇ C[ψ]. The claim follows similarly as in the previous case:

〈I,M,N〉 |= φ⇐⇒ (∃J ∈ N) (〈J,M,N〉 6|= ψ)

⇐⇒ (∃J ∈ N)
(〈

J [P
′,C′],M [P′,C′], N [P′,C′]

〉

6|= ψ
)

⇐⇒
(

∃J ∈ N [P′,C′]
)(〈

J,M [P′,C′], N [P′,C′]
〉

6|= ψ
)

⇐⇒
〈

I[P
′,C′],M [P′,C′], N [P′,C′]

〉

|= φ .

Appendix C Properties of Hybrid Knowledge Bases

Lemma C.1

Let Z be a set of first-order theories. Then

mod
(

⋃

Z
)

=
⋂

mod(Z)

where mod(Z) = {mod(S) | S ∈ Z }.

Proof

The following sequence of equivalences proves the claim:

I ∈ mod
(

⋃

Z
)

Lemma B.5
⇐=======⇒

(

∀φ ∈
⋃

Z
)

(I |= φ)

⇐=======⇒ (∀S ∈ Z)(∀φ ∈ S)(I |= φ)

Lemma B.5
⇐=======⇒ (∀S ∈ Z)(I ∈ mod(S))

⇐=======⇒ I ∈
⋂

mod(Z)

Definition C.2 (Hybrid Immediate Consequence Operator)

The immediate consequence operator associated with the definite P-ground hybrid

knowledge base K = 〈O,P〉 is a mapping TK :M→M defined for any M ∈ M as

TK(M) = mod(O ∪ {H∗(r) | r ∈ P ∧M |= B(r) })

Lemma C.3

Let K = 〈O,P〉 be definite P-ground hybrid knowledge base. Then for every M ∈

M it holds that

TK(M) = mod(O) ∩mod({H∗(r) | r ∈ P ∧M |= B(r) })

Proof

Let S = {H∗(r) | r ∈ P ∧M |= B(r) }. We need to show that

mod(O ∪ S) = mod(O) ∩mod(S) .

This follows from Lemma C.1.



30 M. Slota and J. Leite

Lemma C.4

Let DF be a finite directed set of first-order interpretations and r be a ground

definite rule. Then
⋂

DF |= B(r)⇐⇒ (∃M ∈ DF )(M |= B(r))

Proof

By Corollary A.7 we have
⋂

DF ∈ DF , so if
⋂

DF |= B(r), then also (∃M ∈

DF )(M |= B(r)). Now suppose that M |= B(r) for some M ∈ DF . Then M ≤
⋂

DF and by a repeated use of Lemma B.4 for each conjunct of B(r) we obtain
⋂

DF |= B(r).

Lemma C.5

Let D be a directed set of MKNF interpretations, P′ a set of predicate symbols

and C′ a set of constant symbols and

D[P
′,C′] =

{

M [P′,C′]
∣

∣

∣
M ∈ D

}

(C1)

Then the following holds:

(

⋂

D
)[P′,C′]

=
⋂

D[P
′,C′]

Proof

(

⋂

D
)[P′,C′]

=
(

⋂

{M |M ∈ D }
)[P′,C′]

= ({ I | (∀M ∈ D)(I ∈M) })[P
′,C′]

=
({

I[P
′,C′]

∣

∣

∣
(∀M ∈ D)(I ∈M)

})

=
({

I
∣

∣

∣
(∀M ∈ D)

(

I ∈M [P′,C′]
) })

=
({

I
∣

∣

∣

(

∀M ∈ D[P
′,C′]

)

(I ∈M)
})

=
⋂

{

M
∣

∣

∣
M ∈ D[P

′,C′]
}

=
⋂

D[P
′,C′]

Lemma C.6

Let D be a directed set of MKNF interpretations and r a ground definite rule.

Then:

(∃M ∈ D)(M |= B(r))⇐⇒
⋂

D |= B(r)

Proof
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Let P′ = P[B(r)] and C′ = C[B(r)] and consider these equivalences:

(∃M ∈ D)(M |= B(r))
Lemma B.9
⇐=======⇒ (∃M ∈ D)

(

M [P′,C′] |= B(r)
)

(C1)
⇐=======⇒

(

∃M ∈ D[P
′,C′]

)

(M |= B(r))

Lemma C.4
⇐=======⇒

(

⋂

D[P
′,C′]

)

|= B(r)

Lemma C.5
⇐=======⇒

(

⋂

D
)[P′,C′]

|= B(r)

Lemma B.9
⇐=======⇒

⋂

D |= B(r)

Proposition C.7 (Continuity of TK)

Let K = 〈O,P〉 be a definite P-ground hybrid knowledge base. Then TK is a

continuous function onM.

Proof

Consider some directed subset D of M. To prove that TK is continuous, we need

to show that sup(TK(D)) = TK(sup(D)). By Lemma C.3, we have:

sup(TK(D)) = mod(O) ∩
⋂

M∈D

mod ({H∗(r) | r ∈ P ∧M |= B(r) }) .

Let S denote the set
⋂

M∈D

mod ({H∗(r) | r ∈ P ∧M |= B(r) }) (C2)

so that

sup(TK(D)) = mod(O) ∩ S (C3)

Consider the following identities:

S
Lemma C.1
========= mod

(

⋃

M∈D

{H∗(r) | r ∈ P ∧M |= B(r) }

)

========= mod ({H∗(r) | r ∈ P ∧ (∃M ∈ D)(M |= B(r)) })

Lemma C.6
========= mod

({

H∗(r)
∣

∣

∣
r ∈ P ∧

⋂

D |= B(r)
})

Together with (C3) and Lemma C.3 this implies that

sup(TK(D)) = mod(O) ∩ S

= mod(O) ∩mod
({

H∗(r)
∣

∣

∣
r ∈ P ∧

⋂

D |= B(r)
})

= TK(sup(D)) .

Corollary C.8 (Monotonicity of TK)

Let K = 〈O,P〉 be a definite P-ground hybrid knowledge base. Then TK is a

monotonic function onM and for any n ≥ 0 it holds that T nK(I) ⊇ T
n+1
K (I).
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Proof

The monotonicity of TK follows directly from Props. C.7 and A.10. Now since I

is the minimal element of (M,≤), we obtain T 0
K(I) = I ≤ T 1

K(I). By n times

applying the monotonicity of TK we obtain T nK(I) ≤ T n+1
K (I) which is equivalent

to T nK(I) ⊇ T
n+1
K (I).

The following proposition shows that each definite P-ground hybrid knowledge

base either has no model at all, or, similarly as definite logic programs, it has the

greatest S5 model that coincides with its unique MKNF model. It also shows how

this model can be computed by iterating the TK operator starting from I.

Proposition C.9

Let K = 〈O,P〉 be a definite P-ground hybrid knowledge base. Then either K has

no S5 model or it has the greatest S5 model that also coincides with its single

MKNF model. Furthermore, the set

mod(K) =
⋂

n≥0

T nK(I)

is empty if K has no S5 model and otherwise coincides with its unique MKNF

model.

Proof

First we will prove an auxiliary claim: M ⊆ TK(M) holds for any S5 model M of

K. Suppose M is an S5 model of K and recall that

TK(M) = mod (O ∪ {H∗(r) | r ∈ P ∧M |= B(r) })

Let’s take some formula φ ∈ O. We know thatM |= φ becauseM is an S5 model of

K. Now consider some rule r ∈ P such that M |= B(r). Since M is an S5 model of

K, we obtain M |= H∗(r). Consequently, M |= H∗(r) for every such r. So M is an

S5 model of O∪{H∗(r) | r ∈ P ∧M |= B(r) } and since TK(M) is by definition of

mod(·) the greatest S5 model of O∪{H∗(r) | r ∈ P ∧M |= B(r) }, we can conclude

that M ⊆ TK(M).

Now we will proceed with the main part of the proof. Let

MK =
⋂

n≥0

T nK(I)

Then, by Corollary C.7 and Theorem A.12, MK is the least fixed point of TK. First

we will show that MK contains every S5 model of K. Assume, to the contrary, that

M is an S5 model of K such that M *MK. Then by definition M ⊆ I = T 0
K(I). It

cannot be the case that M ⊆ T nK(I) for all n ≥ 0 because that would be in conflict

with M *MK. So let

n0 = max {n ≥ 0 |M ⊆ T nK(I) } .

Now we have M ⊆ T n0

K (I) and by the auxiliary claim proved above, we obtain

M ⊆ TK(M) which together with the monotonicity of TK (Corollary C.8) yields

M ⊆ TK(M) ⊆ TK(T
n0

K (I)) = T n0+1
K (I). However, this is in conflict with the

definition of n0, so no S5 model M of K with M *MK can exist.
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Now we will show thatMK models K. This can be easily verified for every φ ∈ O.

Take some r ∈ P . If MK 6|= B(r), then MK |= r and we are done. So assume

MK |= B(r). In this case we can use the fixpoint property of MK:

MK = TK(MK) = mod(O ∪ {H∗(r) | r ∈ P ∧MK |= B(r) })

and conclude that MK |= H∗(r). Consequently also MK |= r.

We already proved that MK is the greatest set of interpretations that models K.

So in case K has no S5 model, MK will be empty. On the other hand, if K has

some S5 model, this model is included in MK, so MK is non-empty and hence is

the greatest S5 model of K. Further, by Corollary B.2 it follows that MK is also

the unique MKNF model of K.

For MKNF models of arbitrary P-ground hybrid knowledge bases we also obtain

a characterisation that is similar to the fixpoint definition of stable models of normal

logic programs:

Proposition C.10

An MKNF interpretation M is an MKNF model of a P-ground hybrid knowledge

base K = 〈O,P〉 if and only if M = mod(
〈

O,PM
〉

) where

PM =
{

H(r) ⊂ B+(r)
∣

∣ r ∈ P ∧M |= B−(r)
}

Proof

First notice that since P is ground, π(r) = r for every r ∈ P ∪ PM .

Let KM =
〈

O,PM
〉

and suppose M is an MKNF model of K. First we will

show that M is an S5 model of KM . Obviously, M models all formulas from π(O).

Suppose that rM = (H(r) ⊂ B+(r)) is a rule from PM . If M 6|= B+(r), then

M |= rM . On the other hand, if M |= B+(r), then M |= r implies also M |= H(r).

Consequently, M |= rM .

As M is an S5 model of KM , it must hold that M is a subset of mod(KM )

because mod(KM ) is the greatest S5 model of KM . By contradiction, we will show

that M = mod(KM ). Assume M ( mod(KM ). Since M is an MKNF model of

K, there must be some formula φ ∈ π(K) and some I ′ ∈ mod(KM ) such that
〈

I ′,mod(KM ),M
〉

6|= φ. But mod(KM ) models π(O), so φ must be some rule r

from P and the following must hold

〈

I ′,mod(KM ),M
〉

|= B−(r) ∧
〈

I ′,mod(KM ),M
〉

|= B+(r)

∧
〈

I ′,mod(KM ),M
〉

6|= H(r)

which is equivalent to

M |= B−(r) ∧mod(KM ) |= B+(r) ∧mod(KM ) 6|= H(r) .

However, this is in conflict with mod(KM ) being an S5 model of KM since H(r) ⊂

B+(r) ∈ PM .

For the converse implication, assume M is an MKNF interpretation such that

M = mod(KM ). It must hold that M |= π(O), so consider some rule r ∈ P . If

M 6|= B−(r), then M is trivially a model of r. On the other hand, if M |= B−(r),
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thenM is also a model of H(r) ⊂ B+(r), soM is again a model of r. Consequently,

M is an S5 model of K. Now take some M ′ ) M . Then since M is the greatest

model of KM , there is some rule rM = (H(r) ⊂ B+(r)) ∈ PM such that M ′ 6|= rM ,

i.e.

M |= B−(r) ∧M ′ |= B+(r) ∧M ′ 6|= H(r)

For any I ′ ∈M ′, this is equivalent to

〈I ′,M ′,M〉 |= B−(r) ∧ 〈I ′,M ′,M〉 |= B+(r) ∧ 〈I ′,M ′,M〉 6|= H(r)

which in turn is equivalent to 〈I ′,M ′,M〉 6|= r. So M is indeed an MKNF model of

K.

Appendix D Properties of the Hybrid Update Operator

Proposition 3.2. Let P be a finite ground definite program, T a TBox and A a

sequence of ABoxes. Then TP⊕T A is a continuous function on the complete partial

order of all subsets of I with the least element I.

Proof of Proposition 3.2

Consider some directed subset D of M. To prove that TP⊕T A is continuous, we

need to show that

sup(TP⊕T A(D)) = TP⊕T A(sup(D)) .

To simplify notation in this proof, we define for any set of first-order interpretations

M the following set:

con(M) = {H∗(r) | r ∈ P ∧M |= B(r) }

Notice that if M ⊇ N (or M ≤ N using the partial order on sets of first-order

intepretations), then con(M) ⊆ con(N).

By definition we now have

TP⊕T A(sup(D)) = mod
(

con
(

⋂

D
)

⊕T A
)

= incorporateT
(

A,mod
(

T ∪ con
(

⋂

D
)))

= incorporateT
(

A,mod(T ) ∩mod
(

con
(

⋂

D
)))

(D1)

and

sup(TP⊕T A(D)) =
⋂

M∈D

mod
(

con(M)⊕T A
)

=
⋂

M∈D

incorporateT (A,mod(T ∪ con(M)))

=
⋂

M∈D

incorporateT (A,mod(T ) ∩mod(con(M)))

(D2)

First suppose that a first-order interpretation I is in TP⊕T A(sup(D)). Then by the

previous equation we have that there is some J ∈ mod(T ) ∩ mod(con(
⋂

D)) such
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that

I ∈ incorporateT (A, J) .

Further, for every M ∈ D it holds that con(M) ⊆ con(
⋂

D), and, hence, also

that mod(con(
⋂

D)) ⊆ mod(con(M)). Consequently, J ∈ mod(con(M)) for every

M ∈ D, and so

I ∈ incorporateT (A,mod(T ) ∩mod(con(M)))

also holds for every M ∈ D. By (D2) we can now conclude that

I ∈ sup(TP⊕T A(D)) .

For the converse inclusion, suppose I /∈ TP⊕T A(sup(D)) and let S be the set of

all first-order interpretations J ∈ mod(T ) such that

I ∈ incorporateT (A, J) .

By (D1) we obtain that S ∩ mod (con (
⋂

D)) = ∅, i.e. that each J ∈ S is not

a model of some atom pJ such that there is a rule rJ ∈ P with H(rJ ) = K pJ
and

⋂

D |= B(rJ ). By Lemma C.6, this implies that for some M ∈ D we also have

M |= B(rJ ). Further, there are only finitely many rules in P , so by the directedness

of D we can find an interpretation MS ∈ D such that MS |= B(rJ ) for all J ∈ S.

For this interpretation it will hold that S ∩mod(con(MS)) = ∅. Hence,

I /∈ incorporateT (A,mod(T ) ∩mod(con(MS)))

and by (D2) we obtain that I /∈ sup(TP⊕T A(D)).

Proposition 4.1. Let P be a finite ground program, T a TBox, A an ABox and M

a minimal change dynamic stable model of P ⊕T A. Then M |= A.

Proof of Proposition 4.1

If M is a minimal change dynamic stable model of P ⊕T A, then it is a fixed point

of TPM⊕T A, i.e.

M = TPM⊕T A(M) = mod
({

H∗(r)
∣

∣ r ∈ PM ∧M |= B(r)
}

⊕T A
)

and by the definition of the classical minimal change update operator it must hold

that every I ∈M is a model of A. In other words, M |= A.

Proposition 4.2. Let P be a finite ground program, T , T ′ be TBoxes such that

mod(T ) = mod(T ′), A,A′ be ABoxes such that mod(A) = mod(A′) and M be

an MKNF interpretation. Then M is a minimal change dynamic stable model of

P ⊕T A if and only if M is a minimal change dynamic stable model of P ⊕T ′

A′.

Proof of Proposition 4.2

Follows from the fact that the operators TPM⊕T A and TPM⊕T ′A′ are identical

because the classical minimal change update operator only operates with models of

T , T ′, A and A′, and not with their syntactic representation.

Proposition 4.3. Let P be a finite ground program, O = T ∪ A an ontology with
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TBox T and ABox A and M an MKNF interpretation such that for every subset

S of the set {H∗(r) | r ∈ P ∧M |= B(r) } the following condition is satisfied:

mod(S ⊕T A) = mod(S ∪ O) .

ThenM is an MKNF model of 〈O,P〉 if and only ifM is a minimal change dynamic

stable model of P ⊕T A.

Proof of Proposition 4.3

By Propositions C.10 and C.9, M is an MKNF model of 〈O,P〉 if and only if

M =
⋂

n≥0

T n〈O,PM〉(I) (D3)

where for any set of first-order interpretations N we have

T〈O,PM〉(N) = mod
(

O ∪
{

H∗(r)
∣

∣ r ∈ PM ∧N |= B(r)
})

.

On the other hand, by Proposition 3.2 and Theorem A.12, M is a minimal change

dynamic stable model of P ⊕T A if and only if

M =
⋂

n≥0

T nPM⊕T A(I) (D4)

where for any set of first-order interpretations N we have

TPM⊕T A(N) = mod
({

H∗(r)
∣

∣ r ∈ PM ∧N |= B(r)
}

⊕T A
)

.

Suppose now that M is an MKNF model of 〈O,P〉. Then from (D3) and Lemma

B.4 we obtain that for every n ∈ N that

{

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n〈O,PM〉(I) |= B(r)

}

⊆ {H∗(r) | r ∈ P ∧M |= B(r) } .

Hence, by the assumption of the proposition,

mod
({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n〈O,PM〉(I) |= B(r)

}

⊕T A
)

= mod
(

O ∪
{

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n〈O,PM〉(I) |= B(r)

})

(D5)

By induction on n we will now prove that T n〈O,PM〉(I) = T nPM⊕T A(I).

1◦ For n = 0 we have

T 0
〈O,PM〉(I) = I = T 0

PM⊕T A(I)

2◦ We assume the claim holds for n− 1, i.e.

T n−1
〈O,PM〉

(I) = T n−1
PM⊕T A

(I) (D6)
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and prove that it holds for n. Indeed, we obtain:

T n〈O,PM〉(I) === mod
(

O ∪
{

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

〈O,PM〉
(I) |= B(r)

})

(D5)
==== mod

({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

〈O,PM〉
(I) |= B(r)

}

⊕T A
)

(D6)
==== mod

({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

PM⊕T A(I) |= B(r)
}

⊕T A
)

=== T nPM⊕T A(I)

So (D4) is satisfied and consequentlyM is a minimal change dynamic stable model

of P ⊕T A.

For the converse statement, supposeM is a minimal change dynamic stable model

of P ⊕T A. Then from (D3) and Lemma B.4 we obtain for every n ∈ N that
{

H∗(r)
∣

∣ r ∈ PM ∧ T nPM⊕T A(I) |= B(r)
}

⊆ {H∗(r) | r ∈ P ∧M |= B(r) } .

Hence, by the assumption of the proposition,

mod
({

H∗(r)
∣

∣ r ∈ PM ∧ T nPM⊕T A(I) |= B(r)
}

⊕T A
)

= mod
(

O ∪
{

H∗(r)
∣

∣ r ∈ PM ∧ T nPM⊕T A(I) |= B(r)
})

(D7)

By induction on n we will now prove that T nPM⊕T A(I) = T n〈O,PM〉(I).

1◦ For n = 0 we have

T 0
PM⊕T A(I) = I = T 0

〈O,PM〉(I)

2◦ We assume the claim holds for n− 1, i.e.

T n−1
PM⊕T A

(I) = T n−1
〈O,PM〉

(I) (D8)

and prove that it holds for n. Indeed, we obtain:

T nPM⊕T A(I) === mod
({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

PM⊕T A
(I) |= B(r)

}

⊕T A
)

(D7)
==== mod

(

O ∪
{

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

PM⊕T A(I) |= B(r)
})

(D8)
==== mod

(

O ∪
{

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

〈O,PM〉
(I) |= B(r)

})

=== T n〈O,PM〉(I)

So (D3) is satisfied and consequently M is an MKNF model of 〈O,P〉.

Corollary 4.4. Let P be a finite ground program. Then M is a stable model of P if

and only if M is a minimal change dynamic stable model of P ⊕∅ ∅.

Proof of Corollary 4.4

Follows from the previous corollary and the fact that MKNF models coincide with

stable models on the class of normal logic programs (Lifschitz 1991).

Proposition 4.5. Let P be a finite ground program containing only facts, T a TBox,
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A a sequence of ABoxes and M an MKNF interpretation. Then M is a minimal

change dynamic stable model of P ⊕T A if and only if M is a minimal change

update model of SP ⊕T A where SP = { p | K p ∈ P }.

Proof of Proposition 4.5

Since P contains only facts, we can see that P = PM , so M is a minimal change

dynamic stable model of P ⊕T A if and only if M = mod(P ⊕T A) which by

definition holds if and only if

M =
⋂

n≥0

T nP⊕T A(I)

Further, we know that

T 0
P⊕T A(I) = I

T 1
P⊕T A(I) = mod({H∗(r) | r ∈ P ∧ I |= B(r) } ⊕T A)

= mod({H∗(r) | r ∈ P } ⊕T A) = mod(SP ⊕
T A)

T nP⊕T A(I) = T 1
P⊕T A(I) for all n > 1

Hence, we have
⋂

n≥0

T nP⊕T A(I) = mod(SP ⊕
T A) .

So M is a minimal change dynamic stable model of P ⊕ U if and only if M =

mod(SP ⊕T A) which is by definition equivalent to M being a minimal change

update model of SP ⊕T A.

Lemma D.1

Let T be a TBox, A = (A1,A2, . . . ,An) a sequence of ABoxes (where n ≥ 1) and

A′ = (A1,A2, . . . ,Ai−1,Ai, ∅,Ai+1, . . . ,An)

for some i ∈ { 0, 1, 2, . . . , n }. Then for any M ⊆ mod(T ) it holds that

incorporateT (A,M) = incorporateT (A′,M)

Proof

We will prove by induction on n:

1◦ If n = 1, then i ∈ { 0, 1 }, so we need to prove that

incorporateT (A1,M) = incorporateT (A1, incorporate
T (∅,M))

and that

incorporateT (A1,M) = incorporateT (∅, incorporateT (A1,M)) .

This follows easily from the fact that incorporateT (∅, N) = N for any N ⊆ mod(T ).
2◦ We assume the claim holds for n− 1 and prove it for n. First let i = 0. Then

incorporateT (A′,M) = incorporateT (A, incorporateT (∅,M))

and the claim again follows from the fact that incorporate(∅, N) = N for any N ⊆

mod(T ).
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Now suppose i > 0 and let

B = (A2,A3, . . . ,An)

B′ = (A2,A3, . . . ,Ai−1,Ai, ∅,Ai+1, . . . ,An)

By the inductive assumption we know that for any N ⊆ T it is holds that

incorporateT (B, N) = incorporateT (B′, N)

Hence,

incorporateT (A′,M) = incorporateT (B′, incorporateT (A1,M))

= incorporateT (B, incorporateT (A1,M))

= incorporateT (A,M) .

Corollary D.2

Let T be a TBox, A = (A1,A2, . . . ,An) a sequence of ABoxes (where n ≥ 1) and

A′ = (A1,A2, . . . ,Ai−1,Ai, ∅,Ai+1, . . . ,An)

for some i ∈ { 0, 1, 2, . . . , n }. Then for any first-order theory S it holds that

mod(S ⊕T A) = mod(S ⊕T A′)

Proof

Follows by applying the previous lemma to M = mod(T ∪ S).

Proposition 4.6. Let P be a finite ground program, T a TBox and A a sequence of

ABoxes = (A1,A2, . . . ,An) (where n ≥ 1). Let

A′ = (A1,A2, . . . ,Ai−1,Ai, ∅,Ai+1, . . . ,An)

for some i ∈ { 0, 1, 2, . . . , n }. Then an MKNF interpretationM is a minimal change

dynamic stable model of P ⊕T A if and only if M is a minimal change dynamic

stable model of P ⊕T A′.

Proof of Proposition 4.6

We need to show that
⋂

n≥0

T nPM⊕T A(I) =
⋂

n≥0

T nPM⊕T A′(I) .

By induction on n we will prove that for all n ∈ N it holds that

T nPM⊕T A(I) = T nPM⊕T A′(I) .

1◦ For n = 0 we directly obtain

T nPM⊕T A(I) = I = T nPM⊕T A′(I) .

2◦ We assume the claim holds for n− 1 and prove it for n. We have

T nPM⊕T A(I) = mod
({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

PM⊕T A
(I) |= B(r)

}

⊕T A
)

.
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By the inductive assumption we obtain that T n−1
PM⊕T A

(I) = T n−1
PM⊕T A′(I), so

T nPM⊕T A(I) = mod
({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

PM⊕T A′(I) |= B(r)
}

⊕T A
)

.

Corollary D.2 now implies that

T nPM⊕T A(I) = mod
({

H∗(r)
∣

∣

∣
r ∈ PM ∧ T n−1

PM⊕T A′(I) |= B(r)
}

⊕T A′
)

= T nPM⊕T A′(I) .

Proposition 4.7. Let T be a TBox, A an ABox and M an MKNF interpretation.

Then M is a minimal change dynamic stable model of ∅ ⊕T A if and only if M =

mod(T ∪ A).

Proof of Proposition 4.7

By Proposition 3.2 and Theorem A.12, M is a minimal change dynamic stable

model of ∅ ⊕T A if and only if

M =
⋂

n≥0

T nPM⊕T A(I)

where

T 0
PM⊕T A(I) = I

T 1
PM⊕T A(I) = mod(

{

H∗(r)
∣

∣ r ∈ PM ∧ I |= B(r)
}

⊕T A) = mod(∅ ⊕T A)

T nPM⊕T A(I) = T 1
PM⊕T A(I) for all n > 1

So M is a minimal change dynamic stable model of ∅ ⊕T A if and only if M =

mod(∅ ⊕T A). Further,

mod(∅ ⊕T A) = incorporateT (A,mod(∅)) = incorporateT (A, I) = mod(T ∪ A) .

Hence, M is a minimal change dynamic stable model of ∅ ⊕T A if and only if

M = mod(T ∪ A).
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