
ar
X

iv
:1

01
2.

51
23

v1
 [

cs
.P

L]
 2

3
D

ec
 2

01
0

Under consideration for publication in Theory and Practice of Logic Programming 1

XSB: Extending Prolog with Tabled Logic

Programming

TERRANCE SWIFT

CENTRIA, Faculdade de Ciências e Tecnologia

Univ. Nova de Lisboa, 2825-516 Caparica, Portugal

(e-mail: tswift@cs.sunysb.edu)

DAVID S. WARREN

Computer Science Department, SUNY Stony Brook

Stony Brook, New York, USA

(e-mail: warren@cs.sunysb.edu)

submitted 4th October 2009; revised 28th February 2010; accepted 22nd November 2010

Abstract

The paradigm of Tabled Logic Programming (TLP) is now supported by a number of Pro-
log systems, including XSB, YAP Prolog, B-Prolog, Mercury, ALS, and Ciao. The reasons
for this are partly theoretical: tabling ensures termination and optimal known complex-
ity for queries to a large class of programs. However the overriding reasons are practical.
TLP allows sophisticated programs to be written concisely and efficiently, especially when
mechanisms such as tabled negation and call and answer subsumption are supported. As
a result TLP has now been used in a variety of applications from program analysis to
querying over the semantic web. This paper provides a survey of TLP and its applications
as implemented in XSB Prolog, along with discussion of how XSB supports tabling with
dynamically changing code, and in a multi-threaded environment 1.

KEYWORDS: Prolog, Tabling, Implementation, Non-monotonic Reasoning

1 Introduction

Since its inception, a primary goal of XSB has been to expand the areas in which

Prolog is used, by making Prolog more powerful, more efficient, and more declar-

ative. In 1993 when XSB was first released, it supported this goal by including

both tabled resolution for definite programs, which provided it with deductive

database-style features of such systems as Coral (Ramakrishnan et al. 1992) and

LDL (Chimenti et al. 1990). At the time, while XSB was faster than those sys-

tems, it was basically suitable only for research by its developers. Since then, XSB

has become a widely used multi-threaded Prolog that is compliant with most stan-

dards. During this development, XSB’s research focus has continued to be centered

on tabling.

1 To appear in Theory and Practice of Logic Programming (TPLP)

http://arxiv.org/abs/1012.5123v1

2 Terrance Swift and David S. Warren

At one level, the idea behind tabling is simple; subgoals encountered in a query

evaluation are maintained in a table, along with answers to these subgoals. If a

subgoal is re-encountered, the evaluation reuses information from the table rather

than re-performing resolution against program clauses. For instance using tabling,

a Prolog predicate for transitive closure over a graph:

reach(X,Y):- edge(X,Y).

reach(X,Y):- edge(X,Z),reach(Z,Y).

could just as easily be written as

reach(X,Y):- edge(X,Y).

reach(X,Y):- reach(X,Z),edge(Z,Y).

(and, as discussed below, there are good reasons for performing this rewrite).

This simple idea has profound consequences. First, tabling ensures termination

of programs with the bounded term-size property – those programs where the sizes

of subgoals and answers produced during an evaluation are less than some fixed

number. This makes it much easier to reason about termination than in basic Pro-

log. Second, tabling can be extended to evaluate programs with negation according

to the Well-Founded Semantics (WFS) (van Gelder et al. 1991). Third, for queries

to wide classes of programs, such as datalog programs with negation, tabling (per-

haps combined with compiler transformations) can achieve the optimal complexity

for query evaluation. And finally, tabling integrates closely with Prolog, so that

Prolog’s familiar programming environment can be used, and no other language is

required to build complete systems.

These properties have led to the emerging paradigm of Tabled Logic Program-

ming (TLP). The properties of termination and optimal complexity have made TLP

useful to explore state spaces in applications from program analysis to process and

temporal logics. The termination properties together with WFS have supported

a variety of extensions for non-monotonic constructs such as annotations, prefer-

ences, explicit negation, and abduction; and have led to the integration of Prolog

with Answer Set Programming (ASP) through XSB’s XASP package. Together

these properties have fostered combinations of TLP with more declarative and less

procedural knowledge representation approaches.

This paper discusses how XSB supports TLP, and how TLP supports applications

when combined with other features of Prolog such as dynamic code and constraints.

Section 2 describes the tabling features of XSB (including reclaiming table space)

through a series of examples including tabling for definite programs, tabled nega-

tion, call and answer subsumption, and tabled constraints. Section 3 then describes

XSB’s approach to dynamic code, including its integration with TLP via incremen-

tal tabling. Section 4 discusses XSB’s multi-threading. Finally Section 5 discusses

two applications that we consider particularly innovative and significant.

However before proceeding, we briefly consider XSB purely as a Prolog system.

Each version of XSB runs on Linux, Mac OS and Windows (compiled with either

MSVC or Cygwin); for Linux and Mac OS 64-bit compilation is supported in ad-

dition to 32-bit. With a few exceptions, XSB supports the core Prolog standard

The XSB System 3

(ISO-IEC 13211-1), the core revision working draft (ISO/IEC DTR 13211-1:2006)

and, as discussed in Section 4, the multi-threading working draft (ISO/IEC DTR

13211-5:2007). XSB also supports constraint logic programming through attributed

variables, the interface to which is nearly identical to that of SWI and YAP Prolog.

As a result, constraint libraries are ported to XSB in a routine manner, and XSB

supports Constraint Handling Rules, CLP(R) and CLP(FD).

2 Tabling By Example

We use a series of examples to introduce various aspects of programming with

tabling. XSB’s tabling is based on SLG resolution (Chen and Warren 1996), with

extensions for call and answer subsumption as described below. This presentation

uses a forest-of-trees model (Swift 1999a) focusing on programming aspects and sys-

tem features needed for tabling support. Accordingly, The presentation is informal;

the full formalism of tabling and its algorithms can be found in the references.

2.1 Definite Programs

From a theoretical perspective SLD, the resolution method underlying Prolog, is

complete in that there is an SLD proof for every correct answer for a query Q to a

program P . However, the search for an SLD proof may not terminate, even when P

is a datalog program. For example, consider ?- reach(1,Y) to the program PLrec:

reach(X,Y):- reach(X,Z),edge(Z,Y). edge(1,2).

reach(X,Y):- edge(X,Y). edge(2,3).

An SLD search tree for this query provides proofs for both of the correct answer

substitutions, Y = 2 and Y = 3. However the SLD tree is infinite, and, when

Prolog’s search strategy is used, both answers lie after an infinite branch. I.e.,

Prolog will go into an infinite loop before deriving the first answer. Indeed, since

the tree is infinite, no complete search will ever terminate.

Example 2.1 Figure 1 shows how the XSB declaration :- table reach/1 affects

the above program and query. A tabled evaluation is represented as an SLG forest

in which each tabled subgoal S is represented by a unique tree with root S :- S,

which represents resolutions of program clauses and answers to prove S. (The head

term conveniently collects the bindings of subcomputations.) The reach predicate

in PLrec is left-recursive and gives rise to a single tabled subgoal, reach(1,Y), and

correspondingly to a forest with a single tree. In Figure 1 each non-root node of the

form K.N where N = (S :- Goals)θ is a clause in which the bindings to a subgoal

S are maintained in Sθ, the goals remaining to prove S are in Goalsθ, and the

order of creation of N within the tabled evaluation is represented by a number, K.

The tabled evaluation of Figure 1 at first resembles that of SLD: a program clause

resolves against the root node to create node 1. However, rather than (fruitlessly)

re-applying the program clause, the computation suspends node 1, since its selected

literal has been seen before, and uses another program clause to create node 2. The

selected literal for node 2, edge(1,Y), has no table declaration so that it is resolved

4 Terrance Swift and David S. Warren

as with SLD and does not create a new tree. Program clause resolution thus creates

the first answer in node 3: a node with an empty body represents an answer. The

computation then resumes node 1 resolving the answer against the selected literal

reach(1,X), and continues to derive the second answer for the query and then to

return the answer to node 1. At that point node 6 is created and fails; no more

resolutions are applicable for reach(1,Y) and it is determined to be completely

evaluated.

4. reach(1,Y):− edge(2,Y) 6. reach(1,Y):− edge(3,Y) 3. reach(1,2):−

5. reach(1,3):−

0. reach(1,Y):− reach(1,Y)

1. reach(1,Y):− reach(1,X),edge(X,Y) 2. reach(1,Y):− edge(1,Y)

Fig. 1. Tabling tree for the query reach(1,Y) to PLrec

While simple, Example 2.1 illustrates several points. First, the evaluation keeps

track of each tabled subgoal S that it encounters. Later if S is selected again, res-

olution will use answers rather than program clauses; if no answers are available,

the computation will suspend at that point and the evaluation will backtrack to

try to derive answers using some other computation path. Once more answers have

been derived, the evaluation resumes the suspended computation. Similarly, once

the computation has backtracked through all answers available for S in the current

state, the computation path will suspend, and resume after further answers are

found. Thus a tabled evaluation is a fixed point computation for a set of interde-

pendent subgoals. The second point is that by keeping a table of subgoals and their

answers, tabling can factor out redundant subcomputations – such as the repeated

SLD resolution of the selected subgoal reach(1,Y). And third, the evaluation mixes

goals to tabled and non-tabled predicates; by default predicates use SLD resolution,

and only use SLG if a table/1 declaration has been made.

At the same time, because Example 2.1 has only a single tabled subgoal, it does

not illustrate other important features of tabling. Consider for instance, the right

recursive form of reach/1 shown in the program PRrec in Figure 2, which also

shows a tabled evaluation of the query ?- reach(1,Y). There are three separate

trees in Figure 2. At an implementation level, a tabled subgoal together with its

answers is maintained by a unique table, so XSB maintains three separate tables

for this evaluation. Note that the tree for reach(1,Y) depends on reach(2,Y)

in node 3, and on reach(3,Y) in node 11. Also, note that in Figure 2 the label

complete is associated with the tree for reach(2,Y). If a subgoal is completed,

many of its computational resources can be reclaimed, as will be described in the

next section. The notion of subgoal dependency can be made precise. In a given

forest, a non-completed subgoal S1 directly depends on a non-completed subgoal S2

The XSB System 5

complete (9a)

17. reach(3,Y):− edge(3,Y)

7. reach(2,Y):− edge(2,Y)

15. reach(3,2) :−

14. reach(3,Y) :− reach(1,Y)

13. reach(3,Y) :− edge(3,Z),reach(Z,Y)

12. reach(3,Y) ;− reach(3,Y)

11. reach(1,Y) :− reach(3,Y)

10. reach(1,2) :−

6. reach(2,Y) :− reach(2,Y)

5. reach(2,Y) :− edge(2,Z),reach(Z,Y)

3. reach(1,Y) :− reach(2,Y)

1. reach(1,Y) :− reach(1,Y)

2. reach(1,Y) :− edge(1,Z), reach(Z,Y)

8. reach(2,2) :−

9. reach(2,2) :−

24. reach(3.3) :−

25. reach(1,3) :−19. reach(1,1) :−

20. reach(3,1) :−

reach(X,Y):− edge(X,Z),reach(Z,Y).
:− table reach/2.

reach(X,Y):− edge(X,Y).

edge(1,2) edge(1,3). edge(2,2). edge(3,1).

4. reach(2,Y) :− reach(2,Y)

23. reach(1,3) :− 22. reach(1,2) :−

21. reach(1,Y) :− edge(1,Y)

16. reach(1,2) :−

18. reach(3,1) :−

Fig. 2. A program PRrec and SLG forest for evaluation of ?- reach(1,Y)

if S2 is the selected atom of a node in the tree for S1; the definition of dependency

is just the transitive closure of direct dependency. The direct dependency relation

for an SLG forest F gives rise to a Subgoal Dependency Graph (SDG(F)). Since

the SDG is a directed graph, a (maximal) set of mutually dependent goals is a

strongly connected component, or (maximal) SCC, and an independent SCC S is

a maximal SCC such that no subgoal in S depends on any subgoal outside of S

(cf. (Marques and Swift 2008)). Note that since the SDG depends on a forest, it

changes as the forest changes, adding dependencies as new literals are selected and

deleting them as subgoals are completed. In Figure 2, there is one independent

SCC consisting of reach(1,Y) and reach(3,Y); however in the earlier forest that

consisted of nodes 1-8, reach(2,Y) is a trivial independent SCC. The importance

of independent SCCs is that their subgoals can be efficiently determined to be

completely evaluated and marked as completed before the tabled evaluation as a

whole is finished.

Scheduling Strategies for Tabling As noted, tabled evaluation has new operations

for creating a new tree, for resolving an answer against a tabled subgoal, and for

6 Terrance Swift and David S. Warren

completing a mutually dependent set of subgoals. The order in which these oper-

ations are applied within an evaluation is determined by a scheduling strategy. By

default XSB uses the scheduling strategy of Local evaluation, which was introduced

in (Freire et al. 1998) and formalized in (Marques and Swift 2008). The key idea

behind Local evaluation is that all operations are performed only in a maximal

independent SCC. An alternate scheduling strategy is Batched evaluation, whose

key idea is to return an answer for a subgoal S to the first node that called S as

soon as the answer is derived.

Local and Batched evaluation differ in that Batched evaluation eagerly returns

answers while Local evaluation may not return any answers out of an SCC until

that SCC is completely evaluated. In general Local evaluation uses less stack space

and is more efficient for answer subsumption (Section 2.5). Batched evaluation may

find first answers faster.

In addition to the decision of whether to used Batched or Local evaluation, we

mention two other principles for programming efficiently using tabling. First, left

recursion is usually faster for computing single-source reachability goals than other

forms of recursion, such as right recursion, as left recursion creates only a single

table, and requires fewer operations. Second, tabling should be used sparingly: for

many predicates tabling will add no benefit although the table will take up space

and time to accumulate it. In certain cases, tabling can actually increase the com-

plexity of a query. For instance in XSB and all other tabled Prologs, the query: ?-

append([a,b,c],[d,e,f],Z) to the tabled version of the normal append predicate

will be quadratic in the size of the query, as the goals append([a,b,c],[d,e,f],Z),

append([b,c],[d,e,f],Z), etc. will be copied into the tables.

Example 2.2 (Analyzing a Process Logic) The analysis of process logics in the

style of Petri Nets will illustrate various types of tabling evaluations. Reachability

is a central problem for Petri Net analysis, to which problems such as liveness,

deadlock-freedom, and the existence of home states can be reduced 2. Elementary

Petri Nets (EPNs) (cf. (Rozenberg and Engelfriet 1998)) are particularly simple

to analyze using tabling. Consider the EPN of Figure 3, which depicts a simple

producer-consumer system, with circles representing places and rectangles repre-

senting transitions. An EPN allows a place to contain at most 1 token; thus a

p1

t4
t2

c2

 b2

p2

t3t1

b1

c1

Fig. 3. A Simple Producer-Consumer Net

2 All programs can be obtained via http://xsb.cvs.sourceforge.net/xsb/mttests/benches.

The XSB System 7

finite EPN has only a finite number of configurations so that determining reach-

ability of an EPN is decidable. Our encoding represents the configuration of an

EPN by an ordered list of its marked places: thus the configuration in Figure 3

is represented as the list [b1,c1,p1]. Next, a transition T is represented by a

list of places with input arcs to T (•T) and output arcs from T (T •). Predicate

trans/3 in Figure 4 represents each transition of Figure 3 as a fact, using XSB’s

trie indexing (see Section 3) to obtain full indexing on list elements. Figure 4 also

shows code for determining reachability in an EPN; for instance solutions to the

goal reachable([b1,c1,p1],X) are configurations reachable from the EPN in Fig-

ure 3. For a transition T to have concession (be able to fire) in a configuration C

of an EPN, every place in •T must be marked, and no place in T • can be marked.

These conditions are checked by hasTransition/2 in Figure 4 which finds sets of

transitions that might have concession. The recursion (in get trans for conf 1/3)

allows indexed calls to transitions to be made based on each place in the input con-

figuration. Each set of possible transitions is then filtered to include only those

transitions that actually have concession using operations on ordered sets (via

check concession/2). hasTransition/2 succeeds when the first of these tran-

sitions is applied; further transitions are applied upon backtracking.

The predicate reachable/2 is a left-recursive reachability definition based on

hasTransition/2. Tabling reachable/2 is useful in two ways: it prevents looping

when a given configuration is reachable from itself; and it filters out redundant

paths to a reachable configuration. With the left recursive form of reachable/2

a typical call, such as reachable([b1,c1,p1],X) with first argument bound and

second free, requires a single tabled subgoal, and has as answers all configurations

reachable from [b1,c1,p1]. XSB’s use of tries to represent tabled subgoals and

their answers allows efficient checking of answers and efficient use of memory, since

the trie data structure factors out common list prefixes (cf. Section 2.3). Using this

program, nets with millions of transitions can be fully traversed in under a minute.

2.2 Tabled Negation

The following example illustrates evaluation of WFS using tabled negation in XSB.

Example 2.3 Figure 5 shows the normal program Pneg where tnot/1 is XSB’s

predicate for tabled negation. The atom p(c) is true in the well-founded model of

Pneg and the schematic ground instantiation of Pneg in Figure 6 illustrates why

this is so. First, p(c) is true because p(a) is false. All except 2 of the 8 ground

instances of clauses for p(a) are false because their first literal, a call to t/3 is false;

the remaining two:

p(a) :- t(a,a,b), tnot p(a), tnot p(b).

p(a) :- t(a,b,a), tnot p(b), tnot p(a).

are false because p(b) is true, so that tnot p(b) is false.

However in a tabled evaluation of p(a) that uses Prolog’s literal selection strategy,

the literal tnot p(a) is selected while evaluating the clause

p(a) :- t(a,b,a), tnot p(a), tnot p(b).

8 Terrance Swift and David S. Warren

1 :- table reachable/2.

reachable(InConf,NewConf):-

reachable(InConf,Conf),

hasTransition(Conf,NewConf).

5 reachable(InConf,NewConf):-

hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-

get_trans_for_conf(Conf,AllTrans),

10 member(Trans,AllTrans),

apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-

get_trans_for_conf_1(Conf,Conf,Trans),

15 flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).

get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-

findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),

20 check_concession(Trans,Conf,Trans1),

get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).

check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-

25 ord_subset(In,Input),

ord_disjoint(Out,Input),!,

check_concession(T,Input,T1).

check_concession([_Trans|T],Input,T1):-

check_concession(T,Input,T1).

30

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-

ord_subtract(Conf,In,Diff),

flatten([Out|Diff],Temp),

sort(Temp,NewConf).

% Prolog representation of the Producer-Consumer Net

:- dynamic trans/2.

:- index(trans/2,trie).

trans([p1],[p2],t1). trans([b2,p2],[p1,b1],t2).

trans([b1,c1],[b2,c2],t3). trans([c2],[c1],t4).

Fig. 4. TLP Program for Analyzing Reachability of Elementary Petri Nets

leading to a loop through negation. At this point, it might be tempting to try

a different search strategy, but it turns out that no deterministic search strategy

can evaluate WFS top-down without encountering loops through negation. The

approach of SLG resolution is to delay the evaluation of a literal involved in such a

loop and then to simplify that literal later if it is determined to be true or false.

Figure 7 illustrates SLG resolution for this query and program. Within the nodes

of Figure 7, the new symbol | separates the unresolved goals to the right from the

delayed goals to the left. In the evaluation state where nodes 1 through 10 have been

The XSB System 9

:- table p/1.

p(b).

p(c) :- tnot p(a).

p(X) :- t(X,Y,Z), tnot p(Y), tnot p(Z).

t(a,a,b). t(a,b,a).

Fig. 5. A program, Pneg

p(b).

p(c):- tnot p(a).

p(a) :- t(a,a,a), tnot p(a), tnot p(a).

p(a) :- t(a,a,b), tnot p(a), tnot p(b).

:

p(a) :- t(a,b,a), tnot p(b), tnot p(a).

:

p(b) :- t(b,b,b), tnot p(b), tnot p(b).

t(a,a,b). t(a,b,a).

Fig. 6. The ground instantiation of Pneg

created, p(b) has been completed, and p(a) and p(c) are in the same SCC. There

are no more clauses or answers to resolve, but p(a) is involved in a loop through

negation in node 5, and nodes 2 and 10 involve p(a) and p(c) in a negative loop 3.

In situations such as this, where all resolution has been performed for nodes in

an SCC and where there are multiple literals that can be delayed, an arbitrary one

is chosen to be delayed first. So the evaluation delays the selected literal of node

2 to generate node 12 producing a conditional answer – an answer with a non-

empty delay list. Next tnot p(a) in node 5 is delayed, failing that computation

path, and tnot p(c) in node 10 is delayed to produce node 15 and failing the final

computation path for p(a). At this stage the computation of the SCC {p(a), p(c)}

is completely evaluated meaning that there are no more operations applicable for

goal literals. Since p(a) is completely evaluated with no answers, conditional or

otherwise, the evaluation determines it to be false and a simplification operation

can be applied to the conditional answer of node 12, leading to the unconditional

answer in node 17.

Example 2.3 illustrates several aspects of tabled negation in XSB. First, the SLG

operations of delay and simplification are used to evaluate according to the WFS.

These operations are implemented at the engine level, along with a mechanism

for determining when tabled literals may be involved in a negative loop. Although

delay and simplification do not affect the complexity of SLG, it is inefficient to

perform them unnecessarily. XSB has been implemented so that it is delay minimal

for a large class of programs (Sagonas et al. 2000). Second, the complexity of WFS

3 In this example, we ignore the effects of early completion which would complete p(b) immedi-
ately upon creation of node 8, obviating the need to create node 9.

10 Terrance Swift and David S. Warren

6 p(a):− | tnot p(b), tnot p(a) 10 p(a):− | tnot p(c), tnot p(b).

9 p(b):− |t(b,Y,Z),tnot p(Y), tnot p(Z).

9a complete

8 p(b) :− |

7 p(b) :− | p(b)

16 fail

15 p(a):− tnot p(c) | tnot p(b).11 fail

14 fail

13 p(a):− tnot p(a) | tnot p(b)

5 p(a):− |tnot p(a),tnot p(b)

4 p(a):− |t(a,Y,Z),tnot p(Y), tnot p(Z).

3 p(a) :− | p(a)

17 p(c) :− |

12 p(c):− tnot p(a) |

1 p(c) :− | p(c)

2 p(c):− | tnot p(a)

Fig. 7. SLG Evaluation of query ?- p(c) to Pneg

is reflected in the cost of operations in the example. While a definite program P

can be evaluated with abstract complexity size(P), the size of P , normal programs

under WFS have abstract complexity atoms(P)× size(P), the number of atoms in

P times the size of P . This complexity is reflected in an evaluation when XSB checks

to see whether loops of dependency are positive or negative: a check that in the

worst case might need to be done once per subgoal in an SCC (Swift et al. 2009).

Practically, these checks are usually performed only once or twice per SCC, even

when the SCCs are large and non-stratified. The result is that WFS evaluation

usually scales linearly with the size of a program: in fact it is difficult to construct

an example that scales with complexity atoms(P)× size(P).

Pneg has a 2-valued well-founded model, but in WFS the truth value of atoms

can be undefined. From our tabling perspective, this means that some conditional

answers may have delayed literals that are never simplified away, such as those in

the program Pnonstrat:

:- table p/1, q/1.

p(1) :- tnot q(1). q(1):- tnot p(1).

The query ?- p(X) will succeed writing X = 1 undefined beneath the command-

line prompt. A call to get residual(p(X),D) allows the conditional answer to be

examined, returning X = 1, D = [tnot(q(1))]. This highlights another feature

of SLG: it can be seen as a program transformation. Given a query Q to a program

P , XSB traverses that part of P that is relevant to proving Q, and creates its

reduction with respect to the well-founded model of P . The tables produced by

query evaluation thus create a residual program that can be meta-interpreted using

get residual/2 or sent to a stable models solver through XSB’s XASP package.

The XSB System 11

XASP (XSB’s Answer Set Programming package) provides several ways in which

information can be sent from XSB to an ASP solver. Version 3.3 of XSB uses smod-

els (Simons et al. 2002), which is included in XSB’s distribution, as its ASP solver.

The simplest way to use XASP is to construct a partial stable model or 2-valued lay-

ered stable model (Pereira and Pinto 2009) from the residual program. For the pre-

ceding program, the query ?- pstable model(q(1),Model,any) will bind Model

to each of the partial stable models for the residual program of q(1) – in this case

first to [p(1)] and then to [q(1)]; ?- pstable model(q(1),Model,restrict)

will restrict the models returned to those in which q(1) is true. Similarly the pred-

icate in all stable models(Lit) will succeed if Lit is true in all stable models,

and there is at least one stable model. Using these routines, XSB can be used as

a query-oriented ASP grounder with both advantages and disadvantages compared

to grounders like lparse and gringo. On the one hand, cardinality or weight con-

straints, which are often used in ASP (Niemelä 1999), cannot be exploited if the

residual program is sent directly to smodels (although XASP has commands to send

such constraints separately to smodels). Additionally, XSB may not be as fast as

a grounder like gringo if a fully grounded program is desired. On the other hand,

XASP is superior for grounding programs that contain recursive data structures

such as lists, for programs where variables are instantiated over large domains, and

for programs and queries where only partial grounding is required.

2.3 Implementation Aspects

So far tabling has been presented almost entirely through the forest of trees model,

which is sufficient for understanding many operational aspects. However, there are

implementation aspects of XSB that are useful in order to mix tabling with full

Prolog, to understand and control the space required by a tabled evaluation, and

to write programs that efficiently use XSB’s tabling subsystem.

Mixing Tabling and Prolog SLD and SLG evaluation can be intermixed arbitrarily

only if a program does not contain side-effects or cuts. A programmer should take

care when using a side effect for, say, I/O in a tabled predicate: such a side-effect will

be executed only the first time a given subgoal is called, and not subsequently when

the table is used. The behavior of cuts with tabled predicates requires explanation.

Version 3.3 of XSB throws an exception if a computation attempts to cut over a

choice point for an incomplete table: that is, a choice point that represents the

root of an SLG tree or an internal node with a selected tabled literal. There is a

semantic reason for this. Suppose a subgoal S is called in two different places in the

computation, place 1 with a cut and place 2 without. If the cut for place 1 removed

a choice point of the above type, it could prohibit the derivation of answers for

place 2, and so give rise to incompleteness. On the other hand, XSB allows cuts

over SLD choice points as well as cuts over choice points for completed tables.

Implementing a Mechanism to Suspend and Resume While details of XSB’s tabling

engine, the SLG-WAM (Sagonas and Swift 1998), are beyond the scope of this pa-

per, we discuss a few aspects that are relevant to its practical use. First, the SLG-

12 Terrance Swift and David S. Warren

WAM implements the ability to suspend and resume a computation by maintaining

multiple computation states within its environment stack, heap, choice point stack

and trail. Whenever a binding is made to a trailed variable, that binding is added

to the trail frame itself, so that the SLG-WAM maintains a forward trail. Suspend-

ing and resuming are thus handled by backtracking to unbind variables, and using

the forward trail to rebind the variables in a resumed path. At various points in

a tabled evaluation, XSB freezes stack space so that the memory for suspended

computation paths is retained; stack space is reclaimed upon completion of sub-

goals. Thus, at a general level, the forest of trees model maps to an implementation

as follows: XSB associates each tabled subgoal with its answers in a table. Each

non-completed tree, minus its answers, is maintained in XSB’s stacks, and its space

is reclaimed upon completion. Heap space is also reclaimed by XSB’s heap garbage

collector, which accounts for the multiple computation paths maintained by the

frozen stacks (Demoen and Sagonas 2001; Castro and Costa 2001).

Differences in the mechanism for suspending and resuming form the main archi-

tectural differences in tabling engines. YAP Prolog also implements the SLG-WAM:

its implementation is currently limited to definite programs, but YAP Prolog also

makes some important optimizations to the SLG-WAM to improve speed (Rocha 2001).

Ciao Prolog implements a different strategy, called CHAT (Demoen and Sagonas 1999),

which suspends by copying (part of) a computation path from the WAM stacks

to a separate area of memory, and resumes by copying the computation path

back into the WAM stacks. CHAT can thus be thought of as an approach based

on copying rather than one based on sharing as with the SLG-WAM (perfor-

mance analysis in (Castro et al. 2002) found the sharing approach to be superior

for many tabled programs). B-Prolog uses a still different approach, called lin-

ear tabling (Zhou and Sato 2003), which rederives a suspended computation path

rather than saving the suspended path in trail frames or in a separate CHAT area.

Reclaiming Table Space Tables factor subcomputations at the price of taking up

space, so that a practical system for tabled Prolog must provide a means to reclaim

the space that tables use. XSB provides a number of predicates that abolish table

space safely, and that support different modes of tabling. Perhaps query-level tabling

is the most common mode, where tables ensure termination or a particular com-

plexity for a user query. A second mode is amortizing tabling where tables reduce

the cost of multiple top-level queries by tabling repeated subcomputations, even

if these subcomputation are not repeated within the same query. A third mode is

user-controlled tabling where an application that uses tabling heavily decides itself

when a table is no longer needed and abolishes it, perhaps deeply within a top-level

query. We offer a brief summary of the approaches taken to support these modes.

Query-level tabling is perhaps the simplest use to support: if the command-line

interpreter (or a similar controller) calls the predicate abolish all tables/0 at

the end of a top-level query, all tables are abolished and their space immediately

reclaimed. Furthermore, semantic problems with reclaiming space for incomplete

tables are avoided. Nonetheless, XSB does not perform this by default, since there

The XSB System 13

are many reasons for maintaining tables between user queries4. For amortizing

tabling, the table space for certain predicates or groups of predicates often needs to

be reclaimed at once, possibly at the command-line, while tables for other predicates

should persist. To support this, XSB provides the predicate abolish table pred/1,

which abolishes tables for a given predicate, and abolish table module/1, which

abolishes tables for all predicates in a given module. User-level tabling sometimes

requires a finer level of control, provided by the predicate abolish table call/1

which abolishes a single table.

In order to ensure the safety of user-controlled tabling, the system must prevent

the situation in which an evaluation abolishes a table, reclaims its space, and then

backtracks to a state that accesses the released structures. To avoid this, XSB does

not reclaim space for an abolished table until there are no choice points pointing

into that table. Instead, a table garbage collector periodically reclaims space for

abolished predicates and calls. Any call made before the abolish will be able to use

answers from the abolished table.

The existence of residual programs further complicates space reclamation. In the

program Pnonstrat of Section 2.2, suppose that the table for p(1) were abolished but

not that for q(1). If the residual program were traversed for meta-interpretation

or some other reason, the conditional answer q(1):- p(1)| would point into the

abolished table for p(1), To handle situations like this, when a table T is abolished,

XSB ensures that other tables with conditional clauses that depend on T or its

answers are also (transitively) abolished. Of course, some applications may use the

well-founded semantics but have no desire to examine a residual program. These

applications can set the Prolog flag table gc action to override this behavior, so

that abolishing T does not cause other tables to be abolished.

Efficiently Accessing Tables A data structure for tabling needs to support three

main operations: checking and/or inserting a new subgoal in a table, checking

and/or inserting a new answer in a table, and backtracking through answers (Ramakrishnan et al. 1999).

A simple trie data structure is well suited to support all of these operations. Fig-

ure 8 depicts a set of terms along with a schematic trie representing these terms.

The trie is built from a prefix ordering of each term and thus in this case factors out

the common prefix of the first two terms. Such factoring has several advantages.

First, it can save space when sets of terms have common prefixes. Second, checking

and inserting a term into a trie can be done in one root to leaf pass, checking as

long as the trie has a symbol for the corresponding position of a term and inserting

once a position with no match is reached. Third, backtracking through a trie can be

efficient, as common prefixes do not need to be untrailed and rebound. And fourth,

in XSB each node of a trie is indexed, so full term indexing is achieved.

In XSB, subgoals for a tabled predicate are kept in a subgoal trie, and answers

for each subgoal are kept in that subgoal’s answer trie. The overall structure is as if

all tables for a given predicate had been factored according to their subgoals. These

4 XSB’s command-line interpreter automatically reclaims space for any incomplete tables at the
end of a query. Setting the Prolog flag query level tabling ensures that all other tables are
abolished as well.

14 Terrance Swift and David S. Warren

rt(a,f(a,b),a). rt(a,f(a,X),Y). rt(b,V,d).

2 1ν

2.2

3

ν1

2ν
2

a

b
d

b a

f/2 a

1

3

2.1

3

Fig. 8. A set of terms and a schematic trie

tables support an optimization called substitution factoring which allows the answer

trie to contain only bindings. For instance for a tabled subgoal p(a,X,f(1,Y)) the

answer trie would contain only the bindings for X and Y and would not contain any

constants or structure symbols from the subgoal. XSB also supports a completed

table optimization in which the trie nodes themselves are SLG-WAM instructions.

Thus backtracking through answers from a completed table amounts to a direct ex-

ecution of virtual machine instructions: no meta-interpretation of the trie is needed.

To summarize, a programmer can make use of XSB’s table access by writing

programs where subgoals and answers can make use of the left-to-right factoring

provided by tries: such programs will also backtrack through completed answers

very quickly. On the other hand, substitution factoring ensures that when a subgoal

has a large structure, the structure needs to be traversed and stored only once for

the subgoal; subsequent answers pay no cost for the subgoal.

2.4 Call Subsumption

The preceding discussion of tabling was intentionally vague about exactly how to

determine whether a subgoal or answer is contained in a given forest. Given a

selected atom S and forest F , S can reuse the computation of a tree Stab :- Stab

in F as long as Stab is at least as general as S – for our purposes, as long as Stab

subsumes S 5. Most implementations of tabling only reuse tabled information if

Stab is a variant of S, but create a new tree otherwise: e.g. a subgoal p(a,X) will

reuse the variant subgoal p(a,Y), but not the subsuming subgoal p(X,Y). In fact,

the evaluations in the preceding examples had no properly subsuming subgoals, so

their descriptions could ignore this distinction.

The distinction between these two approaches, call variance and call subsump-

tion, can radically affect the behavior of tabled evaluations. Call subsumption can

be especially useful when an entire model of a target (sub-)program is desired – as is

the case in applications such as program analysis, RDF inferencing or when combin-

ing rules with ontologies. This is because a fixed point can be initiated with a set of

open goals (goals without any bindings in their arguments); as evaluation proceeds,

5 A term T1 subsumes a term T2 if there is an mgu of T1 and T2 whose domain consists only of
variables of T1. If in addition the range of the mgu consists only of variables in T2, T1 and T2

are variants.

The XSB System 15

tabled subgoals can reuse the answers from the original set of subsuming subgoals.

For similar reasons, call subsumption can be useful for deductive database-style

queries that are generated from a declarative framework as call subsumption is

more “forgiving” when a program is not optimally written: for this reason Flora-2

(see Section 5) makes use of call subsumption for certain generated queries.

When used in XSB, call subsumption allows a subgoal S to use the answers from

a subgoal Ssubsuming as long as there is a table for Ssubsuming , regardless of whether

Ssubsuming is completed or not. When Ssubsuming is computed along with several

subsumed non-completed subgoals, XSB’s engine takes care to ensure that answers

are returned efficiently to the subsumed subgoals during the iterations required to

completely evaluate Ssubsuming (Johnson et al. 1999). In Version 3.3 call subsump-

tion has been extended to WFS, and supports answers with attributed variables (to

implement logical constraints), although subgoals must be free of attributed vari-

ables (Swift 2009). Either call subsumption or call variance can be made the default

for XSB, and a programmer can combine them at a predicate level using the declara-

tion: :- table p/n as <subsumptive/variant>. Call subsumption can provide

substantial efficiency gains for many programs; as a worst case, call subsumption

in XSB imposes an overhead of about 25% for tabled evaluations that have no

subsuming tabled subgoals and so cannot make use of call subsumption.

Example 2.4 (Querying Ontologies) An example of using call subsumption can be

found in querying the OWL wine ontology (http://www.w3.org/TR/owl-guide).

OWL ontologies can be translated from RDF or HTML format into disjunctive dat-

alog by the KAON-2 system (Motik 2006). When translated by KAON-2, the wine

ontology produces a definite program with about 1000 clauses. A small fragment of

the translated code has the form:

pinotblanc(X) :- q24(X).

pinotblanc(X) :- pinotblanc(Y),kaon2equal(X, Y).

pinotblanc(X) :- wine(X),madefromgrape(X, Y),ot____nom21(Y).

madefromgrape(Y, X) :- madeintowine(X, Y).

madefromgrape(X, X) :- riesling(X),kaon2namedobjects(X).

madefromgrape(X, X) :- wine(X),kaon2namedobjects(X).

% 18 other clauses

wine(X) :- q14(X). q24(X) :- pinotblanc(X).

wine(X) :- texaswine(X). q24(X) :- muscadet(X).

% 24 other clauses q24(X) :- q24(Y),kaon2equal(X,Y).

wine(X) :- q24(X).

% 31 other other clauses

The generated program is highly recursive: for instance, pinotblanc(yellowTail)

depends on pinotblanc(X)which depends on wine(X) and on wine(yellowTail).

In fact, nearly every concept depends on nearly every other concept (more or less)

due to wine(X) atoms occurring in body literals, and mixed instantiations are often

present in loops, due to the propagation of bindings in rules.

Tabling can be used to evaluate a query to this ontology in XSB by first using the

16 Terrance Swift and David S. Warren

:- auto table declaration in the translated file. When XSB automatically tables,

it chooses enough tables to break all loops in the predicate dependency graph of

a file or module. Finding the minimal number of tables to break all loops is an

NP-complete problem, so that XSB uses a simple greedy algorithm.

When XSB evaluates the query pinotblanc(yellowTail) using call variance, it

runs out of memory on a laptop machine. When using call subsumption to evaluate

the query, XSB’s time is comparable with the ontoBroker system and is much faster

than some ASP systems (Liang et al. 2009). Of course, WFS is not powerful enough

to evaluate all ontologies – however for many translations XSB can create a residual

program that is passed to an ASP system using XASP.

2.5 Answer Subsumption: Lattices, Partial Orders and Aggregation

As with calls, there is a choice of whether to use answer variance or answer sub-

sumption: i.e., if a subgoal has answers p(a,Y) and p(a,b), does the evaluation

use only the subsuming p(a,Y) for resolution with tabled subgoals, or does it

use both answers? XSB and all other tabling Prologs use answer variance by de-

fault, as answer subsumption between simple Prolog terms seems of limited use

for most programs. However, if we generalize the notion of subsumption from the

lattice of terms to an arbitrary ordering O, answer subsumption becomes quite

useful (Swift and Warren 2010). Consider first a case where O is a partial order.

Such a case may prove useful, for instance, in an inheritance hierarchy, where a

query about the relations of an object returns only the most specific answers. In

this case, specific answers can be seen as the subsuming answers according to the

partial order of the inheritance hierarchy.

In addition to being a partial order,O may also be a lattice 6: answer subsumption

over lattices is extremely useful for implementing paraconsistent and quantitative

reasoning.

Example 2.5 (Quantitative Degrees of Belief) Consider a model of quantitative

degrees of belief (van Emden 1986). An annotated atom A : [ET , EF] is an atom A

together with the annotation

• ET , a number between 0 and 1 indicating evidence that A is true

• EF , a number between 0 and 1 indicating evidence that A is false.

In this model, [ET , EF] ≥ [E′

T , E
′

F] if ET ≥ E′

T and EF ≥ E′

F , leading directly to

a definition of a join operator:

[ET , EF] ∨ [E′

T , E
′

F] = [max(ET , E
′

T),max(EF , E
′

F)]

A ground atom A : [ET , EF] is true in an interpretation I of a program P if there

are rules A : [Ek
T , E

k
I F] : −Bodyk in P such that each Bodyk is true in I and

∨
∀k[E

k
T , E

k
F] ≥ [ET , EF] in I.

Writing programs over such a lattice is easy in XSB. First, the tabling declaration

6 In Version 3.3 of XSB only an upper semi-lattice need be defined.

The XSB System 17

indicates that this lattice is to be used in a particular argument of a tabled predicate.

The declaration:

:- table pred(_,_,qdb/3-[0,0]).

qdb([T1,F1],[T2,F2],[T3,F3]):- % join

(T1 > T2 -> T3 = T1 ; T3 = T2),

(F1 > F2 -> F3 = F1 ; F3 = F2).

indicates that the third argument of pred/3 is to be maintained via the lattice with

join operation qdb/3 and identity (bottom) [0,0]. pred/3 is translated into

pred(X,Y,Z) :- bagReduce(Z1,pred_clause(X,Y,Z1),Z,qdb(_,_,_),[0,0]).

where bagReduce/5 is a tabled predicate that performs the answer subsumption.

Each clause of pred/3 is translated into a clause with head pred clause/3 where

pred clause/3 is non-tabled. When the bagReduce literal is called, a check is

made for a variant table. If such a table is not found, the subgoal creates a new

table and calls clauses of pred clause/3 with a variable in the annotated position.

When a potential answer, pred(Xans, Yans, Zans) is derived, bagReduce/5 deter-

mines whether some answer exists whose first two arguments are variants of Xans

and Yans, with a third argument Ztable. If so, it takes the join Zjoin of Zans and

Ztable. If Zjoin is greater than Ztable, the old answer is deleted from the table and the

new answer pred(Xans, Yans, Zjoin) is added. The table for bagReduce/5makes use

of trie indexing for tables: the atom part is earlier in the trie than the annotation

part, which helps to make the variant check of the atom efficient.

Version 3.3 of XSB allows only positive recursion answer subsumption – uses

of negation must be stratified. Non-stratified programs over partial orders, can be

modeled with preferences. However, as shown in (Swift 1999b) this method is suffi-

cient to implement various frameworks such as GAPs (Kifer and Subrahmanian 1992),

and Residuated Programs (Damásio and Pereira 2001). In addition, it is easy to

see that typical aggregate functions, such as sum/3, count/3, min/3, max/3 etc. are

simple extensions of answer subsumption.

When answer subsumption is used, subsumed answers may be derived before

subsuming answers, so it is efficient to restrict those places where non-maximal

answers are used for resolution. Local evaluation is ideal for this, as it restricts all

operations to a maximal SCC. This property implies that no non-maximal answer

will be used outside of the SCC in which it was derived. For this reason, the use of

Local evaluation can be critical for efficient answer subsumption: (Freire et al. 1998)

provides an example where answer subsumption is used to find the shortest paths

in a graph G. When Local evaluation is used the time is proportional to the number

of edges in G, but when Batched evaluation is used, the time is proportional to the

number of paths in G, which is exponential in the number of edges of G.

2.6 Tabling with Constraints

XSB offers a simple integration of TLP and Constraint Logic Programming (CLP)

as follows. XSB implements CLP by using attributed variables, as do many other

18 Terrance Swift and David S. Warren

Prologs. When an attributed (constrained) variable VA is part of a tabled subgoal

or a derived answer, VA is copied into the table along with its attributes; later when

VA is copied out of a table, its attributes are also copied out and associated with

VA. For instance the query ?- p1(X) to the CLP(R) program

:- table p1/1.

p1(X):- {X < 9}.

will return the answer { X < 9.0000}. In Version 3.3 of XSB, attributed variables

are supported even when they occur in literals that are delayed, so that variables

in a residual program may be constrained. Since entailment of constraints seen as

a relation is a partial order, answer subsumption can be supported for constrained

variables using the methods of the previous section.

Many CLP applications will not benefit from tabling, particularly if Prolog inter-

acts with a constraint processor mainly to generate a set of equations to be solved.

However for situations that require traversal through a state space where states

are associated with constraints, tabling can be useful. Tabled constraints have been

used to analyze security protocols (Sarna-Starosta 2005), and for abstract inter-

pretation (cf. (Codognet and Filé 1992) which pre-dates XSB) and when grammar

rules involve constraints (cf. (Shieber 1992)), tabled constraints can provide the

benefits to parsing. The following example shows how tabled constraints can be

used to analyze a process logic.

Example 2.6 (Constraint-Based Nets)A variety of formalisms extend Place Trans-

ition Nets to add conditions that must be evaluated for a transition to fire and to

add effects that must occur upon its firing, creating applications that can be termed

workflow nets. A constraint net follows this model: a condition is the entailment

of a formula in a given constraint domain, and the effect is the propagation of

new constraints to variables associated with given places in the net. Using such an

approach, constraint-based reasoning can be incorporated into workflow logics. The

top-level change to add constraints to the running example affects the application

of a transition to a configuration, in apply trans to conf/3 of Figure 4:

apply trans to conf(trans(In,Entailment,Out),Conf,NewConf):-

unify for entailment(In,Conf,MidConf),

entailed(Entailment),

call new constraints(Out,OutPlaces),

flatsort([OutPlaces|MidConf],NewConf).

First, variables in the transition are unified with those of the configuration to pro-

duce a new constraint store. If the formula Entailment is entailed by the constraint

store, new constraints from the transition are placed on the output variables via

calling the constraints in the list Out. Note that this extension is not specific to a

given constraint domain.

3 Dynamic Code and Indexing

In XSB, clauses for dynamic predicates are directly compiled with a simplified com-

pilation strategy, and dynamic predicates may be tabled. While there are a variety

The XSB System 19

of uses for dynamic code, perhaps the most common use is for large and chang-

ing knowledge bases. Dynamic code in XSB supports a wider variety of indexing

strategies than does static code. The performance of executing dynamic facts is

comparable to executing compiled facts with the same indexing, and with better

indexing strategies, dynamic code can be arbitrarily faster than the corresponding

static code.

In XSB, large files of dynamic code can be efficiently loaded via load dyn/1

and its variants. load dyn(File) acts like a compiler in recognizing directives, but

treats all clauses in File as dynamic; it re-consults File by reading clauses from

File and asserting them. load dync/1 is a variation of load dyn/1 that can be used

if all clauses in a file are in (an extended) canonical form – where no operators are

used except for lists and comma-lists. load dync/1 is extremely fast: as a general

measure, it can read, compile and load files of binary facts at a rate of about 300,000

facts per second on current hardware.

Indexing of Dynamic Code Indexes for dynamic code are built using

• Trie Indexing for which a trie is maintained to represent the entire predi-

cate. For instance, :-index(p/5,trie) specifies trie-indexing for p/5

or as combinations of

• Main-functor Indexing for which a hash table is maintained for values of the

main functor symbol of the indicated argument. For example :-index(p/5,3)

indexes the main functor symbol for the third argument of p/5.

• Star Indexing for which a hash table is maintained for (up to) the first

five symbols of the indicated argument. Thus for example, star-indexing can

distinguish the term [p(a)] from the term [p(b)]. A declaration such as

:-index(p/5,*(3)) star-indexes the third argument of p/5.

Trie indexing is a special form of all-argument indexing, where asserted facts

are maintained in a trie (cf. Section 2.3). As with tabled answers and subgoals,

the trie is built from a preorder traversal of a fact, indexing at every position.

Clause ordering is not maintained for trie indexed facts, and trie indexing cannot

be combined with any other indexing for a given predicate. However asserting and

retracting to trie indexed code is about 3 times faster than asserting or retracting

to regular dynamic code.

Main functor and star indexing may be combined into multiple joint indexes. For

example :-index(p/5,*(1)+3) asks for a joint index to be built (for future asserts

to p/5) for the first and third arguments, so that if a call is ground on both its first

and third arguments, it will index the indicated symbols together. Joint indexes

may use up to three arguments. Using this joint index in a multiple index, the

declaration :-index(p/5,[*(1)+2,*(1)]) causes two indexes to be built. When

calling p/5, the indexes are tried in left-to-right order. For this example, if the first

and second arguments of a call are bound, the index *(1)+2 is used. If argument 1

is bound but not argument 2, then *(1) will be used.

20 Terrance Swift and David S. Warren

Incremental Table Maintenance By default in XSB, tables are created when tabled

goals are called and are used until they are abolished. But if a tabled predicate

depends on a dynamic predicate and the dynamic predicate changes, the table be-

comes out of date. This is known as the view maintenance problem in databases

and as the truth maintenance problem in artificial intelligence. XSB provides sup-

port for incremental tabling, so that when changes are made to dynamic predicates,

dependent tables are automatically updated to contain the corrected values 7. Incre-

mental tabling is declared as: :- table p/2 as incremental. To make use of in-

cremental tabling, any dynamic predicate, such as q/2, whose change should trigger

incremental table maintenance is declared as: :- use_incremental_dynamic q/2.

In Version 3.3 of XSB, incremental updates to a table can be triggered in different

ways. In order to update a table based on a single change to a dynamic predicate,

calls such as incr assert(q(a,5)) or incr retract(q(a,5)) can be used. For

bulk changes to dynamic predicates, calls to assert/1 or retract/1 are made,

which will not trigger updates to tables. At the end of the bulk “transaction” a call

such as incr table update triggers the appropriate updates. Finally, calls such as

incr assert inval/1 invalidate tables that depend on a dynamic predicate, for

those cases where incremental updates are deemed to be inefficient (e.g. a clause

for a dynamic tabled predicate is retracted).

A Deductive Spreadsheet system (Ramakrishnan et al. 2007) has been built by

programming an MS Excel plug-in in XSB to support recursive set expressions

in spreadsheet cells. When a spreadsheet user updates the contents of a cell, the

engine must update the values of all cells that depend on the updated cell. This is

an ideal application for incremental table maintenance since the values of cells often

depend on the values of a few other cells, so most cells are not affected by an update

to some particular cell. The implementation uses incremental tabling to determine

exactly the affected cells and then updates only them. Without incremental tabling,

the plug-in was limited to spreadsheets with a few hundred cells; with incremental

tabling the plug-in became practical and could recompute tables for very large

spreadsheets almost instantaneously.

4 Multi-threading

Multi-threading, the ability to concurrently perform multiple computations, allows

Prolog to be used as a server that handles multiple requests or as an agent that han-

dles multiple types of input from its environment. The further ability to coordinate

these computations provides support for various types of parallel and distributed

processing of a single query. When multi-threading is combined with tabling and

specialized indexing, Prolog acquires functionality similar to that of a deductive

database, so that it can support applications from semantic web reasoning systems

to interactive GUI control.

XSB has been multi-threaded since version 3.0 and supports a draft standard

7 Currently incremental tabling is implemented only for call variance and for stratified programs.

The XSB System 21

for multi-threaded Prologs (ISO/IEC DTR 13211-5:2007 2007). The predicates in

this standard, many of which originated in SWI-Prolog (Wielemaker 2003), provide

facilities for various operations. Predicates for creating, joining and exiting threads

and for handling mutexes provide a high-level interface to Prolog threads under a

Posix-style semantics. Coordination among threads is handled by message queues,

which are used to pass Prolog terms among threads. These message queues may

be public, with multiple readers and writers; or thread-specific, associated with a

thread that is the queue’s only reader. Among other uses, thread-specific message

queues form the basis for thread signaling, which allows one thread to send a goal

to another thread. Threads check for signals frequently, so that signaling becomes

a powerful mechanism for fine-grained, interrupt-based coordination.

Version 3.3 of XSB may be configured either as single- or as multi-threaded.

On Linux and Windows, Prolog evaluation is about 5-15% slower for the multi-

threaded engine than for the single-threaded engine; however for Mac OS X the

multi-threaded engine is about 5-10% faster. The interface used to call C from

XSB supports both single- and multi-threading, so nearly all of XSB’s libraries and

packages work under both engines. In addition, both engines can be embedded in

C code. When multi-threading is used, any C thread can query any XSB thread

that is not in the midst of a query.

All of these features form the basis of XSB’s multi-threaded tabling engine (Marques 2007),

which allows a thread to use private tables to support an independent query, along

with shared tables for subgoals that may be used repeatedly by different threads.

The simplest execution model is that of private tables, where each thread keeps its

own copy of tabled information. Private tables offer several advantages:

• Private tables use sequential tabling algorithms so that they naturally support

all tabling features including tabled negation, tabled constraints, and call and

answer subsumption.

• Private tables generally require no synchronization among threads above the

level of memory allocation.

• Private tables are suitable to ensure query completeness or to support a par-

ticular semantics. Tables are automatically reclaimed when the thread that

computed them exits. This reclamation includes not only subgoal and answer

tries, but the delay lists and supporting structures used to compute WFS.

Shared tables are also important:

• If different threads require the same tables, memory usage for shared tables

will be significantly lower than for private tables.

• Shared tables allow the decomposition of a program, so that a set of threads

can together compute a set of tables, partially supporting Table-Parallelism

(Freire et al. 1995).

Execution Models for Shared Tables By default when tables are shared

in Version 3.3, a model called Concurrent Local evaluation is used, which relies

on Local evaluation and dynamically partitions tables among threads. The idea

behind Concurrent Local evaluation is that when a thread T encounters a (shared)

22 Terrance Swift and David S. Warren

tabled subgoal S that has not been encountered by any thread, T evaluates S. Other

threads are allowed to use the table for S only after T has completed S. Concurrency

control for tables mainly arises when more than one thread evaluates different tabled

subgoals in the same SCC at the same time. In this case, a deadlock will occur, which

the engine detects and resolves, so that a single thread assumes computation of all

tabled subgoals in the SCC (Marques and Swift 2008; Marques et al. 2010). For

example, in Figure 2 such a situation would occur if a thread T1 called reach(1,Y)

and another called reach(3,Y) before it was called by T1.

Because it is a type of Local evaluation, Concurrent Local evaluation does not

allow a consuming node to use answers produced by a subgoal outside of its SCC

until the table for the answers is completed – a restriction that prevents producer-

consumer models of parallelism. This limitation is overcome by Concurrent Batched

evaluation which allows several threads to compute (inter-)dependent tabled sub-

goals in parallel. As with Concurrent Local evaluation, each subgoal can be com-

puted by only one thread. However, a given thread may consume answers as they

are produced by another thread. The implementation of Concurrent Batched eval-

uation extends the implementation of sequential Batched evaluation. In sequential

Batched evaluation, when the engine backtracks to the oldest subgoal in an SCC, it

schedules the return of unconsumed answers for each consuming node in the SCC,

and then proceeds to return the answers via backtracking. In the multi-threaded

context, if different threads compute different SCCs, they can work independently,

and can consume answers from other threads as they become available. However

threads that run out of work will suspend until a single thread institutes a fixpoint

check, after which the threads re-awaken. Thus Concurrent Batched evaluation

allows parallel computation of subgoals, but has a sequential fixpoint check that

synchronizes multiple threads when they compute the same SCC.

Implementation Status In Version 3.3 of XSB, private tables support all

tabling features. Concurrent Local evaluation supports most features, but does

not yet support call subsumption. Both private tables and shared tables under

Concurrent Local evaluation have been heavily tested. Concurrent Batched evalu-

ation should be considered experimental and is currently restricted to left-to-right

dynamically stratified programs.

5 Sample Applications of XSB

Numerous applications have been written using XSB: for space reasons we restrict

our discussion to two major applications.

XSB, Inc’s Ontology-Driven Classification and Extraction Several large

applications in XSB have been developed by the company XSB, Inc.8 Two impor-

tant ones are the Ontology-Directed Classifier (ODC) and the Ontology-Directed

Extractor (ODE). The ODC uses a modified Bayesian classification algorithm to

classify item descriptions to categories in a taxonomy. It is in use quarterly by

8 XSB, Inc. (http://www.xsb.com) is a privately held company that pursues applications of XSB
and other technologies to information retrieval and management. XSB, Inc. has also helped
support the development of XSB and the related packages InterProlog and XJ.

The XSB System 23

Fig. 9. A Screenshot of XSB Inc.’s Ontology-Directed Classifier

the U.S. Department of Defense to classify over 80 million part descriptions with

respect to an extension of the UNSPSC taxonomy that contains over 60,000 cate-

gories. The ODE extracts attribute-value pairs from those classified descriptions to

build structured, queriable knowledge about parts and their attributes.

Both depend critically on XSB. First, the ontologies for both systems are rep-

resented using XSB’s CDF ontology management package. CDF has two facets:

as a research system it supports the experimental interaction of ontology axioms

and rules as a hybrid MKNF knowledge base (cf.(Gomes et al. 2010)). However,

for commercial use, it can simply support the representation of classes with inheri-

tance and typing, objects belonging to those classes, and relationships among these

components. It is very efficient for such ontologies, scaling to gigabyte-sized in-

memory ontologies and to even larger ontologies when a relational database is used

as a backing store. CDF makes heavy use of tabling (including tabled negation)

along with the joint, multiple, and star indexing discussed in Section 3. Second,

the applications perform a significant amount of text processing using an XSB

super-tokenizer module. This module supports the declaration of complex rewrit-

ing rules for token lists: tens of thousands of these rules implement abbreviations

and token corrections in ODC and complex pattern-matching rules in ODE. The

super-tokenizer uses tabled grammars and trie-based indexing in fundamental ways,

as well as negation to implement preferred rewritings. Third, both applications have

complex training interfaces which allow a knowledge expert to add extraction or

classification rules, experiment with how extraction or classification works on sam-

ple data, and add information to improve the processes. These interfaces are built

with XJ (www.xsb.com/xj.aspx), an open-source package that allows XSB to con-

struct complex graphical user interfaces through the Java Swing library. XJ itself

uses the open-source InterProlog interface (Calejo 2004) to communicate efficiently

between Java and XSB.

Figure 9 shows a screenshot of the ODC training GUI driven by XSB using

XJ. The left panel displays the taxonomy that is the target of the classification,

here the standard UNSPSC taxonomy, extended with further categories from the

24 Terrance Swift and David S. Warren

Federal Cataloging System. The lower right panel shows item descriptions that are

automatically classified to the taxonomy categories. The upper right panel shows

classification weights and thus an “explanation” of how the selected description

was classified as it was. The optional floating window in the upper right shows the

words used in the classification after abbreviation expansion and other rewriting. A

knowledge expert uses this interface to explore how the classifier assigns descriptions

and to modify it by adding abbreviations, training items, and other tuning options.

Flora-2 and Silk Flora-2 (Yang et al. 2003) (flora.sourceforge.org) is a

programming system supporting Frame Logic (F-Logic) (Kifer et al. 1995) HiLog

and Transaction logic, all of which are implemented in XSB. Flora-2 is a higher-level

language than Prolog in the sense that it may represent knowledge more concisely

than Prolog, although it offers less procedural control.

Example 5.1 (Flora-2) Figure 10 shows a fragment of a publications knowledge

base written in Flora-2. This example was used in (Kifer et al. 1995) to explain

various features of F-logic; here we use it to briefly give a flavor of Flora-2. First, note

that Flora-2 has a different syntax from Prolog, although each of the statements is

a well-defined term and unification can be performed on these terms. In addition,

the fragment is divided into a schema and its objects. The subclass relation is

indicated by ::/2 and class membership for an object by :/2. A class or object

is associated with a set of its attributes through brackets ([]). Within a schema,

class attributes are indicated by =>>/2, and by =>/2 if the attributes are functional.

Inheritance for these attributes is monotonic, that is each subclass inherits any

concrete attributes of its classes and super-classes and attributes may not be over-

ridden. Other predicates provide for inheritable attributes that may be over-ridden.

In addition to the features shown above inheritance and attribute predicates

can be also defined in terms of rules. When deriving the answer to a query of a

Flora-2 knowledge base, resolution is performed as in Prolog, but the derivation

also makes use of inherited attributes and these attributes can be based on other

rules as can be the inheritance hierarchy itself. Thus a Flora-2 knowledge base

has the advantages of an inheritance-based system for knowledge representation.

The price it pays for this is the need to traverse a potentially large portion of an

inheritance hierarchy when answering a query. Tabling is a natural mechanism to

factor out subcomputations involving the inheritance hierarchies of objects, and

Flora-2 makes heavy use of tabling. Flora-2 also relies on tabled negation under

WFS for non-monotonic inheritance. The intuition behind this is that an object

non-monotonically inherits an attribute if that attribute is not over-ridden by some

other inherited attribute. Hierarchies with a well-defined “over-rides” relation are

stratified, but inheritance may be undefined in WFS. For instance, answers to

the query ?- nixon[policy *-> X] will be undefined in the well-known “Nixon

Diamond” example:

republican[policy *-> nonpacifist]. quaker[policy *-> pacifist].

nixon:republican. nixon:quaker.

Flora-2 programs are compiled into XSB using a sophisticated series of transfor-

mations. These transformations decide what (XSB) predicates need to be tabled,

The XSB System 25

Schema:

conference_paper :: paper.

journal_paper :: paper.

paper[authors =>> person, title => string].

journal_paper[in_vol => volume].

conf_p[at_conf => conference_procs].

journal_vol[of => journal, volume => integer, number => integer,

year => integer].

journal[name => string, publisher => string, editors =>> person].

conference_procs[of_conf => conf_series,year => integer,editors =>> person].

conference_series[name => string].

publisher[name => string].

person[name => string, affiliation(integer) => institution].

institution[name => string, address => string].

Objects:

o_j1 : journal p[title -> ’Records, Relations, Sets, Entities, and Things’,

authors ->> {o_mes}, in vol -> o_i11].

o_di : conference_paper[title -> ’DIAM II and Levels of Abstraction’,

authors ->> {o_mes, o_eba}, at_conf -> o_v76].

o_i11 : journal_vol[of -> o_is, number -> 1, volume -> 1, year -> 1975].

o_is : journal[name -> ’Information Systems’, editors ->> {o_mj}].

o_v76 : conference_procs[of -> vldb, year -> 1976,

editors ->> {o_pcl, o_ejn}].

o_vldb : conference_series[name -> ’Very Large Databases’].

o_mes : person[name -> ’Michael E. Senko’].

o_mj : person[name -> ’Matthias Jarke’, affiliation(1976) -> o_rwt].

o_rwt : institution[name -> ’RWTH Aachen’].

Fig. 10. A Publications Object Base and its Schema in Flora-2

and also determine situations in which space can be reclaimed making Flora-2 an

example of user-controlled tabling as discussed in Section 2.3. In many programs,

a hierarchy may be repeatedly traversed using calls in different modes, so that the

current experimental version of Flora-2 makes use of call subsumption. In addi-

tion, the Flora-2 compiler makes heavy use of XSB’s trie-indexed dynamic facts

(Section 3) to represent object code. While it is a logic programming language,

a Flora-2 program is substantially different from a Prolog program. Accordingly

Flora-2 used Prolog to implement its own command-line interpreter, debugger and

module system rather than using those of XSB.

The advantages of Flora-2 and XSB have given rise to its use in the ambitious

Digital Aristotle project (www.projecthalo.com) described as “a reasoning system

capable of answering novel questions and solving advanced problems in a broad

range of scientific disciplines and related human affairs.” Digital Aristotle is based

on an extension of Flora-2 called Silk (Grosof 2009) that contains further features

of defeasible reasoning and belief logic (Wan et al. 2009), and which is implemented

using the techniques of the previous sections.

26 Terrance Swift and David S. Warren

6 Discussion

The various features discussed in this paper significantly expand the types of pro-

gramming that can be done in Prolog. Tabling for definite programs in itself allows

sophisticated recursions to be coded simply and efficiently; furthermore, these re-

cursions can be combined with CLP as shown in Section 2.6. The additions of

tabled negation and answer subsumption support a number of extensions such as

preferences and annotations; and well-founded residual programs form a basis for

combining Prolog and ASP. The use of call subsumption, incremental tabling, and

flexible indexing techniques for dynamic code supports extensions of logic programs

to deductive, object-oriented, and semantic web databases – this is particularly true

when multi-threading is also exploited.

Robust implementation of these extensions have led to a profusion of research and

commercial applications, some of which we cite here. Applications include those in

program verification (Ramakrishna et al. 1997; Du et al. 2000; Mukund et al. 2000;

Ramakrishnan et al. 2000; Kalantari and Ternovska 2002; Pemmasani et al. 2002;

Pokorny and Ramakrishnan 2004; Sarna-Starosta 2005), in program analysis (Dawson et al. 1996;

Boulanger 1997; Codish et al. 1998; Janssens and Sagonas 1998; Saha and Ramakrishnan 2005);

in natural language analysis and data standardization (Larson et al. 1995; Ramakrishnan et al. 1997;

Rocio and Lopes 1998; Cui and Swift 2002; Davulcu et al. 2002), in agent imple-

mentations (Alferes et al. 2000; Letia et al. 2001; Kagal and Finin 2004; Lattner et al. 2005;

Lattner et al. 2005; Santana and Pereira 2006) and in semantic web applications (Peterson et al. 1998;

Davulcu et al. 2000; Li et al. 2002; Tangmunarunkit et al. 2003; Swift and Warren 2003;

Swift 2004; Zou et al. 2004; Bhansali and Grosof 2005; Drabent et al. 2007), in di-

agnosis (Castro and Pereira 2004; Alferes et al. 2004; Barata et al. 2007), in medi-

cal informatics (Gartner et al. 2000; Muller et al. 2004), in machine learning (Lamma et al. 2000;

Papaterpos et al. 2001) and in software engineering (Pereira and Viegas 2007; Shankar et al. 2006;

Oquendo 2004; Ramakrishnan et al. 2007). Many other commercial applications

have been developed by XSB, Inc., Medical Decision Logics, Inc (www.mdlogix.com),

Ontology Works (www.ontologyworks.com) and other companies.

All of these applications demonstrate that TLP is a vibrant field of research,

involving numerous Prologs including XSB.

Acknowledgements

Dozens of people have contributed to the development XSB. Among those who have

made contributions over a sustained period of time are (in alphabetical order) Luis

de Castro, Baoqiu Cui, Steve Dawson, Juliana Freire, Ernie Johnson, Michael Kifer,

Rui F. Marques, C.R. Ramakrishnsn, I.V. Ramakrishnan, Prasad Rao, Konstanti-

nos Sagonas and Diptikalyan Saha. And we especially thank our user community

who have helped us find and fix so many bugs over the years.

References

Alferes, J. J., Azevedo, F., Barahona, P., Damásio, C., and Swift, T. 2004. Logic
programming techniques for solving circuit diagnosis. In Artificial Intelligence Applica-
tions and Innovations. 155–166.

The XSB System 27

Alferes, J. J., Leite, J. A., Pereira, L. M., and Quaresma, P. 2000. Planning as
abductive updating. In AISB Symposium on AI Planning and Intelligent Agents. 1–8.

Barata, J., Ribeiro, L., and Onori, M. 2007. Diagnosis on evolvable production sys-
tems. In IEEE Intl. Symp. on Industrial Electronics.

Bhansali, S. and Grosof, B. 2005. Extending the SweetDeal approach for e-
procurement using SweetRules and RuleML. In RULE-ML. 113–129.

Boulanger, D. 1997. Fine-grained goal-directed declarative analysis of logic programs.
International Workshop on Verification, Model Checking and Abstract Interpretation.

Calejo, M. 2004. Interprolog: Towards a declrative embedding of logic programming in
Java. In JELIA. 714–717.

Castro, J. and Pereira, L. M. 2004. Abductive validation of a power-grid diagnoser.
In IEA/AIE. 838–847.

Castro, L. and Costa, V. S. 2001. Understanding memory management in prolog
systems. In Intl. Conf. on Logic Prog. 11–26.

Castro, L., Swift, T., and Warren, D. 2002. Suspending and resuming computations
in engines for SLG evaluation. In Practical Applications of Declarative Languages. 332–
346.

Chen, W. and Warren, D. S. 1996. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM 43, 1, 20–74.

Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S., and Zaniolo,

C. 1990. The LDL system prototype. IEEE Data and Knowledge Engineering 2, 76–89.

Codish, M., Demoen, B., and Sagonas, K. 1998. Semantics-Based Program Analysis
for Logic-Based Languages using XSB. Springer International Journal of Software Tools
for Technology Transfer 2, 1 (Nov.), 29–45.

Codognet, P. and Filé, G. 1992. Computations, abstractions and constraints in logic
programs. In ICCL. 155–164.

Cui, B. and Swift, T. 2002. Preference logic grammars: Fixed-point semantics and
application to data standardization. Artificial Intelligence 138, 117–147.

Damásio, C. V. and Pereira, L. M. 2001. Monotonic and residuated logic programs.
In ECSQARU. 748–759.

Davulcu, H., Jones, J., Pokorny, L., Rued, C., Swift, T., Vidrevich, T., and

Warren, D. 2002. Ensuring consistency in self-reported data: A case study. In Seventh
International Conference on Information Quality. 155–166.

Davulcu, H., Yang, G., Kifer, M., and Ramakrishnan, I. 2000. Design and imple-
mentation of the physical layer in webbases: The XRover experience. In Computational
Logic. 1094–1105.

Dawson, S., Ramakrishnan, C. R., and Warren, D. S. 1996. Practical program
analysis using general purpose logic programming systems — a case study. In ACM
PLDI. 117–126.

Demoen, B. and Sagonas, K. 1999. CHAT: the Copy-Hybrid Approach to Tabling. In
Practical Applications of Declarative Languages. 106–121.

Demoen, B. and Sagonas, K. 2001. Heap memory management in prolog with tabling:
Principles and practice. Journal of Functional and Logic Prog. 2001, 9.

Drabent, W., Henriksson, J., and Maluszyński, J. 2007. Hybrid reasoning with rules
and constraints under well-founded semantics. In Web Reasoning and Rules. 348–357.

Du, X., Ramakrishnan, C. R., and Smolka, S. A. 2000. Tabled resolution + con-
straints: A recipe for model checking real-time systems. In Real-Time Systems Symp.
175–184.

Freire, J., Hu, R., Swift, T., and Warren, D. S. 1995. Parallelizing tabled evaluation.
In Prog. Langs: Implementations, Logics and Progs. 115–132.

28 Terrance Swift and David S. Warren

Freire, J., Swift, T., and Warren, D. S. 1998. Beyond depth-first: Improving tabled
logic programs through alternative scheduling strategies. Journal of Functional and
Logic Prog. 1998, 3, 243–268.

Gartner, J., Swift, T., Tien, A., Pereira, L. M., and Damásio, C. 2000. Psychiatric
diagnosis from the viewpoint of computational logic. In Computational Logic. 1362–
1376.

Gomes, S., Alferes, J., and Swift, T. 2010. Implementing query answering for hybrid
MKNF knowledge bases. In Practical Applications of Declarative Languages. 25–39.

Grosof, B. 2009. SILK: Semantic rules take the next big step in power.
http://silk.semwebcentral.org.

Janssens, G. and Sagonas, K. 1998. On the use of tabling for abstract interpretation:
An experiment with abstract equation systems. In Tabling in Parsing and Deduction.
118–126.

Johnson, E., Ramakrishnan, C., Ramakrishnan, I., and Rao, P. 1999. A space-
efficient engine for subsumption based tabled evaluation of logic programs. In Symp.
on Funct. and Log. Prog. 284–300.

Kagal, L. and Finin, T. 2004. Modeling communicative behavior using permissions and
obligations. In International Workshop on Agent Communication. 120–133.

Kalantari, L. and Ternovska, E. 2002. A model checker for verifying ConGolog
programs. In Eighteenth National Conference on Artificial intelligence. 953–954.

Kifer, M., Lausen, G., and Wu, J. 1995. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM 42, 741–843.

Kifer, M. and Subrahmanian, V. S. 1992. Theory of generalized annotated logic
programming and its applications. Journal of Logic Prog. 12, 4, 335–368.

Lamma, E., Riguzzi, F., and Pereira, L. M. 2000. Strategies in combined learning via
logic programs. Machine Learning 38, 1-2, 63–87.

Larson, R., Warren, D. S., Freire, J., and Sagonas, K. 1995. Syntactica, Symantica.
MIT Press, Cambridge Ma.

Lattner, A.,Gehrke, J., Timm, I., and Herzog, O. 2005. A knowledge-based approach
to behavior decision in intelligent vehicles. In IEEE Intelligent Vehicles Symp. 466–471.

Lattner, A., Timm, I., Lorenz, M., and Herzog, O. 2005. Knowledge-based risk
assessment for intelligent vehicles. In IEEE Conference on Integration of Knowledge
Intensive Multi-Agent Systems. 191–196.

Letia, I., Craciun, F., and Kpe, Z. 2001. Norms for DLP agents working in a warehouse
scenario. In IEA/AIE. 728–733.

Li, J., Pease, A., and Barbee, C. 2002. Experimenting with ACSC semantic search.
Tech. rep., Teknowlege Corporation.

Liang, S., Fodor, P., Wan, H., and Kifer, M. 2009. OpenRuleBench: An analysis of
the performance of rule engines. In WWW: Semantic Data Track. 601–608.

Marques, R. 2007. Concurrent tabling: Algorithms and implementation. Ph.D. thesis,
Universidade Nova de Lisboa.

Marques, R. and Swift, T. 2008. Concurrent and local evaluation of normal programs.
In Intl. Conf. on Logic Prog. 206–222.

Marques, R., Swift, T., and Cunha, J. 2010. A simple and efficient implementation of
concurrent local tabling. In Practical Applications of Declarative Languages. 264–278.

Motik, B. 2006. Reasoning in description logics using resolution and deductive databases.
Ph.D. thesis.

Mukund, M., Ramakrishnan, C. R., Ramakrishnan, I. V., and Verma, R. 2000.
Symbolic bisimulation using tabled constraint logic programming. In Tabling in Parsing
and Deduction. 166–180.

The XSB System 29

Muller, R., Greiner, U., and Rahm, E. 2004. Agentwork: a workflow system sup-
porting rule-based workflow adaptation. IEEE Data and Knowledge Engineering 51, 2,
223–256.

Niemelä, I. 1999. Logic programs with stable model semanticsas a constraint logic pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Oquendo, F. 2004. Formally describing dynamic software architectures with π-ADL.
World Scientific and Engineering Transactions on Systems 3, 8, 673–679.

Papaterpos, C.,Georgantis, N., and Papatheodorou, T. 2001. An ontology for mod-
eling ill-structured domains in intelligent educational systems. In IEEE International
Conference on Advanced Learning Technologies. 41–42.

Pemmasani, G., Ramakrishnan, C. R., and Ramakrishnan, I. V. 2002. Efficient
model checking of real time systems using tabled logic programming and constraints.
In Intl. Conf. on Logic Prog. 100–114.

Pereira, L. M. and Pinto, A. M. 2009. Layered models top-down querying of normal
logic programs. In Practical Applications of Declarative Languages. 254–268.

Pereira, L. M. and Viegas, R. D. 2007. Architectural design via declarative program-
ming. In International Conference on Enterprise Information Systems. 363–369.

Peterson, B., Andersen, W., and Engel, J. 1998. Knowledge Bus: Generating
application-focused databases from large ontologies. In KRDB-98.

Pokorny, L. and Ramakrishnan, C. 2004. Modeling and verification of distributed
autonomous agents using logic programming. In Second International Workshop on
Declarative Agent Languages and Technologies. 148–165.

Ramakrishna, Y. S., Ramakrishnan, C. R., Ramakrishnan, I. V., Smolka, S.,
Swift, T., and Warren, D. S. 1997. Efficient model checking using tabled resolution.
In Proceedings on the Conf. on Automated Verification. 143–154.

Ramakrishnan, C., Ramakrishnan, I., Smolka, S., Dong, Y., Du, X., Roychoud-

hury, A., and Venkatakrishnan, V. 2000. XMC: A logic-programming-based verifi-
cation toolset. In Proceedings on the Conf. on Automated Verification. 576–590.

Ramakrishnan, C.,Ramakrishnan, I., andWarren, D. S. 2007. XcelLog: A deductive
spreadsheet system. Knowledge Engineering Review 22, 3, 269–279.

Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T., and Warren, D. S. 1999.
Efficient access mechanisms for tabled logic programs. Journal of Logic Prog. 38, 1,
31–55.

Ramakrishnan, I. V., Roychoudhury, A., and Swift, T. 1997. A rule-based data
standardizer for enterprise data bases. In Practical Applications of Prolog. 255–270.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. 1992. CORAL: Control, rela-
tions, and logic. In VLDB. VLDB End., 238–249.

Rocha, R. 2001. On applying or-parallelism and tabling to logic programs. Ph.D. thesis,
Universidade do Porto.

Rocio, V. and Lopes, J. 1998. Partial parsing, deduction and tabling. In Tabling in
Parsing and Deduction.

Rozenberg, G. and Engelfriet, J. 1998. Elemenary net systems. In Lectures on Petri
Nets I: Basic Models. Springer LNCS 1491, 12–121.

Sagonas, K. and Swift, T. 1998. An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM TOPLAS 20, 3 (May), 586 – 635.

Sagonas, K., Swift, T., and Warren, D. S. 2000. The limits of fixed-order computa-
tion. Theoretical Computer Science 254, 1-2, 465–499.

Saha, D. and Ramakrishnan, C. 2005. Incemental and demand-driven points-to analysis
using logic programming. In Principles and Practice of Decl. Prog. 117–128.

30 Terrance Swift and David S. Warren

Santana, P. and Pereira, L. M. 2006. Emergence of cooperation through mutual
preference revision. In IEA/AIE. 81–90.

Sarna-Starosta, B. 2005. Constraint-based analysis of security protocols. Ph.D. thesis,
SUNY Stony Brook.

Shankar, C., Talwar, V., Iyer, S., Chen, Y., Milojicic, D., and Campbell, R. 2006.
Specification-enhanced policies for automated management of changes in it systems. In
20th Large Installation Systems Administration Conference. 101–115.

Shieber, S. 1992. Constraint-based Grammar Formailsms. MIT Press.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artificial Intelligence 138, 181–234.

Swift, T. 1999a. A new formulation of tabled resolution with delay. In Progress in Art.
Intel. 163–177.

Swift, T. 1999b. Tabling for non-monotonic programming. Annals of Mathematics and
Artificial Intelligence 25, 3-4, 201–240.

Swift, T. 2004. Deduction in ontologies via answer set programming. In Intl. Conf. on
Logic Prog. and Non-Monotonic Reasoning. 275–289.

Swift, T. 2009. An engine for efficiently computing (sub-)models. In Intl. Conf. on Logic
Prog. 514–518.

Swift, T., Pinto, A., and Pereira, L. M. 2009. Incremental answer completion. In
Intl. Conf. on Logic Prog. 519–524.

Swift, T. and Warren, D. 2010. Tabling with answer subsumption: Implementation,
applications and performance. Available at http://www.cs.sunysb.edu/˜tswift.

Swift, T. and Warren, D. S. 2003. Coherent Description Framework. Available via
xsb.sourceforge.net.

Tangmunarunkit, H., Decker, S., and Kesselman, C. 2003. Ontology-based resource
matching in the grid — the grid meets the semantic web. In Intl. Semantic Web Conf.
706–721.

van Emden, M. 1986. Quantitative deduction and its fixpoint theory. Journal of Logic
Prog. 4, 37–53.

van Gelder, A., Ross, K., and Schlipf, J. 1991. Unfounded sets and well-founded
semantics for general logic programs. Journal of the ACM 38, 3, 620–650.

Wan, H., Grossof, B., Kifer, M., Fodor, P., and Liang, S. 2009. Logic programming
with defaults and argumentation theories. In Intl. Conf. on Logic Prog. 432–448.

Wielemaker, J. 2003. Native preemptive threads in SWI-Prolog. In Practical Applica-
tions of Declarative Languages. 331–345.

Yang, G., Kifer, M., and Zhao, C. 2003. FLORA-2: A rule-based knowledge represen-
tation and inference infrastructure for the Semantic Web. In ODBASE-2003. 671–688.

Zhou, N. and Sato, T. 2003. Efficient fixpoint computation in linear tabling. In Prin-
ciples and Practice of Decl. Prog. 275–283.

Zou, Y., Finin, T., and Chen, H. 2004. F-OWL: An inference engine for the semantic
web. In Formal Approaches to Agent-Based Systems. 238–248.

	1 Introduction
	2 Tabling By Example
	2.1 Definite Programs
	2.2 Tabled Negation
	2.3 Implementation Aspects
	2.4 Call Subsumption
	2.5 Answer Subsumption: Lattices, Partial Orders and Aggregation
	2.6 Tabling with Constraints

	3 Dynamic Code and Indexing
	4 Multi-threading
	5 Sample Applications of XSB
	6 Discussion
	References

