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Abstract

Testing is a vital part of the software development process. Test Case Generation (TCG)
is the process of automatically generating a collection of test-cases which are applied to a
system under test. White-box TCG is usually performed by means of symbolic execution,
i.e., instead of executing the program on normal values (e.g., numbers), the program is
executed on symbolic values representing arbitrary values. When dealing with an object-
oriented (OO) imperative language, symbolic execution becomes challenging as, among
other things, it must be able to backtrack, complex heap-allocated data structures should
be created during the TCG process and features like inheritance, virtual invocations and
exceptions have to be taken into account. Due to its inherent symbolic execution mecha-
nism, we pursue in this paper that Constraint Logic Programming (CLP) has a promising
application field in TCG. We will support our claim by developing a fully CLP-based
framework to TCG of an OO imperative language, and by assessing it on a corresponding
implementation on a set of challenging Java programs.
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1 Introduction

Test Case Generation (TCG) is the process of automatically generating a collec-

tion of test-cases which are applied to a system under test. The generated cases

must ensure a certain coverage criterion (see e.g., (Zhu et al. 1997) for a survey)

which are heuristics that estimates how well the program is exercised by a test

suite. Examples of coverage criteria are statement coverage, which requires that

each line of the code is executed, path coverage which requires that every pos-

sible trace through a given part of the code is executed, loop-k (resp. block-k)

which limits to a threshold k the number of times we iterate on loops (resp.

visit blocks in the control flow graph (Albert et al. 2009)). Among all possible

forms of TCG, we focus on static (i.e., no knowledge about the input data is as-

sumed) and white-box TCG (i.e., the program is used for guiding the TCG process).

The standard way of performing static white-box TCG is program symbolic exe-

cution (SymEx) (King 1976; Gotlieb et al. 2000; Meudec 2001; Müller et al. 2004;

Tillmann and de Halleux 2008), whereby instead of on actual values, programs are

executed on symbolic values, sometimes represented as constraint variables. Such

http://arxiv.org/abs/1007.5195v1
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class SLNode {
int data;
SLNode next;

}

class SortedList {
SLNode first;

public void merge(SortedList l){
SLNode p1,p2,curr;
p1 = first; p2 = 1© l.first;
if ( 2© p1.data <= 3© p2.data)// if1

p1 = 4© p1.next;
else {

first = p2; p2 = p2.next; }
curr = first; // preloop

// loop
while ((p1 != null) && (p2 != null)){
// loopcond1, loopcond2 and loopbody1

if (p1.data <= p2.data){// if2
curr.next = p1;
p1 = p1.next;

}
else {

curr.next = p2;
p2 = p2.next;

}
curr = curr.next;// loopbody2

}
if (p1 == null) curr.next = p2;// if3
else curr.next = p1;

}

Fig. 1. Working example: Java source code

constraints are accumulated into path constraints as each path of the execution

tree is expanded. The path constraints in feasible paths provide pre-conditions on

the input data which guarantee that the corresponding path will be executed at

run-time.

In this paper, we pursue that Constraint Logic Programming (CLP) has a promis-

ing application field in TCG, since it inherently combines the use of constraint

solvers into its SymEx mechanism. Our main goal is to formalize a whole TCG

framework for a realistic object-oriented (OO) imperative language by means of

CLP. Our approach consists of two basic parts: first, the imperative program is

compiled into an equivalent CLP program and, second, TCG is performed on the

CLP program by relying only on CLP’s evaluation mechanisms. The main chal-

lenges in TCG when dealing with an OO imperative language are related to the

creation of complex heap-allocated data structures during the TCG process, and

to handling OO features like inheritance and virtual invocations, and exceptions.

Besides, when dealing with objects, one needs to take into account all possible

aliasing among them, since this might affect directly the coverage of the test-cases.

Previous approaches strive to define novel specific constraint operators to carry

out these tasks (see e.g. (Charreteur et al. 2009; Schrijvers et al. 2009)). Instead,

in our approach, the whole TCG process is formulated using CLP only, and with-

out the need of defining specific operators to handle the different features. This, on

one hand, has the advantage of providing a clean and uniform formalization. And,

more importantly, since SymEx is performed on an equivalent CLP program, we

can often obtain the desired degree of coverage by using existing evaluation strate-

gies on the CLP side. This gives us flexibility and parametricity w.r.t. the adequacy

criteria.

Our approach has been integrated in PET (Albert et al. 2010), a Partial-Evaluation

based TCG tool, extending its applicability towards real-life OO applications.
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2 A CLP-Executable Object-Oriented Imperative Language

In this section, we define the (CLP) syntax and semantics of the OO imperative

language on which our TCG approach is developed, which we call CLP-decompiled

language. Its main characteristic is that it keeps all features of the original OO

language but it is CLP-executable, i.e., it can be executed using the evaluation

mechanism of CLP languages. When the source imperative language is low-level

as bytecode, we use the term CLP-decompiled language. In previous work, it has

been shown that Java bytecode (and hence Java) can be decompiled into a simi-

lar language (Gómez-Zamalloa et al. 2009) by relying on the interpretive approach

(Futamura 1971) to compilation, proposed in the first Futamura projection. In this

approach, the CLP-(de)compilation is obtained by partially evaluating an inter-

preter for the OO language written in CLP.

Example 1

Fig. 1 shows the source code of our running example which implements a merge

algorithm on sorted singly-linked lists. Fig. 2 shows the CLP-decompiled program

automatically generated by our system from the bytecode obtained by compiling the

Java program, with some simplifications to improve readability. The correspondence

between blocks of the original program and clauses in the decompiled one is shown

in comments in the Java code. The main features that can be observed from the

decompilation are: (1) All clauses contain input and output arguments and heaps,

and an exceptional flag. As in the bytecode, input arguments of non-static methods

include the reference this (named r(Th)). Reference variables are of the form r(V)

and we use the same variable name V as in the program. (2) Java exceptions are

made explicit in the decompiled program. Observe predicates nullcheckx, which

capture the exceptions that can be thrown at program points annotated as x©. (3)

Conditional statements in the source program are transformed to guarded rules

in the CLP one (e.g., if1). (4) Iteration in the source program is transformed into

recursion in the CLP program. E.g, the while loop corresponds to the recursive

predicate loop.

2.1 Syntax of CLP-Decompiled Object-Oriented Imperative Programs

As illustrated in Fig. 2, a CLP-decompiled program consists of a set of predicates.

A predicate p is defined by one or more clauses which are mutually exclusive. This

is ensured, either by means of mutually exclusive guards, or by information made

explicit on the clause heads (as usual in CLP). Each clause p receives as input a

(possibly empty) list of arguments Argsin and an input heap Hin, and returns the

(possibly empty) output Argsout, a possibly modified output heap Hout, and an

exception flag. This flag indicates whether the execution ends normally or with an

uncaught exception. Clauses adhere to the following grammar. As usual, terminals

start by lowercase (or special symbols) and non-terminals by uppercase. Subscripts
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merge([[r(Th),L],[],Hin,Hout,EF) :- get field(Hin,Th,’SL’:first,P1),
nullcheck1([r(Th),L,P1],[],Hin,Hout,EF).

nullcheck11([r(Th),r(L),P1],[],H1,H2,EF) :- get field(H1,L,’SL’:first,P2),
nullcheck2([r(Th),r(L),P1,P2],[],H1,H2,EF).

nullcheck12([r( ),null, ],[],H1,H2,exc(ExRef)) :- new object(H1,’NPE’,ExRef,H2).

nullcheck21([r(Th),r(L),r(P1),P2],[],H1,H2,EF) :- get field(H1,P1,’SL’:data,Data1),
nullcheck3([Data1,r(Th),r(L),r(P1),P2],[],H1,H2,EF).

nullcheck22([r( ),r( ),null, ],[],H1,H2,exc(ExRef)) :- new object(H1,’NPE’,ExRef,H2).

nullcheck31([D1,r(Th),r(L),r(P1),r(P2)],[],H1,H2,EF) :- get field(H1,P2,’SL’:data,D2),
if1([D2,D1,r(Th),r(L),r(P1),r(P2)],[],H1,H2,EF).

nullcheck32([ , ,r( ),r( ),null],[],H1,H2,exc(ExR)) :- new object(H1,’NPE’,ExR,H2).

if11([Data2,Data1,r(Th),r(L),r(P1),r(P2)],[],H1,H3,EF) :- Data1 #> Data2,
set field(H1,Th,’SL’:first,r(P2),H2), get field(H2,P2,’SL’:next,P2’),
preloop([r(Th),r(L),r(P1),P2’],[],H2,H3,EF).

if11([Data2,Data1,r(Th),r(L),r(P1),r(P2)],[],H1,H2,EF) :- Data1 #=< Data2,
get field(H1,P1,’SL’:next,P1’), preloop([r(Th),r(L),P1’,r(P2)],[],H1,H2,EF).

preloop([r(Th),L,P1,P2],[],H1,H2,EF) :-
get field(H1,Th,’SL’:first,Curr), loop([r(Th),L,P1,P2,Curr],[],H1,H2,EF).

loop([Th,L,P1,P2,Curr],[],H1,H2,EF) :- loopcond1([Th,L,P1,P2,Curr],[],H1,H2,EF).
loopcond11([ , ,null,P2,Curr],[],H1,H2,EF) :- if3([null,P2,Curr],[],H1,H2,EF).
loopcond12([Th,L,r(P1),P2,Curr],[],H1,H2,EF) :-

loopcond2([Th,L,r(P1),P2,Curr],[],H1,H2,EF).

loopcond21([ , ,r(P1),null,Cur],[],H1,H2,EF) :- if3([r(P1),null,Cur],[],H1,H2,EF).
loopcond22([Th,L,r(P1),r(P2),Curr],[],H1,H2,EF) :-

loopbody1([Th,L,r(P1),r(P2),Curr],[],H1,H2,EF).

loopbody1([Th,L,r(P1),r(P2),Curr],[],H1,H2,EF) :-
get field(H1,P1,’SL’:data,Data1), get field(H1,P2,’SL’:data,Data2),
if2([Data2,Data1,Th,L,r(P1),r(P2),Curr],[],H1,H2,EF).

if21([Data2,Data1,Th,L,r(P1),r(P2),r(Curr)],[],H1,H3,EF) :- Data1 #> Data2,
set field(H1,Curr,’SL’:next,r(P2),H2), get field(H2,P2,’SL’:next,P2’),
loopbody2([Th,L,r(P1),P2’,r(Curr)],[],H2,H3,EF).

if22([Data2,Data1,Th,L,r(P1),r(P2),r(Curr)],[],H1,H3,EF) :- Data1 #=< Data2,
set field(H1,Curr,’SL’:next,r(P1),H2), get field(H2,P1,’SL’:next,P1’),
loopbody2([Th,L,P1’,r(P2),r(Curr)],[],H2,H3,EF).

loopbody2([Th,L,P1,P2,r(Curr)],[],H1,H2,EF) :-
get field(H1,Curr,’SL’:next,Curr’), loop([Th,L,P1,P2,Curr’],[],H1,H2,EF).

if31([r(P1), ,r(Curr)],[],H1,H2,ok) :- set field(H1,Curr,’SL’:next,r(P1),H2).
if32([null,P2,r(Curr)],[],H1,H2,ok) :- set field(H1,Curr,’SL’:next,P2,H2).

Fig. 2. Working example: CLP-decompiled code

are provided just for clarity.

Clause ::=Pred (Argsin,Argsout,Hin,Hout,ExFlag) :- [G,]B1,B2,. . . ,Bn.
G ::=Num* ROp Num* | Ref∗1 \== Ref∗2 | type(H,Ref∗,T)
B ::=Var #= Num* AOp Num* | Pred (Argsin,Argsout,Hin,Hout,ExFlag) |

new object(H,C∗,Ref∗,H) | new array(H,T,Num∗,Ref∗,H) | length(H,Ref∗,Var) |
get field(H,Ref∗,FSig,Var) | set field(H,Ref∗,FSig,Data∗,H) |
get array(H,Ref∗,Num∗,Var) | set array(H,Ref∗,Num∗,Data∗,H)
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Pred ::=Block | MSig
Args ::= [] | [Data∗|Args]
Data ::=Num | Ref
Ref ::= null | r(Var)

ExFlag ::= ok | exc(Var)

ROp ::= #> | #< | #>= | #=< | #= | #\=
AOp ::= + | - | ∗ | / | mod

T ::= bool | int | C | array(T)
FSig ::=C:FN

H ::=Var

Non-terminals Block, Num, Var, FN, MSig and C denote, resp., the set of predicate

names, numbers, variables, field names, method signatures and class names. Observe

that clauses can define both methods which appear in the original source program

(MSig), or additional predicates which correspond to intermediate blocks in the

program (Block). An asterisk on a non-terminal denotes that it can be either as

defined by the grammar or a (possibly constraint) variable. Guards might contain:

comparisons between numeric data or references and calls to the type predicate,

which checks the type of a reference variable (by consulting the heap). Virtual

method invocations in the OO language are resolved at compile-time by looking up

all possible runtime instances of the method. In the decompiled program, they

are translated into a choice of type instructions which check the actual object

type, followed by the corresponding method invocation for each runtime instance.

Instructions in the body of clauses include: (first row) arithmetic operations, calls

to other predicates, (second row) instructions to create objects and arrays, and to

consult the array length, (third row) read and write access to object fields, and,

(fourth row) read and write access to an array position. As regards exceptions, they

can be handled by treating them as additional nodes and arcs in the control flow

graph of the program. In our framework, such flows are represented in the CLP-

decompiled program with explicit calls to the corresponding exception handlers.

For simplicity, the language does not include features of OO imperative lan-

guages like bitwise operations, static fields, access control (e.g., the use of public,

protected and private modifiers) and primitive types besides integers and booleans.

Most of these features can be easily handled in this framework, as shown by the

implementation based on actual Java bytecode.

2.2 Semantics of CLP-Decompiled Programs with Heap

When considering a simple imperative language without heap-allocated data struc-

tures, like in (Albert et al. 2009), CLP-decompiled programs can be executed by

using the standard execution mechanism of CLP. In order to extend this approach

to a realistic language with dynamic memory, as our first contribution, we provide

a suitable representation for the heap and define the heap related operations. Note

that, in CLP-decompiled programs the heap is treated as a black-box through its

associated operations, therefore it is always a variable. At run-time, the heap is

represented as a list of locations which are pairs made up of a unique reference

and a cell, which in turn can be an object or an array. An object contains its type

and its list of fields, each of them contains its signature and data contents. An

array contains its type, its length and the list of its elements. Observe that arrays

are stored in the heap together with objects (as it happens e.g. in Java bytecode).
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new object(H,C,Ref,H’) :- build object(C,Ob), new ref(Ref), H’ = [(Ref,Ob)|H].
new array(H,T,L,Ref,H’) :- build array(T,L,Arr), new ref(Ref), H’ = [(Ref,Arr)|H].

type(H,Ref,T) :- get cell(H,Ref,Cell), Cell = object(T, ).
length(H,Ref,L) :- get cell(H,Ref,Cell), Cell = array( ,L, ).

get field(H,Ref,FSig,V) :- get cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields),
subclass(T,C), member det(field(FN,V),Fields).

get array(H,Ref,I,V) :- get cell(H,Ref,Arr), Arr = array( , ,Xs), nth0(I,Xs,V).

set field(H,Ref,FSig,V,H’) :- get cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields),
subclass(T,C), replace det(Fields,field(FN, ),field(FN,V),Fds’),
set cell(H,Ref,object(T,Fds’),H’).

set array(H,Ref,I,V,H’) :- get cell(H,Ref,Arr), Arr = array(T,L,Xs),
replace nth0(Xs,I,V,Xs’), set cell(H,Ref,array(T,L,Xs’),H’).

get cell([(Ref’,Cell’)| ],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get cell([ |RH],Ref,Ob) :- get cell(RH,Ref,Ob).

set cell([(Ref’, )|H],Ref,Cell,H’) :- Ref == Ref’, !, H’ = [(Ref,Cell)|H].
set cell([(Ref’,Cell’)|H’],Ref,Cell,H) :- H = [(Ref’,Cell’)|H”], set cell(H’,Ref,Cell,H”).

Fig. 3. Heap operations for ground execution

Formally, the syntax of the heap at run-time is as follows. The asterisks will be

explained later:

Heap ::= [] | [Loc|Heap] Cell ::= object(C∗,Fields∗) | array(T∗,Num∗,Args∗)
Loc ::= (Num∗,Cell) Fields ::= [] | [field(FN,Data∗)|Fields∗]

In the upper side of the figure, we present the CLP-implementation of the oper-

ations to create heap-allocated data structures (like new object and new array) and

to read and modify them (like set field, etc.), and, at the bottom appear some

auxiliary predicates. To simplify the presentation some predicates are omitted,

namely: build object/2 resp. build array/3, which create an object, resp. an array

term, new ref/1 which produces a fresh numeric reference, and subclass/2 which im-

plements the transitive and reflexive subclass relation on two classes. member det/2

resp. replace det/4 implements the usual deterministic member, resp. replace, on

lists, while nth0/3 resp. replace nth0/3 implements the access to, resp. replacement

of, the ith element of a list using constraints (multi-moded versions).

We now focus on the ground execution of CLP-decompiled programs in which

we assume that all input parameters of the predicate to be executed (i.e., Argsin
and Hin) are fully instantiated. The instantiations are provided as constraints in

the input state. We assume familiarity with the basic notions of CLP. Very briefly,

let us recall that the operational semantics of a CLP program P can be defined

in terms of derivations, which are sequences of reductions between states S0 →P

S1 →P ... →P Sn, also denoted S0 →∗

P Sn, where a state 〈G θ〉 consists of a goal G

and a constraint store θ. If the derivation successfully terminates, then Sn = 〈ǫ θ′〉

and θ′ is called the output state.

Definition 1 (ground execution)

Let M be a method, m be the corresponding predicate from its associated CLP-
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decompiled program P , and P ′ be the union of P and the clauses in Fig. 3. The

ground execution of m with input θ is the derivation S0 →∗

P ′ Sn, where S0 =

〈m(Argsin,Argsout,Hin,Hout,ExFlag) θ〉 and θ initializes Argsin and Hin to be

fully ground. If the derivation successfully terminates, then Sn = 〈ǫ θ′〉 and θ′ is

the output state (ǫ denotes the empty goal).

Every CLP-decompilation must ensure that CLP programs capture the same se-

mantics of the original imperative ones. This is to say that, given a correct in-

put state, the CLP-execution yields an equivalent output state. By correct input

state, we mean that all input arguments have the correct types and that the

heap has the required contents. For instance, θ = {Argsin = [r(1),null] ∧ Hin =

[(1,object(’SL’,[field(’SL’:first,null)]))]} is a correct input state for predicate merge/5,

whereas θ = {Argsin = [r(1),r(2)]∧Hin = []} is not correct since the heap does not

include the required objects.

Definition 2 (correct decompilation)

Consider a method M and a correct input state I. Let m be the CLP-decompiled

predicate obtained from M and θ be the input state equivalent to I. If the CLP-

decompilation is correct then it must hold that, the execution in the OO language

of M returns as output state O if and only if the ground execution of m with θ is

deterministic and returns an output state θ′ equivalent to O.

Correctness must be proven for the particular techniques used to carry out the de-

compilation. In the interpretive approach, for a simpler bytecode language without

heap, (Gómez-Zamalloa et al. 2009) proves that the execution of the decompiled

programs produces the same output state than the execution of the bytecode pro-

gram in the CLP interpreter. A full proof would require to prove that the CLP

interpreter is correct and complete w.r.t the corresponding imperative language se-

mantics. Since our approach is not tied to a particular decompilation technique, in

the rest of the paper, for the correctness of our TDG approach, we just require that

decompiled programs are correct as stated in Def. 2.

Finally, in the above definition, it can be observed that, since CLP-decompiled

programs originate from imperative bytecode, their ground execution is determinis-

tic. The aim of the next section is to be able to execute CLP-decompiled programs

symbolically with the input arguments being free variables.

3 Symbolic Execution of OO Imperative Programs

Interestingly, our CLP-decompiled programs can in principle be used, not only

to perform ground execution, but also symbolic execution (SymEx). Indeed, when

the imperative language does not use dynamic memory nor OO features, we can

simply run the CLP-decompiled programs by using the standard CLP execution

mechanism with all arguments being distinct free variables. For simple imperative

languages, this approach was first proposed by (Meudec 2001) and developed for a

simple bytecode language in (Albert et al. 2009). However, dealing with dynamic

memory and OO features entails further complications, as we show in this section.
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3.1 Handling Heap-Allocation in Symbolic Execution

In principle, SymEx starts with a fully unknown input state, including a fully un-

known heap. Thus, one has to provide some method which builds a heap associated

with a given path by using only the constraints induced by the visited code. In the

case of TCG, it is required that the ground execution with that heap (and the corre-

sponding input arguments) traverses exactly such path. Existing approaches define

novel specific operators to carry out this task. For instance, (Charreteur et al. 2009)

adds new constraint models for the heap that extend the basic constraint-based ap-

proach without heap. Similarly, (Schrijvers et al. 2009) provides specific constraints

for heap-allocated lists, but needs to adjust the solver to handle other data struc-

tures. In our approach, thanks to the explicit representation of the heap, we are

able to provide a general solution for the SymEx of programs with arbitrary heap-

allocated data structures.

The main point is that in a ground execution, the heap is totally instantiated

and, when we execute get cell/3 (see Fig. 3), the reference we are searching for

must be a number (not a variable) existing in the heap. In contrast, SymEx deals

with partially unknown heaps. Our solution consists in generalizing the definition

of get cell/3 by adding an additional clause (the first one) as follows:

get cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)| ].
get cell([(Ref’,Cell’)| ],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get cell([ |RH],Ref,Cell) :- get cell(RH,Ref,Cell).

Intuitively, the heap during SymEx contains two parts: the known part, with the

cells that have been explicitly created during SymEx which appear at the beginning

of the list, and the unknown part, which is a logic variable (tail of the list) in

which new data can be added. Observe the syntax of the heap in Sect. 2.2 where

the *’s indicate where partial information can occur in the heaps during SymEx.

Such syntax is hence valid for all heaps appearing at SymEx time. The definition

of get cell/3 now distinguishes two situations when searching for a reference: (i)

It finds it in the known part (second clause). Note the use of syntactic equality

rather than unification since references at SymEx time can be variables or numbers.

(ii) Otherwise, it reaches the unknown part of the heap (a logic variable), and it

allocates the reference (in this case a variable) there (first clause).

Example 2

Let us use our SymEx framework for the purpose of TCG on our working exam-

ple. As will be further explained, for this it is required to: (i) impose a termi-

nation criterion on SymEx, and (ii) have a mechanism to produce actual values

from the obtained path constraints. For (i) let us use block-k with K = 2. Re-

garding (ii), we just rely on the labeling mechanism of standard clpfd domains,

since we only get arithmetic path constraints. The rest of the constraints are

handled as explained with standard unification through the defined heap oper-

ations. Table 1 depicts a graphical representation of the obtained set of test-

cases.The table shows, for each test-case, an identifier, a graphical representa-

tion of its input and output, and the exception flag. Due to space limitations,

we do not show the full input and output heaps, but instead we use the custom-
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N Input Output EF

1 this.first //'&%$ !"#1 // C l.first //'&%$ !"#0 // null this.first //'&%$ !"#0 //'&%$ !"#1 // C ok

2 this.first //'&%$ !"#1 // C this.first //'&%$ !"#0 //'&%$ !"#0 //'&%$ !"#1 // C ok

l.first //'&%$ !"#0 //'&%$ !"#0 // null

3 this.first //'&%$ !"#1 // null this.first //'&%$ !"#0 //'&%$ !"#1 //'&%$ !"#1 // C ok

l.first //'&%$ !"#0 //'&%$ !"#1 // C

4 this.first //'&%$ !"#0 // null l.first //'&%$ !"#0 // C this.first //'&%$ !"#0 //'&%$ !"#0 // C ok

5 this.first //'&%$ !"#0 //'&%$ !"#1 // C this.first //'&%$ !"#0 //'&%$ !"#0 //'&%$ !"#1 // C ok

l.first //'&%$ !"#0 // null

6 this.first //'&%$ !"#0 //'&%$ !"#0 // null this.first //'&%$ !"#0 //'&%$ !"#0 //'&%$ !"#0 // C ok

l.first //'&%$ !"#0 // C

7 this.first //'&%$ !"#0 // C l.first = null - exc

8 this.first // null l.first // C - exc

9 this.first // C l // null - exc

Table 1. Obtained test-cases for working example

ary graphical representation for the linked lists of integers that they contain (see

the example below to understand the correspondence). Let us focus on the first

test-case. It corresponds to the following (simplified) sequence of reduction steps

merge→ nullcheck1→ nullcheck2→ nullcheck3→ if11→ preloop→loop→loopcond12→

→ loopcond21→ if31. Its associated answer is θ = {Argsin = [r(Th),r(L)] ∧ Hin = [(Th,

object(’SL’,[field(first,A)])), (L,object(’SL’,[field(first,B)])),(A,object(’SLNode’,[field(data,1)])), (B, ob-

ject(’SLNode’,[field(data,0),field(next,null)]))] ∧ . . .}, indicating that merging a list with head

“1” and any possible continuation (denoted “C”), and a null-terminated list with

head “0”, produces an output list with head “0”, followed by “1” and followed by

the continuation “C”.The last three test-cases show that, either if l is null, or the

first field of any of the lists is null, the method throws an exception. This is indeed

spotting a bug in the program (assuming it is not the intended behavior).

3.2 Handling Pointer Aliasing in Symbolic Execution

A challenge in SymEx of realistic languages is to consider pointer-aliasing during

the generation of heap-allocated data structures, i.e., the fact that the same memory

location can be accessed through several references (called aliases). In the case of

TCG, ignoring aliasing can lead to a loss of coverage. Again, our solution consists

in further generalizing the definition of get cell/3 by adding an additional clause

(the third one), thus illustrating again the flexibility of our approach:

get cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)| ].
get cell([(Ref’,Cell’)| ],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get cell([(Ref’,Cell’)| ],Ref,Cell) :- var(Ref), var(Ref’), Ref = Ref’, Cell = Cell’.
get cell([ |RH],Ref,Cell) :- get cell(RH,Ref,Cell).

Essentially, two cases are distinguished: (a) The reference we are searching for is a
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N Input Output EF

10 this.first //'&%$ !"#0 // null l = this this.first //'&%$ !"#0
QQ

ok

11 this.first //'&%$ !"#0 //'&%$ !"#0 // null l = this this.first //'&%$ !"#0 //'&%$ !"#0gg ok

12 this.first // null l = this - exc

13 this.first //'&%$ !"#0 // null

l.first

66
l

l
l

l

this.first //'&%$ !"#0
QQ

ok

14 this.first //'&%$ !"#0 //'&%$ !"#0 // null

l.first

66
l

l
l

l

this.first //'&%$ !"#0 //'&%$ !"#0gg ok

15 this.first //'&%$ !"#1 // null

l.first //'&%$ !"#0

kk this.first //'&%$ !"#0 //'&%$ !"#1
QQ

ok

16 this.first //'&%$ !"#0
ssl.first //'&%$ !"#0 // null

this.first //'&%$ !"#0 //'&%$ !"#0
QQ

ok

Table 2. Additional test-cases when considering pointer-aliasing

number, in that case it must exist in the heap and the 2nd clause will eventually

succeed. (b) If Ref is a variable: (b.1) Ref exists in the heap, and the 2nd clause

eventually succeeds. Here, Ref must have been already processed (and possible

aliases for it might have been created. (b.2) The interesting case is when Ref is

a free variable which was not in the heap. In this case, the 2nd clause will never

succeed and the 3rd one will unify Ref with all matching references in the heap.

Example 3

Let us consider again the TCG for our working example as in Ex. 2. Table 2 shows

seven additional test-cases obtained using the new definition of get cell/3. Test-

cases 10-12 represent executions in which the two lists to be merged are aliases. The

remaining test-cases show other shapes of lists with aliasing among their nodes. In

most cases, the result is a cyclic list. This clearly reveals a dangerous behavior of

the method which should be controlled by the programmer. Altogether, our set of

test-cases provides full coverage w.r.t. the shape of data structures.

3.3 Inheritance and Virtual Invocations in Symbolic Execution

Inheritance and virtual method invocations pose further challenges in SymEx of

realistic OO programming languages. From the side of data structure shape cover-

age, we should create aliasing among objects that possibly have different class types

but, due to their inheritance relation, might be aliased at runtime. From the side of

path coverage, virtual invocations pose further complications when the object on

which the virtual invocation is performed has not been created during SymEx, but

is rather accessed from the input arguments. In this case, only the declaration type

of the object is known. To achieve path coverage, all implementations of the method

that might be invoked at runtime (but not more), should be exercised. Interestingly,

our solution solves these issues for free. Let us consider a scenario where we have

three classes A, B and C, such that C is a subclass of B, and B a subclass of A;

and the following method m(A a, B b){a.f; b.g; a.p();}. Let us also assume
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that both B and C redefine method p. The corresponding CLP-decompiled code

contains two calls to get field/4, resp. with ’A’:f and ’B’:g. During SymEx, the

first one will call subclass(X,’A’), which produces three alternatives (X=’A’, X=’B’

and X=’C’). The second call to get field will then succeed with cases X=’B’ and

X=’C’, but fail with X=’A’. Thus, the case where a and b are aliased is properly

handled, and the calls B.p() and C.p() (and not A.p()) will be exercised.

Definition 3 (symbolic execution)
Let M be a method, m be the corresponding predicate from its associated CLP-

decompiled program P , and P ′ be the union of P and the clauses in Fig. 3 with

the described extensions. The symbolic execution of m is the derivation tree with

root S0 = 〈m(Argsin,Argsout,Hin,Hout,ExFlag) θ〉 and θ = {} obtained using P ′.

The following theorem establishes the correctness of our symbolic execution mech-

anism. Intuitively, it says that each successful derivation in the symbolic execution

produces an output state which is correct, i.e., for any ground instantiation of such

derivation we obtain an output state which is an instantiation of the one obtained

in the symbolic execution. For simplicity, throughout the paper, we have included

in an output state θ two ingredients: the computed answer substitution σ and the

actual constraints γ. Given a constraint store θ, we say that σ′ is an instantia-

tion of θ if σ′ ≤ σ and γσ′ is satisfiable. Also, we say that an output state θ′ is

an instantiation of θ, written θ′ ≤ θ, when both the corresponding stores and the

substitutions hold the ≤ relation.

Theorem 1 (correctness)

Consider a successful derivation of the form: S0 → S1 → ... → 〈ǫ θ〉 which

is a branch of the tree with root S0 = 〈m(Argsin,Argsout,Hin,Hout,ExFlag) {}〉

obtained in the symbolic execution of m. Then, for any instantiation σ′ of θ which

initializes Argsin and Hin to be fully ground, it holds that the ground execution of

S′

0 = 〈m(Argsin,Argsout,Hin,Hout,ExFlag)σ
′ {}〉 results in 〈ǫ θ′〉 with θ′ ≤ θ.

4 (Conditional) TCG of OO Imperative Programs

An important problem with SymEx, regardless of whether it is performed using

CLP or a dedicated execution engine, is that the execution tree to be traversed

is in general infinite. In the context of TCG, it is therefore essential to establish a

termination criterion, which guarantees that the number of paths traversed remains

finite, while at the same time an interesting set of test-cases is generated. In addition

to this, some approaches perform conditional TCG in which, besides selecting a

criterion, the user establishes a precondition which further prunes the evaluation

tree. In the remaining of this section, we describe how these issues are handled in

our approach.

4.1 Implementing Coverage Criteria by means of Unfolding Strategies

A large series of coverage criteria (CCs) have been developed over the years which

aim at guaranteeing that the program is exercised on interesting control and/or
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data flows. Applying the coverage criteria on the CLP-decompiled program should

achieve the desired coverage on the original bytecode.

Implementing a CC in our approach consists in building a finite (possibly unfin-

ished) evaluation tree by using a non-standard evaluation strategy. In (Albert et al. 2009),

we observed that this is exactly the problem that unfolding rules used in partial

evaluators of (C)LP solve, and we proposed block-k, a new CC for bytecode which

was implemented with the corresponding unfolding rule. In this section, we go fur-

ther and show that the most common CCs can be integrated in our system using

unfolding rules. The following predicate defines a generic unfolding rule for depth-

first evaluation strategies which is parametric w.r.t. the CC:

unfold(Root,Goal,CCAuxDS,CCParam) :-

(1) select(Goal,Gleft,A,Gright), !,

(2) (internal(A) -> match(A,Bs) ; (call(A), Bs = []),

(3) update ccaux(CCAuxDS,A,CCAuxDS’),

(4) append([Gleft,Bs,Gright],Goal’),

(5) (terminates(A,CCAuxDS’,CCParam) -> add resultant(Root,Goal’)

(6) ; unfold(Root,Goal’,CCAuxDS’,CCParam)).

unfold(Root,Goal, , ) :- add resultant(Root,Goal).

The main operation dependent on the CC is terminates/3, which indicates when

the derivation must be stopped. For this aim, it uses an input set of parame-

ters CCParam and an auxiliary data-structure CCAuxDS. Intuitively, given a goal

Goal, an initial CCAuxDS and CCParams, unfold/4 performs unfolding steps un-

til either select/4 fails, because there are no atoms to be reduced in the goal,

or terminates/3 succeeds. In both cases, the corresponding resultant is stored,

which can then be used to generate a test-case (or a rule in the test-case generator

(Albert et al. 2009)). The Root argument carries along the root atom of SymEx.

An unfolding step consists in the following: (1) select the atom to be reduced, which

splits the goal into the selected atom A and the sub-goals to its left Gleft and right

Gright; (2) match the atom with the head of a clause in the program, or call it in

case it is a builtin or constraint; (3) update CCAuxDS; (4) compose the new goal;

and (5) if the CC stops the derivation (i.e. terminates/3 succeeds) then store the

resultant, otherwise (6) continue unfolding.

In order to instantiate this generic unfolding rule with a specific CC, one has

to provide the corresponding auxiliary data-structure and parameters, as well as

suitable implementations for update ccaux/3 and terminates/3. Additionally,

match/2 and select/4 allows resp. tuning the order of generation of the evaluation

tree, and extending the functionality of TCG by allowing non-leftmost unfolding

steps (Albert et al. 2006), as will be further discussed. Note that, in order to guar-

antee that we get correct results in presence of non-leftmost unfoldings, predicates

which are “jumped over” must be pure (see (Albert et al. 2006) for more details).

E.g., for block-k, CCParam is just the K and CCAuxDS is the ancestor stack (see

(Albert et al. 2009)).
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Bench Es Cs Ms Is Tdec T
d50
tcg N

d50
C

d50
T

d200
tcg N

d200
C

d200
T

bk2

tcg N
bk2

C
bk2

Trityp 1 1 1 98 38 22 14 100% 20 14 100% 22 14 100%

Josephus 1 1 3 61 34 6 1 56% 366 45 100% 8 3 100%

DoublyLinkedList 13 2 20 253 157 85 31 37% 594 178 100% 369 116 100%

RedBlackTree 10 2 10 485 365 60 57 30% 2432 539 96% 10010 638 99%

NodeStack 6 3 12 94 51 14 9 100% 8 9 100% 8 9 100%

ArrayStack 7 3 11 103 58 16 15 100% 16 15 100% 16 15 100%

NodeQueue 6 3 15 133 73 18 14 100% 13 15 100% 19 15 100%

NodeDeque 9 3 19 223 150 32 23 67% 38 28 100% 34 28 100%

NodeList 19 9 33 449 383 152 77 73% 182 91 91% 184 91 91%

SortedListPriorityQ 11 14 40 491 442 62 33 29% 190 79 77% 512 164 91%

Sort 4 9 30 735 661 26 12 12% 328 43 44% 400 55 72%

Table 3. Experimental results

4.2 Including Preconditions during TCG

In practice, it is also essential to prune horizontally the evaluation tree in order to

limit the number of test-cases obtained without sacrificing interesting paths. The

information used to perform this task is usually provided by the user by means of

preconditions on the inputs, formulated using a set of pre-defined properties. These

properties can range from simple arithmetic constraints, to more complex proper-

ties like sharing or cyclicity of data-structures. We consider two levels of properties.

The first-level comprises properties which can be executed beforehand thus being

carried along by the CLP engine, like equality and disequality constraints, arith-

metic constraints, etc. E.g., let us re-consider Ex. 3. We can specify the precondition

that the lists are not aliased simply by providing these literals at the beginning of

the goal “Argsin = [r(Th),L], member(L,[null,r(L’)]), Th #\= L’”.

The second level comprises properties that require a certain level of instantiation

on inputs in order to be executed. Depending on the property, unfold/4 can either:

perform non-leftmost unfoldings until having the required instantiation, or incre-

mentally check the property as the corresponding structure is being generated, or

just delay the property check until the end of the derivation. Interestingly, the dif-

ferent behaviors can be achieved providing suitable implementations of select/2.

Let us re-consider again Ex. 3. We can specify the precondition that the lists do

not share by providing this in the goal “Argsin = [Th,L], noshare(Th,L)”, where

predicate noshare/2 checks that the data transitively referenced from Th do not

share with that from L.

5 Experimental Evaluation

We have implemented and integrated the presented techniques in the PET tool (Albert et al. 2010),

which is available for download and for online use through its web interface at

http://costa.ls.fi.upm.es/pet. We now present some experiments which aim

at illustrating the applicability of our approach to TCG of realistic OO programs.

We use two sets of benchmarks. The first group (first four benchmarks) comprises a

set of classical programs used to evaluate testing tools taken from (Charreteur and Gotlieb ).
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The second one (last seven) is a selection from the net.datastructures library (Goodrich et al. 2003),

a well-known library of algorithms and data-structures for Java. Table 3 shows the

times taken by the different phases performed by PET as well as the number of

test-cases generated and the code coverage achieved for different CCs, block-k and

depth-k (which simply limits the number of derivation steps). All times are in

milliseconds, and were obtained as the arithmetic mean of five runs on an Intel

Core 2 Quad Q9300 at 2.5GHz with 1.95GB of RAM, running Linux 2.6.26 (De-

bian lenny). For each benchmark we show: the number of methods for which we

have generated test-cases (Es); the number of reachable classes, methods and Java

bytecode instructions (Cs, Ms and Is) (not considering Java libraries); the time

taken by PET to decompile the bytecode to CLP (Tdec); the time of the TCG,

total number of test-cases and code coverage for depth-50 (Td50
tcg , N

d50 and Cd50);

for depth-200 (Td200
tcg , Nd200 and Cd200) and for block-2 (Tbk2

tcg , N
bk2 and Cbk2).

The code coverage measures, given a method, the percentage of bytecode instruc-

tions which are exercised by the obtained test-cases, among all reachable instruc-

tions (including all transitively called methods). This is usually the main measure

considered in TCG to reason about the effectiveness of CCs. We observe that block-

2 achieves a very high degree of coverage (≃ 100% for the first 8 benchmarks) thus

demonstrating its effectiveness in practice. There are however cases where block-2

is not able to achieve 100% coverage. There are different reasons for this: (i) In

some cases, K = 2 is not sufficient to reach some parts of the code. This is the case

of most methods in class Sort. Indeed, block-3 achieves 100% of code coverage for

this class. (ii) Sometimes there are parts of the code which are simply unreachable

at execution time (dead code). This is frequent in very generic OO programs, as it

is the case of some methods reachable from NodeList and SortedListPriorityQ.

The results obtained for depth-k show that its effectiveness highly depends on

the chosen k, and this in turn depends on the particular program. This results in

an unsatisfactory CC in practice. E.g., depth-50 for Josephus obtains 1 test-case in

6 ms, which exercises only the 56% of the code. However depth-200 achieves 100%

coverage, but at the cost of spending much more time (366 ms), thus obtaining

many more test-cases (45). Observe that block-2 can achieve 100% coverage with

3 test-cases in only 8 ms.

Overall, from the first group of benchmarks we conclude that PET can compete

and even outperform related tools (Charreteur and Gotlieb ; Tillmann and de Halleux 2008).

The second group demonstrates the effectiveness of PET with realistic OO programs

making extensive use of inheritance and virtual invocations. A careful look at the

most complex methods suggests that a more restrictive CC should be used to fur-

ther prune the SymEx tree when considering more complex programs. E.g. PET

obtains 276 (in 880 ms) for RedBlackTree.fixAfterInsertion. We conclude also that

the use of preconditions, as explained in Sect. 4.2, (in principle provided by the

user) will be crucial in order to obtain manageable test-suites for more complex

programs.
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6 Related Work and Conclusions

In the fields of program verification, static analysis and static checking, transforma-

tional approaches are widely used (Flanagan 2004; Vaziri and Jackson 2003). The

common technique is to translate an imperative program into an equivalent inter-

mediate representation on which the verification, analysis or checking is performed.

The work of (Flanagan 2004) is similar to ours in the translation of the imperative

program into a constraint logic one. However, the goal here is to perform bounded

software model checking rather than TDG and it is not concerned with our problems

of ensuring coverage of the shape of data structures. Also, there are no extensions

to consider OO features like in our work. In the case of (Vaziri and Jackson 2003),

the imperative program is translated into a propositional formula and SAT solving

is used to find a solution. Again, coverage of shape of data structures is not studied

here, which makes it fundamentally different from ours.

Much attention has been devoted to the use of constraint solving in the au-

tomation of software testing since the seminal work of (DeMillo and Offutt 1991).

For the particular case of Java bytecode, (Müller et al. 2004) develops a symbolic

Java virtual machine which integrates constraint solvers and a backtracking mech-

anism, as without knowledge about the input data, the execution engine might

need to execute more than one path. In other approaches the problem is tackled by

transforming the program into corresponding constraints, on which the testing pro-

cess is then carried out by applying constraint solving techniques. Recent progress

has been done in this direction towards handling heap-allocated data structures

(Gotlieb et al. 1998; Charreteur et al. 2009; Schrijvers et al. 2009). An important

advantage of our approach is that, since the source program is transformed into

another (constraint logic) program –and not into constraints only– on which the

symbolic execution is performed, we can easily track the relation between the test-

cases and the source program. Keeping this relation is important for at least two

reasons: (1) in order to model new coverage criteria on the source program by

using particular evaluation techniques on the CLP counterpart, and (2) to re-

late the generated test-cases to paths in the source program to spot errors, etc.

This relation is less clear in pure constraint-based approaches (see discussion in

(Schrijvers et al. 2009)). Some approaches are focused on improving the efficiency of

TDG for dynamic pointer data (Zhao and Li 2007; Visvanathan and Gupta 2002).

The basic idea is to separate the process of generating the shape of the data struc-

ture to the one of generating values for the fields of data. Our approach is similar to

them in that both process are also separated and, although actual experimentation

is needed, we believe that a similar efficiency will be achieved.

As another important point, while numeric data can be natively supported by

constraint solvers, when extending the constraint-based approach to handle heap-

allocated data structures, one has to define new constraint models based on opera-

tors that model the heap (Charreteur et al. 2009). In (Schrijvers et al. 2009), these

constraints operators are implemented in CHR. In these approaches, one needs to

adjust the solver to the particular data structures considered in the language. For

instance, (Schrijvers et al. 2009) provides support for lists and sketches how to ex-
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tend it to handle trees by adding new operators. Instead, we have provided a general

solution to generate arbitrary data structures by means of objects.
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Albert, E., Gómez-Zamalloa, M., and Puebla, G. 2010. PET: A Partial Evaluation-
based Test Case Generation Tool for Java Bytecode. In ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-based Program Manipulation (PEPM). ACM Press,
Madrid, Spain, 25–28.

Albert, E., Puebla, G., and Gallagher, J. 2006. Non-Leftmost Unfolding in Partial
Evaluation of Logic Programs with Impure Predicates. In 15th International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR’05). Number 3901 in
LNCS. Springer-Verlag, 115–132.

Charreteur, F., Botella, B., , and Gotlieb, A. 2009. Modelling dynamic memory
management in constraint-based testing. The Journal of Systems and Software 82, 11,
17551766.

Charreteur, F. and Gotlieb, A. JAUT: A tool for automatic test case generation.
http://www.irisa.fr/lande/gotlieb/resources/jaut.html.

DeMillo, R. A. and Offutt, A. J. 1991. Constraint-based automatic test data gener-
ation. IEEE Transactions on Software Engineering 17, 9, 900–910. ISSN: 0098-5589.

Flanagan, C. 2004. Automatic software model checking via constraint logic. Sci. Comput.
Program. 50, 1-3, 253–270.

Futamura, Y. 1971. Partial Evaluation of Computation Process - An Approach to a
Compiler-Compiler. Systems, Computers, Controls 2, 5, 45–50.
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