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Abstract

In recent years there has been growing interest in solutions for the delivery of clinical care
for the elderly, due to the large increase in aging population. Monitoring a patient in his
home environment is necessary to ensure continuity of care in home settings, but, to be
useful, this activity must not be too invasive for patients and a burden for caregivers. We
prototyped a system called SINDI (Secure and INDependent lIving), focused on i) col-
lecting a limited amount of data about the person and the environment through Wireless
Sensor Networks (WSN), and ii) inferring from these data enough information to support
caregivers in understanding patients’ well being and in predicting possible evolutions of
their health. Our hierarchical logic-based model of health combines data from different
sources, sensor data, tests results, common-sense knowledge and patient’s clinical profile
at the lower level, and correlation rules between health conditions across upper levels. The
logical formalization and the reasoning process are based on Answer Set Programming.
The expressive power of this logic programming paradigm makes it possible to reason
about health evolution even when the available information is incomplete and potentially
incoherent, while declarativity simplifies rules specification by caregivers and allows auto-
matic encoding of knowledge. This paper describes how these issues have been targeted
in the application scenario of the SINDI system.

KEYWORDS: answer set programming, wireless sensor networks, independent living, pre-
diction, context-awareness, knowledge representation, dependency graph.

1 Background and Motivations

In the last twenty years there has been a significant increase of the average age
of the population in most western countries and the number of senior citizens has
been and will be constantly growing. Living independently in their own homes is
a key factor for these people in order to improve their quality-of-life and to reduce
the costs for the community. For this reason there has been a strong development
of computer technology for the delivery of clinical care outside of hospitals.
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For example, tele-monitoring of critical conditions (telemedicine) is becoming a
common way to support medicine at-a-distance because of lower and lower costs
of equipment and the savings that can be achieved. Telemedicine cannot help in
prolonging Healthy Life Years (HLY) because it enters the picture when a person
has already one or more critical chronic conditions. On the contrary, pervasive
monitoring in the home (which has been proposed in research projects and, in a
somewhat reduced form, in commercial products) has the potential of pinpointing
potentially critical conditions before they arise.

In the last few years, many interesting systems were developed in the area
of WSNs for assisted living and healthcare, among which ALARM-NET (Wood
et al. 2006), SAILNet (Al-Omari and Shi 2007) and CodeBlue (Malan et al. 2004).
ALARM-NET is a wireless sensor network designed for long-term health monitor-
ing in assisted living and residential environments. The central design goal was
to adapt the behaviour of the system, including power management and privacy
policy enforcement, to the individual life patterns which are analyzed and fed into
the system. The system incorporates a Circadian Activity Rhythm (CAR) analysis
module used in all the reasoning about the activities performed by the users. SAIL-
Net proposes to apply the technology of WSNs as a non-obtrusive tool to monitor
the activities of elders living in their apartments, focusing only on fall detection
and pointing out that quick responses to these alarms are the critical requirement.
Therefore, the project puts a lot of emphasis on the availability of WSNs. Code-
Blue is a wireless communications infrastructure for critical care environments. It
is designed to provide routing, naming, discovery, and security for wireless medi-
cal sensors, PDAs, PCs, and other devices that may be used to monitor and treat
patients in a range of medical settings. Given our application scenario, the cited
projects do not fulfill all our goals.

Rather than supporting activities (Haigh and Yanco 2002) and observing be-
haviors (Liao et al. 2004), this paper considers a complementary view of artificial
intelligence applied to home healthcare and aimed at supporting Independent Liv-
ing. If we consider the majority of commercial “independent living” systems, we
notice that they focus on capturing medical emergencies. This can be useful but
it is not the most effective way to improve the quality of life of elderly people or
to lower medical costs. A more useful goal is to prevent situations that can cause
drastic changes for the worse of the quality of living, e.g., falls, constant weight loss,
etc. Pervasive and continuous monitoring of an elderly can help achieving these ob-
jectives, but it is not enough. Since, sensor-based evaluation of the health state of
a person cannot be as complete as a human-based evaluation can be. We believe
that reliable support for prediction and prevention is possible by integrating the
deployment of pervasive sensors with expressive inference capabilities that make it
possible to reason about plausible evolutions of the health state of the person while
considering incomplete evaluations of aspects of the health state computed from
the monitoring and their inter-dependencies.

In order to address these concerns, we have designed an independent-living sup-
port system called SINDI (Secure and INDependent lIving) that includes:



Reasoning Support for Risk Prediction and Prevention in Independent Living 3

Fig. 1. Flow of Data in the SINDI System.

• AWireless Sensor Network (WSN), composed of infrastructural nodes equipped
with several sensors and a wearable monitoring device, used for gathering data
about the user and the environment.

• A reasoning component that makes it possible to analyse the health evolution
of patients in order to identify and predict what is best for the patient in his
specific context (Tonelli 2001).

Figure 1 shows a high-level overview of the architecture of our system and the
correlation between its components.

Wireless Sensor Networks (WSNs) (Akyildiz et al. 2002) consist of nodes that
are capable of interacting with the environment by sensing and controlling physical
parameters; the nodes use packet radio communication to exchange data. These net-
works are typically used to collect data for long periods of time without assistance.
Specific scenarios for WSNs include habitat monitoring, industrial control, embed-
ded sensing, medical data collection, building automation, fire detection, traffic
monitoring, etc.

For the SINDI Wireless Sensor Network (SINDI-WSN) we designed, implemented
and prototyped new WSN devices specifically conceived for people monitoring and
tracking. These devices use a commercial wireless microcontroller (Jennic JN5139)
with IEEE 802.15.4 radio and are equipped with heterogeneous sensors.

The SINDI-WSN is composed of:

• A Master Processor, the coordinator node of the network. It is the gate-
way of the network and it has storage, processing power and main memory
capabilities in the ballpark of an average PC.

• Reference Nodes. They are always active and connected to household
power, used for network coordination but also with sensing capabilities. The
presence of an always active base node in every zone simplifies data routing
because the data-gathering nodes are guaranteed to always find a listening
node. Therefore, they can simply send a message with the proper sensor data
and quickly enter in sleep-mode without wasting precious energy.
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• Data-Gathering Nodes. They sense the environment data and capture
specific events (e.g. opening/closing doors and windows). Moreover reference
and data-gathering nodes include infrared motion and range-finder sensors
used for improving the accuracy of the signal strength-based localization and
tracking.

• A Wearable Monitoring Device. This wearable monitoring device, called
Inertial MeasUrement Device (IMUD), includes a complete six degrees of
freedom Inertial Measurement Unit (IMU) and is used for user localization,
movement detection and for improving the behaviour of the target tracking
algorithms.

The network is organized hierarchically, as follows. The environment in which
the user lives is divided into zones and every zone (typically a room) is controlled
by one reference node. Moreover, every zone can be divided into several sensing
areas where one or more environment nodes operate. The master processor manages
the entire network using a middleware framework that provides several network
services like: topology-control, hierarchical routing, localization, data aggregation,
and communication. This middleware has been and developed using well-known
WSN algorithms (Heinzelman et al. 2000; Bo et al. 2008; Savvides et al. 2001) in
order to carry out the data captured by SINDI-WSN and to feed the reasoning
system.

We address those elderly that are clinically stable although they might be affected
by chronic diseases and physical decline (more than 90% of the population over 65
has more than one chronic disease). Since their health condition does not require
constant monitoring of complex biomedical parameters, these patients do not need,
and are less tolerant of, invasive sensors.

Computing the cost of the system if it were deployed as a product critically
depends on the commercial model: should it be cast as a service with the hardware
freely given as part of the service agreement or should it be an end-user product?
Both these possibilities and many in between are realistic. Such computations do
not belong in this paper but we can state that the hardware replication cost is small
enough to make commercialization viable.

We use monitoring to support health evaluation, prediction, explanation, emer-
gency detection and prevention in the same framework and provide a global rep-
resentation and reasoning model for general health assessment, combining medical
knowledge, patient’s clinical profile, context and patient evaluation through sensor
data, nonmonotonic reasoning and qualitative optimization.

The need of making the system user-centered and medically sound led us to
include domain-specific medical knowledge in the reasoning phase. In this way it is
possible to trace general habits and their correlation with the patient’s well-being
according to the evaluation methods of clinical practice.

Medical soundness and context-awareness improve the reliability of the system
because the combination of different sources of information (sensors, medical knowl-
edge, clinical profile, user defined constraints) that change over time makes the sys-
tem more reliable (i.e., much better able to disambiguate situations, thus reducing
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false positives) and adaptive (e.g., suitable for the introduction of new available
information).

To devise an appropriate knowledge representation and reasoning model for
SINDI, we considered the main classes of tasks we want our independent-living
system to perform, namely:

• Interpretation of Context based on a logic-based context model and con-
sisting in i) Localization of the person in the environment and ii) Identification
of simple activities (opening doors/windows, sleeping, walking, etc.).

• Health Assessment based on a logic model of health and consisting in i)
Evaluation of significant aspects of the patient’s quality of life (referred to as
indicators) including quality of the environment, quality of movement, quality
of sleep, weight, use of lights, etc., and iii) Evaluation of a well-defined set
of health-related factors (referred to as items); the evaluation of each item is
obtained according to the values of the indicators related to that item and
the influences between each indicator and the item (see Figures 3 and 4 )1.

• Health Evolution based on the analysis of dependencies among items and
consisting in i) Prediction of possibly-risky situations and identification of
dependencies representing plausible causes, ii) Explanation of identified risks
through common causalities and iii) Reaction of the system in form of prede-
fined warnings/suggestions/actions aimed at prevention.

According to these views, there are three components of the knowledge model
and three aspects in which reasoning is involved: the first one is related to the use of
sensor data and common-sense reasoning for context interpretation, the second one
refers to the (partial) evaluation of indicators according to the results of context
interpretation and the (partial) evaluation of items according to related indicators,
while the last one is related to understanding and predicting the evolution of the
health state according to the dependency graph, in order to provide appropriate
feedback and support clinicians’ understanding.

Section 2 reviews the logical framework for knowledge representation and rea-
soning used in SINDI. Section 3 describes the knowledge representation model of
SINDI with respect to the context and the elderly care, while Section 4 gives details
about SINDI’s reasoning tasks in terms of context interpretation, context-dependent
evaluation and health assessment. Section 5 contains a preliminary evaluation.

2 The Logical Framework

The declarative logical framework we use for Knowledge Representation and Rea-
soning in SINDI is that of Answer Set Programming (ASP), based on the stable

1 As an example, the item insomnia is influenced by indicators representing the quality of sleep
in the early night (earlyNight), in the heat of the night (middleNight) and in the early morning
(lateNight); the negative dependency connecting these indicators with insomnia determines
that a worsening of the indicators results in a worsening of the functional disability represented
by insomnia.
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model semantics for Logic Programs proposed by Gelfond and Lifschitz (Gelfond
and Lifschitz 1988; Marek and Truszczynski 1989; Niemelä 1999).

Compared to pure statistical approaches, logic inference based on ASP is highly
expressive and computationally more performant because it can deal with first-order
representations, which are much richer than the propositional ones characterizing
probabilistic inference. Furthermore, ASP can deal with incomplete information
and common-sense reasoning using defaults. Cardinality and weight constraints to-
gether with optimization techniques are also interesting features for our application,
in that they can be used to model different degrees of uncertainty (Brewka et al.
2002; Simons et al. 2002; Leone et al. 2006; Gebser et al. 2007): given the incom-
pleteness of available knowledge, we may need to use both optimization criteria to
select the best candidate solutions according to both qualitative and quantitative
criteria. Declarativity also represents a desirable feature because it allows the au-
tomatic encoding of medical knowledge, thus making the system easily extensible
and medically sound.

Before we describe our Knowledge Representation Model and Reasoning Algo-
rithms, we want to recall some basic ASP definitions. In ASP a given problem is
represented by a logic program whose results are given in terms of answer sets.

A logic program P is a finite set of rules ri of the form

ri : L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln . (1)

where Li (i = 0..n) are literals, not is a logical connective called negation as
failure and n ≥ m ≥ 0. We define L0 = head(r) as the head of rule ri, and
body(ri) = L1, . . . , Lm, not Lm+1, . . . , not Ln as the body of ri. Furthermore,
let body+(ri) = {L1, . . . , Lm} and body−(ri) = {not Lm+1, . . . , not Ln}. Rules ri
with head(ri) = ∅ are called integrity constraints, while if body(ri) = ∅, we refer to
ri as a fact.

An interpretation is represented by the set of atoms that are true in it. A model
of a program P is an interpretation in which all rules of P are true according
to the standard definition of truth in propositional logic. Apart from letting ’,’
stand for conjunction, this implies treating rules and default negation by not as
implications and classical negation, respectively. Note that the (empty) head of an
integrity constraint is false w.r.t. every interpretation, while the empty body is true
w.r.t. every interpretation. Answer sets of P are particular models of P satisfying an
additional stability criterion. Roughly, a set X of atoms is an answer set, if for every
rule of form (1), L0 ∈ X whenever L1, . . . , Lm belong to X and no Lm+1, . . . , Ln

belongs to X.
Formally, an answer set X of a program P is a minimal (in the sense of set-

inclusion) model of

{head(ri)← body+(ri) | ri ∈ P, body−(ri) ∩X = ∅}.

Although answer sets are usually defined on ground (i.e., variable-free) programs,
the rich modeling language of ASP allows for non-ground problem encodings, where
rules with variables (upper case names) are taken as a shorthand for the sets of
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Table 1. Generic Spatial Relations Among Entities.

Relation Name Object Reference Object Relation Type

personIn/personOut Person {Room,Area} generic directional relation
in/out Area Room generic directional relation

Object {Room, Area}
near/far Person Object generic distance relation
connected {Room,Area} {Room,Area} generic directional relation

all their ground instantiations. Grounders, such as gringo 2 and lparse 3, are ca-
pable of combining a problem encoding and a problem instance (typically a set of
ground facts) into an equivalent ground program, which can then be then processed
by one of the available ASP solvers. In our implementation of SINDI, answer set
programs are grounded using Gringo (Gebser et al. 2007) and interpreted using the
Clasp (Gebser et al. 2007) solver.

3 Knowledge Representation Model for the Home Healthcare Domain

Given that a well designed model is crucial to make effective reasoning possible, we
carefully formalized SINDI’s knowledge by using domain experts, published data
and common-sense information.

The home healthcare domain is characterized by two main aspects: the context
and the health assessment. These two aspects are strictly related in the home moni-
toring scenario, because the capability of identifying meaningful information about
the context in which a person lives is a critical issue for health assessment via
monitoring.

In this section we want to separately describe the knowledge representation model
of SINDI in terms of these two domain aspects.

3.1 Model of Context in Home Environments

While most of the implemented context-representation models are domain-dependent
and do not support powerful inference, our declarative logic-based description of
the domain aims at providing a representation of context-dependent data that is
both general and with good computational properties. Other interesting properties
of our logic-based solution are:

• readability and simplicity of the problem specification,
• flexibility with respect to the sources of knowledge (heterogeneous sensors can

be taken into account),

2 A user’s guide to gringo, clasp, clingo, and iclingo. http://potassco. sourceforge.net
3 Lparse 1.0. http://www.tcs.hut.fi/ Software/smodels/lparse.ps.gz
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• modularity in the specification of the problem that describes properties of a
desired solution, and

• expressivity of the modeling language and computational efficiency of the
inference engines.

To fulfill these requirements, we use a high level description of home environments
in terms of rooms, areas, objects, properties, relations and observations. The space
is represented as a grid where each cell is identified by coordinates X,Y and has
some properties (being in a room, being a wall, being a passage, etc.). The resulting
context specification is then mapped into a set of logic predicates in the Answer
Set Programming (ASP) framework (see Section 2 for details). In addition to the
description of the model, a limited set of consistency constraints is introduced to
make sure that observations and context interpretation are coherent. As an example,
in the localization task, the person cannot be in a cell that has the property of being
a wall. These constraints are also mapped into ASP.

Properties used in the model take into account generic spatial properties rather
than describing geometric spatial relations between objects. This results in greater
generality because we do not need a complete physical description of the environ-
ment. In addition, while data gathered by the sensors are processed and aggregated
according to specific algorithms for feature analysis, the information available at
upper levels is filtered by the abstraction. This enables us to represent meaningful
information as properties of objects, rooms or areas, keeping the model independent
of sensors’ characteristics and positioning.

Our modelling approach is similar to what we would obtain by using an ontology,
with the difference that the ASP reasoning enhances the expressivity and compu-
tational efficiency of the model. We are aware of the fact that research efforts are
converging toward the combination of nonmonotonic reasoning and ontology-based
knowledge representation, but available implementations are still domain depen-
dent and formal issues need to be further explored. For this reason we decided to
encode our contextual information directly into logic predicates, that can be easily
mapped into an (existing or new) ontology if needed.

Previous investigation of context models has indicated that there are certain
entities in a context that, in practice, are more important than others. These are
location, identity, activity and time (Ryan et al. 1998; Schilit et al. 1994). In fact, in
the context of home monitoring, the more intuitively relevant aspects of a context
are: where you are, who you are (clinical profile), which resources you are using,
what you are doing and when.

In order to represent this information in our model we identified four main types
of entity: Person, Room, Area and Object.

We also define a small subset of generic spatial relations among entities, summa-
rized in Table 14. An example of how a bedroom can be represented in our context
model is illustrated in Figure 2.

4 Note that the spatial inclusion of areas A1, . . . , An in a room R is such that
⋃n

i=1
Ai ⊂ R.
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Fig. 2. Example: modelling a bedroom

Attribute values may come from i) external knowledge (observed values for at-
tributes of the Person entity), ii) opportunely aggregated sensor data (all other
attributes) or iii) results of the inference process (inferred values for attributes of
the Person entity, when observed values are not available).

Most of the values for attributes associated to rooms, areas and objects are the
result of a process that maps numerical sensor data into meaningful thresholds. The
thresholds are derived both from objective considerations, e.g. a given temperature
might be too hot for the human body to survive, and from patient-profile and
environment related considerations, e.g. a southern Italian and a British person
might have a very different idea of what is comfortably hot or cold.

Values of both attributes and spatial relations are dynamic and need to be asso-
ciated to an interval of time or to a discrete time point. In this way, the reasoning
system can take into account their evolution during context interpretation in order
to understand what the person is doing (in terms of movements) and where the
person is (localization).

Lack of specificity w.r.t. the spatial relations is compensated by the inference
process: reasoning about relations and attribute values may help inferring new
information or defeating previous conclusions based on data fusion algorithms.

Each type of entity is associated to a specific set of attributes as follows:

• attributes associated to the Person entity concern the evaluation of functional
disabilities, dependency in performing Activities of Daily Living (ADL), as-
sessment of risks, results of specific tests, medications, diseases, weight and
attributes related to movement including motion, posture and direction of
motion (see Table 2);

• attributes associated to the Room and Area entities include temperature,
light, humidity, sound, presence of a moving entity, presence of gas/smoke
(see Table 3);

• attributes associated to the Object entity include light, temperature, humidity
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Table 2. Attributes representing information about the Person entity.

Signature Domain Values Description

<Func,Val> Func={gait, balance, vision, cognition, sleep, Functional
nutrition } disability
Val ={absent, mild, moderate, severe}

<Adl,Val> Adl={mobility, dress, eat} ADL
Val={ok, needy, dependent} dependency

<Risk, Val> Risk={fall, depression, isolation, frailty} Risk
Val ={absent, mild, moderate, severe} assessment

<Test, Val> Test={amtest, minimental, nutritionTest, Test
clockDrawing, gds, audiometric, visual} results
Val={ok, mild, moderate, severe}

<Drug, Val> Drug={benzodiazepine, antidepressant, diuretic, Medications
antiarrythmic, anticonvulsant, neuroleptic,
ssri, anticholinergic}
Val ={yes, no}

<Disease, Val> Disease={visual_impairment, vertigo, artrosis, Diseases
feet_disorders, edentia, arrythmia, arthritis,
hemiparesis, parkinson, acute_pathologies,
alcoholism, hypotension, ipoacusia, ipovisus
distyroidism, malnutrition, affective_disorders,
cognitive_impairment}
Val={ok, mild, modearte, severe}

<wgt, Val> Val={1..300} Weight (kg)
<height, Val> Val={100..250} Height (cm)
<gender, Val> Val={m,f} Gender

<motion,Val,P1> Val={walk, still, null2}, P={0..100} Motion activity
<posture,Val,P1> Val={sit, lay, stand, null2}, P={0..100} Posture of the person
<dir,Val,P1> Val={turn, straight, null2}, P={0..100} Direction of motion

1 Value “null” is related to the fact that no signal is received from sensors detecting movement.
2 Parameter “P” represents data reliability, and it is computed by the algorithms used for

feature extraction.

and sound of the object, state of the object and any other property that the
object can detect using specific sensors such as waterflows (see Table 4).

The expressive power of ASP is used in the context interpretation phase in order
to disambiguate unclear situations as much as possible by using defaults, nonde-
terministic choice and constraints over the solutions (see Section 4.1 for details).
As an example, if you consider the problem of tracking the person on the grid, the
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Table 3. Attributes representing information about the Room and Area entities.

Attribute Name Domain Values Description

ambientLight {dark, shadow, clear, bright} brightness of the environment
ambientLightType {natural, artificial} nature of the light
ambientHumidity {dry, medium, wet, superWet} humidity level
ambientTemperature {cold, chilly, warm, hot, burning} temperature
ambientSound {mute, mild, medium, noisy} noise level
presence {yes, no} presence of a moving entity
noxiousGas {yes, no} presence of noxious gas
smoke {yes, no} presence of smoke

Table 4. Attributes representing information about the Object entity.

Signature Domain Values Description

objectLight {dark, shadow, clear, bright} light produced by the object
objectLightType {natural, artificial} nature of the light
objectTemperature {hot, cold} meaning depends on object
objectSound {noSound, regularSound, loudSound} meaning depends on object
switch {open, closed} state of doors/windows objects
state {on, off} state of on/off devices
filteredLoad {0..300} weight measurement from

mat sensors (load-cells)
loadVolatility {stable, mildlyUnstable, veryUnstable} volatility of filteredLoad
waterflow {yes, no} water flowing through the object

reasoning system takes as input the result of a traditional particle filter based only
on radio signal strength measurements. These results are combined with a model
of movement and opportunely aggregated data from infrared sensors and range
finders5. Multiple preference criteria are applied in order to select the best solu-
tion according to the more reliable results of the particle filter, the best move and,
finally, the most coherent position with respect to all available sensor data. Non
deterministic choice is used to generate possible solutions, while the combination
of optimization criteria are used to find the best candidates (see Section 4.1).

When the results of the particle filter are not available, tracking the person on
the grid becomes more difficult and the space size of the solution can be huge. This
happens in particular when the output of the particle filter is missing for several
sequential time stamps, since the model of movement produces a high number of
possibilities. In this case, values obtained by range finders and infrared sensors can

5 Values of infrared sensors and range finders are mapped into facts of the form sense(S,X, Y, T ),
where S={motion, distance}; the presence of such facts in the problem instance indicates that
the correspondent sensor data has been detected in a give cell X,Y at time T
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be combined with information about the state of lights or the state of objects to
obtain a less fine grained localization in a room/area rather than in a cell X,Y .

3.2 Model of Health in Elderly Care

Health-related aspects of elderly care are modelled in SINDI by a two-layered graph:
the bottom layer includes what we call indicators and the upper layer includes what
we call items.

The relation between items and indicators is the following: each indicator can
contribute to the evaluation of one or more items when no direct evaluation of
the item itself is available; while indicators do not have any mutual dependency or
correlation among them, items are correlated by dependency relations indicating
how a change in the value of an item may impact values of other items and how.
Details about how this graph-like structure is used in the reasoning process will be
given in Section 4.

Indicators and items that are meaningful have been identified according to the
medical practice in health assessment of elderly (Fleming K.C. 1995) and encoded
in our declarative framework as logic facts. A reduced list of indicators evaluated
by the system is provided in Table 5 while items are grouped according to the class
they belong to, as described later in this section.

As one can easily understand, evaluating items is not always trivial: the incom-
pleteness and heterogeneous nature of collected data and the need for state-based
context interpretation in dynamic systems suggest that nonmonotonic reasoning
techniques can be a powerful tool for effective context-dependent reasoning under
the assumption of incomplete knowledge.

A careful analysis of the elderly care in home settings suggests that health-related
items can be classified into four classes: State representing the well-being of the per-
son and the environment in which she lives, Functionalities representing functional
disabilities of the person monitored, Activities of Daily Living (ADLs) representing
her dependence in performing daily activities, and Risk Assessment characterizing
risky conditions.

In the remaining part of this section we provide details about items we consider
at each level, tests and input values used for absolute evaluation and indicators that
may contribute to their differential evaluation when direct input is not available.
The identification of relevant items and indicators, as well as their classification
has been made possible thanks to the strict interaction with a team of clinicians
in geriatrics from the “Ospedale S. Gerardo” in Monza (Milano, Italy). Under their
supervision, we analyzed their protocols in elderly care and formalized our domain
knowledge accordingly.

State This class of items includes:

1. comorbidity, intended as the simultaneous presence of two (or more) chronic
diseases or conditions in a patient;

2. number of different classes of drugs;
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Table 5. Indicators of Well-Being according to their differential evaluation.

Indicator Name Source Description

tests human input Test results
drugs human input Drug intake
diseases human input Level of present diseases
diet human input Diet type
sitting aggregation Quality of movements
standing aggregation Quality of movements
laying aggregation Quality of movements
turning aggregation Quality of movements
walking aggregation Quality of movements
numSteps aggregation Number of steps
walkSpeed aggregation Walking speed
walkTime aggregation Percentage of walking time
sitEquilibrium aggregation Quality of movements
standEquilibrium aggregation Quality of movements
wgt aggregation Weight expressed in kilograms
lightUsage inference Evaluate correct usage of lights
earlyNight inference Quality of sleep (11:00 p.m. to 11:59 p.m.)
middleNight inference Quality of sleep (12:00 to 2:39 a.m.)
lateNight inference Quality of sleep (3:00 to 4:59 a.m.)
dayActivity inference Level of activity vs. inactivity period during the day
tempQual inference Quality of the environment w.r.t. temperature
humQual inference Quality of the environment w.r.t. humidity
brightQual inference Quality of the environment w.r.t. light
socialAct inference Quantity of social interactions

3. quality of the environment, computed from average lighting, humidity and
temperature;

4. Body Mass Index (BMI) value.

The evaluation of items at the state level can depend on specific input from
caregivers.

Functionalities Items in this class include disabilities in the following aspects of
the person’s health state:

1. balance and gait, initially evaluated through the Tinetti-POMA (Tinetti
et al. 2002) medical scale; indicators are represented by i) assessment of
related pathologies, ii) drug intake and iii) indicators representing a few
aspects of the scale that can be captured by the wearable sensor and evalu-
ated through ad-hoc feature aggregation: standing, sitting, laying, turning
and walking;

2. nutrition, initially evaluated by means of the Mini Nutritional Assess-
ment (Guigoz et al. 1994) test; the indicator is the Body Mass Index (BMI),
stored every hour;

3. vision, initially evaluated through specific tests; indicators are the average
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levels of light of an area when the person is in that area, evaluated and
stored every hour;

4. hearing, initially evaluated through specific tests; indicators are the re-
sponse time to a ringing bell, evaluated and stored periodically as a result
of a test performed under specific conditions;

5. cognition, evaluated by means of the Mini Mental (Folstein et al. 1975) and
Clock Drawing (Yamamoto et al. 2004) tests; indicators are represented by
test results;

6. insomnia, initially evaluated by means of a questionnaire; the indicator is
the quality of sleep in three different moments of the sleeping period: start
of the sleeping period, heart of the night, early morning;

7. emotional stability, initially evaluated by means of the GDS test (Yesavage
et al. 1983); the indicator is a computer-aided version of the GDS test.

ADLs For items in this class, we are interested in the estimated level of depen-
dency in performing the Activities of Daily Living (ADLs) mentioned in the Katz
scale (Katz et al. 1970), in particular:

1. mobility initially evaluated through the PASE scale; indicators are the walk-
ing speed, the number of steps and the average daily walking time;

2. dress evaluated according to specific tests performed by caregivers;
3. eat evaluated by means of the Mini Nutritional Assessment Test (Guigoz

et al. 1994);
4. bathing has no indicators in the current version;
5. toileting has no indicators in the current version.

We want to point out that reasoning with ADLs is not aimed at activity recogni-
tion as in other approaches to monitoring (Pollack 2005). We start from absolute
evaluations as input and then concentrate on possible inter-dependencies that
may influence the level of autonomy with which a person performs an ADL,
thus predicting a risky evolution of the health state according to correlations
with other items as detailed in Section 4. We believe that the analysis of such
dependencies is crucial for prevention.
Instrumental Activities of Daily Living (IADL) from the Lawton scale (Lawton
1988) have not been included either, except for drugs intake and use of the
telephone. This choice has been guided by the fact that they have a lower impact
on other health-related items and the evaluation is too complex to be performed
in a non intrusive way.

Risk Assessment The risks we consider in the SINDI system are represented by
the potentially most dangerous situations for elderly people at home, namely:

1. falls, the risk is initially evaluated according to the Tinetti POMA scale; it
can be influenced by specific pathologies and drug intake used as indicators;

2. depression, the risk is initially evaluated according to the GDS scale (Yesav-
age et al. 1983); it can be influenced by specific pathologies and drug intake
used as indicators;
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3. frailty, initially evaluated through a combination of GDS test, Mini Mental
test and Katz evaluation; indicators are related to some profile information
such as walk speed and age, but it is very complex to evaluate frailty without
the support of a caregiver; thus the evaluation based on indicators only is
to be supported by additional reasoning as detailed in Section 4.3.

4. isolation: initially evaluated through the GDS test; the indicators are the
level of social activity (number of contacts, time spent out of the house)
and the presence of affective disorders.

In order to make it possible to evaluate indicators and items in a context-aware
fashion, SINDI’s knolwedge model of health consists of a two-layered graph: a layer
where nodes are indicators and a layer where nodes are items

Indicator nodes can be connected to item nodes through arcs that represent de-
pendencies between the differential evaluation of the indicators and the differential
evaluation of the related item. One item node I1 can be connected to another
item node I2 through a dependency arc that represents the influence of the differ-
ential evaluation of I1 on the differential evaluation of I2. The two layers of the
graph-based representation of SINDI’s knowledge model of health are illustrated in
Figures 3 and 4.

SINDI’s knowledge model of health allows different kinds of dependencies:

1. neg/pos: strictly negative/positive direct influence of the evaluation of a
source node on the evaluation of a target node;

2. invN/invP: strictly negative/positive inverse influence of the evaluation of
a source on the evaluation of a target node;

3. dir/inv: directly/inversely proportional influence of the evaluation of a source
node on the evaluation of a target node;

Dependencies can be specified by caregivers and are automatically mapped into
ASP as follows:

link(Type, Ind, I) to express influence of indicator Ind on item I

influence(Type, I1, I2) to express influence of item I1 on item I2
(2)

where Type ∈ {pos, neg, invP, invN, dir, inv}.
Since we believe feedback represents the key for effective preventive interventions,

an additional part of the domain knowledge of SINDI is related to the representation
of admissible feedback from the system to the person monitored. Furthermore, given
that each person has a different clinical history of cognitive decline and reacts in
different ways to external stimuli, it is extremely important to select the most
appropriate feedback according to the context.

The system can provide feedback in five different ways:

• suggestions according to the medical practice and the results of the prediction
task;

• alerts when the system identifies behaviors or situations that are potentially
dangerous according to the results of the prediction task;
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• alarms when specific environmental or clinical conditions are detected;
• notifications when the system receives new input or terminates the inference

process;
• reminders according to an agenda.

The main difference between a suggestion and an alert is that the second is
triggered by the identification of a specific behavior and may generate an immediate
action as an output (e.g. a blinking light to indicate that there is a call), while the
first is purely based on the medical knowledge encoded in the system and gives a
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Table 6. Classification of feedback outputs for fall prevention.

Class Output Form System Action

Environment do not walk in the dark S, A, N turn lights on
check temperature S, A, N vocal warning
incoming call S, A, AA, N blinking lights
remove clutter S, A, N vocal warning
emergency AA call 911

Behaviour keep active S, A, N, R propose exercises
stand up slowly S, A, N vocal warning
make sure carpets are fixed S vocal warning
use chair to get dressed S vocal warning

Clinical actions review drugs S on screen
see a specialist S, R on screen

(S) suggestion (AA) alarm (A) alert (N) notification (R) reminder

report as output. Alarms also generate an action but unless alerts that are generated
as a result of a prediction (potential risk), they are raised as a result of an evaluation
(effective risk), thus they usually need a more urgent response (e.g. a call to the
caregiver when a fall is detected). In our first specification reminders do not include
support on how to perform complex activities as in (Pollack et al. 2003; Boger
et al. 2006). In the current release, reasoning aimed at prevention is at its early
stage, and the system deals only with simple reminders according to an agenda.
We are aware of the fact that logic programming techniques are promising also
to solve planning problems, and we want to further investigate the potential of
our formalism in guiding the person in the correct execution of daily activities.
However, this is not part of the main objectives of the SINDI system, where we
focus on the interpretation of incomplete sensor data aimed at predicting health
evolutions exploiting a graph-based computational model of health dependencies.

Independently of how it is delivered, a feedback action can be related to:

• the environment: making the environment safer and of better quality, improv-
ing interaction with the environment, e.g. a phone call that is not acknowl-
edged by the patient can trigger actions like reducing the volume of the TV
or blinking a light;

• the user’s behavior: suggesting how to modify habits when the health as-
sessment indicates risky conditions or providing reminders according to an
agenda;

• the clinical setting: consulting a doctor, suggesting a more accurate test, re-
viewing a therapy, reminding medical appointments, and so on.

The combination of the results of the prediction task, domain knowledge and
context-related knowledge about the person and the environment is used to de-
termine i) what should be provided as feedback, ii) in which form and iii) when.
In the actual implementation of SINDI, we focused on feedback outputs related
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to prevention of falls. The contents of the feedback (later referred to as feedback
outputs) are identified according to the evidence-based medical knowledge derived
from experimental trials and encoded as logic facts (Connell and Wolf 1997; Stuck
et al. 1999; Rubenstein 2006; Ness et al. 2003).

The most appropriate form of feedback is inferred by the system on the basis of
the results of reasoning: the same feedback can be provided in different forms and
at different times (see Section 4.3 for details).

A feedback can be provided as soon as it is inferred or at a later time. Alarms are
usually immediate, while other forms of feedback can be performed immediately or
at a later time according to:

• triggers: pushing a button at a specific time or when particular conditions
hold;

• user/caregiver preferences: qualitative ordering to identify more urgent/important
suggestions according to the environmental/personal context setting and the
form of feedback;

• static ordering: certain forms of feedback may have higher priority than others,
simply because of their nature; similarly, some communication patterns can
be preferred to others on the basis of clinical settings.

As an example, consider the classification of feedback outputs for fall prevention
illustrated in Table 6 (Mileo and Bisiani 2009). Knowledge contained in Table 6 is
represented as logic predicates of the form possible_form(Output, Form) associ-
ating the content of a feedback to its possible forms.

Knowledge about system’s reactions is used for prevention as illustrated in Sec-
tion 4.3 and it is mapped into logic predicates as follows:

• for each possible form fi ∈ F = {s, a, aa, n, r} for an output X use predicate
possible_form(X, fi);

• output X triggered by some events in the form fi ∈ F is represented by
predicate feedback_form(X, fi);

• action Z, consequence of output O triggered in form F is represented by
predicate do_action(O,F, Z);

• the action of prompting output O triggered in form F through channel C =

{audio, video} at time T = {immediate, endOfDay} is represented by pred-
icate do_prompt(O,F,C, T ).

• actions observed by the system are represented by predicate action_observed(A, T )

where T represents a discrete time stamp and A is an action among those that
can be recognised by the reasoning process.

4 Reasoning Support for Intelligent Monitoring

We refer to an intelligent monitoring system as a monitoring system that is able to
support understanding and decision through the interpretation of data according
to an appropriate model of the domain.

As introduced in previous sections, SINDI’s inference for intelligent monitoring



Reasoning Support for Risk Prediction and Prevention in Independent Living 19

is based on context interpretation, i.e. the process of reasoning about context-
dependent sensor data through specific inference rules in order to provide a con-
sistent view of the world. In pervasive environments, context-dependent data can
arise from different sources; for example data may be gathered by sensors or col-
lected from several knowledge-bases. The incompleteness and heterogeneous nature
of such data stress the need for expressive reasoning techniques in order to imple-
ment effective, context-aware reasoning.

We already identified three classes of reasoning tasks performed by the SINDI
system: Context Interpretation, Health Assessment (evaluation) which uses results
of Context Interpretation and Health Evolution (prediction, explanation, reaction)
based on results of Health Assessment and SINDI’s model of health.

In the following subsections we illustrate SINDI’s reasoning tasks for each class.

4.1 Context Interpretation

Data gathered by the sensors may be noisy even after aggregation, but their com-
bination may yield a reliable interpretation. The expressive power of ASP is used
to disambiguate unclear situations (e.g., where the person is) by combining hetero-
geneous data sources and using defaults, nondeterministic choice and preferences
to select the best candidates in the space of the solutions.

The continuous measurements provided by sensors are stored in the database of
SINDI (Fig. 1). In the actual implementation, tasks related to context interpre-
tation are performed every hour. Discrete time is in seconds and sensor data are
opportunely aggregated and provided when values change beyond a given thresh-
old. As an example, the temperature is aggregated as the average temperature of a
room and a new logic fact is generated whenever the temperature value changes of
at least 1 degree Celsius. We are currently working on a wrapper that will make it
possible to use the Clasp solver as a permanently running API that we can feed with
aggregated sensor data as soon as they are available. This will make the reasoning
process faster.

In order to understand how reasoning helps in the interpretation of imprecise
sensor data, let us consider localization of the person in a position X,Y of the grid
representing the home environment. SINDI’s localization component is based on
the intensity variations of the radio signals exchanged between nodes, filtered by a
bayesian filter. Unfortunately, it is not always true that the higher the measured
intensity of a signal from a node, the closest the person is to that node.

Given proximity values with a certain accuracy P at a given time T (provided as
facts of the form in(X,Y, T, P )), the ASP program takes available sensor data that
can be used to validate proximity signals and to reason about several preference
criteria to identify the best solutions.

All possible positions are generated for a given time T and the optimal solutions
are obtained by applying different combination of the preference criteria: when
the proximity signals are available, the highest signal which is most coherent and
best move is preferred. If no such position exists, then coherence is preferred to
the best move criterion; finally we give up coherence if no such position exists.
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When the proximity signal is not available, the same principle applies, except that
we maximize the support obtained form other sensor data (namely range finder
and infrared) for a given location L of the grid, rahter than maximizing the signal
strength. Sensor data are represented as facts of the form sensed(S,L, T ), where L
represents the location loc(X,Y ), S=distance for the range finder and S=motion
for the infrared.

The correspondent encoding is as follows:

time(1..207).
has_data(T) :- sense(S,X,Y,T).
has_rssi(T) :- in(X,Y,T,P).
invalid(loc(X,Y)) :- wall(X,Y).
sensed(rssi,P,loc(X,Y),T) :- in(X,Y,T,P).
sensed(S,loc(X,Y),T) :- sense(S,X,Y,T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Best Move
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
location(L,T) :- sensed(rssi,P,L,T).
location(L,T) :- sensed(S,L,T).
location(L) :- location(L,T), not invalid(L).
length(L,T) :- location(N;M), dist(N,M,L,T).

dist(loc(X,Y),loc(U,V),#abs(X-U) + #abs(Y-V),T) :- location(loc(X,Y),T), location(loc(U,V),T-1).
distance(D,L,T) :- location(L,T), at(M,T-1), dist(L,M,D,T), location(L).
best_distance(D,T) :- D = #min [distance(E,L,T) : location(L,T): length(E,T): E>0 = E ],

time(T;T-1).
best_movement(L,T) :- distance(D,L,T), best_distance(D,T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Best Coherence
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
is_passage(X,Y) :- passage(X,Y,R1,A1,R2,A2).
is_cell(X,Y) :- cell(X,Y,R,A).
data_expected(S,loc(X,Y)) :- data_ex(S,X,Y).
ex_support(N,L) :- N = [data_expected(S,L) : sensed_type(S)], location(L,T).
p_support(L,T,C) :- C = [sensed(S,L,T) : data_expected(S,L)], location(L,T), not invalid(L).
coherence(L,T,P) :- p_support(L,T,C), P=(100*C)/N, ex_support(N,L), C>0, N>0.
coherence(L,T,C) :- p_support(L,T,C), C=0, ex_support(N,L), N>0.
coherence(L,T,100) :- p_support(L,T,C), ex_support(N,L), C=0, N=0.
most_coherent_time(T,M) :- M = #max [coherence(L,T,C) : coherence(L,T,C) = C],

time(T), perc(C), M>=0.
most_coherent(L,T) :- most_coherent_time(T,C), coherence(L,T,C).
best_coherence(L,T) :- most_coherent(L,T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Multicriteria optimization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
criterion(1..4).
criterion(1,L,T) :- location(L,T), best_movement(L,T), best_coherence(L,T).
criterion(2,L,T) :- location(L,T), best_movement(L,T).
criterion(3,L,T) :- location(L,T), best_coherence(L,T).
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criterion(4,L,T) :- location(L,T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimization using criterias
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
signal(P) :- sensed(rssi,P,L,T).
signal_data(N) :- count_s(N,L,T).
count_s(N,L,T) :- N = [sensed(S,L,T) : sensed_type(S)=1], location(L,T),

not has_rssi(T).
reward(L,T,N) :- not has_rssi(T), has_data(T), count_s(N,L,T).
sense_power(P,T,C) :- sensed(rssi,P,L,T), criterion(C,L,T).
sense_num(N,T,C) :- count_s(N,L,T), sensed(S,L,T), criterion(C,L,T).
best_value(C,B,T) :- criterion(C), time(T), signal(B),

B = #max [sense_power(P,T,C):signal(P)=P],
not best_value_p(D,T) : criterion(D): D<C.

best_value(C,B,T) :- criterion(C), time(T), signal_data(N), B>=0,
B = #max [sense_num(N,T,C):signal_data(N) = N],
not best_value_p(D,T) : criterion(D): D<C.

best_value_p(C,T) :- best_value(C,B,T).
best_location(L,T) :- best_value(C,B,T), sensed(rssi,B,L,T).
best_location(L,T) :- best_value_p(C,T), sensed(S,L,T), not has_rssi(T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generate and Test
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1 { at(L,T) : location(L) } 1 :- time(T).
:- at(L,T), not best_location(L,T).

#hide.
#show at/2.

Besides localization, context interpretation is in charge of understanding basic
beaviours that may be important for health assessment, such as the night activity. In
the following subsection we illustrate how this is obtained and used in the following
reasoning step.

4.2 Context-aware Health Evaluation

At each reasoning cycle, results of the context interpretation process are used to
infer consistent evaluations of indicators and items, combining specific logic rules
with medical inputs and results of data aggregation. The evaluation process pro-
duces both an absolute evaluation and a differential evaluation (with respect to
results of the previous inference cycle). Admissible values for each indicator and
item are part of the medical knowledge and are encoded in the system, while their
differential evaluation has four possible outcomes: worsening, improvement, no sub-
stantial change, undefined.

In general, absolute evaluation of items is available only as inputs from caregivers
according to results of a specific tests. As for indicators, their absolute evaluations
can be based on i) results of specific evaluation by clinicians (e.g. hearing function-
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alities), ii) results of data aggregation (e.g. quality of movement) and iii) results of
ad-hoc logic rules (e.g. quality of sleep).

Absolute evaluation is represented in form of logic predicates of the form:

obsInd(Ind, V,H) for indicators

obsItem(I, V,H) for items
(3)

where H is a time stamp identifying the hour associated to the inference cycle the
evaluation refers to6, and value V is defined over specific ranges in the knowledge
base. The current hour being processed is provided by fact hour(N), N = 0..23.

In order to highlight the advantages of using reasoning in the evaluation process,
we provide an example of how inference can help in this reasoning phase.

Example 1
Consider the indicator quality of sleep which is one of the most interesting in assess-
ing the well being of the elderly because it can be used as a predictor of worsening
conditions. Nonmonotonic reasoning based on ASP makes it possible to combine
several context-dependent informations inferred by the context interpretation pro-
cess to determine a consistent evaluation of the overall quality of sleep. A simplified
version of the encoding used to connect consecutive reasoning cycles to determine
night activity is as follows:

night :- hour(N), N<8.
night :- hour(N), N>21.
awake(T) :- not in_bed(T), time(T), localized(T), night.

sleep_interrupt(T) :- in_bed(T1), awake(T), T1<T.
sleep_interrupt(T) :- obsInd(S,ok,1), link(L,S,sleep), awake(T), time(T).
sleep_interrupt(T) :- obsInd(S,moderate,1), link(L,S,sleep), awake(T), time(T).

back_to_bed(T) :- awake(T1), in_bed(T), T1<T, obsInd(S,mild,1), link(L,S,sleep).
back_to_bed(T) :- sleep_interrupt(T0), awake(T1), in_bed(T), T0<T1, T1<T,

link(L,S,sleep), time(T0;T1;T).
bad_sleep(T) :- in_bed(T), attribute_obj(loadVolatility,bed,N,T), N!=stable.

poss_early_awake(T) :- sleep_interrupt(T), not in_bed(T1), T<=T1, time(T1).
poss_early_awake(T) :- awake(T), obsInd(S,mild,1), link(L,S,sleep), time(T).
n_early_awake(T) :- poss_early_awake(T), back_to_bed(T1), time(T1), T<T1.

The following piece of code is in charge of evaluating indicators associated to the
quality of sleep:

period(N,earlynight) :- hour(N), N>21.
period(N,middlenight) :- hour(N), N<2.
period(N,latenight) :- hour(N), 2<=N, N<5.

obsInd(S,ok,0) :- link(L,S,sleep), not sleep_interrupt(T1), time(T1),
in_bed(T), T1!=T, obsInd(S,ok,1), period(N,S), hour(N),
not obsInd(S,mild,0), not obsInd(S,moderate,0),

6 Timestamp H = 0 is associated the hour being evaluated, while timestamps H > 0 refers to
previous inference steps: the highest H, the oldest the hour.
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Table 7. Influence of arc from Ind to I according to arc label

Sign of Source Node pos neg invP invN dir inv

+ + ? – ? + –
– ? – ? + – +
= = = = = = =
? ? ? ? ? ? ?

not obsInd(S,consistent,0).
obsInd(S,mild,0) :- link(L,S,sleep), period(N,S), bad_sleep(T), time(T),

not obsInd(S,moderate,0), not obsInd(S,consistent,0).
obsInd(S,moderate,0) :- link(L,S,sleep), period(N,S), back_to_bed(T),

time(T), not obsInd(S,cosistent,0).
obsInd(S,consistent,0) :- link(L,S,sleep), period(N,S), poss_early_awake(T1),

not n_early_awake(T1), time(T).

Differential evaluations are obtained, when possible, as a measure of the value
increase or decrease derived by comparing the values of the current inference cycle
with values at the previous inference cycle.

If we imagine to assign a color to each node according to the differential value
(assigning no color to undefined values) the evaluation process returns a partially
labelled graph as output. At this point, the SINDI reasoning component can further
help in the differential evaluation of items. In fact, differential evaluation of an item
I is not straightforward when no direct evaluation is available for I. When this
is the case, we can still use reasoning to infer a coherent differential evaluation
according to i) differential evaluations of all indicators Indi that may influence I

and ii) multiple dependencies between each Indi and I.
The effect of a single dependency arc from a source Ind to a target I according

to the type of arc dependency, is summarized in Table 7. The sign associated with
a dependency arc connecting indicator Ind and item I is determined according to
the differential evaluation of Ind and the label of the arc.

Given that different kinds of dependencies are allowed in SINDI’s knowledge
model, and they are potentially contradictory or incomplete, we need an algorithm
to combine the effects of the combination of such influences of several indicators
Indi on item I so as to provide a coherent differential evaluation for I.

Evaluation process:
a) If no differential evaluation is available for item I, I should be evaluated by
using dependencies

b) Influences determining a “+” sign prevail if there are no influences giving signs
“–” or “?”

c) Influences determining a “-” sign prevail if there are no influences giving signs
“+” or “?”

d) Influences determining a “=” sign prevail if it is the only sing produced by all
other dependencies

e) If no differential evaluation is produced for item I, further reasoning is needed
to guess its possible evolution
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We represent an absolute (available as an input) differential evaluation of item I

with predicate diff_item(L, I, V al, T ); an inferred differential evaluation of item
I is computed by the reasoning engine according to values of indicators Indi con-
nected to I, and it is represented by the predicate diff_item_inferred(L, I, V al, T ).

The sign of the dependency is represented by predicate infl_sign(I, Ind, S, T )

with S ∈ {0,−1, 1}. The sign S of infl_sign(I, Ind, S, T )) depends on the differ-
ential evaluation of Ind represented by predicate diff_ind(Ind, V al, T ) and the
type of link link(Type, Ind, I) as illustrated in Table 7. Differential values V al cor-
respond to a sign S as follows: better corresponds to “+”, worse corresponds to “−”
and equal corresponds to “=”. For sake of simplicity, in the knowledge representa-
tion framework we represent signs as numbers so that they can be multiplied by
their weights for optimization: 0 represents no changes, −1 represents worsening
conditions and +1 represents improvements.

The logic rules implementing this behaviour would look like the following:

to_evaluate(L,I) :- not diff_item(L,I,Val,T).
n_invariant(I) :- infl_sign(I,Ind,S,T), S!=0.

diff_item_inferred(L,I,S,T) :- to_evaluate(L,I), infl_sign(I,Ind,S,T),
not infl_sign(I,Ind1,S1,T), S1=S*(-1).

diff_item_inferred(L,I,0,T) :- to_evaluate(L,I), infl_sign(I,Ind,0,T),
not n_invariant(I).

labeled(I) :- diff_item_inferred(L,I,S,T).
to_guess(L,I) :- to_evaluate(L,I), not labeled(L,I).

Intuitively, this reasoning process could provide additional differential evaluation
useful for prediction by the higher level reasoning tasks. We could make this process
more precise by using weighted arcs to represent influences of indicators Indi on
item I; in this way we could label item I with the sign that has the higher sum
of weights. The major problem of this approach is that in the healthcare domain,
the impact of a medical dependency is not static, thus weights should be computed
dynamically according to the whole clinical situation. This aspect is not even clear
to caregivers and we plan to investigate this issues with domain experts to find a
viable solution.

We show a graphical example that illustrates the results of reasoning in a simple
two-layered graph.

Example 2
Consider the dependency graph illustrated in Figure 5.

Note that the label of arcs connecting Indicator2 with items Itemi, i = {1, 3, 4, 5}
is not important for their differential evaluation. In fact Indicator2 is marked as
stable (its sign is “=”) thus its influence is the same according to Table 7.

Often it can be the case that the output of the evaluation phase is a partial
labeling of the graph of items and related dependencies. The following reasoning
process of SINDI starts from this incomplete information about health in the Health
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Fig. 5. Results of the evaluation reasoning process for a simple dependency graph

Assessment layer and uses the computational power of the ASP framework in order
to:

• predict possible evolutions in terms of differential evaluations of items that
have not been labeled as a result of the evaluation phase and provide a qual-
itative analysis of results;

• investigate the plausible causes of predicted and inferred health changes ac-
cording to the dependency graph;

• use results of prediction to support caregivers in planning appropriate inter-
ventions.

These reasoning tasks will be detailed in Section 4.

4.3 Health Evolution

According to what has been described in Section 3.2, the Health Assessment layer of
the graph representing SINDI’s logic-based model of health includes a well-defined
set of items and correlations among them. The correspondent graph is partially
labeled with the results of the evaluation process.

In this section we want to focus on how the system reasons about this incomplete
and potentially incoherent information about item values to predict health changes
and suggest appropriate interventions.

With the introduction of reasoning in health monitoring, we want to address
the fact that caregivers need to be supported in understanding patients’ physical,
mental and social settings as they evolve, by i) predicting what could follow with
respect to particular changes in one or more aspects of the patients’ general health,
ii) identifying correlated aspects that may be the cause for a predicted change in
the patient’s general health, iii) giving appropriate (context-dependent) feedback
to the patient to educate him to correct behavior and collecting his reactions to
this feedback.
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The first aspect refers to prediction, i.e. the identification of plausible effects
of certain changes in items’ values on values of unlabeled items; intuitively, this
is done by considering all possible consistent values for the missing information
according to SINDI’s logic model of dependencies between items; prediction makes
it possible to act before major symptoms and to plan appropriate short- and long-
term interventions, thus reducing risks.

The second aspect may look similar to diagnosis, but we prefer to call it Local
Explanation in that it gives reasons for the differential evaluations of an item I

provided as a result of the prediction task, when the inferred sign for I is the same
in all solutions. It is a local process rather than a case-based one, in that it takes into
account results of reasoning under particular clinical and environmental conditions.

The third aspect is related to the identification of those interventions (provided
as direct actions performed by the system or as suggestions) that may keep health
changes within safe boundaries.

In the remaining part of this section we give implementation details for each of
these classes of tasks.

Prediction In order to determine all total consistent labelings of the graph re-
sulting from the evaluation process, the inference mechanism takes into account
unlabeled items and generates consistent labeling. The instance provided as in-
put to the ASP program includes sign S for item I represented by predicate
obs_label(I, S) or inferred_label(I, S) provided by the evaluation process, and
unlabeled items to_guess(Ik).
Labels are obtained according to the following procedure:

∀ I | ∃ obs_label(I, S) :

compute sign(I, Ik, S
′) for each arc(I, Ik) as in Table 7;

compute weight W (I, Ik) | W (I, Ik) = 5 if ∃ obs_label(I, S),

W (I, Ik) = 1 if ∃ inferred_label(I, S);

∀ Ik | to_guess(Ik) :

compute total weight Wtot(I, Ik, S
′) = Σn

k=1 W (I, Ik) | sign(I, Ik, S
′);

compute winning sign Sw ilab(Ik, Sw).
(4)

As a result of the prediction task, the ASP logic program may yield different
solutions from which we extract:

1. guessed signs S′ for item I that are true in all possible solutions, represented
by predicate ilab(I, S′),

2. for all other items Ig for which there are several possible guesses, we pre-
fer the solution where each Ig is labeled with sign Sg such that the sum
Σn

g=1 Wtot(Ig, Sg) is maximized.

The following example shows results of prediction task on a small graph that has
been partially labeled by the evaluation process.
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Table 8. Graph for Example 3
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Example 3
Consider results of the evaluation process as in the first graph of Table 8. Two
direct observations are available: obs_label(item3,−1) and obs_label(item2, 0).
We set the weight of each arc from Ij to Ih to 5 if sign of Ij is provided by the
evaluation process, to 1 otherwise. Possible consistent guesses are represented by
three answer sets containing, among others, the following predicates:

S1 = { count_infl(item4,−1, 5), count_infl(item4, 0, 1), count_infl(item5, 0, 5),
count_infl(item2,−1, 5), count_infl(item2, 0, 2), ilab(item6, 0),
ilab(item3,−1), ilab(item4,−1), ilab(item5, 0), ilab(item2,−1), ilab(item1, 0)}

S2 = { count_infl(item4,−1, 1), count_infl(item4,−1, 5), count_infl(item5, 0, 5),
count_infl(item2,−1, 5), count_infl(item2, 0, 1), ilab(item6, 0),
ilab(item3,−1), ilab(item4,−1), ilab(item5, 0), ilab(item2,−1), ilab(item1,−1)}

S3 = { count_infl(item4,−1, 5), count_infl(item5, 0, 5), count_infl(item2,−1, 5),
count_infl(item2, 0, 1), count_infl(item2, 1, 1), ilab(item6, 0),
ilab(item3,−1), ilab(item4,−1), ilab(item5, 0), ilab(item2,−1), ilab(item1, 1)}

Since the sign of item1 has three possible guesses, it is not considered as a result
of prediction. All other guesses are coherent in all answer sets, thus result of the
prediction task are as illustrated in the second graph in Table 8.

In the future, we will investigate additional optimization techniques in order to
provide a more accurate qualitative evaluation of all possible consistent label-
ing. Even though the following reasoning tasks consider only one solution of the
prediction task, all solutions are stored for off-line evaluation. In the actual im-
plementation, if there is no total consistent labeling, the solutions that allow to
mark a greater number of nodes are taken into account. The way SINDI’s knowl-
edge representation model has been conceived suggests us that we can investigate
inconsistent subgraphs in order to determine whether they are generated by an
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incomplete model (e.g. missing dependencies) or incorrect representation (impre-
cise or wrong dependency arc). This is material for further study.

Local Explanation Once an optimal graph labeling has been identified as a result
of prediction, the system analyses each class of items in order to identify chains
of dependencies that may justify a set of predictions on items of that class.
At the moment, this reasoning process is performed on each class of items sepa-
rately. This makes it possible to find the minimal common explanation to justify
the results of prediction for all items of a class, but the subset of items for which
we want to find minimal common explanation can be customized.
The reasoning process behaves as follows:

• no matter which class of items is being evaluated, items Il that have been
labelled as a result of prediction are considered as input for local explana-
tion;

• starting from each item Il under consideration, if Il was assigned a label and
Il is not a leaf7 of the graph, at least one of the incoming arcs contributing
to the choice of the sign for Il should be included in the explanation;

• arcs are added backwards to an explanation path if the target node is
reachable in the path;

• an arc that justifies the attribution of a sign is not included in the explana-
tion path for an item Il if it leads to a cycle, i.e. it has as a source a node
that is already reachable in the explanation path for Il;

• at most one explanation path for each item Il should be included in each
solution;

• for each branch in the explanation path for an item Ij , if one arc arc1 has
already been included in the explanation path for another item I ′j of the
same class under consideration, it is preferred to every other arc arck of
the branch8.

The following example shows the results of the explanation task on a graph that
has been partially labeled as a result of prediction.

Example 4
Suppose we want to provide explanation for the class of items C = {item3, item4},
both of then labeled with a negative differential evaluation. In the first case, the
reasoning process returns two different explanation paths for item2 and one path
for item3, represented by the dotted arcs. If we add a dependency arc connecting
item4 and item3 as in the graph at the bottom left of Table 9, the result is an
explanation path that is partially in common for both items in C, since this is
the preferred solution.

7 A node with no incoming arcs is considered a leaf.
8 This aspect contributes to the identification of minimal common explanations for all items of
the class under consideration
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Table 9. Graph for Example 4
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Prevention In order to identify which feedback to provide, in which form and
when, the reasoning component applies a set of rules we refer to as a feedback
policy. A preliminary proposal for the application of a declarative policy descrip-
tion language to reason about feedback has been presented in (Mileo and Bisiani
2009). The basic idea is that a small set of well defined policy rules can be used
to produce reactions of the system according to results of prediction. Since we
refer to prevention as to those interventions that may keep health changes within
safe boundaries, we concentrate on feedback provided as a result of predictions
that identify worsening conditions.
The declarative policy language we propose admits different kinds of high-level
rules that are then mapped into ASP. These rules make it possible to represent:

• results of prediction for a given item I identify a candidate form fi(X) for a
feedback X according to the explanation path associated to the prediction
(event-triggering rules);

• only one feedback form fi(X) among the triggered ones should be provided
for the same feedback X (choice rules);
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• a feedback form fi(X) can be preferred to form fk(X) for a given feedback
X under certain conditions, unless exceptions are made explicit (default
ordering and exception rules);

• the observation of an action Ap performed by the person, or the selection
of feedback output fi(X) triggers an action As to be performed by system
at a given time (event-condition-action rules):

• conflicting actions cannot be executed together and qualitative optimization
techniques are used to select which action to perform; as an example, we
may want to select the most urgent action or the one that is better perceived
by the person according to her clinical profile, or the one that minimizes
interruptions (consistency rules).

Feedback outputs are used by SINDI to guide the person towards safe-behavior
ans safe-living, thus helping in the application of prevention strategies.
Each feedback action can be associated to a list of possible reactions of the
patient. A reaction to a feedback, when detected, is logged to be used at a later
time. Exploring this history, caregivers can improve the way feedback actions are
performed and identify the most effective communication patterns.
Learning interaction patterns is an interesting issue (Rudary et al. 2004), but we
did not tackle it yet. Given that we consider different forms of feedback, we could
identify an appropriate reward function in order to take into account how the
combination of different feedback actions and communication patterns impact on
the quality of life of the person monitored.
To conclude this section, we discuss an example of how SINDI provides feedback
for prevention according to the health assessment and the context in which the
person acts.

Example 5
In this scenario, we track a hypothetical patient monitored by SINDI, called Eve.
We consider SINDI’s reactions aimed at reducing the risk of falls. When Eve
wakes up, SINDI tracks her getting out of bed, movements and location around
the house. The quality of movements and of the environment is evaluated every
hour according to the context in which data have been collected, in order to
predict changes in the values of the indicators and related items.
After a long period sitting on the sofa and watching TV in the morning, Eve walks
to the kitchen to prepare some food. The evaluation of her gait indicates that
something has changed, since walking speed is reduced due to the long inactivity
period. Trying to get things out of a cupboard, Eve slightly injures her back.
This is noticed by the system because her subsequent sitting-down movements
are performed with more difficulty, and the aggregation process returns a negative
differential evaluation.
Functional dependencies are evaluated every hour, thus SINDI identifies gait, bal-
ance and mobility as problematic after analyzing indicators like walking speed
and quality of sitting action in the time interval under investigation. Given that
gait and balance problems directly affect mobility and that a reduced mobility
may have a negative impact on the risk of falls, SINDI predicts a possible wors-
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ening of the risk of falls. Balance also influences dependency in getting dressed;
though we have no indicators-based evidence of it, the prediction task marks
dependency in this activity as subjected to worsening.
A set of event-triggering rules identifies potential feedback outputs among the
ones in Table 6: stand up slowly, use a stable chair to get dressed, don’t stay
inactive for too long during the day, keep stairs and walk areas clear of clutter. An
event-condition-action rule indicates that feedback outputs in form of suggestions
and notifications should be provided as a report at the end of the day. This holds
unless a form of higher priority is triggered for the same feedback.
Later, the quality of the environment with respect to light is marked as decreased.
According to the evaluation task, a wrong use of lights may indicate visual prob-
lems, thus a possible disability in vision is inferred and added in the explanation
path for the prediction of an increase of the risk of falls.
Through the specification of an appropriate event-triggering rule, another sug-
gestion is added to the list: do not walk across a dark area.
In the following inference cycle, context interpretation reveals that Eve walked
through areas that were not properly lighted. At this point, an event triggering
rule indicates that the same feedback output should now be provided in form of
an alert. Given that there is a default ordering rule giving alerts higher priority
than suggestions, alert becomes the preferred form for the feedback “do not walk
across a dark area”.
While suggestions are usually included in a report, alerts are usually associated
with a specific action to be performed. If there are no other conflicting actions
inferred by the system, the feedback is provided as indicated by the correspondent
event-condition-action rule, in a way that minimizes interruptions.
This example shows how inference results predicting potential risks are used to
identify the appropriate feedback for prevention, and how policy rules make this
list dynamic according to how the prediction and the context evolve. In this way,
SINDI can provide the most appropriate feedback at the right time. In fact, if
the wrong use of lights was not detected, a feedback related to the use of lights
would have been a suggestion in the final report, rather than an alert.
The idea behind rules of a feedback policy is that reasoning about data in a
reduced temporal interval may help identifying a list of potential feedbacks as
soon as some events are detected. In the following inference cycles, the new
information that may be available and user/caregiver preferences are used to
modify the list of feedback actions and the way they are provided to the patient.
In the next day, the impact of feedback and the way Eve reacts to them are
monitored: in case Eve reacts to one of the feedback outputs (e.g. she becomes
more active), an event triggering rule can generate a Notification that is added
to the daily report. Notifications are used to give evidence of i) whether Eve has
followed or not feedback outputs and ii) how much does preventive intervention
impact the risk of falls. This makes it possible to keep track of the whole cycle
(feedback, reaction to feedback when available, impact on possible evolutions of
the health state) and it can be a source of data for tests and trials to identify the
correct intervention for a more general class of patients.
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Table 10. Results of ASP prediction

Items Arcs Labeled Labeled after Prediction Time Solutions

20 30 4/20 9/20 0,010 180
20 30 10/20 12/20 0,010 126
50 100 5/50 50/50 0,020 24
50 200 10/50 48/50 0,030 3
50 250 20/50 45/50 0,030 32
50 250 35/50 45/50 0,030 32
50 300 20/50 49/50 0,040 2
50 400 20/50 50/50 0,040 1
60 480 20/60 47/60 0,060 6
60 480 30/60 47/60 0,030 6

5 Preliminary Evaluation

It is very hard to evaluate the performance of SINDI in its entirety without extensive
field deployment and analysis. We are working towards this goal but do not yet have
hard results from field experiments that are long enough and diverse enough to yield
scientific significance. We are also working on a sort of “canned” evaluation of the
inference engine: we generate ad-hoc sensor data by simulating the behavior of the
patient with an agent simulator (Repast) and create specific situations that test the
functionality of the inference. Since this evaluation is not yet completed we offer here
some other evaluation data regarding the sensor network and the ASP interpreter
performance. We did several tests on the WSN and on the inference engine. The
localization algorithm recognizes the correct area 90% of the time without further
filtering techniques, and movement recognition is correct 95% of the time.

With respect to the inference engine, we evaluated ASP programs by usingGringo
as grounder and the Clasp solver (Gebser et al. 2007) that supports constraints,
choice rules and weight rules (Niemelä and Simons 2001) and can solve complex rea-
soning tasks very efficiently due to the heuristics used, combining ASP expressivity
with boolean constraint solving.

While the reasoning processes for context interpretation and evaluation takes
advantage of the nonmonotonic nature of ASP to reason about collected and aggre-
gated data, reasoning tasks for health assessment also rely on the computational
power of ASP: the prediction task is based on a complex reasoning process that
takes into account the whole graph of dependencies to find maximal consistent la-
bellings; local explanation can consider an arbitrary class of items to find subsets
of dependency arcs that represent a minimal common explanation, obtained by
using qualitative and quantitative optimization techniques; prevention is based on
a compact representation of feedback policies that are automatically mapped into
ASP and enforced by applying adaptive optimization strategies taking into account
contextual settings.
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SINDI does not have to deal with graphs that are potentially very large (thou-
sands of nodes and dependencies). The complexity for the prediction task derives
from the ratio of arcs with respect to nodes (the higher the number of inner arcs
for a node I, the higher the number of possible influences on the value of I). Also
the number of initial observations available may influence results: the higher the
number of observations, the harder it could be to find a consistent colouring when
observations seem to be incoherent. Our tests on some random instances with a
few hundreds of dependencies (which is still an overestimation of the real setting)
showed that the connectiveness of the graph is not a problem for the ASP compu-
tation.

As for the prediction task, we summarize some results in Table 10, where time is
expressed in seconds, to illustrate how reasoning can help predicting health evolu-
tions even when few evaluations are available. The table shows that the higher the
number of labeled items, the lower is the percentage of the contribution of reasoning
in labeling new items. This sometimes depends on the initial labeling, e.g. how well
distributed the observed items are and how much coherent are their evaluations.

In evaluating indicators, delegating part of the aggregation process to the WSN
nodes lowered the computational time by 60% for instances of medium complexity
(i.e. for a person that is active from 30 to 40 per cent of the time in a day). We believe
that the integration of ASP reasoning with constraint solving techniques (Mellarkod
et al. 2008) could make context interpretation from sensor data more efficient and we
plan to investigate it. This of course does not include situations in which emergencies
arise, since they are detected almost immediately.

6 Conclusions

The paper has described in detail the design of a system for supporting Independent
Living. The system has not yet been fully evaluated in the field but it is working
and has been tested in the laboratory with real data. Full validation of systems like
SINDI is very hard because the quality of the system depends on properties that
are very difficult to quantize, e.g. patient and caregiver satisfaction, increase of the
Healthy Life Years period, correctness in predicting risky situations, and so on. We
are building the hardware necessary for a few deployments in patient’s homes and
are seeking funding from various agencies for large-scale field-deployment and test.

Reasoning support to home monitoring has interesting potential developments.
Among them, we want to investigate how observations that may appear to be
inconsistent with the model of health can help discovering missing dependencies
and refine the model itself.

Application-wise, given the high variability among trials and studies addressing
prediction and prevention issues, it is still difficult to extract a coherent picture
of what leads to disability and to develop coherent prevention strategies. In this
respect, our system has the potential of automatically collecting a massive amount
of data in order to evaluate context-related prediction patterns and effective com-
munication strategies for prevention.
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