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Abstract

A data integration system provides transparent accesféoatit data sources by suitably combining
their data, and providing the user with a unified view of thealledglobal schemaHowever, source
data are generally not under the control of the data integrarocess, thus integrated data may vio-
late global integrity constraints even in presence of lgeabnsistent data sources. In this scenario, it
may be anyway interesting to retrieve as much consisteotrirdgtion as possible. The process of an-
swering user queries under global constraint violatiorsied consistent query answeri(GQA).
Several notions of CQA have been proposed, e.g., dependinghether integrated information is
assumed to bsound complete exactor a variant of them. This paper provides a contribution in
this setting: it uniforms solutions coming from differergrppectives under a common ASP-based
core, and provides query-driven optimizations designedsfalating and eliminating inefficiencies
of the general approach for computing consistent answessedwWer, the paper introduces some new
theoretical results enriching existing knowledge on delgility and complexity of the considered
problems. The effectiveness of the approach is evidencecxjpgrimental results.

To appear in Theory and Practice of Logic Programming (TPLP)
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1 Introduction

The enormous amount of information dispersed over many staieces, often stored in
different heterogeneous databases, has recently bodstddterest for data integration
systems[(Lenzerini 2002). Roughly speaking, a data intiegraystem provides transpar-
ent access to different data sources by suitably combitiay tata, and providing the
user with a unified view of them, calleglobal schemaln many cases, the application
domain imposes some consistency requirements on integdate. For instance, it may
be at least desirable to impose some integrity constrdi@ty (like primary/foreign keys,

on the global relations. It may be the case that data storékdeasources may violate
global ICs when integrated, since in general data souresarunder the control of the
data integration process. The standard approach to thidgunobasically consists of ex-
plicitly modifying the data in order to eliminate IC violatis (data cleaning). However,
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the explicit repair of data is not always convenient or passiTherefore, when answer-
ing a user query, the system should be able to “virtually irépelevant data (in the line
oflArenas et al. 2003; Bertossi et al. 2005; Chomicki and tdaawski 2005), in order to
provide consistent answers; this task is also called CmmiQuery Answering (CQA).
The database community has spent considerable effortssimtéa, relevant research
results have been obtained to clarify semantics, decitigbdind complexity of data-
integration under constraints and, specifically, for CQAphrticular, several notions of
CQA have been proposed (see Bertossi et al. 2005 for a syevgyilepending on whether
the information in the database is assumed tsdiad completeor exact However, while
efficient systems are already available for simple datagynatéon scenarios, solutions be-
ing both scalable and comprehensive have not been implecheget for CQA, mainly
due to the fact that handling inconsistencies arising fromstraints violation is inherently
hard. Moreover, mixing different kinds of constraints (edgnial constraints, and inclu-
sion dependencies) on the same global database makes tloéguery answering process

undecidable (Abiteboul et al. 1995; Cali et al. 2003a).

This paper provides some contributions in this settingc8igally, it first starts from dif-

ferent state-of-the-art semantic perspectives (Arenab 2003 Cali et al. 2003a: Chomicki and Marcinkowski 2005

and revisits them in order to provide a uniform, common casell on Answer Set Pro-

gramming (ASP)[(Gelfond and Lifschitz 1988; Gelfond andstHitz 1991). Thus, it pro-
vides query driven optimizations, in the light of the expede we gained in the IN-

FOMIX (Ceone et al. 2005) project in order to overcome theititions observed in real-
world scenarios. The main contributions of this paper casumemarized in:

e A theoretical analysis of considered semantics which eggmevious results.

e The definition of a unified framework for CQA based on a pureadgldrative, logic
based approach which supports the most relevant semassigmations on source
data. Specifically, the problem of consistent query answes reduced to cautious
reasoning on (disjunctive) ASP programs with aggregatabdfFet al. 2010) auto-
matically built from both the query and involved constraint

e The definition of an optimization approach designedZp‘localize” and limit the
inefficient part of the computation of consistent answersnall fragments of the
input, (2) cast down the computational complexity of the repair predgsossible.

e The implementation of the entire framework in a full fledgedtptype system.

e The capability of handling large amounts of data, typicaleafl-world data integra-
tion scenarios, using as internal query evaluatobihe”? (Terracina et al. 2008) sys-
tem; indeedpLV P? allows for mass-memory database evaluations and distédbut
data management features.

In order to assess the effectiveness of the proposed apfpreacarried out experimen-
tal activities both on a real world scenario and on synthddi@a, comparing its behavior
on different semantics and constraints.

The plan of the paper is as follows. Sectfdn 2 formally introels the notion of CQA
under different semantics and some new theoretical resunltiecidability and complexity
for this problem. Sectioll 3 first introduces a unified (gehea@ution to handle CQA via
ASP, and then presents some optimizations. Selction 4 Besdhie benchmark framework
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we adopted in the tests and discusses on obtained resultlyFiSectio b compares
related work and draws some conclusive considerations.

2 Data Integration Framework

In this paper we exploit the data integration setting to pourt motivations and challenges
underlying CQA. However, as it will be clarified in the follavg, techniques and results
provided in the paper hold also for a single database setieghext formally describe the
adopted data integration framework.

The following notation will be used throughout the paper. siways denote by a
countably infinite domain of totally ordered values; b tuple of values front’; by X a
variable; byx a sequencéd(, ..., X,, of (not necessarily distinct) variables, and|Ry= n
its length. Le, X’ be two sequences of variables, we denotg-by’ the sequence obtained
from x by discarding a variable if it appearsxih Whenever all the variables of sequence
X appear in another sequence we simply writex < X’. Given a sequence and a set
m C {1,...,|X|}, we denote b™ the sequence obtained fronby discarding a variable
if its position is not inw. (Similarly, given a tupleg and a setr C {1, ..., |¢|}, we denote
by t™ the tuple obtained from by discarding a value if its position is not in) Moreover,
we denote, by (X) a conjunction of comparison atoms of the fofm® X', where® €
{<, >, <, >,#}, and bys, the symmetric difference operator between two sets.

A relationaldatabase scheniga pairR = (names(R), constr(R)) wherenames(R)
andconstr(R) are the relation names and the integrity constraints (I€%),sespectively.
The arity of a given relatiom € names(R) is denoted byurity(r). A databas€instance)
for R is any set of facts (Abiteboul et al. 1995) of the form:

F={r(t) : r € names(R) A tisatuple froml’ A |t| = arity(r)}

In the following, we adopt theinique name assumptipanddom(F) denotes the subset
of I containing all the values appearing in the factsFof
Letry, ...,y € names(R), the setconstr(R) contains ICs of the form:

LVXy, ooy X [ (X)) A o AT (X)) Ao (X4, . . ., X ) | (denial constraints DCs)
2. VXy [ 11(X1) = IXa3g r2(X2) | (inclusion dependenciesINDs);
)

wherearity(r;) = |X;|, for eachi in [1..m]. In particular, for INDs we require that all the
variables within arx; (1 < i < 2) are distinctxy < Xi, Xy < Xo, andXsg = Xo — Xy. Note
that, if |[Xa3] = 0, thenxy = X2 < X;. In the case we are only interested in emphasizing
the relation names involved in an IND, we simply writgX;) — r2(X2) or rp — 12. A
databaseF is said to beconsistentw.r.t. R if all ICs are satisfied. Aconjunctive query
cq(X) overR is a formula of the form

X139, ..., Xm3 Tl()_(l)/\.../\Tm()_(m)/\U()_(l...7Xm)

wherex,;3 < X, foreachi in[1..m], W = X; —X13, . . ., X,;, —X,,,3 are thefree variable®f q,
andx contains only and all the variableswf(with no duplicates, and possibly in different
order). Aunion of conjunctive querieg(X) is a formula of the fornmeg, (X) V... V ¢g, (X).

In the following, for simplicity, the term query refers to aian of conjunctive queries, if
not differently specified. Given a databa&dor R, and a query;(X), theanswerto q is
the set ofn-tuples of valuesins(q, F) = {t : F = q(t)}.



4 M. Manna, F. Ricca and G. Terracina

2.1 The Data Integration Model

A data integration systeis formalized[(Lenzerini 2002) as a trigle= (G, S, M) where

. Gistheglobal schemaA global databastor 7 is any database fdJ;

. S is thesource schem#\ source databader 7 is any database consistent w.&f.

. Mistheglobal-as-vieW(GAV) mappingthat associates each elemegitt names(G)
with a union of conjunctive queries ovst

Let F be a source database forTheretrieved global database
ret(Z,F) = {g(t) : g € names(G) A t € ans(q, F) N q € M(g)}

for G satisfying the mapping. Note that, when source data are tmdin a unified schema
with its own ICs, the retrieved global database might besezient.

In the following, when it is clear from the context, we use giynthe symbolD to
denote the retrieved global database(Z, 7). In fact, all results provided in the paper
hold for any databas® complying with some schem@ but possibly inconsistent w.r.t.
the constraints of.

Example 1

Consider a bank association that desires to unify the dsé¢shaf two branches. The first
(source) database models managers by using a relatior{ code, name) and employ-
ees by a relatioremp(code, name), where code is a primary key for both tables. The
second database stores the same data in a relatiptvyee(code, name, role). Suppose
that the data have to be integrated under a global schemawudtielationsm (code) and
e(code, name), where the global ICs are:

e VX1, Xo, X3 ﬁ[e(Xl, Xg) N e(Xl, X3) AN Xy # Xg] namely,code is the key ofe;
e VXi[m(Xy) — 3Xs (X1, Xo)] i.e., an IND imposing that each manager code must
be an employee code as well.

The mapping is defined by the following Datalog rules (as Lisea Abiteboul et al. 1995):

e(XCa Xn) = emp(XCa Xn) m(XC) = man(XC, —)'
e(Xe, Xn) i— employee(X., X, ). m(X.) :— employee(X., -, ‘manager’)-

Assume thatemp stores tupleg‘el’,john’), (‘e2’,'mary’), (‘e3’,'willy’) , man stores
(‘el’,'john’), andemployee stores(‘el’,'ann’,'manager’) (‘e2’,'mary’,'manager’) (‘e3’,
‘rose’,'emp’). It is easy to verify that, although the source databasesa@isistent w.r.t.
local constraints, the global database, obtained by etiafudne mapping, violates the key
constraint ore as bothjohn andannhave the same codsl, and bothwilly androsehave
the same code3in tablee. O

2.2 Consistent Query Answering under different semantics

In case a databage violates ICs, one can still be interested in querying then&stent”
information originating fromF. One possibility is to “repairD (by inserting or deleting
tuples) in such a way that all the ICs are satisfied. But thexs@veral ways to “repaiD.
As an example, in order to satisfy an IND of the formm— r, one might either remove
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violating tuples fromr; or insert new tuples in. Moreover, the repairing strategy de-
pends on the particular semantic assumption made on thantlejaation system. Semantic
assumptions may range from (strict) soundness to (strict)pteteness. Roughly speak-
ing, completeness complies with tlodosed world assumptiowhere missing facts are
assumed to be false; on the contrary, soundness complieshgibpen world assumption
whereD may be incomplete. We next define consistent query answaridgr some rel-
evant semantics, namelgosely-exact, loosely-sound, CM-compldfgrenas et al. 2003;
[Cali et al. 20034;_Chomicki and Marcinkowski 2005). Morenfially, let 3> denote ase-
mantics andD a possibly inconsistent database o databass is said to be &-repair
for D if it is consistent w.r.tG and one of the following conditions holds:

1. ¥ = CM-complete B C D, and$ B’ C D such thai3’ is consistent ané$’ O B;
2. ¥ = loosely-soun@nd? B’ such that3’ is consistent ant$’ "D > BN D;
3. ¥ = loosely-exactand? B’ such that3’ is consistent ané$’ © D c B D.

The CM-completesemantics allows a minimal number of deletions in each repai
avoid empty repairs, if possible, but does not allow insadi Theloosely-soundgseman-
tics allows insertions and a minimal amount of deletionsially, the loosely-exactse-
mantics allows both insertions and deletions by minim@abtf the symmetric difference
betweerD and the repairs.

Definition 1

Let D be a database for a scheigand: be a semantics. Theonsistent answeo a
queryg w.r.t. D, is the setnss (¢, G, D) = {t : t € ans(q,B) for each:-repair3 for D}
Consistent Query Answerin@QA\) is the problem of computingnss (¢, G, D). O

Observe that other semantics have been considered in e¢natlite, likesound com-
plete exact loosely-completeetc. (Cali et al. 2003a); however, some of them are trivial
for CQA; as an example, in thexactsemantics CQA makes sense only if the retrieved
database is already consistent with the global constrairttereas in thecompleteand
loosely-completsemantics CQA will always return a void answer. Note that,sbman-
tics considered in this paper address a wide significanerahgays to repair the retrieved
database which are also relevant for CQA.

Example 2
By following Exampldl, the retrieved global database ademactly the following repairs
under theCM-completesemantics:

B = {e('€2','mary’), e(‘el’,’john’), e(‘e3’,'willy’) , m(‘el’), m(‘e2’)}
Bo = {e(‘€2','mary’), e(‘el’,'john’), e(‘e3’,'rose’), m(‘el’), m(‘e2’)}
Bs = {e('€2','mary’), e(‘el’,'ann’), e(‘e3’,'willy’) , m(‘el’), m(‘€2’)}
By = {e('€2','mary’), e(‘el’,'ann’), e(‘e3’,‘rose’), m(‘el’), m(‘€e2’)}
Querym(X) asking for the list of manager codes has then ledtande2 as consistent an-

swers, whereas the queryX, Y) asking for the list of employees has orlfe2’,'mary’)
as consistent answer (s the only tuple in eaclCM-completerepair). O
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2.3 Restricted Classes of I ntegrity Constraints

The problem of computing CQA, under general combination€sfis undecidable_(Abiteboul et al. 1995).
However, restrictions on ICs to retain decidability andnitify tractable cases can be im-
posed.

Definition 2

Let r be a relation name of arity, andr be a set oin < n indices fromI = {1,...,n}.

A key dependenc{KD) for r consists of a set of — m DCs, exactly one for each index

i € I —m, of the formVX;,%X2 —(r(X1) A 7(X2) A X} # X%) where no variable occurs
twice in eachx; (1 < i < 2), [X1] = [X2| = n, the sequencg] exactly coincides with

X7, andX{ is distinct fromxé for eachj € I — «. The setr is called theprimary-keyof

r and is denoted byey(r). We assume that at most one KD is specified for each relation
(Cali et al. 2003a). Finally, for each relation namsuch that no DC is explicitly specified

for, we say, without loss of generality, thedy (r') = {1,. .., arity(r’)}. O
Definition 3

Given an inclusion dependendyof the formVxy [ 7 (X1) — IX23 12(X2) ], we denote by
¢ C{1,... arity(r)} andwd C {1,..., arity(r2)} the two sets of indices induced by
the positions of the variables in X; andx, respectively. More formallyr¢ = {i : X} is
universally quantified ini} andr$ = {i : X} is universally quantified inl}. O

For example, let/ denote the INDY X1, X5 [ (X1, X3, Xo) — 3Xy mo(Xy, X2, X7) |-
We have thatr{ = {1,3} andn{ = {2,3}.

Definition 4
An IND d is said to be

e aforeign key(FK) if 7% = key(r2) (Abiteboul et al. 1995);
e aforeign superkeyFSK) if 74 O key(rs) (Levene and Vincent 2000);

e non-key-conflictingNKC) if 7% 2 key(r2) (Cali etal. 2003a). 0
Definition 5
An FSK d of the formr; — 1 is said to besafe(SFSK) if r¢ C key(ry). In particular, if
d is asafeFK we call it an SFK. O

For example, letl denote the FSK/ X, X5 [ r1 (X7, X3, Xo) — 33Xy ro( Xy, Xo, X7) |
wherekey(r2) = {3}. Thus, ifkey(r) = {1, 3}, d is SFSK, whereas ifey(r ) = {1, 2},
d is not SFSK.

Tabld summarizes known and new results about compuyednilid complexity of CQA
under relevant classes of ICs and the three semantic agsmsiponsidered in this paper.
In particular, given a query (without comparison atoms & € {loosely-sound, loosely-
exact}), we refer to the decision problem of establishing whethapée fromdom (D) be-
longs toanss (¢, G, D) or not. Note thaf, Chomicki and Marcinkowski (2005) haveve
computability and complexity of CQA for thEeM-completesemantics in case of conjunc-
tive queries with comparison predicates. However, sincaith a setting there is a finite
number of repairs each of finite size, then their resultsgditborwardly hold for union of
conjunctive queries as well. New decidability and compiesesults for CQA under KDs
and SFSKs only, witht € {loosely-soundloosely-exact are proved in Sectidn 2.4.
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Table 1. Data Complexity of CQA (distinguishing betweenlicyacyclic INDs)

DCs| INDs | loosely-sound  loosely-exact CM -complete
no| any | inpTIME®™  inpTIME® in PTIME

KD | no | conpc® coNp-c () coNpP-c ()

KD | NKC | conp-c™ ms-c ) in 115  /in conp (@)
KD | SFSK | inmj® in 1% in 115  /in conp (@)
KD | any | undec." undec.”  inTZ @ /inconp
any | any | undec® undec.® 15-¢c ? / coNP-¢ (@

(1) [Cali et al. 2003a;(?) [Chomicki and Marcinkowski 2005¢3) Sectio 2.4;(4) [Abiteboul et al. 1995;

2.4 Loosely-exact and Loosely-sound semantics under KD and SFSK

In this section we provide new decidability and complexigults for CQA under both
the loosely-exact and the loosely-sound semantics with &ESFSKs. In the rest of the
section we always denote by:

e (G, a schema containing KDs and SFSKs only;

e D, a possibly inconsistent database dor

e ¢, a union of conjunctive queries without comparison atoms.
e ¥ € {loosely-exactloosely-sounyl.

We first show that, in the aforementioned hypothesis, threeaizach repair is finite.

Definition 6
Let B be aX-repair forD andi > 0 be a natural number. We inductively define the #&ts
as follows:

1. If i = 0,thenB’ = BN D.

2. If i > 0,thenB’ C B — (B°U...uU B 1) is arbitrarily chosen in such a way that
its facts are necessary and sufficient for satisfying alli®s in constr(G) that are
violated inB° U ... UB* L,

Observe tha8 = |, B’ and that3* N 3 = {) for eachj # i. O
Lemma 1
Let B be aX-repair forD, then

1. The key of each fact i only contains values frodom(D).
2. |B| is finite.
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Proof

(1) Leti > 0 be a natural number. Let(t;) be a fact inB* such that there is an index
j € key(r;) forwhicht! ¢ dom(B°). Letr;_1(#;_1) be one of the facts i8*~! that forces
the presence of;(¢;) in B* for satisfying some IND, say. (Note that, by DefinitiofiJ6,
there must be at least one of such a fact bec#&isgould otherwise violate condition 2,
sincer;(t;) would be unnecessary.) Moreover, sintis a safe FSK, then there must exist
an indexk € key(r;—1) such thatt{ = tF . Thus,r;,_1(t;—1) contains a value being not
in dom(B°) inside its key as well as;(¢;). Sincei has been chosen arbitrarily, then value
t{ has to be part of a fact @°, which is clearly a contradiction.

(2) Since, the key of each factihican only contain values frooom(B°), and/dom(B°)| <
|B°|-aewherea = max{arity(g) : g € names(G)}, then|B| < |names(G)|-|dom(B%)|~ <
[names(G)| - (- [B°))* < |names(G)| - (a-|D)*. O

We next characterize representative databases-fepairs.

Definition 7
Let B be aX-repair forD. We denote byiomo(3) the (possibly infinite) set of databases
defined in such a way th&' € homo(B) if and only if:

e 3’ can be obtained fron$ by replacing each value (if any) that is notdom(D)
with a value froml' — dom(D); and
e none of the values it — dom(D) occurs twice in3’.

Finally, we denote byiz 5 : dom(B’) — dom(B) the function (homomorphism) as-
sociating values irdom(5’) with values indom(B), where hz /(o) = «, for each
a € dom(D) ndom(B’). O

Note that, since (by Lemnid 1) the key of each facfBionly contains values from
dom(D), then|B’| = |B| holds.

For example, it5 = {p(1,e1,£2), ¢(2,e2,£1)} with dom(D) = {1,2} andkey(p) =
key(q) = {1}, thenall of the following databases aréniomo(B): {p(1,e1,¢3), ¢(2,2,€4)},
{p(17 £4, 52)7 q(27 €3, El)} and{p(17 €5, 66)7 q(27 €7, 68)}'

Lemma 2
If Bis aX-repair forD, then eactB’ € homo(B) also is.

Proof
Let B € homo(B). First of all, we prove thaB3’ is consistent w.r.tG. In particular,
since the key of each fact i only contains values frordom(D) (by Lemmal), then
B’ cannot violate any KD (by Definitid] 7); Moreover, since e&ld has to be satisfied
through values of a key (by definition of safe FSKs), and sitheekey of each fact i
only contains values frordom(D) (by Lemmae[l), ther3’ cannot violate any IND (by
Definition[7);

We now prove thaf3’ is a repair, first for the loosely-sound semantics and thetht®
loosely-exact semantics.

[loosely-sound] If ¥ = loosely-soundthen observe that’ N D = B N D, by definition
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of homo(B). Thus, if B’ was consistent but not a loosely-sound repair there wouitd ax
loosely-sound repai8” such that3” N'D > B’ N'D = BN D. Contradiction.

[loosely-exact] If ¥ = loosely-exactthen assume thd is a loosely-exact repair bug’
(although consistent w.r&) is not. By definition, there must be a loosely-exact reBir
such that3” © D C B’ © D. In particular, we distinguish three cases:

1) B"-D=B"-DandD-B"cD -5
2 B"-DcB —-DandD-B"=D -8B
R)B"-DcB —DandD-B"cD -8

CASE 1: Since, by Definitio 17, for each fact ii there is a fact in3’ with the same
key, if we could add the facts if” — B’ to B’ without violating any KD, then such facts
could also be added 8 without violating any KD. Moreover, if we could add 1 the
facts inB” — B’ without violating any IND, then such facts could be also abttes
preserving consistency. This follows by the definition ofeseSKs (because each IND
has to be satisfied through values of a key), by Lefima 1 (bedheskey of each fact in
a loosely-exact repair only contains values frdom(D)) and, by Definitiod 7 (because
for each fact in3’ there is a fact i3 with the same key and with the same values from
dom(D)). Consequently, we could add all the factdsih— B’ to B preserving consistency.
But this is not possible sind8 is a loosely-exact repair.

CASE 2: Since inB’ we have unnecessary facts (thosé3in- B”) or equivalently the
facts inB” do not violate any IND, then the corresponding facts3ido not violate any
IND by Lemmé&1 and by Definition] 7. Consequently, if each faet B, such that there is
afactf’ € B’ — B” that is homomorphic t¢, was removed fronf3, then we would obtain
a database preserving consistency and with a smaller symomiéfierence thar3. But this
is not possible sincB is a loosely-exact repair.

CAsE 3: Analogous considerations can be done by combining casd tase 2. []

We next define the finite databa®® having among its subsets a numbepfepairs
sufficient for solving CQA.

Definition 8

Let ¢ be avalue il — dom(D). Consider the largest (possibly inconsistent) databage, s
C, constructible on the domabtom(D) U { ¢} such thatf € C iff the value ¢ does not
appear in the key of. Let A be a fixed set of values arbitrarily chosen from- dom(D)
whose cardinality is equal to the number of occurrencesiofC'. We denote byD* one
possible database for obtained fromC' by replacing each occurrence ofwith a value
from N in such a way that each value M occurs exactly once i®*. (|C| = |D*|.) O

For example, iidom(D) = {1,2} andG = {p} with arity(p) = 2 andkey(p) = {1},
then ¢ = {p(1,1),p(L,2), p(L, ), p(2. 1), p(2,2), p(2. ¢)}. Let us fix N’ = {ey, 2}
Thus,D* has the following form{p(1,1), p(1,2), p(1,¢1), p(2,1), p(2,2), p(2,€2)}.

Proposition 1

The following hold:
o [NV| =3 eqlarity(g)—key(g)])-|dom(D)|*v()([dom(D)| 1) aritv(o)=Ikeva) =t
o D] <X, cg(ldom(D)| + 1)) < 37 o (arity(g) - |D| + 1) (o)
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Lemma 3
If Bis aX-repair forD, then there exist8’ € homo(B) such that3’ C D*.

Proof

B’ can be obtained fror by replacing each faot(#;) € B with the unique fact (&) €

D* such that for eachi € arity(r) eitherti = ¢!, if t{ € dom(D), or ti € N, if

ti ¢ dom(D). Moreover, note that, sincB cannot contain two facts with the same key
and since keys only have values fralom(D), then each fact iD* can replace at most
one fact inB. Finally, B € homo(B) by Definition[7. [

Lemma 4
Let B be aX-repair forD, B’ € homo(B), ¢ be a query, and be a tuple of values from
dom(D). If t € ans(q,B’), thent € ans(q, B).

Proof

Let ¢; be one of the conjunctions i, if ¢t € ans(g;, B'), then there is a substitutiqul
from the variables ofj; to values inl" such that3’ |= ¢;(¢). But since, by Definitiofi7,
each fact inB8’ is univocally associated with a unique factBnby preserving the values
in dom(D), and since all the extra values Bi are distinct, then there must also be a
substitutionu such that3 |= ¢;(t). In particular, letz be a variable iny;, we can defing

in such a way that(z) = hg s (1 (2)), whereh is the homomorphism fror8’ to 5 (see
Definition[2). Clearly, ift € ans(q;, B’) for at least oney; in ¢ thent € ans(q, B’) too
and, consequently,€ ans(¢q,B) O

The next theorem states the decidability of CQA under boghlidbsely-exact and the
loosely-sound semantics with KDs and SFSKs only.

Theorem 1
Let B be aX-repair forD, ¢ a query, and a tuple fromdom(D). LetB C 2P denote the
set of allX-repairs contained i®*. Then,t € ansx(q,G, D) iff ¢t € ans(q,B) VB € B-

Proof

(=) We have to prove thatf ¢t € ansx(q,G, D), thent € ans(q, B) for eachB € B, or
equivalentlyif ¢t ¢ ans(q, B) for someBB € B, thent ¢ anss(q,G,D). This follows, by
the definition ofanss, (¢, G, D) and from the fact thab only contains:-repairs.

(<) We have to prove thaif ¢ € ans(q,B) for eachB € B, thent € ansx(q,G, D).
Assume that € ans(q,B) for eachB € B butt¢ ¢ ansx(q,G,D). This would entail
that there is a repaiB, such thatt ¢ ans(q,Bo). But, sincet ¢ ans(q,B’) for each
B’ € homo(By) (by Lemmd?), and sind® N homo(B,) always contains a repair, s&/
(by Lemmd38), then we have a contradiction singé ans(q, B”) has to hold whereas we
have assumed thate ans(q, B) foreachB € B. [

Decidability and complexity results, under KDs and SFSKly,dallow from Theoreni1L.
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Corollary 1

Let G be a global schema containing KDs and SFSKs dRljge a possibly inconsistent
database fog, ¢ be a queryX € {loosely-exact loosely-soun#l, andt be a tuple of
values fromdom(D). The problem of establishing whethee anss (¢, G, D) isin1If in
data complexity.

Proof
It suffices to prove that the problem of establishing whethgr anss (¢, G, D) is in X5.
This can be done by (i) buildin®*, and (ii) guessind3 € 27" such thaiB is a X-repair
andt ¢ ans(q, B). Since, by Proposition 1D*| € O(|D|*) wherea: = max{arity(g) :
g € names(G)}, then step (i) (enumerate the factsidf) can be done in polynomial time.
Since checking that ¢ ans(q, B) can be done iRTIME. It remains to show that checking
whetherB is aX-repair can be done iwoNP.
[loosely-exact] If ¥ = loosely-exactthis task corresponds to checking that there is no
consisten3’ C DU B such that3’ © D C B & D, where this last task is doablermME.
[loosely-sound] If ¥ = loosely-soungthis task corresponds to checking that there is no
consistenf3’ C D* such that3’ " D > BN D, where this last task is doablemmME.

Then the thesis follows. [J

2.5 Equivalence of CQA under loosely-exact and CM-complete semantics

In this section we define some relevant cases in which CQArdndsely-exact and CM-
complete semantics coincide.

Lemmab
Given a databask for a schemd, if B is a CM-complete repair fdp, then it is a loosely-
exact repair foD.

Proof

Suppose thaB is a CM-completerepair forD (so, it is consistent w.r.t), but it is not a
loosely-exacbne. This means that its symmetric difference witlcan be still reduced.
But, by definition of CM-completesemantics/3 does not contain anything else but tuples
in D, namely3 — D = (. So, the only way for “improving” it is to extend it with tupe
from D. But, this is not possible becaufeis already maximal due to theM-complete
semantics, namely the addition of any other tuple wouldate®ht least one IC. [

Corollary 2
anslooselyfemact(Q7 ga D) g a'nSC'Mfcomplete(qa g7 D)

Proof
This directly follows by Lemm@&l5 in light of Definitionl 1. O

Theorem 2
There are cases Whemsloosely'ezac?ﬁ(Qa Q, D) C ansCM-complete(Qa ga D)



12 M. Manna, F. Ricca and G. Terracina

Proof
By [Chomicki and Marcinkowski (2005), stating that the twansetics are different, and
by Corollary2. O

Proposition 2
Let B be a database consistent w.r.t. a set of {Cs

1. If C are DCs only, then ead® C B is consistent w.r.tC', as well.
2. If C are INDs only, theB U B’ is consistent w.r.tC' for each/3’ consistent w.r.tC'.

Proof
(1) Deletion of tuples can not introduce new DCs violations.

(2) Let r(¢t) be a factin5’. Let d; be an IND of the formr, — r (r # ry). Clearly,r(t)
cannot violated; in any database becausas in the righthand side of;. In particular,
r(t) cannot violated; in BU B’. Let dy be an IND of the form — r, (possibly,r = r3).
Sincer(t) does not violatel, in 5, then it cannot violate, in BU B’. O

Theorem 3

Given a databasP for a schema, let B be a loosely-exact repair f@, andB3 = BN D.
There is a CM-complete repalf’ C B for D if at least one of the following restrictions
holds:

| G contains DCs only (no INDs);

Il G contains INDs only (no DCs);
Il G contains KDs and FKs only, arfd is consistent w.r.t. KDs;
IV G contains KDs and SFKs only;

Proof

Casel: By Propositiol 2, sinc# is consistent w.r.t. DCs, theh C B is consistent as well.
Now, if B — D # (), then we would have a contradiction becatise D ¢ B © D would
hold. Thus3 — D = () and so 3 = B is already aCM-completerepair itself.

Casell: Since there is no DC, there exists only dbif-completerepair, say3’, obtained
from D after removing all the facts violating INDs. Now, B was not contained iif3,
then, by Propositiof]23’ U B would still be consistent, that is a larg@M-complete
repair. Contradiction. Finally = 3'.

Case I11: SinceD is consistent w.r.t. DCs, we have only o@#/-completerepair, say
B’, obtained fromD after removing all the facts violating INDs. But, as in cakeflthe
setB’ — B was nonempty, then we could add all these facts Miwithout violating any
IND. Anyway, one of these facts, sgy could violate a DC due to a fag¢t in B — D.
Now, note thatf’ is in B only for fixing an IND violation. But in this case, as we are
only considering FKs, there would be no reason to hfdie 3 instead off. So, we could
(safely) replace with f” in B and no KD would be violated as well as no FK. But this
leads to a contradiction. So, there is no facBirwhich is not in3.

Case|V: First of all, we observe that I8 — D = (), then eithei3 is a CM-completerepair
or B is not aloosely-exactepair. So the statement holds. Now assume fhatD # (.
We distinguish three different cases:
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(1) Bis both consistent and maximal (it isGM-completerepair);
(2) Bis consistent but not maximal (it is not@VI-completerepair);
(3) Bis inconsistent (it is not &M-completerepair).

In case(1), we have a contradiction becauses assumed to be flaosely-exactepair,
but it does not minimize the symmetric difference witrsinceB © D C B & D.

In case(2), we have again a contradiction becausis assumed to be laosely-exact
repair but it does not minimize the symmetric differencehvi? since there is aCM-
completerepairB > B such that3 © D c B& D.

In case(3), we observe that since, by hypothe#iss consistent, then the inconsistency
of B arises, by Propositidd 2, only due to INDs. Now, assume tfya$ contains a fact
r1(t1); (ii) there is an INDd of the formVxy [ r1(X1) — X3 r2(X2) ]; (iii) there is no fact
for r, in B satisfyingd. This means that a fact of the form(t,) must be in3 — D, where
tr i ty i,

Now, we claim that there is no fact of the fom(t3) in D — B, wheret{rz = tgfﬁ. Sup-
pose tha — B contained such a faet (#3). Consider the new databa@@U {ry(#3)}) —
{ra2(t2) }. This would necessarily be consistent because the additicsit;) (after remov-
ing r2(2) as well) cannot violate any KD sinegis an FK (remember thaiey(r2) = 7$),
and cannot violate any IND since each INDof the formry, — 73 is an SFK (remember
thatkey(r2) 2 wg’). But this is not possible becaugkis assumed to be aosely-exact
repair, and BU{r(t3)}) — {r2(t2) } would improve the symmetric difference. This means,
that eachCM-completerepair cannot contain the tuple(¢;) (this goes in the direction of
the statement).

Let us callB the consistent (w.r.t. both KDs and SFKs) database obtdineu?3 after
removing all the facts violating some IND. It remains to shihat there is no other fact
in D — B such thaiB' U {r1(t1)} does not violate any constraint. Assume that such a fact
r1(t1) exists, then:

-BU {r(#1)} would not violate any IND;
- BU (E/ U{ri(t1)}) = BU{r(t1)} would not violate any IND, by Propositidn 2;
- BU{r(t1)} would violate some KD, sincB is aloosely-exactepair.

Thus, there would necessarily be a factlirsayr (¢2), being not inB’, with the same key
of r(#,). Since such a fact cannot staysn- B because it does not violate any IND, then
it must be inB — D. But this is not possible because we could replace;) by r (¢1)

in B without violating any KD and also without violating any INBince we are only
considering SFKs. But sincB is already a repair, this is clearly a contradiction. Fipall
B is aCM-completerepair. [

Corollary 3
ansivosely-ezact(q; G, D) = anscm -compiete(q, G, D) in the following cases:

- G contains DCs only (no INDs);
- G contains INDs only (no DCs);
- G contains KDs and FKs only, arfd is consistent w.r.t. KDs;
- G contains KDs and SFKs only;
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Proof
This directly follows by both Theorefd 3 and Lempda 5, in lighDefinition[d. [

Proposition 3
In general, Theoref 3 does not hold in cgseontains SFSKs and KDs only.

Proof

Consider a database containing two relations of arity 2,elgm and s. Moreover, the
schema contains the following ICkey(r) = {1,2}, andkey(s) = {1} andr(X,Y) —
s(X, Y). Note that, the last is a safe FSK. Suppose also that @D& this schema con-
tains the following factsr(a, b), s(a, ¢). The loosely-exactepairs are3; = {s(a, ¢)}
andB; = {r(a, b), s(a, b)}, but only the first one is also@V-Completaepair. However,
B =B>yND = {r(a,b)} is not a CM-complete repair (it is inconsistent). The onlnsis-
tent database containedfis the empty set that is not@M-Completerepair (deletions
are not minimized). [

3 Computation of CQA via ASP

In this section, we show how to expldinswer Set Programmind\SP) (Gelfond and Lifschitz 1988;
Gelfond and Lifschitz 1991) for efficiently computing costeint answers to user queries
under different semantic assumptions. ASP is a powerfut lpgogramming paradigm al-
lowing (in its general form) for disjunction in rule headsifer 1982) and nonmono-
tonic negation in rule bodies. In the following, we assumat tthe reader is familiar
with ASP with aggregates, and in particular we adopt the Dyax [Faber et al. 2010;
[Leone et al. 2006).

The suitability of ASP for implementing CQA has been alreeghyognized in the litera-
ture (Lenzerini 2002; Arenas et al. 2003; Bertossi et al 52@homicki and Marcinkowski 2005).
The general approaches are based on the following ideaupeah ASP prograr whose
answer sets represent possible repairs, so that the prolblsmputing CQA corresponds
to cautious reasoning oR. One of the hardest challenges in this context is the auiomat
identification of a progran® considering a minimal number of repairs actually relevant t
answering user queries.

In order to face these challenges, we first introduce a geaecading which unifies in
a common core the solutions for CQA under the semantics dereil in this paper. Then,
based on this unified framework, we define optimization stigs precisely aiming at
reducing the computational cost of CQA. This is done in ssweays:(i) by casting down
the original program to complexity-wise easier prografiisby identifying portions of the
database not requiring repairs at all, according to theygregjuirements(iii) exploiting
equivalence classes between some semantics in such a wéypbogptimized solutions.

We next present the general encoding first and, then, thenations.

3.1 General Encoding

The general approach generates a progdidag and a new query.,, obtained by rewrit-
ing both the constraints and the querin such a way that CQA reduces to cautious rea-
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soning onll,, andq.q,. Recall that a union of conjunctive queries in ASP is exEéss
a set of rules having the same head predicate with the satye ari
In what follows, we first present how to generatg,, andg.,, and then formally prove
under which hypothesis cautious reasoning on sligh andg.,, corresponds to CQA.
Given a databasP for a schemg and a query; ong, the ASP prograril.,, is created
by rewriting each IC belonging teonstr(G) andq as follows:

Denial Constraints.Let ¥ € {CM-completeloosely-soundloosely-exac}. For each DC
of the formvXy, ..., Xm —[g1(X1) A v oo A gm(Xm) A o(X1, ..., Xm)] IN constr(G), insert
the following rule intoll .44 :

hd gf(xl) VeV g7cn()7(m) = gl(xl)v Ty gm(xm)v U(le s 7Xm)
This rule states that in presence of a violated denial caimstit must be guessed the

tuple(s) to be removed in order to repair the database.

Inclusion dependenciedet . = {CM-complete loosely-exac}. For each INDd in
constr(G) of the formVxy [ g1(X1) — 3X23 g2(X2) |, add the following rules intdl .4, :

o gf(Xl) — g1 (Xl), #COUnt{XQE : 926()7(2)} = #COUnt{XQE : gQ(XQ)} if |X23| >0
e g7 (X1) = g1(X1), g5(X2)-
9 (X1) == g1(X1), not ga(X2)- if [X23[ =0

The first rule states that a tuple gf must be deleted iff either all the tuples gn pre-
viously referred to byy; via d have been deleted due to the repairing process, or there
is no tuple ing, referred to byg; via d. (This is done by comparing the total count of
tuples ing, and g5). Observe that if there is a cyclic set of INDs, the set of sujener-
ated by this rewriting would contain recursive aggregalégir semantics is described in
(Faber et al. 2010). The latter two rules replace the firstiotiee special case ¢%23| = 0.

Repaired RelationsLet > € { CM-complete loosely-soungdloosely-exac}. For each re-
lation namey € names(G), insert the following rule intdl.q,:

* 97"(X) = g(X), not g°(X)-
Query rewriting. Build g.qq(X) from ¢(X) as follows:

1. If ¥ = loosely-soundthen apply ontgy the perfect rewriting algorithm that deals
with INDs described in (Cali et al, 2008h)

2. For each atorg(y) in ¢, replaceg(y) by g" (y)

The perfect rewriting introduced in (Cali et al. 2003bititively described next. Given
a queryq(X) and a set of INDs, the algorithm iteratively computes a neerg) as fol-
lows. @ is first initialized with ¢; then, at each iteration it carries out the following two

stepsi(1) For each conjunctiong’ in @, and for each pair of atomg, ¢ in c¢’ that unify
(i.e., for which there exists a substitution transformgngnto ¢-), g1 andg, are substituted

1 Observe that, whel = loosely-soundINDs are not encoded into logic rules.



16 M. Manna, F. Ricca and G. Terracina

by one single unifying atom2) For each conjunctiomq’ in @, and for eachapplicable
IND d of the formg; — ¢ such thaty is in ¢¢’, it adds toQ a new conjunctioreg” ob-
tained fromcq’ by interpretingd as a rewriting rule ory, applied from right to left. The
algorithm stops when no further modifications are possihl€®avith the two steps above.

The following theorems show how and when cautious reasamirid.,, andq.,, cor-
respond to CQA. First we consider the CM-complete semantics

Theorem 4

LetY = CM-completelet D be a database for a sche@avith arbitrary DCs and (possi-
bly cyclic) INDs, and letg be a union of conjunctive queriese anss(q, G, D) iff qcqq(t)

is a cautious consequence of the ASP progfamII.,.

Proof

We claim thatlI.,, allows to consider only and all the repairs, exactly one pedeh Let
B" be a repair. In the following, we describe how to obtain a nhedataining for each
relation, sayy, exactly only and all the tuples gfthat do not appear i8”. We collect such
tuples in the new relation®, while we collect ing” only and all the tuples of appearing
in B”. For each relation, say.

(a) By the disjunctive rules (if any) involving, of the form
"'ng(X)V"' — "',9()?),"',U("',X,"')'
we guess a set of tuples gf collected ing¢, that must not appear i".

(b) Next, for each IND of the forng(X;) — ¢1(X2) (involving g in the left-hand side),
we use the rule

g°(X1) :— g(X1), #count{Xa3 : gy (X2)} = #count{Xaz : ¢1(X2)}
for deciding which tuples of cannot appear il8” due to an IND violation. Note

that in casex,3| = 0, the rule is rewritten without th#count aggregate.
(c) Finally, by the ruleg”(X) :— ¢(X), not g¢(X) we obtain the repaired relations.

Importantly, for computing the extension of eagh we only exploit the minimality of
answer sets semantics; later, the extension of gddh computed. Observe that, by the
splitting theorem[(Lifschitz and Turner 1994).,, can be divided (split) into two parts . It

is clear that, by constructiol.,, has exactly one answer set per repair. Finally, the query
is reorganized to exploit the repaired relations, and oastreasoning does the rest]

Example 3
Consider again Examplé 2, the program (and the query boitt ff(X) :— m(X)) under
the CM-completesemantics obtained for it, is:

Cef( X, Xn) Vel (X, X)) — e(Xe, Xn), e(Xe, X)), X, £ X

. m(X,) :— m(X,), #ecount{ X/ : e¢(X., X])} = #count{ X,, : e(X., X,,)}-

e (Xey Xn) i— e(Xe, Xp), not e®(Xe, Xy)-

«m"(X.) :— m(X,.), not m°(X,)

v ega(Xe) — m"(X,)
When this program is evaluated on the database we obtainafawer sets. It can be
verified that, all the answer sets contairi(‘e1’) and m”(‘e2’), (i.e., they are cautious
consequences &i.,,) and, thus,el’ and‘e2’ are the consistent answers to the quey.
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Theorem 5

Let > = loosely-soundlet D be a database for a schediavith KDs (and exactly one
key for each relation) and (possibly cyclic) NKC INDs, antidée a union of conjunctive
queries without comparison atamg € anss(q, G, D) iff geqq(t) is @ cautious conse-
quence of the ASP program U I1,.

Proof

Considerations analogous to t6#&1-completecase can be drawn. Disjunctive rules guess a
minimal set of tuples to be removed, whereas the perfecitiegalgorithm allows to deal
with NKC INDs. Observe that, the separation theorem intoediuin [Cali et al. 2003b)
shows that INDs can be taken into account as if the KDs whetexaressed og; in
particular, it states that it is sufficient to compute thef@etrrewritingq’ of ¢ and evaluate

¢’ on the maximal subsets @f consistent with KDs. In our case, these are computed by
the part ofI.,, dealing with KDs, whereas the separation is carried out bgméng each
ging byg”. O

The general encoding for tHeosely-exacsemantics is inherently more complex than
the ones folloosely-souncand CM-complete since both tuple deletions and tuple inser-
tions are subject to minimization. As a consequence, wadddtkeloosely-exaceéncoding
by considering that there are common cases in which CQA uhdérosely-exackeman-
tics and theCM-completesemantics actually coincide (see Corollaly 3). These czemes
be easily checked and, thus, it is possible to handlddbsely-exacsemantics with the
encoding defined for th€EM-completecase.

Theorem 6
Let X = loosely-exactD be a database for a scheissuch that one of the following
holds:

- G contains DCs only (no INDs);
- G contains INDs only (no DCs);
- G contains KDs and FKs only, arfd is consistent w.r.t. KDs;
- G contains KDs and SFKs only;

Let ¢ be a union of conjunctive queriese anss(q, 3, D) iff geqq(t) is @ cautious conse-
quence of the ASP program U I1,.

Proof
Follows from Corollary B and Theorem 5.0

3.2 Optimized Solution

The strategy reported in the previous section is a genehati@o for solving the CQA
problem but, in several cases, more efficient ASP program$eagroduced. First of all,
note that the general algorithm blindly considers all the &@ the global schema, includ-
ing those that have no effect on the specific query. Consélgueseless logic rules might

2 Recall that equalities are expressed in terms of variakdemb the same name.
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be produced which may slow down program evaluation. Theeyasimple optimization
may consist of considering relevant ICs only. However, dhae several cases in which
the complexity of CQA stays iRTIME; but disjunctive programs, for which cautious rea-
soning becomes a hard task (Eiter et al. 1997), are genegaéedin presence of denial
constraints only. This means that the evaluation of the yred logic programs might
be much more expensive than required in those “easy” cas#e following, we provide
semantic-specific optimizations aiming to overcome suohlems for the settings pointed
outin Theoreni ¥4, Theorep 5, and Theoifdm 6.

Given a queryy and an atony in ¢, we define the set aklevant indice®f g in ¢, say
relevant(q, g) in such a way that an indexin [1..arity(g)] belongs torelevant(q, g) if
at least one of the following holds for an occurren¢&, ..., X,,) of g in ¢:

X, is not existentially quantified (it is a free variable, it is @utput variable of);
X, isinvolved in some comparison atom (even if it is existdiytiquantified);
X, appears more than once in the same conjunction;

X, is a constant value;

If g does not appear i, we say thatelevant(q, g) = 0;

In the following, we denote by a set of indices. Moreover, given a sequence of variables
xandasetr C {1,...,|X|}, we denote bx™ the sequence obtained fronby discarding
a variable if its position is not ifr. Finally, given a relation name, a set of indices and
a labell we denote by;*"™ (x™) an auxiliary atom derived from, marked by, and using
only variables irk™.

Y = loosely-sound. The objective of this optimization is to single out, for baelation
involved by the query, the set of attributes actually retfévt@ answer it and apply the
necessary repairs only on them. As we show next, this maydilmth to reduce (even
to zero) the number of disjunctive rules needed to repaink@ations and to reduce the
cardinality of relations involved in such disjunctions.

Given a schemg and a query, perform the following steps for building the program
1.4, and the quer);qq-

1. Apply the the perfect rewriting algorithm that deals wiiDs described in (Cali et al. 2003b).

2. Let @ be the union of conjunctive queries obtained frgrafter Step 1. For each
g € names(G), build the sets

7, = relevant(Q, g) md = mf Ukey(g)

These two sets capture the fact that a key attribute is neléoathe repairing process, but
it may not be strictly relevant for answering the query.

Observe that the perfect rewriting dealing with INDs mustapelied beforesingling
out relevant attributes. In facg, may depend, through INDs, also on attributes of relations
not explicitly mentioned in it. However, in the last step bistalgorithm the rewriting of
the query is completed by substituting each relation in therg with its repaired (and
possibly reduced) version.

3. For eacly € names(G) such thatr?, # 0 andkey(g) 2 =%, add the following
rules intoll.qq4:
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o g7TE(XTE) = g(X).
9 9 9 9 . .
o oK) VD) ), o), X £ %
Vi € wd — key(g)
o grh(ETh) im g GE), ot o (),

Observe that if there exists at least one relevant non-kefpate for g, the repairing pro-
cess can not be avoided; however, violations caused byvaet attributes only (i.e, not
in 7Z) can be ignored, since the projectiongbn 7 is still safe and sufficient for query
answering purposes.

4. For eacly € names(G) such thatry, # () andkey(g) 2 7%, add the following rule
into Il cqq:

o g"TR(XR) = g(X).

Observe that, if the relevant attributesqgodire a subset of its key, the repair procesg fufr
key violations through disjunction can be avoided at alffalet, the projection ofy on ¥,

is still safe and sufficient for query answering purposesteduer, for the same reason, it
is not needed to take all the key @into account.

5. For each atom of the forg(X) in @, replacey(X) by g" ™ (X"%).

3, = CM-complete. For the optimization of the CM-complete semantics, we eixf
graph which is used to navigate the query and the databaselén @ single out those
relations and projections actually relevant for answetirggquery. Moreover, it allows to
identify possible cycles generated by ICs which must bablyithandled; in fact, acyclic
ICs induce a partial order among them and this informatiorbeaeffectively exploited for
the optimization. On the contrary cyclic ICs must be handteal more standard way.

Given a schem and a queryy, build the directed labelled grapi, = (N, A) as
follows:

N = {q} U names(G);

(g1, 92, ¢) € Aiff cisaDC inconstr(G) involving bothg; and gs;
(91, 92,d) € Aiff disanIND inconstr(G) of the formg; — g¢o;
(g,9,¢) € Aiff g appears in a conjunction qf

Perform the following steps for building progrdy

1. Visit G, starting from nodey,

2. Discard unreachable nodes and update the/éetsd 4;

3. Partition the sedvV in (N.f, N,f) in such a way that a nodebelongs taV,y if it is
not involved in any cycleq always belongs tdV.;). Contrariwise, a node belongs
to N, if it is involved in some cycle.

4. For each node € N — {q} compute the sets

T = (Ugr.g.)ca 7d) U relevant(q, g);
74 = 7% U key(g), only if g has exactly one primary key as DCs} = ()
otherwise.

herer?, is the set of relevant variable indicesgfandr, adds tor, the key ofy.
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Observe that Steps 1-4 implement a pre-processing phad@céh velevant relations and
their relevant indices are singled out, and each relevéatioa is classified as cycle free
or non cycle free.

5. For each node € Ny, if g has only one key as DCs, then add the following rules

into Il cqq:

o T - g(®), g (G ), L g ().

° gf_m? ()—(:f{) — g;_ﬂfé{ ()—(:f{) Vie[l.k]stnf D W%
where

- k > 0is the number of arcs i, labelled by INDs, and outgoing from

- the pair(&, ) is either(r, R) or (sr, S), according to whethekey(g) 2 7TR
or not, respectively. Intuitively, ikey(g) 2 7% holds, then the repay”™ r of
¢ can be directly computed; otherwise the computation mustdio through
a semi-reparation step for computipg~™¢. Intuitively, this semi-reparation
step collects those tuples that violate no IND of the fgra g¢;, but that must
be anyway processed in order to fix some key violation (segs3e 10).

- atomg, ™ is inthe body of the first rulel(< i < k) onlyif both (g, g:, d;) €
A, andd; is an IND of the formg(x) — ¢;(X;). This atom is just a projection
of g/ (X77).

7

6. For each nodg € N if g has only one primary key as DCs, ahel(g) C 7%,
andg has incoming arcs only from, and all the relevant variables gfw.r.t. ¢ are
in the head of;, and each occurrence ¢fin ¢ contains all of its relevant variables,
then add the following rules intd ., by considering that the key g@fis defined by
rules of the formvxy, X2 —[g(X1) A g(X2) A X% # X4]:

 gTTIX) = g, gTTTR(GY), X £ X Vi e ng — key(g)
o gTR(KTE) = g KT, mot g KDY,

7. For each nodg € N, if g has only one primary key as DCs, ahel(g) 2 7%,
and case 6 does not apply, then add the following ruledlintg by conS|der|ng that
the key is defined by rules of the forivix;, Xo —[g(X1) A g(X2) A X4 # X

m

g g g g . .
° gc-ﬂ'z ()—(TS) Vi gc-ﬂf’g ()—(7278) . 7sr'7rf’g ()—(ls)7 gST'ﬂ'z ()—(;rs)’ )—(11 / )—(%
Vi € ng - key(g)

o gTTRGR) = TR, mot geTE(KT).

Observe that, in this case, disjunctive rules are defined onlthe set of relevant
indices that are not in the key and that ea¢h™s contains only the projection of
deleted tuples on the sef,.

Here, Steps 5-7 handle relations for which a key is definechamdlassified as cycle free.
In particular, ifkey(g) 2 7%, holds, key reparation can be avoided at all (and thus disjunc
tive rules too); otherwise a semi-reparation step is regllibut Step 6 identifies further
cases in which even if key reparation is needed, disjuna#onbe still avoided. Finally,
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Step 7 handles all the other cases. Importantly, throughsse7 we take into account
only the minimal projections of involved relations in orderreduce as much as possible
computational costs (and even disjunctive rules) not cmsig irrelevant attributes.

8. For each nodg € N, add the following rules intdl .,

’I"'7T1d? _ﬂl’i?
e g°(X) == g(X), not g; ""(X").
g1 ) =gy TR,
for each INDd of the formg(X) — g¢1(X1) such that there is no cycle i@,
involving bothg; andg;
e ¢°(X) :— g(X), #count{X13 : ¢{(X1)} = #count{X13 : g1 (X1)}-
for each INDd of the formVxy [ g(X) — 3X23 ¢1(X1) ] such thaty; € N,.s;
e g°(X1) V g¢(X2) :— g(X1), g(Xa), Xt # X Viemn
wherer = {1,..., arity(g)} — key(g) and the key o is defined by DCs of
the formvXy,Xs —[g(X1) A g(X2) A X% # X5];
° g’“”%()_(”%) — g(X), not g¢(X).
if there is at least one node ¥ ; with an arc tog, or g appears iny;

9. For each DC of the formXy, ..., Xm —[g1(X1) A .o A g (X)) A o (X1, - oy X))
involving at least two different relation names (entailthgt eachy, € N,.s), add
the following rules intdI.,,:

L4 glc()_(l) VeV gy?n()_(m) = gl()_(l)a T gm()_(m),U(Xl, cee 7Xm)'

Steps 8 and 9 handle non cycle free relations; the repairimgegss in this case mimics the
standard rewriting, but projects relations on the releadtnibutes whenever possible.

10. For each nodg € N if g is involved in DCs that do not form a primary key, then
add the following rules intdl .qq,:

or (g N T e ok
e g% (X) = g(X), ¢ (X)), cg, R
d; i 9; 9;
TR (% TR (% : ; di
g (KT ) =gl T (XCR). Vi€ [Lk]stal >l
e g°(X1) V- Vg Xm)i— g% (X1), -, 0% X )y 0a (X1 ooy Xom)- Vd
o ¢ TR(XTR) :— ¢°"(X), not g°(X

- k > 0is the number of arcs, labelled by INDs, outgoing from

- dl
- atomg, "* is in the body of the first rulel(< i < k) iff both (g, g;, d;) € A
andd; is an IND of the formg(X) — ¢;(X;);

- disaDC of the formvxy, ..., Xm —[g(X1) Ao A g(Xm) Aoa(Xey .. X))

Step 10 handles the special case in which there is no key &atian but denial constraints
are defined (only) on it.

11. For each atom of the forg(x) in ¢, replacey(x) by ¢" ™ (X"#).
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Example 4

Consider again Examplég 1; suppose to extend the global schgnadding the relation
¢(code, name) which represents the list of customers, whersée is the primary key ot.
Moreover, suppose that we ask for the quefX., X,,) :— ¢(X., X,), e(X,, X,,) retriev-
ing the customers that are also employees of the bank. ledks, after building the graph
G, itis easy to see that is unreachable (so it is discarded) and that boéimde comply
with the requirements described at Steps 5 and 6 of the agmthalgorithm. Consequently,
the optimized program under tl@@VI-completesemantics is:

esr-l,Z(Xchn) _ E(XC,X ) cSTT 1, Q(XC’X ) C(Xc,Xn)-

66_1'2(XC,XTL) esT" 1, 2( ’Xn)’ esT” 1, 2(XC,X )’ Xn 75 XT/L
2 (Xey Xyp) = ¢V (X, Xy, ¢ TV(Xe, XD, X # XD
e" (X, X)) i— e (X, X)), not eV X, X)),
cr-l,Q(Xan) o sr-l 2(X Xn)a not c¢ 1, 2( n)

cha(XCaXn) — T 1 2(X67X )7 eT 1 2(X67Xn)-

Note that, since both andc are not affected by IND violations, and they have no irreféva
variables, the semi-reparation step cannot actually distteples. However, the obtained
program is non-disjunctive and stratified. Thus, it can balwated in polynomial time
(Leone et al. 2006).

In this case, the only answer set of the program containsdhsistent answers to the
original query. O

Y = loosely-exact. In Sectiorf 3.1 we proved that there are common cases in V@(ph
under thdoosely-exacsemantics and thEM-completesemantics actually coincide. As a
consequence, in these cases, all the optimizations definéldefCM-completesemantics
apply also to thdoosely-exacsemantics.

4 Experiments

In this section we present some of the experiments we caruei assess the effectiveness
of our approach to consistent query answering.

Testing has been performed by exploiting our complete sydta data integration,
which is intended to simplify both the integration systensiga and the querying activ-
ities by exploiting a user-friendly GUI. Indeed, this syatboth supports the user in de-
signing the global schema and the mappings between glda#bres and source schemas,
and it allows to specify user queries over the global scheimaVvQBE-like interface.
The query evaluation engine adopted for the tesiLis”” (Terracina et al. 2008) cou-
pled, via ODBC, with a PostgreSQL DBMS where input data weoeesl. DLV PP is
a DLP evaluator born as a database oriented extension of élekmown DLV system
(Ceone et al. 2006). It has been recently extended for dgalith unstratified negation,
disjunction and external function calls.

We first address tests on a real world scenario and then repddsts for scalability
issues on synthetic data.
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ri:teaching
key(rl) = {17v4}
arity(r) = 4

r[l] € (1] T COUrse

key(ro) = {1}

arity(r) = 2

WAE i)

ry:exzamRecord
key(rs) = {1,...4}
arity(rs) =7

ry: student CoursePlan
key(ry) = {1}
arity(r)) = 5

r5[1,2] € n[2,3]
[zT]% 5 [g'g)"

2] € n[1]

Tg: student
key(rg) = {1}
arity(rs) = 7

rs:professor
key(rs) = {1.2}
arity(rs) = 2

ry:enrolment
key(rs) = {1}
arity(rg) = 3

rr:department
key(rr) = {1}
arity(rr) = 1

rg:planData
k?ﬁy(T‘g) = {172}
arity(ry) = 3

T untversityDegree
key(ria) = {1}
arity(rz) = 2

rfaculty
key(ri) = {1}
arity(r) = 3

T university
key(rip) = {1}
arity(ry) = 2

1] 2 raf2]

Fig. 1. INFOMIX database.

4.1 Testson areal world scenario

Data Set.We have exploited the real-world data integration framéwa®veloped in the
INFOMIX project (IST-2001-33570) (Leone et al. 2005) whiokegrates data from a real
university context. In particular, considered data sosirgere available at the University
of Rome “La Sapienza”. These comprise information on sttgjgmofessors, curricula and
exams in various faculties of the university.

There are about 35 data sources in the application scemdrioh are mapped into 12
global schema relations with 20 GAV mappings and 21 intggiiinstraints. We call this
data setnfomix in the following. Figuré&ll reproduces the main charactiessif the global
database: each node corresponds to a global relation shdwiarity and key. An edge
betweenr; andr, labelled byr; [I] C r»[J] indicates an IND of the formxy [ 1 (X1) —
IXo3 r2(X2) | wherel andJ are the positions ofy in X; andx., respectively; the arc is
labelled with the attributes af and b involved in the IND. Observe that there are cyclic
INDs involving teaching examrecordandprofessor

Besides the original source database instance (which tddag 16Mb on DBMS), we
obtained bigger instances artificially. Specifically, wengeated a number of copies of
the original database; each copy is disjoint from the othesdbut maintains the same
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data correlations between instances as the original degab&is has been carried out by
mapping each original attribute value to a new value haviogpy-specific prefix.

Then, we considered two further datasets, narhaigmix-x-10 andl nfomix-x-50 stor-
ing 10 copies (for a total amount of 160Mb of data) and 50 co(880Mb) of the original
database, respectively. It holds thatomix C Infomix-x-10 C Infomix-x-50.

Compared Methods and Tested Querigsorder to assess the characteristics of the pro-
posed optimizations, we measured the execution time ddraifft queries witlfi) the stan-
dard encoding (identified &TD in the following), (i) a naive optimization obtained by
only removing relations not strictly needed for answering tjueriesQPT1 in the fol-
lowing), and(iii) the fully optimized encoding presented in SecfiorCT2 in the fol-
lowing). Each of these cases has been evaluated for thesbmeantics considered in this
paper. In order to isolate the impact of our optimizations,disabled other optimizations
(like magic sets) embedded in the datalog evaluation en@itearly, such optimizations
are complementary to our own and might further improve theraperformances.

Tested queries are as follows:

Q1 (X1) :- course(X2,X1l), plan_data(PL,X2,.),
student_course_plan (PL,"09089903",_,_,.) .

Q2 (X1) :— university(X1l,.).

Q03 (X1,X2,X3) :- university.degree (X1l,X2), faculty(X2,_,X3).

Q4 (X1,X2,X3) :- student(s,_,X1,.,_,-,-), enrollment(S,_ .),
exam_record(S,_,_,X2,X3,_,.), S == "09089903".

Q5 (X1,X2) :- student.r(sl,_, X1,_.,-,-,-), exam.record-r(S1,C,_, -, -,-,-),
student_r(S2,_,X2,_,_,_,.), exam.record.r(S2,C,_,_,_,-,-),
S1 == "09089470", S1<>S2.

Q6 (X1,X2,X3) :- student(X1,.,-,-,-,-,-), exam.record(Xl,_,_,X2,X3,_,.),
X1 == "09089903".

Observe thap?2 involves key constraints onlg1, andQ3 involve both keys and acyclic
INDs; specifically03 involves a SFK whilep1 involves NKC INDs. FinallyQ4, 95 and
06 involve keys and cyclic NKC INDs.

Results and discussiomill tests have been carried out on an Intel Xeon X3430, 2.4 GHz
with 4 Gb Ram, running Linux Operating System. We set a timatlof 120 minutes
after which query execution has been killed. Figlides Zartb8/btained results for the
loosely-soundénd theCM-completesemantics. It is worth recalling that, as we pointed out
in Sectior 3.2, optimizations for tHeosely-exacsemantics are inherent to the equivalence
classes to th&€M-completesemantics discovered in this paper. As a consequence, we
tested this semantics only on queries Q2 and Q3 for which egalvalence holds. Then,
since the execution times of the optimized encoding coawiith theCM-completegraphs
for queries Q2 and Q3, we do not report specific figures for them

Analyzing the figures, we observe that: the proposed optititias do not introduce
computational overhead and, in most cases, transformigaligtuntractable queries in
tractable ones; in fact, for all the tested queries the ei@ttime of the standard rewriting
exceeded the time limiOPT1 helps mostly on the smallest data set; in factlfdiomix-
x-10 it shows some gain in 33% of cases and only in two caselsifomix-x-50.

As for the comparison among the optimized encodings, we taerge that if INDs
are not involved by the querpg) the loosely-soundand theCM-completeoptimizations
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Fig. 2. Query evaluation execution times for thesely-soundgemantics.

have the same performances; this confirms theoretical tagamts. When acyclic INDs
are involved @1, 03), the loosely-soundoptimization performs slightly better because
the CM-completemust choose the tuples to be deleted due to IND violationgreds
the loosely-soundsemantics just works on the original data. Finally, whemined INDs
are cyclic 04, 05, 06) the performance of thEM-completeoptimization further degrades
w.r.t. theloosely-sounane because recursive aggregates must be exploited toectieles
tions and, this, increases the complexity of query evadnati

4.2 Scalability analysis w.r.t. the number and kind of constraint violations

Since, in the real world scenario emerged that @Md-completesemantics is more af-
fected than thdéoosely soundbne from the kind of involved constraints, we carried out a
scalability analysis on this semantics, whose resultseperted next.

We considered a synthetic data set composed of three redatamed , r», andr; over
which we imposed different sets of ICs in order to analyzesttadability of our methods
depending on the presence of keys and/or in presence/astacyclic and cyclic INDs.
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Fig. 3. Query evaluation execution times for G#/-Completesemantics.

In particular, we imposed the following key constrairitsy(r2) = {1, 2}, key(r3) = {1},
and we experimented with three different sets of IND®)INCL = (), ACYCLIC =
{Tl(Xl, Xg, X3, X4) — '1“2(X2, X5, Xg, X(;), T’l(Xl, X2, X3, X4) — '1“3(X1, X5, XG, X7)}
and CYCLIC = ACYCLIC U {'1“2(X1, Xo, X3, X4) — T’l(X5, Xg, X7, X2)} The em-
ployed queryisguery(X1, X3) :— r (X1, X2, X3, X4), (X2, X3, X5, X6)? We have
randomly generated synthetic databases having a growimgpeiof key violations on ta-
ble r,. The generation process progressively adds key violatmngby generating pairs
of conflicting tuples; after an instance of is obtained, tables; andr; are generated by
taking values fronr; in such a way that INDs are satisfied. In addition, for eachetop
r3 a key-conflicting tuple is generated. In order to assesstipacét of the number of INDs
violations, for each database instan@®,, containingz key violations on table», we
generated &B,-10 instance where the0% of tuples is (randomly) removed from tables
r; andrg (causing INDs violations). We have generated six databastances per size
(number of key violations on table), and plotted the time (averaged over the instances of
the same size) in Figufe 4.

In detail, Figure[#(a) shows the results for incrementallyhbr KD violations with
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Fig. 4. Scalability Analysis

no IND violations. Both standard and optimized encodingsehzeen tested. Figukeé 4(b)
compares the optimized encoding only, when the percentht¢Doviolations is 0% or
10%. Observe that, in general, even when there is no inidl\iolation, the KD repairing
process may induce some of them.

The analysis of these figures shows that even if cyclic IN[2sgamerally harder, their
scaling is almost the same as the acyclic ones. On the cgninathe absence of INDs
the optimization may boost the performances (see the flaitifrigurd(a)). Figurl4(b)
points out that when the number of IND violations increasies,performance may im-
prove. This behavior is justified by the fact that tuple delet due to IND repairs may, in
their turn, remove KD violations. This reduces the numbatisjunctions to be evaluated.

5 Related work and concluding remarks

From the 90ies —when the founding notionsxpA (Bry 1997),GAV mapping(Garcia-Molina et al. 1997,
Tomasic et al. 1998; Goh et al. 1999), adetabase-repafArenas et al. 1999) were intro-
duced —data integratiorfLenzerini 2002) andhconsistent databaséBertossi et al. 2005)
have been studied quite in depth.

Detailed characterizations of the main problems arising itiata integration system
have been provided, taking into account different semgntionstraints, and query types
(Cali et al. 20034; Cali et al. 2003b; Arenas et al. 2003@icki and Marcinkowski 2005;
Grieco et al. 2005; Fuxman and Miller 2007; Eiter et al. 2008)

This paper provides a contribution in this scenario by ediggthe decidability bound-
aries for thdoosely-exacsemantics (as calledfin Cali et al. 2003a but firstly intiztlby
Arenas et al. 1999) and theosely-soundemantics, in case of both KDs and SFSK INDs.

A first proposal of an unifying framework for CQA in a Data Igtation setting is pre-
sented in[(Cali et al. 2005) using first-order logic; it ddiess different semantics defined
by interpreting the mapping assertions between the glahdltiae local schemas of the
data integration system. A common framework for computapggairs in a single database
setting is proposed in (Eiter et al. 2008); it covers a wideyeof semantics relying on the
general notion of preorder for candidate repairs, but onlyersally quantified constraints
are allowed. Moreover, the authors introduce an abstrgat fwrogramming framework to
compute consistent answers. Finally, the authors proposgtmization strategy called
factorization that, as will be clarified below, is orthogbtweour own.
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This paper provides a contribution in this setting sincenitfias different semantics,
as in [Cali et al. 2005) and (Eiter et al. 2008), but also jgles an algorithm that, given
a retrieved database, a user queryand a semantics, automatically composes an ASP
program capable of computing the consistent answeysltoparticular, our ASP-rewriting
offers a natural, compact, and direct way for encoding ewad bases where the CQA
problem belongs to thel complexity class.

Theoretical studies gave rise to concrete implementatmost of which were con-
ceived to operate on some specific semantics and/or candiypes. [(Arenas et al. 1999;
[Cali et al. 2002; Greco and Zumpano 2000; Greco et al.|208lie€Cal. 2003l; Arenas et al. 2003;
[Chomicki et al. 2004a; Cali et al. 2004; Chomicki et al. 2604&mbo 2004; Grieco et al. 2005;
Leone et al. 2005; Fuxman et al. 2005; Fuxman and Miller 2085 an example, in (Leone et al. 2005)
only the loosely-soundsemantics was supported. In this paper, we provide both a uni
fied framework based on ASP, and a complete system suppditiaty the three afore-
mentioned significant semantics in case of conjunctiveigeeand the most commonly
used database constraints (KDs and INDs), (ii) specialig#uinizations, and (iii) a user-
friendly GUI.

Another general contribution of our work comes from a novgimization technique
that, after analyzing the query and localizing a minimal bemof relevant ICs, tries to
“simplify” their structure to reduce the number of databaspairs — as they could be
exponentially many_(Arenas et al. 2001). Such techniquéddoe classified as “vertical”
due to the fact that it reduces (whenever possible) the afigach active relation (with
the effect, e.g., of decreasing the number of key conflicithout looking at the data.

It is orthogonal to other “horizontal” approaches, such agjitsets[(Faber et al. 2007)
and factorization (Eiter et al. 2008) which are based on filéaing strategies. In partic-
ular, a system exploiting ASP incorporating magic-set méghes for CQA is described
in (Marileo and Bertossi 2010). Other approaches compléangio our own are based on
first-order rewritings of the query (Arenas et al. 1999; Ciakirand Marcinkowski 2002;
[Cali et al. 2003H; Grieco et al. 2005; Fuxman and Miller 2007

The combination of our optimizations with such approaches, further extensions of
decidability boundaries for CQA are some of our future lifieesearch.
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