
ar
X

iv
:1

00
7.

44
76

v1
 [

cs
.L

O
]

 2
6

Ju
l 2

01
0

Under
onsideration for publi
ation in Theory and Pra
ti
e of Logi
 Programming 1

De
idability properties for fragments of CHR

MAURIZIO GABBRIELLI

Dipartimento di S
ienze dell'Informazione and Lab. Fo
us INRIA, Universit�a di Bologna

(e-mail: gabbri�
s.unibo.it)

JACOPO MAURO

Dipartimento di S
ienze dell'Informazione, Universit�a di Bologna

(e-mail: jmauro�
s.unibo.it)

MARIA CHIARA MEO

Dipartimento di S
ienze, Universit�a di Chieti Pes
ara

(e-mail:
meo�uni
h.it)

JON SNEYERS

Departement Computerwetens
happen, K.U.Leuven

(e-mail: jon.sneyers�
s.kuleuven.be)

submitted 1 January 2003; revised 1 January 2003; a

epted 1 January 2003

Abstra
t

We study the de
idability of termination for two CHR diale
ts whi
h, similarly to the

Datalog like languages, are de�ned by using a signature whi
h does not allow fun
tion

symbols (of arity > 0). Both languages allow the use of the = built-in in the body of

rules, thus are built on a host language that supports uni�
ation. However ea
h imposes

one further restri
tion. The �rst CHR diale
t allows only range-restri
ted rules, that is,

it does not allow the use of variables in the body or in the guard of a rule if they do not

appear in the head. We show that the existen
e of an in�nite
omputation is de
idable for

this diale
t. The se
ond diale
t instead limits the number of atoms in the head of rules to

one. We prove that in this
ase, the existen
e of a terminating
omputation is de
idable.

These results show that both diale
ts are stri
tly less expressive

1

than Turing Ma
hines.

It is worth noting that the language (without fun
tion symbols) without these restri
tions

is as expressive as Turing Ma
hines.

KEYWORDS: Constraint programming, Expressivity, Well-stru
tured transition systems.

1 Introdu
tion

Constraint Handling Rules (CHR) (Fr�uhwirth 1998; Fr�uhwirth 2009) is a de
lara-

tive general-purpose language. A CHR program
onsists of a set of multi-headed

1

As we
larify later, \less expressive" here means that there exists no termination preserving

en
oding of Turing ma
hines in the
onsidered language.

http://arxiv.org/abs/1007.4476v1

guarded (simpli�
ation, propagation and simpagation) rules whi
h allow one to

rewrite
onstraints into simpler ones until a solved form is rea
hed. The language

is parametri
 w.r.t. an underlying
onstraint theory CT whi
h de�nes basi
 built-in

onstraints. For a re
ent survey on the language see Sneyers et al. (2010).

In the last few years, several papers have investigated the expressivity of CHR,

however very few de
idability results for fragments of CHR have been obtained.

Three main aspe
ts a�e
t the
omputational power of CHR: the number of atoms

allowed in the heads, the nature of the underlying signature on whi
h programs are

de�ned, and the
onstraint theory. The latter two aspe
ts are often referred to as the

\host language" sin
e they identify the language on whi
h a CHR system is built.

Some results in (Di Giusto et al. 2009) indi
ate that restri
ting to single-headed

rules de
reases the
omputational power of CHR. However, these results
onsider

Turing
omplete fragments of CHR, hen
e they do not establish any de
idability

result. Indeed, single-headed CHR is Turing-
omplete (Di Giusto et al. 2009), pro-

vided that the host language allows fun
tors and uni�
ation. On the other hand,

when allowing multiple heads, even restri
ting to a host language whi
h allows only

onstants does not allow to obtain any de
idability property, sin
e even with this

limitation CHR is Turing
omplete (Sneyers 2008; Di Giusto et al. 2009). The only

(impli
it) de
idability results
on
ern propositional CHR, where all
onstraints have

arity 0, and CHR without fun
tors and without uni�
ation, sin
e these languages

an be translated to (
olored) Petri Nets (Betz 2007) | see also Se
tion 5.

Given this situation, when looking for de
idable properties it is natural to
onsider

further restri
tions of the above mentioned CHR language whi
h allows the only

built-in = (interpreted in the usual way as equality on the Herbrand universe) and

whi
h, similarly to Datalog, is de�ned over a signature whi
h
ontains no fun
tion

symbol of arity > 0. We denote su
h a language by CHR(C).

In this paper we provide two de
idability results for two fragments of CHR(C).

The �rst fragment allows range-restri
ted rules only, that is, it does not allow the use

of a variable in the body or in the guard if it does not appear in the head. We show,

using the theory of well-stru
tured transition systems (Finkel and S
hnoebelen 2001;

Abdulla et al. 1996), that in this
ase the existen
e of an in�nite
omputation is

de
idable. The se
ond fragment that we
onsider is single-headed CHR(C), denoted

by CHR

1

(C). We prove that, for this language, the existen
e of a terminating
om-

putation is de
idable. In this
ase we provide a dire
t proof, sin
e no redu
tion

to Petri Nets
an be used (the language introdu
es an in�nite states system) and

well-stru
tured transition system
an not be used (they do not allow to prove this

kind of de
idability properties).

These results show that both CHR fragments are stri
tly less expressive than

Turing Ma
hines. As previously mentioned, CHR(C) is as expressive as Turing Ma-

hines. So these results obviously imply that both restri
tions lower the expressive

power of CHR(C).

2

2 Syntax and semanti
s

In this se
tion we give an overview of CHR syntax and its operational semanti
s

following (Fr�uhwirth 1998; Du
k et al. 2004). A
onstraint
(t

1

; : : : ; t

n

) is an atomi

formula
onstru
ted on a given signature � in the usual way. There are two types

of
onstraints: built-in
onstraints (prede�ned) that are handled by an existing

solver and CHR
onstraints (user-de�ned) whi
h are de�ned by a CHR program.

Therefore we assume that the signature �
ontains two disjoint sets of predi
ate

symbols for built-in and CHR
onstraints. For built-in
onstraints we assume that

a �rst order de
idable theory CT is given whi
h des
ribes their meaning. Often

the terminology \host language" is used to indi
ate the language
onsisting of the

built-in predi
ates, be
ause indeed often CHR is implemented on top of su
h an

existing host language.

To distinguish between di�erent o

urren
es of synta
ti
ally equal
onstraints,

CHR
onstraints are extended with a unique identi�er. An identi�ed CHR
on-

straint is denoted by
#i with
 a CHR
onstraint and i the identi�er. We write

hr(
#i) =
 and id(
#i) = i, possibly extended to sets and sequen
es of identi�ed

CHR
onstraints in the obvious way.

A CHR program is de�ned as a sequen
e of three kinds of rules: simpli�
ation,

propagation and simpagation rules. Intuitively, simpli�
ation rewrites
onstraints

into simpler ones, propagation adds new
onstraints whi
h are logi
ally redundant

but may trigger further simpli�
ations, and simpagation
ombines in one rule the

e�e
ts of both propagation and simpli�
ation rules. For simpli
ity we
onsider sim-

pli�
ation and propagation rules as spe
ial
ases of a simpagation rule. The general

form of a simpagation rule is:

r � H

k

n H

h

() g j B

where r is a unique identi�er of a rule, H

k

and H

h

(the heads) are multi-sets of

CHR
onstraints, g (the guard) is a
onjun
tion of built-in
onstraints and B is a

multi-set of (built-in and user-de�ned)
onstraints. If H

k

is empty then the rule is

a simpli�
ation rule. If H

h

is empty then the rule is a propagation rule. At least

one of H

k

and H

h

must be non-empty. When the guard g is empty or true we omit

g j. The names of rules are omitted when not needed. For a simpli�
ation rule we

omit H

k

n while we write a propagation rule as H

k

=) g j B. A CHR goal is a

multi-set of (both user-de�ned and built-in)
onstraints.

We also use the following notation: 9

V

�, where V is a set of variables, denotes

the existential
losure of a formula � w.r.t. the variables in V , while 9

�V

� denotes

the existential
losure of a formula � with the ex
eption of the variables in V whi
h

remain unquanti�ed. Fv(�) denotes the free variables appearing in � and t� the

appli
ation of a substitution � to a synta
ti
 obje
t t.

CHR diale
ts. As mentioned before, the
omputational power of CHR depends

on several aspe
ts, in
luding the number of atoms allowed in the heads, the under-

lying signature � on whi
h programs are de�ned, and the
onstraint theory CT ,

de�ning the built-ins. We use the notation CHR(X), where the parameter X indi-

ates the signature and the
onstraint theory (in other words, the host language).

3

Solve hf
g ℄G;S;B; T i

n

!

t

!

P

hG;S;
 ^B; T i

n

where
 is a built-in
onstraint

Introdu
e hf
g ℄G;S;B; T i

n

!

t

!

P

hG; f
#ng [S;B; T i

n+1

where
 is a CHR
onstraint

Apply hG;H

1

[H

2

[S; B; T i

n

!

t

!

P

hC ℄G;H

1

[S; � ^ B; T [ftgi

n

where P
ontains a

(renamed apart) rule r �H

0

1

nH

0

2

() g j C and there exists a mat
hing substitution �

s.t.
hr(H

1

) = H

0

1

�,
hr(H

2

) = H

0

2

�, CT j= B ! 9

�Fv(B)

(� ^ g)

and t = id(H

1

) ++ id(H

2

) ++ [r℄ =2 T

Table 1. Transitions of !

t

More pre
isely, the language under
onsideration in this paper is CHR(C) and

has been de�ned in the introdu
tion. We will also use the notation CHR(P) to

denote propositional CHR, that is the language where all
onstraints have arity

zero. This
orresponds to
onsider a trivial host language without any data type.

Finally CHR(F) indi
ates the (usual) CHR language whi
h allows fun
tor symbols

and the = built-in. Thus in this
ase the host language allows arbitrary Herbrand

terms and supports uni�
ation among them.

The number of atoms in the heads also a�e
ts the expressive power of the lan-

guage. We use the notation CHR

1

, possibly
ombined with the notation above, to

denote single-headed CHR, where heads of rules
ontain one atom.

Operational semanti
s of CHR. We
onsider the theoreti
al operational se-

manti
s, denoted by !

t

and the abstra
t semanti
s, denoted by !

o

. The semanti
s

!

t

is given by Du
k et al. (2004) as a state transition system T = (Conf ;

!

t

!

P

)

where
on�gurations in Conf are tuples of the form hG;S;B; T i

n

, where G is the

goal (a multi-set of
onstraints that remain to be solved), S is the CHR store (a

set of identi�ed CHR
onstraints), B is the built-in store (a
onjun
tion of built-in

onstraints), T is the propagation history (a sequen
e of identi�ers used to store

the rule instan
es �red) and n is the next free identi�er (it is used to identify new

CHR
onstraints). The transitions of !

t

are shown in Table 1.

Given a program P , the transition relation

!

t

!

P

� Conf � Conf is the least re-

lation satisfying the rules in Table 1. The Solve transition allows to update the

onstraint store by taking into a

ount a built-in
onstraint
ontained in the goal.

The Introdu
e transition is used to move a user-de�ned
onstraint from the goal

to the CHR
onstraint store, where it
an be handled by applying CHR rules. The

Apply transition allows to rewrite user-de�ned
onstraints (whi
h are in the CHR

onstraint store) using rules from the program. The Apply transition is appli
able

when the
urrent built-in store (B) entails the guard of the rule (g).

An initial
on�guration has the form hG; ;; true; ;i

1

while a �nal
on�guration

has either the form hG;S; false; T i

k

when it is failed, or the form h;; S; B; T i

k

when

it is su

essfully terminated be
ause there are no appli
able rules. A
omputation

is
alled terminating if it ends in a �nal
on�guration, in�nite otherwise.

The �rst CHR operational semanti
s de�ned in (Fr�uhwirth 1998) di�ers from the

traditional semanti
s !

t

. Indeed this original, so
alled, abstra
t semanti
s denoted

by !

o

, allows the �ring of a propagation rule an in�nite number of times. For

this reason !

o

an be seen as the abstra
tion of the traditional semanti
s where the

propagation history is not
onsidered. It is identi
al to !

t

, ex
ept that
on�gurations

4

are of the form hG;S;Bi

n

(they do not
ontain a propagation history) and the

Apply transition does not have the last
ondition that t 62 T .

3 Range-restri
ted CHR(C)

In this se
tion we
onsider the (multi-headed) range-restri
ted CHR(C) language

des
ribed in the introdu
tion. We
all a CHR rule range-restri
ted if all the variables

whi
h appear in the body and in the guard appear also in the head of a rule. More

formally, if V ar(X) denotes the variables used in X , the rule r �H

k

nH

h

() g j B

is range-restri
ted if V ar(B) [V ar(g) � V ar(H

k

nH

h

) holds. A CHR language is

alled range-restri
ted if it allows range-restri
ted rules only.

We prove that in range-restri
ted CHR(C) the existen
e of an in�nite
omputa-

tion is a de
idable property when
onsidering the !

o

semanti
s. This shows that

this language is less expressive than Turing Ma
hines and than CHR(C). Our result

is based on the theory of well-stru
tured transition systems (WSTS) and we refer

to (Finkel and S
hnoebelen 2001; Abdulla et al. 1996) for this theory. Here we only

provide the basi
 de�nitions on WSTS, taken from (Finkel and S
hnoebelen 2001).

Re
all that a quasi-order (or, equivalently, preorder) is a re
exive and transitive

relation. A well-quasi-order (wqo) is de�ned as a quasi-order � over a set X su
h

that, for any in�nite sequen
e x

0

; x

1

; x

2

; : : : in X , there exist indexes i < j su
h

that x

i

� x

j

.

A transition system is de�ned as usual, namely it is a stru
ture TS = (S;!),

where S is a set of states and !� S � S is a set of transitions. We de�ne Su

(s)

as the set fs

0

2 S j s! s

0

g of immediate su

essors of s. We say that TS is �nitely

bran
hing if, for ea
h s 2 S, Su

(s) is �nite. Hen
e we have the key de�nition.

De�nition 3.1 (Well-stru
tured transition system with strong
ompatibility)

A well-stru
tured transition system with strong
ompatibility is a transition system

TS = (S;!), equipped with a quasi-order � on S, su
h that the two following

onditions hold:

1. � is a well-quasi-order;

2. � is strongly (upward)
ompatible with !, that is, for all s

1

� t

1

and all

transitions s

1

! s

2

, there exists a state t

2

su
h that t

1

! t

2

and s

2

� t

2

holds.

The next theorem is a spe
ial
ase of a result in (Finkel and S
hnoebelen 2001)

and will be used to obtain our de
idability result.

Theorem 3.2

Let TS = (S;!;�) be a �nitely bran
hing, well-stru
tured transition system with

strong
ompatibility, de
idable � and
omputable Su

(s) for s 2 S. Then the

existen
e of an in�nite
omputation starting from a state s 2 S is de
idable.

De
idability of divergen
e. Consider a given goal G and a (CHR) program P

and
onsider the transition system T = (Conf ;

!

o

!

P

) de�ned in Se
tion 2. Obviously

the number of
onstants and variables appearing in G or in P is �nite. Moreover,

5

observe that sin
e we
onsider range-restri
ted programs, the appli
ation of the

transitions

!

o

!

P

does not introdu
e new variables in the
omputations. In fa
t, even

though rules are renamed (in order to avoid
lash of variables), the de�nition of the

Apply rule (in parti
ular the de�nition of �) implies that in a transition s

1

!

o

!

P

s

2

we

have that V ar(s

2

) � V ar(s

1

) holds. Hen
e an obvious indu
tive argument implies

that no new variables arise in
omputations. For this reason, given a goal G and a

program P , we
an assume that the set Conf of all the
on�gurations uses only a

�nite number of
onstants and variables. In the following we impli
itly make this

assumption. We de�ne a quasi-order on
on�gurations as follows.

De�nition 3.3

Given two
on�gurations s

1

= hG

1

; S

1

; B

1

i

i

and s

2

= hG

2

; S

2

; B

2

i

j

we say that

s

1

� s

2

if

� for every
onstraint
 2 G

1

jf
 2 G

1

gj � jf
 2 G

2

gj

� for every
onstraint
 2 fd : d#i 2 S

1

g jfi :
#i 2 S

1

gj � jfi :
#i 2 S

2

gj

� B

1

is logi
ally equivalent to B

2

The next Lemma, with proof in (Gabbrielli et al. 2010), states the relevant prop-

erty of �.

Lemma 3.4

� is a well-quasi-order on Conf .

Next, in order to obtain our de
idability results we have to show that the strong

ompatibility property holds. This is the
ontent of the following lemma whose

proof is in (Gabbrielli et al. 2010).

Lemma 3.5

Given a CHR(C) program P , (Conf ;

!

o

!

P

;�) is a well-stru
tured transition system

with strong
ompatibility.

Finally we have the desired result.

Theorem 3.6

Given a range-restri
ted CHR(C) program P and a goal G, the existen
e of an

in�nite
omputation for G in P is de
idable.

Proof

First observe that, due to our assumption on range-restri
ted programs, T =

(Conf ;

!

o

!

P

) is �nitely bran
hing. In fa
t, as previously mentioned, the use of rule

Apply
an not introdu
e new variables (and hen
e new di�erent states). The thesis

follows immediately from Lemma 3.5 and Theorem 3.2.

The previous Theorem implies that range-restri
ted CHR(C) is stri
tly less ex-

pressive than Turing Ma
hines, in the sense that there
an not exist a termination

preserving en
oding of Turing Ma
hines into range-restri
ted CHR(C). To be more

pre
ise, we
onsider an en
oding of a Turing Ma
hine into a CHR language as a

fun
tion f whi
h, given a ma
hine Z and an initial instantaneous des
ription D

for Z, produ
es a CHR program and a goal. This is denoted by (P;G) = f(Z;D).

Hen
e we have the following.

6

De�nition 3.7 (Termination preserving en
oding)

An en
oding f of Turing Ma
hines into a CHR language is termination preserving

2

if the following holds: the ma
hine Z starting with D terminates i� the goal G in

the CHR program P has only terminating
omputations, where (P;G) = f(Z;D).

The en
oding is weak termination preserving if: the ma
hine Z starting with D

terminates i� the goal G in the CHR program P has at least one terminating

omputation.

Sin
e termination is unde
idable for Turing Ma
hines, we have the following

immediate
orollary of Theorem 3.6.

Corollary 3.8

There exists no termination preserving en
oding of Turing Ma
hines into range-

restri
ted CHR(C).

Note that the previous result does not ex
lude the existen
e of weak en
od-

ings. For example, in (Busi et al. 2004) it is showed that the existen
e an in�nite

omputation is de
idable in CCS!, a variant of CCS, yet it is possible to provide

a weak termination preserving en
oding of Turing Ma
hines in CCS! (essentially

by adding spurious non-terminating
omputations). We
onje
ture that su
h an

en
oding is not possible for CHR(C). Note also that previous results imply that

range-restri
ted CHR(C) is stri
tly less expressive than CHR(C): in fa
t there exists

a termination preserving en
oding of Turing Ma
hines into CHR(C) (Sneyers 2008;

Di Giusto et al. 2009).

4 Single-headed CHR(C)

As mentioned in the introdu
tion, while CHR(C) and CHR

1

(F) are Turing
om-

plete languages (Sneyers 2008; Di Giusto et al. 2009), the question of the expressive

power of CHR

1

(C) is open. Here we answer to this question by proving that the

existen
e of a terminating
omputation is de
idable for this language, thus showing

that CHR

1

(C) is less expressive than Turing ma
hines. Throughout this se
tion,

we assume that the abstra
t semanti
s !

o

is
onsidered (however see the dis
ussion

at the end for an extension to the
ase of !

t

). The proof we provide is a dire
t one,

sin
e neither well-stru
tured transition systems nor redu
tion to Petri Nets
an be

used here (see the introdu
tion).

4.1 Some preparatory results

We introdu
e here two more notions, namely the forest asso
iated to a
omputation

and the notion of rea
tive sequen
e, and some related results. We will need them

for the main result of this se
tion.

First, we observe that it is possible to asso
iate to the
omputation for an atomi

2

For many authors the existen
e of a termination preserving en
oding into a non-deterministi

language L is equivalent to the Turing
ompleteness of L, however there is no general agreement

on this, sin
e for others a weak termination preserving en
oding suÆ
es.

7

goalG in a program P a tree where, intuitively, nodes are labeled by
onstraints (re-

all that these are atomi
 formulae), the root is G and every
hild node is obtained

from the parent node by �ring a rule in the program P . This notion is de�ned pre-

isely in the following, where we generalize it to the
ase of a generi
 (non atomi
)

goal, where for ea
h CHR
onstraint in the goal we have a tree. Thus we obtain a

forest F

Æ

= (V;E) asso
iated to a
omputation Æ, where V
ontains a node for ea
h

repetition of identi�ed CHR
onstraints in Æ. Before de�ning the forest we need the

on
ept of repetition of an identi�ed CHR atom in a
omputation.

De�nition 4.1 (Repetition)

Let P be a CHR program and let Æ be a
omputation in P . We say that an o

ur-

ren
e of an identi�ed CHR
onstraint h#l in Æ is the i-th repetition of h#l, denoted

by h#l

i

, if it is pre
eded in Æ by i Apply transitions of propagation rules whose

heads mat
h the atom h#l. We also de�ne

r(Æ; h#l) = maxfi j there exists a i-th repetition of h#l in Æg

De�nition 4.2 (Forest)

Let Æ be a terminating
omputation for a goal in a CHR

1

(C) program. The forest

asso
iated to Æ, denoted by F

Æ

= (V;E) is de�ned as follows. V
ontains nodes

labeled either by repetitions of identi�ed CHR
onstraints in Æ or by �. E is the

set of edges. The labeling and the edges in E are de�ned as follows:

(a) For ea
h CHR
onstraint k whi
h o

urs in the �rst
on�guration of Æ there

exists a tree in F

Æ

= (V;E), whose root is labeled by a repetition k#l

0

, where k#l

is the identi�ed CHR
onstraint asso
iated to k in Æ.

(b) If n is a node in F

Æ

= (V;E) labeled by k#l

i

and the rule r �h�g j C; k

1

; : : : ; k

m

is used in Æ to rewrite the repetition h#l

i

, where � 2 f();=)g, the k

0

i

s are CHR

onstraints while C
ontains built-ins, then we have two
ases:

1. If � is =) then n has m + 1 sons, labeled by k

j

#l

j

0

, for j 2 [1;m℄, and by

h#l

i+1

, where the k

j

#l

j

0

are the repetitions generated by the appli
ation of

the rule r to h#l

i

in Æ.

2. If � is () then:

� if m > 0 then n has m sons, labeled by k

j

#l

j

0

, for j 2 [1;m℄, where

k

j

#l

j

0

are the repetitions generated by the appli
ation of the rule r to

h#l

i

in Æ.

� if m = 0 then n has 1 son, labeled by �.

Note that, a

ording to the previous de�nition, nodes whi
h are not leaves are

labeled by repetitions of identi�ed
onstraints k#l

i

, where either i < r(Æ; h#l) or

h#l does not o

ur in the last
on�guration of Æ. On the other hand, the leaves of

the trees in F

Æ

are labeled either by � or by the repetitions whi
h do not satisfy

the
ondition above. An example
an help to understand this
ru
ial de�nition.

Example 4.3

Let us
onsider the following program P :

8

r1 �
(X,Y) <=>
(X,Y),
(X,Y)

r2 �
(X,Y) <=> X = 0

r3 �
(0,Y) ==> Y = 0

r4 �
(0,0) <=> true

There exists a terminating
omputation Æ for the goal
(X;Y) in the program P ,

whi
h uses the
lauses r1; r2; r3; r4 in that order and whose asso
iated forest F

Æ

is

the following tree:

(X;Y)#1

0

''

O

O

O

O

O

O

O

O

O

O

O

wwo

o

o

o

o

o

o

o

o

o

o

(X;Y)#2

0

��

(X;Y)#3

0

��

�

(X;Y)#3

1

��

�

Note that the left bran
h
orresponds to the termination obtained by using rule

r2, hen
e the supers
ript is not in
remented. On the other hand, in the right bran
h

the supers
ript

0

at the se
ond level be
omes

1

at the third level. This indi
ates

that a propagation rule (rule r3) has been applied.

Given a forest F

Æ

, we write T

Æ

(n) to denote the subtree of F

Æ

rooted in the node

n. Moreover, we identify a node with its label and we omit the spe
i�
ation of

the repetition, when not needed. The following de�nition introdu
es some further

terminology that we will need later.

De�nition 4.4

� Given a forest F

Æ

, a path from a root of a tree in the forest to a leaf is
alled

a single
onstraint
omputation, or s
-
omputation for short.

� Two repetitions h#l

i

and k#m

j

of identi�ed CHR
onstraints are
alled r-

equal, indi
ated by h#l

i

== k#m

j

, i� there exists a renaming � su
h that

h = k�:

� a s
-
omputation � is p-repetitive if p = max

h#l

i

2�

jfk#m

j

2 � j h#l

i

==

k#m

j

gj:

� The degree of a p-repetitive s
-
omputation �, denoted by dg(�) is the
ar-

dinality of the set P REP whi
h is de�ned as the maximal set having the

following properties:

|
ontains a repetition h#l

i

in � i� p = jfk#m

j

2 � j h#l

i

== k#m

j

gj

| if h#l

i

is in P REP then P REP does not
ontain a repetition k#m

j

s.t. h#l

i

== k#m

j

� A forest F

Æ

is l-repetitive if one of its s
-
omputation � is l-repetitive and

there is no l

0

-repetitive s
-
omputation �

0

in F

Æ

with l

0

> l.

9

� The degree dg(F

Æ

) of an l-repetitive forest F

Æ

is de�ned as

dg(F

Æ

) =

X

�

fdg(�) j � is an l-repetitive s
-
omputation in F

Æ

g:

After the forest, the se
ond main notion that we need to introdu
e is that one of

rea
tive sequen
e

3

.

Given a
omputation Æ, we asso
iate to ea
h (repetition of an) o

urren
e of

an identi�ed CHR atom k#l in Æ a, so
alled, rea
tive sequen
e of the form

h

1

; d

1

i : : : h

n

; d

n

i, where, for any i 2 [1; n℄,

i

; d

i

are built-in
onstraints.

Intuitively ea
h pair h

i

; d

i

i of built-in
onstraints represents all the Apply tran-

sition steps, in the
omputation Æ, whi
h are used to rewrite the
onsidered o

ur-

ren
e of the identi�ed CHR atom k#l and the identi�ed atoms derived from it. The

onstraint

i

represents the input for this sequen
e of Apply
omputation steps,

while d

i

represents the output of su
h a sequen
e. Hen
e one
an also read su
h a

pair as follows: the identi�ed CHR
onstraint k#l, in Æ,
an transform the built-

in store from

i

to d

i

. Di�erent pairs h

i

; d

i

i and h

j

; d

j

i in the rea
tive sequen
e

orrespond to di�erent sequen
es of Apply transition steps. This intuitive notion

is further
lari�ed later (De�nition 4.9), when we will
onsider a rea
tive sequen
e

asso
iated to a repetition of an identi�ed CHR atom.

Sin
e in CHR
omputations the built-in store evolves monotoni
ally, i.e. on
e a

onstraint is added it
an not be retra
ted, it is natural to assume that rea
tive

sequen
es are monotoni
ally in
reasing. So in the following we will assume that,

for ea
h rea
tive sequen
e h

1

; d

1

i : : : h

n

; d

n

i, the following
ondition holds: CT j=

d

j

!

j

and CT j=

i+1

! d

i

for j 2 [1; n℄, i 2 [1; n � 1℄. Moreover, we denote

the empty sequen
e by ". Next, we de�ne the stri
tly in
reasing rea
tive sequen
es

w.r.t. a set of variables X .

De�nition 4.5 (Stri
tly in
reasing sequen
e)

Given a rea
tive sequen
e s = h

1

; d

1

i � � � h

n

; d

n

i, with n � 0 and a set of variables

X , we say that s is stri
tly in
reasing with respe
t to X if the following holds for

any j 2 [1; n℄, i 2 [1; n� 1℄

� Fv(

j

; d

j

) � X ,

� CT j= d

i

6!

i+1

and CT j=

i

6! d

i

.

Given a generi
 rea
tive sequen
e s = h

1

; d

1

i � � � h

n

; d

n

i and a set of variables

X , we
an
onstru
t a new, stri
tly in
reasing sequen
e �(s;X) with respe
t to a

set of variables X as follows. First the operator � restri
ts all the
onstraints in

s to the variables in X (by
onsidering the existential
losure with the ex
eption

of the variables in X). Then � removes from the sequen
e all the stuttering steps

(namely the pairs of
onstraints h
; di, su
h that CT j=
 $ d) ex
ept the last.

Finally, in the sequen
e produ
ed by the two previous steps, if there exists a pair

of
onse
utive elements h

l

; d

l

ih

l+1

; d

l+1

i whi
h are \
onne
ted", in the sense that

3

This notion is similar to that one used in the (tra
e) semanti
s of
on
urrent languages, see, for

example, (de Boer and Palamidessi 1990; de Boer et al. 2000) for the
ase of
on
urrent
on-

straint programming. The name
omes from this �eld.

10

l+1

does not provide more information than d

l

, then su
h a pair is \fused" in (i.e.,

repla
ed by) the unique element h

l

; d

l+1

i (and this is repeated indu
tively for the

new pairs). This is made pre
ise by the following de�nition.

De�nition 4.6 (Operator �)

Let s = h

1

; d

1

i � � � h

n

; d

n

i be a sequen
e of pairs of built-in stores and let X be a

set of variables. The sequen
e �(s;X) is the obtained as follows:

1 First we de�ne s

0

= h

0

1

; d

0

1

i � � � h

0

n

; d

0

n

i, where for j 2 [1; n℄

0

j

= 9

�X

j

and

d

0

j

= 9

�X

d

j

.

2 Then we de�ne s

00

as the sequen
e obtained from s

0

by removing ea
h pair of

the form h
; di su
h that CT j=
 $ d, if su
h a pair is not the last one of the

sequen
e.

3 Finally we de�ne �(s;X) = s

000

, where s

000

is the
losure of s

00

w.r.t. the following

operation: if h

l

; d

l

ih

l+1

; d

l+1

i is a pair of
onse
utive elements in the sequen
e

and CT j= d

l

!

l+1

holds then su
h a pair is substituted by h

l

; d

l+1

i.

The following Lemma states a �rst useful property. The proof is in (Gabbrielli et al. 2010).

Lemma 4.7

Let X be a �nite set of variables and let s = h

1

;

2

i � � � h

n�1

;

n

i be a stri
tly

in
reasing sequen
e with respe
t to X . Then n � jX j+ 2.

Next we note that, given a set of variables X the possible stri
tly in
reasing

sequen
es w.r.t. X are �nite (up to logi
al equivalen
e on
onstraints), if the set of

the
onstants is �nite. This is the
ontent of the following lemma, whose proof is in

(Gabbrielli et al. 2010). Here and in the following, with a slight abuse of notation,

given two rea
tive sequen
es s = h

1

; d

1

i � � � h

n

; d

n

i and s

0

= h

0

1

; d

0

1

i � � � h

0

n

; d

0

n

i, we

say that s and s

0

are equal (up to logi
al equivalen
e) and we write s = s

0

, if for

ea
h i 2 [1; n℄ CT j=

i

$

0

i

and CT j= d

i

$ d

0

i

holds.

Lemma 4.8

Let Const be a �nite set of
onstants and let S be a �nite set of variables su
h that

u = jConstj and w = jSj. The set of sequen
es s whi
h are stri
tly in
reasing with

respe
t to S (up to logi
al equivalen
e) is �nite and has
ardinality at the most

2

w(u+w)(w+3)

� 1

2

w(u+w)

� 1

:

Finally, we show how rea
tive sequen
es
an be obtained from a forest asso
iated

to a
omputation. First we need to de�ne the rea
tive sequen
e asso
iated to a

repetition of an identi�ed CHR atom in a
omputation. In this de�nition we use

the operator � introdu
ed in De�nition 4.6.

De�nition 4.9

Let Æ be a
omputation for a CHR

1

(C) program, h#l

j

be a repetition of an identi�ed

CHR atom in Æ and r

1

; : : : ; r

n

the sequen
e of the Apply transition in Æ that

rewrite h#l

j

and all the repetitions derived from it. If s

r

i

!

P

s

0

let pair(r

i

) be the

pair (

V

B

1

;

V

B

2

) where B

1

and B

2

are all the built-ins in s and s

0

. We will denote

with seq(h#l

j

; Æ) the sequen
e �(pair(r

1

) : : : pair(r

n

); F v(h))

11

Finally we de�ne the fun
tion S

F

Æ

whi
h, given a node n in a forest asso
iated to

a
omputation Æ (see De�nition 4.2), returns a rea
tive sequen
e. Su
h a sequen
e

intuitively represents the sequen
e of the Apply transition steps whi
h have been

used in Æ to rewrite the repetition labeling n and the repetitions derived from it.

De�nition 4.10 (Sequen
e asso
iated to a node in a forest)

Let Æ be a terminating
omputation and let F

Æ

= (V;E) be the forest asso
iated to

it. Given a node n in F

Æ

we de�ne:

� if the label of n is h#l

i

, then S

F

Æ

(n) = seq(h#l

i

; Æ);

� if the label of n is � then S

F

Æ

(n) = ".

Example 4.11

Let us
onsider for instan
e the forest shown in Example 4.3. The sequen
es asso-

iated to the nodes of this forest are:

� S

F (Æ)

(
(X;Y)#1

0

) = htrue;X = 0 ^ Y = 0i

� S

F (Æ)

(
(X;Y)#2

0

) = htrue;X = 0i

� S

F (Æ)

(
(X;Y)#3

0

) = hX = 0; X = 0 ^ Y = 0i

� S

F (Æ)

(
(X;Y)#3

1

) = hX = 0 ^ Y = 0; X = 0 ^ Y = 0i

4.2 De
idability of termination

We are now ready to prove the main result of the paper. First we need the following

Lemma whi
h has some similarities to the pumping lemma of regular and
ontext

free grammars. Indeed, if the derivation is seen as a forest, this lemma allows us to

ompress a tree if in a path of the tree there are two r-equal
onstraints with an

equal (up to renaming) sequen
e. The lemma is proved in (Gabbrielli et al. 2010).

Here and in the following given a node n in a forest F we denote by A

F

(n) the

label asso
iated to n.

Lemma 4.12

Let Æ be a terminating
omputation for the goal G in the CHR

1

(C) program P .

Assume that F

Æ

is l-repetitive with p = dg(F

Æ

) and assume that there exists an l-

repetitive s
-
omputation � of F

Æ

and a repetition k#l

i

2 � su
h that l = jfh#n

j

2

� j h#n

j

== k#l

i

gj.

Moreover assume that there exist two distin
t nodes n and n

0

in � su
h that n

0

is

a node in T

Æ

(n), A

F

Æ

(n) = k#l

i

, A

F

Æ

(n

0

) = k

0

#l

0

i

0

and � is a renaming su
h that

S

F

Æ

(n) = S

F

Æ

(n

0

)� and k = k

0

�.

Then there exists a terminating
omputation Æ

0

for the goal G in the program P ,

su
h that either F

Æ

0

is l

0

-repetitive with l

0

< l, or F

Æ

0

is l-repetitive and dg(F

0

Æ

) < p.

Finally we obtain the following result, whi
h is the main result of this paper.

Theorem 4.13 (De
idability of termination)

Let P be a CHR

1

(C) program an let G be a goal. Let u be the number of distin
t

onstants used in P and in G and let w be the maximal arity of the CHR
onstraints

whi
h o

ur in P and in G.

G has a terminating
omputation in P if and only if there exists a terminating

omputation Æ for G in P s.t. F

Æ

is m-repetitive and m �

2

w(u+w)(w+3)

�1

2

w(u+w)

�1

= L:

12

Proof

We prove only that if G has a terminating
omputation in P then there exists a

terminating
omputation Æ for G in P s.t. F

Æ

is m-repetitive and m � L. The proof

of the
onverse is straightforward and hen
e it is omitted.

The proof is by
ontradi
tion. Assume G has a terminating
omputation Æ in P

s.t. F

Æ

is m-repetitive, m > L and there is no terminating
omputation Æ

0

for G in

P su
h that F

Æ

0

is m

0

-repetitive and m

0

< m. Moreover, without loss of generality,

we
an assume that the degree of F

Æ

is minimal, namely there is no terminating

omputation Æ

0

for G in P su
h that F

Æ

0

is m-repetitive and dg(F

Æ

0

) < dg(F

Æ

).

Let � be a m-repetitive s
-
omputation in F

Æ

. By de�nition, there exist m repe-

titions of identi�ed CHR
onstraints k

1

#l

1

i

1

; :::; k

r

#l

m

i

m

in �, whi
h are r-equal.

Therefore there exist renamings �

s;t

su
h that k

s

= k

t

�

s;t

for ea
h s; t 2 [1;m℄.

By Lemma 4.8 for ea
h CHR
onstraint k whi
h o

urs in P or in G, the set

of sequen
es s whi
h are stri
tly in
reasing with respe
t to Fv(k) (up to logi
al

equivalen
e) is �nite and has
ardinality at the most L. Then there are two distin
t

nodes n and n

0

in � and there exist s; t 2 [1;m℄ su
h that A(n) = k

s

#l

s

i

s

and

A(n

0

) = k

t

#l

t

i

t

and S

F

Æ

(n) = S

F

Æ

(n

0

)�

s;t

. Then we have a
ontradi
tion, sin
e

by Lemma 4.12 this implies that there exists a terminating
omputation Æ

0

for

G in P s.t. either F

Æ

0

is m

0

-repetitive with m

0

< m or F

Æ

0

is m-repetitive and

dg(F

Æ

0

) < dg(F

Æ

) and then the thesis.

As an immediate
orollary of the previous theorem we have that the existen
e

of a terminating
omputation for a goal G in a CHR

1

(C) program P is de
idable.

Then we have also the following result, whi
h is stronger than Corollary 3.8 sin
e

here weak en
odings are
onsidered.

Corollary 4.14

There is no weak termination preserving en
oding of Turing Ma
hines into CHR

1

(C).

As mentioned at the beginning of this se
tion, the previous result is obtained

when
onsidering the abstra
t semanti
s !

o

. However it holds also when
onsidering

the theoreti
al semanti
s !

t

. In fa
t Lemma 4.12 holds if we require that two r-equal

onstraints have the same sequen
e and have �red the same propagation rules. Sin
e

the propagation rules are �nite Theorem 4.13 is still valid if m � 2

r

�

2

w(u+w)(w+3)

�1

2

w(u+w)

�1

where r is the number of propagation rules.

5 Con
lusions

We have shown two de
idability results for two fragments of CHR(C), the CHR lan-

guage de�ned over a signature whi
h does not allow fun
tion symbols. The �rst re-

sult, in Se
tion 3, assumes the abstra
t operational semanti
s, while the se
ond one,

in Se
tion 4, holds for both semanti
s (abstra
t and theoreti
al). These results are

not immediate. Indeed, CHR(C), without further restri
tions and with any of the

two semanti
s, is a Turing
omplete language (Sneyers 2008; Di Giusto et al. 2009).

It remains quite expressive also with our restri
tions: for example, CHR

1

(C), the

se
ond fragment that we have
onsidered, allows an in�nite number of di�erent

states, hen
e, for example, it
an not be translated to Petri Nets.

13

Host language X Operational semanti
s k = 1 k > 1

P (propositional) abstra
t No No

range-restri
ted C (
onstants)

(
f. Se
tion 3)

abstra
t No No

C (
onstants), without = any No Yes

C (
onstants) (
f. Se
tion 4) any No Yes

F (fun
tors) any Yes Yes

Table 2. Termination preserving en
oding of Turing Ma
hines into CHR

k

(X)

These results imply that range-restri
ted CHR(C) and CHR

1

(C), the two
on-

sidered fragments, are stri
tly less expressive than Turing Ma
hines (and therefore

than CHR(C)). Also, it seems that range-restri
ted CHR(C) is more expressive

that CHR

1

(C), sin
e the de
idability result for the se
ond language is stronger.

However, a dire
t result in this sense is left for future work. Also, we leave to future

work to establish a de
idability result for range-restri
ted CHR(C) under an opera-

tional semanti
s whi
h in
ludes a propagation history. This is not easy, sin
e in this

ase it appears diÆ
ult to apply the theory of well-stru
tured transition systems

(the well-quasi-order we have de�ned does not work).

Several papers have
onsidered the expressive power of CHR in the last few years.

In parti
ular, Sneyers (2008) showed that a further restri
tion of CHR

1

(C), whi
h

does not allow built-ins in the body of rules (and whi
h therefore does not allow

uni�
ation of terms) is not Turing
omplete. This result is obtained by translat-

ing CHR

1

(C) programs (without uni�
ation) into propositional CHR and using

the en
oding of propositional CHR intro Petri Nets provided in (Betz 2007). The

translation to propositional CHR is not possible for the language (with uni�
a-

tion) CHR

1

(C) that we
onsider. Betz (2007) also provides a translation of range-

restri
ted CHR(C) to Petri nets. However in this translation, di�erently from our

ase, it is also assumed that no uni�
ation built-in
an be used in the rules, and only

ground goals are
onsidered. Related to this paper is also (Di Giusto et al. 2009),

where it is shown that CHR(F) is Turing
omplete and that restri
ting to single-

headed rules de
reases the
omputational power of CHR. However, these results are

based on the theory of language embedding, developed in the �eld of
on
urren
y

theory to
ompare Turing
omplete languages, hen
e they do not establish any de-

idability result. Another related study is (Sneyers et al. 2009), where the authors

show that it is possible to implement any algorithm in CHR in an eÆ
ient way,

i.e. with the best known time and spa
e
omplexity. Earlier works by Fr�uhwirth

(Fr�uhwirth and Abdennadher 2001; Fr�uhwirth 2002) studied the time
omplexity

of simpli�
ation rules for naive implementations of CHR. In this approa
h an up-

per bound on the derivation length,
ombined with a worst-
ase estimate of (the

number and
ost of) rule appli
ation attempts, allows to obtain an upper bound of

the time
omplexity. The aim of all these works is
learly di�erent from ours.

A summary of the existing results
on
erning the
omputational power of several

diale
ts of CHR is shown in Table 2. In this table, \no" and \yes" refer to the exis-

14

ten
e of a termination preserving en
oding of Turing Ma
hines into the
onsidered

language, while \any" means theoreti
al or abstra
t. The new results shown in this

paper are indi
ated in a bold font.

A
knowledgments.

We would like to thank the reviewers for their pre
ise and helpful
omments. This

resear
h was partially supported by the MIUR PRIN 20089M932N proje
t: "Inno-

vative and multi-dis
iplinary approa
hes for
onstraint and preferen
e reasoning".

Referen
es

Abdulla, P. A., Cerans, K., Jonsson, B., and Tsay, Y.-K. 1996. General de
idability

theorems for in�nite-state systems. In in Pro
eedings, 11th Annual IEEE Symposium

on Logi
 in Computer S
ien
e, LICS'96. 313{321.

Betz, H. 2007. Relating
oloured Petri nets to Constraint Handling Rules. In 4th Work-

shop on Constraint Handling Rules, K. Djelloul, G. J. Du
k, and M. Sulzmann, Eds.

Porto, Portugal, 33{47.

Busi, N., Gabbrielli, M., and Zavattaro, G. 2004. Comparing re
ursion, repli
ation,

and iteration in pro
ess
al
uli. In ICALP, J. D��az, J. Karhum�aki, A. Lepist�o, and

D. Sannella, Eds. Le
ture Notes in Computer S
ien
e, vol. 3142. Springer, 307{319.

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2000. A timed
on
urrent
onstraint

language. Inf. Comput. 161, 1, 45{83.

de Boer, F. S. and Palamidessi, C. 1990. On the asyn
hronous nature of
ommuni-

ation in
on
urrent logi
 languages: A fully abstra
t model based on sequen
es. In

CONCUR, J. C. M. Baeten and J. W. Klop, Eds. Le
ture Notes in Computer S
ien
e,

vol. 458. Springer, 99{114.

Di Giusto, C., Gabbrielli, M., and Meo, M. C. 2009. Expressiveness of multiple heads

in CHR. In SOFSEM, M. Nielsen, A. Ku
era, et al., Eds. Le
ture Notes in Computer

S
ien
e, vol. 5404. Springer, 205{216.

Du
k, G. J., Stu
key, P. J., Gar

�

�a de la Banda, M., and Holzbaur, C. 2004. The

re�ned operational semanti
s of Constraint Handling Rules. In ICLP '04, B. Demoen

and V. Lifs
hitz, Eds. LNCS, vol. 3132. Springer, Saint-Malo, Fran
e, 90{104.

Finkel, A. and S
hnoebelen, P. 2001. Well-stru
tured transition systems everywhere!

Theor. Comput. S
i. 256, 1-2, 63{92.

Fr

�

uhwirth, T. 1998. Theory and pra
ti
e of Constraint Handling Rules. J. Logi
 Pro-

gramming, Spe
ial Issue on Constraint Logi
 Programming 37, 1{3, 95{138.

Fr

�

uhwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.

Fr

�

uhwirth, T. W. 2002. As time goes by: Automati

omplexity analysis of simpli�
ation

rules. In KR, D. Fensel, F. Giun
higlia, D. L. M
Guinness, and M.-A. Williams, Eds.

Morgan Kaufmann, 547{557.

Fr

�

uhwirth, T. W. and Abdennadher, S. 2001. The Muni
h rent advisor: A su

ess

for logi
 programming on the internet. TPLP 1, 3, 303{319.

Gabbrielli, M., Mauro, J., Meo, M. C., and Sneyers, J. 2010. De-

idability properties for fragments of CHR. Te
h. rep. Available from

http://www.
s.unibo.it/

~

jmauro/papers/te
h_report_i
lp_2010.

Sneyers, J. 2008. Turing-
omplete sub
lasses of CHR. In ICLP, M. G. de la Banda and

E. Pontelli, Eds. Le
ture Notes in Computer S
ien
e, vol. 5366. Springer, 759{763.

15

http://www.cs.unibo.it/~jmauro/papers/tech_report_iclp_2010

Sneyers, J., S
hrijvers, T., and Demoen, B. 2009. The
omputational power and

omplexity of Constraint Handling Rules. ACM Trans. Program. Lang. Syst. 31, 2.

Sneyers, J., Van Weert, P., De Konin
k, L., and S
hrijvers, T. 2010. As time goes

by: Constraint Handling Rules | A survey of CHR resear
h between 1998 and 2007.

Theory and Pra
ti
e of Logi
 Programming 10, 1 (January).

16

	1 Introduction
	2 Syntax and semantics
	3 Range-restricted CHR(C)
	4 Single-headed CHR(C)
	4.1 Some preparatory results
	4.2 Decidability of termination

	5 Conclusions
	References

