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Abstrat

We study the deidability of termination for two CHR dialets whih, similarly to the

Datalog like languages, are de�ned by using a signature whih does not allow funtion

symbols (of arity > 0). Both languages allow the use of the = built-in in the body of

rules, thus are built on a host language that supports uni�ation. However eah imposes

one further restrition. The �rst CHR dialet allows only range-restrited rules, that is,

it does not allow the use of variables in the body or in the guard of a rule if they do not

appear in the head. We show that the existene of an in�nite omputation is deidable for

this dialet. The seond dialet instead limits the number of atoms in the head of rules to

one. We prove that in this ase, the existene of a terminating omputation is deidable.

These results show that both dialets are stritly less expressive

1

than Turing Mahines.

It is worth noting that the language (without funtion symbols) without these restritions

is as expressive as Turing Mahines.

KEYWORDS: Constraint programming, Expressivity, Well-strutured transition systems.

1 Introdution

Constraint Handling Rules (CHR) (Fr�uhwirth 1998; Fr�uhwirth 2009) is a delara-

tive general-purpose language. A CHR program onsists of a set of multi-headed

1

As we larify later, \less expressive" here means that there exists no termination preserving

enoding of Turing mahines in the onsidered language.
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guarded (simpli�ation, propagation and simpagation) rules whih allow one to

rewrite onstraints into simpler ones until a solved form is reahed. The language

is parametri w.r.t. an underlying onstraint theory CT whih de�nes basi built-in

onstraints. For a reent survey on the language see Sneyers et al. (2010).

In the last few years, several papers have investigated the expressivity of CHR,

however very few deidability results for fragments of CHR have been obtained.

Three main aspets a�et the omputational power of CHR: the number of atoms

allowed in the heads, the nature of the underlying signature on whih programs are

de�ned, and the onstraint theory. The latter two aspets are often referred to as the

\host language" sine they identify the language on whih a CHR system is built.

Some results in (Di Giusto et al. 2009) indiate that restriting to single-headed

rules dereases the omputational power of CHR. However, these results onsider

Turing omplete fragments of CHR, hene they do not establish any deidability

result. Indeed, single-headed CHR is Turing-omplete (Di Giusto et al. 2009), pro-

vided that the host language allows funtors and uni�ation. On the other hand,

when allowing multiple heads, even restriting to a host language whih allows only

onstants does not allow to obtain any deidability property, sine even with this

limitation CHR is Turing omplete (Sneyers 2008; Di Giusto et al. 2009). The only

(impliit) deidability results onern propositional CHR, where all onstraints have

arity 0, and CHR without funtors and without uni�ation, sine these languages

an be translated to (olored) Petri Nets (Betz 2007) | see also Setion 5.

Given this situation, when looking for deidable properties it is natural to onsider

further restritions of the above mentioned CHR language whih allows the only

built-in = (interpreted in the usual way as equality on the Herbrand universe) and

whih, similarly to Datalog, is de�ned over a signature whih ontains no funtion

symbol of arity > 0. We denote suh a language by CHR(C).

In this paper we provide two deidability results for two fragments of CHR(C).

The �rst fragment allows range-restrited rules only, that is, it does not allow the use

of a variable in the body or in the guard if it does not appear in the head. We show,

using the theory of well-strutured transition systems (Finkel and Shnoebelen 2001;

Abdulla et al. 1996), that in this ase the existene of an in�nite omputation is

deidable. The seond fragment that we onsider is single-headed CHR(C), denoted

by CHR

1

(C). We prove that, for this language, the existene of a terminating om-

putation is deidable. In this ase we provide a diret proof, sine no redution

to Petri Nets an be used (the language introdues an in�nite states system) and

well-strutured transition system an not be used (they do not allow to prove this

kind of deidability properties).

These results show that both CHR fragments are stritly less expressive than

Turing Mahines. As previously mentioned, CHR(C) is as expressive as Turing Ma-

hines. So these results obviously imply that both restritions lower the expressive

power of CHR(C).
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2 Syntax and semantis

In this setion we give an overview of CHR syntax and its operational semantis

following (Fr�uhwirth 1998; Duk et al. 2004). A onstraint (t

1

; : : : ; t

n

) is an atomi

formula onstruted on a given signature � in the usual way. There are two types

of onstraints: built-in onstraints (prede�ned) that are handled by an existing

solver and CHR onstraints (user-de�ned) whih are de�ned by a CHR program.

Therefore we assume that the signature � ontains two disjoint sets of prediate

symbols for built-in and CHR onstraints. For built-in onstraints we assume that

a �rst order deidable theory CT is given whih desribes their meaning. Often

the terminology \host language" is used to indiate the language onsisting of the

built-in prediates, beause indeed often CHR is implemented on top of suh an

existing host language.

To distinguish between di�erent ourrenes of syntatially equal onstraints,

CHR onstraints are extended with a unique identi�er. An identi�ed CHR on-

straint is denoted by #i with  a CHR onstraint and i the identi�er. We write

hr(#i) =  and id(#i) = i, possibly extended to sets and sequenes of identi�ed

CHR onstraints in the obvious way.

A CHR program is de�ned as a sequene of three kinds of rules: simpli�ation,

propagation and simpagation rules. Intuitively, simpli�ation rewrites onstraints

into simpler ones, propagation adds new onstraints whih are logially redundant

but may trigger further simpli�ations, and simpagation ombines in one rule the

e�ets of both propagation and simpli�ation rules. For simpliity we onsider sim-

pli�ation and propagation rules as speial ases of a simpagation rule. The general

form of a simpagation rule is:

r � H

k

n H

h

() g j B

where r is a unique identi�er of a rule, H

k

and H

h

(the heads) are multi-sets of

CHR onstraints, g (the guard) is a onjuntion of built-in onstraints and B is a

multi-set of (built-in and user-de�ned) onstraints. If H

k

is empty then the rule is

a simpli�ation rule. If H

h

is empty then the rule is a propagation rule. At least

one of H

k

and H

h

must be non-empty. When the guard g is empty or true we omit

g j. The names of rules are omitted when not needed. For a simpli�ation rule we

omit H

k

n while we write a propagation rule as H

k

=) g j B. A CHR goal is a

multi-set of (both user-de�ned and built-in) onstraints.

We also use the following notation: 9

V

�, where V is a set of variables, denotes

the existential losure of a formula � w.r.t. the variables in V , while 9

�V

� denotes

the existential losure of a formula � with the exeption of the variables in V whih

remain unquanti�ed. Fv(�) denotes the free variables appearing in � and t� the

appliation of a substitution � to a syntati objet t.

CHR dialets. As mentioned before, the omputational power of CHR depends

on several aspets, inluding the number of atoms allowed in the heads, the under-

lying signature � on whih programs are de�ned, and the onstraint theory CT ,

de�ning the built-ins. We use the notation CHR(X), where the parameter X indi-

ates the signature and the onstraint theory (in other words, the host language).
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Solve hfg ℄G;S;B; T i

n

!

t

!

P

hG;S;  ^B; T i

n

where  is a built-in onstraint

Introdue hfg ℄G;S;B; T i

n

!

t

!

P

hG; f#ng [ S;B; T i

n+1

where  is a CHR onstraint

Apply hG;H

1

[H

2

[ S; B; T i

n

!

t

!

P

hC ℄G;H

1

[ S; � ^ B; T [ ftgi

n

where P ontains a

(renamed apart) rule r �H

0

1

nH

0

2

() g j C and there exists a mathing substitution �

s.t. hr(H

1

) = H

0

1

�, hr(H

2

) = H

0

2

�, CT j= B ! 9

�Fv(B)

(� ^ g)

and t = id(H

1

) ++ id(H

2

) ++ [r℄ =2 T

Table 1. Transitions of !

t

More preisely, the language under onsideration in this paper is CHR(C) and

has been de�ned in the introdution. We will also use the notation CHR(P ) to

denote propositional CHR, that is the language where all onstraints have arity

zero. This orresponds to onsider a trivial host language without any data type.

Finally CHR(F ) indiates the (usual) CHR language whih allows funtor symbols

and the = built-in. Thus in this ase the host language allows arbitrary Herbrand

terms and supports uni�ation among them.

The number of atoms in the heads also a�ets the expressive power of the lan-

guage. We use the notation CHR

1

, possibly ombined with the notation above, to

denote single-headed CHR, where heads of rules ontain one atom.

Operational semantis of CHR. We onsider the theoretial operational se-

mantis, denoted by !

t

and the abstrat semantis, denoted by !

o

. The semantis

!

t

is given by Duk et al. (2004) as a state transition system T = (Conf ;

!

t

!

P

)

where on�gurations in Conf are tuples of the form hG;S;B; T i

n

, where G is the

goal (a multi-set of onstraints that remain to be solved), S is the CHR store (a

set of identi�ed CHR onstraints), B is the built-in store (a onjuntion of built-in

onstraints), T is the propagation history (a sequene of identi�ers used to store

the rule instanes �red) and n is the next free identi�er (it is used to identify new

CHR onstraints). The transitions of !

t

are shown in Table 1.

Given a program P , the transition relation

!

t

!

P

� Conf � Conf is the least re-

lation satisfying the rules in Table 1. The Solve transition allows to update the

onstraint store by taking into aount a built-in onstraint ontained in the goal.

The Introdue transition is used to move a user-de�ned onstraint from the goal

to the CHR onstraint store, where it an be handled by applying CHR rules. The

Apply transition allows to rewrite user-de�ned onstraints (whih are in the CHR

onstraint store) using rules from the program. The Apply transition is appliable

when the urrent built-in store (B) entails the guard of the rule (g).

An initial on�guration has the form hG; ;; true; ;i

1

while a �nal on�guration

has either the form hG;S; false; T i

k

when it is failed, or the form h;; S; B; T i

k

when

it is suessfully terminated beause there are no appliable rules. A omputation

is alled terminating if it ends in a �nal on�guration, in�nite otherwise.

The �rst CHR operational semantis de�ned in (Fr�uhwirth 1998) di�ers from the

traditional semantis !

t

. Indeed this original, so alled, abstrat semantis denoted

by !

o

, allows the �ring of a propagation rule an in�nite number of times. For

this reason !

o

an be seen as the abstration of the traditional semantis where the

propagation history is not onsidered. It is idential to !

t

, exept that on�gurations
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are of the form hG;S;Bi

n

(they do not ontain a propagation history) and the

Apply transition does not have the last ondition that t 62 T .

3 Range-restrited CHR(C)

In this setion we onsider the (multi-headed) range-restrited CHR(C) language

desribed in the introdution. We all a CHR rule range-restrited if all the variables

whih appear in the body and in the guard appear also in the head of a rule. More

formally, if V ar(X) denotes the variables used in X , the rule r �H

k

nH

h

() g j B

is range-restrited if V ar(B) [ V ar(g) � V ar(H

k

nH

h

) holds. A CHR language is

alled range-restrited if it allows range-restrited rules only.

We prove that in range-restrited CHR(C) the existene of an in�nite omputa-

tion is a deidable property when onsidering the !

o

semantis. This shows that

this language is less expressive than Turing Mahines and than CHR(C). Our result

is based on the theory of well-strutured transition systems (WSTS) and we refer

to (Finkel and Shnoebelen 2001; Abdulla et al. 1996) for this theory. Here we only

provide the basi de�nitions on WSTS, taken from (Finkel and Shnoebelen 2001).

Reall that a quasi-order (or, equivalently, preorder) is a reexive and transitive

relation. A well-quasi-order (wqo) is de�ned as a quasi-order � over a set X suh

that, for any in�nite sequene x

0

; x

1

; x

2

; : : : in X , there exist indexes i < j suh

that x

i

� x

j

.

A transition system is de�ned as usual, namely it is a struture TS = (S;!),

where S is a set of states and !� S � S is a set of transitions. We de�ne Su(s)

as the set fs

0

2 S j s! s

0

g of immediate suessors of s. We say that TS is �nitely

branhing if, for eah s 2 S, Su(s) is �nite. Hene we have the key de�nition.

De�nition 3.1 (Well-strutured transition system with strong ompatibility)

A well-strutured transition system with strong ompatibility is a transition system

TS = (S;!), equipped with a quasi-order � on S, suh that the two following

onditions hold:

1. � is a well-quasi-order;

2. � is strongly (upward) ompatible with !, that is, for all s

1

� t

1

and all

transitions s

1

! s

2

, there exists a state t

2

suh that t

1

! t

2

and s

2

� t

2

holds.

The next theorem is a speial ase of a result in (Finkel and Shnoebelen 2001)

and will be used to obtain our deidability result.

Theorem 3.2

Let TS = (S;!;�) be a �nitely branhing, well-strutured transition system with

strong ompatibility, deidable � and omputable Su(s) for s 2 S. Then the

existene of an in�nite omputation starting from a state s 2 S is deidable.

Deidability of divergene. Consider a given goal G and a (CHR) program P

and onsider the transition system T = (Conf ;

!

o

!

P

) de�ned in Setion 2. Obviously

the number of onstants and variables appearing in G or in P is �nite. Moreover,

5



observe that sine we onsider range-restrited programs, the appliation of the

transitions

!

o

!

P

does not introdue new variables in the omputations. In fat, even

though rules are renamed (in order to avoid lash of variables), the de�nition of the

Apply rule (in partiular the de�nition of �) implies that in a transition s

1

!

o

!

P

s

2

we

have that V ar(s

2

) � V ar(s

1

) holds. Hene an obvious indutive argument implies

that no new variables arise in omputations. For this reason, given a goal G and a

program P , we an assume that the set Conf of all the on�gurations uses only a

�nite number of onstants and variables. In the following we impliitly make this

assumption. We de�ne a quasi-order on on�gurations as follows.

De�nition 3.3

Given two on�gurations s

1

= hG

1

; S

1

; B

1

i

i

and s

2

= hG

2

; S

2

; B

2

i

j

we say that

s

1

� s

2

if

� for every onstraint  2 G

1

jf 2 G

1

gj � jf 2 G

2

gj

� for every onstraint  2 fd : d#i 2 S

1

g jfi : #i 2 S

1

gj � jfi : #i 2 S

2

gj

� B

1

is logially equivalent to B

2

The next Lemma, with proof in (Gabbrielli et al. 2010), states the relevant prop-

erty of �.

Lemma 3.4

� is a well-quasi-order on Conf .

Next, in order to obtain our deidability results we have to show that the strong

ompatibility property holds. This is the ontent of the following lemma whose

proof is in (Gabbrielli et al. 2010).

Lemma 3.5

Given a CHR(C) program P , (Conf ;

!

o

!

P

;�) is a well-strutured transition system

with strong ompatibility.

Finally we have the desired result.

Theorem 3.6

Given a range-restrited CHR(C) program P and a goal G, the existene of an

in�nite omputation for G in P is deidable.

Proof

First observe that, due to our assumption on range-restrited programs, T =

(Conf ;

!

o

!

P

) is �nitely branhing. In fat, as previously mentioned, the use of rule

Apply an not introdue new variables (and hene new di�erent states). The thesis

follows immediately from Lemma 3.5 and Theorem 3.2.

The previous Theorem implies that range-restrited CHR(C) is stritly less ex-

pressive than Turing Mahines, in the sense that there an not exist a termination

preserving enoding of Turing Mahines into range-restrited CHR(C). To be more

preise, we onsider an enoding of a Turing Mahine into a CHR language as a

funtion f whih, given a mahine Z and an initial instantaneous desription D

for Z, produes a CHR program and a goal. This is denoted by (P;G) = f(Z;D).

Hene we have the following.

6



De�nition 3.7 (Termination preserving enoding)

An enoding f of Turing Mahines into a CHR language is termination preserving

2

if the following holds: the mahine Z starting with D terminates i� the goal G in

the CHR program P has only terminating omputations, where (P;G) = f(Z;D).

The enoding is weak termination preserving if: the mahine Z starting with D

terminates i� the goal G in the CHR program P has at least one terminating

omputation.

Sine termination is undeidable for Turing Mahines, we have the following

immediate orollary of Theorem 3.6.

Corollary 3.8

There exists no termination preserving enoding of Turing Mahines into range-

restrited CHR(C).

Note that the previous result does not exlude the existene of weak enod-

ings. For example, in (Busi et al. 2004) it is showed that the existene an in�nite

omputation is deidable in CCS!, a variant of CCS, yet it is possible to provide

a weak termination preserving enoding of Turing Mahines in CCS! (essentially

by adding spurious non-terminating omputations). We onjeture that suh an

enoding is not possible for CHR(C). Note also that previous results imply that

range-restrited CHR(C) is stritly less expressive than CHR(C): in fat there exists

a termination preserving enoding of Turing Mahines into CHR(C) (Sneyers 2008;

Di Giusto et al. 2009).

4 Single-headed CHR(C)

As mentioned in the introdution, while CHR(C) and CHR

1

(F ) are Turing om-

plete languages (Sneyers 2008; Di Giusto et al. 2009), the question of the expressive

power of CHR

1

(C) is open. Here we answer to this question by proving that the

existene of a terminating omputation is deidable for this language, thus showing

that CHR

1

(C) is less expressive than Turing mahines. Throughout this setion,

we assume that the abstrat semantis !

o

is onsidered (however see the disussion

at the end for an extension to the ase of !

t

). The proof we provide is a diret one,

sine neither well-strutured transition systems nor redution to Petri Nets an be

used here (see the introdution).

4.1 Some preparatory results

We introdue here two more notions, namely the forest assoiated to a omputation

and the notion of reative sequene, and some related results. We will need them

for the main result of this setion.

First, we observe that it is possible to assoiate to the omputation for an atomi

2

For many authors the existene of a termination preserving enoding into a non-deterministi

language L is equivalent to the Turing ompleteness of L, however there is no general agreement

on this, sine for others a weak termination preserving enoding suÆes.
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goalG in a program P a tree where, intuitively, nodes are labeled by onstraints (re-

all that these are atomi formulae), the root is G and every hild node is obtained

from the parent node by �ring a rule in the program P . This notion is de�ned pre-

isely in the following, where we generalize it to the ase of a generi (non atomi)

goal, where for eah CHR onstraint in the goal we have a tree. Thus we obtain a

forest F

Æ

= (V;E) assoiated to a omputation Æ, where V ontains a node for eah

repetition of identi�ed CHR onstraints in Æ. Before de�ning the forest we need the

onept of repetition of an identi�ed CHR atom in a omputation.

De�nition 4.1 (Repetition)

Let P be a CHR program and let Æ be a omputation in P . We say that an our-

rene of an identi�ed CHR onstraint h#l in Æ is the i-th repetition of h#l, denoted

by h#l

i

, if it is preeded in Æ by i Apply transitions of propagation rules whose

heads math the atom h#l. We also de�ne

r(Æ; h#l) = maxfi j there exists a i-th repetition of h#l in Æg

De�nition 4.2 (Forest)

Let Æ be a terminating omputation for a goal in a CHR

1

(C) program. The forest

assoiated to Æ, denoted by F

Æ

= (V;E) is de�ned as follows. V ontains nodes

labeled either by repetitions of identi�ed CHR onstraints in Æ or by �. E is the

set of edges. The labeling and the edges in E are de�ned as follows:

(a) For eah CHR onstraint k whih ours in the �rst on�guration of Æ there

exists a tree in F

Æ

= (V;E), whose root is labeled by a repetition k#l

0

, where k#l

is the identi�ed CHR onstraint assoiated to k in Æ.

(b) If n is a node in F

Æ

= (V;E) labeled by k#l

i

and the rule r �h�g j C; k

1

; : : : ; k

m

is used in Æ to rewrite the repetition h#l

i

, where � 2 f();=)g, the k

0

i

s are CHR

onstraints while C ontains built-ins, then we have two ases:

1. If � is =) then n has m + 1 sons, labeled by k

j

#l

j

0

, for j 2 [1;m℄, and by

h#l

i+1

, where the k

j

#l

j

0

are the repetitions generated by the appliation of

the rule r to h#l

i

in Æ.

2. If � is () then:

� if m > 0 then n has m sons, labeled by k

j

#l

j

0

, for j 2 [1;m℄, where

k

j

#l

j

0

are the repetitions generated by the appliation of the rule r to

h#l

i

in Æ.

� if m = 0 then n has 1 son, labeled by �.

Note that, aording to the previous de�nition, nodes whih are not leaves are

labeled by repetitions of identi�ed onstraints k#l

i

, where either i < r(Æ; h#l) or

h#l does not our in the last on�guration of Æ. On the other hand, the leaves of

the trees in F

Æ

are labeled either by � or by the repetitions whih do not satisfy

the ondition above. An example an help to understand this ruial de�nition.

Example 4.3

Let us onsider the following program P :

8



r1 � (X,Y) <=> (X,Y),(X,Y)

r2 � (X,Y) <=> X = 0

r3 � (0,Y) ==> Y = 0

r4 � (0,0) <=> true

There exists a terminating omputation Æ for the goal (X;Y ) in the program P ,

whih uses the lauses r1; r2; r3; r4 in that order and whose assoiated forest F

Æ

is

the following tree:

(X;Y )#1

0

''

O

O

O

O

O

O

O

O

O

O

O

wwo

o

o

o

o

o

o

o

o

o

o

(X;Y )#2

0

��

(X;Y )#3

0

��

�

(X;Y )#3

1

��

�

Note that the left branh orresponds to the termination obtained by using rule

r2, hene the supersript is not inremented. On the other hand, in the right branh

the supersript

0

at the seond level beomes

1

at the third level. This indiates

that a propagation rule (rule r3) has been applied.

Given a forest F

Æ

, we write T

Æ

(n) to denote the subtree of F

Æ

rooted in the node

n. Moreover, we identify a node with its label and we omit the spei�ation of

the repetition, when not needed. The following de�nition introdues some further

terminology that we will need later.

De�nition 4.4

� Given a forest F

Æ

, a path from a root of a tree in the forest to a leaf is alled

a single onstraint omputation, or s-omputation for short.

� Two repetitions h#l

i

and k#m

j

of identi�ed CHR onstraints are alled r-

equal, indiated by h#l

i

== k#m

j

, i� there exists a renaming � suh that

h = k�:

� a s-omputation � is p-repetitive if p = max

h#l

i

2�

jfk#m

j

2 � j h#l

i

==

k#m

j

gj:

� The degree of a p-repetitive s-omputation �, denoted by dg(�) is the ar-

dinality of the set P REP whih is de�ned as the maximal set having the

following properties:

| ontains a repetition h#l

i

in � i� p = jfk#m

j

2 � j h#l

i

== k#m

j

gj

| if h#l

i

is in P REP then P REP does not ontain a repetition k#m

j

s.t. h#l

i

== k#m

j

� A forest F

Æ

is l-repetitive if one of its s-omputation � is l-repetitive and

there is no l

0

-repetitive s-omputation �

0

in F

Æ

with l

0

> l.

9



� The degree dg(F

Æ

) of an l-repetitive forest F

Æ

is de�ned as

dg(F

Æ

) =

X

�

fdg(�) j � is an l-repetitive s-omputation in F

Æ

g:

After the forest, the seond main notion that we need to introdue is that one of

reative sequene

3

.

Given a omputation Æ, we assoiate to eah (repetition of an) ourrene of

an identi�ed CHR atom k#l in Æ a, so alled, reative sequene of the form

h

1

; d

1

i : : : h

n

; d

n

i, where, for any i 2 [1; n℄, 

i

; d

i

are built-in onstraints.

Intuitively eah pair h

i

; d

i

i of built-in onstraints represents all the Apply tran-

sition steps, in the omputation Æ, whih are used to rewrite the onsidered our-

rene of the identi�ed CHR atom k#l and the identi�ed atoms derived from it. The

onstraint 

i

represents the input for this sequene of Apply omputation steps,

while d

i

represents the output of suh a sequene. Hene one an also read suh a

pair as follows: the identi�ed CHR onstraint k#l, in Æ, an transform the built-

in store from 

i

to d

i

. Di�erent pairs h

i

; d

i

i and h

j

; d

j

i in the reative sequene

orrespond to di�erent sequenes of Apply transition steps. This intuitive notion

is further lari�ed later (De�nition 4.9), when we will onsider a reative sequene

assoiated to a repetition of an identi�ed CHR atom.

Sine in CHR omputations the built-in store evolves monotonially, i.e. one a

onstraint is added it an not be retrated, it is natural to assume that reative

sequenes are monotonially inreasing. So in the following we will assume that,

for eah reative sequene h

1

; d

1

i : : : h

n

; d

n

i, the following ondition holds: CT j=

d

j

! 

j

and CT j= 

i+1

! d

i

for j 2 [1; n℄, i 2 [1; n � 1℄. Moreover, we denote

the empty sequene by ". Next, we de�ne the stritly inreasing reative sequenes

w.r.t. a set of variables X .

De�nition 4.5 (Stritly inreasing sequene)

Given a reative sequene s = h

1

; d

1

i � � � h

n

; d

n

i, with n � 0 and a set of variables

X , we say that s is stritly inreasing with respet to X if the following holds for

any j 2 [1; n℄, i 2 [1; n� 1℄

� Fv(

j

; d

j

) � X ,

� CT j= d

i

6! 

i+1

and CT j= 

i

6! d

i

.

Given a generi reative sequene s = h

1

; d

1

i � � � h

n

; d

n

i and a set of variables

X , we an onstrut a new, stritly inreasing sequene �(s;X) with respet to a

set of variables X as follows. First the operator � restrits all the onstraints in

s to the variables in X (by onsidering the existential losure with the exeption

of the variables in X). Then � removes from the sequene all the stuttering steps

(namely the pairs of onstraints h; di, suh that CT j=  $ d) exept the last.

Finally, in the sequene produed by the two previous steps, if there exists a pair

of onseutive elements h

l

; d

l

ih

l+1

; d

l+1

i whih are \onneted", in the sense that

3

This notion is similar to that one used in the (trae) semantis of onurrent languages, see, for

example, (de Boer and Palamidessi 1990; de Boer et al. 2000) for the ase of onurrent on-

straint programming. The name omes from this �eld.
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l+1

does not provide more information than d

l

, then suh a pair is \fused" in (i.e.,

replaed by) the unique element h

l

; d

l+1

i (and this is repeated indutively for the

new pairs). This is made preise by the following de�nition.

De�nition 4.6 (Operator �)

Let s = h

1

; d

1

i � � � h

n

; d

n

i be a sequene of pairs of built-in stores and let X be a

set of variables. The sequene �(s;X) is the obtained as follows:

1 First we de�ne s

0

= h

0

1

; d

0

1

i � � � h

0

n

; d

0

n

i, where for j 2 [1; n℄ 

0

j

= 9

�X



j

and

d

0

j

= 9

�X

d

j

.

2 Then we de�ne s

00

as the sequene obtained from s

0

by removing eah pair of

the form h; di suh that CT j=  $ d, if suh a pair is not the last one of the

sequene.

3 Finally we de�ne �(s;X) = s

000

, where s

000

is the losure of s

00

w.r.t. the following

operation: if h

l

; d

l

ih

l+1

; d

l+1

i is a pair of onseutive elements in the sequene

and CT j= d

l

! 

l+1

holds then suh a pair is substituted by h

l

; d

l+1

i.

The following Lemma states a �rst useful property. The proof is in (Gabbrielli et al. 2010).

Lemma 4.7

Let X be a �nite set of variables and let s = h

1

; 

2

i � � � h

n�1

; 

n

i be a stritly

inreasing sequene with respet to X . Then n � jX j+ 2.

Next we note that, given a set of variables X the possible stritly inreasing

sequenes w.r.t. X are �nite (up to logial equivalene on onstraints), if the set of

the onstants is �nite. This is the ontent of the following lemma, whose proof is in

(Gabbrielli et al. 2010). Here and in the following, with a slight abuse of notation,

given two reative sequenes s = h

1

; d

1

i � � � h

n

; d

n

i and s

0

= h

0

1

; d

0

1

i � � � h

0

n

; d

0

n

i, we

say that s and s

0

are equal (up to logial equivalene) and we write s = s

0

, if for

eah i 2 [1; n℄ CT j= 

i

$ 

0

i

and CT j= d

i

$ d

0

i

holds.

Lemma 4.8

Let Const be a �nite set of onstants and let S be a �nite set of variables suh that

u = jConstj and w = jSj. The set of sequenes s whih are stritly inreasing with

respet to S (up to logial equivalene) is �nite and has ardinality at the most

2

w(u+w)(w+3)

� 1

2

w(u+w)

� 1

:

Finally, we show how reative sequenes an be obtained from a forest assoiated

to a omputation. First we need to de�ne the reative sequene assoiated to a

repetition of an identi�ed CHR atom in a omputation. In this de�nition we use

the operator � introdued in De�nition 4.6.

De�nition 4.9

Let Æ be a omputation for a CHR

1

(C) program, h#l

j

be a repetition of an identi�ed

CHR atom in Æ and r

1

; : : : ; r

n

the sequene of the Apply transition in Æ that

rewrite h#l

j

and all the repetitions derived from it. If s

r

i

!

P

s

0

let pair(r

i

) be the

pair (

V

B

1

;

V

B

2

) where B

1

and B

2

are all the built-ins in s and s

0

. We will denote

with seq(h#l

j

; Æ) the sequene �(pair(r

1

) : : : pair(r

n

); F v(h))
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Finally we de�ne the funtion S

F

Æ

whih, given a node n in a forest assoiated to

a omputation Æ (see De�nition 4.2), returns a reative sequene. Suh a sequene

intuitively represents the sequene of the Apply transition steps whih have been

used in Æ to rewrite the repetition labeling n and the repetitions derived from it.

De�nition 4.10 (Sequene assoiated to a node in a forest)

Let Æ be a terminating omputation and let F

Æ

= (V;E) be the forest assoiated to

it. Given a node n in F

Æ

we de�ne:

� if the label of n is h#l

i

, then S

F

Æ

(n) = seq(h#l

i

; Æ);

� if the label of n is � then S

F

Æ

(n) = ".

Example 4.11

Let us onsider for instane the forest shown in Example 4.3. The sequenes asso-

iated to the nodes of this forest are:

� S

F (Æ)

((X;Y )#1

0

) = htrue;X = 0 ^ Y = 0i

� S

F (Æ)

((X;Y )#2

0

) = htrue;X = 0i

� S

F (Æ)

((X;Y )#3

0

) = hX = 0; X = 0 ^ Y = 0i

� S

F (Æ)

((X;Y )#3

1

) = hX = 0 ^ Y = 0; X = 0 ^ Y = 0i

4.2 Deidability of termination

We are now ready to prove the main result of the paper. First we need the following

Lemma whih has some similarities to the pumping lemma of regular and ontext

free grammars. Indeed, if the derivation is seen as a forest, this lemma allows us to

ompress a tree if in a path of the tree there are two r-equal onstraints with an

equal (up to renaming) sequene. The lemma is proved in (Gabbrielli et al. 2010).

Here and in the following given a node n in a forest F we denote by A

F

(n) the

label assoiated to n.

Lemma 4.12

Let Æ be a terminating omputation for the goal G in the CHR

1

(C) program P .

Assume that F

Æ

is l-repetitive with p = dg(F

Æ

) and assume that there exists an l-

repetitive s-omputation � of F

Æ

and a repetition k#l

i

2 � suh that l = jfh#n

j

2

� j h#n

j

== k#l

i

gj.

Moreover assume that there exist two distint nodes n and n

0

in � suh that n

0

is

a node in T

Æ

(n), A

F

Æ

(n) = k#l

i

, A

F

Æ

(n

0

) = k

0

#l

0

i

0

and � is a renaming suh that

S

F

Æ

(n) = S

F

Æ

(n

0

)� and k = k

0

�.

Then there exists a terminating omputation Æ

0

for the goal G in the program P ,

suh that either F

Æ

0

is l

0

-repetitive with l

0

< l, or F

Æ

0

is l-repetitive and dg(F

0

Æ

) < p.

Finally we obtain the following result, whih is the main result of this paper.

Theorem 4.13 (Deidability of termination)

Let P be a CHR

1

(C) program an let G be a goal. Let u be the number of distint

onstants used in P and in G and let w be the maximal arity of the CHR onstraints

whih our in P and in G.

G has a terminating omputation in P if and only if there exists a terminating

omputation Æ for G in P s.t. F

Æ

is m-repetitive and m �

2

w(u+w)(w+3)

�1

2

w(u+w)

�1

= L:
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Proof

We prove only that if G has a terminating omputation in P then there exists a

terminating omputation Æ for G in P s.t. F

Æ

is m-repetitive and m � L. The proof

of the onverse is straightforward and hene it is omitted.

The proof is by ontradition. Assume G has a terminating omputation Æ in P

s.t. F

Æ

is m-repetitive, m > L and there is no terminating omputation Æ

0

for G in

P suh that F

Æ

0

is m

0

-repetitive and m

0

< m. Moreover, without loss of generality,

we an assume that the degree of F

Æ

is minimal, namely there is no terminating

omputation Æ

0

for G in P suh that F

Æ

0

is m-repetitive and dg(F

Æ

0

) < dg(F

Æ

).

Let � be a m-repetitive s-omputation in F

Æ

. By de�nition, there exist m repe-

titions of identi�ed CHR onstraints k

1

#l

1

i

1

; :::; k

r

#l

m

i

m

in �, whih are r-equal.

Therefore there exist renamings �

s;t

suh that k

s

= k

t

�

s;t

for eah s; t 2 [1;m℄.

By Lemma 4.8 for eah CHR onstraint k whih ours in P or in G, the set

of sequenes s whih are stritly inreasing with respet to Fv(k) (up to logial

equivalene) is �nite and has ardinality at the most L. Then there are two distint

nodes n and n

0

in � and there exist s; t 2 [1;m℄ suh that A(n) = k

s

#l

s

i

s

and

A(n

0

) = k

t

#l

t

i

t

and S

F

Æ

(n) = S

F

Æ

(n

0

)�

s;t

. Then we have a ontradition, sine

by Lemma 4.12 this implies that there exists a terminating omputation Æ

0

for

G in P s.t. either F

Æ

0

is m

0

-repetitive with m

0

< m or F

Æ

0

is m-repetitive and

dg(F

Æ

0

) < dg(F

Æ

) and then the thesis.

As an immediate orollary of the previous theorem we have that the existene

of a terminating omputation for a goal G in a CHR

1

(C) program P is deidable.

Then we have also the following result, whih is stronger than Corollary 3.8 sine

here weak enodings are onsidered.

Corollary 4.14

There is no weak termination preserving enoding of Turing Mahines into CHR

1

(C).

As mentioned at the beginning of this setion, the previous result is obtained

when onsidering the abstrat semantis !

o

. However it holds also when onsidering

the theoretial semantis !

t

. In fat Lemma 4.12 holds if we require that two r-equal

onstraints have the same sequene and have �red the same propagation rules. Sine

the propagation rules are �nite Theorem 4.13 is still valid if m � 2

r

�

2

w(u+w)(w+3)

�1

2

w(u+w)

�1

where r is the number of propagation rules.

5 Conlusions

We have shown two deidability results for two fragments of CHR(C), the CHR lan-

guage de�ned over a signature whih does not allow funtion symbols. The �rst re-

sult, in Setion 3, assumes the abstrat operational semantis, while the seond one,

in Setion 4, holds for both semantis (abstrat and theoretial). These results are

not immediate. Indeed, CHR(C), without further restritions and with any of the

two semantis, is a Turing omplete language (Sneyers 2008; Di Giusto et al. 2009).

It remains quite expressive also with our restritions: for example, CHR

1

(C), the

seond fragment that we have onsidered, allows an in�nite number of di�erent

states, hene, for example, it an not be translated to Petri Nets.
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Host language X Operational semantis k = 1 k > 1

P (propositional) abstrat No No

range-restrited C (onstants)

(f. Setion 3)

abstrat No No

C (onstants), without = any No Yes

C (onstants) (f. Setion 4) any No Yes

F (funtors) any Yes Yes

Table 2. Termination preserving enoding of Turing Mahines into CHR

k

(X)

These results imply that range-restrited CHR(C) and CHR

1

(C), the two on-

sidered fragments, are stritly less expressive than Turing Mahines (and therefore

than CHR(C)). Also, it seems that range-restrited CHR(C) is more expressive

that CHR

1

(C), sine the deidability result for the seond language is stronger.

However, a diret result in this sense is left for future work. Also, we leave to future

work to establish a deidability result for range-restrited CHR(C) under an opera-

tional semantis whih inludes a propagation history. This is not easy, sine in this

ase it appears diÆult to apply the theory of well-strutured transition systems

(the well-quasi-order we have de�ned does not work).

Several papers have onsidered the expressive power of CHR in the last few years.

In partiular, Sneyers (2008) showed that a further restrition of CHR

1

(C), whih

does not allow built-ins in the body of rules (and whih therefore does not allow

uni�ation of terms) is not Turing omplete. This result is obtained by translat-

ing CHR

1

(C) programs (without uni�ation) into propositional CHR and using

the enoding of propositional CHR intro Petri Nets provided in (Betz 2007). The

translation to propositional CHR is not possible for the language (with uni�a-

tion) CHR

1

(C) that we onsider. Betz (2007) also provides a translation of range-

restrited CHR(C) to Petri nets. However in this translation, di�erently from our

ase, it is also assumed that no uni�ation built-in an be used in the rules, and only

ground goals are onsidered. Related to this paper is also (Di Giusto et al. 2009),

where it is shown that CHR(F ) is Turing omplete and that restriting to single-

headed rules dereases the omputational power of CHR. However, these results are

based on the theory of language embedding, developed in the �eld of onurreny

theory to ompare Turing omplete languages, hene they do not establish any de-

idability result. Another related study is (Sneyers et al. 2009), where the authors

show that it is possible to implement any algorithm in CHR in an eÆient way,

i.e. with the best known time and spae omplexity. Earlier works by Fr�uhwirth

(Fr�uhwirth and Abdennadher 2001; Fr�uhwirth 2002) studied the time omplexity

of simpli�ation rules for naive implementations of CHR. In this approah an up-

per bound on the derivation length, ombined with a worst-ase estimate of (the

number and ost of) rule appliation attempts, allows to obtain an upper bound of

the time omplexity. The aim of all these works is learly di�erent from ours.

A summary of the existing results onerning the omputational power of several

dialets of CHR is shown in Table 2. In this table, \no" and \yes" refer to the exis-
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tene of a termination preserving enoding of Turing Mahines into the onsidered

language, while \any" means theoretial or abstrat. The new results shown in this

paper are indiated in a bold font.
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