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Abstract

We introduce an approach to detecting inconsistenciesge laiological networks by using Answer

Set Programming (ASP). To this end, we build upon a recemtdpgsed notion of consistency be-
tween biochemical/genetic reactions and high-througpmfiles of cell activity. We then present an

approach based on ASP to check the consistency of large-datd sets. Moreover, we extend this
methodology to provide explanations for inconsistencieddtermining minimal representations of
conflicts. In practice, this can be used to identify unrdéatata or to indicate missing reactions.
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1 Introduction

Molecular biology has seen a technological revolution vifite establishment of high-
throughput methods in the last years. These methods allogaftering multiple orders
of magnitude more measured data than was procurable b&worénermore, there is an
increasing number of biological repositories on the webhsas KEGG, Biomodels, Re-
actome, MetaCyc, and others, incorporating thousandsazhleimical reactions and ge-
netic regulations. However, both measurements as well@dsdical networks are prone
to considerable incompleteness, heterogeneity, and mntansistency, which makes it
highly non-trivial to draw biologically meaningful condions in an automated way. As a
consequence, appropriate representation and powerfdmag tools are needed to model
complex biological systems, in the face of incompletenesksiaconsistency.

In this paper, we deal with the analysis of high-throughpatsurements in molecular
biology, like microarray data or metabolic profiles. Up tan is still common practice to
use expression profiles merely for detecting over- or uratpressed genes under specific
conditions, leaving the task of making biological senseafg multitude of gene identi-
fiers to human experts. However, many efforts have also besleno better utilize high-
throughputdata, in particular, by integrating them intgéascale models of transcriptional
regulations or metabolic processes (Friedman et al.|20@0nKand Stelling 2006).
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One possible approach consists of investigating the cabifitgtbetween experimental
measurements and knowledge available in reaction databBisis can be done by using
formal frameworks, for instance, the ones developed_in iEBz-Rios et al. 2003) and
(Siegel et al. 2006). A crucial feature of this methodolagjigs ability to cope with qualita-
tive knowledge (for instance, reactions lacking kinetitaile) and noisy data. In what fol-
lows, we rely upon the so-call&ign Consistency ModésCM) due to[(Siegel et al. 2006).
SCM imposes constraints between experimental measursiaet graph representation
of cellular interactions, called anfluence grapi{Soulé 2003). Such a graph provides an
over-approximation of the actual biological model, whene'iafluence” is modeled by a
disjunctive causal rule. This is particularly well-suitied dealing with incomplete (miss-
ing reactions) or unreliable (noisy data) information.

Building on the SCM framework, we develop declarative téghas based oAnswer
Set ProgrammingASP) (Baral 2003; Gelfond 2008) to detect and explain iistsierncies
in large data sets. This approach has several advantagss.itFallows us to formulate
biological problems in a declarative way, thus easing tharoanication with biological
experts. Second, although we do not detail it here, the riothating language facilitates in-
tegrating different knowledge representation and reagpteichniques, like abduction, ex-
planation, planning, prediction, etc., in a uniform andisii@arent way (cfl. (Gebser et al. 2010)
for such extensions). And finally, modern ASP solvers arethas advanced Boolean
constraint solving technology and thus provide us with higlfficient inference engines.
Apart from modeling the aforementioned biological probéeim ASP, our major concern
lies with the scalability of the approach. To this end, welamur methods to the gene-
regulatory network of yeast (Guelzim et al. 2002; Sudanmsee@al. 2000) and, moreover,
design an artificial yet biologically meaningful benchmatkte indicating that an ASP-
based approach scales well on the considered class of ajiqtis. Notably, to the best of
our knowledge, the functionalities we provide go beyondahes of the only comparable
approach (Guziolowski et al. 2009).

To begin with, we introduce SCM in Sectibh 2. Secfibn 3 givesdyntax and semantics
of ASP used in our application. In Sectibh 4, we develop an A8Rwulation of check-
ing the consistency between experimental profiles and infeigraphs. We further extend
this approach in Sectidd 5 to identifying minimal represgiohs of conflicts if the exper-
imental data is inconsistent with an influence graph. IniSef, we describe simple yet
effective techniques for input reduction along with a cartivity property that is used to
refine the encoding presented in Secfibn 5. Seflion 7 is aedito an empirical evaluation
of our approach along with an exemplary case study on yeaistniking our methods eas-
ily accessible, an available web service is presented itid®®d8. Sectio P concludes the
paper with a discussion and outlook on future work. Fin@lllgpendix A and Appendix B
contain proofs of soundness and completeness for our prdiolenulations in ASP.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs (Soulé 2003) are a common representati@nfide range of dynamical

systems. In the field of genetic networks, they have beersiigaged for various classes of

systems, ranging from ordinary differential equationsu82006) to synchronous (Remy et al. 2008)
and asynchronous (Richard et al. 2004) Boolean networiselmce graphs have also been
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Figure 1. Simplified model of operon lactoseincoli, represented as an influence graph.
The vertices represent either genes, metabolites, oripsotehile the edges indicate the
regulations among them. Edges with an arrow stand for pesiigulations (activations),
while edges with a tee head stand for negative regulatiohgations). Vertices G and L
are considered to be inputs of the system, that is, theissagae not constrained via their
incoming edges.

introduced in the field of qualitative reasoning (Kuiper94pto describe physical systems
where a detailed quantitative description is unavaildbléact, this has been the main mo-
tivation for using influence graphs for knowledge repreagan in the context of biological
systems.

An influence graphs a directed graph whose vertices are the input and staiables
of a system and whose edges express the effects of variabsch other.

Definition 2.1(Influence Graph
An influence graplhis a directed grapl\V, £, o), whereV is a set of verticesf a set of
edges, and : £ — {+ -} a (partial) labeling of the edges.

An edgej — i means that the variation gfin time influences the level aof Every edge
j — 1 of an influence graph can be labeled with a sign, either —, denoted by (j, 7),
where+ (-) indicates thajj tends to increase (decreasefAn example influence graph is
given in Figuré 1; it represents a simplified model of the opdactose irE. coli.

In SCM, experimental profileare supposed to come from steady state shift experiments
where, initially, the system is at steady state, then peeiusing control parameters, and
eventually, it settles into another steady state. It is ragslithat the data measures the
differences between the initial and the final state. Thugyémes, proteins, or metabolites,
we know whether the concentration has increased or dedteabde quantitative values
are unavailable, unessential, or unreliable (B%), we denote the sign, again eithieor —,
of the variation of a speciesbetween the initial and the final condition. One can easily
enhance this setting to also considering null (or more pedginon-significant) variations,
by exploiting the concept of sign algebra (Kuipers 1994).
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Species L. L; G LacY LacZ Lacl A cAMP-CRH
1751 - - - - — + — +
42 + + - + - + - -
M3 +  ? - ? ? + ? ?
L ? 7?7 ? - + ? ? +

Table 1. Some vertex labelings (reflecting measurementsmbteady states) for the in-
fluence graph depicted in Figurk 1; unobserved values itatiday question mark?.

Given an influence graph (as a representation of cellul@rastions) and a labeling
of its vertices with signs (as a representation of expertalgrofiles), we now describe
the constraints that relate both. Informally, for every fioput vertex:, its variationg(z)
ought to be explained by the influence of at least one predecg¢®f 7 in the influence
graph. Thereby, thimfluenceof j oni is given by the sign(j)o(j,4) € {+,—}, where the
multiplication of signs is derived from that of numbers. IBigonsistency constraints can
then be formalized as follows.

Definition 2.2(Sign Consistency Constraints

Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
Then,(V, E, o) andu areconsistentif there are some total extension's: £ — {+,—}

of o andy’ : V' — {+,—} of u such thay.'(¢) is consistent for each non-input vertex V/,

wherey/(7) is consistent, if there is some edges i in E such thay/ (i) = p/(j)0’(j, 7).

Note that labelings andy of vertices and edges, respectively, are admitted to béapart
This occurs frequently in practice where the kind of an infekeemay depend on environ-
mental factors or experimental data may not include all eleisof a biological system.
In order to decide whether a partially labeled influence grapd a partial experimental
profile are mutually consistent, we thus consider the péssdtalizations of them. If at
least one total edge and one total vertex labeling (extenttha given labelings) are such
that the signs of all non-input vertices are explained, suifficient for mutual consistency.
Table[1 gives four vertex labelings for the influence grapligure[1. Total labeling
u1 is consistent with the influence graph: the variation of eastiex (except for input
vertex L.) can be explained by the effect of one of its regulators. Astaince, in:;, LacY
receives a positive influence from cAMP-CRP as well as a megatfluence from Lacl,
the latter accounting for the decrease of LacY. The secdwalifay, 110, iS not consistent:
LacY receives only negative influences from cAMP-CRP and laa@ its increase cannot
be explained. Partial vertex labelipg is consistent with the influence graph in Figlie 1,
as setting the signs of;L.LacY, LacZ, A, and cAMP-CRP te, —, —, —, and+, respectively,
extendsus to a consistent total labeling. In contrast, cannot be extended consistently.

3 Answer Set Programming

This section provides a brief introduction to ASP, a dedieegoroblem solving paradigm

offering a rich modeling language (Lparse Manual; Gebsat.&009a) along with highly
efficientinference engines based on Boolean constrawitgptechnology (Giunchiglia et al. 2006;
Gebser et al. 2009c; Drescher et al. 2008). The basic ide&#fi& to encode a problem

as a logic program such that its answer sets representawuti
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In view of our application, we take advantage of the elevategressiveness of dis-
junctive programs, capturing problems at the second le/éh@ polynomial hierarchy
(Eiter and Gottlob 1995). Aisjunctive logic progran® is a finite set ofulesof the form

Q152500 = A4y -« Gy NOT Qi 14 - -+, MOL Q. (1)

wherea; is anatomfor 1 < i < n. Arule r as in [1) is called dactif | = m =
n = 1, and anintegrity constraintif [ = 0. Let head(r) = {a1,...,a;} be thehead
of r, body(r) = {ai+1,...,am,not amy1,...,not a,} be thebodyof r, as well let
body(r)* = {aji1,...,am} andbody(r)™ = {ami1,---,an}-

An interpretation is represented by the set of atoms thatraeein it. A modelof a
programP is an interpretation in which all rules dt are true according to the standard
definition of truth in propositional logic. Apart from letiy ‘;' and ’;’ stand for disjunc-
tion and conjunction, respectively, this implies treatimges and default negatiomot’
as implications and classical negation, respectivelyeNbat the (empty) head of an in-
tegrity constraint is false in every interpretation, whitee empty body is true in every
interpretation. Answer sets éf are particular models af satisfying an additional stabil-
ity criterion. Roughly, a seK of atoms is an answer set, if for every rule of forfmh (X),
contains a minimum of atoms amonyg, . . ., a; whenever, 1, ..., a,, belong toX and
noa,1,---,a, belongs toX. However, the disjunction in heads of rules, in general, is
not exclusive. Formally, aanswer sefX of a programP is aC-minimal model of

{head(r) + body(r)" | r € P, body(r)”" N X =0} .

For example, prograffu; b <. ¢;d + a, not b. + b.} has answer sets:, ¢} and{a, d}.
Although answer sets are usually defined on ground (i.eiabiarfree) programs, ASP
allows for non-ground problem encodings, where schemalésistand for their ground in-
stantiations. Grounders, suchgringo (Gebser et al. 2009a) amghrse (Lparse Manual),
are capable of combining a problem encoding and an instappiedlly a set of ground
facts) into an equivalent ground program, which is then @ssed by an ASP solver. We
follow this methodology and provide encodings for the peold considered below.

4 Checking Consistency

We now come to the first main question addressed in this papetgly, how to check
whether an experimental profile is consistent with a givdluéamce graph. Note that, if
the profile provides us with a sign for each vertex of the infleegraph, the task can be
accomplished simply by checking whether each non-inpuexeeceives at least one in-
fluence matching its variation. However, as soon as the axpatal profile has missing
values (which is very likely in practice), the problem beasNP-hard (Veber et al. 2004).
In fact, a Boolean satisfiability problem over clauggs. . ., C,, and variables, ..., x,
can be reduced as follows: introduce unlabeled input \estig, . . ., z,,, hon-input ver-
ticesCi, ..., Cy, labeled+, and edges; — C; labeled+ () if z; occurs positively (nega-
tively) in C;. It is not hard to check that the labeling®f, . . ., C,, by + is consistent with
the obtained influence graph iff the conjunction(df, . . . , C,, is satisfiable.

We next provide a logic program such that each of its answemsatches a consistent
extension of vertex and edge labelings. Our encodings dsaweéhstances are available
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at (BioASP Tools). The program for consistency checkingoimposed of three parts, de-
scribed in the following subsections.

4.1 Problem Instance

An influence graph as well as an experimental profile are dgiyeground facts. For each
species, we introduce a factertexi), and for each edgg— i, a factedgé€j, ). If s €
{+,—} is known to be the variation of a speciex the sign of an edgge— 1, it is expressed
by a factobservedV:, s) or observedEj, i, s), respectively. Finally, a vertexis declared
to be input via a facinput(s).

For example, the negative regulation LaglLacY in the influence graph shown in Fig-
ureld and observationfor Lacl (as withus in Table[1) give rise to the following facts:

vertexLacl).
vertexXLacy).

edgélacl, LacY). (2
observedVLacl, +).
observedB_acl, LacY,—).

Note that the absence of a fact of fowbservedVLacY, s) means that the variation of
LacY is unobserved (as withs). In (2), we use Lacl and LacY as names for constants
associated with the species in Figlfe 1, but not as firstraraigables. Similarly, for uni-
formity of notations;+ and— are written in[(2) for constants identifying signs.

4.2 Generating Solution Candidates

As mentioned above, our goal is to check whether an expetahprofile is consistent
with an influence graph. If so, it is withessed by total labgdi of the vertices and edges,
which are generated via the following rules:

labelV(V, +); labelV(V, —) < vertexV).

labelE(U, V, +); labelE(U, V,—) < edgeU, V). ®)

Moreover, the following rules ensure that known labels aspected by total labelings:

labelV(V, S) < observedVV;, S).

labelEU, V, S) «+ observedEl,V, S). “)

Note that the stability criterion for answer sets demandsahknown label derived via
a rule in [3) is also derived vidl(3), thus, excluding the ogifeolabel. In fact, the dis-
junctive rules used in this section could actually be regdawith non-disjunctive rules
via “shifting” (Gelfond et al. 1991@, given that our first encoding results in a so-called
head-cycle-freéHCF) (Ben-Eliyahu and Dechter 1994) ground program. Haxesimi-
lar disjunctive rules are also used in Secfidbn 5 where thapaebe compiled away. Also

1 Alternatively, one could also use cardinality constraijfs (Lparse Manual)), which would however preclude
a comparison witttllv in Sectior[ 7.
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note that HCF programs, for which deciding answer set exigtestays in NP, are recog-
nized as such by disjunctive ASP solveérs (Leone et al. Z00&séher et al. 2008). Hence,
the purely syntactic use of disjunction, as done here, ihaonful to efficiency.

The following ground rules are obtained by combining theesehtic rules in[([3) and14)
with the facts in[(R):

labelV(Lacl, +); labelV(Lacl,—) + verteXLacl).
labelV(LacY, +); labelV(LacY, —) + verteXLacY).
labelE(Lacl, LacY, +); labelE(Lacl, LacY,—) + edgéLacl, LacY). (5)
labelV(Lacl, +) + observedVLacl, +).
labelE(Lacl, LacY,—) + observedB.acl, LacY,-).

One can check that the program consisting of the factislinr@)tle rules in[(5) admits
two answer sets, the first one includifabelV(LacY, +) and the second one including
labelV(LacY,—). On the remaining atoms, both answer sets coincide by congathe
atoms in[(2) along witttabelV(Lacl, +) andlabelE(Lacl, LacY, -).

4.3 Testing Solution Candidates

We now check whether generated total labelings satisfy itire consistency constraints
stated in Definitiol 2]2, requiring an influence of sigfor each non-input vertexwith
variations. We thus defineeceivéi, s) to indicate that receives an influence of sign

receivéV, +) < labelEU, V, S), labelV(U, S).
receivéV,—) « labelEU,V, S),labeV(U, T), S # T.
Inconsistent labelings, where a non-input vertex doesaugive any influence matching
its variation, are then ruled out by integrity constrairftthe following form:

(6)

+ labelV(V, S), not receivéV, S), not input(V). (7

Note that the schematic rules [ (6) andl (7) are given in tpatitanguage of grounder
gringo (Gebser et al. 2009a). This allows us to omit an explicitrlgtof some “domain
predicates” in the bodies of rules, which would be necesshgn usindparse(Lparse Manual).
At (BioASP Tools), we provide encodings fgringo and also (more verbose ones) for
Iparse

Starting from the answer sets described in the previousestibg, the included atoms
labelE(Lacl, LacY,—) andlabelV(Lacl, +) allow us to deriveeceivélLacY, —) viaa ground
instance of the second rule il (6), whileceivéLacY, +) is not derivable. After adding
receivéLacY,—), the solution candidate containitapelV(LacY,—) satisfies the ground
instance of the integrity constraint in] (7) obtained by sitosng LacY forV and-for S.
Assuming Lacl to be an input, as it can be declared viaifgmit(Lacl), we thus obtain an
answer set containinigbelV(LacY,—), expressing a decrease of LacY. In contrast, since
receivéLacy, +) is underivable, the solution candidate containialgelV(LacY, +) vio-
lates the following ground instance 61 (7):

+ labelV(LacY, +), not receivéLacy, +), not input(LacY).

That is, the solution candidate wiklibelV(LacY, +) does not pass the consistency test.
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4.4 Soundness and Completeness

By letting7((V, E, o), ) denote the set of facts representing the problem instadeead
by an influence grapllV, E, o) and a vertex labeling, and P the logic program con-
sisting of the rules given in{3)X(4).1(6), arid (7), respeddti, we can show the following
soundness and completeness results.

Theorem 4.1Soundnegs
Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
If there is an answer set &> U 7((V, E, o), 1), then(V, E, o) andp are consistent.

Theorem 4.ZCompletenegs
Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
If (V, E, o) andy are consistent, then there is an answer s@ot 7((V, E, o), u).

The following correspondence result is immediately otediftom Theoremn 4]1 ahd 4.2.

Corollary 4.3(Soundness and Completerjess
Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
Then,(V, E, o) andy are consistent iff there is an answer sePofU 7((V, E, o), 1).

5 ldentifying Minimal Inconsistent Cores

In view of the usually large amount of data, it is crucial t@yide concise explanations
whenever an experimental profile is inconsistent with amarfte graph (i.e., if the logic
program given in the previous section has no answer sethi¥cehd, we adopt a strat-
egy that was successfully applied on real biological dataz{@owski et al. 20077). The
basic idea is to isolate minimal subgraphs of an influencplgsach that the vertices and
edges cannot be labeled consistently. This task is closklted to extracting Minimal Un-
satisfiable Cores (MUCs) (Dershowitz et al. 2006) in the exndf Boolean satisfiability
(SAT). In allusion, we call a minimal subgraph of an influemecaph whose vertices and
edges cannot be labeled consistentliyliaimal Inconsistent CoréMIC), whose formal
definition is as follow$]

Definition 5.1(Minimal Inconsistent Cofe
Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
Then, a subsdl’” of V' is aMinimal Inconsistent Cor€MIC), if

1. for all total extensions’ : E — {+,—} of o andy’ : V' — {+,—} of p, there is
some non-input vertekxe W such tha/(¢) is inconsistent, and

2. for everyW’ C W, there are some total extensios's: £ — {+,—} of ¢ and
w' : V — {+,—} of u such that./(¢) is consistent for each non-input vertex W’'.

2 We note that verifying a MUC is Bcomplete [[Dershowitz et al. 2006; Papadimitriou and Y&akes 1982),
and the same applies to MICs in view of the reduction of SATcdbeed in Sectiof 4. However, solving a
decision problem is not sufficient for our application bessmwve also need to provide MIC candidates to
verify. As regards checking inconsistency of an (a prioknown) MIC candidate, we are unaware of ways to
accomplish such a co-NP test in non-disjunctive ASP witliastroying the candidate at hand.
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Figure 2. A partially labeled influence graph and a MIC camsisof A andD.

To encode MICs, we make use of three important observatiadenon Definitio 5]1.
First, the inherent inconsistency of a MIC's vertices seéped in the first condition must
be implied by the MIC and its external regulators, while &% not connected to the MIC
cannot contribute anything. Moreover, the second conditio proper subsets prohibits
the inclusion of an input vertex in a MIC, as it could alwaysrbmoved without affect-
ing inherent (in)consistency of the remaining verticesiatons. Finally, for establishing
consistency of all proper subsets of a MIC, it is sufficientémsider subsets excluding a
single vertex of the MIC, given that their consistency asffiorward to all smaller subsets.

For illustration, consider the influence graph and the MIGigure[2. One can check
that the observed simultaneous increas® @ndD is not consistent with the influence
graph, but the reason for this might not be apparent at fiestagl. However, once the MIC
consisting ofA andD is extracted, we see that the increasB ahplies an increase &, so
that the observed increase@fcannot be explained. Note that the elucidation of inherent
inconsistency provided by a MIC takes its vertices alon@pwhikir regulators into account,
the latter being incapable of jointly explaining the vaoas of all vertices in the MIC.

We next provide an encoding for identifying MICs, where aljjem instance, that is, an
influence graph along with an experimental profile, is repmésd by facts as specified in
Sectiorf4.lL. The encoding then consists of three parts:rdigénerating MIC candidates,
the second asserting inconsistency, and the third vegfiyimimality.

5.1 Generating MIC Candidates

The generating part comprises rules[ih (4) for deriving knewrtex and edge labels. In
addition, it includes the following rules:

activgV); inactivgV') < verteXV'), not input(V).
edgeMIGU, V) + edgdU, V), activgV).
vertexMIQU) < edgeMIGU, V).
vertexMIQV') « activgV).
)

labelV(V, +); labelV(V, —) «+ vertexMIQV).
labelE(U, V, +); labelE(U, V,—) + edgeMIGU, V).

(8)

The first rule permits guessing non-input vertices formindl&€ candidate. Such vertices
are marked aactive The subgraph of the influence graph consisting of the avéveces,
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their regulators, and the connecting edges provides theexioof the MIC candidaté.The
vertices and edges contributing to this subgraph are ififeshtiiavertexMICandedgeMIC
The guessing of (unobserved) vertex and edge labels isctestto them in the last two
rules of [8). Finally, note that the rules id (4) propagatewn labels also for vertices and
edges not correlated to the MIC candidate, viz., to the astartices. This does not incur
additional combinatorics; rather, it reduces derivatidegending on MIC candidates.

5.2 Testing for Inconsistency

By adapting the methodology used lin (Eiter and Gottlob 19@1) following subprogram
makes sure that the active vertices cannot be labeled temiys taking (implicitly) into
account all possible labelings for them, their regulatangl connecting edgés:

oppositéU, V) + labelEU, V,-), labelV(U, S), labelV(V, S).
oppositéU, V) «+ labelEU, V, +),labelV(U, S), labeM(V, T), S # T.
bottom« activegV'), opposit¢U, V') : edgdU, V).
+ not bottom
)
labelV(V, +
labelV(V,—
labelE(U, V, +
labelE(U, V,—

< bottomvertexV).
+ bottomvertexV).
<+ bottomedgdU, V).
<+ bottomedgdU, V).

e —

In this (part of the) encodin@pposit¢U, V') indicates that the influence of regulatgr
onV is opposite to the variation df. If all regulators of an active verteéX have such an
opposite influence, the sign consistency constrainifas violated, in which case atom
bottomalong with all labels for vertices and edges are derivedeNbat the stability
criterion for an answer seX imposes thabottomand all labels belong t& only if the
active vertices cannot be labeled consistently. Finafliegrity constraint— not bottom
necessitates the inclusion lobttomin any answer set, thus, stipulating an inevitable sign
consistency constraint violation for some active vertex.

Reconsidering our example in Figdre 2, the ground instantdB) permit guessing
active/A) andactivg D). When labelingA with + (or assumingabelV(A, +) to be true), we
deriveopposit¢A, D) andbottom producing in turn all labels for vertices and edges. Fur-
thermore, setting the sign Afto— (orlabelV(A, —) to true) makes us derivappositéB, A),
which again givedottomand all labels for vertices and edges. We have thus verifid th
the sign consistency constraints #andD cannot jointly be satisfied, given the observed
increases oB andD. That is, active verticeA andD are sufficient to explain the incon-
sistency between the observations and the influence graph.

3 In Definition[5.1, (in)consistency is checked only for therfrinput) vertices in a MIC, while other vertices’
variations do not need to be explained. Hence, guessingsenadd vertex (and edge) labels can be restricted
to vertices belonging to or connected to the MIC, which redutombinatorics.

4 In the language ofringo (andlparse), the expressionppositéU, V) : edgdU, V) used below refers to the
conjunction of all ground atomspposit€j, ) for which edge j, 7) holds.
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5.3 Testing for Minimality

It remains to be verified whether the sign consistency camd# for all active vertices are
necessary to identify an inherent inconsistency. Thissdsised on the idea that, excluding
any single active vertex, the sign consistency constréntbe other active vertices should
be satisfied by appropriate labelings, which can be impleeteas follows:

labelV' (W, V, +); labelV'(W, V, —) < activg W), vertexMIG V).
labelE' (W, U, V, +); labelE'(W, U, V,—) « active(WW), edgeMIGU, V).
labelV' (W, V, S) < activg W), observedVV, S).
labelE(W, U, V, S) + activg W), observedE, V, .S). (10)
receive(W, V, +) « labelE'(W, U, V. S), labelV' (W, U, S),V # W.
receive(W, V,-) < labelE'(W, U, V, S),labelV'(W, U, T),V £ W,S # T.
+ labelV' (W, V, S),active V),V # W, not receive(W, V, S).

This subprogram is similar to the consistency check encwiethe rules in[(B),[(4)[(6),
and [T). However, sign consistency constraints are onlgladt for active vertices, and
they must be satisfiable for all but one arbitrary activeese¥t’ . In fact, labelings such that
the variations of all active vertices but are explained witness the fact tH&t cannot be
removed from a MIC candidate without re-establishing cstesicy. ASIW ranges over all
(non-input) vertices of an influence graph, each activeexed taken into consideration.
Regarding computational complexity, recall from Secfibthdt checking consistency is
NP-complete. As a consequence, one cannot easily identifittons to select a particular
witness for consistency of a MIC candidate minus some vé#teand so we do not encode
any such conditions. This leads to the potential of mult§piswer sets comprising the same
MIC but different witnesses, in particular, if many verscend edges belong to the context
of the MIC.

For the influence graph in Figure 2, it is easy to see that tire@nsistency constraint
for A is satisfied by setting the sign #fto +, expressed by atotabelV'(D, A, +) in the
ground rules obtained from the above encoding part. In thensign consistency constraint
for D is satisfied by setting the sign #fto —. This is reflected by atorabelV'(A, A, -),
allowing us to deriveeceive{A, D, +). That is, the ground instance of the above integrity
constraint containinabelV'(A, D, +) is satisfied. The fact that atoriabelV’'(D, A, +) and
labelV'(A, A, -), used for explaining the variation of eitharor D, respectively, disagree
on the sign ofA also shows that jointly considerigandD yields an inconsistency.

5.4 Soundness and Completeness

Similar to Sectioh 4]4, we can show the soundness and coengles for our MIC extrac-
tion encodingPp, consisting of the rules im{4)Y1(8].1(9), aid[10), respesdyi.

Theorem 5.1Soundnegs
Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
If X isananswersetdPp UT((V,E,o),u), then{i | active(i) € X} is a MIC.

Theorem 5.ZCompletenegds
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Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
If W C Vis a MIC, then there is an answer s€tof Pp U 7((V, E, o), 1) such that
{i | active(i) € X} = W.

The following correspondence result is immediately otediftom Theoremn 511 and 5.2.

Corollary 5.3(Soundness and Completerjess

Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
Then,W C V is a MIC iff there is an answer s&f of Pp U 7((V, E, o), ) such that

{i| activg(i) € X} =W.

As mentioned above, several answer sets may representiigeMEC because witnesses
needed for minimality testing are not necessarily unique.

6 Refinements

In this section, we detail two encoding extensions aimirth@improvement of grounding
and solving efficiency. First, input reduction checks fomgosimple cases to identify and
distinguish uncritical vertices. Second, background Kedge about MICs’ connectivity
can be exploited to more precisely render potential MIC @iatds.

6.1 Input Reduction

Itis not unlikely in practice that biological networks incle simple tractable substructures
or that parts of experimental observations are easily éxgta Dealing with such particular
cases before doing complex computations (like checkingistancy or finding MICs) is
therefore advisable. Given an influence graphFE, o) and a partial vertex labeling
capturing experimental data, we below describe condittonislentify vertices that can
always be labeled consistently. Such vertices can then lokeethas (additional) inputs to
exclude their sign consistency constraints from consistehecking and to make explicit
that they cannot belong to any MIC. Any of the following caimtis is sufficient to identify

a vertex; as effectively unconstrained:

1. Thereis aregulation— i in E such thav (i,) = +, that is,i supports its variation.

2. Thereis aregulation— i in E such thawv (7, 4) is undefined. In fact, undetermined
regulations are used in practice to model influences that eag., relative to en-
vironmental conditions. Any variation of the targebf such a regulation can be
explained by assigning the appropriate label te i (w.r.t. the label ofy).

3. There areregulations— ¢, k — i in E suchthaj(j)o(j, i) =+andu(k)o(k,i)=—
That is, any variation of is already explained by the given observations.

4. An observed variation(:) of i is explained if there is some regulatign- i in F
such thai:(j)o(4,4) = u(é). Any further regulations targetingcan be ignored.

5. If for all regulations: — k in E, we have thak is an input, then the variation of
is insignificant for its targets. In this casejifs unobservedi((7) is undefined) and
target of at least one regulatign— i in F, we can assign an appropriate labef to
(w.r.t. the labels ofi andj — ¢) without any further conditions.
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Figure 3. A partially labeled influence graph with uncriticartices surrounded by dots.

6. There is a regulation— 4 in E such thatj is unobservedy((j) is undefined), an
input, and all targets # i of j ( — k belongs taF)) are inputs. Without any further
conditions, we can assign an appropriate labélfar explaining the variation of.

The reduction idea is to mark a verteas additional input, if it meets one of the above
conditions. Since the two last conditions inspect inputsytmay become applicable to
further vertices once inputs are added. Hence, checkingahditions and adding inputs
needs to be done exhaustively. As we see below, this caly dasiincoded in ASP.

Reconsidering the influence graph and partial observaiiRigjure2, we see that ver-
tex B receives an influence frold matching its observed increase. Thus, the fourth con-
dition applies to already explained vertBx Moreover, verteXe is unobserved and does
not regulate anything. That is, the fifth condition applie&t and its variation can simply
be picked from influences it receives frofy C, andD. After establishing thaE can be
labeled consistently, we find th@tdoes not regulate any critically constrained vertex. Ap-
plying again the fifth condition, we notice that the variatmf C is actually insignificant.

Figure[3 shows the situation resulting from the identifimatof uncritical vertices by
iteratively applying the above conditions. The fact thalyolh andD are critically con-
strained tells us that only they can belong to a MIC. As a cgusece, the MIC contain-
ing A andD, shown on the right-hand side of Figlile 2, is the only oneimeiample.

The aforementioned idea to mark uncritical verticesyasitcan be encoded as follows:

obgV) < observedVV, S).
getV, +) «+ observedEU, V, S), observed\U, S).
getV,—) <+ observedEl, V, S), observedVU, T), S # T.

input(V) + observedEV, V, +).

input(V') < edgeU, V'), not observedEl, V, +), not observedil, V, -).
input(V) « get(V, +), get(V, -).

input(V) « observedVV, S), getV, S).

input(V) + edgdU, V), input(1V) : edgéV, W), not obgV).

input(V) + edgdU, V), input(1V) : edgeU, W) : W # V,input(U), not obgU).

Auxiliary predicatesobs and get are used to exhibit whether either variation has been
observed for a vertex and whether a particular influencecisived for certain, respectively.
The last six rules check the described conditions (in theesarder) and mark a vertex as
input if one of them applies. Importantly, the above rules aretifird and thus yield a
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Figure 4. A partially labeled influence graph and the grép{ A, D}], E[{A, D})).

unique set of derived input vertices. This allows us to penféthe reduction efficiently
within grounding, without deferring to any procedural iraplentation external to ASP.

The situation shown in Figuid 3 is reflected by the reductincoeing deriving atoms
input(B), input(C), andinput(E) from an instance (cf. Sectidn 4.1) corresponding to the
depicted influence graph and observed variations. Consigtehecking and MIC identifi-
cation (cf. Sectiohl4 arid 5) can then focus on the remainimginput verticesA andD.

6.2 Exploiting Strongly Connected Componentsfor MIC Extraction

In what follows, we introduce a connectivity property of Mi@at can be used to further
refine the encoding presented in Seclibn 5. Incorporatidiiadal background knowledge
into the problem encoding is straightforward (as soon ak knowledge is established). In
practice, ancillary (and actually redundant) conditioresyreignificantly narrow and thus
speed up both the grounding and the solving process.

MIC Connectivity PropertyFor analyzing interactions within a MIC, we make use of a
graph described in the following. L€V, E, o) be an influence graph and: V' — {+ -}

be a (partial) vertex labeling, and 1&t(x.) denote the set of vertices labeled byFor a
setW C V of vertices, we define a gragh’[W], E[IV]) by:

VW] = WU{j|(j—i)eE,iecW}
EW] = {(G—=i) (=i eEie WhU{(i—j)|(—i)eEicW,j¢Du}.

The construction of V[WW], E[W]) is based on the idea that a regulatof some; € W is
connected té via its sign consistency constraint, and a connection iogp®osite direction
applies ifj is unlabeled by.. In fact, given some total extensions: £ — {+,—} of o and
'V — {+,-} of 4, we can check a matching influencejaini by /(i) = p/(j)o’(4,7)

or equivalently byy/(j) = p/(i)o’(4,4). That is, provided that(j) is undefinedy’(7)
constraing/(j) by contraposition wheneveroes not receive a matching influence from
any other regulator than This observation motivates the inclusion of inverse edges
vertices inW to regulators unlabeled yin E[W].

For illustration, the right-hand side of Figuré 4 shows ¢rép [{A,D}], E[{A,D}])
resulting from the partially labeled influence graph on @ife-hand side. The single reg-
ulator B of A is labeled, and thus there is no inverse edge ffoto B in E[{A,D}]. On
the other handA is an unlabeled regulator @, and soE[{A, D}] includes an inverse
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edge fronD to A. The addition of this edge turns the subgrapfiof{A, D}|, E[{A,D}])
induced byA andD into a strongly connected component. In view tAandD belong to
a MIC (as discussed in Sectibh 5), we below show that this ectivity is not by chance.

Theorem 6.1IMIC Connectivity

Let (V, E, o) be an influence graph and: V' — {+,—} a (partial) vertex labeling.
If W C V is a MIC, then all vertices iV belong to the same strongly connected
componentinV[W], E[W]).

The proof is omitted in view of space limitations and can baoted from the authors.

Optimized MIC EncodingWe now apply Theoreimn 8.1 to improve the basic MIC extrac-
tion encoding (cf. Sectioh]5) in two aspects: adding (reduntdconstraints for search
space pruning and adding positive body literals for redygrounding efforts. The fol-
lowing rules pave the way by determining the (non-triviélpagly connected components
in (V, E[V]) as an over-approximation of the oneqIn[W], E[W]) foranyW C V:

edgesU, V) «+ edgeU, V), not input(V).

edges$V,U) « edgdU, V), not input(V'), not observed\U, +), not observed\U, ).
reachlU, V) < edges$U, V). (11)
reachlU, V) < edge$U, W), reach W, V'), verteXV).

cyclgU, V) < reachU, V), reachV,U),U # V.

The first rule simply collects edges whose targets are naitjmghile the second rule adds
edges in the inverse direction for unobserved regulata@acRability w.r.t. the so obtained
graph is determined via the third and the fourth rule. Finaltedicatecycle indicates
whether two (distinct) vertices reach each othgfiinE[V]) relative to an influence graph
(V, E, o) and a (partial) vertex labeling In fact, if two vertices belongtoa MI@" C V,
then mutual reachability idV [W], E[W]) implies the same i{V, E[V]), in view that
VW] C V and E[W] C E[V]. Conversely, if two vertices do not reach each other in
(V, E[V]), then they cannot jointly belong to any MIC.

The over-approximation of potential MICs provides an eagans to prune the search
space by adding the following integrity constraint:

+ activqU), activgV),U < V, not cyclgU, V). (12)

The constraint makes the fact explicit that distinct vegiof a MIC must reach each other
in (V, E[V]), and it immediately refutes MIC candidates that do not Batigs condition.

After making use of Theorem8.1 to narrow search, we now #feffocus to grounding.
As a matter of fact, the quadratic space complexity of themmatity test’s ground instan-
tiation, as encoded i (1.0), is a major bottleneck in scallie knowledge about potential
pairwisely connected vertices in MICs, represented bygiiteconstraint[(1R), also allows
us to include positive body literals in order to restrict fm®pe of minimality tests:
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labelV'(W, V, +); labelV'(W, V,—) < activg W), activgV'), cyclgV, W).
labelV' (W, U, +); labelV' (W, U, —) « active W), edgeMIGU, V), cyclgV, ).
labelE' (W, U, V, +); labelE' (W, U, V,-) + activg W), edgeMIQU, V), cycldV, W).
labelV' (W, V, S) « activg W), observedVV, S), cyclgV, W).
labelV'(W, U, S) « activg W), observedVU, S), edgU, V), cyclgV,W).  (13)
labelE'(W, U, V, S) «+ activg W), observedEl, V, S), cyclgV, W).
receive(W, V, +) < labelE'(W,U,V, S), labelV'(W, U, S).
receive(W, V,—) « labelE'(W, U, V, S),labelV'(W,U,T), S # T.
« labelvV'(W,V, S), activg V'), cyclgV, W), not receive(W, V, S).

~— — — —

In comparison to[(10), the extra conditiopclg V, W) in the bodies of the first three rules
establishes that labels used for testing minimality aresge@ only for pair$l” andV' of
vertices that can potentially jointly belong to a MIC. Thesarestriction is used in the next
three rules forwarding observed vertex and edge labelsidwtimited to vertices that can
jointly belong to a MIC and to their respective regulatoisafly, the last two rules and the
integrity constraint perform the same test adid (10) forstrieted set of pair§l’ andV'.
(The fact thacyclgV, W) impliesV # W in labelE'(W, U, V, S) also allows us to drop
this condition, used i {10), from the bodies of the rulesrde{j receive)

The complete optimized MIC encoding consists of the oribinkes in (3), [8), and{9),
(@171) and[[1R) as add-ons, and](13) as a replacemeriifor (30egards the computational
impact, we note that the optimized encoding needs less tharséconds for grounding
and finding all MICs on the case study in Secfiod 7.3, whiclk tmore than a minute with
the unoptimized encoding.

A second version of the optimized encoding is obtained biyt¢iging the considera-
tion of connected vertices itV [W], E[W]) relative to a MIC candidat& . This can be
achieved by adding conditicactive(V') to the rules in[(1l1) defining thedgespredicate.
In this way, the static reachability information encodedlid), which is completely eval-
uated by groundegringo, is turned into a dynamic relation computed during search. A
it turns out, there is no significant performance differebetveen these two versions of
the optimized MIC extraction encoding on the case study oti&e7.3. Hence, more real
examples are needed to reliably compare their groundingalwihg efficiency.

7 Empirical Evaluation and Application

For assessing the scalability of our approach, we start bgaiving a parameterizable
suite of artificial yet biologically meaningful benchmarkster that, we present a typical
application stemming from real biological data, illusingtthe exertion in practice. All
experiments were performed using input reduction as exgthin Sectio 611.

7.1 Checking Consistency

We first evaluate our approach on randomly generated instaa@ming at structures simi-
lar to those found in biological applications. Instancesa@mposed of an influence graph,
a complete labeling of its edges, and a partial labelingsoféttices. Our random generator
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claspD| claspD| claspD| cmodelg div gnt
a| Berkmin| VMTF| VSIDS
500 0.14 0.11 0.11 0.16| 0.46] 0.71
1000 0.41 0.25 0.25 0.35| 192 334
1500 0.79 0.38 0.38 0.53] 4.35] 7.50
2000 1.33 0.51 0.51 0.71| 8.15] 13.23
2500 2.10 0.66 0.66 0.89| 13.51] 21.88
3000 3.03 0.80 0.79 1.07| 20.37| 31.77
3500 3.22 0.93 0.92 1.15| 21.54] 34.39
4000 4.35 1.06 1.06 1.36| 30.06| 46.14

Table 2. Run-times for consistency checking witaspD, cmodelsdlv, andgnt.

takes three parameters: (i) the numbeof vertices in the influence graph, (ii) the average
degreeg of the graph, and (iii) the proportion of observed variations for vertices. To
generate an instance, we compute a random graphowitértices (the value ofr vary-
ing from 500 to 4000) under the model by Erdés-Rényi (1959). Each pair of gerihas
equal probability to be connected via an edge, whose lal@idsen independently with
probability 0.5 for both signs. We fix the average degrgéo 2.5, which is considered to
be a typical value for biological networks (Jeong et al. 20@nally, |y« | vertices are
chosen with uniform probability and assigned a label withigability 0.5 for both signs.
For each number of vertices, we generated 50 instances using five differaioies fory,
viz.,0.01, 0.02, 0.033, 0.05, and0.1. All instances are available at (BioASP Tdols).

We usedyringo (2.0.0) (Gebser et al. 2009a) for combining the generatadites and
the encoding given in Sectidh 4 into equivalent ground paos. For checking consistency
by computing an answer set (if it exists), we ran disjunctA®P solversclaspD (1.1)
(Drescher et al. 2008) with “Berkmin”, “VMTF”", and “VSIDS"duristicscmodelq3.75)
(Giunchiglia et al. 2006) usingchaff dlv (BEN/Oct 11) (Leone et al. 2006), agat (2.1)
(Janhunen et al. 2006). All runs were performed on a Linuxhimecequipped with an
AMD Opteron 2 GHz processor and a memory limit of 2GB RAM.

Table2 shows average run-times in seconds over 50 instarcesimbery of vertices,
including grounding times adringo and solving times. We checked that grounding times
of gringoincrease linearly with the numbaerof vertices, and they do not vary significantly
over~. For all solvers, run-times also increase Iinearlwﬁ For fixeda values, we found
two clusters of instances: consistent ones where totalitefsawvere easy to compute, and
inconsistent ones where inconsistency was detected freaspigned labels. This tells
us that the influence graphs generated as described abousuaky (too) easy to label
consistently, and inconsistency only occurs if it is exigiicintroduced via fixed labels.
However, such constellations are not unlikely in practicfe $ectior’Z.B), and isolating
MICs from them, as done in the next subsection, turned oug tealod for most solvers. Fi-
nally, greater values foy led to an increased proportion of inconsistent instancebpwt
making them much harder.

5 Longer run-times otlaspDwith “Berkmin” in comparison to the other heuristics are daea more expen-
sive computation of heuristic values in the absence of atnfiformation. Furthermore, the time needed for
performing “Lookahead” slows dowalv as well agnt
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gringo claspD claspD claspD

«@ Berkmin VMTF VSIDS
50 0.24 1.16 (0) 0.65 (0) 0.97 (0)
75 0.55| 39.11 (1) 1.65 (0) 3.99 (0)
100 0.87| 41.98 (1) 3.40 (0) 4.80 (0)
125 1.37| 15.47(0) 47.56(1) 10.73(0)
150 2.02| 54.13(0) 48.05(0) 15.89 (0)
175 2.77| 30.98 (0)) 116.37 (2) 23.07 (0)
200 3.82| 42.81(0) 52.28(1) 24.03(0)
225 4.94| 99.64 (1)) 30.71(0) 41.17 (0)
250 5.98| 194.29 (3y 228.42 (5] 110.90 (1
275 7.62| 178.28 (2) 193.03 (4) 51.11 (0)
300 9.45| 241.81(2) 307.15(7) 124.31(0

Table 3. Run-times for grounding witfringo and solving withclaspD,

7.2 ldentifying Minimal Inconsistent Cores

We now investigate the problem of finding a MIC within the sasatting as in the previous
subsection. Because of the elevated size of ground inatamis and problem difficulty, we
varied the numbet: of vertices fronb0 to 300, thus, using considerably smaller influence
graphs than before. We again ugéngo for grounding, now taking the encoding given in
Sectiorb. As regards solving, we restrict our attentionlé&spDbecause all three of the
other solvers showed drastic performance declines.

Table[3 shows average run-times in seconds over 50 instaecasumberx of ver-
tices. Timeouts, indicated in parentheses, are taken agrmaaxtime of 1800 seconds.
We observe a quadratic increase in grounding timegriofgo, which is in line with the
fact that ground instantiations for our MIC encoding grovadratically with the size of
influence graphs. In fact, the schematic rules in Se¢fiolhg& rise toa copies of an
influence graph. Considering solving times spentlagpDfor finding one MIC (if it ex-
ists), we observe that they are relatively stable, in thesdmat they are tightly correlated
to grounding times. This regularity again confirms thatuiio it is random, the applied
generation pattern tends to produce rather uniform inflagmaphs. Finally, we observed
that unsatisfiable instances, i.e., consistent instanitheut any MIC, were easier to solve
than the ones admitting answer sets. We conjecture thatstiscause consistent total
labelings provide a disproof of inconsistency as encod&eirtior{ 5.P.

As our experimental results demonstrate, computing MIGsoimputationally harder
than just checking consistency. This is not surprising bseahe related (yet simpler) deci-
sion problem of verifying a MUC is Bcompletel(Dershowitz et al. 2006; Papadimitriou and Y&aka 1982)
and thus more complex than just deciding satisfiability Wéiir declarative technique, we
spot the quadratic space blow-up incurred by the MIC engpitirSectior[ b as a bottle-
neck. However, there are approaches aiming at a reductigroahding efforts, and some
of them have been presented in Secfibn 6.
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Figure 5. Some MICs obtained by comparing the regulatorwort of yeast with a ge-
netic profile.

7.3 Biological Case Study

In the following, we present the results of applying our aygwh to real-world data of
genetic regulations in yeast. We tested the gene-regylattwork of yeast provided in
(Guelzim et al. 2002) against genetic profile datartf?knock-outs[(Sudarsanam et al. 2000)
from the Saccharomyces Genome Date@aﬂae regulatory network of yeast contains
909 genetic or biochemical regulations, all of which haverbestablished experimentally,
among 491 genes.

Comparing the yeast regulatory network with the genetidilerof snf2 we found the
data to be inconsistent with the network, which was easiteaed using the approach
of Sectior 4. Applying our diagnosis technique from Sediipwe obtained a total of 19
MICs. While computing the first MIC took less than a secondggringoandclaspD(re-
gardless of the heuristic used), the computation of all MM@s considerably harder. Us-
ing “WMTF" as search heuristic on top of the enumeration alpon (Gebser et al. 2007)
inherited fromclasp(Gebser et al. 2009c}jaspDhad found all 19 MICs in about 30 sec-
onds, while another 40 seconds were needed to decide thatitheo further MIC. With
“VSIDS", finding the 19 MICs took about the same time as withMVF”, but another
80 seconds were used to verify that all MICs had been fournmhlllyj using “Berkmin”
heuristic, 12 MICs had been found before aborting after 3@uteis. The observation that
search heuristics matter tells us that investigationstheetructure of biological problems
and particular methods to solve them efficiently can earrsicienable benefi@Further—
more, we note that the potential existence of multiple ans&ts encompassing the same

Shttp://www.yeastgenome.org

7 Notably, by exploiting additional background knowledgee optimized encoding presented in Secfiod 6.2
requires less than two seconds (regardless of heuristicgréunding and finding all 19 MICs. In fact, its
ground instantiation contains only 8481 atoms and 1084&sridompared to 47260 atoms and 56522 rules
with the basic encoding in Sectifih 5. In addition to problerne salso the difficulty drops dramatically: from
23345 conflicts down to 270 conflicts, encountered with “VMTEuristic during search for all answer sets.
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Figure 6. Subgraph obtained by connecting the six MICs gindfigure[5.

MIC did not emerge on the yeast network amd2knock-out data. That is, we obtained 19
answer sets, each one corresponding one-to-one to a MIC.

Six of the computed MICs are exemplarily shown in Figure 5.ilé/the first three of
them are pretty obvious, we also identified more complexItagies. However, our exam-
ple demonstrates that the MICs obtained in practice atesstall enough to be understood
easily. For finding suitable corrections to the inconsisies it is often even more helpful
to display the connections between several overlappingsM@bserve that all six MICs
in Figure[® are related to genane6 Connecting them yields the subgraph of the yeast
regulatory network in Figure 6.

The most obvious problem in Figurk 6 is that the observe@as® ofime6is incompat-
ible with its four targets. This suggests that either thesoletion onume6is incorrect or
that some regulations are missing or wrongly modeled. Iditeehypothesis though, one
should note that the current model cannot explain a dectfasae8 this would imply an
increase okin3and in turn an increase afbl, but then there would be no explanation left
for the variation ohsc82andrapl. So, in either case, our model should be revised. This is
not a great surprise: our literature-based network, alihozery reliable, was presumably
far from being complete.

Regarding the biological background, note thate6is a known regulator of sporu-
lation in yeast: in case of nutritional stress, yeast celp slividing and produce spores
by meiosis. These spores are reproductive structuresr tedtgpted to extreme condi-
tions. ume6is known as a key inhibitor of early meiotic genes: upon eimtryneiosis,
this inhibitory effect is released and the target genes g&peessed. Notably, a knock-
out of ume6causes the expression of meiotic genes during vegetatoxetigrhence its
name,Unscheduled Meiotic Expressipas well as almost complete failure of sporulation
(Washburn and Esposito 2006jme6seems to have activation capabilities as well, though
in that case the effect is believed to be indirect (Chen éXG07).

In the current viewume6switches from inhibitor to (indirect) activator at the bieging
of meiosis: Ume6p (the protein corresponding to the geme§ has a repressive effect
when it forms a complex with Sin3p (note thgh3is in our network) and Rdp3p, which
is degraded upon entry in meiosis (Mallory et al. 2007). Thidecular mechanism can
be interpreted in our model and one possible result is gimdfigure[T. At least for neg-
ative targets, we now have a plausible explanation: thea#attor of the inhibition on
hsfl, spol2 topl, andumeéitself is the complex Ume6p-Sin3p, whose variation is un-
observed but depends on the variatiorunfe6andsin3 The variation of the targets can
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Figure 7. Local correction of the network based on our diaghmethod and literature
research.

be explained if the protein complex decreases, which isrm possible ifsin3 decreases.
Regretfullysin3is not observed in our data, but we note that a decrease afeéhsis fully
compatible with the rest of the network, that is, if we suppasdecrease akébl Now
concerningno2, our network should be updated with more recent evidences\aswed
in (Chen et al. 2007)ino2 has several additional regulators, suchopgl andpahl(see
FigurelT). The observed variation pahlis not useful to explain that dfio2, butopilis
definitely a plausible candidate.

Here we illustrated one main usage of our diagnosis teclenigentifying poorly mod-
eled regions of a regulatory network that are incompatilit & given data set. This is
definitely a key asset if one wants to build a large-scaleleegty database and check
its coherence with newly produced data on a regular basi®rGiew data, our diagnosis
method produces human-understandable representatipnssible incompatibilities with
the current model, which serve as the basis for a targetadtiitre research. With this data-
driven approach, a network can then be improved with consiidg less effort than with a
random traversal of publications, for a much more cohesnilt.

8 Web Service

To make our methods easily accessible to a biological aadieme built a web serviEe
not requiring any locally installed software on the useesitcept for a web browser. It
provides the possibility to upload textual representatioibiological networks as well as
experimental profiles. Also, a number of predefined examgllesvs a user to instantly
experience the functionalities of the web service. Theskide consistency checking and
diagnosis, i.e., finding MICs, whose implementation hasizbsailed in Sectionl4 and 5.
Influence graphs representing biological networks usualhytain vertices that are not
subject to any regulation. Such entities are understoodasatled by external factors,
like environmental or particular experimental conditiolis avoid trivial inconsistencies
due to such unregulated and thus unexplainable verticesyéib interface provides an

8http://data.haiti.cs.uni-potsdam.de/wsgi/app
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Diagnosis Result YJLO56C

found 19 minimal inconsistencies in 24 minutes and 44 seconds:

“YPRLLON", "YLRI3LC"
“YHRLSZN"

“YLR2S6N", *YALOS3C"

*YDRI23C"

"YLRIS2N", "YDR224C"

"YGRIGEN", *Y IL1SON"
“YNL241C*, *YLRLOGW"

*YILO13C", "YMRIOTW"

*YNLOOIN" , "YERLSI" YBR049C |
“YGLOTIN" ~

*YGRLOBN", "YPRLLON"
*YALOG3C", "YEROSSC"

“YIL1S9W", "YLRL31C"

"YGL2SSN"

“Y0LOOGC", "YNL216W" YOL004W YMRl 86W
"YOLOOGC", "YMRLBON" |

“YGRIOB", "YALO40C™ , “YDR224C"
*YOLOOBC" , *YDOR207C* , "YOLOOM"
*YALB40C", "YLRI31C", "YDR224C"

[ Join connected inconsistencies ( YDR207C )

Output Mode: [Text & -
[ Update |
!

YOLOOGC

[vmosz | ‘ Yarzow

T om— . A acommm N S
(WLR1316) (YORIOBWD (YILISOW ) (YFRIIOW) (YALOA0C) (YPR22IC) (YLRIE2W

M Join connected inconsistencies
Output Mode: | Graphical ¢ |
[ Update |

Figure 8. Representation of identified MICs in textual {leftd graphical (right) mode.

option “Guess input nodes” for automatically declaringvaitices without any predeces-
sor as inputs. While consistency checking simply results jositive or negative answer,
we offer three diagnosis modes: “find one inconsistencyhdfall inconsistencies”, and
“approximate all inconsistencies”. The first mode aims alifig a single MIC, and the
second at finding all of them. For the latter, we currently asencapsulating script that
repeatedly callslaspDwhile feeding already identified MICs back as integrity doaisits,
until no further answer set exists. This makes sure that aastver set corresponds to a
new MIC and thus avoids potential repetitions. The problérarmmerating answer sets
that differ on a set of “relevant” atoms (in our case, on insts of predicatactive is
addressed in_(Gebser et al. 2009b). The integration of #isnique intoclaspD, in or-
der to make the wrapper script obsolete, is subject to futird. Once MICs have been
computed, they can be represented either textually or gralhh as shown in Figurgl8.
If the result consists of several MICs, it is possible to vieverlapping ones in a com-
bined way, thus highlighting regions of inconsistency.dHly) the third diagnosis mode,
“approximate all inconsistencies”, works by marking thetiees of a computed MIC as
inputs before proceeding to look for further MICs. This aggirh has been used in previous
work (Guziolowski et al. 2009) and has been integrated intoftamework for compari-
son. However, the results obtained with the third mode departhe order in which MICs
are found and their vertices declared to be inputs in futoraputations. Further func-
tionalities, like prediction under consistency (Guziothivet al. 20017) and inconsistency
(Gebser et al. 2010), are also featured by the web servicarbwdutside the scope of this

paper.
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9 Discussion

We have provided an approach based on ASP to investigatetisistency between exper-
imental profiles and influence graphs. In case of inconsigt¢he concept of a MIC can be
exploited for identifying concise explanations, pointilogunreliable data and/or missing
reactions. The problem of finding MICs is closely relatedhe ¢xtraction of MUCs in the
context of SAT. From a knowledge representation point ofvylewever, we argue for our
ASP-based technique, as it provides an easy way to modeb&epnan terms of a uniform
encoding and specific instances.

The BioQuali system (Guziolowski et al. 2009) provides timmalities parallel to our
approach. It also works on influence graphs and applies tine sansistency notion. In
preprocessing, BioQuali reduces an influence graph bytitelpmarking unobserved ver-
tices that have no successors as uncritical. This techimsogiso realized by input reduc-
tion, described in Sectidn 8.1. After that, BioQuali traorsfis the reduced subgraph into a
Binary Decision Diagram, used for further computationsi/bonsistency checking with
BioQuali yields the same results as our technique, its disigrfunctionality works like the
“approximate all inconsistencies” mode, described in tfevipus section. In contrast to
our method, this does in general not admit finding all MICs.

By now, a variety of efficient ASP tools are available, bothdmunding and for solving
logic programs. Our empirical assessment of them (on raraowell as real data) has in
principle demonstrated the scalability of the approacle Wkb service implementation of
finding all MICs, which is genuine to our method and not a\d#an any other existing
tool, is still based on some workarounds for avoiding reduménswer sets. It is a subject
of future work to address this with answer set projectiond$ee et al. 2009b).

As elegance and flexibility in modeling are major advantagfésSP, our current appli-
cation makes it attractive also for related biological diees, beyond the ones addressed
in this paper. For instance, ongoing work deals with repadt prediction under consis-
tency as well as inconsistency (Gebser et al. 2010). Indyitwill also be interesting to
explore how far the performance of ASP tools can be tuned byingand optimizing
encodings for particular tasks. In turn, challenging aggilons like the one presented here
might contribute to the further improvement of ASP toolstteey might be geared towards
efficiency in such domains.

Appendix A Proof of Theorem[4.1 and 4.2
We formalize the representation of instances, as descitb&gction 4.1, by defining a
mappingr of an influence graptV, E, o) and a (partial) vertex labeling : V' — {+, —}:
T((V,E,0), ) = {vertexXi). |ieV}

U {edgd;, ). | (j—i) € E}

U {observedEj, i,s). | (j —1i) € E,o(j,i) = s}

U {observedVi, s). |i€V,u(i)=s}

U {input(i). | < € Visaninput . (AL)
By Pc, we denote the encoding containing the schematic rulés;{4g (8), and[(Ir).

Proof of Theoreri 411
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Assume thafX is an answer set d?c U 7((V, E, o), ). Furthermore, let

PX = {(head(r) <+ body(r)*)f |
re PeUT((V,E,0),pn), (body(r)=0)NX = 0,0 : var(r) — U}

wherewvar(r) is the set of all variables that occur in a rulg/ is the set of all constants

appearing inPc U 7((V, E, o), 1), andé is a ground substitution for the variablessin

Then, by the definition of an answer set, we know tKas a C-minimal model ofPX.
Given X, we defines’ andy’ as follows:

o' ={(j—i)—s|(j—1i) € E, labelEj,i,s) € X}

= {i—s|ieVlabelV(i,s) € X}.
We show that’ andy’ are total labelings of edges and vertices, respectiveth soat
w'(i) = ' (4)0' (4, 1) holds for every non-input vertexe V and some edgg— i in E.

Regarding the uniqueness of labels assigned’andy’, consider the following rules
from (3) and[(#) including predicatésbelE andlabelV in their heads:
labelV(V, +); labelV(V, —) < verteXV).
labelE(U, V, +); labelE(U, V,-) < edgdU, V).
labelV(V, S) < observedVV, S).
labelE(U, V, S) < observedE,V, S).

(A2)

Since the given (partial) labelings and iz assign unique labels to the elements of their
domains, facts definingbservedEandobservedVare of the formobservedEj, i, +). or
observedEj, i, —). andobservedVi, +). or observedVi, —)., respectively, and at most one
of these facts is contained ir((V, E, o), u) for an edge(j — i) € E or a vertexi € V.
BecauseX is a C-minimal model of PX, the atoms in the heads of facts areXn
and all atoms inX over predicatesbservedEand observedVare derived from facts in
7((V,E, o), ), in view that these predicates do not occur in the head of aleyim P
Hence, at most one of the atortabelE(j, i, +) andlabelE(j,i,—) or labelV(i,+) and
labelV(i,-), respectively, is derivable for an edgg— i) € E or vertexi € V from a
ground instance of the fourth or third rule [N {/A2) and thealimed in X . Furthermore,
the second and first rule in{A2) impose that at least oral#lE(j, i, +) or labelE(j, i, —)
andlabelV(i, +) or labelV(i,—) belongs toX for every edge(j —i) € E and vertex
1 € V, respectively, while the atom containing the opposite ll@aanot belong to & -
minimal model of PX. Hence, there is at most one tegnsuch thatabelE(j, i,s) € X
or labelV(i, s) € X for an edgej — i) € E or vertexi € V, respectively, and it holds
thats € {+,—}, which allows us to conclude that andy’ are total labelings.

As regards extending andu, we have that facbbservedEj, i, s). or observedVi, s).
belongs tor ((V, E, o), u) if o(4,i) = s or u(i) = s, respectively, is given. This implies
thatlabelE(j, i, s) € X orlabelV(i, s) € X, respectively, as the fourth or third rule [n(A2)
would be unsatisfied otherwise. Thus(j, i) = sif o(j,i) = s, andu/ (i) = sif p(i) = s.

It remains to be shown that (¢) is consistent for each non-input vertex V. To this
end, we note that the integrity constraint

+ labelV(V, S), not receivéV, S), not input(V').

from (7) necessitateeceivéi,r) € X if /(i) = r (thatis, iflabelV(i,r) € X) for a
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non-input vertex € V. Otherwise,P* would contain an unsatisfied ground instance in
view thatinput(i) € X exactly if factinput(¢). is included int((V, E, o), 1). However,
any ground instances of the integrity constraint contiitmuto P* do not contain atoms
over predicateeceive Such atoms can only be derived using the following rulemf(®):

receivéV, +) < labelEU, V, S), labelV(U, S).
receivéV,—) « labelEU,V, S),labeV(U, T), S # T.

SinceX is aC-minimal model of PX, receivei, +) € X or receivéi,—) € X is possible
only if labelE(j,i,s) € X andlabelV(j,t) € X such thats = ¢t or s # t, that is, if
o'(j,i) = sandy/(j) = t such that'(j)o'(j,i) = +or u/(§)o’(4,7) = — respectively.
As labelV(i, r) is accompanied byeceivéi, ) in X for each non-input vertexe V/, this
allows us to conclude that' (i) = r implies ' (j)o’(j, i) = r for some regulatoy of s.
Hence, we have that' (i) is consistent for each non-input vertex V. O

Proof of Theorerh 4]2
Assume tha(V, E, o) andp are consistent. Then, there are total extensigns £ —
{+,—} of o andy’ : V' — {+,-} of u such that, for each non-input vertex V', we have
w(i) = u'(j)o'(4,1) for some edgg — i in E.

We consider the following set of atoms:

X = {vertexi),labelV(i,s) |ieV,u/'(i) = s}
U {edg€j, i), labelE(j,i,s) | (j =) € E, 0’ (j,1) = s}
U {receivéi, ts) | (j—1i) € E,o'(j,i) = s,/ (j) =t}
U {observedEj, i, s) | (j—1i) € E,o(j,i) = s}
U {observedVi, s) eV, u(i) =s}
|

U {input(z) i€ Visaninpu} .

For showing thatX is an answer set dPc U 7((V, E, 0), ), we need to verify thak is
a C-minimal model of

PX = {(head(r) <+ body(r)*)d |
re€ PcUT((V,E, o), 1), (body(r)=0)NX =0,0: var(r) = U}

wherewvar(r) is the set of all variables that occur in a rulg/ is the set of all constants
appearing inPc UT((V, E, o), 1), andf is a ground substitution for the variablesrin

To start with, we note thaX includes an atorwertexi), edg€j, i), observedEj, i, s),
observedVi, s), andinput(z), respectively, exactly if there is a fact with the atom in the
head int((V, E, o), 1). Each of these facts belongs alsoRd , is satisfied byX, but not
by any setY” of atoms excluding at least one of the head atoms. Furthernsorces’
andy’ are total mappings, we have thdtabelE(j, , +), labelE(j,i,—)} N X| = 1 and
|{labelV(i, +), labelV(i,—)} N X| = 1 for every(j —i) € E andi € V, respectively.
Hence, X, but no subset” of X excluding at least one atom over predicded=I|E and
labelV, satisfies all ground instances of the following rules fr@niq PX:

labelV(V, +); labelV(V, —) < verteXV).
labelE(U, V, +); labelE(U, V,-) < edgdU, V).

In addition, sinces’ andy’ extends and ., respectively, all ground instances of the fol-
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lowing rules from[(%) inPX are satisfied byX:

labelV(V, S) < observedVV;, S).
labelEU, V, S) «+ observedEl,V, S).

SincelabelE(j, i, s) € X andlabelV(j,t) € X if /(j,4) = s andp’(j) = t, respectively,
we have thateceivei, ts) € X exactly if there is a ground instance of the rules

receivéV, +) < labelEU,V, S), labelV(U, S).
receivéV,—) « labelEU,V, S),labelV(U,T),S £ T.

from (8) in PX such thatabelE(j, i, s), labelV(j,t) € X occurinthe body andeceivei, ts)
in the head. Hence, no subd€ébf X excluding any atom over predicatreiveis a model
of PX. Finally, sinceu’ (i) = 1i/(j)o’(j, ) for each non-input vertexe V and somg — i

in E, labelV(i,r) € X implies thatreceivéi, r) € X. That s, the ground instances of the
integrity constraint

+ labelV(V, S), not receivéV, S), not input(V).

from (@) that contribute td~ are satisfied by .

We have now investigated all rules R U 7((V, E, o), 1) and shown that their ground
instances inPX are satisfied byX. Furthermore, we have checked for all atomsXirihat
they cannot be excluded in any modélc X of PX. Thatis, X is indeed ac-minimal
model of P and thus an answer setBE U 7((V, E,0), 1. U

Appendix B Proof of Theorem[5.1 and 5.2

This appendix provides proofs for soundness and complsesarfehe MIC extraction en-
coding in Sectioml5. We use((V, E, ), 1) as defined in[(All) to refer to the facts rep-
resenting an influence graght, £, o) and a (partial) vertex labeling : V. — {+,—}.
By Pp, we denote the encoding consisting of the schematic rul@n8), [9), and[(10).

As an auxiliary concept, for any subsét C V, we say that’ : £ — {+,—} and
'V — {+,—} arewitnessing labelingfor W if the following conditions hold:

. o’ andy/ are total,

. if o(j,1) is defined, thewm’ (j,i) = o(j,1),

. if u(7) is defined, thep/ (i) = p(4), and

4. /(i) is consistent (relative ta’) for each non-input verteke W.

WN P

The above conditions make sure thaandy’ are total extensions of andy, respectively,
such that the variations of verticesiiti are explained. Comparing Definitibn 5.1, the first
condition requires the absence of witnessing labelingsafdtIC W, while the second
condition stipulates the existence of witnessing labalifog eachiV’ c .

Proof of Theorerh 511
Assume thafX is an answer set dPp U 7((V, E, o), u). Furthermore, let

PX = {(head(r) + body(r)T)0 |
re PpUT((V,E,o),un), (body(r)~0)NX =0,0 : var(r) — U}

wherewvar(r) is the set of all variables that occur in a rulg/ is the set of all constants
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appearing inPp U 7((V, E, o), ), andé is a ground substitution for the variablessin
Then, by the definition of an answer set, we know tiiais a C-minimal model ofPX .
LetW = {i | activgi) € X }. We have to show that the following conditions hold:

. There are witnessing labelings for edgt ¢ W'.
. There are no witnessing labelings fof.

We below consider these conditions one after the other.

Condition 1. LetW’ = W\ {k} foranyk € W. Furthermore, define’ andy’ as follows:

o ={({—=i)—s|(j—i) € E,labelE'(k, j,i,s) € X}
U{(j—i)—+|(j—1i) € E,labelE'(k, j,i,+) ¢ X,labelE'(k,j,i,—) ¢ X}
= {i—s|ieVlabelV'(k,i,s) € X}

U {i—+|ieV IabelV'(k,i,+) ¢ X, labelV'(k,i,—) ¢ X} .
We show that’ andy’ are witnessing labelings fo#”.

Regarding the uniqueness of labels assigned’andy’, consider the following rules
from (@0) including predicatdabelE’ andlabelV’ in their heads:

labelV' (W, V, +); labelV'(W, V, —) + activg W), vertexMIGQ V).
labelE (W, U, V, +); labelE (W, U, V,-) + activg V), edgeMIQU, V).

)
labelV' (W, V, S) < activg W), observedVV, S).
labelE'(W, U, V, S) + activgW), observed/, V, S).

(B1)

Since the given (partial) labelings and iz assign unique labels to the elements of their
domains, facts definingbservedEandobservedVare of the formobservedEj, i, +). or
observedEj, i,—). andobservedVi, +). or observedVi, —)., respectively, and at most one
of these facts is contained in((V, E, o), ;1) for an edge(j —i) € E or vertexi € V.
BecauseX is a C-minimal model of PX, the atoms in the heads of facts arein
and all atoms inX over predicatesbservedEand observedVare derived from facts in
7((V,E, o), ), in view that these predicates do not occur in the head of aleyim Pp.
Hence, at most one of the atotabelE’(k, j, i, +) andlabelE’(k, j, i,—) or labelV'(k, i, +)
andlabelV'(k,i,—), respectively, is derivable for an edge— i) € E or vertexi € V
from a ground instance of the fourth or third rule[in {B1) ahdrt included inX. If either

of labelE'(k, j, 4, +) andlabelE'(k, j,i,-) or labelV'(k, i, +) andlabelV'(k,i,—), respec-
tively, is included inX, then the ground instance of the second or first rulein (Ba) fand

an edggj —i) € E or vertexi € V is satisfied, so that the atom containing the opposite
label cannot belong to @-minimal model ofPX. Hence, there is at most one tegrsuch
thato'(j,i) = s or /(i) = s for an edgej — i) € E or vertexi € V, respectively, and

it holds thats € {+,—}. Furthermore, looking at the definitions @f and/’, it is obvious
that both are total, which allows us to conclude #aandy’ are total labelings.

As regards extending andyu, we have that facbbservedFj, i, s). or observedVi, s).
belongstor((V, E, o), u) if o(j,4) = s or u(i) = s, respectively, is given. Along with the
premise thaactivek) € X, this implies thatabelE'(k, 7,7, s) € X orlabelV'(k, i, s) € X,
respectively, as the fourth or third rule [n_(B1) would be atisfied otherwise. Hence, we
haveo'(j,i) = sif o(j,i) = s, andp’ (i) = s if (i) = s.
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It remains to be shown that' (i) is consistent for each non-input vertexe W’. To
establish this, we first consider the following rules fréft (8

edgeMIGU, V) + edgdU, V), activgV).
vertexMIQU) + edgeMIGU, V). (B2)
vertexMIQV') « activgV').

In view that factedgdj, ). belongs tor((V, E, o), u) for every(j —i) € E, we con-
clude thatedgéj,i) € X. Along with active(i) € X for everyi € W, it follows that
edgeMIGj, i) € X for every(j — i) € E such that € W, andvertexMIQi) € X for
everyi € . The last observation and the first rule[in{B1) imply tladelV'(k, i, +) € X
orlabelV'(k,i,—) € X for everyi € W. Fori € W, i.e.,i # k, the integrity constraint

+ labelV'(W,V,S),activg V),V # W, not receive(W,V, S).

from (I0Q) imposeseceive(k, i, +) € X if labelV'(k,i,+) € X, andreceivelk,i,—) € X

if labelV'(k,i,—) € X, while any ground instances of the integrity constrainttdbating

to PX do not contain atoms over predicageeive. Such atoms can only be derived using
the following rules from[(10):

receive(IV, V, +) « labelE(W, U, V, S), labelV' (W, U, S),V # W.
receive(WV, V,—) « labelE'(W, U, V, S),labelV'(W, U, T),V £ W,S # T.

Since X is a C-minimal model of PX, receivelk,i,+) € X or receivelk,i,—) € X
is possible only iflabelE'(k, j,i,s) € X andlabelV'(k,j,t) € X such thats = ¢
or s # t, respectively. Comparing((V, E, o), 1) and the rules in[{B1)[(B2), as well
as [B3) reveals thafj —i) € F is a necessary condition fdabelE'(k, j,i,s) € X,
and the same applies joc V andlabelV'(k, j, t) € X. By the construction of’ and’,
labelE'(k, j,i,s) € X impliesthat’(j,i) = s andlabelV'(k, j,t) € X thaty/(j) = t. We
conclude thateceive(k, i,+) € X orreceivelk,i,—) € X necessitateg’(j)o’(j,1) = +
or u'(j)o’(4,1) = —, respectively, for some regulatgiof <. Finally, we have./ (i) = + if
labelV'(k,i,+) € X (andreceivelk,i,+) € X), andy/'(i) = —if labelV'(k,i,—) € X
(andreceive(k,i,—) € X). This shows that receives some influence matchipt{i), so
thaty/(4) is consistent. Sincee W is arbitrarys’ andy’ are witnessing labelings fo7”’.

To conclude the proof of the first condition to verify, we nttiat witnessing labelings
for W' are also witnessing labelings for all subset$16f. Hence, it is sufficient to check
the existence of witnessing labelings for sBts = W \ {k} for anyk € W. As shown
above, an answer séf of Pp U 7((V, E,0), 1) yields witnessing labelings for them.
Hence, the second condition in Definition15.1 holdsTior= {: | activgi) € X }.

Condition 2. We now show by contradiction that there cannot be witneskibglings
for W. To establish this, we first note that verticesi/ih cannot be input because, if fact
input(s). belongs tor ((V, E, o), i), theninput(¢) must be included iX, so that the rule

activg(V); inactivgV') « verteXV), not input(V). (B3)

from (8) does not contribute a ground instance fdo PX. Sinceactive(i) cannot be
derived from any other ground rule iR, the fact thatX is a C-minimal model of PX
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implies thatactive(i) ¢ X for any input vertex. Furthermore, the integrity constraint
<« not bottom (B4)

from (9) necessitatdsottome X becauseX cannot be a model aPX otherwise. Then,
we getlabelV(i, +), labelV(i,—) € X andlabelE(j, i, +),labelEj,i,—) € X for all ver-
ticesi € V and edge$; — i) € F, respectively, due to the following rules frof (9):

labelV(V, +) < bottom vertexV).
labelV(V, —) + bottom vertexV).
labelE(U, V, +) < bottom edgdU, V).
labelE(U, V,—) + bottomedgdU, V).
We now show that the existence of witnessing labelingsifoyields a contradiction
to the fact thatX is a C-minimal model of PX. To this end, assume that and .’ are
witnessing labelings for’. Then, let

Y = (X \ ({botton}
U {labelV(i,s) |labelV(i,s) € X}
U {labelE(j, i, s) | labelE(j,i,s) € X}
U {oppositéj,i) | opposit€j,i) € X}))
U {labelV(i,s) |i€ V, /(i) = s}
U {labelE(j,i,s) | (j —1i) € E,o'(j,i) = s}
U {opposité;. i) | (j —i) € B, /(i) # ' ()0’ (4. 1)} .
Sincebottome X'\ Y andX contains a maximum amount of atoms over predidates!V,
labelE, andopposite(the atoms oveoppositeare consequences of the inclusion of atoms
overlabelV andlabelE), we have that” ¢ X, and we show that is a model ofPX.
Considering the contributions of the factsif(V, £, o), 1) and the rules if(10) t&~,
we observe that the atoms over predicates occurring in thenmgerpreted the same X
andY . Hence, such facts and rules stay satisfied’lyecause they were already satisfied
by X. The same applies to the rules frol (8) repeated’id (B2) a@). (Burthermore,
sinces’ andy’ are total and extend andy, respectively, the contributions of the following
rules from (&) and(8) tPX are satisfied by :

labelV(V, S) «+ observedVV, S).
labelE(U, V, S) «+ observedE,V, S).

labelV(V, +); labelV(V, —) « vertexMIQV).
labelE(U, V, +); labelE(U, V, —) + edgeMIQU, V).

(BS)

Since the integrity constraint ifi . (B4) does not belongid and the rules in[{B5) are
satisfied byY” in view of bottom¢ Y, it remains to consider the following rules frofd (9):

oppositéU, V) + labelEU, V,-), labelV(U, S), labelV(V, S).
oppositéU, V) «+ labelEU, V, +),labelV(U, S), labeM(V, T), S # T.
bottom« activegV'), opposit¢U, V') : edgdU, V).
The rules defining predicatgpositeare such that, in order to satisfy their ground instances

in PX, Y must contairoppositéj, i) if labelE(j,i,r), labelV(j, s), andlabelV(i,t) be-
long toY such thatt # sr. This matches the definition df, includinglabelE(j, i, r)
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if o/(j,4) = r, labelV(j, s) if 1/ (j) = s, labelV(i,t) if p/(¢) = ¢, andoppositéj, i) if
W' (i) #u'(5)o’ (4, 1). Hence, rules definingppositen P~ are satisfied by . It remains to
be shown thabottomis not derivable from any ground instance of the last rulehls re-
gard, recall thatV = {i | activg(i) € X} = {i | activg(i) € Y}, and we have seen above
thatactive(i) can only belong toX if ¢ is not an input. As" andy’ are witnessing labelings
for W, for everyi € W, there is an edgéj — ) € F such thay/(¢) = ¢/(j)o’(4,7). By
the definition ofY, this impliesoppositéj, i) ¢ Y, while edgéj, ) belongs toX andY’
becauseX andY are models of-((V, E, o), ). As a consequence, for every W, we
have{oppositéj,i) | edgéj,i) € Y} ¢ Y, so that the ground instance foin PX of
the rule withbottomin the head is satisfied by. We have thus established tHatC X
is indeed a model aP¥, a contradiction to the assumption thétis a C-minimal model
of PX and an answer set & U 7((V, E, o), j1).

The above contradiction shows that the second conditioretdyy which is the first
condition in Definitio{ 5.1, holds fol/” = {i | active(i) € X }. The fact that the second
condition in Definitior 5.1 holds foW has been shown before. Hen&g,isaMIC. [

Proof of Theorerh 512

Assume thatV = {k, ..., k,} is a MIC. Then, the following conditions hold:

1. There are witnessing labelings, (1, . .., 00, un for WA\ {k1}, ..., W\ {k,}.

2. There are no witnessing labelings #af.
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We consider the following seX” of atoms:

X = {vertexi)
U {edgé;, )
U {observedEj, i, s)
U {observedV, s)
U {input(i)
U {activei)
U {inactivgi)
U {edgeMIGj, i)
U {vertexMIQ)
U {vertexMIQ)
U {labelE'(kn, j,%,7)
U {labelE'(kn,, 7,4, 1)
U {labelV'(ky,, 4, s)
U {labelV'(kyn,, i, s)
U {labelV'(k,, i, s)
U {receivelk,, i, sr)

U {receivelk,, i, sr)
U {receivelk,, i, sr)

U {labelV(i, +), labelV(i,—)

U {labelE(j, i, +), labelE(j, i,-)

U {oppositéj, i)
U {bottont .

For showing thatX is an answer set aPp U 7((V, E, o),

| d

|

| (j—1i) € E,0(j,i) = s}

|i €V, u(i) = s}

| < € Vis an input

|ie W}

| i € V'\ Wis notan inpu}

| (j—i)eEieW}

| (j—i)eE,ieW}

|ie W}

| (j—=i) e E,i e W,om(j,i) =r,1 <m <n}
| (j—i) € E o(,i)=r,1<m<n}
(1) € B i € W, pim(j) = 5,1 < m < n}
i€ W, (i) =s,1<m<n}
|ieV,u(i)=s51<m<n}

| (j—i) e EieW,

Om(Jyt) =1, um(§) = 8,1 # km, 1 <m < n}
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| (j—i)eE,jeWor(j—k)e EforkeW,

0(4,8) =7, m(j) = 8,1 # km, 1 <m < n}
| (j —1i) € E,

o(4,4) =r,u(j) = 8,1 # km,1 <m <n}
|ieV}
(i) € B}
| (j—1i) € E}

X} = W), we need to verify thak is aC-minimal model of

PX = {(head(r) + body(r)T)0 |

re Ppur((V,E, o),

w), (body(r)=0)NX =0,0 : var(r) — U}

w) (such that{i | active(i) €

wherewvar(r) is the set of all variables that occur in a rulg/ is the set of all constants

appearing inPp UT((V, E, o),

u), andd is a ground substitution for the variablesrin

To start with, we note thaX includes an atormertexi), edg€j, i), observedEj, i, s),
observedVi, s), andinput(i), respectively, exactly if there is a fact with the atom in the

head int((V, E, o),

by any seft” of atoms excluding at least one of the head atoms.
In view thatlW cannot contain any input (otherwise, satisfaction of tlemed condition

in Definition[5.1 would immediately imply violation of the it one), we have that either

activg:) or inactive(i) belongs taX for every non-input vertex € V. Hence X satisfies

all ground instances of the rule

activeg(V); inactivgV') « verteXV), not input(V).

). Each of these facts belongs alsoRtd , is satisfied byX, but not
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from (8) belonging taP*, while no sefr” of atoms excluding bothctive(i) andinactive(i)
for any non-input vertex € V satisfies all of these ground instances.
Considering ground instances of the rules

edgeMIGU, V) «+ edgdU, V), activgV).
vertexMIQU) < edgeMIGU, V).
vertexMIQV) <« activgV).

from (8), all of them belong tdX, are satisfied by, but not by any seY” of atoms such
that {edgeMIGj, i) | edgeMIGj, i) € X} U {vertexMIQi) | vertexMIQi) € X} € Y
and {activgi) | activgi) € X} C {activgi) | activgi) € Y}, while it has been
shown above thafactivei) | activgi) € X} ¢ {activdi) | activgi) € Y} necessi-
tates{inactivgi) | inactivgi) € Y} ¢ {inactivei) | inactivgi) € X} for Y being a
model of PX. Hence, there cannot be any modelc X of PX excluding some atom
edgeMIGj, i) or vertexMIQi) that belongs to¥.

Now turning our attention to atoms of fortabelE'(k,,, j, i, r) andlabelV'(k,,, j, s),
we note that they are included Xi if edgeMIGj, i) € X andvertexMIQj) € X, respec-
tively, ando,, (4,7) = r, um(j) = s in witnessing labelings.,,, and ., for W\ {k,.},
wherel < m < n,orif o(j,4) = r,u(j) = s. Then, the fact thaactivgk,,) € X and
labels assigned by,,, andu,, are unique and respect those assigned layd . implies
that none of the atoms can be removed fr&mvithout violating some ground instance of
the rules

labelV' (W, V, +); labelV'(W, V, —) < activg W), vertexMIG V).
labelE' (W, U, V, +); labelE'(W, U, V,—) + active(WW), edgeMIGU, V).
labelV' (W, V, S) < activg W), observedVV, S).
labelE (W, U, V, S) + activg(W), observed/, V, S).

from (10) that belongs t®~. However, X satisfies all of these ground instances by its
construction. We further consider the following rules fr@a):

receive(W, V, +) « labelE'(W, U, V, S),labelV'(W,U, S),V # W.
receive(W,V,—) « labelE'(W, U, V, S),labelV'(W,U,T),V £ W,S £ T.

As shown abovelabelE'(k,,, j,4,7) belongs toX if i € W ando,,(j,i) = r, or if
o(j,4) = om(j,i) = r. FurthermorelabelV'(k,,, j, s) is included inX if j € W or
(j—k) € EJk € Wandun,(j) = s, orif u(j) = pm(j) = s. Comparing the cross
product of these conditions to the definition Bfyields that an atomeceivelk,,, i, sr)
belongs toX exactly if labelE'(k,,, j, i,r) andlabelV'(k,,, j, s) are in X andi # k,,.
Hence, when excluding any of the atoreseivelk,,, i, sr) from X, some ground instance

of the above two rules belonging % becomes unsatisfied, and so we have that such
atoms cannot be removed fralin order to construct a mod&l ¢ X of PX. Moreover,

the fact thatr,,, and p,,, are witnessing labelings fav’ = W \ {k,,} implies that all
ground instances of the integrity constraint

+ labelV'(W,V,S),activg V),V # W, not receive(W,V, S).

from (I0) that belong taPX are satisfied byX. In fact, for everyi € W, there is some
(j —1) € E such thatu, (i) = pum(j)om(J,4). SincelabelE'(k,, j,i,0m(4,7)) and
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labelV'(k,,, 7, um (7)) belong toX, this implies that each atofabelV'(k,,, i, um (2)) for
i € W' is accompanied byeceivelk,,, i, tm (1)) = receivelkm,, i, tim (j)om (4, 7)) in X,
so that the ground instance fby,, i, and.,, (i) of the integrity constraint is not ifP-X.

Finally, we consider atoms of the forfabelV(, s), labelE(j, i, s), andoppositéj, i)
that belong taX foralli € V and(j — i) € E, respectively, and € {+,—}. Sincebottom
is also inX, it is clear that the ground instances of the following rdtesn (4), (8), and[(D),
all of which belong taP*X, are satisfied byX:

labelV(V, S) < observedVV, S).

labelEU, V, S) < observedE,V, S).

labelV(V, +); labelV(V, —) < vertexMIQ V).
labelE(U, V, +); labelE(U, V,—) < edgeMIQU, V).
opposité¢U, V') «+ labelEU, V,-), labelV(U, S), labelV(V, S).
opposité¢U, V') « labelEU, V, +),labelV(U, S), labelV(V, T), S # T.
bottom« activegV'), oppositéU, V) : edgéU, V).

labelV(V, +) < bottom vertexV).
labelV(V,-) + bottomvertexV).

labelE(U, V, +) < bottom edg€U, V).

labelE(U, V,—) < bottom edgeU, V).

As shown above, any mod® C X of PX must necessarily includebservedVi, s)

if u(i) = s, observedEy, i, s) if o(j, i) = s, vertexMIQi) if i € Wor(i—k) € E

for somek € W, edgeMIQj,q) if (j—i) € E for some:i € W, andactive(i) if

1 € W. Proceeding by proof by contradiction, assume that thege nsodelY ¢ X

of PX such thatabelV(i, s), labelE(j, i, s), or oppositéj, i) is notinY for somei € V

or (j—1i) € E, respectively, and € {+,—}. From the previous considerations and the
first two rules repeated above, we know theielV(i, s) andlabelE(j, i, s) must belong

to Y if u(i) = soro(j,i) = s, respectively. Furthermore, the third rule necessitates
{labelV(i, +),labelV(i,—)} NY # () for everyi € W ori € V such tha{i — k) € E for
somek € W, and the fourth rule implieflabelE(j, 7, +), labelE(j, i, —) }NY # @ for every

(j —1) € E suchthat € W. In view of the last four rules, we immediately conclude that
bottom¢ Y, which in turn implies that, for everye W, there is som¢j — i) € E such
that oppositéj, i) does not belong t&". Comparing the rules definingpposite the ex-
clusion ofoppositéj, i) is possible only ifY” does not includéabelE(j, i, ), labelV(j, s),
andlabelV(i, t) such that # sr. As we have shown above that some atdabe|E(j, 7, r),
labelV(j, s), andlabelV(i, t) for r, s, ¢ € {+,—} must belong td”, we can now conclude
thatt = sr holds and that the atoms over predicdtdxe|EandlabelVin Y define (partial)
labelingss’ andy’ by:

For everyi € W, pick some edgé¢j — i) € E such thabpposit¢j, i) does not belong
to Y, and leto’(j,:) = r if labelE(j,7,7) € Y, u/(j) = s if labelV(j,s) € Y, and
' (i) = tif labelV(i,t) € Y.

As we have seen above, such an eige i) € E exists for every € W, and the fact that
t # sr is not obtained for atomabelE(j, i, ), labelV(y, s), andlabelV(i, t) in Y implies
thato’ andy’ assign unique labels tg — i), j, andi, respectively. When we totaliz€
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andy’ by settingo’(j,i) = o(j,4) and /(i) = u(i) if o(j,4) or u(i), respectively, is
defined, and-’(j,7) = + as well asy/(i) = + for all remaining edges it and vertices
in V, we obtain witnessing labelings f&¥. But this is a contradiction to the fact thift
is a MIC, which allows us to conclude that there cannot be angehy c X of P¥
that omitslabelV(, s), labelE(j, i, s), or oppositéj, i) for somei € V or (j —i) € E,
respectively, and € {+,—}.

To conclude the proof thaX is a C-minimal model of P, note that the integrity con-
straint

< not bottom

from (9) does not contribute any rule X becausdottome X. We have now investi-
gated all rules inPp U 7((V, E, o), 1) and shown that their ground instancesirt are
satisfied byX . Furthermore, we have checked for all atomsXirthat they cannot be ex-
cluded in any modeY ¢ X of PX. That is, X is indeed ac-minimal model ofP¥X and
thus an answer set &fp U T((V, E, 0), ). U
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