
ar
X

iv
:1

10
7.

45
70

v2
 [

cs
.D

B
]

7
O

ct
 2

01
1

Under consideration for publication in Theory and Practiceof Logic Programming 1

Consistent Query Answering via ASP
from Different Perspectives:

Theory and Practice

MARCO MANNA, FRANCESCO RICCA

GIORGIO TERRACINA
Department of Mathematics, University of Calabria, Italy

(e-mail: {manna,ricca,terracina}@mat.unical.it)

submitted 23 November 2010; revised 1 January 2003; accepted 24 January 2011

Abstract

A data integration system provides transparent access to different data sources by suitably combining
their data, and providing the user with a unified view of them,calledglobal schema. However, source
data are generally not under the control of the data integration process, thus integrated data may vio-
late global integrity constraints even in presence of locally-consistent data sources. In this scenario, it
may be anyway interesting to retrieve as much consistent information as possible. The process of an-
swering user queries under global constraint violations iscalledconsistent query answering(CQA).
Several notions of CQA have been proposed, e.g., depending on whether integrated information is
assumed to besound, complete, exactor a variant of them. This paper provides a contribution in
this setting: it uniforms solutions coming from different perspectives under a common ASP-based
core, and provides query-driven optimizations designed for isolating and eliminating inefficiencies
of the general approach for computing consistent answers. Moreover, the paper introduces some new
theoretical results enriching existing knowledge on decidability and complexity of the considered
problems. The effectiveness of the approach is evidenced byexperimental results.
To appear in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: Answer Set Programming, Data Integration, Consistent Query Answering

1 Introduction

The enormous amount of information dispersed over many datasources, often stored in
different heterogeneous databases, has recently boosted the interest for data integration
systems (Lenzerini 2002). Roughly speaking, a data integration system provides transpar-
ent access to different data sources by suitably combining their data, and providing the
user with a unified view of them, calledglobal schema. In many cases, the application
domain imposes some consistency requirements on integrated data. For instance, it may
be at least desirable to impose some integrity constraints (ICs), like primary/foreign keys,
on the global relations. It may be the case that data stored atthe sources may violate
global ICs when integrated, since in general data sources are not under the control of the
data integration process. The standard approach to this problem basically consists of ex-
plicitly modifying the data in order to eliminate IC violations (data cleaning). However,

http://arxiv.org/abs/1107.4570v2

2 M. Manna, F. Ricca and G. Terracina

the explicit repair of data is not always convenient or possible. Therefore, when answer-
ing a user query, the system should be able to “virtually repair” relevant data (in the line
of Arenas et al. 2003; Bertossi et al. 2005; Chomicki and Marcinkowski 2005), in order to
provide consistent answers; this task is also called Consistent Query Answering (CQA).

The database community has spent considerable efforts in this area, relevant research
results have been obtained to clarify semantics, decidability, and complexity of data-
integration under constraints and, specifically, for CQA. In particular, several notions of
CQA have been proposed (see Bertossi et al. 2005 for a survey), e.g. depending on whether
the information in the database is assumed to besound, completeor exact. However, while
efficient systems are already available for simple data integration scenarios, solutions be-
ing both scalable and comprehensive have not been implemented yet for CQA, mainly
due to the fact that handling inconsistencies arising from constraints violation is inherently
hard. Moreover, mixing different kinds of constraints (e.g. denial constraints, and inclu-
sion dependencies) on the same global database makes, often, the query answering process
undecidable (Abiteboul et al. 1995; Calı̀ et al. 2003a).

This paper provides some contributions in this setting. Specifically, it first starts from dif-
ferent state-of-the-art semantic perspectives (Arenas etal. 2003; Calı̀ et al. 2003a; Chomicki and Marcinkowski 2005)
and revisits them in order to provide a uniform, common core based on Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991). Thus, it pro-
vides query driven optimizations, in the light of the experience we gained in the IN-
FOMIX (Leone et al. 2005) project in order to overcome the limitations observed in real-
world scenarios. The main contributions of this paper can besummarized in:

• A theoretical analysis of considered semantics which extends previous results.

• The definition of a unified framework for CQA based on a purely declarative, logic
based approach which supports the most relevant semantics assumptions on source
data. Specifically, the problem of consistent query answering is reduced to cautious
reasoning on (disjunctive) ASP programs with aggregates (Faber et al. 2010) auto-
matically built from both the query and involved constraints.

• The definition of an optimization approach designed to(1) “localize” and limit the
inefficient part of the computation of consistent answers tosmall fragments of the
input,(2) cast down the computational complexity of the repair process if possible.

• The implementation of the entire framework in a full fledged prototype system.

• The capability of handling large amounts of data, typical ofreal-world data integra-
tion scenarios, using as internal query evaluator theDLVDB (Terracina et al. 2008) sys-
tem; indeed,DLVDB allows for mass-memory database evaluations and distributed
data management features.

In order to assess the effectiveness of the proposed approach, we carried out experimen-
tal activities both on a real world scenario and on syntheticdata, comparing its behavior
on different semantics and constraints.

The plan of the paper is as follows. Section 2 formally introduces the notion of CQA
under different semantics and some new theoretical resultson decidability and complexity
for this problem. Section 3 first introduces a unified (general) solution to handle CQA via
ASP, and then presents some optimizations. Section 4 describes the benchmark framework

CQA via ASP from different perspectives 3

we adopted in the tests and discusses on obtained results. Finally, Section 5 compares
related work and draws some conclusive considerations.

2 Data Integration Framework

In this paper we exploit the data integration setting to point out motivations and challenges
underlying CQA. However, as it will be clarified in the following, techniques and results
provided in the paper hold also for a single database setting. We next formally describe the
adopted data integration framework.

The following notation will be used throughout the paper. Wealways denote byΓ a
countably infinite domain of totally ordered values; byt a tuple of values fromΓ; by X a
variable; bȳx a sequenceX1, . . . ,Xn of (not necessarily distinct) variables, and by|x̄| = n

its length. Let̄x, x̄′ be two sequences of variables, we denote byx̄−x̄′ the sequence obtained
from x̄ by discarding a variable if it appears in̄x′. Whenever all the variables of sequence
x̄ appear in another sequencex̄′, we simply writex̄ ≤ x̄′. Given a sequencēx and a set
π ⊆ {1, . . . , |x̄|}, we denote bȳxπ the sequence obtained from̄x by discarding a variable
if its position is not inπ. (Similarly, given a tuplet and a setπ ⊆ {1, . . . , |t |}, we denote
by tπ the tuple obtained fromt by discarding a value if its position is not inπ.) Moreover,
we denote, byσ(x̄) a conjunction of comparison atoms of the formX ⊙ X ′, where⊙ ∈

{≤,≥, <,>, 6=}, and by⊖, the symmetric difference operator between two sets.

A relationaldatabase schemais a pairR = 〈names(R), constr(R)〉 wherenames(R)

andconstr(R) are the relation names and the integrity constraints (ICs) of R, respectively.
The arity of a given relationr ∈ names(R) is denoted byarity(r). A database(instance)
for R is any set of facts (Abiteboul et al. 1995) of the form:

F = {r(t) : r ∈ names(R) ∧ t is a tuple fromΓ ∧ |t | = arity(r)}

In the following, we adopt theunique name assumption, anddom(F) denotes the subset
of Γ containing all the values appearing in the facts ofF .

Let r1, . . . , rm ∈ names(R), the setconstr(R) contains ICs of the form:

1. ∀x̄1, . . . , x̄m ¬[r1(x̄1)∧ . . .∧ rm(x̄m)∧σ(x̄1, . . . , x̄m)] (denial constraints– DCs)
2. ∀x̄∀ [r1(x̄1) → ∃x̄2∃ r2(x̄2)] (inclusion dependencies– INDs);

wherearity(ri) = |x̄i |, for eachi in [1..m]. In particular, for INDs we require that all the
variables within an̄xi (1 ≤ i ≤ 2) are distinct,̄x∀ ≤ x̄1, x̄∀ ≤ x̄2, andx̄2∃ = x̄2− x̄∀. Note
that, if |x̄2∃| = 0, thenx̄∀ = x̄2 ≤ x̄1. In the case we are only interested in emphasizing
the relation names involved in an IND, we simply writer1(x̄1) → r2(x̄2) or r1 → r2. A
databaseF is said to beconsistentw.r.t. R if all ICs are satisfied. Aconjunctive query
cq(x̄) overR is a formula of the form

∃x̄1∃, . . . , x̄m∃ r1(x̄1) ∧ . . . ∧ rm(x̄m) ∧ σ(x̄1 . . . , x̄m)

wherēxi∃ ≤ x̄i for eachi in [1..m], w̄ = x̄1−x̄1∃, . . . , x̄m−x̄m∃ are thefree variablesof q,
andx̄ contains only and all the variables ofw̄ (with no duplicates, and possibly in different
order). Aunion of conjunctive queriesq(x̄) is a formula of the formcq1(x̄)∨ . . .∨ cqn(x̄).
In the following, for simplicity, the term query refers to a union of conjunctive queries, if
not differently specified. Given a databaseF for R, and a queryq(x̄), theanswerto q is
the set ofn-tuples of valuesans(q,F) = {t : F |= q(t)}.

4 M. Manna, F. Ricca and G. Terracina

2.1 The Data Integration Model

A data integration systemis formalized (Lenzerini 2002) as a tripleI = 〈G,S,M〉 where

� G is theglobal schema. A global databasefor I is any database forG;
� S is thesource schema. A source databasefor I is any database consistent w.r.t.S;
� M is theglobal-as-view(GAV) mapping, that associates each elementg in names(G)

with a union of conjunctive queries overS.

LetF be a source database forI. Theretrieved global databaseis

ret(I,F) = {g(t) : g ∈ names(G) ∧ t ∈ ans(q,F) ∧ q ∈ M(g)}

for G satisfying the mapping. Note that, when source data are combined in a unified schema
with its own ICs, the retrieved global database might be inconsistent.

In the following, when it is clear from the context, we use simply the symbolD to
denote the retrieved global databaseret(I,F). In fact, all results provided in the paper
hold for any databaseD complying with some schemaG but possibly inconsistent w.r.t.
the constraints ofG.

Example 1
Consider a bank association that desires to unify the databases of two branches. The first
(source) database models managers by using a relationman(code, name) and employ-
ees by a relationemp(code, name), wherecode is a primary key for both tables. The
second database stores the same data in a relationemployee(code, name, role). Suppose
that the data have to be integrated under a global schema withtwo relationsm(code) and
e(code, name), where the global ICs are:

• ∀X1,X2,X3 ¬[e(X1,X2) ∧ e(X1,X3) ∧ X2 6= X3] namely,code is the key ofe;
• ∀X1[m(X1) → ∃X2 e(X1,X2)] i.e., an IND imposing that each manager code must

be an employee code as well.

The mapping is defined by the following Datalog rules (as usual, see Abiteboul et al. 1995):

e(Xc ,Xn) :− emp(Xc ,Xn)· m(Xc) :− man(Xc ,)·

e(Xc ,Xn) :− employee(Xc ,Xn ,)· m(Xc) :− employee(Xc , , ‘manager ′)·

Assume that,emp stores tuples(‘e1’,‘john’) , (‘e2’,‘mary’) , (‘e3’,‘willy’) , man stores
(‘e1’,‘john’) , andemployee stores(‘e1’,‘ann’,‘manager’), (‘e2’,‘mary’,‘manager’), (‘e3’,
‘rose’,‘emp’). It is easy to verify that, although the source databases areconsistent w.r.t.
local constraints, the global database, obtained by evaluating the mapping, violates the key
constraint one as bothjohn andannhave the same codee1, and bothwilly androsehave
the same codee3 in tablee. ⊓⊔

2.2 Consistent Query Answering under different semantics

In case a databaseD violates ICs, one can still be interested in querying the “consistent”
information originating fromF . One possibility is to “repair”D (by inserting or deleting
tuples) in such a way that all the ICs are satisfied. But there are several ways to “repair”D.
As an example, in order to satisfy an IND of the formr1 → r2 one might either remove

CQA via ASP from different perspectives 5

violating tuples fromr1 or insert new tuples inr2. Moreover, the repairing strategy de-
pends on the particular semantic assumption made on the dataintegration system. Semantic
assumptions may range from (strict) soundness to (strict) completeness. Roughly speak-
ing, completeness complies with theclosed world assumptionwhere missing facts are
assumed to be false; on the contrary, soundness complies with theopen world assumption
whereD may be incomplete. We next define consistent query answeringunder some rel-
evant semantics, namelyloosely-exact, loosely-sound, CM-complete(Arenas et al. 2003;
Calı̀ et al. 2003a; Chomicki and Marcinkowski 2005). More formally, let Σ denote ase-
mantics, andD a possibly inconsistent database forG, a databaseB is said to be aΣ-repair
for D if it is consistent w.r.t.G and one of the following conditions holds:

1. Σ = CM-complete, B ⊆ D, and∄ B′ ⊆ D such thatB′ is consistent andB′ ⊃ B;
2. Σ = loosely-soundand∄ B′ such thatB′ is consistent andB′ ∩ D ⊃ B ∩ D;

3. Σ = loosely-exact, and∄ B′ such thatB′ is consistent andB′ ⊖D ⊂ B ⊖D.

The CM-completesemantics allows a minimal number of deletions in each repair to
avoid empty repairs, if possible, but does not allow insertions. Theloosely-soundseman-
tics allows insertions and a minimal amount of deletions. Finally, the loosely-exactse-
mantics allows both insertions and deletions by minimization of the symmetric difference
betweenD and the repairs.

Definition 1

Let D be a database for a schemaG, andΣ be a semantics. Theconsistent answerto a
queryq w.r.t.D, is the setansΣ(q,G,D) = {t : t ∈ ans(q,B) for eachΣ-repairB for D}

Consistent Query Answering(CQA) is the problem of computingansΣ(q,G,D). ⊓⊔

Observe that other semantics have been considered in the literature, likesound, com-
plete, exact, loosely-complete, etc. (Calı̀ et al. 2003a); however, some of them are trivial
for CQA; as an example, in theexact semantics CQA makes sense only if the retrieved
database is already consistent with the global constraints, whereas in thecompleteand
loosely-completesemantics CQA will always return a void answer. Note that, the seman-
tics considered in this paper address a wide significant range of ways to repair the retrieved
database which are also relevant for CQA.

Example 2

By following Example 1, the retrieved global database admits exactly the following repairs
under theCM-completesemantics:

B1 = {e(‘e2’,‘mary’), e(‘e1’,‘john’) , e(‘e3’,‘willy’) , m(‘e1’), m(‘e2’)}
B2 = {e(‘e2’,‘mary’), e(‘e1’,‘john’) , e(‘e3’,‘rose’), m(‘e1’), m(‘e2’)}
B3 = {e(‘e2’,‘mary’), e(‘e1’,‘ann’), e(‘e3’,‘willy’) , m(‘e1’), m(‘e2’)}
B4 = {e(‘e2’,‘mary’), e(‘e1’,‘ann’), e(‘e3’,‘rose’), m(‘e1’), m(‘e2’)}

Querym(X) asking for the list of manager codes has then bothe1 ande2 as consistent an-
swers, whereas the querye(X ,Y) asking for the list of employees has onlye(‘e2’,‘mary’)
as consistent answer (e is the only tuple in eachCM-completerepair). ⊓⊔

6 M. Manna, F. Ricca and G. Terracina

2.3 Restricted Classes of Integrity Constraints

The problem of computing CQA, under general combinations ofICs, is undecidable (Abiteboul et al. 1995).
However, restrictions on ICs to retain decidability and identify tractable cases can be im-
posed.

Definition 2
Let r be a relation name of arityn, andπ be a set ofm ≤ n indices fromI = {1, . . . , n}.
A key dependency(KD) for r consists of a set ofn −m DCs, exactly one for each index
i ∈ I − π, of the form∀x̄1, x̄2 ¬(r(x̄1) ∧ r(x̄2) ∧ x̄i1 6= x̄i

2) where no variable occurs
twice in each̄xi (1 ≤ i ≤ 2), |x̄1| = |x̄2| = n, the sequencēxπ1 exactly coincides with
x̄π2 , andx̄j

1 is distinct fromx̄j
2 for eachj ∈ I − π. The setπ is called theprimary-keyof

r and is denoted bykey(r). We assume that at most one KD is specified for each relation
(Calı̀ et al. 2003a). Finally, for each relation namer ′ such that no DC is explicitly specified
for, we say, without loss of generality, thatkey(r ′) = {1, . . . , arity(r ′)}. ⊓⊔

Definition 3
Given an inclusion dependencyd of the form∀x̄∀ [r1(x̄1) → ∃x̄2∃ r2(x̄2)], we denote by
πd
L ⊆ {1, . . . , arity(r1)} andπd

R ⊆ {1, . . . , arity(r2)} the two sets of indices induced by
the positions of the variables̄x∀ in x̄1 andx̄2, respectively. More formally,πd

L = {i : x̄i
1 is

universally quantified ind} andπd
R = {i : x̄i

2 is universally quantified ind}. ⊓⊔

For example, letd denote the IND∀X1,X2 [r1(X1,X3,X2) → ∃X4 r2(X4,X2,X1)].
We have thatπd

L = {1, 3} andπd
R = {2, 3}.

Definition 4
An IND d is said to be

• a foreign key(FK) if πd
R = key(r2) (Abiteboul et al. 1995);

• a foreign superkey(FSK) if πd
R ⊇ key(r2) (Levene and Vincent 2000);

• non-key-conflicting(NKC) if πd
R 6⊃ key(r2) (Calı̀ et al. 2003a). ⊓⊔

Definition 5
An FSKd of the formr1 → r2 is said to besafe(SFSK) ifπd

L ⊆ key(r1). In particular, if
d is asafeFK we call it an SFK. ⊓⊔

For example, letd denote the FSK∀X1,X2 [r1(X1,X3,X2) → ∃X4 r2(X4,X2,X1)]

wherekey(r2) = {3}. Thus, ifkey(r1) = {1, 3}, d is SFSK, whereas ifkey(r1) = {1, 2},
d is not SFSK.

Table 1 summarizes known and new results about computability and complexity of CQA
under relevant classes of ICs and the three semantic assumptions considered in this paper.
In particular, given a queryq (without comparison atoms ifΣ ∈ {loosely-sound , loosely-
exact}), we refer to the decision problem of establishing whether atuple fromdom(D) be-
longs toansΣ(q,G,D) or not. Note that, Chomicki and Marcinkowski (2005) have proved
computability and complexity of CQA for theCM-completesemantics in case of conjunc-
tive queries with comparison predicates. However, since insuch a setting there is a finite
number of repairs each of finite size, then their results straightforwardly hold for union of
conjunctive queries as well. New decidability and complexity results for CQA under KDs
and SFSKs only, withΣ ∈ {loosely-sound, loosely-exact} are proved in Section 2.4.

CQA via ASP from different perspectives 7

Table 1. Data Complexity of CQA (distinguishing between cyclic/acyclic INDs)

DCs INDs loosely-sound loosely-exact CM-complete

no any in PTIME (1) in PTIME (1) in PTIME (2)

KD no coNP-c (1) coNP-c (1) coNP-c (2)

KD NKC coNP-c (1)
Π

p
2-c (1) in Π

p
2

(2) / in coNP (2)

KD SFSK in Π
p
2

(3) in Π
p
2

(3) in Π
p
2

(2) / in coNP (2)

KD any undec.(1) undec.(1) in Π
p
2

(2) / in coNP (2)

any any undec.(4) undec.(4) Π
p
2-c (2) / coNP-c (2)

(1) Cal̀ı et al. 2003a;(2) Chomicki and Marcinkowski 2005;(3) Section 2.4;(4) Abiteboul et al. 1995;

2.4 Loosely-exact and Loosely-sound semantics under KD and SFSK

In this section we provide new decidability and complexity results for CQA under both
the loosely-exact and the loosely-sound semantics with KDsand SFSKs. In the rest of the
section we always denote by:

• G, a schema containing KDs and SFSKs only;
• D, a possibly inconsistent database forG;
• q, a union of conjunctive queries without comparison atoms.
• Σ ∈ {loosely-exact, loosely-sound}.

We first show that, in the aforementioned hypothesis, the size of each repair is finite.

Definition 6
LetB be aΣ-repair forD andi ≥ 0 be a natural number. We inductively define the setsBi

as follows:

1. If i = 0, thenB0 = B ∩ D.
2. If i > 0, thenBi ⊆ B − (B0 ∪ . . . ∪ Bi−1) is arbitrarily chosen in such a way that

its facts are necessary and sufficient for satisfying all theINDs in constr(G) that are
violated inB0 ∪ . . . ∪ Bi−1.

Observe thatB =
⋃

i≥0 B
i and thatBi ∩ Bj = ∅ for eachj 6= i . ⊓⊔

Lemma 1
LetB be aΣ-repair forD, then

1. The key of each fact inB only contains values fromdom(D).
2. |B| is finite.

8 M. Manna, F. Ricca and G. Terracina

Proof
(1) Let i > 0 be a natural number. Letri(ti) be a fact inBi such that there is an index
j ∈ key(ri) for whicht ji 6∈ dom(B0). Letri−1(ti−1) be one of the facts inBi−1 that forces
the presence ofri(ti) in Bi for satisfying some IND, sayd . (Note that, by Definition 6,
there must be at least one of such a fact becauseBi would otherwise violate condition 2,
sinceri(ti) would be unnecessary.) Moreover, sinced is a safe FSK, then there must exist
an indexk ∈ key(ri−1) such thatt ji = tki−1. Thus,ri−1(ti−1) contains a value being not
in dom(B0) inside its key as well asri(ti). Sincei has been chosen arbitrarily, then value
t
j
i has to be part of a fact ofB0, which is clearly a contradiction.

(2) Since, the key of each fact inB can only contain values fromdom(B0), and|dom(B0)| ≤

|B0|·αwhereα = max{arity(g) : g ∈ names(G)}, then|B| ≤ |names(G)|·|dom(B0)|α ≤

|names(G)| · (α · |B0|)α ≤ |names(G)| · (α · |D|)α.

We next characterize representative databases forΣ-repairs.

Definition 7
Let B be aΣ-repair forD. We denote byhomo(B) the (possibly infinite) set of databases
defined in such a way thatB′ ∈ homo(B) if and only if:

• B′ can be obtained fromB by replacing each value (if any) that is not indom(D)

with a value fromΓ− dom(D); and
• none of the values inΓ− dom(D) occurs twice inB′.

Finally, we denote byhB,B′ : dom(B′) → dom(B) the function (homomorphism) as-
sociating values indom(B′) with values indom(B), wherehB,B′(α) = α, for each
α ∈ dom(D) ∩ dom(B′). ⊓⊔

Note that, since (by Lemma 1) the key of each fact inB only contains values from
dom(D), then|B′| = |B| holds.

For example, ifB = {p(1, ε1, ε2), q(2, ε2, ε1)} with dom(D) = {1, 2} andkey(p) =

key(q) = {1}, then all of the following databases are inhomo(B): {p(1, ε1, ε3), q(2, ε2, ε4)},
{p(1, ε4, ε2), q(2, ε3, ε1)} and{p(1, ε5, ε6), q(2, ε7, ε8)}.

Lemma 2
If B is aΣ-repair forD, then eachB′ ∈ homo(B) also is.

Proof
Let B′ ∈ homo(B). First of all, we prove thatB′ is consistent w.r.t.G. In particular,
since the key of each fact inB only contains values fromdom(D) (by Lemma 1), then
B′ cannot violate any KD (by Definition 7); Moreover, since eachIND has to be satisfied
through values of a key (by definition of safe FSKs), and sincethe key of each fact inB
only contains values fromdom(D) (by Lemma 1), thenB′ cannot violate any IND (by
Definition 7);

We now prove thatB′ is a repair, first for the loosely-sound semantics and then for the
loosely-exact semantics.

[loosely-sound] If Σ = loosely-sound, then observe thatB′ ∩ D = B ∩ D, by definition

CQA via ASP from different perspectives 9

of homo(B). Thus, ifB′ was consistent but not a loosely-sound repair there would exist a
loosely-sound repairB′′ such thatB′′ ∩ D ⊃ B′ ∩D = B ∩ D. Contradiction.

[loosely-exact] If Σ = loosely-exact, then assume thatB is a loosely-exact repair butB′

(although consistent w.r.t.G) is not. By definition, there must be a loosely-exact repairB′′

such thatB′′ ⊖D ⊂ B′ ⊖D. In particular, we distinguish three cases:

(1) B′′ −D = B′ −D andD − B′′ ⊂ D − B′

(2) B′′ −D ⊂ B′ −D andD − B′′ = D − B′

(3) B′′ −D ⊂ B′ −D andD − B′′ ⊂ D − B′

CASE 1: Since, by Definition 7, for each fact inB there is a fact inB′ with the same
key, if we could add the facts inB′′ − B′ to B′ without violating any KD, then such facts
could also be added toB without violating any KD. Moreover, if we could add toB′ the
facts inB′′ − B′ without violating any IND, then such facts could be also added to B

preserving consistency. This follows by the definition of safe FSKs (because each IND
has to be satisfied through values of a key), by Lemma 1 (because the key of each fact in
a loosely-exact repair only contains values fromdom(D)) and, by Definition 7 (because
for each fact inB′ there is a fact inB with the same key and with the same values from
dom(D)). Consequently, we could add all the facts inB′′−B′ toB preserving consistency.
But this is not possible sinceB is a loosely-exact repair.

CASE 2: Since inB′ we have unnecessary facts (those inB′ − B′′) or equivalently the
facts inB′′ do not violate any IND, then the corresponding facts inB do not violate any
IND by Lemma 1 and by Definition 7. Consequently, if each factf ∈ B, such that there is
a factf ′ ∈ B′ −B′′ that is homomorphic tof , was removed fromB, then we would obtain
a database preserving consistency and with a smaller symmetric difference thanB. But this
is not possible sinceB is a loosely-exact repair.

CASE 3: Analogous considerations can be done by combining case 1 and case 2.

We next define the finite databaseD∗ having among its subsets a number ofΣ-repairs
sufficient for solving CQA.

Definition 8
Let c be a value inΓ− dom(D). Consider the largest (possibly inconsistent) database, say
C , constructible on the domaindom(D) ∪ {c} such thatf ∈ C iff the valuec does not
appear in the key off . LetN be a fixed set of values arbitrarily chosen fromΓ− dom(D)

whose cardinality is equal to the number of occurrences ofc in C . We denote byD∗ one
possible database forG obtained fromC by replacing each occurrence ofc with a value
fromN in such a way that each value inN occurs exactly once inD∗. (|C | = |D∗|.) ⊓⊔

For example, ifdom(D) = {1, 2} andG = {p} with arity(p) = 2 andkey(p) = {1},
thenC = {p(1, 1), p(1, 2), p(1, c), p(2, 1), p(2, 2), p(2, c)}. Let us fixN = {ε1, ε2}.
Thus,D∗ has the following form:{p(1, 1), p(1, 2), p(1, ε1), p(2, 1), p(2, 2), p(2, ε2)}.

Proposition 1
The following hold:

• |N | =
∑

g∈G(arity(g)−|key(g)|)·|dom(D)||key(g)|·(|dom(D)|+1)arity(g)−|key(g)|−1

• |D∗| ≤
∑

g∈G(|dom(D)|+ 1)arity(g) ≤
∑

g∈G(arity(g) · |D|+ 1)arity(g)

10 M. Manna, F. Ricca and G. Terracina

Lemma 3

If B is aΣ-repair forD, then there existsB′ ∈ homo(B) such thatB′ ⊆ D∗.

Proof

B′ can be obtained fromB by replacing each factr(t1) ∈ B with the unique factr(t2) ∈
D∗ such that for eachi ∈ arity(r) either t i2 = t i1, if t i1 ∈ dom(D), or t i2 ∈ N , if
t i1 6∈ dom(D). Moreover, note that, sinceB cannot contain two facts with the same key
and since keys only have values fromdom(D), then each fact inD∗ can replace at most
one fact inB. Finally,B′ ∈ homo(B) by Definition 7.

Lemma 4

Let B be aΣ-repair forD, B′ ∈ homo(B), q be a query, andt be a tuple of values from
dom(D). If t ∈ ans(q,B′), thent ∈ ans(q,B).

Proof

Let qi be one of the conjunctions inq, if t ∈ ans(qi ,B′), then there is a substitutionµ′

from the variables ofqi to values inΓ such thatB′ |= qi(t). But since, by Definition 7,
each fact inB′ is univocally associated with a unique fact inB by preserving the values
in dom(D), and since all the extra values inB′ are distinct, then there must also be a
substitutionµ such thatB |= qi(t). In particular, letx be a variable inqi , we can defineµ
in such a way thatµ(x) = hB,B′ (µ′(x)), whereh is the homomorphism fromB′ to B (see
Definition 7). Clearly, ift ∈ ans(qi ,B′) for at least oneqi in q thent ∈ ans(q,B′) too
and, consequently,t ∈ ans(q,B)

The next theorem states the decidability of CQA under both the loosely-exact and the
loosely-sound semantics with KDs and SFSKs only.

Theorem 1

LetB be aΣ-repair forD, q a query, andt a tuple fromdom(D). LetB ⊆ 2D
∗

denote the
set of allΣ-repairs contained inD∗. Then,t ∈ ansΣ(q,G,D) iff t ∈ ans(q,B) ∀B ∈ B·

Proof

(⇒) We have to prove that,if t ∈ ansΣ(q,G,D), thent ∈ ans(q,B) for eachB ∈ B, or
equivalentlyif t 6∈ ans(q,B) for someB ∈ B, thent 6∈ ansΣ(q,G,D). This follows, by
the definition ofansΣ(q,G,D) and from the fact thatB only containsΣ-repairs.

(⇐) We have to prove that,if t ∈ ans(q,B) for eachB ∈ B, thent ∈ ansΣ(q,G,D).
Assume thatt ∈ ans(q,B) for eachB ∈ B but t 6∈ ansΣ(q,G,D). This would entail
that there is a repairB0 such thatt 6∈ ans(q,B0). But, sincet 6∈ ans(q,B′) for each
B′ ∈ homo(B0) (by Lemma 4), and sinceB∩homo(B0) always contains a repair, sayB′′

(by Lemma 3), then we have a contradiction sincet 6∈ ans(q,B′′) has to hold whereas we
have assumed thatt ∈ ans(q,B) for eachB ∈ B.

Decidability and complexity results, under KDs and SFSKs only, follow from Theorem 1.

CQA via ASP from different perspectives 11

Corollary 1
Let G be a global schema containing KDs and SFSKs only,D be a possibly inconsistent
database forG, q be a query,Σ ∈ {loosely-exact, loosely-sound}, andt be a tuple of
values fromdom(D). The problem of establishing whethert ∈ ansΣ(q,G,D) is in Πp

2 in
data complexity.

Proof
It suffices to prove that the problem of establishing whethert 6∈ ansΣ(q,G,D) is in Σp

2 .
This can be done by (i) buildingD∗, and (ii) guessingB ∈ 2D

∗

such thatB is aΣ-repair
andt 6∈ ans(q,B). Since, by Proposition 1,|D∗| ∈ O(|D|α) whereα = max{arity(g) :
g ∈ names(G)}, then step (i) (enumerate the facts ofD∗) can be done in polynomial time.
Since checking thatt 6∈ ans(q,B) can be done inPTIME. It remains to show that checking
whetherB is aΣ-repair can be done incoNP.
[loosely-exact] If Σ = loosely-exact, this task corresponds to checking that there is no
consistentB′ ⊆ D∪B such thatB′ ⊖D ⊂ B⊖D, where this last task is doable inPTIME.
[loosely-sound] If Σ = loosely-sound, this task corresponds to checking that there is no
consistentB′ ⊆ D∗ such thatB′ ∩ D ⊃ B ∩ D, where this last task is doable inPTIME.

Then the thesis follows.

2.5 Equivalence of CQA under loosely-exact and CM-complete semantics

In this section we define some relevant cases in which CQA under loosely-exact and CM-
complete semantics coincide.

Lemma 5
Given a databaseD for a schemaG, if B is a CM-complete repair forD, then it is a loosely-
exact repair forD.

Proof
Suppose thatB is aCM-completerepair forD (so, it is consistent w.r.t.G), but it is not a
loosely-exactone. This means that its symmetric difference withD can be still reduced.
But, by definition ofCM-completesemantics,B does not contain anything else but tuples
in D, namelyB − D = ∅. So, the only way for “improving” it is to extend it with tuples
from D. But, this is not possible becauseB is already maximal due to theCM-complete
semantics, namely the addition of any other tuple would violate at least one IC.

Corollary 2
ansloosely−exact(q,G,D) ⊆ ansCM−complete(q,G,D)

Proof
This directly follows by Lemma 5 in light of Definition 1.

Theorem 2
There are cases whereansloosely-exact(q,G,D) ⊂ ansCM -complete(q,G,D)

12 M. Manna, F. Ricca and G. Terracina

Proof
By Chomicki and Marcinkowski (2005), stating that the two semantics are different, and
by Corollary 2.

Proposition 2
LetB be a database consistent w.r.t. a set of ICsC .

1. If C are DCs only, then eachB′ ⊂ B is consistent w.r.t.C , as well.
2. If C are INDs only, thenB∪B′ is consistent w.r.t.C for eachB′ consistent w.r.t.C .

Proof
(1) Deletion of tuples can not introduce new DCs violations.

(2) Let r(t) be a fact inB′. Let d1 be an IND of the formr1 → r (r 6= r1). Clearly,r(t)
cannot violated1 in any database becauser is in the righthand side ofd1. In particular,
r(t) cannot violated1 in B ∪ B′. Let d2 be an IND of the formr → r2 (possibly,r = r2).
Sincer(t) does not violated2 in B′, then it cannot violated2 in B ∪ B′.

Theorem 3
Given a databaseD for a schemaG, letB be a loosely-exact repair forD, andB = B ∩D.
There is a CM-complete repairB′ ⊆ B for D if at least one of the following restrictions
holds:

I G contains DCs only (no INDs);
II G contains INDs only (no DCs);

III G contains KDs and FKs only, andD is consistent w.r.t. KDs;
IV G contains KDs and SFKs only;

Proof
Case I: By Proposition 2, sinceB is consistent w.r.t. DCs, thenB ⊆ B is consistent as well.
Now, if B − D 6= ∅, then we would have a contradiction becauseB ⊖ D ⊂ B ⊖ D would
hold. Thus,B −D = ∅ and so,B = B is already aCM-completerepair itself.

Case II: Since there is no DC, there exists only oneCM-completerepair, sayB′, obtained
from D after removing all the facts violating INDs. Now, ifB′ was not contained inB,
then, by Proposition 2,B′ ∪ B would still be consistent, that is a largerCM-complete
repair. Contradiction. FinallyB = B′.

Case III: SinceD is consistent w.r.t. DCs, we have only oneCM-completerepair, say
B′, obtained fromD after removing all the facts violating INDs. But, as in case II, if the
setB′ − B was nonempty, then we could add all these facts intoB without violating any
IND. Anyway, one of these facts, sayf , could violate a DC due to a factf ′ in B − D.
Now, note thatf ′ is in B only for fixing an IND violation. But in this case, as we are
only considering FKs, there would be no reason to havef ′ in B instead off . So, we could
(safely) replacef with f ′ in B and no KD would be violated as well as no FK. But this
leads to a contradiction. So, there is no fact inB′ which is not inB.

Case IV: First of all, we observe that ifB−D = ∅, then eitherB is aCM-completerepair
or B is not aloosely-exactrepair. So the statement holds. Now assume thatB − D 6= ∅.
We distinguish three different cases:

CQA via ASP from different perspectives 13

(1) B is both consistent and maximal (it is aCM-completerepair);
(2) B is consistent but not maximal (it is not aCM-completerepair);
(3) B is inconsistent (it is not aCM-completerepair).

In case(1), we have a contradiction becauseB is assumed to be aloosely-exactrepair,
but it does not minimize the symmetric difference withD sinceB ⊖D ⊂ B ⊖D.

In case(2), we have again a contradiction becauseB is assumed to be aloosely-exact
repair but it does not minimize the symmetric difference with D since there is aCM-
completerepairB̃ ⊃ B such thatB̃ ⊖ D ⊂ B ⊖D.

In case(3), we observe that since, by hypothesis,B is consistent, then the inconsistency
of B arises, by Proposition 2, only due to INDs. Now, assume that (i) B contains a fact
r1(t1); (ii) there is an INDd of the form∀x̄∀ [r1(x̄1) → ∃x̄2∃ r2(x̄2)]; (iii) there is no fact
for r2 in B satisfyingd . This means that a fact of the formr2(t2) must be inB −D, where

t
πd
L

1 = t
πd
R

2 .

Now, we claim that there is no fact of the formr2(t3) in D − B, wheretπ
d
L

1 = t
πd
R

3 . Sup-
pose thatD−B contained such a factr2(t3). Consider the new database(B ∪ {r2(t3)})−

{r2(t2)}. This would necessarily be consistent because the additionof r2(t3) (after remov-
ing r2(t2) as well) cannot violate any KD sinced is an FK (remember thatkey(r2) = πd

R),
and cannot violate any IND since each INDd ′ of the formr2 → r3 is an SFK (remember
thatkey(r2) ⊇ πd′

L). But this is not possible becauseB is assumed to be aloosely-exact
repair, and(B∪{r2(t3)})−{r2(t2)} would improve the symmetric difference. This means,
that eachCM-completerepair cannot contain the tupler1(t1) (this goes in the direction of
the statement).

Let us callB
′
the consistent (w.r.t. both KDs and SFKs) database obtainedfromB after

removing all the facts violating some IND. It remains to showthat there is no other fact
in D − B such thatB

′
∪ {r1(t1)} does not violate any constraint. Assume that such a fact

r1(t1) exists, then:

- B
′
∪ {r1(t1)} would not violate any IND;

- B ∪ (B
′
∪ {r1(t1)}) = B ∪ {r1(t1)} would not violate any IND, by Proposition 2;

- B ∪ {r1(t1)} would violate some KD, sinceB is a loosely-exactrepair.

Thus, there would necessarily be a fact inB, sayr1(t2), being not inB
′
, with the same key

of r1(t1). Since such a fact cannot stay inB−B
′
because it does not violate any IND, then

it must be inB − D. But this is not possible because we could replacer1(t2) by r1(t1)

in B without violating any KD and also without violating any IND,since we are only
considering SFKs. But sinceB is already a repair, this is clearly a contradiction. Finally,
B
′
is aCM-completerepair.

Corollary 3
ansloosely-exact(q,G,D) = ansCM -complete(q,G,D) in the following cases:

- G contains DCs only (no INDs);
- G contains INDs only (no DCs);
- G contains KDs and FKs only, andD is consistent w.r.t. KDs;
- G contains KDs and SFKs only;

14 M. Manna, F. Ricca and G. Terracina

Proof
This directly follows by both Theorem 3 and Lemma 5, in light of Definition 1.

Proposition 3
In general, Theorem 3 does not hold in caseG contains SFSKs and KDs only.

Proof
Consider a database containing two relations of arity 2, namely: r ands . Moreover, the
schema contains the following ICs:key(r) = {1, 2}, andkey(s) = {1} andr(X ,Y) →

s(X ,Y). Note that, the last is a safe FSK. Suppose also that a DBD for this schema con-
tains the following facts:r(a, b), s(a, c). The loosely-exactrepairs areB1 = {s(a, c)}

andB2 = {r(a, b), s(a, b)}, but only the first one is also aCM-Completerepair. However,
B = B2 ∩D = {r(a, b)} is not a CM-complete repair (it is inconsistent). The only consis-
tent database contained inB is the empty set that is not aCM-Completerepair (deletions
are not minimized).

3 Computation of CQA via ASP

In this section, we show how to exploitAnswer Set Programming(ASP) (Gelfond and Lifschitz 1988;
Gelfond and Lifschitz 1991) for efficiently computing consistent answers to user queries
under different semantic assumptions. ASP is a powerful logic programming paradigm al-
lowing (in its general form) for disjunction in rule heads (Minker 1982) and nonmono-
tonic negation in rule bodies. In the following, we assume that the reader is familiar
with ASP with aggregates, and in particular we adopt the DLV syntax (Faber et al. 2010;
Leone et al. 2006).

The suitability of ASP for implementing CQA has been alreadyrecognized in the litera-
ture (Lenzerini 2002; Arenas et al. 2003; Bertossi et al. 2005; Chomicki and Marcinkowski 2005).
The general approaches are based on the following idea: produce an ASP programP whose
answer sets represent possible repairs, so that the problemof computing CQA corresponds
to cautious reasoning onP . One of the hardest challenges in this context is the automatic
identification of a programP considering a minimal number of repairs actually relevant to
answering user queries.

In order to face these challenges, we first introduce a general encoding which unifies in
a common core the solutions for CQA under the semantics considered in this paper. Then,
based on this unified framework, we define optimization strategies precisely aiming at
reducing the computational cost of CQA. This is done in several ways:(i) by casting down
the original program to complexity-wise easier programs;(ii) by identifying portions of the
database not requiring repairs at all, according to the query requirements;(iii) exploiting
equivalence classes between some semantics in such a way to adopt optimized solutions.

We next present the general encoding first and, then, the optimizations.

3.1 General Encoding

The general approach generates a programΠcqa and a new queryqcqa obtained by rewrit-
ing both the constraints and the queryq in such a way that CQA reduces to cautious rea-

CQA via ASP from different perspectives 15

soning onΠcqa andqcqa . Recall that a union of conjunctive queries in ASP is expressed as
a set of rules having the same head predicate with the same arity.

In what follows, we first present how to generateΠcqa andqcqa and then formally prove
under which hypothesis cautious reasoning on suchΠcqa andqcqa corresponds to CQA.

Given a databaseD for a schemaG and a queryq onG, the ASP programΠcqa is created
by rewriting each IC belonging toconstr(G) andq as follows:

Denial Constraints.LetΣ ∈ {CM-complete, loosely-sound, loosely-exact}. For each DC
of the form∀x̄1, . . . , x̄m ¬[g1(x̄1) ∧ . . . ∧ gm(x̄m) ∧ σ(x̄1, . . . , x̄m)] in constr(G), insert
the following rule intoΠcqa :

• gc1 (x̄1) ∨ · · · ∨ gcm(x̄m) :− g1(x̄1), · · · , gm(x̄m), σ(x̄1, . . . , x̄m)·

This rule states that in presence of a violated denial constraint it must be guessed the
tuple(s) to be removed in order to repair the database.

Inclusion dependencies.Let Σ = {CM-complete, loosely-exact}. For each INDd in
constr(G) of the form∀x̄∀ [g1(x̄1) → ∃x̄2∃ g2(x̄2)], add the following rules intoΠcqa :

• gc1 (x̄1) :− g1(x̄1), #count{x̄2∃ : gc2 (x̄2)} = #count{x̄2∃ : g2(x̄2)}· if |x̄2∃| > 0

• gc1 (x̄1) :− g1(x̄1), gc2 (x̄2)·

gc1 (x̄1) :− g1(x̄1), not g2(x̄2)· if |x̄2∃| = 0

The first rule states that a tuple ofg1 must be deleted iff either all the tuples ing2 pre-
viously referred to byg1 via d have been deleted due to the repairing process, or there
is no tuple ing2 referred to byg1 via d . (This is done by comparing the total count of
tuples ing2 andgc2). Observe that if there is a cyclic set of INDs, the set of rules gener-
ated by this rewriting would contain recursive aggregates.Their semantics is described in
(Faber et al. 2010). The latter two rules replace the first onein the special case of|x̄2∃| = 0.

Repaired Relations.Let Σ ∈ {CM-complete, loosely-sound, loosely-exact}. For each re-
lation nameg ∈ names(G), insert the following rule intoΠcqa :

• gr (x̄) :− g(x̄), not gc(x̄)·

Query rewriting. Build qcqa(x̄) from q(x̄) as follows:

1. If Σ = loosely-sound, then apply ontoq the perfect rewriting algorithm that deals
with INDs described in (Calı̀ et al. 2003b)1.

2. For each atomg(ȳ) in q, replaceg(ȳ) by gr (ȳ)

The perfect rewriting introduced in (Calı̀ et al. 2003b) is intuitively described next. Given
a queryq(x̄) and a set of INDs, the algorithm iteratively computes a new queryQ as fol-
lows.Q is first initialized withq; then, at each iteration it carries out the following two
steps:(1) For each conjunctioncq ′ in Q , and for each pair of atomsg1, g2 in cq ′ that unify
(i.e., for which there exists a substitution transformingg1 into g2), g1 andg2 are substituted

1 Observe that, whenΣ = loosely-sound, INDs are not encoded into logic rules.

16 M. Manna, F. Ricca and G. Terracina

by one single unifying atom.(2) For each conjunctioncq ′ in Q , and for eachapplicable
IND d of the formg1 → g such thatg is in cq ′, it adds toQ a new conjunctioncq ′′ ob-
tained fromcq ′ by interpretingd as a rewriting rule ong, applied from right to left. The
algorithm stops when no further modifications are possible onQ with the two steps above.

The following theorems show how and when cautious reasoningonΠcqa andqcqa cor-
respond to CQA. First we consider the CM-complete semantics.

Theorem 4
LetΣ = CM-complete, letD be a database for a schemaG with arbitrary DCs and (possi-
bly cyclic) INDs, and letq be a union of conjunctive queries.t ∈ ansΣ(q,G,D) iff qcqa(t)
is a cautious consequence of the ASP programD ∪Πcqa .

Proof
We claim thatΠcqa allows to consider only and all the repairs, exactly one per model. Let
Br be a repair. In the following, we describe how to obtain a model containing for each
relation, sayg, exactly only and all the tuples ofg that do not appear inBr . We collect such
tuples in the new relationgc , while we collect ingr only and all the tuples ofg appearing
in Br . For each relation, sayg:

(a) By the disjunctive rules (if any) involvingg, of the form

· · · ∨ gc(x̄) ∨ · · · :− · · · , g(x̄), · · · , σ(· · · , x̄, · · ·)·

we guess a set of tuples ofg, collected ingc , that must not appear inBr .
(b) Next, for each IND of the formg(x̄1) → g1(x̄2) (involving g in the left-hand side),

we use the rule

gc(x̄1) :− g(x̄1), #count{x̄2∃ : gc1 (x̄2)} = #count{x̄2∃ : g1(x̄2)}·

for deciding which tuples ofg cannot appear inBr due to an IND violation. Note
that in case|x̄2∃| = 0, the rule is rewritten without the#count aggregate.

(c) Finally, by the rulegr (x̄) :− g(x̄), not gc(x̄) we obtain the repaired relations.

Importantly, for computing the extension of eachgc we only exploit the minimality of
answer sets semantics; later, the extension of eachgr is computed. Observe that, by the
splitting theorem (Lifschitz and Turner 1994)Πcqa can be divided (split) into two parts . It
is clear that, by construction,Πcqa has exactly one answer set per repair. Finally, the query
is reorganized to exploit the repaired relations, and cautious reasoning does the rest.

Example 3
Consider again Example 2, the program (and the query built from q(X) :− m(X)) under
theCM-completesemantics obtained for it, is:

� ec(Xc ,Xn) ∨ ec(Xc,X
′
n) :− e(Xc ,Xn), e(Xc ,X

′
n), Xn 6= X ′

n ·
� mc(Xc) :− m(Xc), #count{X ′

n : ec(Xc,X
′
n)} = #count{Xn : e(Xc ,Xn)}·

� er (Xc ,Xn) :− e(Xc ,Xn), not ec(Xc,Xn)·
� mr (Xc) :− m(Xc), not mc(Xc)·
� qcqa(Xc) :− mr (Xc)·

When this program is evaluated on the database we obtain fouranswer sets. It can be
verified that, all the answer sets containmr (‘e1’) andmr (‘e2’), (i.e., they are cautious
consequences ofΠcqa) and, thus,‘e1’ and‘e2’ are the consistent answers to the query.⊓⊔

CQA via ASP from different perspectives 17

Theorem 5
Let Σ = loosely-sound, let D be a database for a schemaG with KDs (and exactly one
key for each relation) and (possibly cyclic) NKC INDs, and let q be a union of conjunctive
queries without comparison atoms2. t ∈ ansΣ(q,G,D) iff qcqa(t) is a cautious conse-
quence of the ASP programD ∪ Πcqa .

Proof
Considerations analogous to theCM-completecase can be drawn. Disjunctive rules guess a
minimal set of tuples to be removed, whereas the perfect rewriting algorithm allows to deal
with NKC INDs. Observe that, the separation theorem introduced in (Calı̀ et al. 2003b)
shows that INDs can be taken into account as if the KDs where not expressed onG; in
particular, it states that it is sufficient to compute the perfect rewritingq ′ of q and evaluate
q ′ on the maximal subsets ofD consistent with KDs. In our case, these are computed by
the part ofΠcqa dealing with KDs, whereas the separation is carried out by renaming each
g in q ′ by gr .

The general encoding for theloosely-exactsemantics is inherently more complex than
the ones forloosely-soundandCM-complete, since both tuple deletions and tuple inser-
tions are subject to minimization. As a consequence, we tackled theloosely-exactencoding
by considering that there are common cases in which CQA undertheloosely-exactseman-
tics and theCM-completesemantics actually coincide (see Corollary 3). These casescan
be easily checked and, thus, it is possible to handle theloosely-exactsemantics with the
encoding defined for theCM-completecase.

Theorem 6
Let Σ = loosely-exact, D be a database for a schemaG such that one of the following
holds:

- G contains DCs only (no INDs);
- G contains INDs only (no DCs);
- G contains KDs and FKs only, andD is consistent w.r.t. KDs;
- G contains KDs and SFKs only;

Let q be a union of conjunctive queries.t ∈ ansΣ(q,G,D) iff qcqa(t) is a cautious conse-
quence of the ASP programD ∪ Πcqa .

Proof
Follows from Corollary 3 and Theorem 5.

3.2 Optimized Solution

The strategy reported in the previous section is a general solution for solving the CQA
problem but, in several cases, more efficient ASP programs can be produced. First of all,
note that the general algorithm blindly considers all the ICs on the global schema, includ-
ing those that have no effect on the specific query. Consequently, useless logic rules might

2 Recall that equalities are expressed in terms of variables having the same name.

18 M. Manna, F. Ricca and G. Terracina

be produced which may slow down program evaluation. Then, a very simple optimization
may consist of considering relevant ICs only. However, there are several cases in which
the complexity of CQA stays inPTIME; but disjunctive programs, for which cautious rea-
soning becomes a hard task (Eiter et al. 1997), are generatedeven in presence of denial
constraints only. This means that the evaluation of the produced logic programs might
be much more expensive than required in those “easy” cases. In the following, we provide
semantic-specific optimizations aiming to overcome such problems for the settings pointed
out in Theorem 4, Theorem 5, and Theorem 6.

Given a queryq and an atomg in q, we define the set ofrelevant indicesof g in q, say
relevant(q, g) in such a way that an indexi in [1..arity(g)] belongs torelevant(q, g) if
at least one of the following holds for an occurrenceg(X1, . . . ,Xn) of g in q:

• Xi is not existentially quantified (it is a free variable, it is an output variable ofq);
• Xi is involved in some comparison atom (even if it is existentially quantified);
• Xi appears more than once in the same conjunction;
• Xi is a constant value;

If g does not appear inq, we say thatrelevant(q, g) = ∅;
In the following, we denote byπ a set of indices. Moreover, given a sequence of variables

x̄ and a setπ ⊆ {1, . . . , |x̄|}, we denote bȳxπ the sequence obtained from̄x by discarding
a variable if its position is not inπ. Finally, given a relation nameg, a set of indicesπ and
a labelℓ we denote bygℓ-π(x̄π) an auxiliary atom derived fromg, marked byℓ, and using
only variables in̄xπ.

Σ = loosely-sound. The objective of this optimization is to single out, for each relation
involved by the query, the set of attributes actually relevant to answer it and apply the
necessary repairs only on them. As we show next, this may allow both to reduce (even
to zero) the number of disjunctive rules needed to repair keyviolations and to reduce the
cardinality of relations involved in such disjunctions.

Given a schemaG and a queryq, perform the following steps for building the program
Πcqa and the queryQcqa .

1. Apply the the perfect rewriting algorithm that deals withINDs described in (Calı̀ et al. 2003b).

2. Let Q be the union of conjunctive queries obtained fromq after Step 1. For each
g ∈ names(G), build the sets

π
g
R = relevant(Q , g) π

g
S = π

g
R ∪ key(g)

These two sets capture the fact that a key attribute is relevant for the repairing process, but
it may not be strictly relevant for answering the query.

Observe that the perfect rewriting dealing with INDs must beappliedbeforesingling
out relevant attributes. In fact,q may depend, through INDs, also on attributes of relations
not explicitly mentioned in it. However, in the last step of this algorithm the rewriting of
the query is completed by substituting each relation in the query with its repaired (and
possibly reduced) version.

3. For eachg ∈ names(G) such thatπg
R 6= ∅ andkey(g) + π

g
R, add the following

rules intoΠcqa :

CQA via ASP from different perspectives 19

• gsr-π
g
S (x̄π

g
S) :− g(x̄).

• gc-π
g

S (x̄
π
g
S

1) ∨ gc-π
g

S (x̄
π
g
S

2) :− gsr-π
g

S (x̄
π
g
S

1), gsr-π
g

S (x̄
π
g
S

2), x̄i
1 6= x̄i

2·

· ∀i ∈ π
g
S − key(g)

• gr-π
g
R(x̄π

g
R) :− gsr-π

g
S (x̄π

g
S), not gc-π

g
S (x̄π

g
S).

Observe that if there exists at least one relevant non-key attribute forg, the repairing pro-
cess can not be avoided; however, violations caused by irrelevant attributes only (i.e, not
in π

g
S) can be ignored, since the projection ofg onπ

g
S is still safe and sufficient for query

answering purposes.

4. For eachg ∈ names(G) such thatπg
R 6= ∅ andkey(g) ⊇ π

g
R, add the following rule

intoΠcqa :

• gr-π
g
R(x̄π

g
R) :− g(x̄).

Observe that, if the relevant attributes ofg are a subset of its key, the repair process ofg for
key violations through disjunction can be avoided at all. Infact, the projection ofg onπ

g
R

is still safe and sufficient for query answering purposes. Moreover, for the same reason, it
is not needed to take all the key ofg into account.

5. For each atom of the formg(x̄) in Q , replaceg(x̄) by gr-π
g

R(x̄π
g

R).

Σ = CM-complete. For the optimization of the CM-complete semantics, we exploit a
graph which is used to navigate the query and the database in order to single out those
relations and projections actually relevant for answeringthe query. Moreover, it allows to
identify possible cycles generated by ICs which must be suitably handled; in fact, acyclic
ICs induce a partial order among them and this information can be effectively exploited for
the optimization. On the contrary cyclic ICs must be handledin a more standard way.

Given a schemaG and a queryq, build the directed labelled graphGq = 〈N ,A〉 as
follows:

• N = {q} ∪ names(G);
• (g1, g2, c) ∈ A iff c is a DC inconstr(G) involving bothg1 andg2;
• (g1, g2, d) ∈ A iff d is an IND inconstr(G) of the formg1 → g2;
• (q, g, ε) ∈ A iff g appears in a conjunction ofq.

Perform the following steps for building programΠcqa :

1. Visit Gq starting from nodeq;
2. Discard unreachable nodes and update the setsN andA;
3. Partition the setN in (Ncf ,Nncf) in such a way that a noden belongs toNcf if it is

not involved in any cycle (q always belongs toNcf). Contrariwise, a noden belongs
toNncf if it is involved in some cycle.

4. For each nodeg ∈ N − {q} compute the sets

π
g
R = (

⋃
(gL,g,d)∈A πd

R) ∪ relevant(q, g);
π
g
S = π

g
R ∪ key(g), only if g has exactly one primary key as DCs;π

g
S = ∅

otherwise.

hereπg
R is the set of relevant variable indices ofg, andπg

S adds toπg
R the key ofg.

20 M. Manna, F. Ricca and G. Terracina

Observe that Steps 1–4 implement a pre-processing phase in which relevant relations and
their relevant indices are singled out, and each relevant relation is classified as cycle free
or non cycle free.

5. For each nodeg ∈ Ncf , if g has only one key as DCs, then add the following rules
intoΠcqa :

• gξ-π
g
χ(x̄πg

χ) :− g(x̄), g
r-πd1

R

1 (x̄
π
d1
R

1), . . . , g
r-πdk

R

k (x̄
π
dk
R

k).

• g
r-πdi

R

i (x̄
π
di
R

i) :− g
r-πgi

R

i (x̄
π
gi
R

i). ∀i ∈ [1..k] s.t.πgi
R ⊃ πdi

R

where:

- k ≥ 0 is the number of arcs inGq labelled by INDs, and outgoing fromg;
- the pair(ξ, χ) is either(r ,R) or (sr , S), according to whetherkey(g) ⊇ π

g
R

or not, respectively. Intuitively, ifkey(g) ⊇ π
g
R holds, then the repairgr-π

g

R of
g can be directly computed; otherwise the computation must first go through
a semi-reparation step for computinggsr-π

g

S . Intuitively, this semi-reparation
step collects those tuples that violate no IND of the formg → gi , but that must
be anyway processed in order to fix some key violation (see Steps 6 - 10).

- atomg
r-πdi

R

i is in the body of the first rule (1 ≤ i ≤ k) only if both(g, gi , di) ∈
A, anddi is an IND of the formg(x̄) → gi(x̄i). This atom is just a projection

of g
r-πgi

R

i (x̄
π
gi
R

i).

6. For each nodeg ∈ Ncf if g has only one primary key as DCs, andkey(g) ⊂ π
g
R,

andg has incoming arcs only fromq, and all the relevant variables ofg w.r.t. q are
in the head ofq, and each occurrence ofg in q contains all of its relevant variables,
then add the following rules intoΠcqa by considering that the key ofg is defined by
rules of the form∀x̄1, x̄2 ¬[g(x̄1) ∧ g(x̄2) ∧ x̄i

1 6= x̄i2]:

• gc-π
g
S (x̄

π
g
S

1) :− gsr-π
g
S (x̄

π
g
S

1), gsr-π
g
S (x̄

π
g
S

2), x̄i
1 6= x̄i2· ∀i ∈ π

g
S − key(g)

• gr-π
g
R(x̄

π
g
R

1) :− gsr-π
g
S (x̄

π
g
S

1), not gc-π
g
S (x̄

π
g
S

1).

7. For each nodeg ∈ Ncf if g has only one primary key as DCs, andkey(g) + π
g
R,

and case 6 does not apply, then add the following rules intoΠcqa by considering that
the key is defined by rules of the form,∀x̄1, x̄2 ¬[g(x̄1) ∧ g(x̄2) ∧ x̄i1 6= x̄i

2]:

• gc-π
g
S (x̄

π
g
S

1) ∨ gc-π
g
S (x̄

π
g
S

2) :− gsr-π
g
S (x̄

π
g
S

1), gsr-π
g
S (x̄

π
g
S

2), x̄i
1 6= x̄i

2·

· ∀i ∈ π
g
S − key(g)

• gr-π
g
R(x̄

π
g

R

1) :− gsr-π
g
S (x̄

π
g

S

1), not gc-π
g
S (x̄

π
g

S

1).

Observe that, in this case, disjunctive rules are defined only on the set of relevant
indices that are not in the key and that eachgc-π

g
S contains only the projection of

deleted tuples on the setπg
S .

Here, Steps 5–7 handle relations for which a key is defined andare classified as cycle free.
In particular, ifkey(g) ⊇ π

g
R holds, key reparation can be avoided at all (and thus disjunc-

tive rules too); otherwise a semi-reparation step is required, but Step 6 identifies further
cases in which even if key reparation is needed, disjunctioncan be still avoided. Finally,

CQA via ASP from different perspectives 21

Step 7 handles all the other cases. Importantly, through Steps 5-7 we take into account
only the minimal projections of involved relations in orderto reduce as much as possible
computational costs (and even disjunctive rules) not considering irrelevant attributes.

8. For each nodeg ∈ Nncf add the following rules intoΠcqa :

• gc(x̄) :− g(x̄), not g
r-πd

R

1 (x̄πd
R

1).

g
r-πd

R

1 (x̄πd
R

1) :− g
r-πg

R

1 (x̄
π
g
R

1).
for each INDd of the formg(x̄) → g1(x̄1) such that there is no cycle inGq

involving bothg1 andg;
• gc(x̄) :− g(x̄), #count{x̄1∃ : gc1 (x̄1)} = #count{x̄1∃ : g1(x̄1)}·

for each INDd of the form∀x̄∀ [g(x̄) → ∃x̄2∃ g1(x̄1)] such thatg1 ∈ Nncf ;
• gc(x̄1) ∨ gc(x̄2) :− g(x̄1), g(x̄2), x̄i1 6= x̄i2· ∀i ∈ π

whereπ = {1, . . . , arity(g)} − key(g) and the key ofg is defined by DCs of
the form∀x̄1, x̄2 ¬[g(x̄1) ∧ g(x̄2) ∧ x̄i1 6= x̄i

2];
• gr-π

g

R(x̄π
g

R) :− g(x̄), not gc(x̄).
if there is at least one node inNcf with an arc tog, or g appears inq;

9. For each DC of the form∀x̄1, . . . , x̄m ¬[g1(x̄1) ∧ . . . ∧ gm(x̄m) ∧ σ(x̄1, . . . , x̄m)]

involving at least two different relation names (entailingthat eachgi ∈ Nncf), add
the following rules intoΠcqa :

• gc1 (x̄1) ∨ · · · ∨ gcm(x̄m) :− g1(x̄1), · · · , gm(x̄m), σ(x̄1, . . . , x̄m)·

Steps 8 and 9 handle non cycle free relations; the repairing process in this case mimics the
standard rewriting, but projects relations on the relevantattributes whenever possible.

10. For each nodeg ∈ Ncf if g is involved in DCs that do not form a primary key, then
add the following rules intoΠcqa :

• gsr (x̄) :− g(x̄), g
r-πd1

R

1 (x̄
π
d1
R

1), . . . , g
r-πdk

R

k (x̄
π
dk
R

k).

• g
r-πdi

R

i (x̄
π
di
R

i) :− g
r-πgi

R

i (x̄
π
gi
R

i). ∀i ∈ [1..k] s.t.πgi
R ⊃ πdi

R

• gc(x̄1) ∨ · · · ∨ gc(x̄m) :− gsr (x̄1), · · · , gsr (x̄m), σd (x̄1, . . . , x̄m)· ∀d

• gr-π
g

R(x̄π
g

R) :− gsr (x̄), not gc(x̄).

where:

- k ≥ 0 is the number of arcs, labelled by INDs, outgoing fromg;

- atomg
r-πdi

R

i is in the body of the first rule (1 ≤ i ≤ k) iff both (g, gi , di) ∈ A

anddi is an IND of the formg(x̄) → gi(x̄i);
- d is a DC of the form∀x̄1, . . . , x̄m ¬[g(x̄1)∧ . . .∧ g(x̄m)∧ σd (x̄1, . . . , x̄m)]

Step 10 handles the special case in which there is no key for a relation but denial constraints
are defined (only) on it.

11. For each atom of the formg(x̄) in q, replaceg(x̄) by gr-π
g

R(x̄π
g

R).

22 M. Manna, F. Ricca and G. Terracina

Example 4

Consider again Example 1; suppose to extend the global schema by adding the relation
c(code, name) which represents the list of customers, wherecode is the primary key ofc.
Moreover, suppose that we ask for the queryq(Xc ,Xn) :− c(Xc,Xn), e(Xc ,Xn) retriev-
ing the customers that are also employees of the bank. In thiscase, after building the graph
Gq it is easy to see thatm is unreachable (so it is discarded) and that bothc ande comply
with the requirements described at Steps 5 and 6 of the optimized algorithm. Consequently,
the optimized program under theCM-completesemantics is:

esr-1,2(Xc ,Xn) :− e(Xc ,Xn). csr-1,2(Xc ,Xn) :− c(Xc,Xn).

ec-1,2(Xc,Xn) :− esr-1,2(Xc ,Xn), e
sr-1,2(Xc,X

′
n), Xn 6= X ′

n .

cc-1,2(Xc ,Xn) :− csr-1,2(Xc ,Xn), c
sr-1,2(Xc ,X

′
n), Xn 6= X ′

n .

er-1,2(Xc,Xn) :− esr-1,2(Xc ,Xn), not e
c-1,2(Xc,Xn).

cr-1,2(Xc ,Xn) :− csr-1,2(Xc ,Xn), not c
c-1,2(Xc ,Xn).

qcqa(Xc ,Xn) :− cr-1,2(Xc ,Xn), e
r-1,2(Xc ,Xn).

Note that, since bothe andc are not affected by IND violations, and they have no irrelevant
variables, the semi-reparation step cannot actually discard tuples. However, the obtained
program is non-disjunctive and stratified. Thus, it can be evaluated in polynomial time
(Leone et al. 2006).

In this case, the only answer set of the program contains the consistent answers to the
original query. ⊓⊔

Σ = loosely-exact. In Section 3.1 we proved that there are common cases in whichCQA
under theloosely-exactsemantics and theCM-completesemantics actually coincide. As a
consequence, in these cases, all the optimizations defined for theCM-completesemantics
apply also to theloosely-exactsemantics.

4 Experiments

In this section we present some of the experiments we carriedout to assess the effectiveness
of our approach to consistent query answering.

Testing has been performed by exploiting our complete system for data integration,
which is intended to simplify both the integration system design and the querying activ-
ities by exploiting a user-friendly GUI. Indeed, this system both supports the user in de-
signing the global schema and the mappings between global relations and source schemas,
and it allows to specify user queries over the global schema via a QBE-like interface.
The query evaluation engine adopted for the tests isDLVDB (Terracina et al. 2008) cou-
pled, via ODBC, with a PostgreSQL DBMS where input data were stored. DLVDB is
a DLP evaluator born as a database oriented extension of the well known DLV system
(Leone et al. 2006). It has been recently extended for dealing with unstratified negation,
disjunction and external function calls.

We first address tests on a real world scenario and then reporton tests for scalability
issues on synthetic data.

CQA via ASP from different perspectives 23

Fig. 1. INFOMIX database.

4.1 Tests on a real world scenario

Data Set.We have exploited the real-world data integration framework developed in the
INFOMIX project (IST-2001-33570) (Leone et al. 2005) whichintegrates data from a real
university context. In particular, considered data sources were available at the University
of Rome “La Sapienza”. These comprise information on students, professors, curricula and
exams in various faculties of the university.

There are about 35 data sources in the application scenario,which are mapped into 12
global schema relations with 20 GAV mappings and 21 integrity constraints. We call this
data setInfomix in the following. Figure 1 reproduces the main characteristics of the global
database: each node corresponds to a global relation showing its arity and key. An edge
betweenr1 andr2 labelled byr1[I] ⊆ r2[J] indicates an IND of the form∀x̄∀ [r1(x̄1) →
∃x̄2∃ r2(x̄2)] whereI andJ are the positions of̄x∀ in x̄1 andx̄2, respectively; the arc is
labelled with the attributes ofa andb involved in the IND. Observe that there are cyclic
INDs involving teaching, examrecordandprofessor.

Besides the original source database instance (which takesabout 16Mb on DBMS), we
obtained bigger instances artificially. Specifically, we generated a number of copies of
the original database; each copy is disjoint from the other ones but maintains the same

24 M. Manna, F. Ricca and G. Terracina

data correlations between instances as the original database. This has been carried out by
mapping each original attribute value to a new value having acopy-specific prefix.

Then, we considered two further datasets, namelyInfomix-x-10 andInfomix-x-50 stor-
ing 10 copies (for a total amount of 160Mb of data) and 50 copies (800Mb) of the original
database, respectively. It holds thatInfomix ⊂ Infomix-x-10 ⊂ Infomix-x-50.

Compared Methods and Tested Queries.In order to assess the characteristics of the pro-
posed optimizations, we measured the execution time of different queries with(i) the stan-
dard encoding (identified asSTD in the following),(ii) a naı̈ve optimization obtained by
only removing relations not strictly needed for answering the queries (OPT1 in the fol-
lowing), and(iii) the fully optimized encoding presented in Section 3 (OPT2 in the fol-
lowing). Each of these cases has been evaluated for the threesemantics considered in this
paper. In order to isolate the impact of our optimizations, we disabled other optimizations
(like magic sets) embedded in the datalog evaluation engine. Clearly, such optimizations
are complementary to our own and might further improve the overall performances.

Tested queries are as follows:

Q1(X1) :- course(X2,X1), plan data(PL,X2,),

student course plan(PL,"09089903", , ,).

Q2(X1) :- university(X1,).

Q3(X1,X2,X3) :- university degree(X1,X2), faculty(X2, ,X3).

Q4(X1,X2,X3) :- student(S, ,X1, , , ,), enrollment(S, ,),

exam record(S, , ,X2,X3, ,), S == "09089903".

Q5(X1,X2) :- student r(S1, ,X1, , , ,), exam record r(S1,C, , , , ,),

student r(S2, ,X2, , , ,), exam record r(S2,C, , , , ,),

S1 == "09089470", S1<>S2.

Q6(X1,X2,X3) :- student(X1, , , , , ,), exam record(X1, , ,X2,X3, ,),

X1 == "09089903".

Observe thatQ2 involves key constraints only,Q1, andQ3 involve both keys and acyclic
INDs; specifically,Q3 involves a SFK whileQ1 involves NKC INDs. Finally,Q4, Q5 and
Q6 involve keys and cyclic NKC INDs.

Results and discussion.All tests have been carried out on an Intel Xeon X3430, 2.4 GHz,
with 4 Gb Ram, running Linux Operating System. We set a time limit of 120 minutes
after which query execution has been killed. Figures 2 and 3 show obtained results for the
loosely-soundand theCM-completesemantics. It is worth recalling that, as we pointed out
in Section 3.2, optimizations for theloosely-exactsemantics are inherent to the equivalence
classes to theCM-completesemantics discovered in this paper. As a consequence, we
tested this semantics only on queries Q2 and Q3 for which suchequivalence holds. Then,
since the execution times of the optimized encoding coincide with theCM-completegraphs
for queries Q2 and Q3, we do not report specific figures for them.

Analyzing the figures, we observe that: the proposed optimizations do not introduce
computational overhead and, in most cases, transform practically untractable queries in
tractable ones; in fact, for all the tested queries the execution time of the standard rewriting
exceeded the time limit.OPT1 helps mostly on the smallest data set; in fact forInfomix-
x-10 it shows some gain in 33% of cases and only in two cases forInfomix-x-50.

As for the comparison among the optimized encodings, we can observe that if INDs
are not involved by the query (Q2) the loosely-soundand theCM-completeoptimizations

CQA via ASP from different perspectives 25

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le
LS Semantics - Query 1

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

LS Semantics - Query 2

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

LS Semantics - Query 3

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

LS Semantics - Query 4

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

LS Semantics - Query 5

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

LS Semantics - Query 6

Timeout (2h)
STD

OPT1
OPT2

Fig. 2. Query evaluation execution times for theloosely-soundsemantics.

have the same performances; this confirms theoretical expectations. When acyclic INDs
are involved (Q1, Q3), the loosely-soundoptimization performs slightly better because
the CM-completemust choose the tuples to be deleted due to IND violations, whereas
the loosely-soundsemantics just works on the original data. Finally, when involved INDs
are cyclic (Q4,Q5,Q6) the performance of theCM-completeoptimization further degrades
w.r.t. theloosely-soundone because recursive aggregates must be exploited to choose dele-
tions and, this, increases the complexity of query evaluation.

4.2 Scalability analysis w.r.t. the number and kind of constraint violations

Since, in the real world scenario emerged that theCM-completesemantics is more af-
fected than theloosely soundone from the kind of involved constraints, we carried out a
scalability analysis on this semantics, whose results are reported next.

We considered a synthetic data set composed of three relations namedr1, r2, andr3 over
which we imposed different sets of ICs in order to analyze thescalability of our methods
depending on the presence of keys and/or in presence/absence of acyclic and cyclic INDs.

26 M. Manna, F. Ricca and G. Terracina

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le
CM Semantics - Query 1

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

CM Semantics - Query 2

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

CM Semantics - Query 3

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

CM Semantics - Query 4

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

CM Semantics - Query 5

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

CM Semantics - Query 6

Timeout (2h)
STD

OPT1
OPT2

Fig. 3. Query evaluation execution times for theCM-Completesemantics.

In particular, we imposed the following key constraints:key(r2) = {1, 2}, key(r3) = {1},
and we experimented with three different sets of INDs:NOINCL = ∅, ACYCLIC =

{r1(X1,X2,X3,X4) → r2(X2,X5,X3,X6), r1(X1,X2,X3,X4) → r3(X1,X5,X6,X7)}

andCYCLIC = ACYCLIC ∪ {r2(X1,X2,X3,X4) → r1(X5,X6,X7,X2)}. The em-
ployed query is:query(X 1,X 3) :− r1(X 1,X 2,X 3,X 4), r2(X 2,X 3,X 5,X 6)?We have
randomly generated synthetic databases having a growing number of key violations on ta-
ble r2. The generation process progressively adds key violationsto r2 by generating pairs
of conflicting tuples; after an instance ofr2 is obtained, tablesr1 andr3 are generated by
taking values fromr2 in such a way that INDs are satisfied. In addition, for each tuple of
r3 a key-conflicting tuple is generated. In order to assess the impact of the number of INDs
violations, for each database instanceDBx , containingx key violations on tabler2, we
generated aDBx -10 instance where the10% of tuples is (randomly) removed from tables
r1 andr3 (causing INDs violations). We have generated six database instances per size
(number of key violations on tabler2), and plotted the time (averaged over the instances of
the same size) in Figure 4.

In detail, Figure 4(a) shows the results for incrementally higher KD violations with

CQA via ASP from different perspectives 27

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

Number of key constraints violations

Scalability: Impact of global constraints

NOINCL-STD
NOINCL-OPT

ACYCLIC-STD
ACYCLIC-OPT

CYCLIC-STD
CYCLIC-OPT

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

-
lo

gs
ca

le

Number of key constraints violations

Scalability: Impact of inclusion constraints

ACYCLIC-10
CYCLIC-10

ACYCLIC
CYCLIC

(a) (b)

Fig. 4. Scalability Analysis

no IND violations. Both standard and optimized encodings have been tested. Figure 4(b)
compares the optimized encoding only, when the percentage of IND violations is 0% or
10%. Observe that, in general, even when there is no initial IND violation, the KD repairing
process may induce some of them.

The analysis of these figures shows that even if cyclic INDs are generally harder, their
scaling is almost the same as the acyclic ones. On the contrary, in the absence of INDs
the optimization may boost the performances (see the flat line in Figure 4(a)). Figure 4(b)
points out that when the number of IND violations increases,the performance may im-
prove. This behavior is justified by the fact that tuple deletions due to IND repairs may, in
their turn, remove KD violations. This reduces the number ofdisjunctions to be evaluated.

5 Related work and concluding remarks

From the 90ies – when the founding notions ofCQA (Bry 1997),GAV mapping(Garcia-Molina et al. 1997;
Tomasic et al. 1998; Goh et al. 1999), anddatabase-repair(Arenas et al. 1999) were intro-
duced –data integration(Lenzerini 2002) andinconsistent databases(Bertossi et al. 2005)
have been studied quite in depth.

Detailed characterizations of the main problems arising ina data integration system
have been provided, taking into account different semantics, constraints, and query types
(Calı̀ et al. 2003a; Calı̀ et al. 2003b; Arenas et al. 2003; Chomicki and Marcinkowski 2005;
Grieco et al. 2005; Fuxman and Miller 2007; Eiter et al. 2008).

This paper provides a contribution in this scenario by extending the decidability bound-
aries for theloosely-exactsemantics (as called in Calı̀ et al. 2003a but firstly introduced by
Arenas et al. 1999) and theloosely-soundsemantics, in case of both KDs and SFSK INDs.

A first proposal of an unifying framework for CQA in a Data Integration setting is pre-
sented in (Calı̀ et al. 2005) using first-order logic; it considers different semantics defined
by interpreting the mapping assertions between the global and the local schemas of the
data integration system. A common framework for computing repairs in a single database
setting is proposed in (Eiter et al. 2008); it covers a wide range of semantics relying on the
general notion of preorder for candidate repairs, but only universally quantified constraints
are allowed. Moreover, the authors introduce an abstract logic programming framework to
compute consistent answers. Finally, the authors propose an optimization strategy called
factorization that, as will be clarified below, is orthogonal to our own.

28 M. Manna, F. Ricca and G. Terracina

This paper provides a contribution in this setting since it unifies different semantics,
as in (Calı̀ et al. 2005) and (Eiter et al. 2008), but also provides an algorithm that, given
a retrieved database, a user queryq, and a semantics, automatically composes an ASP
program capable of computing the consistent answers toq. In particular, our ASP-rewriting
offers a natural, compact, and direct way for encoding even hard cases where the CQA
problem belongs to theΠp

2 complexity class.
Theoretical studies gave rise to concrete implementationsmost of which were con-

ceived to operate on some specific semantics and/or constraint types. (Arenas et al. 1999;
Calı̀ et al. 2002; Greco and Zumpano 2000; Greco et al. 2001; Calı̀ et al. 2003b; Arenas et al. 2003;
Chomicki et al. 2004a; Calı̀ et al. 2004; Chomicki et al. 2004b; Lembo 2004; Grieco et al. 2005;
Leone et al. 2005; Fuxman et al. 2005; Fuxman and Miller 2007). As an example, in (Leone et al. 2005)
only the loosely-soundsemantics was supported. In this paper, we provide both a uni-
fied framework based on ASP, and a complete system supporting(i) all the three afore-
mentioned significant semantics in case of conjunctive queries and the most commonly
used database constraints (KDs and INDs), (ii) specializedoptimizations, and (iii) a user-
friendly GUI.

Another general contribution of our work comes from a novel optimization technique
that, after analyzing the query and localizing a minimal number of relevant ICs, tries to
“simplify” their structure to reduce the number of databaserepairs – as they could be
exponentially many (Arenas et al. 2001). Such technique could be classified as “vertical”
due to the fact that it reduces (whenever possible) the arityof each active relation (with
the effect, e.g., of decreasing the number of key conflicts) without looking at the data.
It is orthogonal to other “horizontal” approaches, such as magic-sets (Faber et al. 2007)
and factorization (Eiter et al. 2008) which are based on datafiltering strategies. In partic-
ular, a system exploiting ASP incorporating magic-set techniques for CQA is described
in (Marileo and Bertossi 2010). Other approaches complementary to our own are based on
first-order rewritings of the query (Arenas et al. 1999; Chomicki and Marcinkowski 2002;
Calı̀ et al. 2003b; Grieco et al. 2005; Fuxman and Miller 2007).

The combination of our optimizations with such approaches,and further extensions of
decidability boundaries for CQA are some of our future line of research.

Acknowledgments. This work has been partially supported by the Calabrian Region un-
der PIA (Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project DLVSYS-
TEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373del 06/05/2009.

References

ABITEBOUL, S., HULL , R., AND V IANU , V. 1995. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

ARENAS, M., BERTOSSI, L., AND CHOMICKI , J. 1999. Consistent query answers in inconsistent
databases. InProceedings of PODS’99. ACM, New York, NY, USA, 68–79.

ARENAS, M., BERTOSSI, L., AND CHOMICKI , J. 2001. Scalar Aggregation in FD-Inconsistent
Databases. InProceedings of ICDT’01. LNCS, vol. 1973. Springer Berlin / Heidelberg, 39–53.

ARENAS, M., BERTOSSI, L., AND CHOMICKI , J. 2003. Answer sets for consistent query answering
in inconsistent databases.TPLP 3,4, 393–424.

CQA via ASP from different perspectives 29

BERTOSSI, L. E., HUNTER, A., AND SCHAUB, T., Eds. 2005.Inconsistency Tolerance. LNCS, vol.
3300. Springer, Berlin / Heidelberg.

BRY, F. 1997. Query Answering in Information Systems with Integrity Constraints. InProceedings
of IICIS’97. Chapman & Hall, Ltd., London, UK, UK, 113–130.

CAL Ì , A., CALVANESE, D., DE GIACOMO, G.,AND LENZERINI, M. 2002. On the Role of Integrity
Constraints in Data Integration.IEEE Data Eng. Bull. 25,3, 39–45.

CAL Ì , A., CALVANESE, D., DE GIACOMO, G.,AND LENZERINI, M. 2004. Data integration under
integrity constraints.Inf. Syst. 29,2, 147–163.

CAL Ì , A., LEMBO, D., AND ROSATI, R. 2003a. On the decidability and complexity of query an-
swering over inconsistent and incomplete databases. InProceedings of PODS’03. ACM, New
York, NY, USA, 260–271.

CAL Ì , A., LEMBO, D., AND ROSATI, R. 2003b. Query rewriting and answering under constraints
in data integration systems. InProceedings of IJCAI’03. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 16–21.

CAL Ì , A., LEMBO, D., AND ROSATI, R. 2005. A comprehensive semantic framework for data
integration systems.Journal of Algorithms 3,2, 308–328.

CHOMICKI , J. AND MARCINKOWSKI, J. 2002. On the Computational Complexity of Consistent
Query Answers.CoRR cs.DB/0204010, 1–9.

CHOMICKI , J. AND MARCINKOWSKI, J. 2005. Minimal-change integrity maintenance using tuple
deletions.Inf. Comput. 197,1-2, 90–121.

CHOMICKI , J., MARCINKOWSKI, J., AND STAWORKO, S. 2004a. Computing consistent query
answers using conflict hypergraphs. InProceedings of CIKM’04. ACM, New York, NY, USA,
417–426.

CHOMICKI , J., MARCINKOWSKI, J.,AND STAWORKO, S. 2004b. Hippo: A System for Computing
Consistent Answers to a Class of SQL Queries. InAdvances in Database Technology - EDBT
2004. LNCS, vol. 2992. Springer Berlin / Heidelberg, 661–662.

EITER, T., FINK , M., GRECO, G., AND LEMBO, D. 2008. Repair localization for query answering
from inconsistent databases.ACM TODS 33,2, 10:1–10:51.

EITER, T., GOTTLOB, G., AND MANNILA , H. 1997. Disjunctive datalog.ACM TODS 22, 3,
364–418.

FABER, W., GRECO, G.,AND LEONE, N. 2007. Magic Sets and their application to data integration.
JCSS 73,4, 584–609.

FABER, W., PFEIFER, G.,AND LEONE, N. 2010. Semantics and complexity of recursive aggregates
in answer set programming.Artificial Intelligence In Press, Corrected Proof, 1–21.

FUXMAN , A., FAZLI , E.,AND M ILLER , R. J. 2005. ConQuer: efficient management of inconsistent
databases. InProceedings of SIGMOD’05. ACM, New York, NY, USA, 155–166.

FUXMAN , A. AND M ILLER , R. J. 2007. First-order query rewriting for inconsistent databases.
JCSS 73,4, 610–635. Special Issue: Database Theory 2005.

GARCIA-MOLINA , H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN , A., SAGIV, Y., ULL -
MAN , J., VASSALOS, V., AND WIDOM , J. 1997. The TSIMMIS Approach to Mediation: Data
Models and Languages.JIIS 8,2, 117–132.

GELFOND, M. AND L IFSCHITZ, V. 1988. The Stable Model Semantics for Logic Programming.In
Proceedings of ICLP/SLP’88. MIT Press, 1070–1080.

GELFOND, M. AND L IFSCHITZ, V. 1991. Classical Negation in Logic Programs and Disjunctive
Databases.New Gen. Comput. 9,3-4, 365–385.

GOH, C. H., BRESSAN, S., MADNICK , S., AND SIEGEL, M. 1999. Context interchange: new
features and formalisms for the intelligent integration ofinformation.ACM TOIS 17,3, 270–293.

GRECO, G., GRECO, S.,AND ZUMPANO, E. 2001. A Logic Programming Approach to the Integra-
tion, Repairing and Querying of Inconsistent Databases. InProceedings of ICLP’01. Number 17
in LNCS. Springer Berlin / Heidelberg, 348–364.

30 M. Manna, F. Ricca and G. Terracina

GRECO, S.AND ZUMPANO, E. 2000. Querying inconsistent databases. InProceedings of LPAR’00.
Springer-Verlag, Berlin, Heidelberg, 308–325.

GRIECO, L., LEMBO, D., ROSATI, R., AND RUZZI , M. 2005. Consistent query answering under
key and exclusion dependencies: algorithms and experiments. InProceedings of CIKM’05. ACM,
New York, NY, USA, 792–799.

LEMBO, D. 2004. Dealing with Inconsistency and Incompleteness inData Integration. Ph.D. thesis,
Dipartimento di Informatica e Sistemistica, Universitaàdi Roma “La Sapienza”.

LENZERINI, M. 2002. Data integration: a theoretical perspective. InProceedings of PODS’02.
ACM, New York, NY, USA, 233–246.

LEONE, N., GRECO, G., IANNI , G., LIO, V., TERRACINA, G., EITER, T., FABER, W., FINK , M.,
GOTTLOB, G., ROSATI, R., LEMBO, D., LENZERINI, M., RUZZI , M., KALKA , E., NOWICKI ,
B., AND STANISZKIS, W. 2005. The INFOMIX system for advanced integration of incomplete
and inconsistent data. InProceedings of SIGMOD’05. ACM, New York, NY, USA, 915–917.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO,
F. 2006. The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7, 3,
499–562.

LEVENE, M. AND V INCENT, M. W. 2000. Justification for Inclusion Dependency Normal Form.
IEEE TKDE 12,2, 281–291.

L IFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. InProceedings of ICLP’94. MIT
Press, Cambridge, MA, USA, 23–37.

MARILEO, M. C. AND BERTOSSI, L. E. 2010. The consistency extractor system: Answer set pro-
grams for consistent query answering in databases.Data Knowl. Eng. 69,6, 545–572.

M INKER, J. 1982. On Indefinite Data Bases and the Closed World Assumption. In Proceedings of
CADE’82. LNCS, vol. 138. Springer, Berlin / Heidelberg, 292–308.

TERRACINA, G., DE FRANCESCO, E., PANETTA , C.,AND LEONE, N. 2008. Enhancing a DLP Sys-
tem for Advanced Database Applications. InProceedings of RR’08. LNCS, vol. 5341. Springer,
Berlin / Heidelberg, 119–134.

TERRACINA, G., LEONE, N., LIO, V., AND PANETTA , C. 2008. Experimenting with recursive
queries in database and logic programming systems.TPLP 8,2, 129–165.

TOMASIC, A., RASCHID, L., AND VALDURIEZ , P. 1998. Scaling Access to Heterogeneous Data
Sources with DISCO.IEEE TKDE 10,5, 808–823.

	1 Introduction
	2 Data Integration Framework
	2.1 The Data Integration Model
	2.2 Consistent Query Answering under different semantics
	2.3 Restricted Classes of Integrity Constraints
	2.4 Loosely-exact and Loosely-sound semantics under KD and SFSK
	2.5 Equivalence of CQA under loosely-exact and CM-complete semantics

	3 Computation of CQA via ASP
	3.1 General Encoding
	3.2 Optimized Solution

	4 Experiments
	4.1 Tests on a real world scenario
	4.2 Scalability analysis w.r.t. the number and kind of constraint violations

	5 Related work and concluding remarks
	References

