arXiv:1007.4767v2 [cs.Al] 10 Feb 2011

Under consideration for publication in Theory and Practimielogic Programming 1

Formalization of Psychological Knowledge in
Answer Set Programming and its Application

Marcello Balduccini

Intelligent Systems, KRL
Eastman Kodak Company
Rochester, NY 14650-2102 USA

marcello.balduccini@gmail.com

Sara Girotto

Department of Psychology
Texas Tech University
Lubbock, TX 79409 USA
sara.girotto@ttu.edu

submitted 1 January 2003; revised 1 January 2003; acceptéahiary 2003

Abstract

In this paper we explore the use of Answer Set ProgrammindjA&formalize, and reason about,
psychological knowledge. In the field of psychology, a cdasible amount of knowledge is still

expressed using only natural language. This lack of a fomatadn complicates accurate studies,
comparisons, and verification of theories. We believe tHalPAa knowledge representation formal-
ism allowing for concise and simple representation of desauncertainty, and evolving domains,

can be used successfully for the formalization of psychiolddnowledge. To demonstrate the via-
bility of ASP for this task, in this paper we develop an ASBdrhformalization of the mechanics of
Short-Term Memory. We also show that our approach can hakerranmediate practical uses by
demonstrating an application of our formalization to thektaf predicting a user’s interaction with a
graphical interface.

KEYWORDSanswer set programming, reasoning about actions and ehpsgchology, short-term
memory

1 Introduction

In this paper we explore the use of Answer Set Programmin@§AGelfond and Lifschitz 1991,

Marek and Truszczynski 1999) to formalize psychologicalkledge and to reason about
it. The importance of a precise formalization of scientifiolledge has been known for
a long time (see e.g. Hilbert's philosophy of physics). Mostably, formalizing a body
of knowledge in an area improves one’s ability to (1) acalyastudy the properties and
consequences of sets of statements, (2) compare competm@fsstatements, and (3)
design experiments aimed at confirming or refuting setsatéstents. In the field of psy-
chology, some of the theories about the mechanisms thatgtive brain have been for-
malized using artificial neural networks and similar toadsg((McCarley et al. 2002)).

http://arxiv.org/abs/1007.4767v2

2 M. Balduccini and S. Girotto

That approach works well for theories that can be expressedantitative terms. How-
ever, theories of a more qualitative or logical nature, Whigy their own nature do not
provide precise quantitative predictions, are not easyotmdlize in this way. We be-
lieve that ASP can be used successfully for the formalinatibsuch bodies of knowl-
edge. ASP is a knowledge representation formalism alloviimgconcise and simple
representation of defaults, uncertainty, and evolving @iosy and has been demon-
strated to be a useful paradigm for the formalization of kieolge of various kinds (e.g.
(Baral and Gelfond 2005: Son and Sakama 2009)). One furthamdage of ASP is that it
is directly executable, in the sense that the consequeficed@ctions of ASP statements
can be directly, and often efficiently, computed using cotapprograms.

To demonstrate the viability of ASP for the formalizationpsychological knowledge,
in this paper we develop an ASP-based formalization of thehaeics of Short-Term
Memory (STM) and chunking. We selected this theory becduseather mature and, like
the general type of psychological knowledge that we aim tenfdize, it is mostly of a
qualitative nature, and is expressed, in the literature, rather high level of abstraction.
Moreover, formalizing it is challenging, because it in@dvmodeling a sophisticated dy-
namic domain involving hon-determinism, fixed-capacityrage, and time-based decay.
The combination of these features makes it rather difficultde other languages for the
encodingAs a confirmation of the benefits of formalizing psychologlka@owledge, we
show that our formalization immediately allows us to poiat an element of the model
of STM that may deserve further investigation. We also sHwat bur approach can have
rather direct practical uses by demonstrating an apptioati our formalization to the
task of predicting a user’s interaction with a graphicatiface. To the best of our knowl-
edge, ours is the first attempt to use ASP for the formalinadfctheories about the brain,
although it is worth mentioning that ASP has been previoagiglied previously to the
specification of a user's mental model for recommender sys{éeite and llic 2007). Al-
though for our formalization we follow a rather well-knowmebry of STM and chunking
(e.g. [Kassin 2006; Nevid 2007)), we do not intend to claiis th be the “correct” theory.
On the contrary, any objections to the theory that our foiratibn may raise are a further
demonstration of the benefits of formalizing psychologicadwledge.

The paper is organized as follows. We start with some backgt@on ASP and on the
representation of dynamic domains. Next, we provide anwatoaf the mechanics of STM
and chunking, as it is commonly found in psychology literaturhen, we describe our
ASP-based formalization of the mechanics of STM and chugkind show how the for-
malization can be used for the task of predicting a user&ragtion with a graphical in-
terface. Finally, we conclude with a brief discussion on tuwva have achieved and on
possible extensions.

2 Answer Set Programming and Dynamic Domains

Let us begin by giving some background on ASP. We define th&agyof the language
precisely, but only give the informal semantics of the laanggiin order to save space. We
refer the reader ta (Gelfond and Lifschitz 1991; Niemela Smdons 2000) for a specifi-
cation of the formal semantics. L&t be a signature containing constant, function and
predicate symbols. Terms and atoms are formed as usualtiofiter logic. A (basic) lit-

Formalization of Psychological Knowledge in ASP and its ligapion 3

eral is either an atom or its strong (also called classical or epistemic) negationA rule
is a statement of the form:

hi V ... V hg+1l,...;p,notl,41,...,n0t 1,

whereh;’s andl;’'s are ground literals andot is the so-callediefault negationThe intu-
itive meaning of the rule is that a reasoner who beliejgs. . ., [,,} and has no reason
to believe{l,,1,...,l,}, must believe one ok;’s. Symbol«+ can be omitted if nd;’s
are specified. Often, rules of the form+«+ not h,l;,...,not [, are abbreviated into
< l1,...,not l,, and calledconstraints The intuitive meaning of a constraint is that
{l1,...,lm,n0t Ly11,...,n0t 1} must not be satisfied. A rule containing variables is
interpreted as the shorthand for the set of rules obtainedfdgcing the variables with all
the possible ground terms.pgxogramis a pair(X, IT), whereX is a signature anH is a set
of rules overX. We often denote programs just by the second element of theapd let
the signature be defined implicitly. Finally, thaswer sefor mode) of a progranil is the
collection of its consequences under the answer set sezraNttice that the semantics of
ASP is defined in such a way that programs may have multiple@nsets, intuitively cor-
responding to alternative views of the specification giverhe program. In that respect,
the semantics of default negation provides a simple way af@img choices. For example,
the set of ruledp < not ¢. ¢ «+ not p.} intuitively states that eithey or ¢ hold, and
the corresponding program has two answer deik, {¢}. Because a convenient represen-
tation of alternatives is often important in the formaliratof knowledge, the language
of ASP has been extended witbnstraint literals(Niemela and Simons 2000), which are
expressions of the form{i, lo, .. ., l; }n, wherem, n are arithmetic expressions ahi$
are basic literals as defined above. A constraint literaisfed whenever the number of
literals that hold from{l4, ..., 1} is betweenn andn, inclusive. Using constraint literals,
the choice between andq, under some set of conditiod§ can be compactly encoded
by the rule1{p,q}1 + T. A rule of this form is callecchoice rule To further increase
flexibility, the set{l1,...,l;} can also be specified d8(X) : d(X)}, whereX is a list
of variables. Such an expression intuitively stands forgbeof alli(Z) such thatd(Z)
holds. We refer the reader to (Niemela and Simons 2000) foor mietailed definition of
the syntax of constraint literals and of the correspondikigreded rules.

Because of the dynamic nature of STM, for its formalizatios wse techniques
from the area of the representation of dynamic (or evolvidginains. The key el-
ements of the representation techniques are presented wextefer the readers to
e.g. (Gelfond and Lifschitz 1998; Gelfond 2002) for moreailst Fluentsare first-order
ground terms, and intuitively denote the properties ofrege of the domain (whose
truth value typically depends upon time). For example, apression of the form
on(blocky, blocks) is a fluent, and may mean th&lock, is on top ofblocks. A fluent
literal is either a fluenff or its negation { f). Actions are also first-order ground terms.
For examplemove(blocks, blocks) may mean thablocks is moved on top oblocks. A
set of fluent literals ixonsistentf, for every fluentf, f and—f do not both belong to
the set. A set of fluent literals isompleteif, for every fluentf, either f or —f belong
to the set. The set of all the possible evolutions of a dynaloinain is represented by a
transition diagrami.e. a directed graph whose nodes — each labeled by a camtsigt of
fluent literals — correspond to the states of the domain irchwttie properties specified are

4 M. Balduccini and S. Girotto

respectively true or false, and whose arcs — each labeledsby @ actions — correspond
to the occurrence of state transitions due to the execufidimeoactions specified. When
complete knowledge is available about a state, the cornebpg set of fluent literals is
also complete. When instead a set of fluent literals is notpter®, that means that the
knowledge about the corresponding state is incomplete itaggunknown whetheyf or
—=f holds). Incomplete or partial states are typically usedeforeésent uncertainty about
domains.

Because the size of transition diagrams grows exponegntiath the increase of the
number of properties of the domain and actions, a directesgmtation is usually im-
practical. Instead, transition diagrams are encoded wsirigdirect representation, based
on the research on action languages (Gelfond and LifscBRE)Jl Because we are not
aware of any well-established action language that corshafiehe features needed for
our model, and because in this paper the focus is not on dengl@ new action lan-
guage, here we adopt the variant of writing such encodingctir in ASP — see e.g.
(Balduccini et al. 2000). In fact, because of the high le¥ellwstraction of ASP, encoding
knowledge (even about dynamic domains) directly in ASPemathan in action languages
is nowadays common practice (see €.9. (Delgrande et al; Zb0&scher 2009) for some
recent examples).

The encoding is based on the notion of a path in the transiiagram from a given
initial state, corresponding to a particular possible etioh of the domain from that initial
state. The steps in a path are identified by integers (Widbnoting the initial state), and
logical statements (often calléaws) are used to encode, in general terms, the transitions
from one step to the next. The fact that a flugnholds at a step in the evolution of
the domain is represented by the expresdi¢fi i), where relationh stands forholds
If —f is true, we write-h(f,7). Occurrences of actions are represented by expressions
of the formo(a,), saying that actiom occurs at step (o stands foroccurg. An action
descriptionis a collection of laws describing the evolution of the dom#&iven an action
descriptionA D, a description of the initial stat®, (e.g.0o = {h(f1,0), ~h(f2,0),...}),
and a sequence of occurrences of action(®.g.« = {o(a1,0),0(as,0),0(aq,1),...}),
the corresponding path(s) in the transition diagram carobgpated by finding the answer
set(s) ofAD U oo U a.

3 Short-Term Memory

Short-Term Memory is “the memory storage system that alld@rs short-term re-
tention of information before it is either transferred todpterm memory or forgot-
ten” (Nevid 2007). This view is based on the so caltacee-stage model of memory
(Atkinson and Shiffrin 19711): sensory inputs are first stbie Sensory Memory, which
is very volatile and has large capacity; then, a portion ef ittputs is processed — and
possibly transformed into more rich representations — aodeth to Short-Term Memory,
which is less volatile than Sensory Memory, but of limitegaeity. Short-Term Memory is
also often viewed as a working memory, i.e. as a location e/irdormation is processed
(Card et al. 1983). Finally, selected information is moved.ong-Term Memory, which
has larger capacity and longer retention periods.

Beginning in the 1950s, several studies have been condiactiedermine the capacity of

Formalization of Psychological Knowledge in ASP and its ligapion 5

STM. Miller (Miller 1956) reported evidence showing tha¢tbapacity of STM in humans
is of 7 pieces of information. Later studies have lowereddapacity limit of STM to
about 4 pieces of information (e.@. (Cowan 2000)). Inténgst, the limit on the number of
pieces of information that STM can hold does not affect diyebe amountof information
(in an information-theoretic sense) that STM can hold. b1,f&TM appears to be capable
to storingreferenceso concepts that are stored in Long-Term Memory. Althoughsurch
reference counts as a single piece of information towarccépacity limit of STM, the
amount of information it conveys can be large. For exampleas$ been observed that it is
normally difficult for people to remember the 12-letter seqce CN NIB MMT VU SA,
while most people have no problems remembering the sequebelBM MTV USA,
because each triplet refers to a concept stored in Long-Memory, and can thus be
represented in STM by just 4 symbals (Kassin 2006). The pimemon of the detection
and use of known patterns in STM is referred tahanking

Another limit of STM is that the information it contains igaéned only for a short period
of time, often set to about 30 seconds by researchers ((R&@d); notice however that the
issue of a time limit on the information stored in STM is sorhefwcontroversial — see e.qg.
(Cowan 2000; Card et al. 198@)‘l‘his limit can be extended by performingaintenance
rehearsa) which consists in consciously repeating over and oventfgination that needs
to be preserved. To increase the flexibility of our formdlima, in the next section we
abstract from specific values for the limits of capacity aetntion over time, and rather
write our model in a parametric way. This makes it possibigoag other things, to use our
formalization to analyze the effects of different choicesthese parameters, effectively
allowing us to compare variants of the theory of STM.

4 A Formalization of Short-Term Memory

Using a common methodology in ASP-based knowledge repiegtiem we begin our dis-
cussion on the formalization by condensing the descriptib8TM and chunking in a
number of statements still written in natural language fdvatisely formulated. Later, we
will encode those statements using ASP. The statement$13r&8TM is a collection of
symbols; (2) The size of STM is limited to elements; (3) Each symbol has an expira-
tion time associated with it (saying when the piece of infation will be “forgotten”);
(4) Symbols are divided into primitive symbols and chunk bgis; (5) Primitive sym-
bols represent concepts that are innate in the brain (eegdiegct encoding of sensory
input); (6) Chunk symbols represent concepts that aredtioreong-Term Memory; (7)
New symbols can be added to STM. If a symbol is added to STM whetements are
already in STM, the symbol that is closest to expiring is reaetbfrom STM (“forgotten”).

In the case of multiple symbols equally close to expiringe @selected arbitrarily; (8)
When a symbol is added to STM, or when a symbol from STM is usggi(ticular, when
performing maintenance rehearsal), its expiration timeset to a constant value (9)
Simplifying assumptioronly a single operation (where by operation we mean either ad
dition or use) can occur on STM at any given time. The next §staiements describes

1 For example, according to (Card et al. 1983), decay is @fteby variables such as the number of chunks that
the user is trying to remember, and retrieval interferenitk similar chunks.

6 M. Balduccini and S. Girotto

the mechanism of chunking: (10) A chunk is a set of (primitvehunk) symbols; (11) A
chunk symbol is a symbol that uniquely denotes a chunk; (1&)uxnk is detected in STM
if all the symbols that it consists of are in STM; (13) When aickis detected in STM,
the symbols it consists of are removed from STM and the cpareding chunk symbol
is added to STM; (14) A symbol can be inferred from STM if itdnegjs to STM, or if it
is part of a chunk that can be inferred from STE/IQlS) Simplifying assumptiorchunks
can only be detected when STM is not in use (i.e. no additiamseroperations are being
performed); (165implifying assumptiorat every step, at most one chunk can be detected.
Now we are ready to focus on the formalization of STM and clinmkn ASP. Flu-
entin_stm(s) says that symbak (wheres is a possibly compound term) is in STM,;
expiration(s, k) says that symbat will expire (i.e. will be “forgotten”) in & units of
time, unless the expiration counter is otherwise alterediof store(s) says that symbol
s is stored in STMuse(s) says thats is used (typically, during maintenance rehearsal).
Relationprimitive(s) says that is a primitive symbol; chunks are described by relation
chunk(s), saying thas is a chunk symbol, and by relatiehunk_clement(s, s), stating
that s’ is a component of the chunk identified byrelation symbol(s) says thats is a
symbol (either primitive or chunk). Relatiom_max_size(w) says that the size of STM
is limited tow elementsistm_expiration(e) states that the symbols in STM expire after
e units of time. Finally, in order to update the expiration ntars based on the duration of
the actions executed at each step, relation(i, d) says that the overall duration of step
based on the actions that took place] isnits of time.
We divide the axioms in our formalization of the sﬁm a number of categories. We
begin with the axioms that describe the effect of storingmatsyl s in STM. The first axiom
says that an effect of storingin STM is thats becomes part of STM:

h(in_stm(S),I + 1) < o(store(S),I).

The next axiom says that, if adding a symbol to STM would caheeSTM size limit
to be exceeded, then the symbol that is closest to expiriigpiforgotten. Notice that
the simplifying assumptions listed among the natural |laggustatements above guarantee
that there is a unique such symbol, thus simplifying theimgiof the axiom (lifting the
assumptions is easy, but would lengthen the presentation).
—h(in_stm(S2),1+ 1) «
S1# 52, o(store(S1),I), stm_maz_size(MX),
curr_stm_size(M X, I), not some_expiring(I), oldest_in_stm(S2,1I).

The axiom relies on a number of auxiliary relations. The$atiens depend on the current
step in the evolution of the domain, and hence could be repted as fluents. However, to
stress the distinction between “regular” fluents and aarilrelations, we prefer the alter-
native writing that does not rely upon relatibnthus writing e.gcurr_stm_size(M X, I)
instead ofh(curr_stm_size(M X)), I). Relationcurr_stm_size(w, i) says that the size of
STM at stepi is w; some_expiring(i) states that some symbol in STM will be forgotten

2 Notice that this statement can be applied recursively.

3 To save space, we omit most atoms formed by domain predieaigisin a few rules, use default negation
directly instead of writing a separate rule for closed-w@abssumption. For example,zifholds whenevey is
false andy is assumed to be false unless it is known to be true, we mighe wrk— not g instead of the more
methodologically correcfp < —q. —q < not q.}.

Formalization of Psychological Knowledge in ASP and its ligapion 7

when the domain moves to the next stepjest_in_stm(s,i) says thats is the symbol
closest to expiring. The accurate reading of the above aigdhen: ifs; is stored in STM

at stepi, and STM already contains symbols, none of which are due to expire at the
next time step, then the oldest symbol in STM will no longemb8TM at step + 1. The
auxiliary relations are defined as follows:

oldest_in_stm(S,I) <
h(expiration(S, E), I),
not smaller_expiration(E,I).

smaller_expiration(E1,I) «
h(expiration(S, E2),1),
E2 < E1.

curr_stm_size(N,I) <
N { h(in_stm(S),I) : symbol(S) } N.

expiring(S,I) <
h(expiration(S,SK),I),
dur(I,D),SK < D.

some_expiring(l) <
expiring(S,I).

The next axiom states that an effect of storinig STM is that the expiration time of is
set toe:

h(expiration(S, E), I + 1) < stm_expiration(E), o(store(S),I).

The next axiom (together with some auxiliary definitiong)ssthat it is impossible for two
STM-related actions to be executed at the same time.

«— 0(A1,1),0(A2,I), Al # A2, stm_related(Al), stm_related(A2).
stm_related(store(S)) < symbol(S).
stm_related(use(S)) < symbol(S5).

The final axiom in this category states that, whenever a syfinbm STM is used, its
expiration time is reset.

h(expiration(S,E), I + 1) <
stm_expiration(E),
o(use(S),I),
h(in_stm(S), I).

The second group of axioms describes the mechanism of amginkhree axioms state
that, when the components of a chunk are detected in STMptfnesponding symbols are

8 M. Balduccini and S. Girotto

replaced by the chunk sym@oWhose expiration is set ta

—h(in_stm(S), I + 1) <
detected(C,I),
chunk_element(C, S).

h(in_stm(C),I + 1) +
detected(C, I).

h(expiration(C,E), I + 1)
stm_expiration(E),
detected(C,I).

Auxiliary relationdetected(C, I), used above, says that chufithas been detected in STM
at stepl. The detection occurs, when STM is not in use as per our diyimai assumption
above, by checking if there is any chunk whose componentalbaie STM. If symbols
corresponding to multiple chunks are available in STM, oo chunk is detected at
every step, as per assumption (16) on fdage 6. The choice chwehiunk is detected is
non-deterministic, and encoded using a choiceﬁnﬂe follows:

1 { detected(C,I) : ~chunk_element_missing(C,I) } 1
stm_idle(T),
chunk_detectable(I).

chunk_detectable(I) «
chunk(C),
stm_idle(T),
—chunk_element_missing(C, I).

—chunk_element_missing(C, I) <
chunk(C),
not chunk_element_missing(C,I).
chunk_element_missing(C,I) +
chunk_element(C, S),
—h(in_stm(S), I).
—stm_idle(I) +—
o(A,I),
memory_related(A).
stm_idle(I) <
not —stm_idle(I).

It is interesting to note that the components of a detectedliclre allowed to be located
anywhere in STM. Howevenow that the model is formalized at this level of detail, one
cannot help but wonder whether in reality the focus of thehraeism of chunking is on
symbols that have been added more receity. were unable to find published studies
regarding this issue.

The final group of axioms deals with the evolution of the catgeof STM over time,

4 Our simplifying assumption that at most one chunk can bectisdeat every step ensures that the number of
items in STM does not increase as a result of the chunkingepsoc

5 Readers who are familiar with ASP may notice that we allow tmee of non-domain predicate
—chunk_element_-missing(C, I) in the head of the choice rule. This is done to keep the prasentshort.
From the perspective of the implementation, when using A&Rgrs that expect a domain predicate, one
would have to use a slightly longer encoding.

Formalization of Psychological Knowledge in ASP and its ligapion 9

both whenstore or use actions occur, and when they do not. Notice that action theor
often assume that fluents maintain their truth vabyeinertia unless they are forced to
change by the occurrence of actions. In the case of fluentsm (s) andexpiration(s, k),
however, the evolution over time is more complex (and suatntisiare then calledon-
inertial). In fact, for every symbok in STM, expiration(s,) holds at first, but then
expiration(s,e) becomes false anelepiration(s,e — §) becomes true, whergis the
duration of the latest step, and so on. On the other hand{m/(s) is true if-and-only-if
expiration(s, k) holds for some: > 0. The following axioms accomplish three tasks:
they define the behavior of inertial fluents, using a rathandaird ASP encoding of the
inertia axiom, which relies on ASP’s ability to encode dédfa(the rule for-h(F, I + 1),
omitted, is similar); they state that fluerits stm(s) andexpiration(s, k) are non-inertial
(the reason for doing so explicitly will become clear in tlexinsection); and formalize the
default evolution of the non-inertial fluents’ truth valugeo time. Notice that relation
expiring, used here, was defined above (page 7).
h(F, 1 +1) +
h(F,I),
not —h(F, I+ 1),
not noninertial(F).
noninertial (in_stm(S)) <
symbol(S).
noninertial (expiration(S, E)) <
symbol(S),
expiration_value(E).
h(in_stm(S),I +1)
h(in_stm(S), I),
not expiring(S,I),
not —h(in_stm(S),I + 1).
—h(in_stm(S), I +1) <
h(in_stm(S),I),
expiring(S,I),
not h(in_stm(S), I + 1).
—h(in_stm(S), I +1) <
—h(in_stm(S), I),
not h(in_stm(S), I + 1).
h(expiration(S, E — D), I +1) «
expiration_value(E),
h(expiration(S, E),I),
dur(I,D),E > D,
not different_expiration(S,E — D, I + 1),
not —h(in_stm(S), I + 1).
different_expiration(S, E1,I) +
expiration_value(E1),
expiration_value(E2),
E2# F1,
h(expiration(S, E2),1).
To demonstrate that our formalization captures the kewfeatof the mechanics of STM
and chunking, we subject it to a test of memory span. In a mgspan test, a subject is

10 M. Balduccini and S. Girotto

presented with a sequence of digits, and is asked to repedtasequence (Kassin 2006).
By increasing the length of the sequence and by allowing oidawg the occurrence of
familiar sub-sequences of digits, one can verify the capdichit of STM and the role
of chunking. Because here we are only concerned with cdyraeideling STM, we ab-
stract from the way digits are actually read, and ratheresgmt the acquisition of the
sequence of digits directly as the occurrence of suitahlee(s) actions. Similarly, the
final reproduction of the sequence is replaced by checkiagdmtents of STM at the end
of the experiment. As common in ASP, all computations areced to finding answer sets
of suitable programs, and the results of the experimentdetermined by observing the
values of the relevant fluents in such answer sets.

From now on, we refer to the above formalization of STMIby,,. Boundary condi-
tions that are shared by all the instances of the memory-tgsammre encoded by the set
IIp of rules, shown below. The first two rules Hfp set the value ofv to a capacity of
4 symbols (in line with[(Cowan 2000)) and the value=db 30 time units. The next rule
states that each step has a duration of 1 time unit. Thisgséituitively corresponds to
a scenario in which STM has a 30 second time limit on the rieterdf information and
the digits are presented at a rate of one per second. Thétasttules define the set of
primitives for the memory-span test. We use the expressigfp, d) to represent the fact
that digitd is at positiorp in the sequence.

stm_max_size(4).
stm_expiration(30).
dur(1,1).
position(1). position(2). ... position(6).
digit(0). digit(1). ...digit(9).
primitive(seq(P, D)) < position(P), digit(D).
The initial state of STM is such that no symbols are initialySTM. This is encoded by
OSTM-
—h(in_stm(S),0) < symbol(S).
In the first instance, STM is presented with the sequende5, 7. Human subjects are
normally able to reproduce this sequence. Let us see if gardlization can do the same.
The sequence of digits is encoded by S&tAN; of rules:
o(store(seq(1,2)),0). o(store(seq(2,4)),1).
o(store(seq(3,5)),2). o(store(seq(4,7)), 3).
To predict the behavior of STM and determine which symbolslvé in it at the end of
the experiment, we need to look at the path in the transitiagrdm from the initial state,
described by s, and under the occurrence of the actionsSiRAN,. As explained
earlier in this paper, this can be accomplished by findingti®ver set ofl; = Ilg7as U
IIp UosTy USPAN;. Itis not difficult to check that, at step(corresponding to the end
of the experiment), the state of STM is:
h(in_stm(seq(1,2)),4), h(in_stm(seq(2,4)),4),
h(in_stm(seq(3,5)),4), h(in_stm(seq(4,7)),4),
h(expzratzon(seq(l 2),27),4), h(expiration(seq(2,4),28),4),
h(expiration(seq(3,5),29),4), h(expiration(seq(4,7),30),4),

which shows that the sequence is remembered correctly éaritbin being forgotten, as

Formalization of Psychological Knowledge in ASP and its ligapion 11

the expiration times show). Let us now consider anotheaims, in which the sequence
of digits is 2,4, 5,7, 3. The correspondingtore(s) actions are encoded byP AN, =
SPAN; U{o(store(seq(5,3)),4)}. This sequence is beyond the capacity of STM stated
in IT». Human subjects are unable to reproduce sequences beyordphcity of STM
(unless chunking occurs). Our formalization of STM exlsliie same behavior. In fact,
according to the answer set of progrélty = gty UIlp U ograyr U SPAN, the state
of STM at the end of the experiment is:

h(in_stm(seq(2,4)),5), h(in_stm(seq(3,5)),5),

h(in_stm(seq(4,7)),5), h(in_stm(seq(5,3)),5).
As expected, the first element of the sequence has beentimghyt the next instance, we
consider the sequenée8, 5 — 8,0, 6, where “—" represents a 1-second pause in the pre-
sentation of the digits. This sequence is, in principle dneythe capacity of STM, but we
further assume familiarity with the area cod&$ and806. Under these conditions, human
subjects have demonstrated to be capable of rememberisgdiuence after noticing the
presence of the area codes in tf@ﬁihe knowledge about the area codes is encoded by
the sefl’; of rules:

chunk_element(seq(P,ac(roc)), seq(P,5)).
P,ac(roc)), seq(P + 1,8)).
P, ac(roc)), seq(P + 2,5)).

chunk(seq(P, ac(roc))).

(
chunk_element(seq(
chunk_element(seq(P, ac(
chunk(seq(P, ac(lbb))).
chunk_element(seq(P, ac(lbb)), seq(P, 8)).
chunk_element(seq(P, ac(lbb)), seq(P + 1,0)).
chunk_element(seq(P, ac(lbb)), seq(P + 2,6)).

The sequence of digits is encoded $ A Ns:

o(store(seq(1,5)),0). o(store(seq(2,8)), 1).
o(store(seq(3,5)),2). % no action at step
o(store(seq(4,8)),4). o(store(seq(5,0)), 5).
o(store(seq(6,6)),6).
At the end of the experiment (we select st allow sufficient time for the chunking of
the second triplet to occur), the state of STM predicted byfaumalization is:
h(in_stm(seq(1, ac(roc))),8),
h(in_stm(seq(4, ac(lbb))), 8),
h(expiration(seq(1,ac(roc)), 26),8),
h(expiration(seq(4,ac(lbb)), 30), 8)
which shows that the chunking of the two area codes has atuaiowing STM to store
a sequence of digits that is longer thasymbols. In the final instance of this section, we
consider two additional chunks, 8, 5, 2 (supposedly a pin number), and3 (considered
an unlucky number in various cultures), which are encodéld the same technique shown
above. The corresponding set of rulEs is obtained froml'; by adding the encoding

6 The 1-second pause is used to allow sufficient time for theotien of the first chunk. Subject studies have
shown that chunk detection does not occur or occurs withcdlffi when the stimuli are presented at too high
a frequency.

12 M. Balduccini and S. Girotto

of the new chunks, callethy_pin andunlucky_13. The sequence to be remembered is
5,8,5—2,1,3,encoded bys PAN:

o(store(seq(1,5)),0). o(store(seq(2,8)),1).
o(store(seq(3,5)),2). % no action at step
o(store(seq(4,2)),4). o(store(seq(5,1)),5).
o(store(seq(6,3)),6).

Notice that, at stefd, chunksmy_pin andunliucky_13 will both be available for detection.
The literature does not specify any particular order in whikee chunks are detected by the
brain, and thus one should assume that the order of detéstimbitrarﬂ It is not diffi-
cult to show that our formalization correctly yieltigo answer setdoth predicting a final
state of STM in whichmy_pin andunlucky_-13 are in STM, but differing for the order
which chunking occurs. One answer set, in fact, predictcthenking ofmy_pin first:
{detected(seq(1, my-pin),7),detected(seq(5, unlucky-13),8)}, while the other pre-
dicts the chunking ofny_pin last: {detected(seq(5, unlucky-13),7), detected(seq(1,
my_pin), 8)}. Although space restrictions prevent us from formalizitigraative theories
of STM and perform an analytical comparison, it is worth ngtihat even the single for-
malization developed allows comparing (similar) variamitshe theory corresponding to
different values ofv ande. One could for example repeat the above experiments with dif
ferent parameter values and compare the predicted behaiifoactual subject behavior,
thus confirming or refuting some of those variants.

5 A Practical Application

The availability of a formalization of psychological knadge not only allows better anal-
ysis, comparison, and verification of psychological thesrbut may also have more imme-
diate practical applications. In this section we show howfotmalization can be used to
predict a user’s difficulties in interacting with a grapHigser interface. Psychological the-
ories used in human-computer interaction (€.g. (Card d083; Kieras and Polson 1983;
Kieras and Polson 1985)) for this kind of evaluations arerfif a qualitative nature and
do not allow for precise quantitative predictions. Theiaptb accurately encode this type
of knowledge in ASP allows one to use psychological theanedraw accurate conclu-
sions, and to do so automatically. We believe this to be a step forward from the use of
rules of thumb and guidelines common nowadays in human-atenmteraction. We con-
sider a scenario in which the user is told a sequence of tasésy(clicks, tab selections,
etc.) to be performed, and is expected to execute it witheungoreminded about any task.
If the user succeeds, then that means that the sequence stordxk completely in STM
(possibly chunked), and that the sequence is also shorgénmt to be forgotten during
execution. This scenario corresponds for example to at&tuan which a user is trying
to follow the instructions on a help page. To begin, we neefbtmalize the sequence
of tasks and its execution. Basic operationsdiek(m), corresponding to clicking menu
itemm; select(t), meaning that tab in a dialog box is selectedheck(c), correspond-
ing to putting a checkmark in checkbex The primitive STM symbols are of the form

7 Simplifying assumption (16) prohibits concurrent detati

Formalization of Psychological Knowledge in ASP and its ligapion 13

task(n, op), whereop is one of the basic operations, ands its index in the sequence.
The sequence is stored in STM by means of occurrencetoé(s) actions, as before.
We use terntask(n, op) also as one of the fluents of the formalization. Its meanirigds
based on the state of the reasoner’s memgrys the i task in the sequence. The fluent
is non-inertial, because it is defined directly by the curstate of STM:

noninertial(task(N, A)).
h(task(N, A),I) + stm_h(task(N, A),I).

stm_h(S,I) + h(in_stm(S),I).
stm_h(S,I) < stm_h(C, I), chunk_element(C, S).

From the point of view of knowledge representation, it is tharoting how ASP makes
it easy to express the recursive definition of relatiom_h(s, 7). The other key fluents of
the formalization of the sequence ate-rent_task(n), which says that the current task is
the i in the sequenceask_forgotten(n), meaning that the'l task has been forgotten,
andcompleted, meaning that the sequence has been completed. Task nunisissaidcted
as current task as soon as it becomes available (the useafliddiiere and later greatly
shortens the representation):

h(current_task(1),I) < has_task(1,I), not =h(current_task(1),I).

Relationhas_task(n,) (definition omitted to save space) says that, at stége sequence
has a task with index. Performing the current task makes the following task bezom
current, unless the task that was performed was the laseisguence, in which case the
sequence is complete:

h(current_task(N + 1), 1+ 1) +
o(A, I), h(current_task(N),I),
h(task(N, A),I),not last_task(N,T).
h(completed, I + 1) +
o(A,T), h(current_task(N),I),
h(task(N, A),I),last_task(N,T).

(Other rules that ensure that only one task is current atiemgydare omitted.) The reasoner
detects that the current task has been forgotten when iotaacall it:

h(task_forgotten(N),I) < h(current_task(N),I), not has_task(N,I).

Task execution is encoded by a rule saying that, if the ctiteesk is executable, then the
reasoner will performit:

o(A,T) < h(current_task(N),I), h(task(N, A),I),
current_task_executable(I).

current_task_executable(I) +
h(current_task(N),I), h(task(N, A),T), not ~o(A,I).

Finally, we make the duration of the user’s actions depenbdigskill level (the rules are
straightforward and omitted to save space). For expersusgery action takes 1 unit of
time. For beginner users, who need to scan the screen to twakéd items to act upon,
clicking a menu takes 3 units; clicking a sub-menu takes lgciag a tab in a dialog, as

14 M. Balduccini and S. Girotto

well as putting a checkmark in a checkbox, tak&We denote the above set of rules by
Il 45Kk . To test our formalization, we consider an example in whidkeginneruser is
given the following sequencé/l;. (STM-related parameters ake = 4 ande = 30 as
before.)
o(store(task(1, click(m(tools)))), 0).
(store(task(2, click(subm(options)))), 1).
(store(task(3, select(tab(text)))),3).
o(store(task(4, check(ck(use_hardtabs)))),4).
(store(task(5, select(tab(highlighting)))),6).
o(store(task(6, check(ck(detect_language)))),7).
—0o(A,I) + external_action(A),I < 8.
Notice the pauses at steps 2, 5, 8, to allow enough time farléhg to occur. The last rule
ensures that the reasoner waits to have acquired the cangglgtience before beginning
to execute it. The user is assumed to be familiar with the éoations “click tools, click
options,” and “select tab ‘text’, put a checkmark on ‘usedhtabs’.” The encoding.'§, of
the first chunk is:

chunk(task(N, tools_options)).
chunk_element(task(N,tools_options), task(N, click(m(tools)))).
chunk_element(task(N,tools_options), task(N + 1, click(subm(options)))).

The second chunk is encoded similarly. The encoding of treedlunks is denoted by
T's. Because of our assumption that beginner users take soraadilncate the graphical
items, one can expect that the user will forget the sequeefmdcompleting it. The use
of our formalization allows one to make the prediction moregse. In fact, the answer
set of the programil{’ = g7y Ul ask Uosrar U UL UT shows that: (1) chunking
occurs and the sequence fits in STM, as shown in the answey attias such as:

h(in_stm(task(1,tools_options)),12),
h(in_stm(task(3,text_htabs)),12),
h(in_stm(task(5, select(tab(highlighting)))), 12),
h(in_stm(task(6, check(ck(detect_language)))), 12).

However, the answer set also shows that (2) the last itemrecféhjuence is forgotten right
before it can be executed:

h(current_task(5),13),
o(select(tab(highlighting)),13),
h(current_task(6),14),
h(task_forgotten(6),14).

In another example, we consider arpertuser familiar with the “click tools, click op-
tions,” sequence, but not with the “select tab ‘text’, putheakmark on ‘use hard-tabs™
sequence. This knowledge is encodedlyy shown earlier. The prediction of the user’s
behavior is given by prografiy’ = Ilsras Ullraskx Uosra U UL UTS, and it is not

8 These figures are meant to be reasonably realistic, but tieeyod the result of an accurate study. Obviously,
the conclusions of our work hold independently of the paféicnumbers chosen.

Formalization of Psychological Knowledge in ASP and its ligapion 15

difficult to check that the sequence does not fitin STM:

h(current_task(1),8),

in_stm(task(3, select
in_stm(task(4, check
in_stm(task(5, select
in_stm(task(6, check
h(task_forgotten(1),8).

tab(text)))),8),
ck(use_hardtabs)))),8),
tab(highlighting)))),8),

h(
h(
h(
h(ck(detect_language)))), 8),

A~ =~ =

In the final example, an expert user is familiar with both ssmes of tasks. The corre-
sponding program i§15? = Hgry U llzask U osrar U UL U To. The answer set of
Y shows that the user is predicted to apply chunking, remenhigesequence through
the end, and complete its execution:

h(completed, 15),

h(in_stm(task(1,tools_options)), 15),

h(in_stm(task(3,text_htabs)), 15),

h(in_stm(task(5, select(tab(highlighting)))), 15),

h(in_stm(task(6, check(ck(detect_language)))), 15).
It is worth stressing that the ASP programs described abowenat only directly exe-
cutable, but the corresponding computation by state-efattt ASP systems is quite fast.
The answer sets for the examples in this section were eachuterhin less than a second
by cLAsSP on a computer with i7 CPU, 2.93GHz, 8GB RAM. Scaling is alsodjoepeat-
ing the experiments for values afande, respectivelyy and100 increased computation
time to less thal seconds.

6 Discussion

In this paper we have shown that it is indeed possible and itapbto formalize psy-
chological knowledge that is of qualitative or logical neguand that ASP is suitable for
the taskThe formalization allows analysis and comparison of thesorit also allows one
to predict the outcome of experiments, thus making it pdesdit design better experi-
ments. Various reasons make the formalization of knowleddleis kind challenging. As
we hope to have demonstrated, ASP allows one to tackle tHkeba, thanks to its abil-
ity to deal with common-sense, defaults, uncertainty, deterministic choice, recursive
definitions, and evolving domains. To highlight the beneditshe formalization of psy-
chological knowledge, it is worth stressing how, earliethia paper, the availability of the
formalization of STM allowed us to point out that the role obra recent symbols in the
mechanics of chunking may deserve further investigation.

We believe it is difficult to find other languages that alloviting a formalization at the
level of abstraction of the one shown here, and that are asdimee time directly executable.
As a remarkable example, consider how naturally and elégargtrtial and non-inertial
fluents coexist in our model, and how the introduction of meertial fluents occurs in a
fully incremental fashion: for most of Sectibh 4, the modsts only inertial fluents, and
one could safely adopt the standard writing of the axiomseftiall When the need to
deal with non-inertial axioms arises later in the sectidithat needs to be done is to add

9 In Sectior %, we showed directly the more advanced versidheoinertia axiom(s) to save space.

16 M. Balduccini and S. Girotto

the condition “notnoninertial (F')" to the inertia axioms, and to write suitable definitions
of the new fluents. It has been extensively demonstrateckifitdrature on ASP that the
elaboration tolerance shown in this case is not a coinciglenat a key property of the
ASP paradigm. Furthermore, direct executability of ASPvftes a unique opportunity to
bridge the gap between formulation of psychological treoend practical applications,
as we have shown in the previous section.

Finally, in this paper we have discussed the interactioh wiimple graphical interface,
and have barely touched upon related topics such as usetisgpeowever, we expect that
similar techniques to the ones shown here can be used tcedelyumodel the role of exper-
tise and attention (e.g. in particular in critical tasks @acley et al. 2002)). We believe that
other important theories about the mechanics of the brajn L®ng-Term Memory, can
be formalized following the approach we presented. The &liration of STM itself could
also be made richer, for example by using additive fluénts @red Lifschitz 2001) to al-
low concurrent STM updates, by modeling continuous delcdnni@bathina et al. 2005),
and by using intention$s (Baral and Gelfond 2005) to reprigsshk sequences.

References

ATKINSON, R. C.AND SHIFFRIN, R. M. 1971. The Control of Short-Term Memongcientific
American 22582-90.

BALDUCCINI, M., GELFOND, M., AND NOGUEIRA, M. 2000. A-Prolog as a tool for declarative
programming. IrProceedings of the 12th International Conference on SaévEagineering and
Knowledge Engineering (SEKE’200@3-72.

BARAL, C. AND GELFOND, M. 2005. Reasoning about Intended Actions.Pimceedings of the
20th National Conference on Artificial Intelligend889—694.

CARD, S. K., MORAN, T. P.,AND NEWELL, A. 1983. The Psychology of Human-Computer Inter-
action L. Erlbaum Associates Inc.

CHINTABATHINA , S., GELFOND, M., AND WATSON, R. 2005. Modeling Hybrid Domains Using
Process Description Language. Rroceedings of ASP '05 Answer Set Programming: Advances
in Theory and Implementatio803-317.

CowaN, N. 2000. The Magical Number 4 in Short-Term Memory: A Reddesation of Mental
Storage CapacityBehavioral and Brain Sciences 287-185.

DELGRANDE, J. P., ROTE, T., AND HUNTER, A. 2009. A General Approach to the Verification
of Cryptographic Protocols Using Answer Set Programmind.Oth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMRB85-367.

GELFOND, M. 2002. Representing Knowledge in A-Prolog. @omputational Logic: Logic Pro-
gramming and Beyond, Essays in Honour of Robert A. Kowa?ski,|l, A. C. Kakas and F. Sadri,
Eds. Vol. 2408. Springer Verlag, Berlin, 413—-451.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjwect
databasedNew Generation Computing 965-385.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action Language<Electronic Transactions on Al 36.
KASSIN, S. 2006.Psychology in ModulesPrentice Hall.

KIERAS, D. AND POLSON, P. G. 1983. A generalized transition network represemidtir interac-
tive systems. IiProceedings of the SIGCHI conference on Human Factors infititimg Systems
(SIGCHI-83) 103-106.

KIERAS, D. AND POLSON, P. G. 1985. A quantitative model of the learning and pertoroe of
text editing knowledge.16, 4 (Apr), 207-212.

Formalization of Psychological Knowledge in ASP and its ligapion 17

LEE, J.AND LIFSCHITZ, V. 2001. Additive Fluents. IAnswer Set Programming: Towards Efficient
and Scalable Knowledge Representation and ReaspAingrovetti and T. C. Son, Eds. AAAI
2001 Spring Symposium Series.

LEITE, J.AND ILIC, M. 2007. Answer-Set Programming Based Dynamic User Moddhr Rec-
ommender Systems. Progress in Artificial Intelligence, 13th Portuguese Caafee on Artifi-
cial Intelligence 29-42.

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. The Logic Programming Paradigm: a 25-Year
PerspectiveSpringer Verlag, Berlin, Chapter Stable models and amralt&ve logic programming
paradigm, 375-398.

MCCARLEY, J. S., WCKENS, C. D., GoB, J.,AND HORREY, W. J. 2002. A Computational Model
of Attention/Situation Awareness. IRroceedings of the 46th Annual Meeting of the Human
Factors and Ergonomics Society

MILLER, G. A. 1956. The Magical Number Seven, Plus or Minus Two: Sduimeits on Our
Capacity for Processing InformatioRsychological Review 681-97.

NEVID, J. S. 2007Psychology: Concepts and Applicatiogecond ed. Houghton Mifflin Company.

NIEMELA, |. AND SIMONS, P. 2000 Logic-Based Atrtificial IntelligenceKluwer Academic Publish-
ers, Chapter Extending the Smodels System with Cardinatit\Weight Constraints, 491-521.

Son, T. C. AND SAKAMA , C. 2009. Negotiation Using Logic Programming with Coresisly
Restoring Rules. 12009 International Joint Conferences on Artificial Intgitince (IJCAI)

THIELSCHER, M. 2009. Answer Set Programming for Single-Player Gaméadneral Game Play-
ing. In 10th International Conference on Logic Programming and ionotonic Reasoning (LP-
NMRO09) 327-341.

	1 Introduction
	2 Answer Set Programming and Dynamic Domains
	3 Short-Term Memory
	4 A Formalization of Short-Term Memory
	5 A Practical Application
	6 Discussion
	References

