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Abstract

We introduce an approach to detecting inconsistencies in large biological networks by using Answer
Set Programming (ASP). To this end, we build upon a recently proposed notion of consistency be-
tween biochemical/genetic reactions and high-throughputprofiles of cell activity. We then present an
approach based on ASP to check the consistency of large-scale data sets. Moreover, we extend this
methodology to provide explanations for inconsistencies by determining minimal representations of
conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.
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1 Introduction

Molecular biology has seen a technological revolution withthe establishment of high-
throughput methods in the last years. These methods allow for gathering multiple orders
of magnitude more measured data than was procurable before.Furthermore, there is an
increasing number of biological repositories on the web, such as KEGG, Biomodels, Re-
actome, MetaCyc, and others, incorporating thousands of biochemical reactions and ge-
netic regulations. However, both measurements as well as biological networks are prone
to considerable incompleteness, heterogeneity, and mutual inconsistency, which makes it
highly non-trivial to draw biologically meaningful conclusions in an automated way. As a
consequence, appropriate representation and powerful reasoning tools are needed to model
complex biological systems, in the face of incompleteness and inconsistency.

In this paper, we deal with the analysis of high-throughput measurements in molecular
biology, like microarray data or metabolic profiles. Up to now, it is still common practice to
use expression profiles merely for detecting over- or under-expressed genes under specific
conditions, leaving the task of making biological sense outof a multitude of gene identi-
fiers to human experts. However, many efforts have also been made to better utilize high-
throughput data, in particular, by integrating them into large-scale models of transcriptional
regulations or metabolic processes (Friedman et al. 2000; Klamt and Stelling 2006).

http://arxiv.org/abs/1007.0134v1
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One possible approach consists of investigating the compatibility between experimental
measurements and knowledge available in reaction databases. This can be done by using
formal frameworks, for instance, the ones developed in (Gutierrez-Rios et al. 2003) and
(Siegel et al. 2006). A crucial feature of this methodology is its ability to cope with qualita-
tive knowledge (for instance, reactions lacking kinetic details) and noisy data. In what fol-
lows, we rely upon the so-calledSign Consistency Model(SCM) due to (Siegel et al. 2006).
SCM imposes constraints between experimental measurements and a graph representation
of cellular interactions, called aninfluence graph(Soulé 2003). Such a graph provides an
over-approximation of the actual biological model, where an “influence” is modeled by a
disjunctive causal rule. This is particularly well-suitedfor dealing with incomplete (miss-
ing reactions) or unreliable (noisy data) information.

Building on the SCM framework, we develop declarative techniques based onAnswer
Set Programming(ASP) (Baral 2003; Gelfond 2008) to detect and explain inconsistencies
in large data sets. This approach has several advantages. First, it allows us to formulate
biological problems in a declarative way, thus easing the communication with biological
experts. Second, although we do not detail it here, the rich modeling language facilitates in-
tegrating different knowledge representation and reasoning techniques, like abduction, ex-
planation, planning, prediction, etc., in a uniform and transparent way (cf. (Gebser et al. 2010)
for such extensions). And finally, modern ASP solvers are based on advanced Boolean
constraint solving technology and thus provide us with highly efficient inference engines.
Apart from modeling the aforementioned biological problems in ASP, our major concern
lies with the scalability of the approach. To this end, we apply our methods to the gene-
regulatory network of yeast (Guelzim et al. 2002; Sudarsanam et al. 2000) and, moreover,
design an artificial yet biologically meaningful benchmarksuite indicating that an ASP-
based approach scales well on the considered class of applications. Notably, to the best of
our knowledge, the functionalities we provide go beyond theones of the only comparable
approach (Guziolowski et al. 2009).

To begin with, we introduce SCM in Section 2. Section 3 gives the syntax and semantics
of ASP used in our application. In Section 4, we develop an ASPformulation of check-
ing the consistency between experimental profiles and influence graphs. We further extend
this approach in Section 5 to identifying minimal representations of conflicts if the exper-
imental data is inconsistent with an influence graph. In Section 6, we describe simple yet
effective techniques for input reduction along with a connectivity property that is used to
refine the encoding presented in Section 5. Section 7 is dedicated to an empirical evaluation
of our approach along with an exemplary case study on yeast. For making our methods eas-
ily accessible, an available web service is presented in Section 8. Section 9 concludes the
paper with a discussion and outlook on future work. Finally,Appendix A and Appendix B
contain proofs of soundness and completeness for our problem formulations in ASP.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs (Soulé 2003) are a common representation for a wide range of dynamical
systems. In the field of genetic networks, they have been investigated for various classes of
systems, ranging from ordinary differential equations (Soulé 2006) to synchronous (Remy et al. 2008)
and asynchronous (Richard et al. 2004) Boolean networks. Influence graphs have also been
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Figure 1. Simplified model of operon lactose inE. coli, represented as an influence graph.
The vertices represent either genes, metabolites, or proteins, while the edges indicate the
regulations among them. Edges with an arrow stand for positive regulations (activations),
while edges with a tee head stand for negative regulations (inhibitions). Vertices G and Le
are considered to be inputs of the system, that is, their signs are not constrained via their
incoming edges.

introduced in the field of qualitative reasoning (Kuipers 1994) to describe physical systems
where a detailed quantitative description is unavailable.In fact, this has been the main mo-
tivation for using influence graphs for knowledge representation in the context of biological
systems.

An influence graphis a directed graph whose vertices are the input and state variables
of a system and whose edges express the effects of variables on each other.

Definition 2.1(Influence Graph)
An influence graphis a directed graph(V,E, σ), whereV is a set of vertices,E a set of
edges, andσ : E → {+, –} a (partial) labeling of the edges.

An edgej→ i means that the variation ofj in time influences the level ofi. Every edge
j→ i of an influence graph can be labeled with a sign, either+ or –, denoted byσ(j, i),
where+ (–) indicates thatj tends to increase (decrease)i. An example influence graph is
given in Figure 1; it represents a simplified model of the operon lactose inE. coli.

In SCM,experimental profilesare supposed to come from steady state shift experiments
where, initially, the system is at steady state, then perturbed using control parameters, and
eventually, it settles into another steady state. It is assumed that the data measures the
differences between the initial and the final state. Thus, for genes, proteins, or metabolites,
we know whether the concentration has increased or decreased, while quantitative values
are unavailable, unessential, or unreliable. Byµ(i), we denote the sign, again either+ or –,
of the variation of a speciesi between the initial and the final condition. One can easily
enhance this setting to also considering null (or more precisely, non-significant) variations,
by exploiting the concept of sign algebra (Kuipers 1994).
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Species Le Li G LacY LacZ LacI A cAMP-CRP
µ1 – – – – – + – +
µ2 + + – + – + – –
µ3 + ? – ? ? + ? ?
µ4 ? ? ? – + ? ? +

Table 1. Some vertex labelings (reflecting measurements of two steady states) for the in-
fluence graph depicted in Figure 1; unobserved values indicated by question mark ‘?’.

Given an influence graph (as a representation of cellular interactions) and a labeling
of its vertices with signs (as a representation of experimental profiles), we now describe
the constraints that relate both. Informally, for every non-input vertexi, its variationµ(i)
ought to be explained by the influence of at least one predecessor j of i in the influence
graph. Thereby, theinfluenceof j on i is given by the signµ(j)σ(j, i) ∈ {+, –}, where the
multiplication of signs is derived from that of numbers. Sign consistency constraints can
then be formalized as follows.

Definition 2.2(Sign Consistency Constraints)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

Then,(V,E, σ) andµ areconsistent, if there are some total extensionsσ′ : E → {+, –}
of σ andµ′ : V → {+, –} of µ such thatµ′(i) is consistent for each non-input vertexi ∈ V ,
whereµ′(i) is consistent, if there is some edgej→ i in E such thatµ′(i) = µ′(j)σ′(j, i).

Note that labelingsσ andµ of vertices and edges, respectively, are admitted to be partial.
This occurs frequently in practice where the kind of an influence may depend on environ-
mental factors or experimental data may not include all elements of a biological system.
In order to decide whether a partially labeled influence graph and a partial experimental
profile are mutually consistent, we thus consider the possible totalizations of them. If at
least one total edge and one total vertex labeling (extending the given labelings) are such
that the signs of all non-input vertices are explained, it issufficient for mutual consistency.

Table 1 gives four vertex labelings for the influence graph inFigure 1. Total labeling
µ1 is consistent with the influence graph: the variation of eachvertex (except for input
vertex Le) can be explained by the effect of one of its regulators. For instance, inµ1, LacY
receives a positive influence from cAMP-CRP as well as a negative influence from LacI,
the latter accounting for the decrease of LacY. The second labeling,µ2, is not consistent:
LacY receives only negative influences from cAMP-CRP and LacI, and its increase cannot
be explained. Partial vertex labelingµ3 is consistent with the influence graph in Figure 1,
as setting the signs of Li, LacY, LacZ, A, and cAMP-CRP to+, –, –, –, and+, respectively,
extendsµ3 to a consistent total labeling. In contrast,µ4 cannot be extended consistently.

3 Answer Set Programming

This section provides a brief introduction to ASP, a declarative problem solving paradigm
offering a rich modeling language (Lparse Manual; Gebser etal. 2009a) along with highly
efficient inference engines based on Boolean constraint solving technology (Giunchiglia et al. 2006;
Gebser et al. 2009c; Drescher et al. 2008). The basic idea of ASP is to encode a problem
as a logic program such that its answer sets represent solutions.
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In view of our application, we take advantage of the elevatedexpressiveness of dis-
junctive programs, capturing problems at the second level of the polynomial hierarchy
(Eiter and Gottlob 1995). Adisjunctive logic programP is a finite set ofrulesof the form

a1; . . . ; al ← al+1, . . . , am, not am+1, . . . , not an , (1)

whereai is an atom for 1 ≤ i ≤ n. A rule r as in (1) is called afact if l = m =

n = 1, and anintegrity constraintif l = 0. Let head(r) = {a1, . . . , al} be thehead
of r, body(r) = {al+1, . . . , am, not am+1, . . . , not an} be thebody of r, as well let
body(r)+ = {al+1, . . . , am} andbody(r)− = {am+1, . . . , an}.

An interpretation is represented by the set of atoms that aretrue in it. A modelof a
programP is an interpretation in which all rules ofP are true according to the standard
definition of truth in propositional logic. Apart from letting ‘;’ and ’,’ stand for disjunc-
tion and conjunction, respectively, this implies treatingrules and default negation ‘not ’
as implications and classical negation, respectively. Note that the (empty) head of an in-
tegrity constraint is false in every interpretation, whilethe empty body is true in every
interpretation. Answer sets ofP are particular models ofP satisfying an additional stabil-
ity criterion. Roughly, a setX of atoms is an answer set, if for every rule of form (1),X

contains a minimum of atoms amonga1, . . . , al wheneveral+1, . . . , am belong toX and
no am+1, . . . , an belongs toX . However, the disjunction in heads of rules, in general, is
not exclusive. Formally, ananswer setX of a programP is a⊆-minimal model of

{head(r)← body(r)+ | r ∈ P, body(r)− ∩X = ∅} .

For example, program{a; b←. c; d←a, not b. ← b.} has answer sets{a, c} and{a, d}.
Although answer sets are usually defined on ground (i.e., variable-free) programs, ASP

allows for non-ground problem encodings, where schematic rules stand for their ground in-
stantiations. Grounders, such asgringo (Gebser et al. 2009a) andlparse(Lparse Manual),
are capable of combining a problem encoding and an instance (typically a set of ground
facts) into an equivalent ground program, which is then processed by an ASP solver. We
follow this methodology and provide encodings for the problems considered below.

4 Checking Consistency

We now come to the first main question addressed in this paper,namely, how to check
whether an experimental profile is consistent with a given influence graph. Note that, if
the profile provides us with a sign for each vertex of the influence graph, the task can be
accomplished simply by checking whether each non-input vertex receives at least one in-
fluence matching its variation. However, as soon as the experimental profile has missing
values (which is very likely in practice), the problem becomes NP-hard (Veber et al. 2004).
In fact, a Boolean satisfiability problem over clausesC1, . . . , Cm and variablesx1, . . . , xn

can be reduced as follows: introduce unlabeled input verticesx1, . . . , xn, non-input ver-
ticesC1, . . . , Cm labeled+, and edgesxj→Ci labeled+ (–) if xj occurs positively (nega-
tively) in Ci. It is not hard to check that the labeling ofC1, . . . , Cm by + is consistent with
the obtained influence graph iff the conjunction ofC1, . . . , Cm is satisfiable.

We next provide a logic program such that each of its answer sets matches a consistent
extension of vertex and edge labelings. Our encodings as well as instances are available
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at (BioASP Tools). The program for consistency checking is composed of three parts, de-
scribed in the following subsections.

4.1 Problem Instance

An influence graph as well as an experimental profile are givenby ground facts. For each
speciesi, we introduce a factvertex(i), and for each edgej→ i, a factedge(j, i). If s ∈
{+, –} is known to be the variation of a speciesi or the sign of an edgej→ i, it is expressed
by a factobservedV(i, s) or observedE(j, i, s), respectively. Finally, a vertexi is declared
to be input via a factinput(i).

For example, the negative regulation LacI→ LacY in the influence graph shown in Fig-
ure 1 and observation+ for LacI (as withµ3 in Table 1) give rise to the following facts:

vertex(LacI).
vertex(LacY).

edge(LacI, LacY).

observedV(LacI,+).
observedE(LacI, LacY, –).

(2)

Note that the absence of a fact of formobservedV(LacY, s) means that the variation of
LacY is unobserved (as withµ3). In (2), we use LacI and LacY as names for constants
associated with the species in Figure 1, but not as first-order variables. Similarly, for uni-
formity of notations,+ and– are written in (2) for constants identifying signs.

4.2 Generating Solution Candidates

As mentioned above, our goal is to check whether an experimental profile is consistent
with an influence graph. If so, it is witnessed by total labelings of the vertices and edges,
which are generated via the following rules:

labelV(V,+); labelV(V, –)← vertex(V ).

labelE(U, V,+); labelE(U, V, –)← edge(U, V ).
(3)

Moreover, the following rules ensure that known labels are respected by total labelings:

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

(4)

Note that the stability criterion for answer sets demands that a known label derived via
a rule in (4) is also derived via (3), thus, excluding the opposite label. In fact, the dis-
junctive rules used in this section could actually be replaced with non-disjunctive rules
via “shifting” (Gelfond et al. 1991),1 given that our first encoding results in a so-called
head-cycle-free(HCF) (Ben-Eliyahu and Dechter 1994) ground program. However, simi-
lar disjunctive rules are also used in Section 5 where they cannot be compiled away. Also

1 Alternatively, one could also use cardinality constraints(cf. (Lparse Manual)), which would however preclude
a comparison withdlv in Section 7.
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note that HCF programs, for which deciding answer set existence stays in NP, are recog-
nized as such by disjunctive ASP solvers (Leone et al. 2006; Drescher et al. 2008). Hence,
the purely syntactic use of disjunction, as done here, is notharmful to efficiency.

The following ground rules are obtained by combining the schematic rules in (3) and (4)
with the facts in (2):

labelV(LacI,+); labelV(LacI, –)← vertex(LacI).
labelV(LacY,+); labelV(LacY, –)← vertex(LacY).

labelE(LacI, LacY,+); labelE(LacI, LacY, –)← edge(LacI, LacY).

labelV(LacI,+)← observedV(LacI,+).
labelE(LacI, LacY, –)← observedE(LacI, LacY, –).

(5)

One can check that the program consisting of the facts in (2) and the rules in (5) admits
two answer sets, the first one includinglabelV(LacY,+) and the second one including
labelV(LacY, –). On the remaining atoms, both answer sets coincide by containing the
atoms in (2) along withlabelV(LacI,+) andlabelE(LacI, LacY, –).

4.3 Testing Solution Candidates

We now check whether generated total labelings satisfy the sign consistency constraints
stated in Definition 2.2, requiring an influence of signs for each non-input vertexi with
variations. We thus definereceive(i, s) to indicate thati receives an influence of signs:

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

(6)

Inconsistent labelings, where a non-input vertex does not receive any influence matching
its variation, are then ruled out by integrity constraints of the following form:

← labelV(V, S), not receive(V, S), not input(V ). (7)

Note that the schematic rules in (6) and (7) are given in the input language of grounder
gringo (Gebser et al. 2009a). This allows us to omit an explicit listing of some “domain
predicates” in the bodies of rules, which would be necessarywhen usinglparse(Lparse Manual).
At (BioASP Tools), we provide encodings forgringo and also (more verbose ones) for
lparse.

Starting from the answer sets described in the previous subsection, the included atoms
labelE(LacI, LacY, –) andlabelV(LacI,+) allow us to derivereceive(LacY, –) via a ground
instance of the second rule in (6), whilereceive(LacY,+) is not derivable. After adding
receive(LacY, –), the solution candidate containinglabelV(LacY, –) satisfies the ground
instance of the integrity constraint in (7) obtained by substituting LacY forV and– for S.
Assuming LacI to be an input, as it can be declared via factinput(LacI), we thus obtain an
answer set containinglabelV(LacY, –), expressing a decrease of LacY. In contrast, since
receive(LacY,+) is underivable, the solution candidate containinglabelV(LacY,+) vio-
lates the following ground instance of (7):

← labelV(LacY,+), not receive(LacY,+), not input(LacY).

That is, the solution candidate withlabelV(LacY,+) does not pass the consistency test.



8 Martin Gebser and Torsten Schaub and Sven Thiele and Philippe Veber

4.4 Soundness and Completeness

By lettingτ((V,E, σ), µ) denote the set of facts representing the problem instance induced
by an influence graph(V,E, σ) and a vertex labelingµ, andPC the logic program con-
sisting of the rules given in (3), (4), (6), and (7), respectively, we can show the following
soundness and completeness results.

Theorem 4.1(Soundness)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

If there is an answer set ofPC ∪ τ((V,E, σ), µ), then(V,E, σ) andµ are consistent.

Theorem 4.2(Completeness)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

If (V,E, σ) andµ are consistent, then there is an answer set ofPC ∪ τ((V,E, σ), µ).

The following correspondence result is immediately obtained from Theorem 4.1 and 4.2.

Corollary 4.3(Soundness and Completeness)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

Then,(V,E, σ) andµ are consistent iff there is an answer set ofPC ∪ τ((V,E, σ), µ).

5 Identifying Minimal Inconsistent Cores

In view of the usually large amount of data, it is crucial to provide concise explanations
whenever an experimental profile is inconsistent with an influence graph (i.e., if the logic
program given in the previous section has no answer set). To this end, we adopt a strat-
egy that was successfully applied on real biological data (Guziolowski et al. 2007). The
basic idea is to isolate minimal subgraphs of an influence graph such that the vertices and
edges cannot be labeled consistently. This task is closely related to extracting Minimal Un-
satisfiable Cores (MUCs) (Dershowitz et al. 2006) in the context of Boolean satisfiability
(SAT). In allusion, we call a minimal subgraph of an influencegraph whose vertices and
edges cannot be labeled consistently aMinimal Inconsistent Core(MIC), whose formal
definition is as follows.2

Definition 5.1(Minimal Inconsistent Core)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

Then, a subsetW of V is aMinimal Inconsistent Core(MIC), if

1. for all total extensionsσ′ : E → {+, –} of σ andµ′ : V → {+, –} of µ, there is
some non-input vertexi ∈ W such thatµ′(i) is inconsistent, and

2. for everyW ′ ⊂ W , there are some total extensionsσ′ : E → {+, –} of σ and
µ′ : V → {+, –} of µ such thatµ′(i) is consistent for each non-input vertexi ∈W ′.

2 We note that verifying a MUC is DP-complete (Dershowitz et al. 2006; Papadimitriou and Yannakakis 1982),
and the same applies to MICs in view of the reduction of SAT described in Section 4. However, solving a
decision problem is not sufficient for our application because we also need to provide MIC candidates to
verify. As regards checking inconsistency of an (a priori unknown) MIC candidate, we are unaware of ways to
accomplish such a co-NP test in non-disjunctive ASP withoutdestroying the candidate at hand.
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Figure 2. A partially labeled influence graph and a MIC consisting of A andD.

To encode MICs, we make use of three important observations made on Definition 5.1.
First, the inherent inconsistency of a MIC’s vertices stipulated in the first condition must
be implied by the MIC and its external regulators, while vertices not connected to the MIC
cannot contribute anything. Moreover, the second condition on proper subsets prohibits
the inclusion of an input vertex in a MIC, as it could always beremoved without affect-
ing inherent (in)consistency of the remaining vertices’ variations. Finally, for establishing
consistency of all proper subsets of a MIC, it is sufficient toconsider subsets excluding a
single vertex of the MIC, given that their consistency carries forward to all smaller subsets.

For illustration, consider the influence graph and the MIC inFigure 2. One can check
that the observed simultaneous increase ofB andD is not consistent with the influence
graph, but the reason for this might not be apparent at first glance. However, once the MIC
consisting ofA andD is extracted, we see that the increase ofB implies an increase ofA, so
that the observed increase ofD cannot be explained. Note that the elucidation of inherent
inconsistency provided by a MIC takes its vertices along with their regulators into account,
the latter being incapable of jointly explaining the variations of all vertices in the MIC.

We next provide an encoding for identifying MICs, where a problem instance, that is, an
influence graph along with an experimental profile, is represented by facts as specified in
Section 4.1. The encoding then consists of three parts: the first generating MIC candidates,
the second asserting inconsistency, and the third verifying minimality.

5.1 Generating MIC Candidates

The generating part comprises rules in (4) for deriving known vertex and edge labels. In
addition, it includes the following rules:

active(V ); inactive(V )← vertex(V ), not input(V ).

edgeMIC(U, V )← edge(U, V ), active(V ).

vertexMIC(U)← edgeMIC(U, V ).

vertexMIC(V )← active(V ).

labelV(V,+); labelV(V, –)← vertexMIC(V ).

labelE(U, V,+); labelE(U, V, –)← edgeMIC(U, V ).

(8)

The first rule permits guessing non-input vertices forming aMIC candidate. Such vertices
are marked asactive. The subgraph of the influence graph consisting of the activevertices,
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their regulators, and the connecting edges provides the context of the MIC candidate.3 The
vertices and edges contributing to this subgraph are identified viavertexMICandedgeMIC.
The guessing of (unobserved) vertex and edge labels is restricted to them in the last two
rules of (8). Finally, note that the rules in (4) propagate known labels also for vertices and
edges not correlated to the MIC candidate, viz., to the active vertices. This does not incur
additional combinatorics; rather, it reduces derivationsdepending on MIC candidates.

5.2 Testing for Inconsistency

By adapting the methodology used in (Eiter and Gottlob 1995), the following subprogram
makes sure that the active vertices cannot be labeled consistently, taking (implicitly) into
account all possible labelings for them, their regulators,and connecting edges:4

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).

← not bottom.

labelV(V,+)← bottom, vertex(V ).

labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).

labelE(U, V, –)← bottom, edge(U, V ).

(9)

In this (part of the) encoding,opposite(U, V ) indicates that the influence of regulatorU

onV is opposite to the variation ofV . If all regulators of an active vertexV have such an
opposite influence, the sign consistency constraint forV is violated, in which case atom
bottomalong with all labels for vertices and edges are derived. Note that the stability
criterion for an answer setX imposes thatbottomand all labels belong toX only if the
active vertices cannot be labeled consistently. Finally, integrity constraint←not bottom
necessitates the inclusion ofbottomin any answer set, thus, stipulating an inevitable sign
consistency constraint violation for some active vertex.

Reconsidering our example in Figure 2, the ground instancesof (8) permit guessing
active(A) andactive(D). When labelingA with + (or assuminglabelV(A,+) to be true), we
deriveopposite(A,D) andbottom, producing in turn all labels for vertices and edges. Fur-
thermore, setting the sign ofA to– (or labelV(A, –) to true) makes us deriveopposite(B,A),
which again givesbottomand all labels for vertices and edges. We have thus verified that
the sign consistency constraints forA andD cannot jointly be satisfied, given the observed
increases ofB andD. That is, active verticesA andD are sufficient to explain the incon-
sistency between the observations and the influence graph.

3 In Definition 5.1, (in)consistency is checked only for the (non-input) vertices in a MIC, while other vertices’
variations do not need to be explained. Hence, guessing unobserved vertex (and edge) labels can be restricted
to vertices belonging to or connected to the MIC, which reduces combinatorics.

4 In the language ofgringo (and lparse), the expressionopposite(U, V ) : edge(U, V ) used below refers to the
conjunction of all ground atomsopposite(j, i) for which edge(j, i) holds.
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5.3 Testing for Minimality

It remains to be verified whether the sign consistency constraints for all active vertices are
necessary to identify an inherent inconsistency. This testis based on the idea that, excluding
any single active vertex, the sign consistency constraintsfor the other active vertices should
be satisfied by appropriate labelings, which can be implemented as follows:

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertexMIC(V ).

labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S), V 6= W.

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), V 6= W,S 6= T.

← labelV’(W,V, S), active(V ), V 6= W, not receive’(W,V, S).

(10)

This subprogram is similar to the consistency check encodedvia the rules in (3), (4), (6),
and (7). However, sign consistency constraints are only checked for active vertices, and
they must be satisfiable for all but one arbitrary active vertexW . In fact, labelings such that
the variations of all active vertices butW are explained witness the fact thatW cannot be
removed from a MIC candidate without re-establishing consistency. AsW ranges over all
(non-input) vertices of an influence graph, each active vertex is taken into consideration.
Regarding computational complexity, recall from Section 4that checking consistency is
NP-complete. As a consequence, one cannot easily identify conditions to select a particular
witness for consistency of a MIC candidate minus some vertexW , and so we do not encode
any such conditions. This leads to the potential of multipleanswer sets comprising the same
MIC but different witnesses, in particular, if many vertices and edges belong to the context
of the MIC.

For the influence graph in Figure 2, it is easy to see that the sign consistency constraint
for A is satisfied by setting the sign ofA to +, expressed by atomlabelV’(D,A,+) in the
ground rules obtained from the above encoding part. In turn,the sign consistency constraint
for D is satisfied by setting the sign ofA to –. This is reflected by atomlabelV’(A,A, –),
allowing us to derivereceive’(A,D,+). That is, the ground instance of the above integrity
constraint containinglabelV’(A,D,+) is satisfied. The fact that atomslabelV’(D,A,+) and
labelV’(A,A, –), used for explaining the variation of eitherA or D, respectively, disagree
on the sign ofA also shows that jointly consideringA andD yields an inconsistency.

5.4 Soundness and Completeness

Similar to Section 4.4, we can show the soundness and completeness for our MIC extrac-
tion encodingPD, consisting of the rules in (4), (8), (9), and (10), respectively.

Theorem 5.1(Soundness)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

If X is an answer set ofPD ∪ τ((V,E, σ), µ), then{i | active(i) ∈ X} is a MIC.

Theorem 5.2(Completeness)
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Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.
If W ⊆ V is a MIC, then there is an answer setX of PD ∪ τ((V,E, σ), µ) such that
{i | active(i) ∈ X} = W .

The following correspondence result is immediately obtained from Theorem 5.1 and 5.2.

Corollary 5.3(Soundness and Completeness)
Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

Then,W ⊆ V is a MIC iff there is an answer setX of PD ∪ τ((V,E, σ), µ) such that
{i | active(i) ∈ X} = W .

As mentioned above, several answer sets may represent the same MIC because witnesses
needed for minimality testing are not necessarily unique.

6 Refinements

In this section, we detail two encoding extensions aiming atthe improvement of grounding
and solving efficiency. First, input reduction checks for some simple cases to identify and
distinguish uncritical vertices. Second, background knowledge about MICs’ connectivity
can be exploited to more precisely render potential MIC candidates.

6.1 Input Reduction

It is not unlikely in practice that biological networks include simple tractable substructures
or that parts of experimental observations are easily explained. Dealing with such particular
cases before doing complex computations (like checking consistency or finding MICs) is
therefore advisable. Given an influence graph(V,E, σ) and a partial vertex labelingµ
capturing experimental data, we below describe conditionsto identify vertices that can
always be labeled consistently. Such vertices can then be marked as (additional) inputs to
exclude their sign consistency constraints from consistency checking and to make explicit
that they cannot belong to any MIC. Any of the following conditions is sufficient to identify
a vertexi as effectively unconstrained:

1. There is a regulationi→ i in E such thatσ(i, i) = +, that is,i supports its variation.
2. There is a regulationj→ i in E such thatσ(j, i) is undefined. In fact, undetermined

regulations are used in practice to model influences that vary, e.g., relative to en-
vironmental conditions. Any variation of the targeti of such a regulation can be
explained by assigning the appropriate label toj→ i (w.r.t. the label ofj).

3. There are regulationsj→ i, k→ i in E such thatµ(j)σ(j, i)=+ andµ(k)σ(k, i)=–.
That is, any variation ofi is already explained by the given observations.

4. An observed variationµ(i) of i is explained if there is some regulationj→ i in E

such thatµ(j)σ(j, i) = µ(i). Any further regulations targetingi can be ignored.
5. If for all regulationsi→ k in E, we have thatk is an input, then the variation ofi

is insignificant for its targets. In this case, ifi is unobserved (µ(i) is undefined) and
target of at least one regulationj→ i in E, we can assign an appropriate label toi

(w.r.t. the labels ofj andj→ i) without any further conditions.
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Figure 3. A partially labeled influence graph with uncritical vertices surrounded by dots.

6. There is a regulationj→ i in E such thatj is unobserved (µ(j) is undefined), an
input, and all targetsk 6= i of j (j→ k belongs toE) are inputs. Without any further
conditions, we can assign an appropriate label toj for explaining the variation ofi.

The reduction idea is to mark a vertexi as additional input, if it meets one of the above
conditions. Since the two last conditions inspect inputs, they may become applicable to
further vertices once inputs are added. Hence, checking theconditions and adding inputs
needs to be done exhaustively. As we see below, this can easily be encoded in ASP.

Reconsidering the influence graph and partial observationsin Figure 2, we see that ver-
tex B receives an influence fromD matching its observed increase. Thus, the fourth con-
dition applies to already explained vertexB. Moreover, vertexE is unobserved and does
not regulate anything. That is, the fifth condition applies to E, and its variation can simply
be picked from influences it receives fromA, C, andD. After establishing thatE can be
labeled consistently, we find thatC does not regulate any critically constrained vertex. Ap-
plying again the fifth condition, we notice that the variation of C is actually insignificant.

Figure 3 shows the situation resulting from the identification of uncritical vertices by
iteratively applying the above conditions. The fact that only A andD are critically con-
strained tells us that only they can belong to a MIC. As a consequence, the MIC contain-
ing A andD, shown on the right-hand side of Figure 2, is the only one in this example.

The aforementioned idea to mark uncritical vertices asinput can be encoded as follows:

obs(V )← observedV(V, S).
get(V,+)← observedE(U, V, S), observedV(U, S).
get(V, –)← observedE(U, V, S), observedV(U, T ), S 6= T.

input(V )← observedE(V, V,+).
input(V )← edge(U, V ), not observedE(U, V,+), not observedE(U, V, –).
input(V )← get(V,+), get(V, –).
input(V )← observedV(V, S), get(V, S).
input(V )← edge(U, V ), input(W ) : edge(V,W ), not obs(V ).

input(V )← edge(U, V ), input(W ) : edge(U,W ) : W 6= V, input(U), not obs(U).

Auxiliary predicatesobs and get are used to exhibit whether either variation has been
observed for a vertex and whether a particular influence is received for certain, respectively.
The last six rules check the described conditions (in the same order) and mark a vertex as
input if one of them applies. Importantly, the above rules are stratified and thus yield a



14 Martin Gebser and Torsten Schaub and Sven Thiele and Philippe Veber

A

B

C

D

E

A

B

D

Figure 4. A partially labeled influence graph and the graph(V [{A,D}], E[{A,D}]).

unique set of derived input vertices. This allows us to perform the reduction efficiently
within grounding, without deferring to any procedural implementation external to ASP.

The situation shown in Figure 3 is reflected by the reduction encoding deriving atoms
input(B), input(C), andinput(E) from an instance (cf. Section 4.1) corresponding to the
depicted influence graph and observed variations. Consistency checking and MIC identifi-
cation (cf. Section 4 and 5) can then focus on the remaining non-input verticesA andD.

6.2 Exploiting Strongly Connected Components for MIC Extraction

In what follows, we introduce a connectivity property of MICs that can be used to further
refine the encoding presented in Section 5. Incorporating additional background knowledge
into the problem encoding is straightforward (as soon as such knowledge is established). In
practice, ancillary (and actually redundant) conditions may significantly narrow and thus
speed up both the grounding and the solving process.

MIC Connectivity Property.For analyzing interactions within a MIC, we make use of a
graph described in the following. Let(V,E, σ) be an influence graph andµ : V → {+, –}
be a (partial) vertex labeling, and letD(µ) denote the set of vertices labeled byµ. For a
setW ⊆ V of vertices, we define a graph(V [W ], E[W ]) by:

V [W ] = W ∪ {j | (j→ i) ∈ E, i ∈W}

E[W ] = {(j→ i) | (j→ i) ∈ E, i ∈ W} ∪ {(i→ j) | (j→ i) ∈ E, i ∈W, j /∈ D(µ)} .

The construction of(V [W ], E[W ]) is based on the idea that a regulatorj of somei ∈W is
connected toi via its sign consistency constraint, and a connection in theopposite direction
applies ifj is unlabeled byµ. In fact, given some total extensionsσ′ : E → {+, –} of σ and
µ′ : V → {+, –} of µ, we can check a matching influence ofj oni byµ′(i) = µ′(j)σ′(j, i)

or equivalently byµ′(j) = µ′(i)σ′(j, i). That is, provided thatµ(j) is undefined,µ′(i)

constrainsµ′(j) by contraposition wheneveri does not receive a matching influence from
any other regulator thanj. This observation motivates the inclusion of inverse edgesfrom
vertices inW to regulators unlabeled byµ in E[W ].

For illustration, the right-hand side of Figure 4 shows graph (V [{A,D}], E[{A,D}])
resulting from the partially labeled influence graph on the left-hand side. The single reg-
ulatorB of A is labeled, and thus there is no inverse edge fromA to B in E[{A,D}]. On
the other hand,A is an unlabeled regulator ofD, and soE[{A,D}] includes an inverse
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edge fromD to A. The addition of this edge turns the subgraph of(V [{A,D}], E[{A,D}])
induced byA andD into a strongly connected component. In view thatA andD belong to
a MIC (as discussed in Section 5), we below show that this connectivity is not by chance.

Theorem 6.1(MIC Connectivity)

Let (V,E, σ) be an influence graph andµ : V → {+, –} a (partial) vertex labeling.

If W ⊆ V is a MIC, then all vertices inW belong to the same strongly connected
component in(V [W ], E[W ]).

The proof is omitted in view of space limitations and can be obtained from the authors.

Optimized MIC Encoding.We now apply Theorem 6.1 to improve the basic MIC extrac-
tion encoding (cf. Section 5) in two aspects: adding (redundant) constraints for search
space pruning and adding positive body literals for reducing grounding efforts. The fol-
lowing rules pave the way by determining the (non-trivial) strongly connected components
in (V,E[V ]) as an over-approximation of the ones in(V [W ], E[W ]) for anyW ⊆ V :

edges(U, V )← edge(U, V ), not input(V ).

edges(V, U)← edge(U, V ), not input(V ), not observedV(U,+), not observedV(U, –).

reach(U, V )← edges(U, V ).

reach(U, V )← edges(U,W ), reach(W,V ), vertex(V ).

cycle(U, V )← reach(U, V ), reach(V, U), U 6= V.

(11)

The first rule simply collects edges whose targets are not input, while the second rule adds
edges in the inverse direction for unobserved regulators. Reachability w.r.t. the so obtained
graph is determined via the third and the fourth rule. Finally, predicatecycle indicates
whether two (distinct) vertices reach each other in(V,E[V ]) relative to an influence graph
(V,E, σ) and a (partial) vertex labelingµ. In fact, if two vertices belong to a MICW ⊆ V ,
then mutual reachability in(V [W ], E[W ]) implies the same in(V,E[V ]), in view that
V [W ] ⊆ V andE[W ] ⊆ E[V ]. Conversely, if two vertices do not reach each other in
(V,E[V ]), then they cannot jointly belong to any MIC.

The over-approximation of potential MICs provides an easy means to prune the search
space by adding the following integrity constraint:

← active(U), active(V ), U < V, not cycle(U, V ). (12)

The constraint makes the fact explicit that distinct vertices of a MIC must reach each other
in (V,E[V ]), and it immediately refutes MIC candidates that do not satisfy this condition.

After making use of Theorem 6.1 to narrow search, we now shiftthe focus to grounding.
As a matter of fact, the quadratic space complexity of the minimality test’s ground instan-
tiation, as encoded in (10), is a major bottleneck in scaling. The knowledge about potential
pairwisely connected vertices in MICs, represented by integrity constraint (12), also allows
us to include positive body literals in order to restrict thescope of minimality tests:
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labelV’(W,V,+); labelV’(W,V, –)← active(W ), active(V ), cycle(V,W ).

labelV’(W,U,+); labelV’(W,U, –)← active(W ), edgeMIC(U, V ), cycle(V,W ).

labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ), cycle(V,W ).

labelV’(W,V, S)← active(W ), observedV(V, S), cycle(V,W ).

labelV’(W,U, S)← active(W ), observedV(U, S), edge(U, V ), cycle(V,W ).

labelE’(W,U, V, S)← active(W ), observedE(U, V, S), cycle(V,W ).

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S).

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), S 6= T.

← labelV’(W,V, S), active(V ), cycle(V,W ), not receive’(W,V, S).

(13)

In comparison to (10), the extra conditioncycle(V,W ) in the bodies of the first three rules
establishes that labels used for testing minimality are guessed only for pairsW andV of
vertices that can potentially jointly belong to a MIC. The same restriction is used in the next
three rules forwarding observed vertex and edge labels, butnow limited to vertices that can
jointly belong to a MIC and to their respective regulators. Finally, the last two rules and the
integrity constraint perform the same test as in (10) for a restricted set of pairsW andV .
(The fact thatcycle(V,W ) impliesV 6= W in labelE’(W,U, V, S) also allows us to drop
this condition, used in (10), from the bodies of the rules defining receive’.)

The complete optimized MIC encoding consists of the original rules in (4), (8), and (9),
(11) and (12) as add-ons, and (13) as a replacement for (10). As regards the computational
impact, we note that the optimized encoding needs less than two seconds for grounding
and finding all MICs on the case study in Section 7.3, which took more than a minute with
the unoptimized encoding.

A second version of the optimized encoding is obtained by tightening the considera-
tion of connected vertices in(V [W ], E[W ]) relative to a MIC candidateW . This can be
achieved by adding conditionactive(V ) to the rules in (11) defining theedgespredicate.
In this way, the static reachability information encoded in(11), which is completely eval-
uated by groundergringo, is turned into a dynamic relation computed during search. As
it turns out, there is no significant performance differencebetween these two versions of
the optimized MIC extraction encoding on the case study in Section 7.3. Hence, more real
examples are needed to reliably compare their grounding andsolving efficiency.

7 Empirical Evaluation and Application

For assessing the scalability of our approach, we start by conceiving a parameterizable
suite of artificial yet biologically meaningful benchmarks. After that, we present a typical
application stemming from real biological data, illustrating the exertion in practice. All
experiments were performed using input reduction as explained in Section 6.1.

7.1 Checking Consistency

We first evaluate our approach on randomly generated instances, aiming at structures simi-
lar to those found in biological applications. Instances are composed of an influence graph,
a complete labeling of its edges, and a partial labeling of its vertices. Our random generator
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claspD claspD claspD cmodels dlv gnt
α Berkmin VMTF VSIDS

500 0.14 0.11 0.11 0.16 0.46 0.71
1000 0.41 0.25 0.25 0.35 1.92 3.34
1500 0.79 0.38 0.38 0.53 4.35 7.50
2000 1.33 0.51 0.51 0.71 8.15 13.23
2500 2.10 0.66 0.66 0.89 13.51 21.88
3000 3.03 0.80 0.79 1.07 20.37 31.77
3500 3.22 0.93 0.92 1.15 21.54 34.39
4000 4.35 1.06 1.06 1.36 30.06 46.14

Table 2. Run-times for consistency checking withclaspD, cmodels, dlv, andgnt.

takes three parameters: (i) the numberα of vertices in the influence graph, (ii) the average
degreeβ of the graph, and (iii) the proportionγ of observed variations for vertices. To
generate an instance, we compute a random graph withα vertices (the value ofα vary-
ing from 500 to 4000) under the model by Erdős-Rényi (1959). Each pair of vertices has
equal probability to be connected via an edge, whose label ischosen independently with
probability0.5 for both signs. We fix the average degreeβ to 2.5, which is considered to
be a typical value for biological networks (Jeong et al. 2000). Finally, ⌊γα⌋ vertices are
chosen with uniform probability and assigned a label with probability 0.5 for both signs.
For each numberα of vertices, we generated 50 instances using five different values forγ,
viz., 0.01, 0.02, 0.033, 0.05, and0.1. All instances are available at (BioASP Tools).

We usedgringo (2.0.0) (Gebser et al. 2009a) for combining the generated instances and
the encoding given in Section 4 into equivalent ground programs. For checking consistency
by computing an answer set (if it exists), we ran disjunctiveASP solversclaspD (1.1)
(Drescher et al. 2008) with “Berkmin”, “VMTF”, and “VSIDS” heuristics,cmodels(3.75)
(Giunchiglia et al. 2006) usingzchaff, dlv (BEN/Oct 11) (Leone et al. 2006), andgnt (2.1)
(Janhunen et al. 2006). All runs were performed on a Linux machine equipped with an
AMD Opteron 2 GHz processor and a memory limit of 2GB RAM.

Table 2 shows average run-times in seconds over 50 instancesper numberα of vertices,
including grounding times ofgringo and solving times. We checked that grounding times
of gringo increase linearly with the numberα of vertices, and they do not vary significantly
overγ. For all solvers, run-times also increase linearly inα.5 For fixedα values, we found
two clusters of instances: consistent ones where total labelings were easy to compute, and
inconsistent ones where inconsistency was detected from preassigned labels. This tells
us that the influence graphs generated as described above areusually (too) easy to label
consistently, and inconsistency only occurs if it is explicitly introduced via fixed labels.
However, such constellations are not unlikely in practice (cf. Section 7.3), and isolating
MICs from them, as done in the next subsection, turned out to be hard for most solvers. Fi-
nally, greater values forγ led to an increased proportion of inconsistent instances, without
making them much harder.

5 Longer run-times ofclaspDwith “Berkmin” in comparison to the other heuristics are dueto a more expen-
sive computation of heuristic values in the absence of conflict information. Furthermore, the time needed for
performing “Lookahead” slows downdlv as well asgnt.
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gringo claspD claspD claspD
α Berkmin VMTF VSIDS

50 0.24 1.16 (0) 0.65 (0) 0.97 (0)
75 0.55 39.11 (1) 1.65 (0) 3.99 (0)

100 0.87 41.98 (1) 3.40 (0) 4.80 (0)
125 1.37 15.47 (0) 47.56 (1) 10.73 (0)
150 2.02 54.13 (0) 48.05 (0) 15.89 (0)
175 2.77 30.98 (0) 116.37 (2) 23.07 (0)
200 3.82 42.81 (0) 52.28 (1) 24.03 (0)
225 4.94 99.64 (1) 30.71 (0) 41.17 (0)
250 5.98 194.29 (3) 228.42 (5) 110.90 (1)
275 7.62 178.28 (2) 193.03 (4) 51.11 (0)
300 9.45 241.81 (2) 307.15 (7) 124.31 (0)

Table 3. Run-times for grounding withgringoand solving withclaspD.

7.2 Identifying Minimal Inconsistent Cores

We now investigate the problem of finding a MIC within the samesetting as in the previous
subsection. Because of the elevated size of ground instantiations and problem difficulty, we
varied the numberα of vertices from50 to 300, thus, using considerably smaller influence
graphs than before. We again usegringo for grounding, now taking the encoding given in
Section 5. As regards solving, we restrict our attention toclaspDbecause all three of the
other solvers showed drastic performance declines.

Table 3 shows average run-times in seconds over 50 instancesper numberα of ver-
tices. Timeouts, indicated in parentheses, are taken as maximum time of 1800 seconds.
We observe a quadratic increase in grounding times ofgringo, which is in line with the
fact that ground instantiations for our MIC encoding grow quadratically with the size of
influence graphs. In fact, the schematic rules in Section 5.3give rise toα copies of an
influence graph. Considering solving times spent byclaspDfor finding one MIC (if it ex-
ists), we observe that they are relatively stable, in the sense that they are tightly correlated
to grounding times. This regularity again confirms that, though it is random, the applied
generation pattern tends to produce rather uniform influence graphs. Finally, we observed
that unsatisfiable instances, i.e., consistent instances without any MIC, were easier to solve
than the ones admitting answer sets. We conjecture that thisis because consistent total
labelings provide a disproof of inconsistency as encoded inSection 5.2.

As our experimental results demonstrate, computing MICs iscomputationally harder
than just checking consistency. This is not surprising because the related (yet simpler) deci-
sion problem of verifying a MUC is DP-complete (Dershowitz et al. 2006; Papadimitriou and Yannakakis 1982)
and thus more complex than just deciding satisfiability. With our declarative technique, we
spot the quadratic space blow-up incurred by the MIC encoding in Section 5 as a bottle-
neck. However, there are approaches aiming at a reduction ofgrounding efforts, and some
of them have been presented in Section 6.
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Figure 5. Some MICs obtained by comparing the regulatory network of yeast with a ge-
netic profile.

7.3 Biological Case Study

In the following, we present the results of applying our approach to real-world data of
genetic regulations in yeast. We tested the gene-regulatory network of yeast provided in
(Guelzim et al. 2002) against genetic profile data ofsnf2knock-outs (Sudarsanam et al. 2000)
from the Saccharomyces Genome Database6. The regulatory network of yeast contains
909 genetic or biochemical regulations, all of which have been established experimentally,
among 491 genes.

Comparing the yeast regulatory network with the genetic profile of snf2, we found the
data to be inconsistent with the network, which was easily detected using the approach
of Section 4. Applying our diagnosis technique from Section5, we obtained a total of 19
MICs. While computing the first MIC took less than a second usinggringoandclaspD(re-
gardless of the heuristic used), the computation of all MICswas considerably harder. Us-
ing “VMTF” as search heuristic on top of the enumeration algorithm (Gebser et al. 2007)
inherited fromclasp(Gebser et al. 2009c),claspDhad found all 19 MICs in about 30 sec-
onds, while another 40 seconds were needed to decide that there is no further MIC. With
“VSIDS”, finding the 19 MICs took about the same time as with “VMTF”, but another
80 seconds were used to verify that all MICs had been found. Finally, using “Berkmin”
heuristic, 12 MICs had been found before aborting after 30 minutes. The observation that
search heuristics matter tells us that investigations intothe structure of biological problems
and particular methods to solve them efficiently can earn considerable benefits.7 Further-
more, we note that the potential existence of multiple answer sets encompassing the same

6 http://www.yeastgenome.org
7 Notably, by exploiting additional background knowledge, the optimized encoding presented in Section 6.2

requires less than two seconds (regardless of heuristics) for grounding and finding all 19 MICs. In fact, its
ground instantiation contains only 8481 atoms and 10843 rules, compared to 47260 atoms and 56522 rules
with the basic encoding in Section 5. In addition to problem size, also the difficulty drops dramatically: from
23345 conflicts down to 270 conflicts, encountered with “VMTF” heuristic during search for all answer sets.

http://www.yeastgenome.org
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Figure 6. Subgraph obtained by connecting the six MICs givenin Figure 5.

MIC did not emerge on the yeast network andsnf2knock-out data. That is, we obtained 19
answer sets, each one corresponding one-to-one to a MIC.

Six of the computed MICs are exemplarily shown in Figure 5. While the first three of
them are pretty obvious, we also identified more complex topologies. However, our exam-
ple demonstrates that the MICs obtained in practice are still small enough to be understood
easily. For finding suitable corrections to the inconsistencies, it is often even more helpful
to display the connections between several overlapping MICs. Observe that all six MICs
in Figure 5 are related to geneume6. Connecting them yields the subgraph of the yeast
regulatory network in Figure 6.

The most obvious problem in Figure 6 is that the observed increase ofume6is incompat-
ible with its four targets. This suggests that either the observation onume6is incorrect or
that some regulations are missing or wrongly modeled. In thefirst hypothesis though, one
should note that the current model cannot explain a decreaseof ume6: this would imply an
increase ofsin3and in turn an increase ofreb1, but then there would be no explanation left
for the variation ofhsc82andrap1. So, in either case, our model should be revised. This is
not a great surprise: our literature-based network, although very reliable, was presumably
far from being complete.

Regarding the biological background, note thatume6is a known regulator of sporu-
lation in yeast: in case of nutritional stress, yeast cells stop dividing and produce spores
by meiosis. These spores are reproductive structures better adapted to extreme condi-
tions. ume6is known as a key inhibitor of early meiotic genes: upon entryin meiosis,
this inhibitory effect is released and the target genes are expressed. Notably, a knock-
out of ume6causes the expression of meiotic genes during vegetative growth (hence its
name,Unscheduled Meiotic Expression) as well as almost complete failure of sporulation
(Washburn and Esposito 2006).ume6seems to have activation capabilities as well, though
in that case the effect is believed to be indirect (Chen et al.2007).

In the current view,ume6switches from inhibitor to (indirect) activator at the beginning
of meiosis: Ume6p (the protein corresponding to the geneume6) has a repressive effect
when it forms a complex with Sin3p (note thatsin3 is in our network) and Rdp3p, which
is degraded upon entry in meiosis (Mallory et al. 2007). Thismolecular mechanism can
be interpreted in our model and one possible result is given in Figure 7. At least for neg-
ative targets, we now have a plausible explanation: the realeffector of the inhibition on
hsf1, spo12, top1, andume6itself is the complex Ume6p-Sin3p, whose variation is un-
observed but depends on the variation ofume6andsin3. The variation of the targets can
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Figure 7. Local correction of the network based on our diagnosis method and literature
research.

be explained if the protein complex decreases, which is in turn possible ifsin3decreases.
Regretfullysin3is not observed in our data, but we note that a decrease of thisgene is fully
compatible with the rest of the network, that is, if we suppose a decrease ofreb1. Now
concerningino2, our network should be updated with more recent evidence: asreviewed
in (Chen et al. 2007),ino2 has several additional regulators, such asopi1 andpah1 (see
Figure 7). The observed variation ofpah1is not useful to explain that ofino2, butopi1 is
definitely a plausible candidate.

Here we illustrated one main usage of our diagnosis technique: identifying poorly mod-
eled regions of a regulatory network that are incompatible with a given data set. This is
definitely a key asset if one wants to build a large-scale regulatory database and check
its coherence with newly produced data on a regular basis. Given new data, our diagnosis
method produces human-understandable representations ofpossible incompatibilities with
the current model, which serve as the basis for a targeted literature research. With this data-
driven approach, a network can then be improved with considerably less effort than with a
random traversal of publications, for a much more coherent result.

8 Web Service

To make our methods easily accessible to a biological audience, we built a web service8

not requiring any locally installed software on the user side except for a web browser. It
provides the possibility to upload textual representations of biological networks as well as
experimental profiles. Also, a number of predefined examplesallows a user to instantly
experience the functionalities of the web service. These include consistency checking and
diagnosis, i.e., finding MICs, whose implementation has been detailed in Section 4 and 5.

Influence graphs representing biological networks usuallycontain vertices that are not
subject to any regulation. Such entities are understood as controlled by external factors,
like environmental or particular experimental conditions. To avoid trivial inconsistencies
due to such unregulated and thus unexplainable vertices, the web interface provides an

8 http://data.haiti.cs.uni-potsdam.de/wsgi/app

http://data.haiti.cs.uni-potsdam.de/wsgi/app
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Figure 8. Representation of identified MICs in textual (left) and graphical (right) mode.

option “Guess input nodes” for automatically declaring allvertices without any predeces-
sor as inputs. While consistency checking simply results ina positive or negative answer,
we offer three diagnosis modes: “find one inconsistency”, “find all inconsistencies”, and
“approximate all inconsistencies”. The first mode aims at finding a single MIC, and the
second at finding all of them. For the latter, we currently usean encapsulating script that
repeatedly callsclaspDwhile feeding already identified MICs back as integrity constraints,
until no further answer set exists. This makes sure that eachanswer set corresponds to a
new MIC and thus avoids potential repetitions. The problem of enumerating answer sets
that differ on a set of “relevant” atoms (in our case, on instances of predicateactive) is
addressed in (Gebser et al. 2009b). The integration of this technique intoclaspD, in or-
der to make the wrapper script obsolete, is subject to futurework. Once MICs have been
computed, they can be represented either textually or graphically, as shown in Figure 8.
If the result consists of several MICs, it is possible to viewoverlapping ones in a com-
bined way, thus highlighting regions of inconsistency. Finally, the third diagnosis mode,
“approximate all inconsistencies”, works by marking the vertices of a computed MIC as
inputs before proceeding to look for further MICs. This approach has been used in previous
work (Guziolowski et al. 2009) and has been integrated into our framework for compari-
son. However, the results obtained with the third mode depend on the order in which MICs
are found and their vertices declared to be inputs in future computations. Further func-
tionalities, like prediction under consistency (Guziolowski et al. 2007) and inconsistency
(Gebser et al. 2010), are also featured by the web service butare outside the scope of this
paper.
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9 Discussion

We have provided an approach based on ASP to investigate the consistency between exper-
imental profiles and influence graphs. In case of inconsistency, the concept of a MIC can be
exploited for identifying concise explanations, pointingto unreliable data and/or missing
reactions. The problem of finding MICs is closely related to the extraction of MUCs in the
context of SAT. From a knowledge representation point of view, however, we argue for our
ASP-based technique, as it provides an easy way to model a problem in terms of a uniform
encoding and specific instances.

The BioQuali system (Guziolowski et al. 2009) provides functionalities parallel to our
approach. It also works on influence graphs and applies the same consistency notion. In
preprocessing, BioQuali reduces an influence graph by iteratively marking unobserved ver-
tices that have no successors as uncritical. This techniqueis also realized by input reduc-
tion, described in Section 6.1. After that, BioQuali transforms the reduced subgraph into a
Binary Decision Diagram, used for further computations. While consistency checking with
BioQuali yields the same results as our technique, its diagnosis functionality works like the
“approximate all inconsistencies” mode, described in the previous section. In contrast to
our method, this does in general not admit finding all MICs.

By now, a variety of efficient ASP tools are available, both for grounding and for solving
logic programs. Our empirical assessment of them (on randomas well as real data) has in
principle demonstrated the scalability of the approach. The web service implementation of
finding all MICs, which is genuine to our method and not available in any other existing
tool, is still based on some workarounds for avoiding redundant answer sets. It is a subject
of future work to address this with answer set projection (Gebser et al. 2009b).

As elegance and flexibility in modeling are major advantagesof ASP, our current appli-
cation makes it attractive also for related biological questions, beyond the ones addressed
in this paper. For instance, ongoing work deals with repair and prediction under consis-
tency as well as inconsistency (Gebser et al. 2010). In future, it will also be interesting to
explore how far the performance of ASP tools can be tuned by varying and optimizing
encodings for particular tasks. In turn, challenging applications like the one presented here
might contribute to the further improvement of ASP tools, asthey might be geared towards
efficiency in such domains.

Appendix A Proof of Theorem 4.1 and 4.2

We formalize the representation of instances, as describedin Section 4.1, by defining a
mappingτ of an influence graph(V,E, σ) and a (partial) vertex labelingµ : V → {+, –}:

τ((V,E, σ), µ) = {vertex(i). | i ∈ V }

∪ {edge(j, i). | (j→ i) ∈ E}

∪ {observedE(j, i, s). | (j→ i) ∈ E, σ(j, i) = s}

∪ {observedV(i, s). | i ∈ V, µ(i) = s}

∪ {input(i). | i ∈ V is an input} . (A1)

By PC , we denote the encoding containing the schematic rules in (3), (4), (6), and (7).

Proof of Theorem 4.1
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Assume thatX is an answer set ofPC ∪ τ((V,E, σ), µ). Furthermore, let

PX = {(head(r)← body(r)+)θ |

r ∈ PC ∪ τ((V,E, σ), µ), (body (r)−θ) ∩X = ∅, θ : var(r)→ U}

wherevar(r) is the set of all variables that occur in a ruler, U is the set of all constants
appearing inPC ∪ τ((V,E, σ), µ), andθ is a ground substitution for the variables inr.
Then, by the definition of an answer set, we know thatX is a⊆-minimal model ofPX .

GivenX , we defineσ′ andµ′ as follows:

σ′ = {(j→ i) 7→ s | (j→ i) ∈ E, labelE(j, i, s) ∈ X}

µ′ = {i 7→ s | i ∈ V, labelV(i, s) ∈ X} .

We show thatσ′ andµ′ are total labelings of edges and vertices, respectively, such that
µ′(i) = µ′(j)σ′(j, i) holds for every non-input vertexi ∈ V and some edgej→ i in E.

Regarding the uniqueness of labels assigned byσ′ andµ′, consider the following rules
from (3) and (4) including predicateslabelEandlabelV in their heads:

labelV(V,+); labelV(V, –)← vertex(V ).

labelE(U, V,+); labelE(U, V, –)← edge(U, V ).

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

(A2)

Since the given (partial) labelingsσ andµ assign unique labels to the elements of their
domains, facts definingobservedEandobservedVare of the formobservedE(j, i,+). or
observedE(j, i, –). andobservedV(i,+). or observedV(i, –)., respectively, and at most one
of these facts is contained inτ((V,E, σ), µ) for an edge(j→ i) ∈ E or a vertexi ∈ V .
BecauseX is a ⊆-minimal model ofPX , the atoms in the heads of facts are inX ,
and all atoms inX over predicatesobservedEandobservedVare derived from facts in
τ((V,E, σ), µ), in view that these predicates do not occur in the head of any rule inPC .
Hence, at most one of the atomslabelE(j, i,+) and labelE(j, i, –) or labelV(i,+) and
labelV(i, –), respectively, is derivable for an edge(j→ i) ∈ E or vertexi ∈ V from a
ground instance of the fourth or third rule in (A2) and then included inX . Furthermore,
the second and first rule in (A2) impose that at least one oflabelE(j, i,+) or labelE(j, i, –)
and labelV(i,+) or labelV(i, –) belongs toX for every edge(j→ i) ∈ E and vertex
i ∈ V , respectively, while the atom containing the opposite label cannot belong to a⊆-
minimal model ofPX . Hence, there is at most one terms such thatlabelE(j, i, s) ∈ X

or labelV(i, s) ∈ X for an edge(j→ i) ∈ E or vertexi ∈ V , respectively, and it holds
thats ∈ {+, –}, which allows us to conclude thatσ′ andµ′ are total labelings.

As regards extendingσ andµ, we have that factobservedE(j, i, s). or observedV(i, s).
belongs toτ((V,E, σ), µ) if σ(j, i) = s or µ(i) = s, respectively, is given. This implies
thatlabelE(j, i, s) ∈ X or labelV(i, s) ∈ X , respectively, as the fourth or third rule in (A2)
would be unsatisfied otherwise. Thus,σ′(j, i) = s if σ(j, i) = s, andµ′(i) = s if µ(i) = s.

It remains to be shown thatµ′(i) is consistent for each non-input vertexi ∈ V . To this
end, we note that the integrity constraint

← labelV(V, S), not receive(V, S), not input(V ).

from (7) necessitatesreceive(i, r) ∈ X if µ′(i) = r (that is, if labelV(i, r) ∈ X) for a
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non-input vertexi ∈ V . Otherwise,PX would contain an unsatisfied ground instance in
view that input(i) ∈ X exactly if fact input(i). is included inτ((V,E, σ), µ). However,
any ground instances of the integrity constraint contributing to PX do not contain atoms
over predicatereceive. Such atoms can only be derived using the following rules from (6):

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

SinceX is a⊆-minimal model ofPX , receive(i,+) ∈ X or receive(i, –) ∈ X is possible
only if labelE(j, i, s) ∈ X and labelV(j, t) ∈ X such thats = t or s 6= t, that is, if
σ′(j, i) = s andµ′(j) = t such thatµ′(j)σ′(j, i) = + or µ′(j)σ′(j, i) = –, respectively.
As labelV(i, r) is accompanied byreceive(i, r) in X for each non-input vertexi ∈ V , this
allows us to conclude thatµ′(i) = r impliesµ′(j)σ′(j, i) = r for some regulatorj of i.
Hence, we have thatµ′(i) is consistent for each non-input vertexi ∈ V .

Proof of Theorem 4.2
Assume that(V,E, σ) andµ are consistent. Then, there are total extensionsσ′ : E →

{+, –} of σ andµ′ : V → {+, –} of µ such that, for each non-input vertexi ∈ V , we have
µ′(i) = µ′(j)σ′(j, i) for some edgej→ i in E.

We consider the following setX of atoms:

X = {vertex(i), labelV(i, s) | i ∈ V, µ′(i) = s}

∪ {edge(j, i), labelE(j, i, s) | (j→ i) ∈ E, σ′(j, i) = s}

∪ {receive(i, ts) | (j→ i) ∈ E, σ′(j, i) = s, µ′(j) = t}

∪ {observedE(j, i, s) | (j→ i) ∈ E, σ(j, i) = s}

∪ {observedV(i, s) | i ∈ V, µ(i) = s}

∪ {input(i) | i ∈ V is an input} .

For showing thatX is an answer set ofPC ∪ τ((V,E, σ), µ), we need to verify thatX is
a⊆-minimal model of

PX = {(head(r)← body(r)+)θ |

r ∈ PC ∪ τ((V,E, σ), µ), (body (r)−θ) ∩X = ∅, θ : var(r)→ U}

wherevar(r) is the set of all variables that occur in a ruler, U is the set of all constants
appearing inPC ∪ τ((V,E, σ), µ), andθ is a ground substitution for the variables inr.

To start with, we note thatX includes an atomvertex(i), edge(j, i), observedE(j, i, s),
observedV(i, s), andinput(i), respectively, exactly if there is a fact with the atom in the
head inτ((V,E, σ), µ). Each of these facts belongs also toPX , is satisfied byX , but not
by any setY of atoms excluding at least one of the head atoms. Furthermore, sinceσ′

andµ′ are total mappings, we have that|{labelE(j, i,+), labelE(j, i, –)} ∩ X | = 1 and
|{labelV(i,+), labelV(i, –)} ∩ X | = 1 for every(j→ i) ∈ E and i ∈ V , respectively.
Hence,X , but no subsetY of X excluding at least one atom over predicateslabelE and
labelV, satisfies all ground instances of the following rules from (3) in PX :

labelV(V,+); labelV(V, –)← vertex(V ).

labelE(U, V,+); labelE(U, V, –)← edge(U, V ).

In addition, sinceσ′ andµ′ extendσ andµ, respectively, all ground instances of the fol-
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lowing rules from (4) inPX are satisfied byX :

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

SincelabelE(j, i, s) ∈ X andlabelV(j, t) ∈ X if σ′(j, i) = s andµ′(j) = t, respectively,
we have thatreceive(i, ts) ∈ X exactly if there is a ground instance of the rules

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

from (6) inPX such thatlabelE(j, i, s), labelV(j, t) ∈ X occur in the body andreceive(i, ts)
in the head. Hence, no subsetY of X excluding any atom over predicatereceiveis a model
of PX . Finally, sinceµ′(i) = µ′(j)σ′(j, i) for each non-input vertexi ∈ V and somej→ i

in E, labelV(i, r) ∈ X implies thatreceive(i, r) ∈ X . That is, the ground instances of the
integrity constraint

← labelV(V, S), not receive(V, S), not input(V ).

from (7) that contribute toPX are satisfied byX .
We have now investigated all rules inPC ∪ τ((V,E, σ), µ) and shown that their ground

instances inPX are satisfied byX . Furthermore, we have checked for all atoms inX that
they cannot be excluded in any modelY ⊂ X of PX . That is,X is indeed a⊆-minimal
model ofPX and thus an answer set ofPC ∪ τ((V,E, σ), µ).

Appendix B Proof of Theorem 5.1 and 5.2

This appendix provides proofs for soundness and completeness of the MIC extraction en-
coding in Section 5. We useτ((V,E, σ), µ) as defined in (A1) to refer to the facts rep-
resenting an influence graph(V,E, σ) and a (partial) vertex labelingµ : V → {+, –}.
By PD, we denote the encoding consisting of the schematic rules in(4), (8), (9), and (10).

As an auxiliary concept, for any subsetW ⊆ V , we say thatσ′ : E → {+, –} and
µ′ : V → {+, –} arewitnessing labelingsfor W if the following conditions hold:

1. σ′ andµ′ are total,
2. if σ(j, i) is defined, thenσ′(j, i) = σ(j, i),
3. if µ(i) is defined, thenµ′(i) = µ(i), and
4. µ′(i) is consistent (relative toσ′) for each non-input vertexi ∈ W .

The above conditions make sure thatσ′ andµ′ are total extensions ofσ andµ, respectively,
such that the variations of vertices inW are explained. Comparing Definition 5.1, the first
condition requires the absence of witnessing labelings fora MIC W , while the second
condition stipulates the existence of witnessing labelings for eachW ′ ⊂W .

Proof of Theorem 5.1
Assume thatX is an answer set ofPD ∪ τ((V,E, σ), µ). Furthermore, let

PX = {(head(r)← body(r)+)θ |

r ∈ PD ∪ τ((V,E, σ), µ), (body (r)−θ) ∩X = ∅, θ : var(r)→ U}

wherevar(r) is the set of all variables that occur in a ruler, U is the set of all constants
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appearing inPD ∪ τ((V,E, σ), µ), andθ is a ground substitution for the variables inr.
Then, by the definition of an answer set, we know thatX is a⊆-minimal model ofPX .

LetW = {i | active(i) ∈ X}. We have to show that the following conditions hold:

1. There are witnessing labelings for eachW ′ ⊂W .

2. There are no witnessing labelings forW .

We below consider these conditions one after the other.

Condition 1. LetW ′ = W \{k} for anyk ∈W . Furthermore, defineσ′ andµ′ as follows:

σ′ = {(j→ i) 7→ s | (j→ i) ∈ E, labelE’(k, j, i, s) ∈ X}

∪ {(j→ i) 7→ + | (j→ i) ∈ E, labelE’(k, j, i,+) /∈ X, labelE’(k, j, i, –) /∈ X}

µ′ = {i 7→ s | i ∈ V, labelV’(k, i, s) ∈ X}

∪ {i 7→ + | i ∈ V, labelV’(k, i,+) /∈ X, labelV’(k, i, –) /∈ X} .

We show thatσ′ andµ′ are witnessing labelings forW ′.
Regarding the uniqueness of labels assigned byσ′ andµ′, consider the following rules

from (10) including predicateslabelE’ andlabelV’ in their heads:

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertexMIC(V ).

labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

(B1)

Since the given (partial) labelingsσ andµ assign unique labels to the elements of their
domains, facts definingobservedEandobservedVare of the formobservedE(j, i,+). or
observedE(j, i, –). andobservedV(i,+). or observedV(i, –)., respectively, and at most one
of these facts is contained inτ((V,E, σ), µ) for an edge(j→ i) ∈ E or vertexi ∈ V .
BecauseX is a ⊆-minimal model ofPX , the atoms in the heads of facts are inX ,
and all atoms inX over predicatesobservedEandobservedVare derived from facts in
τ((V,E, σ), µ), in view that these predicates do not occur in the head of any rule inPD.
Hence, at most one of the atomslabelE’(k, j, i,+) andlabelE’(k, j, i, –) or labelV’(k, i,+)
and labelV’(k, i, –), respectively, is derivable for an edge(j→ i) ∈ E or vertexi ∈ V

from a ground instance of the fourth or third rule in (B1) and then included inX . If either
of labelE’(k, j, i,+) and labelE’(k, j, i, –) or labelV’(k, i,+) and labelV’(k, i, –), respec-
tively, is included inX , then the ground instance of the second or first rule in (B1) for k and
an edge(j→ i) ∈ E or vertexi ∈ V is satisfied, so that the atom containing the opposite
label cannot belong to a⊆-minimal model ofPX . Hence, there is at most one terms such
thatσ′(j, i) = s or µ′(i) = s for an edge(j→ i) ∈ E or vertexi ∈ V , respectively, and
it holds thats ∈ {+, –}. Furthermore, looking at the definitions ofσ′ andµ′, it is obvious
that both are total, which allows us to conclude thatσ′ andµ′ are total labelings.

As regards extendingσ andµ, we have that factobservedE(j, i, s). or observedV(i, s).
belongs toτ((V,E, σ), µ) if σ(j, i) = s orµ(i) = s, respectively, is given. Along with the
premise thatactive(k) ∈ X , this implies thatlabelE’(k, j, i, s) ∈ X or labelV’(k, i, s) ∈ X ,
respectively, as the fourth or third rule in (B1) would be unsatisfied otherwise. Hence, we
haveσ′(j, i) = s if σ(j, i) = s, andµ′(i) = s if µ(i) = s.
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It remains to be shown thatµ′(i) is consistent for each non-input vertexi ∈ W ′. To
establish this, we first consider the following rules from (8):

edgeMIC(U, V )← edge(U, V ), active(V ).

vertexMIC(U)← edgeMIC(U, V ).

vertexMIC(V )← active(V ).

(B2)

In view that factedge(j, i). belongs toτ((V,E, σ), µ) for every(j→ i) ∈ E, we con-
clude thatedge(j, i) ∈ X . Along with active(i) ∈ X for every i ∈ W , it follows that
edgeMIC(j, i) ∈ X for every(j→ i) ∈ E such thati ∈ W , andvertexMIC(i) ∈ X for
everyi ∈W . The last observation and the first rule in (B1) imply thatlabelV’(k, i,+) ∈ X

or labelV’(k, i, –) ∈ X for everyi ∈W . For i ∈ W ′, i.e.,i 6= k, the integrity constraint

← labelV’(W,V, S), active(V ), V 6= W, not receive’(W,V, S).

from (10) imposesreceive’(k, i,+) ∈ X if labelV’(k, i,+) ∈ X , andreceive’(k, i, –) ∈ X

if labelV’(k, i, –) ∈ X , while any ground instances of the integrity constraint contributing
toPX do not contain atoms over predicatereceive’. Such atoms can only be derived using
the following rules from (10):

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S), V 6= W.

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), V 6= W,S 6= T.

SinceX is a⊆-minimal model ofPX , receive’(k, i,+) ∈ X or receive’(k, i, –) ∈ X

is possible only iflabelE’(k, j, i, s) ∈ X and labelV’(k, j, t) ∈ X such thats = t

or s 6= t, respectively. Comparingτ((V,E, σ), µ) and the rules in (B1), (B2), as well
as (B3) reveals that(j→ i) ∈ E is a necessary condition forlabelE’(k, j, i, s) ∈ X ,
and the same applies toj ∈ V andlabelV’(k, j, t) ∈ X . By the construction ofσ′ andµ′,
labelE’(k, j, i, s) ∈ X implies thatσ′(j, i) = s andlabelV’(k, j, t) ∈ X thatµ′(j) = t. We
conclude thatreceive’(k, i,+) ∈ X or receive’(k, i, –) ∈ X necessitatesµ′(j)σ′(j, i) = +
or µ′(j)σ′(j, i) = –, respectively, for some regulatorj of i. Finally, we haveµ′(i) = + if
labelV’(k, i,+) ∈ X (andreceive’(k, i,+) ∈ X), andµ′(i) = – if labelV’(k, i, –) ∈ X

(andreceive’(k, i, –) ∈ X). This shows thati receives some influence matchingµ′(i), so
thatµ′(i) is consistent. Sincei ∈W ′ is arbitrary,σ′ andµ′ are witnessing labelings forW ′.

To conclude the proof of the first condition to verify, we notethat witnessing labelings
for W ′ are also witnessing labelings for all subsets ofW ′. Hence, it is sufficient to check
the existence of witnessing labelings for setsW ′ = W \ {k} for anyk ∈ W . As shown
above, an answer setX of PD ∪ τ((V,E, σ), µ) yields witnessing labelings for them.
Hence, the second condition in Definition 5.1 holds forW = {i | active(i) ∈ X}.

Condition 2. We now show by contradiction that there cannot be witnessinglabelings
for W . To establish this, we first note that vertices inW cannot be input because, if fact
input(i). belongs toτ((V,E, σ), µ), theninput(i) must be included inX , so that the rule

active(V ); inactive(V )← vertex(V ), not input(V ). (B3)

from (8) does not contribute a ground instance fori to PX . Sinceactive(i) cannot be
derived from any other ground rule inPX , the fact thatX is a⊆-minimal model ofPX
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implies thatactive(i) /∈ X for any input vertexi. Furthermore, the integrity constraint

← not bottom. (B4)

from (9) necessitatesbottom∈ X becauseX cannot be a model ofPX otherwise. Then,
we getlabelV(i,+), labelV(i, –) ∈ X and labelE(j, i,+), labelE(j, i, –) ∈ X for all ver-
ticesi ∈ V and edges(j→ i) ∈ E, respectively, due to the following rules from (9):

labelV(V,+)← bottom, vertex(V ).

labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).

labelE(U, V, –)← bottom, edge(U, V ).

(B5)

We now show that the existence of witnessing labelings forW yields a contradiction
to the fact thatX is a⊆-minimal model ofPX . To this end, assume thatσ′ andµ′ are
witnessing labelings forW . Then, let

Y = (X \ ({bottom}
∪ {labelV(i, s) | labelV(i, s) ∈ X}

∪ {labelE(j, i, s) | labelE(j, i, s) ∈ X}

∪ {opposite(j, i) | opposite(j, i) ∈ X}))

∪ {labelV(i, s) | i ∈ V, µ′(i) = s}

∪ {labelE(j, i, s) | (j→ i) ∈ E, σ′(j, i) = s}

∪ {opposite(j, i) | (j→ i) ∈ E, µ′(i) 6= µ′(j)σ′(j, i)} .

Sincebottom∈ X\Y andX contains a maximum amount of atoms over predicateslabelV,
labelE, andopposite(the atoms overoppositeare consequences of the inclusion of atoms
overlabelV andlabelE), we have thatY ⊂ X , and we show thatY is a model ofPX .

Considering the contributions of the facts inτ((V,E, σ), µ) and the rules in (10) toPX ,
we observe that the atoms over predicates occurring in them are interpreted the same inX
andY . Hence, such facts and rules stay satisfied byY because they were already satisfied
by X . The same applies to the rules from (8) repeated in (B2) and (B3). Furthermore,
sinceσ′ andµ′ are total and extendσ andµ, respectively, the contributions of the following
rules from (4) and (8) toPX are satisfied byY :

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

labelV(V,+); labelV(V, –)← vertexMIC(V ).

labelE(U, V,+); labelE(U, V, –)← edgeMIC(U, V ).

Since the integrity constraint in (B4) does not belong toPX and the rules in (B5) are
satisfied byY in view of bottom/∈ Y , it remains to consider the following rules from (9):

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).

The rules defining predicateoppositeare such that, in order to satisfy their ground instances
in PX , Y must containopposite(j, i) if labelE(j, i, r), labelV(j, s), and labelV(i, t) be-
long to Y such thatt 6= sr. This matches the definition ofY , including labelE(j, i, r)



30 Martin Gebser and Torsten Schaub and Sven Thiele and Philippe Veber

if σ′(j, i) = r, labelV(j, s) if µ′(j) = s, labelV(i, t) if µ′(i) = t, andopposite(j, i) if
µ′(i) 6=µ′(j)σ′(j, i). Hence, rules definingoppositein PX are satisfied byY . It remains to
be shown thatbottomis not derivable from any ground instance of the last rule. Inthis re-
gard, recall thatW = {i | active(i) ∈ X} = {i | active(i) ∈ Y }, and we have seen above
thatactive(i) can only belong toX if i is not an input. Asσ′ andµ′ are witnessing labelings
for W , for everyi ∈ W , there is an edge(j→ i) ∈ E such thatµ′(i) = µ′(j)σ′(j, i). By
the definition ofY , this impliesopposite(j, i) /∈ Y , while edge(j, i) belongs toX andY
becauseX andY are models ofτ((V,E, σ), µ). As a consequence, for everyi ∈ W , we
have{opposite(j, i) | edge(j, i) ∈ Y } 6⊆ Y , so that the ground instance fori in PX of
the rule withbottomin the head is satisfied byY . We have thus established thatY ⊂ X

is indeed a model ofPX , a contradiction to the assumption thatX is a⊆-minimal model
of PX and an answer set ofPD ∪ τ((V,E, σ), µ).

The above contradiction shows that the second condition to verify, which is the first
condition in Definition 5.1, holds forW = {i | active(i) ∈ X}. The fact that the second
condition in Definition 5.1 holds forW has been shown before. Hence,W is a MIC.

Proof of Theorem 5.2

Assume thatW = {k1, . . . , kn} is a MIC. Then, the following conditions hold:

1. There are witnessing labelingsσ1, µ1, . . . , σn, µn for W \ {k1}, . . . ,W \ {kn}.

2. There are no witnessing labelings forW .
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We consider the following setX of atoms:

X = {vertex(i) | i ∈ V }

∪ {edge(j, i) | (j→ i) ∈ E}

∪ {observedE(j, i, s) | (j→ i) ∈ E, σ(j, i) = s}

∪ {observedV(i, s) | i ∈ V, µ(i) = s}

∪ {input(i) | i ∈ V is an input}
∪ {active(i) | i ∈W}

∪ {inactive(i) | i ∈ V \W is not an input}
∪ {edgeMIC(j, i) | (j→ i) ∈ E, i ∈W}

∪ {vertexMIC(j) | (j→ i) ∈ E, i ∈W}

∪ {vertexMIC(i) | i ∈W}

∪ {labelE’(km, j, i, r) | (j→ i) ∈ E, i ∈W,σm(j, i) = r, 1 ≤ m ≤ n}

∪ {labelE’(km, j, i, r) | (j→ i) ∈ E, σ(j, i) = r, 1 ≤ m ≤ n}

∪ {labelV’(km, j, s) | (j→ i) ∈ E, i ∈W,µm(j) = s, 1 ≤ m ≤ n}

∪ {labelV’(km, i, s) | i ∈W,µm(i) = s, 1 ≤ m ≤ n}

∪ {labelV’(km, i, s) | i ∈ V, µ(i) = s, 1 ≤ m ≤ n}

∪ {receive’(km, i, sr) | (j→ i) ∈ E, i ∈W,

σm(j, i) = r, µm(j) = s, i 6= km, 1 ≤ m ≤ n}

∪ {receive’(km, i, sr) | (j→ i) ∈ E, j ∈ W or (j→ k) ∈ E for k ∈W,

σ(j, i) = r, µm(j) = s, i 6= km, 1 ≤ m ≤ n}

∪ {receive’(km, i, sr) | (j→ i) ∈ E,

σ(j, i) = r, µ(j) = s, i 6= km, 1 ≤ m ≤ n}

∪ {labelV(i,+), labelV(i, –) | i ∈ V }

∪ {labelE(j, i,+), labelE(j, i, –) | (j→ i) ∈ E}

∪ {opposite(j, i) | (j→ i) ∈ E}

∪ {bottom} .

For showing thatX is an answer set ofPD ∪ τ((V,E, σ), µ) (such that{i | active(i) ∈
X} = W ), we need to verify thatX is a⊆-minimal model of

PX = {(head(r)← body(r)+)θ |

r ∈ PD ∪ τ((V,E, σ), µ), (body (r)−θ) ∩X = ∅, θ : var(r)→ U}

wherevar(r) is the set of all variables that occur in a ruler, U is the set of all constants
appearing inPD ∪ τ((V,E, σ), µ), andθ is a ground substitution for the variables inr.

To start with, we note thatX includes an atomvertex(i), edge(j, i), observedE(j, i, s),
observedV(i, s), andinput(i), respectively, exactly if there is a fact with the atom in the
head inτ((V,E, σ), µ). Each of these facts belongs also toPX , is satisfied byX , but not
by any setY of atoms excluding at least one of the head atoms.

In view thatW cannot contain any input (otherwise, satisfaction of the second condition
in Definition 5.1 would immediately imply violation of the first one), we have that either
active(i) or inactive(i) belongs toX for every non-input vertexi ∈ V . Hence,X satisfies
all ground instances of the rule

active(V ); inactive(V )← vertex(V ), not input(V ).
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from (8) belonging toPX , while no setY of atoms excluding bothactive(i) andinactive(i)
for any non-input vertexi ∈ V satisfies all of these ground instances.

Considering ground instances of the rules

edgeMIC(U, V )← edge(U, V ), active(V ).

vertexMIC(U)← edgeMIC(U, V ).

vertexMIC(V )← active(V ).

from (8), all of them belong toPX , are satisfied byX , but not by any setY of atoms such
that{edgeMIC(j, i) | edgeMIC(j, i) ∈ X} ∪ {vertexMIC(i) | vertexMIC(i) ∈ X} 6⊆ Y

and {active(i) | active(i) ∈ X} ⊆ {active(i) | active(i) ∈ Y }, while it has been
shown above that{active(i) | active(i) ∈ X} 6⊆ {active(i) | active(i) ∈ Y } necessi-
tates{inactive(i) | inactive(i) ∈ Y } 6⊆ {inactive(i) | inactive(i) ∈ X} for Y being a
model ofPX . Hence, there cannot be any modelY ⊂ X of PX excluding some atom
edgeMIC(j, i) or vertexMIC(i) that belongs toX .

Now turning our attention to atoms of formlabelE’(km, j, i, r) and labelV’(km, j, s),
we note that they are included inX if edgeMIC(j, i) ∈ X andvertexMIC(j) ∈ X , respec-
tively, andσm(j, i) = r, µm(j) = s in witnessing labelingsσm andµm for W \ {km},
where1 ≤ m ≤ n, or if σ(j, i) = r, µ(j) = s. Then, the fact thatactive(km) ∈ X and
labels assigned byσm andµm are unique and respect those assigned byσ andµ implies
that none of the atoms can be removed fromX without violating some ground instance of
the rules

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertexMIC(V ).

labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

from (10) that belongs toPX . However,X satisfies all of these ground instances by its
construction. We further consider the following rules from(10):

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S), V 6= W.

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), V 6= W,S 6= T.

As shown above,labelE’(km, j, i, r) belongs toX if i ∈ W andσm(j, i) = r, or if
σ(j, i) = σm(j, i) = r. Furthermore,labelV’(km, j, s) is included inX if j ∈ W or
(j→ k) ∈ E, k ∈ W andµm(j) = s, or if µ(j) = µm(j) = s. Comparing the cross
product of these conditions to the definition ofX yields that an atomreceive’(km, i, sr)

belongs toX exactly if labelE’(km, j, i, r) and labelV’(km, j, s) are inX and i 6= km.
Hence, when excluding any of the atomsreceive’(km, i, sr) fromX , some ground instance
of the above two rules belonging toPX becomes unsatisfied, and so we have that such
atoms cannot be removed fromX in order to construct a modelY ⊂ X of PX . Moreover,
the fact thatσm andµm are witnessing labelings forW ′ = W \ {km} implies that all
ground instances of the integrity constraint

← labelV’(W,V, S), active(V ), V 6= W, not receive’(W,V, S).

from (10) that belong toPX are satisfied byX . In fact, for everyi ∈ W ′, there is some
(j→ i) ∈ E such thatµm(i) = µm(j)σm(j, i). Since labelE’(km, j, i, σm(j, i)) and
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labelV’(km, j, µm(j)) belong toX , this implies that each atomlabelV’(km, i, µm(i)) for
i ∈ W ′ is accompanied byreceive’(km, i, µm(i)) = receive’(km, i, µm(j)σm(j, i)) in X ,
so that the ground instance forkm, i, andµm(i) of the integrity constraint is not inPX .

Finally, we consider atoms of the formlabelV(i, s), labelE(j, i, s), andopposite(j, i)
that belong toX for all i ∈ V and(j→ i) ∈ E, respectively, ands ∈ {+, –}. Sincebottom
is also inX , it is clear that the ground instances of the following rulesfrom (4), (8), and (9),
all of which belong toPX , are satisfied byX :

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

labelV(V,+); labelV(V, –)← vertexMIC(V ).

labelE(U, V,+); labelE(U, V, –)← edgeMIC(U, V ).

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).

labelV(V,+)← bottom, vertex(V ).

labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).

labelE(U, V, –)← bottom, edge(U, V ).

As shown above, any modelY ⊆ X of PX must necessarily includeobservedV(i, s)
if µ(i) = s, observedE(j, i, s) if σ(j, i) = s, vertexMIC(i) if i ∈ W or (i→ k) ∈ E

for somek ∈ W , edgeMIC(j, i) if (j→ i) ∈ E for somei ∈ W , and active(i) if
i ∈ W . Proceeding by proof by contradiction, assume that there isa modelY ⊂ X

of PX such thatlabelV(i, s), labelE(j, i, s), or opposite(j, i) is not inY for somei ∈ V

or (j→ i) ∈ E, respectively, ands ∈ {+, –}. From the previous considerations and the
first two rules repeated above, we know thatlabelV(i, s) and labelE(j, i, s) must belong
to Y if µ(i) = s or σ(j, i) = s, respectively. Furthermore, the third rule necessitates
{labelV(i,+), labelV(i, –)} ∩ Y 6= ∅ for everyi ∈ W or i ∈ V such that(i→ k) ∈ E for
somek ∈ W , and the fourth rule implies{labelE(j, i,+), labelE(j, i, –)}∩Y 6= ∅ for every
(j→ i) ∈ E such thati ∈ W . In view of the last four rules, we immediately conclude that
bottom/∈ Y , which in turn implies that, for everyi ∈ W , there is some(j→ i) ∈ E such
that opposite(j, i) does not belong toY . Comparing the rules definingopposite, the ex-
clusion ofopposite(j, i) is possible only ifY does not includelabelE(j, i, r), labelV(j, s),
andlabelV(i, t) such thatt 6= sr. As we have shown above that some atomslabelE(j, i, r),
labelV(j, s), andlabelV(i, t) for r, s, t ∈ {+, –} must belong toY , we can now conclude
thatt = sr holds and that the atoms over predicateslabelEandlabelV in Y define (partial)
labelingsσ′ andµ′ by:

• For everyi ∈ W , pick some edge(j→ i) ∈ E such thatopposite(j, i) does not belong
to Y , and letσ′(j, i) = r if labelE(j, i, r) ∈ Y , µ′(j) = s if labelV(j, s) ∈ Y , and
µ′(i) = t if labelV(i, t) ∈ Y .

As we have seen above, such an edge(j→ i) ∈ E exists for everyi ∈W , and the fact that
t 6= sr is not obtained for atomslabelE(j, i, r), labelV(j, s), andlabelV(i, t) in Y implies
thatσ′ andµ′ assign unique labels to(j→ i), j, andi, respectively. When we totalizeσ′



34 Martin Gebser and Torsten Schaub and Sven Thiele and Philippe Veber

andµ′ by settingσ′(j, i) = σ(j, i) andµ′(i) = µ(i) if σ(j, i) or µ(i), respectively, is
defined, andσ′(j, i) = + as well asµ′(i) = + for all remaining edges inE and vertices
in V , we obtain witnessing labelings forW . But this is a contradiction to the fact thatW

is a MIC, which allows us to conclude that there cannot be any modelY ⊂ X of PX

that omitslabelV(i, s), labelE(j, i, s), or opposite(j, i) for somei ∈ V or (j→ i) ∈ E,
respectively, ands ∈ {+, –}.

To conclude the proof thatX is a⊆-minimal model ofPX , note that the integrity con-
straint

← not bottom.

from (9) does not contribute any rule toPX becausebottom∈ X . We have now investi-
gated all rules inPD ∪ τ((V,E, σ), µ) and shown that their ground instances inPX are
satisfied byX . Furthermore, we have checked for all atoms inX that they cannot be ex-
cluded in any modelY ⊂ X of PX . That is,X is indeed a⊆-minimal model ofPX and
thus an answer set ofPD ∪ τ((V,E, σ), µ).
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