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Abstract

In this paper we explore the use of Answer Set Programming (ASP) to formalize, and reason about,
psychological knowledge. In the field of psychology, a considerable amount of knowledge is still
expressed using only natural language. This lack of a formalization complicates accurate studies,
comparisons, and verification of theories. We believe that ASP, a knowledge representation formal-
ism allowing for concise and simple representation of defaults, uncertainty, and evolving domains,
can be used successfully for the formalization of psychological knowledge. To demonstrate the via-
bility of ASP for this task, in this paper we develop an ASP-based formalization of the mechanics of
Short-Term Memory. We also show that our approach can have rather immediate practical uses by
demonstrating an application of our formalization to the task of predicting a user’s interaction with a
graphical interface.

KEYWORDS: answer set programming, reasoning about actions and change, psychology, short-term
memory

1 Introduction

In this paper we explore the use of Answer Set Programming (ASP) (Gelfond and Lifschitz 1991;
Marek and Truszczynski 1999) to formalize psychological knowledge and to reason about
it. The importance of a precise formalization of scientific knowledge has been known for
a long time (see e.g. Hilbert’s philosophy of physics). Mostnotably, formalizing a body
of knowledge in an area improves one’s ability to (1) accurately study the properties and
consequences of sets of statements, (2) compare competing sets of statements, and (3)
design experiments aimed at confirming or refuting sets of statements. In the field of psy-
chology, some of the theories about the mechanisms that govern the brain have been for-
malized using artificial neural networks and similar tools (e.g. (McCarley et al. 2002)).

http://arxiv.org/abs/1007.4767v2
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That approach works well for theories that can be expressed in quantitative terms. How-
ever, theories of a more qualitative or logical nature, which by their own nature do not
provide precise quantitative predictions, are not easy to formalize in this way. We be-
lieve that ASP can be used successfully for the formalization of such bodies of knowl-
edge. ASP is a knowledge representation formalism allowingfor concise and simple
representation of defaults, uncertainty, and evolving domains, and has been demon-
strated to be a useful paradigm for the formalization of knowledge of various kinds (e.g.
(Baral and Gelfond 2005; Son and Sakama 2009)). One further advantage of ASP is that it
is directly executable, in the sense that the consequences of collections of ASP statements
can be directly, and often efficiently, computed using computer programs.

To demonstrate the viability of ASP for the formalization ofpsychological knowledge,
in this paper we develop an ASP-based formalization of the mechanics of Short-Term
Memory (STM) and chunking. We selected this theory because it is rather mature and, like
the general type of psychological knowledge that we aim to formalize, it is mostly of a
qualitative nature, and is expressed, in the literature, ata rather high level of abstraction.
Moreover, formalizing it is challenging, because it involves modeling a sophisticated dy-
namic domain involving non-determinism, fixed-capacity storage, and time-based decay.
The combination of these features makes it rather difficult to use other languages for the
encoding.As a confirmation of the benefits of formalizing psychological knowledge, we
show that our formalization immediately allows us to point out an element of the model
of STM that may deserve further investigation. We also show that our approach can have
rather direct practical uses by demonstrating an application of our formalization to the
task of predicting a user’s interaction with a graphical interface. To the best of our knowl-
edge, ours is the first attempt to use ASP for the formalization of theories about the brain,
although it is worth mentioning that ASP has been previouslyapplied previously to the
specification of a user’s mental model for recommender systems (Leite and Ilic 2007). Al-
though for our formalization we follow a rather well-known theory of STM and chunking
(e.g. (Kassin 2006; Nevid 2007)), we do not intend to claim this to be the “correct” theory.
On the contrary, any objections to the theory that our formalization may raise are a further
demonstration of the benefits of formalizing psychologicalknowledge.

The paper is organized as follows. We start with some background on ASP and on the
representation of dynamic domains. Next, we provide an account of the mechanics of STM
and chunking, as it is commonly found in psychology literature. Then, we describe our
ASP-based formalization of the mechanics of STM and chunking, and show how the for-
malization can be used for the task of predicting a user’s interaction with a graphical in-
terface. Finally, we conclude with a brief discussion on what we have achieved and on
possible extensions.

2 Answer Set Programming and Dynamic Domains

Let us begin by giving some background on ASP. We define the syntax of the language
precisely, but only give the informal semantics of the language in order to save space. We
refer the reader to (Gelfond and Lifschitz 1991; Niemela andSimons 2000) for a specifi-
cation of the formal semantics. LetΣ be a signature containing constant, function and
predicate symbols. Terms and atoms are formed as usual in first-order logic. A (basic) lit-
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eral is either an atoma or its strong (also called classical or epistemic) negation¬a. A rule
is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

wherehi’s andli’s are ground literals andnot is the so-calleddefault negation. The intu-
itive meaning of the rule is that a reasoner who believes{l1, . . . , lm} and has no reason
to believe{lm+1, . . . , ln}, must believe one ofhi’s. Symbol← can be omitted if noli’s
are specified. Often, rules of the formh ← not h, l1, . . . , not ln are abbreviated into
← l1, . . . , not ln, and calledconstraints. The intuitive meaning of a constraint is that
{l1, . . . , lm, not lm+1, . . . , not ln} must not be satisfied. A rule containing variables is
interpreted as the shorthand for the set of rules obtained byreplacing the variables with all
the possible ground terms. Aprogramis a pair〈Σ,Π〉, whereΣ is a signature andΠ is a set
of rules overΣ. We often denote programs just by the second element of the pair, and let
the signature be defined implicitly. Finally, theanswer set(or model) of a programΠ is the
collection of its consequences under the answer set semantics. Notice that the semantics of
ASP is defined in such a way that programs may have multiple answer sets, intuitively cor-
responding to alternative views of the specification given by the program. In that respect,
the semantics of default negation provides a simple way of encoding choices. For example,
the set of rules{p ← not q. q ← not p.} intuitively states that eitherp or q hold, and
the corresponding program has two answer sets,{p}, {q}. Because a convenient represen-
tation of alternatives is often important in the formalization of knowledge, the language
of ASP has been extended withconstraint literals(Niemela and Simons 2000), which are
expressions of the formm{l1, l2, . . . , lk}n, wherem, n are arithmetic expressions andli’s
are basic literals as defined above. A constraint literal is satisfied whenever the number of
literals that hold from{l1, . . . , lk} is betweenm andn, inclusive. Using constraint literals,
the choice betweenp andq, under some set of conditionsΓ, can be compactly encoded
by the rule1{p, q}1 ← Γ. A rule of this form is calledchoice rule. To further increase
flexibility, the set{l1, . . . , lk} can also be specified as{l( ~X) : d( ~X)}, where ~X is a list
of variables. Such an expression intuitively stands for theset of all l(~x) such thatd(~x)
holds. We refer the reader to (Niemela and Simons 2000) for a more detailed definition of
the syntax of constraint literals and of the corresponding extended rules.

Because of the dynamic nature of STM, for its formalization we use techniques
from the area of the representation of dynamic (or evolving)domains. The key el-
ements of the representation techniques are presented next; we refer the readers to
e.g. (Gelfond and Lifschitz 1998; Gelfond 2002) for more details. Fluentsare first-order
ground terms, and intuitively denote the properties of interest of the domain (whose
truth value typically depends upon time). For example, an expression of the form
on(block1, block2) is a fluent, and may mean thatblock1 is on top ofblock2. A fluent
literal is either a fluentf or its negation (¬f ). Actions are also first-order ground terms.
For example,move(block3, block2) may mean thatblock3 is moved on top ofblock2. A
set of fluent literals isconsistentif, for every fluentf , f and¬f do not both belong to
the set. A set of fluent literals iscompleteif, for every fluentf , eitherf or ¬f belong
to the set. The set of all the possible evolutions of a dynamicdomain is represented by a
transition diagram, i.e. a directed graph whose nodes – each labeled by a consistent set of
fluent literals – correspond to the states of the domain in which the properties specified are
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respectively true or false, and whose arcs – each labeled by aset of actions – correspond
to the occurrence of state transitions due to the execution of the actions specified. When
complete knowledge is available about a state, the corresponding set of fluent literals is
also complete. When instead a set of fluent literals is not complete, that means that the
knowledge about the corresponding state is incomplete (e.g. it is unknown whetherf or
¬f holds). Incomplete or partial states are typically used to represent uncertainty about
domains.

Because the size of transition diagrams grows exponentially with the increase of the
number of properties of the domain and actions, a direct representation is usually im-
practical. Instead, transition diagrams are encoded usingan indirect representation, based
on the research on action languages (Gelfond and Lifschitz 1998). Because we are not
aware of any well-established action language that combines all the features needed for
our model, and because in this paper the focus is not on developing a new action lan-
guage, here we adopt the variant of writing such encoding directly in ASP – see e.g.
(Balduccini et al. 2000). In fact, because of the high level of abstraction of ASP, encoding
knowledge (even about dynamic domains) directly in ASP rather than in action languages
is nowadays common practice (see e.g. (Delgrande et al. 2009; Thielscher 2009) for some
recent examples).

The encoding is based on the notion of a path in the transitiondiagram from a given
initial state, corresponding to a particular possible evolution of the domain from that initial
state. The steps in a path are identified by integers (with0 denoting the initial state), and
logical statements (often calledlaws) are used to encode, in general terms, the transitions
from one step to the next. The fact that a fluentf holds at a stepi in the evolution of
the domain is represented by the expressionh(f, i), where relationh stands forholds.
If ¬f is true, we write¬h(f, i). Occurrences of actions are represented by expressions
of the formo(a, i), saying that actiona occurs at stepi (o stands foroccurs). An action
descriptionis a collection of laws describing the evolution of the domain. Given an action
descriptionAD, a description of the initial stateσ0 (e.g.σ0 = {h(f1, 0),¬h(f2, 0), . . .}),
and a sequence of occurrences of actionsα (e.g.α = {o(a1, 0), o(a3, 0), o(a4, 1), . . .}),
the corresponding path(s) in the transition diagram can be computed by finding the answer
set(s) ofAD ∪ σ0 ∪ α.

3 Short-Term Memory

Short-Term Memory is “the memory storage system that allowsfor short-term re-
tention of information before it is either transferred to long-term memory or forgot-
ten” (Nevid 2007). This view is based on the so calledthree-stage model of memory
(Atkinson and Shiffrin 1971): sensory inputs are first stored in Sensory Memory, which
is very volatile and has large capacity; then, a portion of the inputs is processed – and
possibly transformed into more rich representations – and moved to Short-Term Memory,
which is less volatile than Sensory Memory, but of limited capacity. Short-Term Memory is
also often viewed as a working memory, i.e. as a location where information is processed
(Card et al. 1983). Finally, selected information is moved to Long-Term Memory, which
has larger capacity and longer retention periods.

Beginning in the 1950s, several studies have been conductedto determine the capacity of
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STM. Miller (Miller 1956) reported evidence showing that the capacity of STM in humans
is of 7 pieces of information. Later studies have lowered thecapacity limit of STM to
about 4 pieces of information (e.g. (Cowan 2000)). Interestingly, the limit on the number of
pieces of information that STM can hold does not affect directly theamountof information
(in an information-theoretic sense) that STM can hold. In fact, STM appears to be capable
to storingreferencesto concepts that are stored in Long-Term Memory. Although one such
reference counts as a single piece of information toward thecapacity limit of STM, the
amount of information it conveys can be large. For example, it has been observed that it is
normally difficult for people to remember the 12-letter sequence CN NIB MMT VU SA,
while most people have no problems remembering the sequenceCNN IBM MTV USA,
because each triplet refers to a concept stored in Long-TermMemory, and can thus be
represented in STM by just 4 symbols (Kassin 2006). The phenomenon of the detection
and use of known patterns in STM is referred to aschunking.

Another limit of STM is that the information it contains is retained only for a short period
of time, often set to about 30 seconds by researchers ((Nevid2007); notice however that the
issue of a time limit on the information stored in STM is somewhat controversial – see e.g.
(Cowan 2000; Card et al. 1983)).1 This limit can be extended by performingmaintenance
rehearsal, which consists in consciously repeating over and over the information that needs
to be preserved. To increase the flexibility of our formalization, in the next section we
abstract from specific values for the limits of capacity and retention over time, and rather
write our model in a parametric way. This makes it possible, among other things, to use our
formalization to analyze the effects of different choices for these parameters, effectively
allowing us to compare variants of the theory of STM.

4 A Formalization of Short-Term Memory

Using a common methodology in ASP-based knowledge representation, we begin our dis-
cussion on the formalization by condensing the descriptionof STM and chunking in a
number of statements still written in natural language, butprecisely formulated. Later, we
will encode those statements using ASP. The statements are:(1) STM is a collection of
symbols; (2) The size of STM is limited toω elements; (3) Each symbol has an expira-
tion time associated with it (saying when the piece of information will be “forgotten”);
(4) Symbols are divided into primitive symbols and chunk symbols; (5) Primitive sym-
bols represent concepts that are innate in the brain (e.g. are direct encoding of sensory
input); (6) Chunk symbols represent concepts that are stored in Long-Term Memory; (7)
New symbols can be added to STM. If a symbol is added to STM whenω elements are
already in STM, the symbol that is closest to expiring is removed from STM (“forgotten”).
In the case of multiple symbols equally close to expiring, one is selected arbitrarily; (8)
When a symbol is added to STM, or when a symbol from STM is used (in particular, when
performing maintenance rehearsal), its expiration time isreset to a constant valueε; (9)
Simplifying assumption:only a single operation (where by operation we mean either ad-
dition or use) can occur on STM at any given time. The next set of statements describes

1 For example, according to (Card et al. 1983), decay is affected by variables such as the number of chunks that
the user is trying to remember, and retrieval interference with similar chunks.
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the mechanism of chunking: (10) A chunk is a set of (primitiveor chunk) symbols; (11) A
chunk symbol is a symbol that uniquely denotes a chunk; (12) Achunk is detected in STM
if all the symbols that it consists of are in STM; (13) When a chunk is detected in STM,
the symbols it consists of are removed from STM and the corresponding chunk symbol
is added to STM; (14) A symbol can be inferred from STM if it belongs to STM, or if it
is part of a chunk that can be inferred from STM;2 (15) Simplifying assumption:chunks
can only be detected when STM is not in use (i.e. no addition oruse operations are being
performed); (16)Simplifying assumption:at every step, at most one chunk can be detected.

Now we are ready to focus on the formalization of STM and chunking in ASP. Flu-
ent in stm(s) says that symbols (wheres is a possibly compound term) is in STM;
expiration(s, k) says that symbols will expire (i.e. will be “forgotten”) ink units of
time, unless the expiration counter is otherwise altered. Action store(s) says that symbol
s is stored in STM;use(s) says thats is used (typically, during maintenance rehearsal).
Relationprimitive(s) says thats is a primitive symbol; chunks are described by relation
chunk(s), saying thats is a chunk symbol, and by relationchunk element(s, s′), stating
that s′ is a component of the chunk identified bys; relationsymbol(s) says thats is a
symbol (either primitive or chunk). Relationstm max size(ω) says that the size of STM
is limited toω elements;stm expiration(ε) states that the symbols in STM expire after
ε units of time. Finally, in order to update the expiration counters based on the duration of
the actions executed at each step, relationdur(i, d) says that the overall duration of stepi,
based on the actions that took place, isd units of time.

We divide the axioms in our formalization of the STM3 in a number of categories. We
begin with the axioms that describe the effect of storing a symbols in STM. The first axiom
says that an effect of storings in STM is thats becomes part of STM:

h(in stm(S), I + 1)← o(store(S), I).

The next axiom says that, if adding a symbol to STM would causethe STM size limit
to be exceeded, then the symbol that is closest to expiring will be forgotten. Notice that
the simplifying assumptions listed among the natural language statements above guarantee
that there is a unique such symbol, thus simplifying the writing of the axiom (lifting the
assumptions is easy, but would lengthen the presentation).

¬h(in stm(S2), I + 1)←
S1 6= S2, o(store(S1), I), stm max size(MX),
curr stm size(MX, I), not some expiring(I), oldest in stm(S2, I).

The axiom relies on a number of auxiliary relations. These relations depend on the current
step in the evolution of the domain, and hence could be represented as fluents. However, to
stress the distinction between “regular” fluents and auxiliary relations, we prefer the alter-
native writing that does not rely upon relationh, thus writing e.g.curr stm size(MX, I)

instead ofh(curr stm size(MX), I). Relationcurr stm size(w, i) says that the size of
STM at stepi is w; some expiring(i) states that some symbol in STM will be forgotten

2 Notice that this statement can be applied recursively.
3 To save space, we omit most atoms formed by domain predicatesand, in a few rules, use default negation

directly instead of writing a separate rule for closed-world assumption. For example, ifp holds wheneverq is
false andq is assumed to be false unless it is known to be true, we might write p← not q instead of the more
methodologically correct{p← ¬q. ¬q ← not q.}.
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when the domain moves to the next step;oldest in stm(s, i) says thats is the symbol
closest to expiring. The accurate reading of the above axiomis then: ifs1 is stored in STM
at stepi, and STM already containsω symbols, none of which are due to expire at the
next time step, then the oldest symbol in STM will no longer bein STM at stepi+ 1. The
auxiliary relations are defined as follows:

oldest in stm(S, I)←
h(expiration(S,E), I),
not smaller expiration(E,I).

smaller expiration(E1, I)←
h(expiration(S,E2), I),
E2 < E1.

curr stm size(N, I)←
N { h(in stm(S), I) : symbol(S) } N.

expiring(S, I)←
h(expiration(S,SK), I),
dur(I,D), SK ≤ D.

some expiring(I)←
expiring(S, I).

The next axiom states that an effect of storings in STM is that the expiration time ofs is
set toε:

h(expiration(S,E), I + 1)← stm expiration(E), o(store(S), I).

The next axiom (together with some auxiliary definitions) says that it is impossible for two
STM-related actions to be executed at the same time.

← o(A1, I), o(A2, I), A1 6= A2, stm related(A1), stm related(A2).

stm related(store(S))← symbol(S).

stm related(use(S))← symbol(S).

The final axiom in this category states that, whenever a symbol from STM is used, its
expiration time is reset.

h(expiration(S,E), I + 1)←
stm expiration(E),
o(use(S), I),
h(in stm(S), I).

The second group of axioms describes the mechanism of chunking. Three axioms state
that, when the components of a chunk are detected in STM, the corresponding symbols are



8 M. Balduccini and S. Girotto

replaced by the chunk symbol4, whose expiration is set toε.

¬h(in stm(S), I + 1)←
detected(C,I),
chunk element(C,S).

h(in stm(C), I + 1)←
detected(C,I).

h(expiration(C,E), I + 1)←
stm expiration(E),
detected(C,I).

Auxiliary relationdetected(C, I), used above, says that chunkC has been detected in STM
at stepI. The detection occurs, when STM is not in use as per our simplifying assumption
above, by checking if there is any chunk whose components areall in STM. If symbols
corresponding to multiple chunks are available in STM, onlyone chunk is detected at
every step, as per assumption (16) on page 6. The choice of which chunk is detected is
non-deterministic, and encoded using a choice rule5, as follows:

1 { detected(C, I) : ¬chunk element missing(C, I) } 1←
stm idle(I),
chunk detectable(I).

chunk detectable(I)←
step(I),
chunk(C),
stm idle(I),
¬chunk element missing(C, I).

¬chunk element missing(C, I)←
chunk(C),
not chunk element missing(C, I).

chunk element missing(C, I)←
chunk element(C,S),
¬h(in stm(S), I).

¬stm idle(I)←
o(A, I),
memory related(A).

stm idle(I)←
not ¬stm idle(I).

It is interesting to note that the components of a detected chunk are allowed to be located
anywhere in STM. However,now that the model is formalized at this level of detail, one
cannot help but wonder whether in reality the focus of the mechanism of chunking is on
symbols that have been added more recently.We were unable to find published studies
regarding this issue.

The final group of axioms deals with the evolution of the contents of STM over time,

4 Our simplifying assumption that at most one chunk can be detected at every step ensures that the number of
items in STM does not increase as a result of the chunking process.

5 Readers who are familiar with ASP may notice that we allow theuse of non-domain predicate
¬chunk element missing(C, I) in the head of the choice rule. This is done to keep the presentation short.
From the perspective of the implementation, when using ASP parsers that expect a domain predicate, one
would have to use a slightly longer encoding.
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both whenstore or use actions occur, and when they do not. Notice that action theories
often assume that fluents maintain their truth valueby inertia unless they are forced to
change by the occurrence of actions. In the case of fluentsin stm(s) andexpiration(s, k),
however, the evolution over time is more complex (and such fluents are then callednon-
inertial). In fact, for every symbols in STM, expiration(s, ε) holds at first, but then
expiration(s, ε) becomes false andexpiration(s, ε − δ) becomes true, whereδ is the
duration of the latest step, and so on. On the other hand,in stm(s) is true if-and-only-if
expiration(s, k) holds for somek > 0. The following axioms accomplish three tasks:
they define the behavior of inertial fluents, using a rather standard ASP encoding of the
inertia axiom, which relies on ASP’s ability to encode defaults (the rule for¬h(F, I + 1),
omitted, is similar); they state that fluentsin stm(s) andexpiration(s, k) are non-inertial
(the reason for doing so explicitly will become clear in the next section); and formalize the
default evolution of the non-inertial fluents’ truth value over time. Notice that relation
expiring, used here, was defined above (page 7).

h(F, I + 1)←
h(F, I),
not ¬h(F, I + 1),
not noninertial(F ).

noninertial(in stm(S))←
symbol(S).

noninertial(expiration(S,E))←
symbol(S),
expiration value(E).

h(in stm(S), I + 1)←
h(in stm(S), I),
not expiring(S, I),
not ¬h(in stm(S), I + 1).

¬h(in stm(S), I + 1)←
h(in stm(S), I),
expiring(S, I),
not h(in stm(S), I + 1).

¬h(in stm(S), I + 1)←
¬h(in stm(S), I),
not h(in stm(S), I + 1).

h(expiration(S,E −D), I + 1)←
expiration value(E),
h(expiration(S,E), I),
dur(I,D), E > D,

not different expiration(S,E −D, I + 1),
not ¬h(in stm(S), I + 1).

different expiration(S,E1, I)←
expiration value(E1),
expiration value(E2),
E2 6= E1,
h(expiration(S,E2), I).

To demonstrate that our formalization captures the key features of the mechanics of STM
and chunking, we subject it to a test of memory span. In a memory-span test, a subject is
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presented with a sequence of digits, and is asked to reproduce the sequence (Kassin 2006).
By increasing the length of the sequence and by allowing or avoiding the occurrence of
familiar sub-sequences of digits, one can verify the capacity limit of STM and the role
of chunking. Because here we are only concerned with correctly modeling STM, we ab-
stract from the way digits are actually read, and rather represent the acquisition of the
sequence of digits directly as the occurrence of suitablestore(s) actions. Similarly, the
final reproduction of the sequence is replaced by checking the contents of STM at the end
of the experiment. As common in ASP, all computations are reduced to finding answer sets
of suitable programs, and the results of the experiments aredetermined by observing the
values of the relevant fluents in such answer sets.

From now on, we refer to the above formalization of STM byΠSTM . Boundary condi-
tions that are shared by all the instances of the memory-spantest are encoded by the set
ΠP of rules, shown below. The first two rules ofΠP set the value ofω to a capacity of
4 symbols (in line with (Cowan 2000)) and the value ofε to 30 time units. The next rule
states that each step has a duration of 1 time unit. This set-up intuitively corresponds to
a scenario in which STM has a 30 second time limit on the retention of information and
the digits are presented at a rate of one per second. The last three rules define the set of
primitives for the memory-span test. We use the expressionseq(p, d) to represent the fact
that digitd is at positionp in the sequence.

stm max size(4).
stm expiration(30).

dur(I, 1).

position(1). position(2). . . . position(6).
digit(0). digit(1). . . . digit(9).
primitive(seq(P,D))← position(P ), digit(D).

The initial state of STM is such that no symbols are initiallyin STM. This is encoded by
σSTM :

¬h(in stm(S), 0)← symbol(S).

In the first instance, STM is presented with the sequence2, 4, 5, 7. Human subjects are
normally able to reproduce this sequence. Let us see if our formalization can do the same.
The sequence of digits is encoded by setSPAN1 of rules:

o(store(seq(1, 2)), 0). o(store(seq(2, 4)), 1).
o(store(seq(3, 5)), 2). o(store(seq(4, 7)), 3).

To predict the behavior of STM and determine which symbols will be in it at the end of
the experiment, we need to look at the path in the transition diagram from the initial state,
described byσSTM , and under the occurrence of the actions inSPAN1. As explained
earlier in this paper, this can be accomplished by finding theanswer set ofΠ1 = ΠSTM ∪

ΠP ∪ σSTM ∪SPAN1. It is not difficult to check that, at step4 (corresponding to the end
of the experiment), the state of STM is:

h(in stm(seq(1, 2)), 4), h(in stm(seq(2, 4)), 4),
h(in stm(seq(3, 5)), 4), h(in stm(seq(4, 7)), 4),
h(expiration(seq(1,2), 27), 4), h(expiration(seq(2, 4), 28), 4),
h(expiration(seq(3,5), 29), 4), h(expiration(seq(4, 7), 30), 4),

which shows that the sequence is remembered correctly (and far from being forgotten, as



Formalization of Psychological Knowledge in ASP and its Application 11

the expiration times show). Let us now consider another instance, in which the sequence
of digits is 2, 4, 5, 7, 3. The correspondingstore(s) actions are encoded bySPAN2 =

SPAN1 ∪ {o(store(seq(5, 3)), 4)}. This sequence is beyond the capacity of STM stated
in ΠP . Human subjects are unable to reproduce sequences beyond the capacity of STM
(unless chunking occurs). Our formalization of STM exhibits the same behavior. In fact,
according to the answer set of programΠ2 = ΠSTM ∪ ΠP ∪ σSTM ∪ SPAN2 the state
of STM at the end of the experiment is:

h(in stm(seq(2,4)), 5), h(in stm(seq(3, 5)), 5),
h(in stm(seq(4,7)), 5), h(in stm(seq(5, 3)), 5).

As expected, the first element of the sequence has been forgotten. In the next instance, we
consider the sequence5, 8, 5− 8, 0, 6, where “−” represents a 1-second pause in the pre-
sentation of the digits. This sequence is, in principle, beyond the capacity of STM, but we
further assume familiarity with the area codes585 and806. Under these conditions, human
subjects have demonstrated to be capable of remembering thesequence after noticing the
presence of the area codes in them.6 The knowledge about the area codes is encoded by
the setΓ1 of rules:

chunk(seq(P, ac(roc))).
chunk element(seq(P,ac(roc)), seq(P, 5)).
chunk element(seq(P,ac(roc)), seq(P + 1, 8)).
chunk element(seq(P,ac(roc)), seq(P + 2, 5)).

chunk(seq(P, ac(lbb))).
chunk element(seq(P,ac(lbb)), seq(P, 8)).
chunk element(seq(P,ac(lbb)), seq(P + 1, 0)).
chunk element(seq(P,ac(lbb)), seq(P + 2, 6)).

The sequence of digits is encoded bySPAN3:

o(store(seq(1, 5)), 0). o(store(seq(2, 8)), 1).
o(store(seq(3, 5)), 2). % no action at step3
o(store(seq(4, 8)), 4). o(store(seq(5, 0)), 5).
o(store(seq(6, 6)), 6).

At the end of the experiment (we select step8 to allow sufficient time for the chunking of
the second triplet to occur), the state of STM predicted by our formalization is:

h(in stm(seq(1, ac(roc))), 8),
h(in stm(seq(4, ac(lbb))), 8),
h(expiration(seq(1, ac(roc)), 26), 8),
h(expiration(seq(4, ac(lbb)), 30), 8)

which shows that the chunking of the two area codes has occurred, allowing STM to store
a sequence of digits that is longer thanω symbols. In the final instance of this section, we
consider two additional chunks,5, 8, 5, 2 (supposedly a pin number), and1, 3 (considered
an unlucky number in various cultures), which are encoded with the same technique shown
above. The corresponding set of rulesΓ′

1 is obtained fromΓ1 by adding the encoding

6 The 1-second pause is used to allow sufficient time for the detection of the first chunk. Subject studies have
shown that chunk detection does not occur or occurs with difficulty when the stimuli are presented at too high
a frequency.
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of the new chunks, calledmy pin andunlucky 13. The sequence to be remembered is
5, 8, 5− 2, 1, 3, encoded bySPAN4:

o(store(seq(1, 5)), 0). o(store(seq(2, 8)), 1).
o(store(seq(3, 5)), 2). % no action at step3
o(store(seq(4, 2)), 4). o(store(seq(5, 1)), 5).
o(store(seq(6, 3)), 6).

Notice that, at step7, chunksmy pin andunlucky 13 will both be available for detection.
The literature does not specify any particular order in which the chunks are detected by the
brain, and thus one should assume that the order of detectionis arbitrary.7 It is not diffi-
cult to show that our formalization correctly yieldstwo answer sets, both predicting a final
state of STM in whichmy pin andunlucky 13 are in STM, but differing for the order
which chunking occurs. One answer set, in fact, predicts thechunking ofmy pin first:
{detected(seq(1,my pin), 7), detected(seq(5, unlucky 13), 8)}, while the other pre-
dicts the chunking ofmy pin last: {detected(seq(5, unlucky 13), 7), detected(seq(1,

my pin), 8)}. Although space restrictions prevent us from formalizing alternative theories
of STM and perform an analytical comparison, it is worth noting that even the single for-
malization developed allows comparing (similar) variantsof the theory corresponding to
different values ofω andε. One could for example repeat the above experiments with dif-
ferent parameter values and compare the predicted behaviorwith actual subject behavior,
thus confirming or refuting some of those variants.

5 A Practical Application

The availability of a formalization of psychological knowledge not only allows better anal-
ysis, comparison, and verification of psychological theories, but may also have more imme-
diate practical applications. In this section we show how our formalization can be used to
predict a user’s difficulties in interacting with a graphical user interface. Psychological the-
ories used in human-computer interaction (e.g. (Card et al.1983; Kieras and Polson 1983;
Kieras and Polson 1985)) for this kind of evaluations are often of a qualitative nature and
do not allow for precise quantitative predictions. The ability to accurately encode this type
of knowledge in ASP allows one to use psychological theoriesto draw accurate conclu-
sions, and to do so automatically. We believe this to be a clear step forward from the use of
rules of thumb and guidelines common nowadays in human-computer interaction. We con-
sider a scenario in which the user is told a sequence of tasks (menu clicks, tab selections,
etc.) to be performed, and is expected to execute it without being reminded about any task.
If the user succeeds, then that means that the sequence can bestored completely in STM
(possibly chunked), and that the sequence is also short enough not to be forgotten during
execution. This scenario corresponds for example to a situation in which a user is trying
to follow the instructions on a help page. To begin, we need toformalize the sequence
of tasks and its execution. Basic operations areclick(m), corresponding to clicking menu
item m; select(t), meaning that tabt in a dialog box is selected;check(c), correspond-
ing to putting a checkmark in checkboxc. The primitive STM symbols are of the form

7 Simplifying assumption (16) prohibits concurrent detection.
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task(n, op), whereop is one of the basic operations, andn is its index in the sequence.
The sequence is stored in STM by means of occurrences ofstore(s) actions, as before.
We use termtask(n, op) also as one of the fluents of the formalization. Its meaning isthat,
based on the state of the reasoner’s memory,op is the nth task in the sequence. The fluent
is non-inertial, because it is defined directly by the current state of STM:

noninertial(task(N,A)).

h(task(N,A), I)← stm h(task(N,A), I).

stm h(S, I)← h(in stm(S), I).
stm h(S, I)← stm h(C, I), chunk element(C,S).

From the point of view of knowledge representation, it is worth noting how ASP makes
it easy to express the recursive definition of relationstm h(s, i). The other key fluents of
the formalization of the sequence arecurrent task(n), which says that the current task is
the nth in the sequence,task forgotten(n), meaning that the nth task has been forgotten,
andcompleted, meaning that the sequence has been completed. Task number 1is selected
as current task as soon as it becomes available (the use of defaults here and later greatly
shortens the representation):

h(current task(1), I)← has task(1, I), not ¬h(current task(1), I).

Relationhas task(n, i) (definition omitted to save space) says that, at stepi, the sequence
has a task with indexn. Performing the current task makes the following task become
current, unless the task that was performed was the last in the sequence, in which case the
sequence is complete:

h(current task(N + 1), I + 1)←
o(A, I), h(current task(N), I),
h(task(N,A), I), not last task(N, I).

h(completed, I + 1)←
o(A, T ), h(current task(N), I),
h(task(N,A), I), last task(N, I).

(Other rules that ensure that only one task is current at any time are omitted.) The reasoner
detects that the current task has been forgotten when it cannot recall it:

h(task forgotten(N), I)← h(current task(N), I), not has task(N, I).

Task execution is encoded by a rule saying that, if the current task is executable, then the
reasoner will perform it:

o(A, T )← h(current task(N), I), h(task(N,A), I),
current task executable(I).

current task executable(I)←
h(current task(N), I), h(task(N,A), I), not ¬o(A, I).

Finally, we make the duration of the user’s actions depend onhis skill level (the rules are
straightforward and omitted to save space). For expert users, every action takes 1 unit of
time. For beginner users, who need to scan the screen to look for the items to act upon,
clicking a menu takes 3 units; clicking a sub-menu takes 5; selecting a tab in a dialog, as
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well as putting a checkmark in a checkbox, takes 7.8 We denote the above set of rules by
ΠTASK . To test our formalization, we consider an example in which abeginneruser is
given the following sequence,UI1. (STM-related parameters areω = 4 andε = 30 as
before.)

o(store(task(1, click(m(tools)))), 0).
o(store(task(2, click(subm(options)))), 1).
o(store(task(3, select(tab(text)))),3).
o(store(task(4, check(ck(use hardtabs)))),4).
o(store(task(5, select(tab(highlighting)))),6).
o(store(task(6, check(ck(detect language)))),7).
−o(A, I)← external action(A), I ≤ 8.

Notice the pauses at steps 2, 5, 8, to allow enough time for chunking to occur. The last rule
ensures that the reasoner waits to have acquired the complete sequence before beginning
to execute it. The user is assumed to be familiar with the combinations “click tools, click
options,” and “select tab ‘text’, put a checkmark on ‘use hard-tabs’.” The encoding,Γa

2 , of
the first chunk is:

chunk(task(N, tools options)).
chunk element(task(N, tools options), task(N, click(m(tools)))).
chunk element(task(N, tools options), task(N + 1, click(subm(options)))).

The second chunk is encoded similarly. The encoding of the two chunks is denoted by
Γ2. Because of our assumption that beginner users take some time to locate the graphical
items, one can expect that the user will forget the sequence before completing it. The use
of our formalization allows one to make the prediction more precise. In fact, the answer
set of the programΠUI

1 = ΠSTM ∪ΠTASK ∪ σSTM ∪UI1 ∪ Γ2 shows that: (1) chunking
occurs and the sequence fits in STM, as shown in the answer set by atoms such as:

h(in stm(task(1, tools options)), 12),
h(in stm(task(3, text htabs)), 12),
h(in stm(task(5, select(tab(highlighting)))),12),
h(in stm(task(6, check(ck(detect language)))),12).

However, the answer set also shows that (2) the last item of the sequence is forgotten right
before it can be executed:

h(current task(5), 13),
o(select(tab(highlighting)),13),
h(current task(6), 14),
h(task forgotten(6), 14).

In another example, we consider anexpertuser familiar with the “click tools, click op-
tions,” sequence, but not with the “select tab ‘text’, put a checkmark on ‘use hard-tabs”’
sequence. This knowledge is encoded byΓa

2 , shown earlier. The prediction of the user’s
behavior is given by programΠUI

2 = ΠSTM ∪ ΠTASK ∪ σSTM ∪ UI1 ∪ Γa
2 , and it is not

8 These figures are meant to be reasonably realistic, but they are not the result of an accurate study. Obviously,
the conclusions of our work hold independently of the particular numbers chosen.
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difficult to check that the sequence does not fit in STM:

h(current task(1), 8),
h(in stm(task(3, select(tab(text)))),8),
h(in stm(task(4, check(ck(use hardtabs)))),8),
h(in stm(task(5, select(tab(highlighting)))),8),
h(in stm(task(6, check(ck(detect language)))),8),
h(task forgotten(1), 8).

In the final example, an expert user is familiar with both sequences of tasks. The corre-
sponding program isΠUI

3 = ΠSTM ∪ ΠTASK ∪ σSTM ∪ UI1 ∪ Γ2. The answer set of
ΠUI

3 shows that the user is predicted to apply chunking, rememberthe sequence through
the end, and complete its execution:

h(completed, 15),
h(in stm(task(1, tools options)), 15),
h(in stm(task(3, text htabs)), 15),
h(in stm(task(5, select(tab(highlighting)))),15),
h(in stm(task(6, check(ck(detect language)))),15).

It is worth stressing that the ASP programs described above are not only directly exe-
cutable, but the corresponding computation by state-of-the-art ASP systems is quite fast.
The answer sets for the examples in this section were each computed in less than a second
by CLASP on a computer with i7 CPU, 2.93GHz, 8GB RAM. Scaling is also good: repeat-
ing the experiments for values ofω andε, respectively,7 and100 increased computation
time to less than3 seconds.

6 Discussion

In this paper we have shown that it is indeed possible and important to formalize psy-
chological knowledge that is of qualitative or logical nature, and that ASP is suitable for
the task.The formalization allows analysis and comparison of theories. It also allows one
to predict the outcome of experiments, thus making it possible to design better experi-
ments. Various reasons make the formalization of knowledgeof this kind challenging. As
we hope to have demonstrated, ASP allows one to tackle the challenge, thanks to its abil-
ity to deal with common-sense, defaults, uncertainty, non-deterministic choice, recursive
definitions, and evolving domains. To highlight the benefitsof the formalization of psy-
chological knowledge, it is worth stressing how, earlier inthe paper, the availability of the
formalization of STM allowed us to point out that the role of more recent symbols in the
mechanics of chunking may deserve further investigation.

We believe it is difficult to find other languages that allow writing a formalization at the
level of abstraction of the one shown here, and that are at thesame time directly executable.
As a remarkable example, consider how naturally and elegantly inertial and non-inertial
fluents coexist in our model, and how the introduction of non-inertial fluents occurs in a
fully incremental fashion: for most of Section 4, the model uses only inertial fluents, and
one could safely adopt the standard writing of the axioms of inertia.9 When the need to
deal with non-inertial axioms arises later in the section, all that needs to be done is to add

9 In Section 4, we showed directly the more advanced version ofthe inertia axiom(s) to save space.
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the condition “notnoninertial(F )” to the inertia axioms, and to write suitable definitions
of the new fluents. It has been extensively demonstrated in the literature on ASP that the
elaboration tolerance shown in this case is not a coincidence, but a key property of the
ASP paradigm. Furthermore, direct executability of ASP provides a unique opportunity to
bridge the gap between formulation of psychological theories and practical applications,
as we have shown in the previous section.

Finally, in this paper we have discussed the interaction with a simple graphical interface,
and have barely touched upon related topics such as user expertise. However, we expect that
similar techniques to the ones shown here can be used to accurately model the role of exper-
tise and attention (e.g. in particular in critical tasks (McCarley et al. 2002)). We believe that
other important theories about the mechanics of the brain, e.g. Long-Term Memory, can
be formalized following the approach we presented. The formalization of STM itself could
also be made richer, for example by using additive fluents (Lee and Lifschitz 2001) to al-
low concurrent STM updates, by modeling continuous decay (Chintabathina et al. 2005),
and by using intentions (Baral and Gelfond 2005) to represent task sequences.
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