
An Overview of Ciao and its Design Philosophy

M. V. HERMENEGILDO1 '2 F. BUENO1 M. CARRO1

P. LÓPEZ-GARCÍA2 4 E. MERA3 F E M O R A L E S 2 G. PUEBLA1

1 Universidad Politécnica de Madrid (UPM)
(e-mail: bueno@f i .upm.es , mcarro@fi.upm.es, german@fi.upm.es)

2 Madrid Institute of Advanced Studies in Software Development Technology (IMDEA Software)
(e-mail: manuel .hermenegildo@imdea.org, pedro.lopez@imdea.org, josef .morales@imdea.org)

3 Universidad Complutense de Madrid (UCM)
(e-mail: edison@fdi .ucm. es)

^Spanish Research Council (CSIC)

Abstract

We provide an overall description of the Ciao multiparadigm programming sy stem emphasizing some
of the novel aspects and motivations behind its design and implementation. An important aspect of
Ciao is that, in addition to supporting logic programming (and, in particular, Prolog), it provides
the programmer with a large number of useful features from different programming paradigms and
styles, and that the use of each of these features (including those of Prolog) can be turned on and off
at will for each program module. Thus, a given module may be using, e.g., higher order functions and
constraints, while another module may be using assignment, predicates, Prolog meta-programming,
and concurrency. Furthermore, the language is designed to be extensible in a simple and modular
way. Another important aspect of Ciao is its programming environment, which provides a powerful
preprocessor (with an associated assertion language) capable of statically flnding non-trivial bugs,
verifying that programs comply with speciflcations, and performing many types of optimizations (in­
cluding automatic parallelization). Such optimizations produce code that is highly competitive with
other dynamic languages or, with the (experimental) optimizing compiler, even that of static lan-
guages, all while retaining the flexibility and interactive development of a dynamic language. This
compilation architecture supports modularity and sepárate compilation throughout. The environment
also includes a powerful auto-documenter and a unit testing framework, both closely integrated with
the assertion system. The paper provides an informal overview of the language and program devel­
opment environment. It aims at illustrating the design philosophy rather than at being exhaustive,
which would be impossible in a single journal paper, pointing instead to previous Ciao literature.

KEYWORDS: Prolog, Logic Programming System, Assertions, Veriflcation, Extensible Languages.

1 Origins and Initial Motivations

Ciao (Hermenegildo et al 1994; Hermenegildo et al 1999; Bueno et al. 2009; Hermenegildo

and The Ciao Development Team 2006) is a modern, multiparadigm programming lan­

guage with an advanced programming environment. The ultímate motivation behind the

system is to develop a combination of programming language and development tools that

together help programmers produce in less time and with less effort code that has fewer

or no bugs. Ciao aims at combining the flexibility of dynamic/scripting languages with the

mailto:mcarro@fi.upm.es
mailto:german@fi.upm.es
mailto:hermenegildo@imdea.org
mailto:pedro.lopez@imdea.org
mailto:morales@imdea.org

guarantees and performance of static languages. It is designed to run very efflciently on
platforms ranging from small embedded processors to powerful multicore architectures.
Figure 1 shows an overview of the Ciao system architecture and the relationships among
its components, which will be explained throughout the paper.

Ciao has its main roots in the &-Prolog language and system (Hermenegildo and Greene
1991). &-Prolog's design was aimed at achieving higher performance than state of the
art sequential logic programming systems by exploiting parallelism, in particular, and-
parallelism (Hermenegildo and Rossi 1995). This required the development of a special-
ized abstract machine, derived from early versions of SICStus Prolog (Swedish Insti-
tute for Computer Science 2009), capable of running a large number of (possibly non-
deterministic) goals in parallel (Hermenegildo 1986; Hermenegildo and Greene 1991). The
source language was also extended in order to allow expressing parallelism and concur-
rency in programs, and later to support constraint programming, including the concurrent
and parallel execution of such programs (García de la Banda et al. 1996).

Parallelization was done either by hand or by means of the &-Prolog compiler, which
was capable of automatically annotating programs for parallel execution (Muthukumar
and Hermenegildo 1990; Muthukumar et al. 1999). This required developing advanced
program analysis technology based on abstract interpretation (Cousot and Cousot 1977),
which led to the development of the PLAI analyzer (Warren et al. 1988; Hermenegildo et al.
1992; Muthukumar and Hermenegildo 1992), based on Bruynooghe's approach (Bruynooghe
1991) but using a highly-efflcient flxpoint including memo tables, convergence accelera-
tion, dependency tracking, etc. This analyzer inferred program properties such as inde-
pendence among program variables (Muthukumar and Hermenegildo 1992; Muthukumar
and Hermenegildo 1991), absence of side effects, non-failure (Bueno et al. 2004), deter-
minacy (López-García et al. 2010), data structure shape and instantiation state ("moded
types") (Saglam and Gallagher 1995; Vaucheret and Bueno 2002), or upper and lower
bounds on the sizes of data structures and the cost of procedures (Debray et al. 1990; De-
bray and Lin 1993; Debray et al. 1997). This was instrumental for performing automatic
granularity control (Debray et al. 1990; López-García et al. 1996). In addition to auto­
matic parallelization the &-Prolog compiler performed other optimizations such as múlti­
ple (abstract) specialization (Puebla and Hermenegildo 1995). Additional work was also
performed to extend the system to support other computation rules, such as the Andorra
principie (Warren 1993; Olmedilla et al. 1993) and other sublanguages and control rules.

In the process of gradually extending the capabilities of the &-Prolog system in the late
80's/early 90's two things became clear. Firstly, the wealth of information inferred by the
analyzers would also be very useful as an aid in the program development process. This led
to the idea of the Ciao assertion language and preprocessor, two fundamental components
of the Ciao system (even if neither of them are strictly required for developing or compil-
ing programs). The Ciao assertion language (Puebla et al. 2000b) provides a homogeneous
framework which allows, among other things, static and dynamic veriflcation to work co-
operatively in a unifled way. The Ciao Preprocessor (CiaoPP (Hermenegildo et al. 1999;
Puebla et al. 2000a; Hermenegildo et al. 2005)) is a powerful tool capable of statically
flnding non-trivial bugs, verifying that the program complies with speciflcations (written
in the assertion language), and performing many types of program optimizations.

A second realization was that many desirable language extensions could be supported

Documenter
(automatic

documentation
from programs
with assertions)

Run-time Messages
Debugging

Dynamic Violations

Run-time Engine and Libs.
Multi-platform

Parallel, sequential, tabled, .. .

Development Environment \
Emacs based, command line,

top-levels (compilation, analysis)/

Tuser interaction

Source (user and library)
Packages

(multi-paradigm)

(c l P r)»....'"

* >

Modules
(w./wo. assertions)

)

Front-end Compiler
¡mplements module system)

Expanded Code
(Kernel Language)

Back-end Compiler
(optimized from annotations)

Compiler

Executable Code
(bytecode, native code)

Fig. 1. A high-level view of the Ciao system.

Compile-time Messages
Errors/warnings
Static Violations

Preprocessor

Analysis (types,
modes, resources, .. .)

Verification (static
checklng of assertions)

Optimization (parallelism
speclallzation, .. .)

Annotated/
Transformed Code

efficiently within the same system if the underlying machinery implemented a relatively
limited set of basic constructs (a kernel language) (Hermenegildo et al 1994; Hermenegildo
et al 1999) coupled with an easily programmable and modular way of defining new syntax
and giving semantics to it in terms of that kernel language. This idea is not exclusive to
Ciao, but in Ciao the facilities that enable building up from a simple kernel are explicitly
available from the system programmer level to the application programmer level. The need
to be able to define extensions based on some basic blocks led to the development of a
novel module system (Cabeza and Hermenegildo 2000a) which allows writing language
extensions {packages) by grouping together syntactic definitions, compilation options, and
plugins to the compiler. The mechanisms provided for adding new syntax to the language
and giving semantics to such syntax can be activated or deactivated on a per-compilation
unit basis without interfering with other units. As a result all Ciao operators, "builtins,"
and most other syntactic and semantic language constructs are user-modifiable and live in
librarles.1 The Ciao module system also addresses the needs for modularity deriving from
global analysis. We will start precisely with the introduction of the user view of packages.

1 In fact, some Ciao packages are portable with little modification to other logic and constraint logic program-
ming systems. Others require support from the kernel language (e.g. concurrency), to provide the desired
semantics or efficiency. In any case, packages offer a modularized view of language extensions to the user.

i :- module(_, _, [functional, lazy]).
2

3 nrev ([]) := [] .
4 n r e v ([H I T]) := ~ c o n c (n r e v (T) , [H]) .
5

6 c o n c ([] , L) : = L .
7 c o n c ([H I T] , K) := [H I c o n c (T , K)] .
8

o f a c t (N) := N=0 ? 1
10 | N>0 ? N * f a c t (- - N) .
n
12 : - l a z y f u n _ e v a l n u m s _ f r o m / 1 .
13 n u m s _ f r o m (X) := [X I n u m s _ f r om (X + l)] .
14

15 :- use_module (library (' lazy / lazy_lib ') , [take/3]).
i6 nums(N) := ~take(N, nums_f rom (0)) .

Fig. 2. Some examples in Ciao functional notation.

2 Supporting Múltiple Paradigms and Useful Features

Packages allow Ciao to support múltiple programming paradigms and styles in a single
program. The different source-level sub-languages are supported by a compilation process
stated by the corresponding package, typically via a set of rules deflning source-to-source
transformations into the kernel language. This kernel is essentially puré Prolog plus a num­
ber of basic, instrumental additional functionalities (such as the cut, non-logical predicates
such as var /1 or a s s e r t / 1 , threads, attributed variables, etc.), all of which are in principie
not visible to the user but can be used if needed at the kernel level to support higher-level
functionality. However, the actual nature of the kernel language is actually less important
than the extensibility mechanisms which allow these extensions to be, from the point of
view of the compiler, analyzers, autodocumenter, and language users, on a par with the
native builtins. We will now show some examples of how the extensibility provided by the
module system allows Ciao to incorpórate the fundamental constructs from a number of
programming paradigms.

We will use the examples in Fig. 2 to illustrate general concepts regarding the module
system and its extensibility. In Ciao the flrst and second arguments of a module declaration
(line 1) hold the module ñame and list of exports in the standard way. "_" in the flrst
argument means that the ñame of the module is the ñame of the file, without sufflx, and in
the second one that all deflnitions are exported. The third argument states a list of packages
to be loaded (functional and lazy in this case, which provide functional notation and
lazy evaluation). Packages are Ciao files which contain syntax and compilation rules and
which are loaded by the compiler as plugins and unloaded when compilation finishes.
Packages only modify the syntax and semantics of the module from where they are loaded,
and therefore other modules can use packages introducing incompatible syntax / semantics
without clashing. Packages can also be loaded using use_package declarations throughout
the module.

Functional Programming: functional notation (Casas et al. 2006) is provided by a set
of packages which, besides a convenient syntax to define predicates using a function-like

layout, gives support for semantic extensions which include higher-order facilities (e.g.,
predicate abstractions and applications thereof) and, if so required, lazy evaluation. Se-
mantically, the extensión is related to logic-functional languages like Curry (Hanus et al
) but relies on flattening and resolution, using f reeze /2 for lazy evaluation, instead of
narrowing. For illustration, Fig. 2 lists a number of examples using the Ciao functional
notation. Thanks to the packages loaded by the module declaration, nrev and conc can
be written in functional style by using múltiple : =/2 deflnitions. The " preflx operator in
the second rule for nrev states that its argument (conc) is an interpreted function (a cali to
a predicate), as opposed to a data structure to unify with and return as a result of function
invocation. This eval mark can be omitted when the predicate is marked for functional syn-
tax. The recursive cali to nrev does not need such a clariflcation because it is called within
its own deflnition. The list constructor in conc is not marked for evaluation, and therefore
it stands for a data structure instead of a predicate cali.

f act is written using a disjunction (marked by " I") of guards (delimited by "?") which
together commit the system to the flrst matching choice. Arithmetic operators are assumed
to be evaluable by default, but this can be turned off with a special declaration. nums_f rom
is declared lazy, which makes it possible to write a recursion which is executed only up
to the extent it is necessary. In this case, it is called by take (imported from a library of
lazy functions/predicates) which in turns allows nums to (lazily) return a list of N numbers
starting at 0.

The following queries produce the expected answer:
?- use_package(functional).

?- X = ~nrev([1,2,3]) .

X = [3,2,1]

?- [3,2,1] = "nrev(X) .

X = [1,2,3]

Loading the funct ional package in the top level allows using functional notation in it
—the top level behaves in this sense essentially in the same way as a module. Since in
general, functional notation is just syntax and thus no directionality is implied, the second
query to nrev/2 just instantiates its argument.

However, as mentioned before, other constructs such as conditionals do commit the
system to the flrst matching case. The assertion language includes f une assertions aimed
at enforcing strictly "functional" behavior (e.g., being single moded, in the sense that a
flxed set of inputs must always be ground and for them a single output is produced, etc.),
and generating assertions (see later) which ensure that the code is used in a functional way.

Fig. 3 lists more examples using funct ional and other packages, and the result after
applying just the transformations brought in by the funct ional package. Note the use of
higher order in l ist_of: a predicate is called using a syntax which has a variable in the
place of a predicate ñame. This is possible thanks to the hiord package (more on it later)
which adds the necessary syntax and a compile-time translation into call /N.

Classic and ISO-Prolog: Ciao provides, through convenient defaults, an excellent Pro­
log system with support for ISO-Prolog. Other classical "builtins" expected by users, and
which are provided by modern Prolog systems (YAP, SWI-Prolog, Quintus Prolog, SICS-
tus Prolog, XSB, GNU Prolog, B-Prolog, BinProlog, etc.), are also conveniently available.
In line with its design philosophy, in Ciao all of these features are optional and brought in

:- module(someprops, _, [functional, hiord]).

color := red I blue I green.

list := [] I [_ I list].

list_of(T) := [] I [~T | list_of(T)].

sorted := [] I [_] .
sorted([X,Y|Z]) :- X @< Y, sorted([Y IZ]).

V J

f >

:- module(someprops, _, []).

color(red). color(blue). color(green).

list([]).

list([_|T]) :- list(T).

:- use_module(engine(hiord_rt)).

list_of(_, []).
list_of(T, [X|Xs]) :- call(T, X), list_of(T, Xs).
sorted([]). sorted([_]).
sorted([X,Y|Z]) :- X @< Y, sorted([Y IZ]).

Fig. 3. Examples in Ciao functional notation and state of translation after applying the
funct ional and hiord packages.

: - m o d u l e (h , [m a i n / 1]) .

main : - w r i t e (" H e l l o w o r l d ! ") .
Vs=

:- module(h,[main/1],[classic]).

main :- write("Hello world!").

Fig. 4. Two equivalent Prolog modules.
Vs=

from libraries rather than being part of the language. This is done in such a way that clas-
sical Prolog code runs without modiflcations: the Prolog libraries are automatically loaded
when module declarations have only the flrst two arguments, which is the type of module
declaration used by most Prolog systems (see Fig. 4, left). This is equivalent to loading
only the "c l a s s i c " package (Fig. 4, right).

The set of ISO builtins and other ISO compliance-related features (e.g., the exceptions
they throw) are triggered by loading the iso package (included in c lass ic) . Facilities for
testing ISO compliance (Section 5.4) are also available.

The c l a s s i c Prolog package is also loaded by default in user files (Le., those without a
module declaration) that do not load any packages explicitly via a use_package declara­
tion. Also, the system top level comes up by default in Prolog mode. This can be tailored
by creating a " / . c iaorc initialization file which, among other purposes, can be used to
state packages to be loaded into the top level. As a result of these defaults, Ciao users who
come to the system looking for a Prolog implementation do get what they expect. If they

do not poke further into the menus and manuals, they may never realize that Ciao is in fact
quite a different beast under the hood.

Other Logic Programming Flavors: alternatively to the above, by not loading the classic
Prolog package(s) the user can restrict a given module to use only puré logic program­
ming, without any of Prolog's impure features.2 That means that if a cali to a s se r t were
to appear within the module, it would be signaled by the compiler as a cali to an undeflned
predicate. Features such as, for example, declarative I/O, can be added to such puré mod­
ules by loading additional libraries. This also allows adding individual features of Prolog
to the puré kernel on a needed basis.

Higher-order logic programming with predicate abstractions (similar to closures) is
supported through the hiord package. This is also illustrated in Fig. 3, where the l i s t_o f /2
predicate receives a unary predicate which is applied to all the arguments of a list. As a fur­
ther example of the capabilities of the hiord package, consider the queries:

?- use_package (h iord) , u s e _ m o d u l e (l i b r a r y (h i o r d l i b)) .

?- P = (_(X,Y) : - Y = f (X)) , map([l , 3 , 2] , P, R) .

where, after loading the higher-order package hiord and instantiating P to the anonymous
predicate _(X, Y) : - Y = f(X), the cali map([1 , 3 , 2] , P, R) applies P to each ele-
mentof the list [1 , 3 , 2] producing R = [f (D , f (3) , f (2)] . The (reversed) query
works as expected, too:

?- P = (_(X,Y) : - Y = f(X)) , map(M, P, [f (D , f (3) , f (2)]) .
M = [1 , 3 , 2]

If there is a free variable, say V, in the predicate abstraction and a variable with the same
ñame V in the clause within which the anonymous predicate is deflned, the variable in the
predicate abstraction is bound to the valué of the variable in the clause. Otherwise it is
a free variable, in the logical sense (as any other existential variable in a clause). This is
independent from the environment where the predicate abstraction is applied, and therefore
closures have syntactic scoping.

Additional Computation Rules: in addition to the usual depth-flrst, left-to-right execution
of Prolog, other computation rules such as breadth-flrst, iterative deepening, tabling (see
later), and the Andorra model are available, again by loading suitable packages. This has
proved particularly useful when teaching, since it allows postponing the introduction of
the (often useful in practice) quirks of Prolog (see the slides of a course starting with puré
logic programming and breadth-flrst search in h t t p : //www. c l i p l a b . org/ logalg) .

Constraint Programming: several constraint solvers and classes of constraints using these
solvers are supported including CLP(Q), CLP{1Z) (a derivative of (Holzbaur 1994)), and a
basic but usable CLP(JT>) solver. 3 The constraint languages and solvers, which are built
on more basic blocks such as attributed variables (Holzbaur 1992) and/or the higher-level
Constraint Handling Rules (CHR) (Frühwirth 2009), also available in Ciao, are extensible
at the user level.

2 The current implementation -as of versión 1.13- does still leave a few builtins visible, some of them useful for
debugging. To avoid the loading of any impure builtins in 1.13 the puré pseudo-package should be used.

3 CLP(A") stands for a Constraint Logic Programing System parametrized by the constraint domain X.

f
:- module(_,_, [fsyntax,clpqf]) .

fact(.=. 0) := .=. 1.
fact(N) := .=. N*fact(.=. N-l) :- N .>.

sorted := [] I [_] .
sorted([X,Y|Z]) :- X .<. Y, sorted([Y IZ]) .

'i

0.

\

J

Fig. 5. Ciao constraints (combined with functional notation).

Fig. 5 provides two examples using Ciao CLP(Q) constraints, combined with functional
notation. For example, line 3 can be read as: if the input argument of f act is constrained to
0 then the "output" argument is constrained to 1. In the next line, if the argument of f act
is constrained to be greater than 0 then the "output" is constrained to be equal to N*f act (
. =. N-l). The two deflnitions (f act and sorted) can be called with their arguments in
any state of instantiation. For example, the query
?- sor ted(X).
returns (blanks in the answers have been edited to save space):
X = [] ? ;
X = [_] ? ;
X = [_A, _B], _A .<. _B ? ;
X = [_A, _B, _C], _B .<. _C, _A .<. _B ?
etc. As many other CLP systems Ciao is not, at the moment, a highly specialized con-
straint system, and it does not intend to compete with very high performance systems like,
e.g., Gecode (Schulte and Stuckey 2008) or Comet (Van Hentenryck and Michael 2005).
The purpose of the constraint solving support present in Ciao is to offer some reasonable
functionality for medium-sized problems and to be able to explore new possibilities in the
combination of paradigms.

Object-Oriented Programming: object oriented-style programming has been classically
provided in Ciao through the O'Ciao c la s s and object packages (Pineda and Bueno
2002). These packages provide capabilities for class deflnition, object instantiation, encap-
sulation and replication of state, inheritance, interfaces, etc. These features are designed to
be natural extensions of the underlying module system. There is current work performed
within the "optimcomp" branch (see later) revisiting these issues in the context of abstract
mechanisms for passing, maintaining, and updating different notions of state. These exten­
sions have also introduced imperative control structures and nested syntactic scopes.
Concurrency, Parallelism, and Distributed Execution: other packages bring in different
capabilities for expressing concurrency (including a concurrent, shared versión of the inter-
nal fact datábase which can be used for synchronization (Carro and Hermenegildo 1999)),
distribution, and parallel execution (Cabeza and Hermenegildo 1995; Casas et al. 2008). A
notion of "active objects" also allows compiling objects so that they are ultimately mapped
to a standalone process, which can then be transparently accessed by the rest of an appli-
cation. This provides simple ways to implement servers and services in general.

In addition to the programming paradigm-speciflc characteristics above, many additional
features are available through libraries (that can also be activated or deactivated on a per-
module / class basis), including:

/

vs-

- module(someprops
- prop color/l.
- prop list/1.
- prop list_of/2.
- prop sorted/1.

, _, [functional, hiord, assertions]).
color := red I blue I green.
list := [] 1 [_ 1 list].
list_of(T) := [] | [~T | list_of(T)].
sorted := [] I [_].
sorted([X,Y|Z]) :- X @< Y, sorted ([Y IZ]) .

\

/
Fig. 6. Examples of state property deflnitions.

Structures with named arguments (feature terms), a trimmed-down versión of V'-terms (Ai't-
Kaci 1993) which translates structure uniflcations to Prolog uniflcations, adding no over-
head to the execution when argument ñames can be statically resolved, and a small over-
head when they are resolved at run time.

Partial supportfor advanced higher-order logic programming features, like higher-order
uniflcation, based on the algorithms used in AProlog (Wolfram 1992) (experimental).
Persistence, which allows Ciao to transparently save and restore the state of selected facts
of the dynamic datábase of a program on exit and startup. This is the basis of a high-level
interface with databases (Correas et al. 2004).

Tabled evaluation (Chen and Warren 1996), pioneered by XSB (experimental).

Answer Set Programming (ASP) (El-Khatib et al. 2005), which makes it possible to exe-
cute logic programs under the stable model semantics (experimental).
WWW programming, which establishes a direct mapping of HTML / XML and other
formats to Herbrand terms, allowing the manipulation of WWW-related data easily through
uniflcation, writing CGIs, etc. (Cabeza and Hermenegildo 2001).

3 Ciao Assertions

An important feature of Ciao is the availability of a rich, multi-purpose assertion language.
We now introduce (a subset of) this assertion language. Note that a great deal of the capa-
bilities of Ciao for supporting and processing assertions draws on its extensibility features
which are used to define and give semantics to the assertion language without having to
change the low-level compiler.

Ciao Assertion Language Syntax and Meaning: Assertions are linguistic constructs which
allow expressing properties of programs. Syntactically they appear as an extended set of
declarations, and semantically they allow talking about preconditions, (conditional-) post-
conditions, whole executions, program points, etc. For clarity of exposition, we will fo-
cus on the most commonly-used subset of the Ciao assertion language: pred assertions
and program point assertions. A detailed description of the full language can be found
in (Puebla et al. 2000b; Bueno et al. 2009).

The first subset, pred assertions, is used to describe a particular predicate. They can be
used to state preconditions and postconditions on the (valúes of) variables in the computa-
tion of predicates, as well as global properties of such computations (such as, e.g., the num-
ber of execution steps, determinacy, or the usage of some other resource). Fig. 7 includes a
number of pred assertions whose syntax is made available through the a s se r t ions pack-
age. For example, the assertion (line 5): :- pred nrev(A.B) : iist(A) => i i s t (B) .

module(_, [nrev/2], [assertions, nativeprops, functional]).
entry nrev/2 : {list, ground} * var.
use_module(someprops).

pred nrev(A, B)
pred nrev(A, B)
pred nrev(A, B)
pred nrev(A, _)

list (A) => list (B) .
1ist_of (color , A) => list_of (color , B).
list(A) + (not_fails, is_det, terminates)
list(A) + steps_o(length(A)).

nrev([]) := [] .
nrev([H|L]) := ~conc(nrev(L) , [H]).

:- pred conc(A,B,C) : list (A) => size_ub(C,length(A) + length(B))
+ steps_o(length (A)) .

conc ([] , L) : = L .
conc([H|L], K) := [H I conc(L.K)].

Fig. 7. Naive reverse with some -partially erroneous- assertions.

expresses that calis to predicate nrev/2 with the flrst argument bound to a list are admissi-
ble, and that if such calis succeed then the second argument should also be bound to a list.
l i s t / 1 is an example of a state property -a prop, for short: a predicate which expresses
properties of the (valúes of) variables. Other examples are deflned in Fig. 6 (sor ted/1 ,
co lo r /1 , l i s t_of /2) , or arithmetic predicates such as >/2, etc. Note that A in l i s t (A)
above refers to the flrst argument of nrev/2. We could have used the parametric type
l i s t_o f /2 (also deflned in Fig. 6), whose flrst argument is a type parameter, and written
l i s t . o f (term.A) instead of l i s t (A) , where the type term/1 denotes any term. As an
additional example using the parametric type l i s t_of /2 , the assertion in line 6 of Fig. 7
expresses that for any cali to predicate nrev/2 with the flrst argument bound to a list of
colors, if the cali succeeds, then the second argument is also bound to a list of colors.

State properties deflned by the user and exported/imported as usual. In Fig. 7 some prop­
erties (l i s t / 1 , l i s t . o f / 2 , color/1) are imported from the user module someprops
(Fig. 6) and others (e.g., size_ub/2) from the system's nativeprops. In any case props
need to be marked explicitly as such (see Fig, 6) and this flags that they need to meet
some restrictions (Puebla et al. 2000b; Bueno et al. 2009). E.g., their execution should
terminate for any possible cali since, as discussed later, props will not only be checked
at compile time, but may also be involved in run-time checks. Types are just a partic­
ular case (further restriction) of state properties. Different type systems, such as regular
types (regtypes), Hindley-Milner (hmtypes), etc., are provided as libraries. Since, e.g.,
l i s t_o f /2 in Fig. 6 is a property that is in addition a regular type, this can be flagged
as : - prop l i s t_of /2 + regtype. or, more COmpaCtly, : - regtype l i s t _ o f / 2 . Most

properties (including types) are "runnable" (useful for run-time checking), and can be in-
teracted with, i.e., the answers to aquery ?- use_package(someprops), X = " l i s t .
are: X = [],X = [_],X = [_,_], X = [_,_,_], etc. Note also that assertions suchas the
one in line 5 provide information not only on (a generalization of) types but also on modes.

In general pred assertions follow the schema:

: - p r e d Pred [: Precond] [=> Postcond] [+ CompProps] .

Pred is a predícate descriptor, Le., a predicate symbol applied to distinct free variables,
such as, e.g., nrev(A,B). Precond and Postcond are logic formulas about execution states,
that we cali StateFormulas. An execution state is deflned by the bindings of valúes to vari­
ables in a given execution step (in logic programming terminology, a substitution, plus any
global state). An atomic StateFormula (such as, e.g., l i s t (X) , X > 3, or sorted(X)) is a
literal whose predicate symbol corresponds to a state property. A StateFormula can also be
a conjunction or disjunction of StateFormulas. Standard (C)LP syntax is used, with comma
representing conjunction (e.g., " (l i s t (X), l i s t (Y))") and semicolon disjunction (e.g.,
" (l i s t (X) ; i n t (X))"). Precond is the precondition under which the pred assertion is
applicable. Postcond states a conditional postcondition, Le., it expresses that in any cali to
Pred, if Precond holds in the calling state and the computation of the cali succeeds, then
Postcond should also succeed in the success state. If Precond is omitted, the assertion is
equivalent to: :- pred Pred •. true => Postcond. and it is interpreted as "for any cali to
Pred which succeeds, Postcond should succeed in the success state." As Fig. 7 shows, there
can be several pred assertions for the same predicate. The set of preconditions {Precond)
in those assertions is considered closed in the sense that they must cover all valid calis to
the predicate.

Finally, pred assertions can include a CompProps fleld, used to describe properties of
the whole computation of the calis to predicate Pred that meet precondition Precond. For
example, the assertion in line 8 of Fig. 7, states that for any cali to predicate nrev/2
with the flrst argument bound to a list, the number of resolution steps, given as a function
on the length of list A, is in 0{length{A)) (Le., such function is linear in length(A)).4

The assertion in line 7 of Fig. 7 is an example where CompProps is a conjunction: it
expresses that the previous calis do not fail without flrst producing at least one solution,
are deterministic (Le., they produce at most one solution at most once), and terminate.
Thus, in this case, CompProps describes a terminating functional computation. The rest of
the assertions in Fig. 7 will be explained later, in the appropriate sections.

In order to facilítate writing assertions, Ciao also provides additional syntactic sugar
such as modes and cartesian product notation. For example, consider the following set of
pred assertions providing information on a reversible sorting predicate:

:- pred sort/2 : list(num) * var => list(num) * list(num) + is_det.

:- pred sort/2 : var * list(num) => list(num) * list(num) + non_det.

(in addition, curly brackets can be used to group properties -see Fig. 9). Using Ciao's
isomodes library, which provides syntax and meaning for the ISO instantiation operators,
this can also be expressed as:

:- pred sort(+list(num), -list(num)) + is_det.

:- pred sort (-list (mam) , +list(num)) + non_det.

The pred assertion schema is in fact syntactic sugar for combinations of atomic asser­
tions of the following three types:

: - c a l i s Pred [: Precond].

:- s u c c e s s Pred [: Precond] [=> Postcond].
:- comp Pred [: Precond] [+ CompProps].

4 This is of course false, but we will let the compiler tell us -see later.

which describe all the admissible cali states, the success states, and computational proper­
ties for each set of admissible cali states (in this order).
Program-point assertions are of the form check(StateFormula) and they can be placed
at the locations in programs in which a new literal may be added. They should be inter-
preted as "whenever computation reaches a state corresponding to the program point in
which the assertion is, StateFormula should hold." For example,

check((l i s t_of (co lor , A), var(B)))

is a program-point assertion, where A and B are variables of the clause where the assertion
appears.

Assertion status: Independently of the schema, each assertion can be in a verification
status, marked by preflxing the assertion itself with the keywords, check, t r u s t , t rue ,
checked, and f a l se . This specifles respectively whether the assertion is provided by the
programmer and is to be checked or to be trusted, or is the output of static analysis and thus
correct (safely approximated) information, or the result of processing an input assertion
and proving it correct or false, as will be discussed in the next section. The check status is
assumed by default when no explicit status keyword is present (as in the examples so far).

Uses of assertions: as we will see, assertions flnd many uses in Ciao, ranging from testing
to verification and documentation (for the latter, see lpdoc (Hermenegildo 2000)). In addi-
tion to describing the properties of the module in which they appear, assertions also allow
programmers to describe properties of modules / classes which are not yet written or are
written in other languages.5 This makes it possible to run checkers / verifiers / documenters
against partially developed code.

4 The Ciao Unified Assertion Framework

We now describe the Ciao unified assertion framework (Bueno et al. 1997; Hermenegildo
et al. 1999; Puebla et al. 2000b), implemented in the Ciao preprocessor, CiaoPP. Fig. 8
depicts the overall architecture. Hexagons represent tools and arrows indicate the com-
munication paths among them. It is a design objective of the framework that most of this
communication be performed also in terms of assertions. This has the advantage that at any
point in the process the information is easily readable by the user. The input to the process
is the user program, optionally including a set of assertions; this set always includes any
assertion present for predicates exported by any libraries used (left part of Fig. 8).
Run-time checking of assertions: after (assertion) normalization (which, e.g., takes away
syntactic sugar) the RT-check module transforms the program by adding run-time checks
to it that encode the meaning of the assertions (we assume for now that the Comparator
simply passes the assertions through). Note that the fact that properties are written in the
source language and runnable is very useful in this process. Failure of these checks raises
run-time errors referring to the corresponding assertion. Correctness of the transforma-
tion requires that the transformed program only produce an error if the assertion is in fact
violated.

5 This is also done in other languages but, in contrast with Ciao, different kinds of assertions for each purpose
are often used.

Compile-time I

checked) — k Verified

Certifícate (optimiz
(ACC) code

Fig. 8. The Ciao assertion framework (CiaoPP's veriflcation/testing architecture).

Compile-time checking of assertions: even though run-time checking can detect viola-
tions of speciflcations, it cannot guarantee that an assertion holds. Also, it introduces run-
time overhead. The framework performs compile-time checking of assertions by compar-
ing the results of Static Analysis (Fig. 8) with the assertions (Bueno et al. 1997; Hermenegildo
et al. 1999). This analysis is typically performed by abstract interpretation (Cousot and
Cousot 1977) or any other mechanism that provides safe upper or lower approximations
of relevant properties, so that comparison with assertions is meaningful despite precisión
losses in the analysis. The type of analysis may be selected by the user or determined au-
tomatically based on the properties appearing in the assertions. Analysis results are given
using also the assertion language, to ensure interoperability and make them understandable
by the programmer. As a possible result of the comparison, assertions may be proved to
hold, in which case they get checked status -Fig. 8. If all assertions are checked then
the program is verified. In that case a certifícate can be generated that can be shipped with
programs and checked easily at the receiving end (using the abstraction carrying code ap-
proach (Albert et al. 2008)). As another possible result, assertions can be proved not to
hold, in which case they get f a l se status and a compile-time error is reported. Even if a
program contains no assertions, it can be checked against the assertions contained in the
librarles used by the program, potentially catching bugs at compile time. Finally, and most
importantly, if it is not possible to prove ñor to disprove (part of) an assertion, then such
assertion (or part) is left as a check assertion, for which optionally run-time checks can be
generated as described above. This can optionally produce a verification warning.

The fact that the system deals throughout with safe approximations of the meaning of the
program, and that remaining in check status is an acceptable outcome of the comparison
process, allows dealing with complex properties in a correct way. For example, in CiaoPP
the programmer has the possibility of stating assertions about the effíciency of the program
(lower and/or upper bounds on the computational cost of procedures (López-García et al.
2010)) which the system will try to verify or falsify, thus performing automatic debug-
ging and verification of the performance of programs (see Section 5.2). Other interesting
properties are handled such as data structure shape (including pointer sharing), bounds on
data structure sizes, and other operational properties, as well as procedure-level properties
such as determinacy (López-García et al. 2010), non-failure (Bueno et al. 2004), termi-

module(qsort, [qsort/2], [assertions, functional]).
use_module (compare , [geq/2, lt/2]).
entry qsort/2 : {list(num), ground} * var.

qsort ([]) := [] .
qsort([X|L]) := ~conc(qsort(Ll), [X Iqsort(L2)])

:- partition(L, X, Ll, L2).

partition([] , _B ,[],[]) .
partition([E|R],C,[E|Leftl],Right) :-

lt(E,C), partition(R,C,Leftl,Right).
partition([EIR],C,Left,[EIRight1]) :-

geq(E,C), partition(R,C,Left,Rightl).

Fig. 9. A modular qsort program.

nation, and bounds on the execution time (Mera et al. 2008), and the consumption of a
large class of user-deflned resources (Navas et al. 2007). Assertion checking in CiaoPP
is also module-aware (Pietrzak et al. 2006; Pietrzak et al. 2008). Finally, the information
from analysis can be used to optimize the program in later compilation stages, as we will
discuss later.

5 Static Verification, Debugging, Run-Time Checking, and Unit Testing in Practice

We now present some examples which illustrate the use of the Ciao assertion framework
discussed in the previous section, as implemented in CiaoPP. We also introduce some more
examples of the assertion language as we proceed.

5.1 Automatic Inference of (Non-Trivial) Code Properties

We flrst illustrate with examples the automatic inference of code properties (box "Static
Analysis" in Fig. 8). Modes and types are inferred, as mentioned before, using different
methods including (Muthukumar and Hermenegildo 1992; Muthukumar and Hermenegildo
1991) for modes and (Saglam and Gallagher 1995; Vaucheret and Bueno 2002) for types.
As also mentioned before, CiaoPP includes a non-failure analysis (Bueno et al. 2004),
which can detect procedures and goals that can be guaranteed not to fail, i.e., to produce at
least one solution or not to terminate. It also can detect predicates that are "covered", i.e.,
such that for any input (included in the calling type of the predicate), there is at least one
clause whose "test" (head uniflcation and body builtins) succeeds. CiaoPP also includes a
determinacy analysis (López-García et al. 2010), which can detect predicates which pro­
duce at most one solution at most once, or predicates whose clause tests are mutually
exclusive, even if they are not deterministic because they cali other predicates that can pro­
duce more than one solution (it means that the predicate does not perform backtracking at
the level of its clauses).

Consider again the naive reverse program in Fig. 7. The assertion in line 2 is an example

of an entry assertion: a pred assertion addressing calis from outside the module.6 It
informs the CiaoPP analyzers that in all external calis to nrev/2, the flrst argument will
be a ground list and the second one a free variable. Using only the information specifled in
the entry assertion, the aforementioned analyses infer different sorts of information which
include, among others, that expressed by the following assertion:
:- true pred nrev(A.B): (list(A), var(B)) => (list(A), list(B))

+ (not_fails, covered, is_det, mut_exclusive).

As mentioned before, CiaoPP can also infer lower and upper bounds on the sizes of terms
and the computational cost of predicates (Debray et al. 1997; Debray et al. 1990; Debray
and Lin 1993), including user-deflned resources (Navas et al. 2007). The cost bounds are
expressed as functions on the sizes of the input arguments and yield the number of resolu-
tion steps. Note that obtaining a flnite upper bound on cost also implies proving termination
of the predicate.

As an example, the following assertion is part of the output of the lower-bounds analysis
(that also includes a non-failure analysis, without which a trivial lower bound of 0 would
be derived):
:- true pred conc(A,B,C) : (list(A), list(B), var(C))

=> (list(A), list(B), list(C),

size_lb(A,length(A)), size_lb(B,length(B)),

size_lb(C,length(B)+length(A)))

+ (not_fails, covered, steps_lb(length(A)+l)).

Note that in this example the size measure used is list length. The property
size_ib(c,length(B)+iength(A)) means that a (lower) bound on the size of the third
argument of conc/3 is the sum of the sizes of the flrst and second arguments. The inferred
lower bound on computational steps is the length of the flrst argument of conc/3 plus
one. The length /1 property used in the previous assertion is just the length/2 predicate
called using functional syntax, that curries the last argument. CiaoPP currently uses some
predeflned metrics for measuring the "size" of an input, such as list length, term size,
term depth, or integer valué. These are automatically assigned to the predicate arguments
involved in the size and cost analysis according to the previously inferred type information.
A new, experimental versión of the size analyzers is in development that can deal with
user-deflned size metrics (Le., predicates) and is also able to synthesize automatically size
metrics.

5.2 Static (Performance) Verification andDebugging

We now illustrate static verification and debugging, Le., statically proving or disproving
program assertions (Le., specifications). This corresponds to the "Static Comparator" box
in Fig. 8. We focus on verification of the resource usage of programs, such as lower and/or
upper bounds on execution steps or user defined resources, but the process also applies
to more traditional properties such as types and modes. Consider the assertion in line 8
of Fig. 7, which states that nrev should be linear in the length of the (input) argument
A. With compile-time error checking turned on, CiaoPP automatically selects mode, type,

6 Note that in CiaoPP the pred assertions of exported predicates can be used optionally instead of entry.

:- pred qsort(A,B) => (ground(B),sorted_num_list(B)).

:- prop sorted_num_list/1.

sorted_num_list([]) .
sorted_num_list([X]):- num(X).
sorted_num_list([X,Y|Z]):- num(X),num(Y),geq(Y,X),

sorted_num_list([Y IZ]).
qsort ([],[]).
qsort([X|L] ,R) :- partition(L,X,Ll,L2),

qsort(L2,R2), qsort(Ll,Rl),
conc(R2, [X|Rl] ,R) .

Fig. 10. An example for run-time checking.

non-failure, and lower/upper-bound cost analyses and issues the following error message
(corresponding to the "compile-time error" exit in Fig. 8):
ERROR: False a s se r t i on :

: - pred nrev(A, _) : l i s t (A) + steps_o(length(A))
because on comp nrev:nrev(A,_) :
[generic_comp] : s teps_lb(0.5*exp(length(A),2)+l .5*length(A)+l)

This message states that nrev will take at least lensth(A)2+3 length(A) + 1 r e s o l u t i o n s t e p s

(a safe lower bound inferred by the cost analyzer), while the assertion requires the cost to
be in 0(length(A)) resolution steps. As a result, the worst case asymptotic complexity
stated in the user-provided assertion is proved wrong by the lower bound cost assertion
inferred by the analysis. Note that upper-bound cost assertions can be proved to hold by
means of upper-bound cost analysis if the bound computed by analysis is lower or equal
than the upper bound stated by the user in the assertion. The converse holds for lower-
bound cost assertions (Bueno et al. 1997; López-García et al. 2010). Thanks to this func-
tionality, CiaoPP can also certify programs with resource consumption assurances as well
as efflciently checking such certiflcates (Hermenegildo et al. 2004).

5.3 Run-Time Checking

As mentioned before, (parts of) assertions which cannot be verifled at compile time (see
again Fig. 8) are translated into run-time checks via a program transformation. As an ex­
ample, consider the assertion, property deflnitions, and (wrong) deflnition of q so r t /2 in
Fig. 10 (where p a r t i t i o n / 4 and conc/3 are deflned as in Figures 9 and 2 respectively).
The assertion states that q so r t /2 always returns a ground, sorted list of numbers. The
program contains a bug to be discovered. With run-time checking turned on, the following
query produces the listed results:
?- q s o r t ([1 , 2] , X) .
{In / tmp /qso r t . p l
ERROR: (lns 5-5) Run-time check failure in assertion for: qsort:qsort/2.

In *success*, unsatisfied property: sorted_num_list.

ERROR: (lns 13-16) Failed in qsort:qsort/2.}

Two errors are reported for a single run-time check failure: the flrst error shows the ac­
tual assertion being violated and the second marks the flrst clause of the predicate which

violates the assertion. However, not enough information is provided to determine which
literal made the erroneous cali. It is also possible to increase the verbosity level of the mes-
sages and to produce a cali stack dump up to the exact program point where the violation
occurs, showing for each predicate the body literal that led to the violation:
?- set_ciao_flag(rtchecks_callloc,literal),

set_ciao_flag(rtchecks_namefmt,long), use_module('/tmp/qsort.pl').

yes

?- qsort([3,l,2],X).

{In /tmp/qsort.pl

ERROR: (lns 5-5) Run-time check failure in assertion for: qsort:qsort(A,B).

In *success*, unsatisfied property: sorted_num_list(B).

Because: ['B' = [2,l]].

ERROR: (lns 13-16) Failed in qsort:qsort(A,B).

ERROR: (lns 13-16) Failed when invocation of qsort:qsort([X IL],R)

called qsort:qsort(L1,R1) in its body.}

{In /tmp/qsort.pl

ERROR: (lns 5-5) Run-time check failure in assertion for: qsort:qsort(A,B).

In *success*, unsatisfied property: sorted_num_list(B).

Because: ['B' = [3,2,1]] .

ERROR: (lns 13-16) Failed in qsort:qsort(A,B).}

The output makes it easier to lócate the error since the cali stack dump provides the list of
calling predicates. Note that the flrst part of the assertion is not violated, since B is ground.
However, on success the output of q so r t /2 is a sorted list but in reverse order, which gives
us a hint: the variables Rl and R2 in the cali to conc/3 are swapped by mistake.

5.4 Unit Testing

Unit tests need to express on one hand what to execute and on the other hand what to check
(at run time). A key characteristic of the Ciao approach to unit testing (see (Mera et al.
2009) for a full description) is that it (re)uses the assertion language for expressing what
to check. This avoids redundancies and allows reusing the same assertions and properties
used for static and/or run-time checking. However, the assertion language does include a
minimal number of additional elements for expressing what to execute. In particular, it
includes the following assertion schema: :- texec Pred [: Precond] [+ ExecProps].

which states that we want to execute (as a test) a cali to Pred with its variables instantiated
to valúes that satisfy Precond. ExecProps is a conjunction of properties describing how to
drive this execution. As an example, the assertion:

: - texec conc(A, B, C) : (A=[l,2] ,B=[3] , v a r (O) .

expresses that the testing harness should execute a cali to conc/3 with the flrst and second
arguments bound to [1,2] and [3] respectively and the third one unbound.

In our approach many of the properties that can be used in Precond (e.g., types) can
also be used as valué generators for those variables, so that input data can be automatically
generated for the unit tests (see e.g., the technique described in (Gómez-Zamalloa et al.
2008)). However, there are also some properties that are speciflc for this purpose, such as,
e.g., random valué generators.

We can define a complete unit test using the texec assertion together with other asser­
tions expressing what to check at run time such as, for example:

: - check s u c c e s s c o n c (A , B , C) : (A = [1 , 2] , B = [3] , v a r (C)) => C = [l , 2 , 3] .
: - check comp c o n c (A , B , C) : (A = [1 , 2] , B = [3] , v a r (C)) + n o t _ f a i l s .

The success assertion states that if a cali to conc/3 with the flrst and second arguments
bound to [1,2] and [3] respectively and the third one unbound terminates with success,
then the third argument should be bound to [1 ,2 ,3] . The comp assertion says that such a
cali should not fail.

One additional advantage of Ciao's unifled framework is that the execution expressed
by a Precond in a texec assertion for unit testing can also trigger the checking of parts
of other assertions that could not be checked at compile time and thus remain as run-time
checks. This way, a single set of run-time checking machinery can deal with both run-time
checks and unit tests. Conversely, static checking of assertions can safely avoid (possibly
parts of) unit test execution (see Fig. 8 again), so that sometimes unit tests can be checked
without ever running them.

Finally, the system provides as syntactic sugar another predicate assertion schema, the
t e s t schema: : - t e s t Pred [: Precond] [=> Postcond] [+ CompExecProps].

This assertion is interpreted as the combination of the following three assertions:

: - t e x e c Pred [: Precond] [+ ExecProps].
:- check s u c c e s s Pred [: Precond] [=> Postcond].
:- check comp Pred [: Precond] [+ CompProps] .

For example, the assertion:

: - t e s t c o n c (A , B , C) : (A= [1 ,2] ,B= [3] , v a r (C))=> C = [l , 2 , 3] + n o t . f a i l s .

is conceptually equivalent to the three (texec, success, comp) shown previously as exam-
ples (CompExecProps being the conjunction oí ExecProps and CompProps).

The assertion language not only allows checking single solutions (as it is done in the
previous t e s t assertion for conc/3), but also múltiple solutions to calis. In addition, it
includes a set of predeflned properties that can be used in ExecProps that are specially
useful in the context of unit tests, including: an upper bound N on the number of solu­
tions to be checked (try_sols (N)); expressing that the execution of the unit test should
be repeated N times (times (N)); that a test execution should throw a particular exception
(exception(Excep)); or that a predicate should write a given string into the current out-
put stream (user.output (Str ing)) or the current error stream (user .error (Str ing)) .
Similarly, properties are provided that are useful in Precond, for example, to genérate ran-
dom input data with a given probability distribution (e.g., for floating point numbers, in­
cluding special cases like infinite, not-a-number, or zero with sign).

The testing mechanism has proved very useful in practice. For example, with it we have
developed a battery of tests that are used for checking ISO-Prolog compliance in Ciao. The
set contains 976 unit tests, based on the Stdprolog application (Szabó and Szeredi 2006).

6 High Performance with Less Effort

A potential beneflt of strongly typed languages is performance: the compiler can genérate
more efflcient code with the additional type and mode information that the user provides.
Performance is a good thing, of course. However, it is also attractive to avoid putting the
burden of efflcient compilation on the user by requiring the presence of many program

declarations: the compiler should certainly take advantage of any information given by the
user, but if the information is not available, it should do the work of inferring such program
properties whenever possible. This is the approach taken in Ciao: as we have seen before,
when assertions are not present in the program, Ciao's analyzers try to infer them. Most of
these analyses are performed at the kernel language level, so that the same analyzers are
used for several of the supported programming models.

High-level optimization: the information inferred by the global analyzers is used to per-
form high-level optimizations, including múltiple abstract specialization (Puebla and Hermenegildo
1995), partial evaluation (Puebla et al. 2006), dead code removal, goal reordering, reduc-
tion of concurrency / dynamic scheduling (Puebla et al. 1997), etc.

Optimizing compilation: the objective is again to achieve the best of both worlds: with
no assertions or analysis information, the low-level Ciao compiler (ciaoc (Cabeza and
Hermenegildo 2000b)) generates code which is competitive in speed and size with the best
dynamically typed systems. And then, when useful information is present, either coming
from the user or inferred by the system analyzers, the experimental optimizing compiler,
optimcomp (see, e.g., (Morales et al. 2004) for an early description) can produce code that
is competitive with that of strongly-typed systems. Ciao's highly optimized compilation
has been successfully tested, for example, in applications with tight memory and real-time
constraints (Carro et al. 2006), obtaining a 7-fold speed-up w.r.t. the default bytecode com­
pilation. The performance of the latter is already similar to that of state-of-the-art abstract
machine-based systems. The application involved the real-time spatial placement of sound
sources for a virtual reality suit, and ran in a small ("Gumstix") processor embedded within
a headset. Interestingly, this performance level is only around 20-40% slower than a com­
parable (but more involved) implementation in C of the same application.

ImProlog: driven by the need of producing efflcient final code in extreme cases, we have
also introduced in the more experimental parts of the system the design and compilation
of a variant of Prolog (which we termed ImProlog) which, besides assertions for types
and modes, introduces imperative features such as low-level pointers and destructive as-
signment. This restricted subset of the merge of the imperative and logic paradigms is
present (in beta) in the optimcomp branch and has been used to write a complete WAM
emulator including its instructions (Morales et al. 2009), and part of its lower-level data
structures (Morales et al. 2008). This source code is subject to several analysis and opti­
mization stages to genérate highly efflcient C code. This approach is backed by some early
performance numbers, which show this automatically generated machine to be on average
just 8% slower than that of a highly optimized emulator, such as YAP 5.1.2 (Costa et al.
2002) (and actually faster in some benchmarks), and 44% faster than the stock Ciao emula­
tor. In this case, some of the annotations ImProlog takes advantage of cannot be inferred by
the analyzers because, for example, they address issues (such as word size) which depend
on the targeted architecture, which must be entered by hand.

Automatic parallelization: a particularly interesting optimization performed by CiaoPP,
in the same vein of obtaining high performance with less effort from the programmer, and
which is inherited from the &-Prolog system, is automatic parallelization (Hermenegildo
1997; Gupta et al. 2001). This is specially relevant nowadays given that the wide availabil-
ity of multicore processors has made parallel computers mainstream. We illustrate this by

f
q

'i

sort([X|L] ,R)
part ition (L
(indep(Ll,

qsort (L2

qsort(L2

:-
X,L1,
L2) -
R2) &

R2) ,
conc(Rl , [X|R2] ,R)

L2) ,
>
qsort(Ll

qsoí t(Ll,

\

,R1)

Rl)) ,

J

f

qsort([X|L] , R) : -
partition(L,X,Ll,L2)
qsort(L2.R2) k
qsort(Ll,Rl),
conc(Rl,[X|R2],R).

V;

\

)
Fig. 11. Parallel QuickSort w/run-time checks. Fig. 12. Parallel QuickSort.

means of a simple example using goal-level program parallelization (Bueno et al. 1999;
Casas et al. 2007). This optimization is performed as a source-to-source transformation,
in which the input program is annotated with parallel expressions as a result. The paral­
lelization algorithms, or annotators (Muthukumar et al. 1999), exploit parallelism under
certain independence conditions, which allow guaranteeing interesting correctness and no-
slowdown properties for the parallelized programs (Hermenegildo and Rossi 1995; García
de la Banda et al. 2000). This process is made more complex by the presence of variables
shared among goals and pointers among data structures at run time.

Consider the program in Fig. 9 (with conc/3 deflned as in Fig. 2). A possible paral­
lelization (obtained in this case with the "MEL" annotator (Muthukumar et al. 1999)) is
shown in Fig. 11, which means that, provided that Ll and L2 do not have variables in com-
mon at run time, then the recursive calis to qsort can be run in parallel. Assuming that
l t / 2 and geq/2 in Fig. 9 need their arguments to be ground (note that this may be either
inferred by analyzing the implementation of l t / 2 and geq/2 or stated by the user using
suitable assertions), the information collected by the abstract interpreter using, e.g., mode
and sharing/freeness analysis, can determine that Ll and L2 are ground after p a r t i t i o n ,
and therefore they do not have variables to share. As a result, the independence check
and the corresponding conditional is simplifled via abstract executability and the annotator
yields instead the code in Fig. 12, which is much more efflcient since it has no run-time
check. This check simpliflcation process is described in detail in (Bueno et al. 1999) where
the impact of abstract interpretation in the effectiveness of the resulting parallel expressions
is also studied.

The checks in the above example aim at strict independent and-parallelism (Hermenegildo
and Rossi 1995). However, the annotators are parametrized on the notion of indepen­
dence. Different checks can be used for different independence notions: non-strict inde­
pendence (Cabeza and Hermenegildo 1994), constraint-based independence (García de la
Banda et al. 2000), etc. Moreover, all forms of and-parallelism in logic programs can be
seen as independent and-parallelism, provided the deflnition of independence is applied at
the appropriate granularity level.7

Ciao currently includes low-level, native support for the creation of (POSIX-based)
threads at the O.S. level which are used as support for independent and-parallel execu-
tion (Casas et al. 2008). Task stealing is used to achieve independence between the number
of O.S. threads and the number of parallel goals (Hermenegildo 1986; Hermenegildo and
Greene 1991).

7 For example, stream and-parallelism can be seen as independent and-parallelism if the independence of "bind-
ings" rather than goals is considered.

Granularity control: the information produced by the CiaoPP cost analyzers is also used
to perform combined compile-time/run-time resource control. An example of this is task
granularity control (López-García et al. 1996) of parallelized code. Such parallel code can
be the output of the process mentioned above or code parallelized manually. In general,
this run-time granularity control process includes computing sizes of terms involved in
granularity control, evaluating cost functions, and comparing the result with a threshold to
decide between parallel and sequential execution. However, there are optimizations to this
general process, such as cost function simpliflcation and improved term size computation.

Visualization of parallel executions: a tool (VisAndOr (Carro et al. 1993)) for depicting
parallel executions was developed and used to help programmers and system developers
understand the program behavior and task scheduling performed. This is very useful for
tuning the abstract machine and the automatic parallelizers.

7 Incremental Compilation and Other Support
for Programming in the Small and in the Large

In addition to all the functionality provided by the preprocessor and assertions, program­
ming in the large is further supported again by the module system (Cabeza and Hermenegildo
2000a). This design is the real enabler of Ciao's modular program development tools, ef-
fective global program analysis, modular static debugging, and module-based automatic
incremental compilation and optimization. The analyzers and compiler take advantage of
the module system and module dependencies to reanalyze / recompile only the required
parts of the application modules after one or more of them is changed, automatically and
implicitly, without any need to define "makefiles" or similar dependency-related additional
files, or to cali explicitly any "make"-style command.

Application deployment is enhanced beyond the traditional Prolog top level, since the
system offers a full-featured interpreter but also supports the use of Ciao as a scripting
language and a compiled language. Several types of executables can be easily built, from
multiarchitecture bytecode executables to single-architecture, standalone executables. Múl­
tiple platforms are supported, including the very common Linux, Windows, Mac OS X, and
other Un*x-based OSs, such as Solaris. Due to the explicit effort in keeping the require-
ments of the virtual machine to a minimum, the effort of porting to new operating systems
has so far been reduced. Ciao is known to run on several architectures, including Intel,
Power PC, SPARC, and XScale / ARM processors.

Modular distribution of user and system code in Ciao, coupled with modular analysis,
allows the generation of stripped executables containing only those builtins and libraries
used by the program. Those reduced-size executables allow programming in the small
when strict space constraints are present.

Flexible development of applications and libraries that use components written in sev­
eral languages is also facilitated, by means of compiler and abstract machine support for
múltiple bidirectional foreign interfaces to C/C++, Java, Tcl/Tk, SQL databases (through
a notion of predicate persistence), etc. The interfaces are described by using assertions, as
previously stated, and any necessary glue code is automatically generated from them.

_^ Einasa: ;|3Ufi.pJ ¡JiMip/ijaofr.pJJ r^ l f ^nr^ l
File Edit Options Buffers. Tools CiaoSys CiaoDbg CiaoPP LPdoc CiaoOpts CiaoHelp Tagging Help

i: • • * si m -;Í u, m m a - c«© e c * # @ ® e @
^ Q . . . Preprocessor Option Browser g j

Se lec t Menú L e v e l :
Se lec t A c t i o n Group:

A n a l y s i s Domain S e l e c t i o n :
Modules t o Check:

Report N o n - V e r i f i e d flssrts:
Genérate CT Checking Outpu t :

Genérate C e r t i f í c a t e :
Perform Op t im iz i ng C o m p i l a t i o n :

Menú C o n f i g u r a t i o n Ñame:

naive
check_assertions

auto
c u r r j o d
uarning

of f
o f f
none

V

v
v
v
v
v
v

none

X V

-

| — : * * "CiaoPP I n t e r f a c e » A l l (13,43) (Fundamental)

Fig. 13. Menú for compile-time / run-time checking of assertions.

8 An Advanced Integrated Development Environment

Another design objective of Ciao has been to provide a truly productive program devel­
opment environment that integrates all of the tools mentioned before in order to allow the
development of correct and efflcient programs in as little time and with as little effort as
possible. This includes a rich graphical development interface, based on the latest graph-
ical versions of Emacs and offering menú and widget-based interfaces with direct access
to the top-level/debugger, preprocessor, and autodocumenter, as well as an embeddable
source-level debugger with breakpoints, and several proflling and execution visualization
tools. In addition, a plugin with very similar functionality is also available for the Eclipse
programming environment.8

The programming environment makes it possible to start the top level, the debugger, or
the preprocessor, and to load the current module within them by pressing a button or via
a pair of keystrokes. Tracing the execution in the debugger makes the current statement in
the program be highlighted in an additional buffer containing the debugged file.

The environment also provides automated access to the documentation, extensive syntax
highlighting, auto-completion, auto-location of errors in the source, etc., and is highly cus-
tomizable (to set, for example, alternative installation directories or the location of some
binaries). The direct access to the preprocessor allows interactive control of all the static
debugging, veriflcation, and program transformation facilities. For example, Fig. 13 shows
the menú that allows choosing the different options for compile-time and run-time check­
ing of assertions (this menú is the "naive" one, that offers reduced and convenient defaults
for all others; selecting "expert" mode allows changing all options).

As another example, Fig. 14 shows CiaoPP indicating a semantic error in the source. In
particular, it is the cost-related error discussed in Section 5.2 where the compiler detects
(statically!) that the deflnition of nrev does not comply with the assertion requiring it to
be of linear complexity.

The direct access to the auto-documentation facilities (Hermenegildo 2000) allows the

8 Seehttp://eclipse.ime.usp.br/projetos/grad/plugin-prolog/index.html.

http://eclipse.ime.usp.br/projetos/grad/plugin-prolog/index.html

File Edit Options Buffers TQQIS CiaoSys CiaoDbg CiaoPP LPdoc CiaoOpts CiaoHelp Help

. :- module(_, [nrev/2], [assertions, nativeprops, functional]).
:- entry nrev/2 : {list, ground} * var.
:- use_module(someprops).

:- pred nrev(A, B) : list(A) => list(B).
:- pred nrev(A, B) : list_of(color, A) => list_of(color, B).
:- pred nrev(A, B) list(A) + (not_fails, is_det, terminates).

| :Q pred nrev(A, _) list(A) + steps_o(length(A)).

nrev([]) := [].
nrev([H|L]) := -conc(nrev(L),[H]).

:- pred conc(A,B,C) : list(A) => size_ub(C,length(A)+length(B))
+ steps_o(length(A)).

conc([] , L) := L.
conc([H|L], K) := [H I conc(L,K)].

— : — nrev.pl All (8,1) (Ciao)

{ERROR (ctchecks_pred_messages): (Ins 8-8) False assertion:
:- check comp nrev(A,B)

: list(A)
+ steps_o(length(A)).

because
on comp nrev:nrev(A,_) :

I [[]generic_comp] : steps_ub (0 . 5*exp (length (A) , 2) +1. 5*length (A) +1) , steps_lb (0.5**
« exp(length(A),2)+1.5*length(A)+1) ,not_fails,covered,mut_exclusive,is_det

|-1: * * *Ciao-Preprocessor* 97% (27TT01 (Clao/CiaQPP/LPdQC Listener: m n) 1

Fig. 14. Error location in the source -a cost error.

easy generation of human-readable program documentation from the current file in a vari-
ety of formats from the assertions, directives, and machine-readable comments present in
the program being developed or in the system's libraries, as well as all other program infor-
mation available to the compiler. This direct access to the documenter and on a per-module
basis is very useful in practice for incrementally building documentation and making sure
that, for example, cross references between files are well resolved and that the documenta­
tion itself is well structured and formatted.

9 Some Final Thoughts: Dynamic vs. Static Languages, Parallelism

We now provide as conclusions some final thoughts regarding how the now fairly classical
Ciao approach fares in the light of recent trends. We argüe that in fact many of the motiva-
tions and ideas behind the development of Ciao and CiaoPP over the years have acquired
presently even more importance.

The environment in which much software needs to be developed nowadays (decoupled
software development, use of components and services, increased interoperability con-
straints, need for dynamic update or self-reconfiguration, mash-ups) is posing requirements
which align with the classical arguments for dynamic languages but which in fact go be-
yond them. Examples of often required dynamic features include making it possible to
(partially) test and verify applications which are partially developed, and which will never
be "complete" or "final," or which evolve over time in an asynchronous, decentralized
fashion (e.g., software service-based systems). These requirements, coupled with the in-
trinsic agility in development of dynamic programming languages such as Python, Ruby,
Lúa, JavaScript, Perl, PHP, etc. (with Scheme or Prolog also in this class) have made such
languages a very attractive option for a number of purposes that go well beyond simple

http://nrev.pl

scripting. Parts written in these languages often become essential components (or even the
whole implementation) of MI, mainstream applications.

At the same time, detecting errors at compile time and inferring properties required
to optimize programs are still important issues in real-world applications. Thus, strong
arguments are also made for static languages. For example, modern logic and functional
languages (e.g., Mercury (Somogyi et al. 1996) or Haskell (Hudak et al. 1992)) impose
strong type-related requirements such as that all types (and, when relevant, modes) have
to be deflned explicitly or that all procedures have to be "well-typed" and "well-moded."
One argument supporting this approach is that it clarines interfaces and meanings and
facilitates "programming in the large" by making large programs more maintainable and
better documented. Also, the compiler can use the static information to genérate more
speciflc code, which can be better in several ways (e.g., performance-wise).

In the design of Ciao we certainly had the latter arguments in mind, but we also wanted
Ciao to be useful (as the scripting languages) for highly dynamic scenarios such as those
listed above, for "programming in the small," for prototyping, for developing simple scripts,
or simply for experimenting with the solution to a problem. We felt that compulsory type
and mode declarations, and other related restrictions, can sometimes get in the way in these
contexts.

The solution we carne up with involves the rich Ciao assertion language and the Ciao
methodology for dealing with such assertions (Bueno et al. 1997; Hermenegildo et al.
1999; Puebla et al. 2000b), which implies making a best effort to infer and check these
properties statically, using powerful and rigorous static analysis tools based on safe ap-
proximations, while accepting that complete veriflcation or validation may not always be
possible and run-time checks may be needed. This approach opens up the possibility of
dealing in a uniform way with a wide variety of properties besides types (e.g., rich modes,
determinacy, non-failure, sharing/aliasing, term linearity, cost,...), while at the same time
making assertions optional. We argüe that this solution has made Ciao very useful for
programming both in the small and in the large, combining effectively the advantages of
the strongly typed and untyped language approaches. In contrast, systems which focus ex-
clusively on automatic compile-time checking are often rather strict about the properties
which the user can write. This is understandable because otherwise the underlying static
analyses are of little use for proving the assertions.

In this sense, the Ciao model is related to the soft typing approach (Cartwright and
Fagan 1991), but without being restricted to types. It is also related to the NU-Prolog
debugger (Naish et al. 1989), which performed compile-time checking of decidable (reg­
ular) types and also allowed calling Prolog predicates at run time as a form of dynamic
type checks. However, as mentioned before, compile-time inference and checking in the
Ciao model is not restricted to types (ñor requires properties to be decidable), and it draws
many new synergies from its novel combination of assertion language, properties, cer-
tiflcation, run-time checking, testing, etc. The practical relevance of the combination of
static and dynamic features is in fact illustrated by the many other languages and frame-
works which have been proposed lately aiming at bringing together ideas of both worlds.
This includes recent work in gradual typing for Scheme (Tobin-Hochstadt and Felleisen
2008) (and the related PLT-Scheme/Racket language) or Prolog (Schrijvers et al. 2008),
the recent uses of "contracts" in veriflcation (Logozzo et al.), and the pragmatic view-

point of (Lamport and Paulson 1999), but applied to programming languages rather than
speciflcation languages. The flfth edition of ECMAScript, on which the JavaScript and Ac-
tionScript languages are based, includes optional (soft-)type declarations to allow the com-
piler to genérate more efflcient code and detect more errors. The Tamarin project (Mozilla
2008) intends to use this additional information to genérate faster code. The RPython (An-
cona et al. 2007) language imposes constraints on the programs to ensure that they can
be statically typed. RPython is moving forward as a general purpose language. This line
has also brought the development of safe versions of traditional languages, such as, e.g.,
CCured (Necula et al. 2005) or Cyclone (Jim et al. 2002) for C, as well as of systems
that offer capabilities similar to those of the Ciao assertion preprocessor, such as Deputy
(h t tp : / /deputy . es . berkeley. edu/) or Spec# (Leavens et al. 2007).

We believe that Ciao has pushed and is continuing to push the state of the art in solving
this currently very relevant and challenging conundrum between statically and dynami-
cally checked languages. It pioneered what we believe is the most promising approach in
order to be able to obtain the best of both worlds: the combination of a flexible, multi-
purpose assertion language with strong program analysis technology. This allows support
for dynamic language features while at the same time having the capability of achieving
the performance and efflciency of static systems. We believe that a good part of the power
of the Ciao approach also comes from the synergy that arises from using the same frame-
work and assertion language for different tasks (static veriflcation, run-time checking, unit
testing, documentation, . . .) and its interaction with the design of Ciao itself (its module
system, its extensibility, or the support for predicates and constraints). The fact that proper-
ties are written in the source language is instrumental in allowing assertions which cannot
be statically verifled to be translated easily into run-time checks, and this is instrumental
in turn in allowing users to get some beneflts even if a certain property cannot be veri­
fled at compile time. The assertion language design also allows a smooth integration with
unit testing. Moreover, as (parts of) the unit tests that can be verifled at compile time are
eliminated, sometimes unit tests can be checked without ever running them.

Another interesting current trend where Ciao's early design choices have become quite
relevant is parallelism. Multi-core processors are already the norm, and the number of cores
is expected to grow in the foreseeable future. This has renewed the interest in language-
related designs and tools which can simplify the intrinsically difflcult (Karp and Babb
1988) but currently necessary task of parallelizing programs. In the Ciao approach pro-
grammers can choose between expressing manually the parallelism with high-level con-
struets, letting the compiler discover the parallelism, or a combination of both. The par-
allelizer also checks manual parallelizations for correetness and, conversely, programmers
can easily inspect and improve the (source level) parallelizations produced by the compiler.
These capabilities rely (again) on the use of CiaoPP's powerful, modular, and incremen-
tal abstract interpretation-based static program analyzers. This approach was pioneered by
&-Prolog and Ciao (arguably one of the flrst direct uses of abstract interpretation in a real
compiler), and seems the most promising nowadays, being adopted by many systems (see,
e.g., (Hermenegildo 1997) for further discussion).

Probing Further. The reader is encouraged to explore the system, its documentation, and
the tutorial papers that have been published on it. At the time of writing, work is progress-
ing on the new 1.14 system versión which includes signiflcant enhancements with respect
to the previous major reléase (1.10). In addition to the autodocumenter, new versions also
include within the default distribution the CiaoPP preprocessor (initially beta versions),
which was previously distributed on demand and installed separately. The latest versión
of Ciao, 1.13, which is essentially a series of reléase candidates for 1.14 has now been
available for some time from the Ciao web site (snapshots) and subversión repository.

Contad I download info I tícense: the latest versions of Ciao can be downloaded from
h t t p : //www. ciaohome. org or h t t p : //www. c l i p l a b . org. Ciao is free software pro-
tected to remain so by the GNU LGPL license, and can be used freely to develop both free
and commercial applications.

References

AIT-KACI, H. 1993. An Introduction to LIFE - Programming with Logic, Inheritance, Functions
and Equations. In Proceedings of the 1993 International Symposium on Logic Programming,
D. Miller, Ed. MIT Press, 52-68.

ALBERT, E., PUEBLA, G., AND HERMENEGILDO, M. 2008. Abstraction-Carrying Code: A Model
for Mobile Code Safety. New Generation Computing 26, 2.

ANCONA, D., ANCONA, M., CUNI, A., AND MATSAKIS, N. D. 2007. RPython: a Step towards
Reconciling Dynamically and Statically Typed OO Languages. In DLS'07. ACM, 53-64.

BRUYNOOGHE, M. 1991. A Practical Framework for the Abstract Interpretation of Logic Programs.
Journal of Logic Programming 10, 91-124.

BUENO, F., CABEZA, D., CARRO, M., HERMENEGILDO, M., LÓPEZ-GARCÍA, P., AND PUEBLA-

(EDS.) , G. 2009. The Ciao System. Ref. Manual (vi.13). Tech, rep., School of Computer Science,
TU. of Madrid (UPM). Available at h t t p : //www. ciaohome. org.

BUENO, F., DERANSART, P., DRABENT, W., FERRAND, G., HERMENEGILDO, M., MALUSZYN-

SKI, L, AND PUEBLA, G. 1997. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. ofthe 3rd. Int'l WS on Automated Debugging-
AADEBUG. U. Linkoping Press, 155-170.

BUENO, F., GARCÍA DE LA BANDA, M., AND HERMENEGILDO, M. 1999. Effectiveness of Ab­

stract Interpretation in Automatic Parallelization: A Case Study in Logic Programming. ACM
TOPLAS21, 2 (March), 189-238.

BUENO, R, LÓPEZ-GARCÍA, R, AND HERMENEGILDO, M. 2004. Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation. In FLOPS'04. Number 2998 in LNCS. Springer-Verlag,
100-116.

CABEZA, D. AND HERMENEGILDO, M. 1994. Extracting Non-strict Independent And-parallelism
Using Sharing and Freeness Information. In SAS'94. Number 864 in LNCS. Springer-Verlag,
297-313.

CABEZA, D. AND HERMENEGILDO, M. 1995. Distributed Concurrent Constraint Execution in the
CIAO System. In COMPULOG-NET95. U. Utrecht / T.U. Madrid, Utrecht, NL.

CABEZA, D. AND HERMENEGILDO, M. 2000a. A New Module System for Prolog. In International
Conference CL2000. LNAI, vol. 1861. Springer-Verlag, 131-148.

CABEZA, D. AND HERMENEGILDO, M. 2000b. The Ciao Modular, Standalone Compiler and Its
Generic Program Processing Library. In Special hsue on Parallelism and Implementation of(C)LP
Systems. ENTCS, vol. 30(3). Elsevier - North Holland.

CABEZA, D. AND HERMENEGILDO, M. 2001. Distributed WWW Programming using (Ciao) Pro­
log and the PiLLoW Library. TPLP 1, 3 (May), 251-282.

CARRO, M., GÓMEZ, L., AND HERMENEGILDO, M. 1993. Some Paradigms for Visualizing Paral-
lel Execution of Logic Programs. In ICLP '93. MIT Press, 184-201.

CARRO, M. AND HERMENEGILDO, M. 1999. Concurrency in Prolog Using Threads and a Shared
Datábase. In 1999 International Conference on Logic Programming. MIT Press, Cambridge, MA,
USA, 320-334.

CARRO, M., MORALES, L, MULLER, H., PUEBLA, G., AND HERMENEGILDO, M. 2006. High-

Level Languages for Small Devices: A Case Study. In Compilers, Architecture, and Synthesis for
Embedded Systems, K. Flautner and T. Kim, Eds. ACM Press / Sheridan, 271-281.

CARTWRIGHT, R. AND FAGAN, M. 1991. SoftTyping. In PLDI'91. SIGPLAN, ACM, 278-292.

CASAS, A., CABEZA, D., AND HERMENEGILDO, M. 2006. A Syntactic Approach to Combining

Functional Notation, Lazy Evaluation and Higher-Order in LP Systems. In FLOPS'06. 142-162.

CASAS, A., CARRO, M., AND HERMENEGILDO, M. 2007. Annotation Algorithms for Unre-
stricted Independent And-Parallelism in Logic Programs. InLOPSTR'07. Number 4915 inLNCS.
Springer-Verlag, 138-153.

CASAS, A., CARRO, M., AND HERMENEGILDO, M. 2008. A High-Level Implementation of Non-
Deterministic, Unrestricted, Independent And-Parallelism. In 24th International Conference on
Logic Programming (ICLP'08), M. García de la Banda and E. Pontelli, Eds. LNCS, vol. 5366.
Springer-Verlag, 651-666.

CHEN, W. AND WARREN, D. S. 1996. Tabled Evaluation with Delaying for General Logic Pro­
grams. Journal ofthe ACM 43, 1 (January), 20-7'4.

CORREAS, L, GÓMEZ, J. M., CARRO, M., CABEZA, D., AND HERMENEGILDO, M. 2004. A

Generic Persistence Model for CLP Systems (And Two Useful Implementations). In PADL'04.

Number 3057 in LNCS. Springer-Verlag, 104-119.

COSTA, V S., DAMAS, L., REÍS, R., AND AZEVEDO, R. 2002. YAP User's Manual.

http: / /www.dcc.fe.up.pt /~vsc/Yap.

COUSOT, P. AND COUSOT, R. 1977. Abstract Interpretation: a Unifled Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In POPL'77. ACM, 238-
252.

DEBRAY, S. K. AND LIN, N. W. 1993. Cost analysis of logic programs. ACM TOPLAS 15, 5

(November), 826-875.

DEBRAY, S. K., LIN, N.-W., AND HERMENEGILDO, M. 1990. Task Granularity Analysis in Logic

Programs. In Proc. PLDI'90. ACM, 174-188.

DEBRAY, S. K., LÓPEZ-GARCÍA, R, HERMENEGILDO, M., AND LIN, N.-W. 1997. Lower Bound
Cost Estimation for Logic Programs. In ILPS'97. MIT Press.

http://www.dcc.fe.up.pt/~vsc/Yap
http://.up.pt/~vsc/Yap.

EL-KHATIB, O., PONTELLI, E., AND SON, T. C. 2005. Integrating an Answer Set Solver into
Prolog: ASP-PROLOG. In LPNMR. 399-404.

FRÜHWIRTH, T. 2009. Constraint Handling Rules. Cambridge University Press.

GARCÍA DE LA BANDA, M., BUENO, F., AND HERMENEGILDO, M. 1996. Towards Independent

And-Parallelism in CLP. In PLILP'96. Number 1140 in LNCS. Springer-Verlag, 77-91.

GARCÍA DE LA BANDA, M., HERMENEGILDO, M., AND MARRIOTT, K. 2000. Independence in

CLP Languages. ACM TOPLAS 22, 2 (March), 269-339.

GÓMEZ-ZAMALLOA, M., ALBERT, E., AND PUEBLA, G. 2008. On the Generation of Test Data for
Prolog by Partial Evaluation. In Workshop on Logic-basedmethods in Programming Environments

(WLPE'08). 26-43. Report number: WLPE/2008/06.

GUPTA, G., PONTELLI, E., ALI, K., CARLSSON, M., AND HERMENEGILDO, M. 2001. Parallel

Execution of Prolog Programs: a Survey. ACM TOPLAS 23, 4 (July), 472-602.

HANUS ET AL, M. Curry: An Integrated Functional Logic Language.

h t tp : / /www.informat ik .uni -k ie l .de /~mh/curry/ repor t .h tml .

HERMENEGILDO, M. 1986. An Abstract Machine for Restricted AND-parallel Execution of Logic

Programs. In ICLP'86. LNCS, vol. 225. Springer-Verlag, 25^0 .

HERMENEGILDO, M. 1997. Automatic Parallelization of Irregular and Pointer-Based Computations:
Perspectives from Logic and Constraint Programming. In EURO-PAR '97. Number 1300 in LNCS.
Springer-Verlag, 31-46.

HERMENEGILDO, M. 2000. A Documentation Generator for (C)LP Systems. In International

Conference CL2000. LNAI, vol. 1861. Springer-Verlag, 1345-1361.

HERMENEGILDO, M., ALBERT, E., LÓPEZ-GARCÍA, P., AND PUEBLA, G. 2004. Some Tech-
niques for Automated, Resource-Aware Distributed and Mobile Computing in a Multi-Paradigm
Programming System. In EURO-PAR'04. Number 3149 in LNCS. Springer-Verlag, 21-37.

HERMENEGILDO, M. AND GREENE, K. 1991. The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing 9, 3,4, 233-257.

HERMENEGILDO, M., PUEBLA, G., AND BUENO, F. 1999. Using Global Analysis, Partial Speci-
flcations, and an Extensible Assertion Language for Program Validation and Debugging. In The
Logic Programming Paradigm: a 25-Year Perspective. Springer-Verlag, 161-192.

HERMENEGILDO, M., PUEBLA, G., BUENO, F., AND GARCÍA, P. L. 2005. Integrated Program
Debugging, Veriflcation, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming 58, 1-2.

HERMENEGILDO, M. AND ROSSI, F. 1995. Strict and Non-Strict Independent And-Parallelism in
Logic Programs: Correctness, Efflciency, and Compile-Time Conditions. Journal of Logic Pro­
gramming 22, 1, 1^-5.

HERMENEGILDO, M. AND THE CIAO DEVELOPMENT TEAM. 2006. Why Ciao? -An Overview of
the Ciao System's Design Philosophy. Tech. Rep. CLIP7/2006.0, UPM. Available from: h t t p :
/ / c l i p l ab .o rg /pape r s / c i ao -ph i lo sophy-no te - t r . pd f .

HERMENEGILDO, M. ,WARREN, R., AND DEBRAY, S. K. 1992. Global Flow Analysis asa Practical

Compilation Tool. JLP 13, 4 (August), 349-367.

HERMENEGILDO ET AL, M. 1994. Some Methodological Issues in the Design of CIAO - A Generic,
Parallel, Concurrent Constraint System. In Principies and Practice of Constraint Programming.
Number 874 in LNCS. Springer-Verlag, 123-133.

HERMENEGILDO ET AL, M. 1999. The CIAO Multi-Dialect Compiler and System: An Experimen-
tation Workbench for Future (C)LP Systems. In Parallelism and Implementation of Logic and
Constraint Logic Programming. Nova Science, 65-85.

HOLZBAUR, C. 1992. Metastructures vs. Attributed Variables in the Context of Extensible Uniflca-

tion. In PLILP'92. LNCS631, Springer Verlag, 260-268.

HOLZBAUR, C. 1994. SICStus 2.1/DMCAI Clp 2.1.1 L'ser's Manual. University of Vienna.

http://www.informatik.uni-kiel.de/~mh/curry/report.html

HUDAK, P., PEYTON-JONES, S., WADLER, P., BOUTEL, B., FAIRBAIRN, J., FASEL, J., GUZMAN,

M. M., HAMMOND, K., HUGHES, J., JOHNSSON, T., KIEBURTZ, D., NIKHIL, R., PARTAIN,

W., AND PETERSON, J. 1992. Report on the Programming Language Haskell. Haskell Special
Issue, ACMSigplan Notices 27, 5.

JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W., CHENEY, L, AND WANG, Y. 2002.

Cyclone: A safe dialect of c. In USENIXAnnual Technical Conferenee, General Track, C. S. Ellis,
Ed. USENIX, 275-288.

KARP, A. AND BABB, R. 1988. A Comparison of 12 Parallel Fortran Dialects. IEEE Software.

LAMPORT, L. AND PAULSON, L. C. 1999. Should your speciflcation language be typed? ACM

Transactions on Programming Languages and Systems 21, 3 (May), 14.

LEAVENS, G. T., LEINO, K. R. M., AND MÜLLER, P. 2007. Speciflcation and veriflcation chal-

lenges for sequential object-oriented programs. Formal Asp. Comput. 19, 2, 159-189.
LOGOZZO ET AL., F. Clousot. ht tp: / /msdn.microsoft .com/en-us/devlabs/dd491992.

aspx.

LÓPEZ-GARCÍA, P., BUENO, F., AND HERMENEGILDO, M. 2010. Automatic Inference of De-

terminacy and Mutual Exclusión for Logic Programs Using Mode and Type Information. New
Generation Computing 28, 2, 117-206.

LÓPEZ-GARCÍA, P., DARMAWAN, L., AND BUENO, F. 2010. A Framework for Veriflcation and

Debugging of Resource Usage Properties. In Technical Communications ofICLP. LIPIcs, vol. 7.
Schloss Dagstuhl, 104-113.

LÓPEZ-GARCÍA, P., HERMENEGILDO, M., AND DEBRAY, S. K. 1996. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. J. ofSymbolic Computation, Special Issue
on Parallel Symbolic Computation 21, 715-734.

MERA, E., LÓPEZ-GARCÍA, P., CARRO, M., AND HERMENEGILDO, M. 2008. Towards Execution

Time Estimation in Abstract Machine-Based Languages. In PPDP'08. ACM Press, 174-184.

MERA, E., LÓPEZ-GARCÍA, P., AND HERMENEGILDO, M. 2009. Integrating Software Testing
and Run-Time Checking in an Assertion Veriflcation Framework. In ICLP'09. Number 5649 in
LNCS. Springer-Verlag, 281-295.

MORALES, L, CARRO, M., AND HERMENEGILDO, M. 2004. Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In PADL'04. Number 3057 in LNCS.
Springer-Verlag, 86-103.

MORALES, L, CARRO, M., AND HERMENEGILDO, M. 2008. Comparing Tag Scheme Variations

Using an Abstract Machine Generator. In PPDP'08. ACM Press, 3 2 ^ 3 .

MORALES, L, CARRO, M., AND HERMENEGILDO, M. 2009. Description and Optimization of
Abstract Machines in a Dialect of Prolog. Technical Report CLIP4/2009.0, Technical University
of Madrid (UPM), School of Computer Science, UPM. October.

MOZILLA. 2008. Tamarin Project. Available at h t tp : / /www.mozi l la .o rg /pro jec ts /

tamarin/ .

MUTHUKUMAR, K., BUENO, F., DE LA BANDA, M. G., AND HERMENEGILDO, M. 1999. Au-
tomatic Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Independent
And-parallelism. JLP 38, 2 (February), 165-218.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1990. The CDG, UDG, and MEL Methods for

Automatic Compile-time Parallelization of Logic Programs for Independent And-parallelism. In
ICLP'90. MIT Press, 221-237.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1991. Combined Determination of Sharing and

Freeness of Program Variables Through Abstract Interpretation. In ICLP'91. MIT Press, 49-63.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1992. Compile-time Derivation of Variable Depen-

dency Using Abstract Interpretation. JLP 13, 2/3 (July), 315-347.

NAISH, L., DART, P. W., AND ZOBEL, J. 1989. The NU-Prolog Debugging Environment. In
Proceedings ofICLP'89, A. Porto, Ed. MIT Press, 521-536.

http://msdn.microsoft.com/en-us/devlabs/dd491992
http://www.mozilla.org/projects/

NAVAS, L, MERA, E., LÓPEZ-GARCÍA, P., AND HERMENEGILDO, M. 2007. User-Definable Re-

source Bounds Analysis for Logic Programs. In ICLP'07. Number 4670 in LNCS. 348-363.
NECULA, G. C , CONDIT, L, HARREN, M., MCPEAK, S., AND WEIMER, W. 2005. Ccured: type-

safe retrofltting of legacy software. ACM TOPLAS 27, 3, 477-526.
OLMEDILLA, M., BUENO, F., AND HERMENEGILDO, M. 1993. Automatic Exploitation of Non-

Determinate Independent And-Parallelism in the Basic Andorra Model. In LOPSTR'93. Work-
shops in Computing. Springer-Verlag, 177-195.

PIETRZAK, P., CORREAS, L, PUEBLA, G., AND HERMENEGILDO, M. 2006. Context-Sensitive

Multivariant Assertion Checking in Modular Programs. In LPAR'06. Number 4246 in LNCS.
Springer-Verlag, 392^06.

PIETRZAK, P, CORREAS, L, PUEBLA, G., AND HERMENEGILDO, M. 2008. A Practical Type

Analysis for Veriflcation of Modular Prolog Programs. In PEPM'08. ACM Press, 61-70.
PINEDA, A. AND BUENO, F. 2002. The O'Ciao Approach to Object Oriented Logic Programming.

In CICLOPS'02.
PUEBLA, G., ALBERT, E., AND HERMENEGILDO, M. 2006. Abstract Interpretation with Special-

ized Deflnitions. In SAS'06. Number 4134 in LNCS. Springer-Verlag, 107-126.
PUEBLA, G., BUENO, F., AND HERMENEGILDO, M. 2000a. A Generic Preprocessor for Program

Validation and Debugging. In Analysis and Visualization Pools for Constraint Programming.
Number 1870 in LNCS. Springer-Verlag, 63-107.

PUEBLA, G., BUENO, F., AND HERMENEGILDO, M. 2000b. An Assertion Language for Constraint

Logic Programs. In Analysis and Visualization Pools for Constraint Programming. Number 1870
in LNCS. Springer-Verlag, 23-61.

PUEBLA, G., GARCÍA DE LA BANDA, M., MARRIOTT, K., AND STUCKEY, P. 1997. Optimization

of Logic Programs with Dynamic Scheduling. In ICLP'97. MIT Press, 93-107.
PUEBLA, G. AND HERMENEGILDO, M. 1995. Implementation of Múltiple Specialization in Logic

Programs. In PEPM'95. ACM Press, 77-87.
SAGLAM, H. AND GALLAGHER, J. 1995. Approximating Constraint Logic Programs Using Poly-

morphic Types and Regular Descriptions. Technical Report CSTR-95-17, Dep. of Computer Sci­
ence, U. of Bristol, Bristol BS8 1TR.

SCHRIJVERS, T., COSTA, V S., WIELEMAKER, L, AND DEMOEN, B. 2008. Towards Typed

Prolog. In ICLP'08. Number 5366 in LNCS. Springer, 693-697.
SCHULTE, C. AND STUCKEY, P J. 2008. Efflcient Constraint Propagation Engines. POPLAS 31, 1

(December), 2:1-2:43.
SOMOGYI, Z., HENDERSON, F., AND CONWAY, T. 1996. The Execution Algorithm of Mercury: an

Efflcient Purely Declarative Logic Programming Language. JLP 29, 1-3 (October), 17-64.
Swedish Institute for Computer Science 2009. SICStus Prolog User's Manual, 4.1.1 ed. Swedish

Institute for Computer Science, PO Box 1263, S-164 28 Kista, Sweden. Available from
h t t p : / / w w w . s i c s . s e / s i c s t u s / .

SZABÓ, P. AND SZEREDI, P. 2006. Improving the ISO Prolog Standard by Analyzing Compliance
TestResults. In ICLP'06. 257-269.

TOBIN-HOCHSTADT, S. AND FELLEISEN, M. 2008. The Design and Implementation of Typed
Scheme. In POPL. ACM, 395-406.

VAN HENTENRYCK, P. AND MlCHAEL, L. 2005. Constraint-BasedLocal Search. MIT Press.
VAUCHERET, C. AND BUENO, F. 2002. More Precise yet Efflcient Type Inference for Logic Pro­

grams. In SAS'02. Number 2477. Springer-Verlag, 102-116.
WARREN, D. 1993. Logic Programming Languages, Parallel Implementations, and the Andorra

Model. ICLP'93.
WARREN, R., HERMENEGILDO, M., AND DEBRAY, S. K. 1988. On the Practicality of Global Flow

Analysis of Logic Programs. In ICLP'88. MIT Press, 684-699.
WOLFRAM, D. 1992. A Semantics for AProlog. Technical report prg-tr-8-92, University of Oxford.

http://www.sics.se/sicstus/

