
ar
X

iv
:1

10
7.

59
80

v1
 [

cs
.L

O
]

 2
9

Ju
l 2

01
1

Under consideration for publication in Theory and Practice of Logic Programming 1

SAT-Based Termination Analysis Using

Monotonicity Constraints over the Integers∗

MICHAEL CODISH, IGOR GONOPOLSKIY

Department of Computer Science, Ben-Gurion University, Israel

AMIR M. BEN-AMRAM

School of Computer Science, Tel-Aviv Academic College, Israel †

CARSTEN FUHS, JÜRGEN GIESL

LuFG Informatik 2, RWTH Aachen University, Germany

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We describe an algorithm for proving termination of programs abstracted to systems of
monotonicity constraints in the integer domain. Monotonicity constraints are a non-trivial
extension of the well-known size-change termination method. While deciding termination
for systems of monotonicity constraints is PSPACE complete, we focus on a well-defined
and significant subset, which we call MCNP, designed to be amenable to a SAT-based
solution. Our technique is based on the search for a special type of ranking function
defined in terms of bounded differences between multisets of integer values. We describe
the application of our approach as the back-end for the termination analysis of Java
Bytecode (JBC). At the front-end, systems of monotonicity constraints are obtained by
abstracting information, using two different termination analyzers: AProVE and COSTA.
Preliminary results reveal that our approach provides a good trade-off between precision
and cost of analysis.

KEYWORDS: termination analysis, monotonicity constraints, SAT encoding.

1 Introduction

Proving termination is a fundamental problem in verification. The challenge of ter-

mination analysis is to design a program abstraction that captures the properties

needed to prove termination as often as possible, while providing a decidable suf-

ficient criterion for termination. Typically, such abstractions represent a program

as a finite set of abstract transition rules which are descriptions of program steps,

where the notion of step can be tuned to different needs. The abstraction considered

in this paper is based on monotonicity-constraint systems (MCSs).

The MCS abstraction is an extension of the SCT (size-change termination (Lee

∗ Supported by the G.I.F. grant 966-116.6.
† Part of this author’s work was carried out while visiting DIKU, the University of Copenhagen.

http://arxiv.org/abs/1107.5980v1

2 M. Codish et al.

et al. 2001)) abstraction, which has been studied extensively during the last decade

(see http://www2.mta.ac.il/~amirben/sct.html for a summary and references).

In the SCT abstraction, an abstract transition rule is specified by a set of inequalities

that show how the sizes of program data in the target state are bounded by those in

the source state. Size is measured by a well-founded base order. These inequalities

are often represented by a size-change graph.

The size-change technique was conceived to deal with well-founded domains,

where infinite descent is impossible. Termination is deduced by proving that any

(hypothetical) infinite run would decrease some value monotonically and endlessly,

so that well-foundedness would be contradicted.

Extending this approach, a monotonicity constraint (MC) allows for any con-

junction of order relations (strict and non-strict inequalities) involving any pair of

variables from the source and target states. So in contrast to SCT, one may also

have relations between two variables in the target state or two variables in the source

state. Thus, MCSs are more expressive, and (Codish et al. 2005) observe that earlier

analyzers based on monotonicity constraints (Lindenstrauss and Sagiv 1997; Codish

and Taboch 1999; Lindenstrauss et al. 2004) apply a termination test which is sound

and complete for SCT, but incomplete for monotonicity constraints, even if one does

static int a(int x, int y){

if (x>y){
int x1=x-1; int y1=y+1;

if (x1 >=y1)
return a(x1,y1);

else return y;

} else {
int x1=x+1; int y1=y-1;

if (x1 <=y1)
return a(x1,y1);

else return x;
}

}

not change the underlying model, namely that

“data” are from an unspecified well-founded do-

main. They also point out that monotonicity con-

straints can imply termination under a different

assumption—that the data are integers. Not be-

ing well-founded, integer data cannot be handled

by SCT. As an example, consider the Java program

on the right which computes the average of x and

y. The loops in this program can be abstracted to

the following monotonicity-constraint transition rules:

(1) a(x, y) :– x > y, x > x′, y′ > y, x′ ≥ y′; a(x′, y′)

(2) a(x, y) :– y ≥ x, x′ > x, y > y′, y′ ≥ x′; a(x′, y′)

To prove termination of the Java program it is sufficient to focus on the corre-

sponding abstraction. Note that termination of this program cannot be proved using

SCT, not only because SCT disallows constraints between source variables (such

as x>y), but also because it computes with integers rather than natural numbers.

To see how the transition constraints imply termination, observe that if (1) is

repeatedly taken, then the value of y grows; constraint x > y (with the fact that x

descends) implies that this cannot go on forever. In (2), the situation is reversed:

y descends and is lower-bounded by x. In addition, constraint y′ ≥ x′ of rule (2)

implies that, once this rule is taken, there can be no more applications of (1).

Therefore any (hypothetical) infinite computation would eventually enter a loop of

(1)s or a loop of (2)s; possibilities which we have just ruled out. In this paper, we

show how to obtain such termination proofs automatically using SAT solving.

Although MCS and SCT are abstractions where termination is decidable, they

have a drawback: the decision problems are PSPACE complete and a certificate for

http://www2.mta.ac.il/~amirben/sct.html

SAT-Based Termination Using Monotonicity Constraints 3

termination under these abstractions can be of prohibitive complexity (not “poly-

nomially computable” (Ben-Amram 2009)). Typical implementations based on the

SCT abstraction apply a closure operation on transition rules which is exponential

both in time and in space. (Ben-Amram and Codish 2008) addressed this problem

for SCT, identifying an NP complete subclass of SCT, called SCNP, which yields

polynomial-size certificates. Moreover, (Ben-Amram and Codish 2008) automated

SCNP using a SAT solver. Experiments indicated that, in practice, this method

had good performance and power when compared to a complete SCT decision pro-

cedure, and had the additional merit of producing certificates.

In this paper we tackle the similar problem to prove termination of monotonicity-

constraint systems in the integer domain. As noted above, the integer setting is more

complicated than the well-founded setting. Termination is often proved by looking

at differences of certain program values (which should be decreasing and lower-

bounded). One could simulate such reasoning in SCT by creating fresh variables to

track the non-negative differences of pairs of original variables. However this loses

precision and may square the number of variables, which is an exponent in the com-

plexity of most SCT algorithms. Instead, we use an idea from (Ben-Amram and

Codish 2008) which consists of mapping program states into multisets of argument

values. The adaption of this method to integer data is non-trivial. Our new solution

uses the following ideas: (1) We associate two sets with each program point and

define how to “subtract” them so that the difference can be used for ranking (gen-

eralizing the difference of two integers). This avoids the quadratic growth in the

exponent of the complexity, since we are only working with the original variables

and relations, and is also more expressive. (2) We introduce a concept of “ranking

functions” which is less strict than typically used but still suffices for termination. It

allows the co-domain of the function to be a non-well-founded set that has a well-

founded subset. This gives an additional edge over the näıve reduction to SCT,

which can only make use of differences which are definitely non-negative.

After presenting preliminaries in Sect. 2, Sect. 3 introduces ranking structures,

which are termination witnesses. In Sect. 4 we show that such a witness can be

verified in polynomial time, hence the resulting subclass of terminating MCSs lies

in NP. Consequently, we call it MCNP. In Sect. 5 we devise an algorithm that

uses a SAT solver as a back-end to solve the resulting search problems. Sect. 6

describes an empirical evaluation using a prototypical implementation as the back-

end for termination analysis of Java Bytecode (JBC). Results indicate a good trade-

off between precision and cost of analysis. All proofs and further details of the

evaluation can be found in the appendices.

Related work. Termination analysis is a vast field and we focus here on the most

closely related work. On termination analyzers for JBC, we mention COSTA (Albert

et al. 2008), Julia (Spoto et al. 2010), and AProVE (Brockschmidt et al. 2010; Otto

et al. 2010). Both COSTA and Julia abstract programs into a CLP form, as in this

work; but use a richer constraint language that makes termination of the abstract

program undecidable. On extending SCT to the integer domain: (Avery 2006) uses

constraints of the form x>y′, x≥y′, x<y′, x≤y′ along with polyhedral state invari-

ants (similar constraints as those used by COSTA and Julia) to find lower-bounded

4 M. Codish et al.

combinations of the variables. (Manolios and Vroon 2006) uses SCT constraints on

pseudo-variables that represent “measures” invented by the system. This allows it

to handle integers by taking, for example, the differences of two variables as a mea-

sure. (Dershowitz et al. 2001; Serebrenik and De Schreye 2004) prove termination of

logic programs that depend on numerical constraints by inferring “level mappings”

based on constraints selected from the source program; so, a constraint like x > y

can trigger the use of x− y as a level mapping. There are numerous applications of

SAT for deciding termination problems for all kinds of programs (e.g., one of the

first such papers is (Codish et al. 2006)).

2 Monotonicity-Constraint Systems and Their Termination

Our method is programming-language independent. It works on an abstraction of

the program provided by a front-end. An abstract program is a transition system

with states expressed in terms of a finite number of variables (argument positions).

Definition 1 (constraint transition system)

A constraint transition system is an abstract program, represented by a directed

multigraph called a control-flow graph (CFG). The vertices are called program points

and they are associated with fixed numbers (arity) of argument positions. We write

p/n to specify the arity of vertex p. A program state is an association of a value

from the value domain to each argument position of a program point p, denoted

p(x1, . . . , xn) and abbreviated p(x̄). The set of all states is denoted S t. The arcs

of the CFG are associated with transition rules, specifying relations on program

states, which we write as p(x̄) :– π; q(ȳ). The transition predicate π is a formula in

the constraint language of the abstraction.

Note that a state corresponds to a ground atom: argument positions are associ-

ated with specific values. In a transition rule, positions are associated with variables

that can only be constrained through π. Thus in the notation p(x̄), x̄ may represent

ground values or variables, according to context. The constraint language in our

work is that of monotonicity constraints.

Definition 2 (monotonicity constraint)

A monotonicity constraint (MC) π on V = x̄ ∪ ȳ is a conjunction of constraints

x ⊲ y where x, y ∈ V , and ⊲ ∈ {>,≥}. We write π |= x ⊲ y whenever x ⊲ y

is a consequence of π (in the theory of total orders). This consequence relation is

easily computed, e.g., by a graph algorithm. A transition rule p(x̄) :– π; q(ȳ), where

π is a MC, is also known as a monotonicity-constraint transition rule. An integer

monotonicity-constraint transition system (MCS)1 is a constraint transition system

where the value domain is Z and transition predicates are monotonicity constraints.

It is useful to represent a MC as a directed graph (often denoted by the letter g),

with vertices x̄∪ ȳ, and two types of edges (x, y): weak and strict. If π |= x > y then

there is a strict edge from x to y and if π |= x ≥ y (but not x > y) then the edge is

1 In this work only the integer domain is of interest, hence “integer” will be omitted.

SAT-Based Termination Using Monotonicity Constraints 5

weak. Note that there are two kinds of graphs, those representing transition rules

and the CFG. We often identify an abstract program with its set G of transition

rules, the CFG being implicitly specified.

Definition 3 (run, termination)

Let G be a transition system. A run of G is a sequence p0(x̄0)
π0→ p1(x̄1)

π1→ p2(x̄2) . . .

of states labeled by constraints such that each labeled pair of states, pi(x̄i)
πi→

pi+1(x̄i+1), corresponds to a transition rule pi(x̄) :– πi; pi+1(ȳ) from G (identical

except that variables x̄ and ȳ are replaced by values x̄i and x̄i+1) and such that πi
is satisfied. A transition system terminates if it has no infinite run.

Example 4

This example presents a MCS in textual form as well as graphical form. This system

is terminating, and in the following sections we shall illustrate how our method

proves it. In the graphs, solid arrows stand for strict inequalities and dotted arrows

stand for weak inequalities.

g1 = p(x1, x2, x3) :– y1 > x1, y2 ≥ x1, x2 ≥ y2, x2 ≥ y3, x2 ≥ x1; p(y1, y2, y3)
g2 = p(x1, x2, x3) :– y1 ≥ x1, y1 > x2, y2 > x2, x3 ≥ y2, x3 ≥ y3, x3 > x2; p(y1, y2, y3)
g3 = p(x1, x2, x3) :– y1 > x1, x2 ≥ y2; q(y1, y2)
g4 = q(x1, x2) :– y1 ≥ x1, x2 ≥ y2, x2 ≥ y3, x2 ≥ x1; p(y1, y2, y3)

p :

p :

x1 x2oo

����

x3

y1

OO

y2

^^

y3

p :

p :

x1 x2 x3oo

�� ��
y1

OO @@
�

�
�

�
�

y2

OO

y3

p :

q :

x1 x2

��

x3

y1

OO

y2

q :

p :

x1 x2oo

����
y1

OO

y2 y3

3 Ranking Structures for Monotonicity-Constraint Systems

This section describes ranking structures, a concept that we introduce for proving

termination of MCSs. Sect. 3.1 presents the necessary notions in general form. Then,

Sect. 3.2 specializes them to the form we use for MCNP.

3.1 Ranking structures

Recall that % is a quasi-order if it is transitive and reflexive; its strict part x ≻ y is

the relation (x % y)∧ (y 6% x); the quasi-order is well-founded if there is no infinite

chain with ≻. A set is well-founded if it has a tacitly-understood well-founded order.

A ranking function maps program states into a well-founded set, such that every

transition decreases the function’s value. As shown in (Ben-Amram 2011), for every

terminating MCS there exists a corresponding ranking function. However, these are

of exponential size in the worst case. Since our aim is NP complexity, we cannot use

that construction, but instead restrict ourselves to polynomially sized termination

witnesses. These witnesses, called ranking structures, are more flexible than ranking

functions, and suffice for most practical termination proofs.

Definition 5 (anchor, intermittent ranking function)

Let G be a MCS with state space St. Let (D,%) be a quasi-order and D+ a well-

founded subset of D. Consider a function Φ : St → D. We say that g ∈ G is

a Φ-anchor for G (or that g is anchored by Φ for G) if for every run p0(x̄0)
π0→

6 M. Codish et al.

p1(x̄1)
π1→ . . .

πk−1
→ pk(x̄k)

πk→ pk+1(x̄k+1) where both p0(x̄0)
π0→ p1(x̄1) and pk(x̄k)

πk→

pk+1(x̄k+1) correspond to the transition rule g, we have Φ(pi(x̄i)) % Φ(pi+1(x̄i+1))

for all 0 ≤ i ≤ k, where at least one of these inequalities is strict; and Φ(pi(x̄i)) ∈ D+

for some 0 ≤ i ≤ k. A function Φ which satisfies the above conditions is called an

intermittent ranking function (IRF).2

Example 6

Consider the transition rules from Ex. 4. Let G = {g1, g2} and let Φ1(p(x̄)) =

max(x2, x3)− x1. In any run built with g1 and g2, the value of Φ1 is non-negative

at least in every state followed by a transition by g1. Moreover, a transition by g1
decreases the value strictly and a transition by g2 decreases it weakly. Hence, g1 is

anchored by Φ1 for G (in Sect. 3.2, we come back to this example and show how Φ1

fits the patterns of termination proofs that our method is designed to discover).

Definition 7 (ranking structure)

Consider G and D as in Def. 5. Let Φ1, . . . ,Φm : St → D. Let G1 consist of all

transition rules g ∈ G where Φ1 anchors g for G. For 2 ≤ i ≤ m, let Gi consist of all

transition rules g ∈ G \ (G1 ∪ . . .∪Gi−1) where Φi anchors g in G \ (G1 ∪ . . .∪Gi−1).

We say that 〈Φ1, . . . ,Φm〉 is a ranking structure for G if G1 ∪ . . . ∪ Gm = G.

Note that by the above definition, for every g ∈ G there is a (unique) Gi with g ∈ Gi.

We denote this index i as i(g) (i.e., g ∈ Gi(g) for all g ∈ G).

Example 8

For the program {g1, g2} of Ex. 4, a ranking structure is 〈Φ1,Φ2〉 with Φ1 as in Ex. 6

and Φ2(p(x̄)) = x3 − x2. Here, we have i(g1) = 1 and i(g2) = 2. Later, in Ex. 18

and 27 we will extend the ranking structure to the whole program {g1, g2, g3, g4}.

The concept of ranking structures generalizes that of lexicographic global rank-

ing functions used, e.g., in (Ben-Amram and Codish 2008; Alias et al. 2010). A

lexicographic ranking function is a ranking structure, however, the converse is not

always true, since the function Φ does not necessarily decrease on a transition rule

which it anchors, and because Φ may assume values out of D+ in certain states.

Theorem 9

If there is a ranking structure for G, then G terminates.

Definition 10

A ranking structure 〈Φ1,Φ2, . . . ,Φm〉 for G is irredundant if for all j ≤ m, there is

a transition g ∈ G such that i(g) = j.

It follows easily from the definitions that if there is a ranking structure for G, there

is an irredundant one, of length at most |G|.

2 The term “intermittent ranking function” is inspired by (Manna and Waldinger 1978).

SAT-Based Termination Using Monotonicity Constraints 7

3.2 Multiset Orders and Level Mappings

The building blocks for our construction are four quasi-orders on multisets of in-

tegers, and a notion of level mappings, which map program states into pairs of

multisets, whose difference (not set-theoretic difference; see Def. 15 below) will

be used to rank the states.3 The difference will be itself a multiset, and we now

elaborate on the relations that we use to order such multisets.

Definition 11 (multiset types)

Let ℘n(Z) denote the set of multisets of integers of at most n elements, where n is

fixed by context.4 The µ-ordered multiset type, for µ ∈ {max,min,ms, dms }, is

the quasi-ordered set (℘n(Z),%
µ) where:

1. (max order) S %max T holds iff max(S) ≥ max(T), or T is empty; S ≻max T

holds iff max(S) > max(T), or T is empty while S is not.

2. (min order) S %min T holds iff min(S) ≥ min(T), or S is empty; S ≻min T

holds iff min(S) > min(T), or S is empty while T is not.

3. (multiset order (Dershowitz and Manna 1979)) S ≻ms T holds iff T is ob-

tained by replacing a non-empty U ⊆ S by a (possibly empty) multiset V

such that U ≻max V ; the weak relation S %ms T holds iff S ≻ms T or S = T .

4. (dual multiset order (Ben-Amram and Lee 2007)) S ≻dms T holds iff T is

obtained by replacing a sub-multiset U ⊆ S by a non-empty multiset V with

U ≻min V ; the weak relation S %dms T holds iff S ≻dms T or S = T .

Example 12

For S = {10, 8, 5}, T = {9, 5}: S ≻max T , T %min S, S ≻ms T , and T ≻dms S.

Definition 13 (well-founded subset of multiset types)

For µ ∈ {max,min,ms, dms }, we define (℘n(Z),%
µ)+ as follows: For min (respec-

tively max) order, the subset consists of the multisets whose minimum (resp. max-

imum) is non-negative. For ms and dms orders, the subset consists of the multisets

all of whose elements are non-negative.

Lemma 14

For all µ ∈ {max,min,ms, dms}, (℘n(Z),%
µ) is a total quasi-order, with ≻µ its

strict part; and (℘n(Z),%
µ)+ is well-founded.

For MCs over the integers, it is necessary to consider differences: in the simplest

case, we have a “low variable” x that is non-descending and a “high variable” y that

is non-ascending, so y−x is non-ascending (and will decrease if x or y changes). If we

also have a constraint like y ≥ x, to bound the difference from below, we can use this

3 A reader familiar with previous works using this term should note that here, a level mapping
is not in itself some kind of ranking function.

4 For monotonicity-constraint systems, n is the maximum arity of program points.

8 M. Codish et al.

x yoo

��
x′

OO

y′

for ranking a loop (we refer to this situation as “the Π”—due to the

diagram on the right). In the more general case, we consider sets of

variables. We will search for a similar Π situation involving a “low

set” and a “high set”. We next define how to form a difference of

two sets so that one can follow the same strategy of “diminishing difference”.

Definition 15 (multiset difference)

Let L,H be non-empty multisets with types µL, µH respectively. Their difference

H − L is defined in the following way, depending on the types (there are 6 cases):

1. For µL ∈ {max,min}, H −L = {h− µL(L) | h ∈ H} and has the type of H .

(Here, µL(L) signifies min(L) or max(L) depending on the value of µL).

2. For µL ∈ {ms, dms} and µH ∈ {min,max}, H − L = {µH(H) − ℓ | ℓ ∈ L}

and has type µL (where ms = dms and dms = ms).

For L and H such that H − L is defined, we say that the types of L and H are

compatible. We write H G L if the difference belongs to the well-founded subset.

Note that G relates multisets of possibly different types and is not an order re-

lation. Termination proofs do not require to define the difference of multisets with

types in {ms, dms}. To see why, observe that in “the Π”, only one multiset must

change strictly, and the non-strict relations %ms, %dms are contained in %max,

%min, respectively. Note also that H G L is equivalent, in all relevant cases, to

µ1(H) ≥ µ2(L) with µ1, µ2 ∈ {min,max}. The intuition into why multiset differ-

ence is defined as above is rooted in the following lemma.

Lemma 16

Let L,H be two multisets of compatible types µL, µH , and let µD be the type of

H − L. Let L′, H ′ be of the same types as L,H respectively. Then

H %
µH H

′ ∧ L -
µL L

′ =⇒ H − L %
µD H

′ − L
′;

H ≻µH H
′ ∧ L -

µL L
′ =⇒ H − L ≻µD H

′ − L
′;

H %
µH H

′ ∧ L ≺µL L
′ =⇒ H − L ≻µD H

′ − L
′
.

Level mappings are functions that facilitate the construction of ranking structures.

Three types of level mappings are defined in (Ben-Amram and Codish 2008): nu-

meric, plain, and tagged. In this paper we focus on “plain” and “tagged” level

mappings and we adapt them for multisets of integers. Numeric level mappings

have become redundant in this paper due to the passage from ranking functions to

ranking structures. We first introduce the extension for plain level mappings.

Definition 17 (bi-multiset level mapping, or “level mapping” for short)

Let G be a MCS. A bi-multiset level mapping, fµL,µH
maps each program state

p(x̄) to a pair of (possibly intersecting) multisets plowf (x̄) = { u1, . . . , ul } ⊆ x̄

and phighf (x̄) = { v1, . . . , vk } ⊆ x̄ with types indicated respectively by µL, µH ∈

{max,min,ms, dms }. Only compatible pairs µL, µH are admitted. The selection

of argument positions only depends on the program point p.

SAT-Based Termination Using Monotonicity Constraints 9

Example 18

The following are the level mappings used (in Ex. 27) to prove termination of the

program of Ex. 4. Here, each program point p is mapped to 〈plowf (x̄), phighf (x̄)〉.

f1
min,max(p(x̄)) = 〈{ x1 } , { x2, x3 }〉

f1
min,max(q(x̄)) = 〈{ x1 } , { x2 }〉

f2
min,max(p(x̄)) = 〈{ x2 } , { x3 }〉

f2
min,max(q(x̄)) = 〈{ } , { }〉

We now turn to tagged level mappings. Assume the context of Def. 17 and let

M denote the sum of the arities of all program points. A tagged bi-multiset level

mapping is just like a bi-multiset level mapping, except that set elements are pairs

of the form (x, t) where x is from x̄ and t < M is a natural constant, called a tag.

We view such a pair as representing the integer value Mx + t (recall that x is an

integer). This transforms tagged multisets into multisets of integers, so Defs. 15,

17, and the consequent definitions and results can be used without change.

Tags “prioritize” certain argument positions and can usefully turn weak inequal-

ities into strict ones. For example, consider a transition rule p(x̄) :– x1 > y1, x1 ≥

y2, . . . ; p(ȳ). The tagged set {(x1, 1), (x2, 0)} is strictly greater (in ms order as well

as in max order) than {(y1, 1), (y2, 0)} (because π |= (x1, 1) > (y2, 0)). The plain

sets {x1, x2} and {y1, y2} do not satisfy these relations. Thus tagging may increase

the chance of finding a termination proof. We do not have any fixed rule for tagging;

our SAT-based procedure will find a useful tagging if one exists. In the remainder

we write “level mapping” to indicate a, possibly tagged, bi-multiset level mapping.

Level mappings are applied in termination proofs to express the diminishing dif-

ference of their low and high sets. To be useful, we also need to express a constraint

relating the high and low sets, providing, figuratively, the horizontal bar of “the

Π”. A transition rule that has such a constraint is called bounded.

Definition 19 (bounded)

Let G be a MCS, f a level mapping,5 and g ∈ G. A transition rule g = p(x̄) :– π; q(ȳ)

in G is called bounded w.r.t. f if π |= phighf G plowf .

Definition 20 (orienting transition rules)

Let f be a level mapping. (1) f orients transition rule g = p(x̄) :– π; q(ȳ) if π |=

phighf (x̄) % qhighf (ȳ) and π |= plowf (x̄) - qlowf (ȳ); (2) f orients g strictly if, in

addition, π |= phighf (x̄) ≻ qhighf (ȳ) or π |= plowf (x̄) ≺ qlowf (ȳ).

Example 21

We refer to Ex. 4 and the level mapping f1
min,max from Ex. 18. Function f1

min,max

orients all transition rules, where g1 and g3 are oriented strictly; g1 and g4 are

bounded w.r.t. f1
min,max (the reader may be able to verify this by observing the

constraints, however later we explain how our algorithm obtains this information).

5 We sometimes write f (for short) instead of fµL,µH
.

10 M. Codish et al.

Corollary 22 (of Def. 20 and Lemma 16)

Let f be a level mapping and define Φf (p(x̄)) = phighf (x̄) − plowf (x̄). If f orients

g = p(x̄) :– π; q(ȳ) , then π |= Φf (p(x̄)) % Φf (q(ȳ)); and if f orients g strictly, then

π |= Φf (p(x̄)) ≻ Φf (q(ȳ)).

The next theorem combines orientation and bounding to show how a level map-

ping induces anchors. Note that we refer to cycles in the CFG also as “cycles in G”,

as the CFG is implicit in G.

Theorem 23

Let G be a MCS and f a level mapping. Let g = p(x̄) :– π; q(ȳ) be such that every

cycle C including g satisfies these conditions: (1) all transitions in C are oriented

by f , and at least one of them strictly; (2) at least one transition in C is bounded

w.r.t. f . Then g is a Φf -anchor for G, where Φf (p(x̄)) = phighf (x̄)− plowf (x̄).

Definition 24 (MCNP anchors and ranking functions)

Let G be a MCS and f a level mapping. We say that g is a MCNP-anchor for G

w.r.t. f if f and g satisfy the conditions of Thm. 23. The function Φf is called a

MCNP (intermittent) ranking function (MCNP IRF).

Note that if g is not included in any cycle, then the definition is trivially satisfied

for any f . Indeed, such transition rules are removed by our algorithm without

searching for level mappings at all.

Example 25

The facts in Ex. 21 imply that g1, g3, and g4 are MCNP-anchors w.r.t. f1
min,max.

We remark that numerous termination proving techniques follow the pattern of,

repeatedly, identifying and removing anchors. However, typically, the function Φ

used for ranking is required to be strictly decreasing, and bounded, on the anchor

itself, which (at least implicitly) means that a lexicographic ranking function is

being constructed; see, e.g., (Colón and Sipma 2002). The anchor criterion expressed

in Thm. 23 (inspired by (Giesl et al. 2007, Thm. 8)) is more powerful. We note that

the difference is only important with non-well-founded domains. When the ranking

is only done with orders that are a priori well-founded, as for example in (Giesl et al.

2006; Hirokawa and Middeldorp 2005), considering the strictly-oriented transitions

as anchors is sufficient. In comparison to (Giesl et al. 2007), we note that they do

not use the concept of anchors, and propose an algorithm which can generate an

exponential number of level-mapping-finding subproblems (whereas ours generates,

in the worst case, as many problems as there are transition rules).

4 The MCNP Problem

In this section, we present necessary and sufficient conditions for orientability and

boundedness. Based on these, we conclude that proving termination with MCNP

IRFs is in NP. This also forms the basis for our SAT-based algorithm in Sect. 5.

SAT-Based Termination Using Monotonicity Constraints 11

Definition 26 (MCNP)

A system of monotonicity constraints is in MCNP if it has a ranking structure

which is a tuple of MCNP IRFs.

It follows from Thm. 9, that if a MCS is in MCNP, then it terminates.

Example 27

Consider again Ex. 4 and the level mappings from Ex. 18. Then, 〈Φf1 ,Φf2〉 is a

ranking structure for G. As already observed, g1, g3, and g4 are MCNP-anchors for

f1. Observe now that f2 is both strict and bounded on g2.

Ranking structures are constructed through iterative search for suitable level

mappings which prescribe pairs of (possibly tagged) multisets of arguments which

must satisfy relations of the form %µ, ≻µ, and G.

Let g = p(x̄) :– π; q(ȳ) and S, T be non-empty sets of (tagged) argument positions

of p or of q. We show how to check for each µ ∈ {max,min,ms, dms } if π |= S %µ

T . Viewing g as a graph (as in Ex. 4), let gt denote the transpose of g (obtained by

inverting the arcs). While tagged level mappings can be represented as “ordinary”

bi-multiset level mappings (as indicated in Sect. 3.2), for their SAT encoding, it is

advantageous to represent the orders on tagged pairs explicitly:

π |= (x, i) > (y, j) ⇐⇒ (π |= x > y) ∨ ((π |= x ≥ y) ∧ i > j)

π |= (x, i) ≥ (y, j) ⇐⇒ (π |= x > y) ∨ ((π |= x ≥ y) ∧ i ≥ j)
(1)

Below, x, y either both represent arguments, or both represent tagged arguments,

with relations x > y, x ≥ y interpreted accordingly.

1. max order: (S %max T) every y ∈ T must be “covered” by an x ∈ S such

that π |= x ≥ y. Strict descent requires S 6= ∅ and x > y.

2. min order: (S %min T) same conditions but on gt (now T covers S).

3. multiset order: (S %ms T) every y ∈ T must be “covered” by an x ∈ S such

that π |= x ≥ y. Furthermore each x ∈ S either covers each related y strictly

(x > y) or covers at most a single y. Descent is strict if there is some x that

participates in strict relations.

4. dual multiset order: (S %dms T) same conditions but on gt (now T covers S).

We also show how to decide if the relation H G L holds: For µL, µH ∈ {max,min}

and µL = µH , H G L holds iff µH(H) ≥ µL(L).
6 For µL = min and µH ∈

{ms, dms}, H G L holds iff H %min L. For µL ∈ {ms, dms} and µH = max,

H G L holds iff H %max L. For µL = max and µH ∈ {ms, dms}, H G L holds

if min(H) ≥ max(L). For µL ∈ {ms, dms} and µH = min, H G L holds if

min(H) ≥ max(L).

Since the above conditions allow for verification of a proposed MCNP ranking

structure in polynomial time, we obtain the following theorem.

6 Note that checking this amounts to checking for %µ in the case µL = µH = µ; for the other
cases, max(H) ≥ min(L) holds if there is at least one arc from an H vertex to an L vertex;
min(H) ≥ max(L) holds if there is an arc from every H vertex to every L vertex.

12 M. Codish et al.

Theorem 28

MCNP is in NP.

5 A SAT-based MCNP Algorithm

Given that MCNP is in NP, we provide a reduction (an encoding) to SAT which

enables us to find termination proofs using an off-the-shelf SAT solver. We invoke a

SAT solver iteratively to generate level-mappings and construct a ranking structure

〈Φ1,Φ2, . . . ,Φm〉. Our main algorithm is presented in Sect. 5.1. Sect. 5.2 discusses

how to find appropriate level mappings and Sect. 5.3 introduces the SAT encoding.

5.1 Main algorithm

Given a MCS G, the idea is to iterate as follows: while G is not empty, find a level

mapping f inducing one or more anchors for G. Remove the anchors, and repeat.

The instruction “find a level mapping” is performed using a SAT encoding (for each

of the compatible pairs of multiset orders). To improve performance, the algorithm

follows the SCC (strongly connected components) decomposition of (the CFG of)

G. This leads to smaller subproblems for the SAT solver and is justified by the

observation that inter-component transitions are trivially anchors (not included in

any cycle). In the following let scc(G) denote the set of non-vacant SCCs of G (that

is, SCCs which are not a vertex without any arcs).

Main Algorithm.

input: G (a MCS)

output: ρ = 〈f1, f2, . . .〉 (tuple of level mappings such that 〈Φf1 ,Φf2 , . . .〉

is a ranking structure for G). The algorithm aborts if G is not in MCNP.

1. ρ = 〈 〉 (empty queue); S = scc(G) (stack with non-vacant SCCs of G);

2. while (S 6= ∅)
• pop C from S (a MCS) and find (using SAT) a level mapping

f to anchor some transition rules in C (if none, abort: C /∈ MCNP)

• extend f to program points p not in C by f(p(x̄)) = 〈∅, ∅〉

• append f to ρ and remove from C the Φf -anchors that were found

• push elements of scc(C) to S
3. return ρ

Theorem 29

The main algorithm succeeds if and only if G is in MCNP.

5.2 Finding a level mapping

The main step in the algorithm is to find a level mapping which anchors some

transition rules of a strongly-connected MCS. Let G be strongly connected and f a

level mapping which orients all transition rules in G, strictly orients the transition

rules from a non-empty set S ⊆ G, and where B ⊆ G (non-empty) are bounded.

SAT-Based Termination Using Monotonicity Constraints 13

Following Thm. 23, a transition rule g is an anchor if every cycle in G containing

g has an element from S and an element from B. We need to check all cycles in G

(possibly exponentially many). We describe a way of doing so by numbering nodes

which lends itself well to a SAT-based solution.

Definition 30 (node numbering)

A node numbering is a function num from n program points to { 1, . . . , n }. For

g = p(x̄) :– π; q(ȳ), we denote ∆num(g) = num(q)− num(p). For a set H ⊆ G, we

say that num agrees with H if for all g ∈ G: ∆num(g) > 0 ⇒ g ∈ H.

Now for g ∈ G, checking that every cycle of G containing g also contains an

element of S, is reduced to finding a node numbering numS with ∆numS(g) 6= 0

which agrees with S. Then, any cycle containing g must contain also an edge g′

with ∆numS(g
′) > 0. But this implies that g′ ∈ S because numS agrees with S.

Lemma 31

Let G, f , S, and B be as above. Then, g ∈ G is a MCNP-anchor for G w.r.t f if and

only if: (1) g ∈ S ∩B; or (2) there are node numberings numS and numB agreeing

with S and B respectively, such that ∆numS(g) 6= 0 and ∆numB(g) 6= 0.

Example 32

We now describe the application of the Main Algorithm to Ex. 4. Initially, there

is a single SCC, C = G. Using SAT solving (as described in Sect. 5.3) we find

that level mapping f1 of Ex. 18 orients all transitions, strictly orients S = {g1, g3}

and is bounded on B = {g1, g4}. Hence, by choosing the numbering numB(p) = 2,

numB(q) = 1, numS(p) = 1, numS(q) = 2, we obtain that g1, g3 and g4 are anchors.

Note that the problem encoded to SAT represents the choice of the level mapping

and node numbering at once. Now, ρ is set to 〈f1〉, and the anchors are removed

from C, leaving a SCC consisting of point p and transition rule g2. In a second

iteration, level mapping f2 of Ex. 18 is found and appended to ρ. No SCC remains,

and the algorithm terminates.

Note that our algorithm is non-deterministic (due to leaving some decisions to the

SAT solver). In this example, the first iteration could come up with the numbering

numB(p) = numB(q) = 1, which would cause only g1 to be recognized as an

anchor. Thus, another iteration would be necessary, which would find a numbering

according to which g3 and g4 are anchors, since this time there is no other option.

5.3 A SAT encoding

Let G be a strongly connected MCS (assume the context of the Main Algorithm

of Sect. 5.1). For a compatible pair µL, µH we construct a propositional formula

ΦG
µL,µH

which is satisfiable iff there exists a level mapping fµL,µH
that anchors some

transition rules in G. We focus on tagged level mappings (omitting tags is the same

as assigning them all the same value).

Each program point p and argument position i is associated with an integer

variable tagip. Integer variables are encoded through their bit representation. In the

14 M. Codish et al.

following, we write, for example, ||n > m|| to indicate that the relation n > m on in-

teger variables is encoded to a propositional formula in CNF. Let g = p(x̄) :– π; q(ȳ)

and consider each a, b ∈ x̄ ∪ ȳ. At the core of the encoding, we use a formula ϕg
rel

which introduces a propositional variable ega>b to specify a corresponding “tagged

edge”, ega>b ↔ π |= (a, tag1) > (b, tag2), as prescribed in Eq. (1). Here, tag1 and

tag2 are the integer tags associated with the program points and argument positions

of a and b (in g). We proceed likewise for the propositional variable ega≥b.

Example 33

Consider g3 = p(x1, x2, x3) :– y1 > x1, x2 ≥ y2; q(y1, y2) from Ex. 4. The formula

ϕg3
rel contains (among others) the following conjuncts. From (y1 > x1), (e

g3
y1>x1

↔

true) and (eg3y1≥x1
↔ true); from (x2 ≥ y2), (eg3x2>y2

↔ ||tag2p > tag2q ||) and

(eg3x2≥y2
↔ ||tag2p ≥ tag2q ||). Observe also, eg3x1>y2

↔ false and eg3x1≥y2
↔ false.

We introduce the following additional propositional variables:

• weakg ⇔ g oriented weakly by fµL,µH

• strictg ⇔ g oriented strictly by fµL,µH

• boundg ⇔ phighf (x̄) G plowf (x̄)

• anchorg ⇔ g is an anchor w.r.t. f in G

• weakglow ⇔ qlowf (ȳ) %µL plowf (x̄)

• strictglow ⇔ qlowf (ȳ) ≻µL plowf (x̄)

• weakghigh⇔phighf (x̄) %µH qhighf (ȳ)

• strictghigh⇔phighf (x̄) ≻µH qhighf (ȳ)

and, for every program point r, two integer variables numr
S and numr

B to represent

the node numberings from Def. 30.

Our encoding takes the following form:

ΦG
µL,µH

=





∧

g∈G

weakg



 ∧





∨

g∈G

anchorg



 ∧

(

ϕG
rel ∧ ψ

G ∧ ψG
pos ∧ ψ

G
low∧

∧ ψG
high ∧ ψG

bound ∧ ψG
ne

)

The first two conjuncts specify that fµL,µH
is a level mapping which orients G, the

third is specified as ϕG
rel =

∧

g∈G ϕ
g
rel, and the rest are explained below:

Proposition ψG imposes the intended meanings on weakg, strictg and anchorg (see

Def. 20 and Lemma 31).

ψG =
∧

g= p(x̄):– π; q(ȳ)







weak
g ↔ (weakglow ∧ weakghigh) ∧

strict
g ↔ (weakg ∧ (strictglow ∨ strictghigh)) ∧

anchor
g ↔ ((p 6= q) ∧ (||nump

S 6= num
q
S || ∧ ||nump

B 6= num
q
B ||)) ∨

((p = q) ∧ strictg ∧ boundg)







Proposition ψG
pos enforces that the node numberings numS and numB agree with

sets S and B, cf. Lemma 31:

ψG
pos =

∧

g= p(x̄):– π; q(ȳ)

(

(||nump
S < num

q
S|| → strict

g) ∧
(||nump

B < num
q
B || → boundg)

)

Proposition ψG
high imposes that weakghigh and strictghigh are true exactly when

phighf (x̄) %µH qhighf (ȳ) and phighf (x̄) ≻µH qhighf (ȳ), respectively. We focus on the

case when µH = max, the other cases are similar and omitted for lack of space.

SAT-Based Termination Using Monotonicity Constraints 15

The encoding of proposition ψG
low is similar (and also omitted for lack of space).

ψG
high =

∧

g= p(x̄):– π; q(ȳ)













weak
g
high ↔

∧

1≤j≤m



q
high
j →

∨

1≤i≤n

(phighi ∧ egxi≥yj
)



∧

strict
g
high ↔

∧

1≤j≤m



q
high
j →

∨

1≤i≤n

(phighi ∧ egxi>yj
)



 ∧
∨

1≤i≤n

p
high
i













The propositional variables plowi , phighi , qlowj , and qhighj (1 ≤ i ≤ n, 1 ≤ j ≤ m)

indicate the argument positions of p/n and q/m selected by the level mapping

fµL,µH
for the low and high sets, respectively. The first subformula specifies that

a transition rule is weakly oriented by the max order if for each j where qhighj is

selected (i.e., the j-th argument of q is in qhigh), at least one of the selected positions

phighi has to “cover” qhighj with a weak constraint xi ≥ yj . The second subformula

is similar for the case of strict orientation with the additional requirement that at

least one phighi should be selected.

Proposition ψG
bound constrains boundg to be true iff phighf G plowf is satisfied by g.

As observed in Sect. 4, this test boils down to four cases. We illustrate the encoding

for the case min(phighf (x̄)) ≥ max(plowf (x̄)):

ψG
bound =

∧

g= p(x̄):– π; q(ȳ)



boundg ↔
∧

1≤i≤n,1≤j≤n

(

(phighi ∧ plowj) → egxi≥xj

)





Proposition ψG
ne constrains the level mapping so that for each program point p, the

sets plow and phigh are not empty. Let P denote the set of program points in G.

ψ
G
ne =

∧

p∈P









∨

1≤i≤n

p
low
i



 ∧





∨

1≤i≤n

p
high
i









6 Implementation and Experiments

We implemented a termination analyzer based on our SAT encoding for MCNP

and tested it on three benchmark suites. Experiments were conducted running

the SAT4J (Le Berre and Parrain 2010) solver on an Intel Core i3 at 2.93 GHz

with 2 GB RAM. For further details on our experiments see Appendix B and

http://aprove.informatik.rwth-aachen.de/eval/MCNP.

Suite 1 consists of 81 MCSs obtained from various research papers on termination

and from abstracting textbook style C programs.7 MCNP proves 66 of them ter-

minating with an average runtime of 0.55s (maximal runtime is 5.15s). This suite

contains the 32 examples from the evaluation of (Fuhs et al. 2009). That paper

introduced integer term rewrite systems (ITRSs), where standard operations on in-

tegers are pre-defined, and showed how to use a rewriting-based termination prover

like AProVE for algorithms on integers. MCNP shows termination of 27 of these.

7 Using a translator developed by A. Ben-Shabtai and Z. Mann at Tel-Aviv Academic College.

http://aprove.informatik.rwth-aachen.de/eval/MCNP

16 M. Codish et al.

AProVE8 proves termination of these 27 and one more example. On the 32 examples

from (Fuhs et al. 2009), the average runtime of MCNP is 0.22s, whereas the average

runtime of AProVE is 5.3s for the examples with no timeout (AProVE times out

after 60s on 4 examples). This shows that MCNP is sufficiently powerful for rep-

resentative programs on integers and demonstrates the efficiency of our SAT-based

implementation. The comparison with AProVE on the examples from (Fuhs et al.

2009) indicates that MCNP has about the same precision and is significantly faster.

Suite 2 originates from the Java Bytecode (JBC) programs in the JBC and JBC

Recursive categories of the International Termination Competition 2010.9 165 MCS

instances were obtained by first applying the preprocessor of the termination ana-

lyzer COSTA (Albert et al. 2008) resulting in (binary clause) constraint logic pro-

grams with linear constraints (CLPQ). After minor processing, these are abstracted

to MCSs (applying SWI Prolog with its CLPQ library). MCNP provides a termi-

nation proof for 92 of these with an average runtime of 0.66s (maximal runtime

is 16.31s). In contrast, COSTA10 shows termination of 102 programs. However, it

encounters a (120 second) timeout on 5 instances. COSTA’s average runtime for the

examples with no timeout is 0.076s. From these experiments we see that although

MCNP is based on very simple ranking functions, it is able to provide many of the

proofs, and does not encounter timeouts. Moreover, there are 5 programs where

MCNP provides a proof and COSTA does not (4 due to timeouts).

Suite 3. Here, the Competition 2010 version of the termination analyzer AProVE

abstracts JBC programs from the (non-recursive) JBC category of the Termination

Competition 2010 to ITRSs. (This abstraction from (Brockschmidt et al. 2010; Otto

et al. 2010) only works for programs without recursion.) To further transform ITRSs

into MCSs, we apply an abstraction which maps terms to their size and replaces

non-linear arithmetic sub-expressions by fresh variables. This results in a CLPQ

representation which is further abstracted to MCSs as for Suite 2. For the resulting

127 instances, MCNP provides 63 termination proofs, 8 timeouts after 60s, and

an average runtime of 5.76s (we count timeouts as 60s). To compare, we apply

AProVE directly11 but fix the abstraction to be the same as in the preprocessor for

MCNP. This results in 73 termination proofs and 8 timeouts with an average time of

14.16s. There are 5 instances where MCNP provides a proof not found by AProVE.

Applying AProVE without fixing the abstraction gives 95 termination proofs, 19

timeouts, and an average time of 17.12s (there are still 3 instances where MCNP

provides a proof not found by AProVE). This shows that the additional proving

power in AProVE comes primarily from the search for the right abstraction. Once

fixing the abstraction, MCNP is of similar precision and much faster. Thus, it could

be fruitful to use a combination of tools where the MCNP-analyzer is tried first and

the rewrite-based analyzer is only applied for the remaining “hard” examples.

8 Using an Intel Core 2 Quad CPU Q9450 at 2.66 GHz with 8 GB RAM.
9 In this competition, AProVE, COSTA, and Julia competed against each other.
See http://www.termination-portal.org/wiki/Termination_Competition for details.

10 Experiments for COSTA were performed on an Intel Core i5 at 3.2 GHz with 3 GB RAM.
11 Using an Intel Xeon 5140 at 2.33 GHz with 16 GB RAM and imposing a time limit of 60s.

http://www.termination-portal.org/wiki/Termination_Competition

SAT-Based Termination Using Monotonicity Constraints 17

7 Conclusion

We introduced a new approach to prove termination of monotonicity-constraint

transition systems. The idea is to construct a ranking structure, of a novel kind,

extending previous work in this area. To verify whether a MCS has such a ranking

structure, we use an algorithm based on SAT solving. We implemented our algo-

rithm and evaluated it in extensive experiments. The results demonstrate the power

of our approach and show that its integration into termination analyzers for Java

Bytecode advances the state of the art of automated termination analysis.

Acknowledgment. We thank Samir Genaim for help with the benchmarking.

References

Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., and Zanardini, D.

2008. Termination analysis of Java Bytecode. In Proc. FMOODS ’08. LNCS 5051. 2–18.

Alias, C., Darte, A., Feautrier, P., and Gonnord, L. 2010. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart programs. In Proc.

SAS ’10. LNCS 6337. 117–133.

Avery, J. 2006. Size-change termination and bound analysis. In Proc. FLOPS ’06. LNCS
3945. 192–207.

Ben-Amram, A. M. 2009. A complexity tradeoff in ranking-function termination proofs.
Acta Informatica 46, 1, 57–72.

Ben-Amram, A. M. 2011. Monotonicity constraints for termination in the integer domain.
Accepted for publication in Logical Methods of Computer Science.

Ben-Amram, A. M. and Codish, M. 2008. A SAT-based approach to size-change ter-
mination with global ranking functions. In Proc. TACAS ’08. LNCS 4963. 218–232.

Ben-Amram, A. M. and Lee, C. S. 2007. Size-change analysis in polynomial time. ACM
Transactions on Programming Languages and Systems 29, 1.

Brockschmidt, M., Otto, C., von Essen, C., and Giesl, J. 2010. Termination graphs
for Java Bytecode. In Verification, Induction, Termination Analysis. LNAI 6463. 17–37.

Codish, M., Lagoon, V., and Stuckey, P. J. 2005. Testing for termination with
monotonicity constraints. In Proc. ICLP ’05. LNCS 3668. 326–340.

Codish, M., Lagoon, V., and Stuckey, P. J. 2006. Solving partial order constraints
for LPO termination. In Proc. RTA ’06. LNCS 4098. 4–18.

Codish, M. and Taboch, C. 1999. A semantic basis for termination analysis of logic
programs. Journal of Logic Programming 41, 1, 103–123.

Colón, M. and Sipma, H. 2002. Practical methods for proving program termination. In
Proc. CAV ’02. LNCS 2404. 442–454.

Dershowitz, N., Lindenstrauss, N., Sagiv, Y., and Serebrenik, A. 2001. A general
framework for automatic termination analysis of logic programs. Applicable Algebra in

Engineering, Communication and Computing 12, 1–2, 117–156.

Dershowitz, N. and Manna, Z. 1979. Proving termination with multiset orderings.
Communications of the ACM 22, 8, 465–476.

Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., and Falke, S. 2009. Proving
termination of integer term rewriting. In Proc. RTA ’09. LNCS 5595. 32–47.

Giesl, J., Thiemann, R., Schneider-Kamp, P., and Falke, S. 2006. Mechanizing and
improving dependency pairs. Journal of Automated Reasoning 37, 3, 155–203.

18 M. Codish et al.

Giesl, J., Thiemann, R., Swiderski, S., and Schneider-Kamp, P. 2007. Proving
termination by bounded increase. In Proc. CADE ’07. LNAI 4603. 443–459.

Hirokawa, N. and Middeldorp, A. 2005. Automating the dependency pair method.
Information and Computation 199, 1-2, 172–199.

Le Berre, D. and Parrain, A. 2010. The SAT4J library, release 2.2, system description.
Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64.

Lee, C. S., Jones, N. D., and Ben-Amram, A. M. 2001. The size-change principle for
program termination. In Proc. POPL ’01. ACM Press, 81–92.

Lindenstrauss, N. and Sagiv, Y. 1997. Automatic termination analysis of Prolog
programs. In Proc. ICLP ’97. MIT Press, 64–77.

Lindenstrauss, N., Sagiv, Y., and Serebrenik, A. 2004. Proving termination for logic
programs by the query-mapping pairs approach. In Program Development in Compu-

tational Logic: A Decade of Research Advances in Logic-Based Program Development.
LNCS 3049. 453–498.

Manna, Z. and Waldinger, R. 1978. Is ‘sometime’ sometimes better than ‘always’?
Communications of the ACM 21, 159–172.

Manolios, P. and Vroon, D. 2006. Termination analysis with calling context graphs.
In Proc. CAV ’06. LNCS 4144. 401–414.

Otto, C., Brockschmidt, M., von Essen, C., and Giesl, J. 2010. Automated ter-
mination analysis of Java Bytecode by term rewriting. In Proc. RTA ’10. LIPIcs 6.
259–276.

Serebrenik, A. and De Schreye, D. 2004. Inference of termination conditions for
numerical loops in Prolog. Theory and Practice of Logic Programming 4, 5-6, 719–751.

Spoto, F., Mesnard, F., and Payet, E. 2010. A termination analyser for Java Bytecode
based on path-length. ACM TOPLAS 32, 3.

SAT-Based Termination Using Monotonicity Constraints 19

Appendix A Proofs

Theorem 9

If there is a ranking structure for G, then G terminates.

Proof

Suppose that G has an infinite run s̃ = p0(x̄0)
π0→ p1(x̄1)

π1→ p2(x̄2) Let H be

the set of transition rules that are applied infinitely often in this run. Using the

notation of Def. 7, choose g ∈ H such that i(g) is minimal. Then g is a Φi(g)-anchor

for a subset of G containing H. Consider the infinite tail of s̃ that stays within H

and note that it includes infinitely many occurrences of g. Using Def. 5, it is not

hard to show that there is an infinite sequence i1 < i2 < i3 < · · · , such that for all

k > 0, Φi(g)(pik(x̄ik)) ∈ D+, and in addition, Φi(g)(pik(x̄ik)) ≻ Φi(g)(pik+1
(x̄ik+1

)).

This contradicts the well-foundedness of D+, thus we conclude that such an infinite

run cannot exist.

Lemma 14

For all µ ∈ {max,min,ms, dms}, (℘n(Z),%
µ) is a total quasi-order, with ≻µ its

strict part; and (℘n(Z),%
µ)+ is well-founded.

Proof

The claims are straightforward for themax andmin orders. For the multiset orders,

since our value domain (Z) is totally ordered, we will justify the claims by referring

to properties of the lexicographic order. Let S, T ∈ ℘n(Z). For the multiset order

(ms), let tup(S) be the tuple consisting of the elements of S in non-increasing order.

If S 6= T , then either one tuple is a prefix of another (then the larger multiset is

also greater under ≻ms), or there is a first position where the elements differ. If in

this first position the element of S is larger, it is easy to show that S ≻ms T . Thus,

%ms agrees with the lexicographic ordering on the tuples, which proves that it is a

total quasi-order (in fact, a total order).

Multisets in (℘n(Z),%
ms)+ map to tuples of non-negative integers; it is well-

known that the lexicographic order on tuples of non-negative integers is well-

founded.

For ≻dms we argue in the same way, using tuples in non-decreasing order.

Lemma 16

Let L,H be two multisets of compatible types µL, µH , and let µD be the type of

H − L. Let L′, H ′ be of the same types as L,H respectively. Then

H %µH H ′ ∧ L -µL L′ =⇒ H − L %µD H ′ − L′;

H ≻µH H ′ ∧ L -µL L′ =⇒ H − L ≻µD H ′ − L′;

H %µH H ′ ∧ L ≺µL L′ =⇒ H − L ≻µD H ′ − L′ .

In order to prove Lemma 16 we first need the following definition and lemma.

20 M. Codish et al.

Definition 17 (multiset negation)

Let S = { s1, s2, . . . , sn } be a multiset of integers. The negation of S, (−S), is

{ −s1,−s2, . . . ,−sn }.

Lemma 18

Let S, T be non-empty multisets.

1. If S %max T then (−T) %min (−S) and if S ≻max T then (−T) ≻min (−S).

2. If S %min T then (−T) %max (−S) and if S ≻min T then (−T) ≻max (−S).

3. If S %ms T then (−T) %dms (−S) and if S ≻ms T then (−T) ≻dms (−S).

4. If S %dms T then (−T) %ms (−S) and if S ≻dms T then (−T) ≻ms (−S).

Proof

We only prove (3), since (1) and (2) are trivial and (4) is similar to (3). S %ms

T ∧ S ⊁ms T holds iff S = T and in this case (−T) %dms (−S) by the definition.

Let S ≻ms T . We need to prove that (−T) ≻dms (−S).

Let C = S ∩ T , Srest = S \ C and Trest = T \ C. Now we can express (−S) and

(−T) in the following way: (−S) = (−C) ∪ (−Srest) and (−T) = (−C) ∪ (−Trest).

By the definition of ≻ms, Srest ≻
max Trest. So (−Trest) ≻

min (−Srest). According

to the definition of ≻dms we conclude that (−T) ≻dms (−S).

Next we prove Lemma 16.

Proof

The following properties are easy to prove:

(i) If the elements of two multisets S and T can be put in one-to-one correspondence

(si, ti) such that si ≥ ti in all pairs, then S %µ T for all µ. If for all pairs si > ti,

then S ≻µ T .

(ii) If H,H ′ are multisets and c ∈ Z, then shifting all elements of both sets by c

preserves the order relations among them.

Now we will prove the lemma for each of the cases.

1. µL = max: According to property (ii) we have

H %µH H ′ ⇒
{

h−max(L′)
∣

∣ h ∈ H
}

%µH
{

h′ −max(L′)
∣

∣ h′ ∈ H ′
}

That is, H − L′ %µH H ′ − L′. In the same way we can see that H ≻µH H ′ ⇒

H − L′ ≻µH H ′ − L′.

Since max(L′) ≥ max(L), according to property (i) we have H − L %µH H − L′

and if max(L′) > max(L) then H − L ≻µH H − L′.

By transitivity,

H − L %µH H − L′ ∧ H − L %µH H ′ − L′ ⇒ H − L %µH H ′ − L′

and if one of the orderings is strict then H − L ≻µH H ′ − L′.

2. µL = min: The proof is similar to (1).

SAT-Based Termination Using Monotonicity Constraints 21

3. µL = ms, µH = min: Given L -ms L′ and H %min H ′, according to Lemma 18

we have (−L) %dms (−L′) and (−H) -max (−H ′). According to part (1) of the

proof, we obtain (−L− (−H)) %dms (−L′ − (−H ′)).

Moreover, by Def. 15 (1), (−L− (−H)) =
{

(−ℓ)−max(−H)
∣

∣ (−ℓ) ∈ (−L)
}

=
{

min(H)− ℓ
∣

∣ ℓ ∈ L
}

= H−L by Def. 15 (2). Similarly (−L′−(−H ′)) = H ′−L′.

So H − L %dms H ′ − L′.

We can easily see that if L ≺ms L′ or H ≻min H ′ then H − L ≻dms H ′ − L′.

4. µL = ms, µH = max: The proof is similar to (3).

5. µL = dms, µH = min: The proof is similar to (3).

6. µL = dms, µH = min: The proof is similar to (3).

Theorem 23

Let G be a MCS and f a level mapping. Let g = p(x̄) :– π; q(ȳ) be such that every

cycle C including g satisfies these conditions: (1) all transitions in C are oriented

by f , and at least one of them strictly; (2) at least one transition in C is bounded

w.r.t. f . Then g is a Φf -anchor in G, where Φf (p(x̄)) = phighf (x̄)− plowf (x̄).

Proof

Consider a run p0(x̄0)
π0→ p1(x̄1)

π1→ . . .
πk−1
→ pk(x̄k)

πk→ pk+1(x̄k+1) where both

p0(x̄0)
π0→ p1(x̄1) and pk(x̄k)

πk→ pk+1(x̄k+1) correspond to the transition rule g.

By assumption (1) of the theorem, and Corollary 22, Φf (pi(x̄i)) % Φf (pi+1(x̄i+1))

for all 0 ≤ i ≤ k, and, moreover, at least one of these inequalities is strict. By

assumption (2), and Def. 19, we have Φf (pi(x̄i)) ∈ D+ for some 0 ≤ i ≤ k.

We conclude that g is a Φf -anchor for G.

Theorem 28

MCNP is in NP.

Proof

Let G be an MC system. If it is in MCNP, there is a ranking structure of polynomial

size (see Def. 10 and subsequent comment). The following evidence suffices for

verifying the ranking structure:

1. The list of level mappings, given explicitly: that is, for each program point,

the high and low sets are listed.

2. For each level mapping f i, the transition rules claimed to be oriented or

strictly oriented by f i and those that are claimed to be bounded with respect

to it; and additional information used to verify that these conditions hold.

The additional information mentioned last consists of the set of arcs, from the MC

graph representation, that proves the desired relation among multisets, according

to the observations given in Sect. 4. For example, to prove π |= S %max T , we

require a list of pairs (x, y) with x ∈ S and y ∈ T that satisfy π |= x ≥ y, and

include all y ∈ T .

This information has polynomial size and can be verified in polynomial time

by the following algorithm. First, locally, (strict) orientation and boundedness are

22 M. Codish et al.

verified with the aid of the supplied information. Secondly, a counter i is initialized

to 1. The Φfi anchors are found, according to Thm. 23, by a polynomial-time graph

algorithm (based on depth-first search). Then they are removed, i is incremented,

and the procedure is repeated. When the list is exhausted, G should be vacant;

otherwise, the verification fails.

Theorem 29

The main algorithm succeeds if and only if G satisfies MCNP.

Proof

If the algorithm succeeds, returning ρ = 〈f1, f2, . . .〉, then 〈Φf1 ,Φf2 , . . .〉 is a rank-

ing structure for G: this is immediate from the definition of a ranking structure,

provided the correctness of the sub-procedures that identify anchors.

In the other direction, we assume that 〈Φf1 ,Φf2 , . . .〉 is a ranking structure for

G, and prove that the algorithm succeeds.

Consider any iteration of the main loop, and let C be the SCC popped from the

stack. We claim that there exists an MCNP IRF for C: indeed, using the notation

of Def. 7, choose g ∈ C such that i(g) is minimal. Then Φfi(g) anchors g for a subset

of G that contains C. Our search procedure will find an MCNP IRF (though not

necessarily the same), and will remove one or more anchors. Thus, at the completion

of each iteration, a non-empty set of transition rules has been removed from C. The

contents of the stack are, therefore, a set of SCCs which are strictly reduced (with

respect to the number of arcs) in each iteration, which proves that the algorithm

terminates. It will not abort, as we have just argued that the search for a level

mapping and anchors must succeed.

Lemma 31

Let G, f , S, and B be as in Sect. 5.2. Then, g ∈ G is a MCNP-anchor for G w.r.t f

if and only if: (1) g ∈ S ∩ B; or (2) there are node numberings numS and numB

agreeing with S and B respectively, such that ∆numS(g) 6= 0 and ∆numB(g) 6= 0.

Proof

Let g = p(x̄) :– π; q(ȳ). If p = q, it is easy to see that g is an anchor w.r.t. f if and

only if g ∈ S ∩B. Case (2) is impossible if p = q. Next, let p 6= q.

First, suppose that a node numbering as required does exist. Now if C is a cycle

including g, the numS values on this cycle are not all equal; so there must be a

g′ = p′(x̄′) :– π′; q′(ȳ′) ∈ C for which numS(p
′) > numS(q

′). Every transition rule

with such numbering was required to be in S. A similar argument shows that C must

include a bounded transition rule. Thus, g satisfies the requirements in Thm. 23,

justifying the “if” part of the lemma.

For “only if,” suppose that g is an anchor. Let GB = G\B. Assign numbers to the

strongly-connected components of GB in reverse-topological order (recall that SCCs

form an acyclic graph). So if components C1, C2 are connected by an arc from C1
to C2, then C1 has the larger number. For any program point in an SCC, let numB

map it to the number assigned to this SCC. Clearly, this numbering agrees with

SAT-Based Termination Using Monotonicity Constraints 23

B; every transition rule g such that ∆numB(g) > 0 is not in GB. In a similar way

we define numS(g). Now, every cycle through g includes an arc of B: this means

that the end-points of g are not in the same SCC of GB. Either g itself is in B, or g

connects different SCCs; in either case, ∆numB(g) 6= 0. Similarly, ∆numS(g) 6= 0.

The required conclusion is satisfied.

Appendix B Summary of Experiments

We provide here more information on the experimental results in Sect. 6. For further

details we refer to http://aprove.informatik.rwth-aachen.de/eval/MCNP.

Benchmark Suite 1

Table B 1 gives the number of proofs, the average runtime, and the maximum run-

time for our MCNP implementation on the 81 examples from Suite 1. Out of 81

MCSs of the MC transition system, MCNP could show termination for 66 of them.

The maximum runtime of 5.15 seconds was needed on the instance WTC/sipma91

consisting of 15 MC transition rules with up to 12 argument positions (source +

target) and up to 60 individual order constraints in a single monotonicity constraint.

Table B 1. Result Summary for Suite 1

Tool Proofs Avg. Time Max. Time

MCNP 66/81 0.55 s 5.15 s

32 of the examples from Suite 1 originate from the evaluation of the paper (Fuhs

et al. 2009) with the termination prover AProVE. Table B2 compares the results

from our experiments with MCNP to the experiments with AProVE. Here the new

column T/o (60 s) denotes the number of timeouts, i.e., examples where the runs

were aborted after exceeding a time limit (here 60 seconds). The column Solved-

only gives the number of examples that were solved by the tool in question, but

not by the other one (i.e., there was 1 example that was solved by AProVE, but not

by MCNP). Since in some of the runs timeouts occurred, we mention two numbers

for the average runtime: Avg. Time (excl. t/o) gives the average runtime on the

examples where the tool in question had no timeouts, and Avg. Time (incl. t/o)

denotes the average runtime on all examples in the example suite, where timeouts

are counted by the value of the time limit (i.e., here 60 seconds).

Benchmark Suite 2

Table B 3 compares the results of our experiments to those of COSTAwhen ap-

plied with a timeout of 120 seconds on the examples of Suite 2. The columns in

this table are the same as explained for Table B2. From the 392 SCCs in the MC

http://aprove.informatik.rwth-aachen.de/eval/MCNP

24 M. Codish et al.

Table B 2. Result Summary for Suite 1 on Instances from (Fuhs et al. 2009)

Tool Proofs Avg. Time Avg. Time Max. Time T/o Solved-only
(excl. t/o) (incl. t/o) (60 s)

MCNP 27/32 0.22 s 0.22 s 4.22 s – 0
AProVE 28/32 5.30 s 12.14 s > 60.00 s 4 1

transition systems in this suite, MCNP could show termination of 296 of them.

The maximum runtime for MCNP (16.31 seconds) was needed on the example

Julia_10_Recursive/Test6, consisting of 36 MC transition rules with up to 16

argument positions and up to 51 individual order constraints in a single monotonic-

ity constraint.

Table B 3. Result Summary for Suite 2

Tool Proofs Avg. Time Avg. Time Max. Time T/o Solved-only
(excl. t/o) (incl. t/o) (120 s)

MCNP 92/165 0.662 s 0.662 s 16.31 s – 5
COSTA 102/165 0.076 s 3.709 s > 120.00 s 5 15

Benchmark Suite 3

Table B 4 compares the results of our MCNP implementation to those of a variant

of AProVE where we fix the abstraction to be the same as in the preprocessor for

MCNP. Table B 5 compares the results of MCNP to those of AProVE without fixing

the abstraction. The columns in these tables are the same as explained for Table B 2.

The timeouts of MCNP on this suite may be due to the increased complexity of

the corresponding instances. For example, Julia_10_Iterative/Infix2Postfix

consists of 319 MC transition rules with up to 11 argument positions and up to 29

individual order constraints in a single monotonicity constraint, and the example

Julia_10_Iterative/Test9 has 56 MC transition rules with up to 14 argument

positions and up to 158 individual order constraints in a single monotonicity con-

straint.

When executing MCNP with no timeout, one could show termination of 64 exam-

ples with MCNP (the proof for the additional example Julia_10_Iterative/Test9

needs 190.6 seconds), and MCNP can show termination of 74 of the 181 SCCs

in the MCSs of this suite. MCNP’s highest runtime is obtained on the example

Aprove_09/SortCount with 971.7 seconds, and it is worth noting that this exam-

ple consists of 50 MC transition rules with up to 212 individual order constraints

in a single monotonicity constraint.

SAT-Based Termination Using Monotonicity Constraints 25

Table B 4. Result Summary for Suite 3 using AProVE with Fixed Abstraction

Tool Proofs Avg. Time Avg. Time Max. Time T/o Solved-only
(excl. t/o) (incl. t/o) (60 s)

MCNP 63/127 2.12 s 5.76 s > 60 s 8 5
AProVE fix 73/127 11.08 s 14.16 s > 60 s 8 15

Table B 5. Result Summary for Suite 3 using Full AProVE

Tool Proofs Avg. Time Avg. Time Max. Time T/o Solved-only
(excl. t/o) (incl. t/o) (60 s)

MCNP 63/127 2.12 s 5.76 s > 60 s 8 3
AProVE 95/127 9.58 s 17.12 s > 60 s 19 35

	1 Introduction
	2 Monotonicity-Constraint Systems and Their Termination
	3 Ranking Structures for Monotonicity-Constraint Systems
	3.1 Ranking structures
	3.2 Multiset Orders and Level Mappings

	4 The MCNP Problem
	5 A SAT-based MCNP Algorithm
	5.1 Main algorithm
	5.2 Finding a level mapping
	5.3 A SAT encoding

	6 Implementation and Experiments
	7 Conclusion
	References
	Appendix A Proofs
	Appendix B Summary of Experiments

