
ar
X

iv
:1

20
6.

38
83

v1
 [

cs
.L

O
]

 1
8

Ju
n

20
12

Under consideration for publication in Theory and Practice of Logic Programming 1

Compiling Finite Domain

Constraints to SAT with BEE

AMIT METODI MICHAEL CODISH

Department of Computer Science, Ben-Gurion University, Israel

submitted 25 March 2012; revised 11 June 2012; accepted 18 June 2012

Abstract

We present BEE, a compiler which enables to encode finite domain constraint problems to
CNF. Using BEE both eases the encoding process for the user and also performs transfor-
mations to simplify constraints and optimize their encoding to CNF. These optimizations
are based primarily on equi-propagation and on partial evaluation, and also on the idea
that a given constraint may have various possible CNF encodings. Often, the better encod-
ing choice is made after constraint simplification. BEE is written in Prolog and integrates
directly with a SAT solver through a suitable Prolog interface. We demonstrate that con-
straint simplification is often highly beneficial when solving hard finite domain constraint
problems. A BEE implementation is available with this paper.

KEYWORDS: SAT encoding, FD constraints, Equi-propagation, partial evaluation.

1 Introduction

In recent years, Boolean SAT solving techniques have improved dramatically. To-

day’s SAT solvers are considerably faster and able to manage larger instances than

yesterday’s. Moreover, encoding and modeling techniques are better understood and

increasingly innovative. SAT is currently applied to solve a wide variety of hard and

practical combinatorial problems, often outperforming dedicated algorithms. The

general idea is to encode a (typically, NP) hard problem instance, µ, to a Boolean

formula, ϕµ, such that the solutions of µ correspond to the satisfying assignments

of ϕµ. Given the encoding, a SAT solver is then applied to solve µ.

Tailgating the success of SAT technology are a variety of tools which can be

applied to specify and then compile problem instances to corresponding SAT in-

stances. For example, Cadoli and Schaerf (2005) introduce NP-SPEC, a logic-based

specification language which allows to specify combinatorial problems in a declar-

ative way. At the core of this system is a compiler which translates specifications

to CNF formula. The general objective of such tools is to facilitate the process of

providing high-level descriptions of how the (constraint) problem at hand is to be

solved. Typically, a constraint based modeling language is introduced and used to

model instances. Drawing on the analogy to programming languages, given such a

description, a compiler then provides a low-level executable for the underlying ma-

chine. Namely, in our context, a formula for the underlying SAT or SMT solver. One

http://arxiv.org/abs/1206.3883v1

obstacle when seeking to optimize CNF encodings derived from high-level descrip-

tions, is that CNF encodings are “bit-level” representations and do not maintain

“word-level” information. For example, from a CNF encoding one cannot know that

certain bits originate from the same integer value in the original constraint. This

limits the ability to apply optimizations which rely on such word-level information.

We mention two relevant tools. Sugar (Tamura et al. 2009), is a SAT-based con-

straint solver. To solve a finite domain linear constraint satisfaction problem it is

first encoded to a CNF formula by Sugar, and then solved using the MiniSat solver

(Eén and Sörensson 2003). BEE is like Sugar, but applies optimizations. Sugar is

the first system which demonstrates the advantage in adopting the, so-called, unary

order-encoding to represent integers. We follow suite, and introduce additional novel

encoding techniques that take advantage of, previously unobserved, properties of

the order-encoding. MiniZinc (Nethercote et al. 2007), is a constraint modeling lan-

guage which is compiled by a variety of solvers to the low-level target language

FlatZinc for which there exist many solvers. It creates a standard for the source

language (which we follow loosely). BEE is like FlatZinc, but with a focus on a

subset of the language relevant for finite domain constraint problems.

We present a tool, BEE (Ben-Gurion University Equi-propagation Encoder) which

translates models in a constraint based modeling language, similar to Sugar and

FlatZinc, to CNF. Conceptually, BEE maintains two representations for each con-

straint in a model so that each constraint is also viewed as a Boolean function.

Partial evaluation, and other word-level techniques, drive simplification through

the constraint part; whereas, equi-propagation (Metodi et al. 2011), and other bit-

level techniques, drive simplification through the Boolean part. Finally, an encoding

technique is selected for a constraint, depending on its context, to derive a CNF.

The name, “BEE” refers both to the constraint language as well as to its compiler

to CNF. BEE is not a constraint solver, but can be applied in combination with a

SAT solver to solve finite domain constraint problems. We report on our experience

with applications which indicates that using BEE, like any compiler, has two main

advantages. On the one hand, it facilitates the process of programming (or model-

ing). On the other hand, given a program (a model), it simplifies the corresponding

CNF which, in many cases, is faster to solve than with other approaches. The tool

integrates with SWI Prolog and can be downloaded from (Metodi 2012).

2 Representing Integers

A fundamental design choice when encoding finite domain constraints concerns

the representation of integer variables. Gavanelli (2007) surveys several of the pos-

sible choices (the direct-, support- and log- encodings) and introduces the log-

support encoding. We focus in this paper on the use of unary representations and

primarily on the, so-called, order-encoding (see e.g. (Crawford and Baker 1994;

Bailleux and Boufkhad 2003)) which has many nice properties when applied to

small finite domains. We describe the setting where all integer variables are rep-

resented in the order-encoding except for those involved in a global “all-different”

constraint which take a dual representation with channeling between the order-

2

encoding and the direct encoding. This choice derives from the observation by

Ansótegui et al. (2004) that the direct-encoding is superior when encoding the all-

different constraint.

Let bit vector X = [x1, . . . , xn] represent a finite domain integer variable. In the

order-encoding, X constitutes a monotonic non-increasing Boolean sequence. Bit xi

is interpreted as X ≥ i. For example, the value 3 in the interval [0, 5] is represented

in 5 bits as [1, 1, 1, 0, 0]. In the direct-encoding, X constitutes a characteristic func-

tion (exactly one bit takes value 1) and xi is interpreted as stating X = i− 1. For

example, the value 3 in the interval [0, 5] is represented in 6 bits as [0, 0, 0, 1, 0, 0].

An important property of a Boolean representation for finite domain integers

is the ability to represent changes in the set of values a variable can take. It is

well-known that the order-encoding facilitates the propagation of bounds. Consider

an integer variable X = [x1, . . . , xn] with values in the interval [0, n]. To restrict

X to take values in the range [a, b] (for 1 ≤ a ≤ b ≤ n), it is sufficient to assign

xa = 1 and xb+1 = 0 (if b < n). The variables xa′ and xb′ for 0 ≥ a′ > a and

b < b′ ≤ n are then determined true and false, respectively, by unit propagation.

For example, given X = [x1, . . . , x9], assigning x3 = 1 and x6 = 0 propagates to

give X = [1, 1, 1, x4, x5, 0, 0, 0, 0], signifying that dom(X) = {3, 4, 5}. This property

is exploited in Sugar (Tamura et al. 2009) which also applies the order-encoding.

We observe, and apply in BEE, an additional property of the order-encoding:

its ability to specify that a variable cannot take a specific value 0 ≤ v ≤ n in

its domain by equating two variables: xv = xv+1. This indicates that the order-

encoding is well-suited not only to propagate lower and upper bounds, but also to

represent integer variables with an arbitrary, finite set, domain. For example, given

X = [x1, . . . , x9], equating x2 = x3 imposes that X 6= 2. Likewise x5 = x6 and

x7 = x8 impose that X 6= 5 and X 6= 7. Applying these equalities to X gives,

X = [x1, x2, x2, x4, x5, x5, x7, x7, x9], signifying that dom(X) = {0, 1, 3, 4, 6, 8, 9}.

The order-encoding has many additional nice features that are exploited in BEE

to simplify constraints and their encodings to CNF. To illustrate one, consider a con-

straint of the form A+ B = 5 where A and B are integer values in the range between

0 and 5 represented in the order-encoding. At the bit level we have: A = [a1, . . . , a5]

and B = [b1, . . . , b5]. The constraint is satisfied precisely when B = [¬a5, . . . ,¬a1].

Instead of encoding the constraint to CNF, we substitute the bits b1, . . . , b5 by the

literals ¬a5, . . . ,¬a1, and remove the constraint. In Prolog, this is implemented as

a unification and does not generate any clauses in the encoding.

3 Constraints in BEE

Boolean constants “true” and “false” are viewed as (integer) values “1” and “0”.

Constraints are represented as (a list of) Prolog terms. Boolean and integer variables

are represented as Prolog variables, which may be instantiated when simplifying

constraints. Table 1 introduces the syntax for (a simplified subset of) BEE. In the

table, X and Xs (possibly with subscripts) denote a literal (a Boolean variable or

its negation) and a vector of literals, I (possibly with subscript) denotes an integer

variable, and c (possibly with subscript) denotes an integer constant.

3

Declaring Variables

(1) new bool(X) declare Boolean X

(2) new int(I, c1, c2) declare integer I, c1 ≤ I ≤ c2
(3) ordered([X1 , . . . , Xn]) X1 ≥ X2 ≥ · · · ≥ Xn (on Booleans)

Boolean (reified) Statements op ∈ {or, and, xor, iff}

(4) bool eq(X1, X2) or bool eq(X1,−X2) X1 = X2 or X1 = ¬X2
(5) bool array op([X1, . . . , Xn]) X1 op X2 · · · op Xn
(6) bool array op reif([X1, . . . , Xn], X) X1 op X2 · · · op Xn ⇔ X

(7) bool op reif(X1, X2, X) X1 op X2 ⇔ X

(8) bool array lex(Xs1, Xs2) Xs1 precedes Xs2 in the lex order

Integer relations (reified) rel ∈ {leq, geq, eq, lt, gt, neq}
and arithmetic op ∈ {plus, times, div, mod, max, min}, op′ ∈ {plus, max, min}

(9) int rel(I1, I2) I1 rel I2
(10) int rel reif(I1, I2, X) I1 rel I2 ⇔ X

(11) int op(I1, I2, I) I1 op I2 = I

(12) int array op′([I1, . . . , In], I) I1 op′ · · · op′ In = I

All Different and cardinality rel∈{leq, geq, eq, lt, gt, neq}

(13) allDiff([I1 , . . . , In])
∧

i<j
Ii 6= Ij

(14) bool array sum rel([X1, . . . , Xn], I) (Σ Xi) rel I

(15) comparator(X1 , X2, X3, X4) sort([X1, X2]) = [X3, X4]

Table 1. Syntax for a subset of BEE.

On the right column of the table are brief explanations regarding the constraints.

The table introduces 15 constraint templates. Constraints (1-2) are about variable

declarations: Booleans and integers. Constraint (3) signifies that a bit sequence is

monotonic non-increasing, and is used to specify that an integer variable is in the

order-encoding. Constraints (4-7) are about Boolean (and reified Boolean) state-

ments. The cases for bool array or([X1, . . . , Xn]) and bool array xor([X1, . . . , Xn])

facilitate the specification of clauses and of xor clauses (supported in the Cryp-

toMiniSAT solver (Soos 2010)). Constraint (8) specifies that two bit-vectors are

ordered lexicographically. Constraints (9-12) are about integer relations and op-

erations. Constraints (13-14) are the all-different constraint on integers and the

cardinality constraint on Booleans. Constraint (15) specifies that sorting a bit

pair [X1, X2] (decreasing order) results in the pair [X3, X4]. This is a basic build-

ing block for the construction of sorting networks (Batcher 1968) used to encode

cardinality constraints during compilation as described in (Aśın et al. 2011) and

in (Codish and Zazon-Ivry 2010).

4

:- use module(bee compiler, [compile/2]).

:- use module(sat solver, [sat/1]).

solve(Instance, Solution) :-

encode(Instance, Map, Constraints),

compile(Constraints, CNF),

sat(CNF),

decode(Map, Solution).

Fig. 1. A generic application of BEE.

4 An Example BEE Application: magic graph labeling

We illustrate the application of BEE to solve a graph labeling problem. A typical

BEE application has the form depicted as Figure 1 where the predicate solve/2

takes a problem Instance and provides a Solution. The specifics of the application

are in the call to encode/3 which given the Instance generates the Constraints

that solve it together with a Map relating instance variables with constraint vari-

ables. The calls to compile/2 and sat/1 compile the constraints to a CNF and solve

it applying a SAT solver. If the instance has a solution, the SAT solver binds the

constraint variables accordingly. Then, the call to decode/2, using the Map, pro-

vides a Solution in terms of the instance variables. The definitions of encode/3

and decode/3 are application dependent and provided by the user. The predicates

compile/2 and sat/1 provide the interface to BEE and the underlying SAT solver.

Graph labeling is about finding an assignment of integers to the vertices and

edges of a graph subject to certain conditions. Graph labelings were introduced in

the 60’s and hundreds of papers on a wide variety of related problems have been

published since then. See for example the survey by Gallian (2011) with more than

1200 references. Graph labelings have many applications. For instance in radars,

xray crystallography, coding theory, etc.

We focus here on the vertex-magic total labeling (VMTL) problem where one

should find for the graph G = (V,E) a labeling that is a one-to-one map V ∪E →

{1, 2, . . . , |V | + |E|} with the property that the sum of the labels of a vertex and

its incident edges is a constant K independent of the choice of vertex. A problem

instance takes the form vmtl(G,K) specifying the graph G and a constant K.

The query solve(vmtl(G, K), Solution) poses the question: “Does there exist a

vmtl labeling for G with magic constant K?” It binds Solution to indicate such

a labeling if one exists, or to “unsat” otherwise. Figure 2 illustrates an example

problem instance together with the constraints, Cs and the map, M, generated by

the encode/3 predicate for this instance. The constraints introduce integer variables

for the vertices and edges, specify that these variables take “all different” values,

and specify that the labels for each vertex with its incident edges sum to K. Solving

the constraints from Figure 2 for the example VMTL instance binds the Map, M,

as follows, indicating a solution:

M =






((1, 2), [1, 1, 1, 1, 1, 1, 1, 0]), (1, [1, 1, 1, 1, 0, 0, 0, 0]),
((1, 3), [1, 1, 1, 0, 0, 0, 0, 0]), (2, [1, 1, 1, 1, 1, 0, 0, 0]),
((2, 3), [1, 1, 0, 0, 0, 0, 0, 0]), (3, [1, 0, 0, 0, 0, 0, 0, 0]),
((3, 4), [1, 1, 1, 1, 1, 1, 1, 1]), (4, [1, 1, 1, 1, 1, 1, 0, 0])






5

An Instance The Graph The Map

Instance = vmtl(G, K),
G = (V, E),
V = [1, 2, 3, 4],
E = [(1, 2), (1, 3),

(2, 3), (3, 4)],
K = 14

4

3

✟✟
✟✟ ✻✻

✻✻

2 1

M =









((1, 2), E1), (1, V1),
((1, 3), E2), (2, V2),
((2, 3), E3), (3, V3),
((3, 4), E4), (4, V4)









The Constraints

Cs =













new int(V1, 1, 8), new int(E1, 1, 8), int array plus([V1, E1, E2], K),
new int(V2, 1, 8), new int(E2, 1, 8), int array plus([V2, E1, E3], K),
new int(V3, 1, 8), new int(E3, 1, 8), int array plus([V3, E2, E3, E4], K),
new int(V4, 1, 8), new int(E4, 1, 8), int array plus([V4, E4], K),
new int(K, 14, 14), allDiff([V1, V2, V3, V4, E1, E2, E3, E4])













Fig. 2. A VMTL instance with the constraints and map generated by encode/3.

In Section 9 we report that using BEE enables us to solve interesting instances of

the VMTL problem not previously solvable by other techniques.

5 Compiling BEE to CNF

The compilation of a constraint model to a CNF using BEE goes through three

phases. In the first phase, (unary) bit blasting, integer variables (and constants)

are represented as bit vectors in the order-encoding. Now all constraints are about

Boolean variables. The second phase, the main loop of the compiler, is about con-

straint simplification. Three types of actions are applied: equi-propagation, partial

evaluation, and decomposition of constraints. These are specified as a set of transi-

tions which we write in the form c1
θ

7−→ c2 to specify that constraint c1 reduces to

constraint c2 generating the (possibly empty) substitution θ. Simplification is ap-

plied repeatedly until no rule is applicable. In the third, and final phase, simplified

constraints are encoded to CNF. We elaborate below. To simplify the presenta-

tion, we assume that integer variables are represented in a positive interval starting

from 0. As later detailed in Section 8 there is no such limitation in BEE.

Bit-blasting: Each integer variable declaration new int(I, c1, c2) triggers a unifica-

tion I = [1, . . . , 1, Xc1+1, . . . , Xc2] and introduces a constraint ordered(I) to specify

that the bits representing I are in the order-encoding. To illustrate bit-blasting,

consider again the VMTL example detailed in Figure 2. Each variable in the Map

occurs in a new int declaration. So the following unifications are performed:

V1 = [1, V1,2, V1,3, V1,4, V1,5, V1,6, V1,7, V1,8], E1 = [1, E1,2, E1,3, E1,4, E1,5, E1,6, E1,7, E1,8],
V2 = [1, V2,2, V2,3, V2,4, V2,5, V2,6, V2,7, V2,8], E2 = [1, E2,2, E2,3, E2,4, E2,5, E2,6, E2,7, E2,8],
V3 = [1, V3,2, V3,3, V3,4, V3,5, V3,6, V3,7, V3,8], E3 = [1, E3,2, E3,3, E3,4, E3,5, E3,6, E3,7, E3,8],
V4 = [1, V4,2, V4,3, V4,4, V4,5, V4,6, V4,7, V4,8], E4 = [1, E4,2, E4,3, E4,4, E4,5, E4,6, E4,7, E4,8],
K = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

6

Integer variables occurring in an allDiff constraint are bit-blasted twice: first, in

the order-encoding, when declared, as explained above, and second, in the direct

encoding, when processing the allDiff constraint, as described below.

Equi-propagation is about detecting situations in which a small number of con-

straints imply an equality of the form X = L where X is a Boolean variable and L is

a Boolean literal or constant. In this caseX becomes redundant and can be replaced

by L in all constraints. In BEE we consider as candidates for equi-propagation, indi-

vidual constraints together with constraints specifying that their integer variables

are in the order-encoding. If X = L is such an equality, then equi-propagation

is implemented by unifying X and L. This unification applies to all occurrences

of X and in this sense “propagates” to other constraints involving X . Once equi-

propagation detects such an equation, this may trigger further equi-propagation

from other constraints. For example, consider the constraint int neq(I1, I2) where

I1 = [x1, x2, x3, x4] and I2 = [1, 1, 0, 0]. We propagate that (x2 = x3) because
(

I1 = [x1, x2, x3, x4] ∧ I2 = [1, 1, 0, 0] ∧

int neq(I1, I2) ∧ ordered(I1)

)

|= (x2 = x3).

To see why, consider that ordered(I1) implies that x2 ≥ x3. Furthermore, also

x2 ≤ x3 as otherwise x2 = 1 and x3 = 0 which implies that I1 = [1, 1, 0, 0], contra-

dicting int neq(I1, I2).

In BEE, equi-propagation is implemented by a collection of ad-hoc transition

rules for each type of constraint. While this approach is not complete — there are

equations implied by a constraint that BEE will not detect — the implementation

is fast, and works well in practice. An alternative approach is to implement equi-

propagation, using BDD’s, as described in (Metodi et al. 2011). This approach,

though complete, is slower and not included in the current release of BEE.

The following are two of the simplification (equi-propagation) rules of BEE that

apply to int neq constraints:

neq1 : applies when one of the (order-encoding) integers in the relation is a constant

and θ = {X1 = X2}:

int neq

(
[. . . ,X1,X2, . . .]

[. . . , 1, 0, . . .]

)

θ
7−→ int neq

(
[. . . ,X1,X1, . . .]

[. . . , 1, 0, . . .]

)

neq2 : applies when the integers share common variables as in the rule template

and θ = {X1 = X2}:

int neq

(
[. . . , X1, X2, . . .],

[. . . ,¬X2,¬X1, . . .]

)

θ
7−→ int neq

(
[. . . , X1, X1, . . .],

[. . . ,¬X1,¬X1, . . .]

)

For the rule neq1, observe that after applying this rule the constraint obtained is

a tautology. Hence it is subsequently removed by one of the other “partial evalua-

tion” rules. For the rule neq2, to see why the equation X1 = X2 is implied by the

constraint (on the left side of the rule), consider all possible truth values for the vari-

ables X1 and X2: (a) If X1 = 0 and X2 = 1 then both integers in the relation take

the form [. . . , 0, 1, . . .] violating their specification as ordered, so this is not possi-

ble. (b) If X1 = 1 and X2 = 0 then both numbers take the form [1, . . . , 1, 0, . . . , 0]

7

and are equal, violating the neq constraint. The only possible bindings for X1 and

X2 are those where X1 = X2. The template expressed in rule neq2 is not contrived.

It comes up frequently as a result of applying other equi-propagation rules.

Partial evaluation is about simplifying constraints in view of variables that are

(partially) instantiated, either because of information from the constraint model

or else due to equi-propagation. Typical cases include constant elimination and

elimination of tautologies. The following are some of BEE’s partial evaluation rules

that apply to int neq constraints (ǫ denotes the empty substitution).

neq3 : applies to remove replicated variables:

int neq

(
[. . . ,X1,X1, . . .]

[. . . , Y1, Y1, . . .]

)

ǫ
7−→ int neq

(
[. . . ,X1, . . .]

[. . . , Y1, . . .]

)

neq4 : applies to remove leading 1 bits (there is a similar rule for trailing 0’s):

int neq([1, 1, X3, . . .], [Y1, Y2, Y3, . . .])
ǫ

7−→ int neq([1, X3, . . .], [Y2, Y3, . . .])

We now detail three of the simplification rules (equi-propagation and partial

evaluation) that apply to a constraint of the form int plus(A,B,C) where we

assume for simplicity of presentation (the tool supports the general case) that

A = [A1, . . . , An], B = [B1, . . . , Bm], and C = [C1, . . . , Cn+m]. We denote by min(I) (or

max(I)) the minimal (or maximal) value that integer variable I can take, determined

by the number of leading ones (or trailing zeros) in its bit representation.

Rule plus1 is standard propagation for interval arithmetics. Rule plus2 removes

redundant bits (assigned values through plus1). Rules plus3(a) and plus3(b) remove

constraints and may seem contrived: 3(a) assumes that m = 0 and 3(b) assumes

that n = m and that C represents the (same) constant n. However, in the general case,

when n, m are arbitrary and constant C is represented in m+ n bits, then application

of the other rules will reduce the constraint to one of these special cases.

plus1 : applies to propagate bounds: int plus(A, B, C)
θ

7−→ int plus(A, B, C) where

θ =







Cmax{min(C),min(A)+min(B)} = 1, Cmin{max(C),max(A)+max(B)}+1 = 0,

Amax{min(A),min(C)−max(B)} = 1, Amin{max(A),max(C)−min(B)}+1 = 0,

Bmax{min(B),min(C)−max(A)} = 1, Bmin{max(B),max(C)−min(A)}+1 = 0







plus2 : applies to remove leading 1’s (there are similar rules for trailing 0’s and for

the case when the 1’s or 0’s are on [B1, . . . , Bm]):

int plus





[1, A2, . . . , An],

[B1, . . . , Bm],

[1, C2, . . . , Cn+m]




ǫ

7−→ int plus





[A2, . . . , An],

[B1, . . . , Bm],

[C2, . . . , Cn+m]





plus3(a) : applies when A or B is the empty bit list and θ =
{
Ci = Ai

∣
∣ 1 ≤ i ≤ n

}

int plus([A1, . . . , An], [], [C1, . . . , Cn])
θ

7−→ none

plus3(b) : applies when C is a constant n and θ =
{
Ai = ¬Bn−i+1

∣
∣ 1 ≤ i ≤ n

}

int plus([A1, . . . , An], [B1, . . . , Bn], [1, . . .1, 0, . . . , 0])
θ

7−→ none

We illustrate the simplification of a int plus constraint by the following example.

8

Example 1 (simplifying int plus: equi-propagation and partial evaluation)
Consider constraint int plus(A, B, C) where A and B are integer variables with do-

main [1..8] and C is the constant 14 represented in 16 bits. Constraint simplification

follows the steps:

int plus(

[1, A2, A3, A4, A5, A6, A7, A8],

[1, B2, B3, B4, B5, B6, B7, B8],

[1, , 1
︸ ︷︷ ︸

14 times

, 0, 0]

)

plus1
−−−→

int plus(

[1, 1, 1, 1, 1, 1, A7, A8],

[1, 1, 1, 1, 1, 1, B7, B8],

[1, , 1
︸ ︷︷ ︸

14 times

, 0, 0]

)

plus2
−−−→

plus2
−−−→ int plus

(
[A7, A8], [B7, B8],

[1, 1, 0, 0]

)
plus3(b)
−−−−−→

none, binding :

B7 = ¬A8, B8 = ¬A7)

After constraint simplification variables A and B take the form: [1, 1, 1, 1, 1, 1, A7, A8]

and [1, 1, 1, 1, 1, 1,¬A8,¬A7] (and nothing is left to encode to CNF).

Decomposition is about replacing complex constraints (for example about arrays)

with simpler constraints (for example about array elements). Consider, for instance,

the constraint int array plus(As, Sum). It is decomposed to a list of int plus

constraints applying a straightforward divide and conquer recursive definition. At

the base case, if As=[A] then the constraint is replaced by int eq(A,Sum), or if

As = [A1, A2] then it is replaced by int plus(A1, A2, Sum). In the general case As is

split into two halves, then constraints are generated to sum these halves, and then

an additional int plus constraint is introduced to sum the two sums.

As another example, consider the int plus(A1, A2, A) constraint. One approach,

supported by BEE, decomposes the constraint as an odd-even merger (from the con-

text of odd-even sorting networks) (Batcher 1968). Here, the sorted sequences of bits

A1 and A2 are merged to obtain their sum A. This results in a model with O(n logn)

comparator constraints (and later in an encoding with O(n log n) clauses). An-

other approach, also supported in BEE, does not decompose the constraint but

encodes it directly to a CNF of size O(n2), as in the context of so-called total-

izers (Bailleux and Boufkhad 2003). A hybrid approach, leaves the choice to BEE,

depending on the size of the domains of the variables involved. Finally, we note that

the user can configure BEE to fix the way it compiles this constraint (and others).

CNF encoding is the last phase and applies to all remaining simplified constraints.

The encoding of constraints to CNF is standard and similar to the encodings in

Sugar (Tamura et al. 2009).

Cardinality constraints are about the cardinality of sets of Boolean variables and

are specified by the template bool array sum rel([X1, . . . , Xn], I). Cardinality con-

straints are normalized, see e.g., (Eén and Sörensson 2006), so we only consider

rel ∈ {leq, eq}. Partial evaluation rules for cardinality constraints are the obvi-

ous. For example, in the special case when I is a constant:

9

bool array sum leq([X1, X2, 1, X4], 3) 7→ bool array sum leq([X1, X2, X4], 2)

bool array sum leq([X1, X2, 0, X4], 3) 7→ bool array sum leq([X1, X2, X4], 3)

bool array sum leq([X1, X2,−X1, X4], 3) 7→ bool array sum leq([X2, X4], 2)

The special case, when I is the constant 1 is called the “at-most-one” constraint and

it has been studied extensively (for a recent survey see (Frisch and Giannaros 2010)).

In BEE, we support two different encodings for this case (the user can choose). The

first is the standard “pairwise” encoding which specifies a clause (¬xi ∨ ¬xj) for

each pair of Boolean variables xi and xj . This encoding introduces O(n2) clauses

and is sometimes too large. The second, is a more compact encoding which fol-

lows the approach described in (Chen 2010). In the general case (when I > 1) the

constraint is decomposed, much the same as the int array plus constraint, to a

network of int plus constraints.

The All-different constraint specifies that a set of integer variables take all different

values. Although we adopt the order-encoding for integer variables, it is well ac-

cepted that for these constraints the direct encoding is superior (Ansótegui et al. 2004).

For this reason, in BEE, when processing the constraint, a dual representation is

chosen. When integer variable I, occurring in an allDiff constraint, is declared, it

was unified with its unary representation in the order-encoding: I = [x1, . . . , xn]. In

addition, we associate I with a new bit-blast, [d0, . . . , dn], in the direct encoding.

We introduce for each such I a channeling formula to capture the relation between

its two representations.

channel([x1, . . . , xn], [d0, . . . , dn]) =

(
d0 = ¬x1

∧ dn = xn

)

∧
n−1∧

i=1

(di ↔ xi ∧ ¬xi+1)

During constraint simplification, the allDiff([I1, . . . , In]) constraint is viewed

as a bit matrix where each row consists of the bits [di0, . . . , dim] for Ii in the direct

encoding. The element dij is true iff Ii takes the value j. The jth column specifies

which of the Ii take the value j and hence, at most one variable in a column may

take the value true. BEE distinguishes the special case when [I1, . . . , In] must take

precisely n different values. In this case the constraint is about “permutation”. We

denote this by a flag (*) as in allDiff∗([I1, . . . , In]). In this case, exactly one bit

in each column of the representation must take the value true.

To simplify an allDiff constraint, BEE applies simplification rules to the implicit

cardinality constraints on the columns and also two specific allDiff rules. The first

is essentially the usual domain consistent propagator (Régin 1994) focusing on Hall

sets of size 2. The second rule applies only to an allDiff∗ constraint which is about

permutation. We denote the values that Ii can take as dom(Ii).

allDiff1 : when dom(I1) = dom(I2) = {v1, v2}:

allDiff([I1, I2, I3, . . . , In])
θ

7−→ allDiff([I3, . . . , In])

where θ =
⋃

3≤i≤n{di,v1 = 0, di,v2 = 0} ∪ {d1,v1 = −d2,v1 , d1,v2 = −d2,v2}.

10

allDiff2 : when {v1, v2} ⊆ dom(I1) ∩ dom(I2), and for i ≥ 3, {v1, v2} ∩ dom(Ii) = ∅

allDiff∗([I1, . . . , In])
θ

7−→ allDiff∗([I1, . . . , In])

where θ =
⋃

j 6=v1,j 6=v2
{d1j = 0, d2,j = 0}.

To illustrate the two rules for allDiff consider the following.

Example 2

Consider an allDiff constraint on 5 integer variables taking values in the interval

[0, 7] where the first two can take only values 0 and 1. So, they are a Hall set

of size two and rule allDiff1 applies. We present the simplification step on the

order encoding representation (though it is triggered through the direct encoding

representation):

allDiff








[X1,1, 0, . . . , 0]
[X2,1, 0, . . . , 0]
[X3,1, X3,2, . . . , X3,7]
[X4,1, X4,2, . . . , X4,7]
[X5,1, X5,2, . . . , X5,7]








θ
7−→ allDiff

(
[1, X3,2, . . . ,X3,7]
[1, X4,2, . . . ,X4,7]
[1, X5,2, . . . ,X5,7]

)

where θ = {X1,1 = ¬X2,1, X3,1 = 0, X4,1 = 0, X5,1 = 0}.

Now consider a setting where an allDiff constraint is about 5 variables that

can take 5 values (permutation) and the first two are the only two that can take

values 0 and 1. So rule allDiff2 applies. We present the simplification step on the

order encoding representation (though it is triggered through the direct encoding

representation):

allDiff∗








[X1,1, X1,2, X1,3, X1,4]
[X2,1, X2,2, X2,3, X2,4]
[1, 1, X3,3, X3,4]
[1, 1, X4,3, X4,4]
[1, 1, X5,3, X5,4]








θ
7−→ allDiff∗








[X1,1, 0, 0, 0]
[X2,1, 0, 0, 0]
[1, 1, X3,3, X3,4]
[1, 1, X4,3, X4,4]
[1, 1, X5,3, X5,4]








where θ = {X1,2, . . . , X1,4 = 0, X2,2, . . . , X2,4 = 0}.

When no further simplification rules apply the allDiff constraint is decom-

posed to the corresponding cardinality constraints on the columns of its bit matrix

representation.

6 Constraint simplification in the VMTL example

Consider again the VMTL example and the constraints from Figure 2. We focus on

three constraints and follow the steps made when compiling these (we write “14”

as short for [1, 1, . . . , 1
︸ ︷︷ ︸

14

]).

(1) int array plus([V4, E4], 14)

(2) allDiff([V1, V2, V3, V4, E1, E2, E3, E4]),

(3) int array plus([V3, E2, E3, E4], 14),

In the first steps, constraint (1) is decomposed to an int plus constraint which

has the same form as the constraint in Example 1. So, we have the bindings

V4 = [1, 1, 1, 1, 1, 1, V4,7, V4,8] and E4 = [1, 1, 1, 1, 1, 1,¬V4,8,¬V4,7]. Now, consider the

11

allDiff constraint (2). BEE determines that this constraint is about permutation

(8 integer variables with 8 different values in the range [1,8]). The simplification

rules for allDiff detect that {V4, E4}must take together the two values 6 and 8 (us-

ing a simplification rule similar to neq2) triggerring the substitution {V4,7 = V4,8}.

Now rule allDiff1 detects a Hall set {V4, E4} of size two:

allDiff([V1, V2, V3, V4, E1, E2, E3, E4])
θ
−→ allDiff([V1, V2, V3, E1, E2, E3])

where θ is the unification that imposes V1, V2, V3, E1, E2, E3 6= 6, 8. So we have the

following bindings (where the impact of θ is underlined):

V1 = [1, V1,2, V1,3, V1,4, V1,5, V1,7, V1,7, 0] E1 = [1, E1,2, E1,3, E1,4, E1,5, E1,7, E1,7, 0]

V2 = [1, V2,2, V2,3, V2,4, V2,5, V2,7, V2,7, 0] E2 = [1, E2,2, E2,3, E2,4, E2,5, E2,7, E2,7, 0]

V3 = [1, V3,2, V3,3, V3,4, V3,5, V3,7, V3,7, 0] E3 = [1, E3,2, E3,3, E3,4, E3,5, E3,7, E3,7, 0]

V4 = [1, 1, 1, 1, 1, 1, V4,7, V4,7] E4 = [1, 1, 1, 1, 1, 1,¬V4,7,¬V4,7]

Consider now the constraint (3). Equi-propagation (because of bounds) dictates

that max(V1) = max(V2) = max(V3) = 5, so this constraint then simplifies as follows:

int array plus([
[1, V3,2, V3,3, V3,4, V3,5, 0, 0, 0],
[1, E2,2, E2,3, E2,4, E2,5, 0, 0, 0],
[1, E3,2, E3,3, E3,4, E3,5, 0, 0, 0],
[1, 1, 1, 1, 1, 1,¬V4,7,¬V4,7], 14])

7−→

int array plus([
[V3,2, V3,3, V3,4, V3,5],
[E2,2, E2,3, E2,4, E2,5],
[E3,2, E3,3, E3,4, E3,5],
[¬V4,7,¬V4,7], 5])

After applying simplification and decomposition rules on all the constraints from

Figure 2 until no further rules can be applyed, the constraints will be encoded to

CNF. The generated CNF contains 301 clauses and 48 Boolean variables. Compiling

the same set of constraints from Figure 2 without applying simplification rules

generates a larger CNF which contains 642 clauses and 97 Boolean variables.

7 Another Example BEE Application: DNA word problem

The DNA word problem (Problem 033 of CSPLib) seeks the largest parameter

n, such that there exists a set S of n eight-letter words over the alphabet Σ =

{A,C,G, T } with the following properties: (1) Each word in S has exactly 4 symbols

from {C,G}; (2) Each pair of distinct words in S differ in at least 4 positions; and

(3) For every x, y ∈ S: xR (the reverse of x) and yC (the word obtained by replacing

each A by T , each C by G, and vice versa) differ in at least 4 positions.

In (Frutos et al. 1997), the authors present a strategy to solve this problem where

the four letters are modeled by bit-pairs 〈t,m〉. Each eight-letter word can then be

viewed as the combination of a “t-part”, 〈t1, . . . , t8〉, which is a bit-vector, and

a “m-part”, 〈m1, . . . ,m8〉, also a bit-vector. Building on the approach described

in (Frutos et al. 1997), we pose conditions on sets of “t-parts” and “m-parts”, T

and M , so that their Cartesian product S = T × M will satisfy the requirements

of the original problem. From the three conditions below, T is required to satisfy

(1′) and (2′), and M is required to satisfy (2′) and (3′). For a set of bit-vectors V ,

the conditions are: (1′) Each bit-vector in V sums to 4; (2′) Each pair of distinct

12

bit-vectors in V differ in at least 4 positions; and (3′) For each pair of bit-vectors

(not necessarily distinct) u, v ∈ V , uR (the reverse of u) and vC (the complement

of v) differ in at least 4 positions. This is equivalent to requiring that (ur)c differs

from v in at least 4 positions.

It is this strategy that we model in our BEE encoding. An instance takes the

form dna(n1, n2) signifying the numbers of bit-vectors, n1 and n2 in the sets T and

M . Without loss of generality, we impose, to remove symmetries, that T and M

are lexicographically ordered. A solution is the Cartesian product S = T ×M . In

Section 9 we report that using BEE enables us to solve interesting instances of the

problem not previously solvable by other techniques.

8 Implementation

BEE is implemented in (SWI) Prolog and can be applied in conjunction with the

CryptoMiniSAT solver (Soos 2010) through a Prolog interface (Codish et al. 2008).

BEE can be downloaded from (Metodi 2012) where one can find also the examples

from this paper and others. The distribution includes also a solver, which we call

BumbleBEE, which enables to specify a BEE model as an input file and solve it.

The output is a set of bindings to the declared variables in the model.

In BEE, Boolean variables are represented as Prolog variables. The negation of X

is represented as -X. The truth values, true and false , are denoted 1 and -1. Integer

variables (including negative range values) are represented in the order-encoding.

When processing (bit-blasting) a declaration new int(I, Min, Max), Prolog variable I

is unified with the tuple (Min,Max,Bits,LastBit)where Min and Max are constants

indicating the interval domain of I, Bits is a list of (Max− Min) variables, and

LastBit is the last variable of Bits. This representation is more concise than the

one assumed for simplicity in the previous sections and it also supports negative

numbers. Maintaining direct access to the last bit in the representation (we already

can access the first bit through the list Bits) facilitates a (constant time) check

if the lower and upper bound values of a variable has changed. This way we can

more efficiently determine when (certain) simplification rules apply. We make a few

notes: (1) Integer variables must be declared before use; (2) BEE allows the use of

constants in constraints instead of declaring them as integer variables (for example

int gt(I, 5) represents a declaration new int(I′, 5, 5) together with the constraint

int gt(I, I′)); (3) integer variables can be negated.

BEE maintains constraints as a Prolog list (of terms). Each type of constraint is

associated with corresponding rules for simplification, decomposition, and encod-

ing to CNF. After bit-blasting, constraints are first simplified (equi-propagation

and partial evaluation) using these rules until no further rules apply. During this

process, if a pair of literals is equated (e.g. as in X=Y, X=-Y, X=1, X=-1), then

they are unified, thus propagating the effect to other constraints. After constraint

simplification, some constraints are decomposed, and this process repeats. We end

up with a set of “basic” constraints (which cannot be further decomposed or sim-

plified). These are then encoded to CNF.

13

instance BEE (dual encoding) BEE (order encoding) Sugar

comp clauses vars sat comp clauses vars sat clauses vars sat

25-264-0 sat 0.23 6509 1317 0.33 0.36 33224 887 8.95 126733 10770 34.20
25-264-1 sat 0.20 7475 1508 3.29 0.30 34323 917 97.50 127222 10798 13.93
25-264-2 sat 0.21 6531 1329 0.07 0.30 35238 905 2.46 127062 10787 8.06
25-264-3 sat 0.21 6819 1374 0.83 0.29 32457 899 18.52 127757 10827 44.03
25-264-4 sat 0.21 7082 1431 0.34 0.29 32825 897 19.08 126777 10779 85.92
25-264-5 sat 0.21 7055 1431 3.12 0.30 33590 897 46.15 126973 10784 41.04
25-264-6 sat 0.21 7712 1551 0.34 0.33 39015 932 69.81 128354 10850 12.67
25-264-7 sat 0.21 7428 1496 0.13 0.30 36580 937 19.93 127106 10794 7.01
25-264-8 sat 0.21 6603 1335 0.18 0.27 31561 896 10.32 124153 10687 9.69
25-264-9 sat 0.21 6784 1350 0.19 0.27 35404 903 34.08 128423 10853 38.80
25-264-10 unsat 0.21 6491 1296 0.04 0.30 33321 930 10.92 126999 10785 57.75
25-264-11 unsat 0.12 1 0 0.00 0.28 37912 955 0.09 125373 10744 0.47
25-264-12 unsat 0.16 1 0 0.00 0.29 39135 984 0.08 127539 10815 0.57
25-264-13 unsat 0.12 1 0 0.00 0.29 35048 944 0.09 127026 10786 0.56
25-264-14 unsat 0.23 5984 1210 0.07 0.28 31093 885 11.60 126628 10771 15.93

Total 8.93 349.58 370.63

Table 2. QCP results for 25× 25 instances with 264 holes

9 Experiments

We report on our experience in applying BEE. To appreciate the ease in its use,

and for further details, the reader is encouraged to view the example encodings

available with the tool (Metodi 2012). All experiments run on an Intel Core 2

Duo E8400 3.00GHz CPU with 4GB memory under Linux (Ubuntu lucid, kernel

2.6.32-24-generic). BEE is written in Prolog and run using SWI Prolog v6.0.2 64-

bits. Comparisons with Sugar (v1.15.0) are based on the use of identical constraint

models, apply the same SAT solver (CryptoMiniSat v2.5.1), and run on the same

machine. For all of the tables describing experiments, columns indicate:

comp: compile time (seconds)

clauses: number of CNF clauses

vars: number of CNF variables

sat: SAT solving time (seconds)

We first focus on the impact of the dual representation for allDiff constraints.

We report on the application of BEE to Quasi-group completion problems (QCP),

proposed by Gomes et al. (1997) as a constraint satisfaction benchmark, where the

model is a conjunction of allDiff constraints.

Quasi-group completion: We consider 15 instances from the 2008 CSP competi-

tion1. Table 2 considers three settings: BEE with its dual encoding for allDiff

constraints, BEE using only the order encoding (equivalent to using int neq con-

straints instead of allDiff), and Sugar. The results indicate that: (1) Application

of BEE using the dual representation for allDiff is 38 times faster and produces

20 times less clauses (in average) than when using the order-encoding alone (de-

spite the need to maintain two encodings); (2) Without the dual representation,

solving encodings generated by BEE is only slightly faster but BEE generates CNF

1 http://www.cril.univ-artois.fr/CPAI08/

14

http://www.cril.univ-artois.fr/CPAI08/

K8 k BEE Sugar

143 1.26 2.87
142 10.14 1.62
141 7.64 2.94
140 14.68 6.46
139 25.60 6.67
138 12.99 2.80
137 22.91 298.58
136 14.46 251.82
135 298.54 182.90
134 331.80 ∞

Average

clauses ×1000 248 402
vars 5688 9370

K10 k BEE Sugar

277 5.31 9.25
276 7.11 9.91
275 13.57 19.63
274 4.93 9.24
273 45.94 9.03
272 22.74 86.45
271 7.35 9.49
270 6.03 55.94
269 5.20 11.05
268 94.44 424.89

clauses ×1000

vars

k BEE Sugar

267 88.51 175.70
266 229.80 247.56
265 1335.31 259.45
264 486.09 513.61
263 236.68 648.43
262 1843.70 6429.25
261 2771.60 7872.76
260 4873.99 ∞
259 ∞ ∞
258 ∞ ∞

Average

1229 1966
15529 25688

Table 3. VMTL results for K8 and K10 (times are in seconds)

encodings 4 times smaller (on average) than those generated by Sugar. Observe

that 3 instances are found unsatisfiable by BEE (indicated by a CNF with a single

clause and no variables). We comment that Sugar preprocessing times are higher

than those of BEE and not indicated in the table.

To further appreciate the impact of the tool we describe results for three ad-

ditional applications which shift the state-of-the-art with respect to what could

previously be solved. The experiments clearly illustrate that BEE decreases the size

of CNF encodings as well as the subsequent SAT solving time.

Magic labels: In (MacDougall et al. 2002) the authors conjecture that the n vertex

complete graph, Kn, for n ≥ 5 has a vertex magic total labeling with magic con-

stants for specific range of values of k, determined by n. This conjecture is proved

correct for all odd n and verified by brute force for n = 6. We address the cases for

n = 8 and n = 10 which involve 15 instances (different values of K) for n = 8, and

23 (different values of K) for n = 10. Starting from the simple constraint model

(illustrated by the example in Figure 2), we add additional constraints to exploit

that the graphs are symmetric: (1) We assume that the edge with the smallest

label is e1,2; (2) We assume that the labels of the edges incident to v1 are ordered

and hence introduce constraints e1,2 < e1,3 < · · · < e1,n; (3) We assume that the

label of edge e1,3 is smaller than the labels of the edges incident to v2 (except e1,2)

and introduce constraints accordingly. In this setting BEE can solve all except 2

instances with a 4 hour timeout and Sugar can solve all except 4.

Table 3 depicts results for the 10 hardest instances for K8 and the 20 hardest

for K10 with a 4 hour time-out. BEE compilation times are on the order of 0.5

sec/instance for K8 and 2.5 sec/instance for K10. Sugar encoding times are slightly

larger. The instances are indicated by the magic constant, k; the columns for BEE

and Sugar indicate SAT solving times (in seconds). The bottom two lines indicate

average encoding sizes (numbers of clauses and variables).

The results indicate that the Sugar encodings are (in average) about 60% larger,

15

while the average SAT solving time for the BEE encodings is about 2 times faster

(average excluding instances where Sugar times-out).

To address the two VMTL instances not solvable using the BEE models described

above (K10 with magic labels 259 and 258), we partition the problem fixing the

values of e1,2 and e1,3 and maintaining all of the other constraints. Analysis of the

symmetry breaking constraints indicates that this results in 198 new instances for

each of the two cases. The original VMTL instance is solved if any one of of these

198 instances is solved. So, we solve them in parallel. Fixing e1,2 and e1,3 “fuels”

the compiler so the encodings are considerably smaller. The instance for k = 259

is solved in 1379.50 seconds where e1,2 = 1 and e1,3 = 6. The compilation time is

2.09 seconds and the encoding consists in 1056107 clauses and 14143 variables.

To the best of our knowledge, the hard instances from this suite are beyond the

reach of all previous approaches to program the search for magic labels. The SAT

based approach presented in (Jäger 2010) cannot handle these.2 The comparison

with Sugar indicates the impact of the compiler.

DNA word problem: Mancini et al. (2008) provide a comparison of several state-

of-the-art solvers applied to the DNA word problem with a variety of encoding

techniques. Their best reported result is a solution with 87 DNA words, obtained in

554 seconds, using an OPL (van Hentenryck 1999) model with lexicographic order

to break symmetry. In (Frutos et al. 1997), the authors report a solution composed

from two pairs of (t-part and m-part) sets 〈T1,M1〉 and 〈T2,M2〉 where |T1| = 6,

|M1| = 16, |T2| = 2, |M2| = 6. This forms a set S with (6 × 16) + (2 × 6) = 108

DNA words. Marc van Dongen reports a larger solution with 112 words.3 Using

BEE, we find, in a fraction of a second, a template of size 14 and a map of size 8.

This provides a solution of size 14× 8 = 112 to the DNA word problem. Running

Comet (v2.0.1) we find a 112 word solution in about 10 seconds using a model by

H̊akan Kjellerstrand.4 We also prove that there does not exist a template of size 15

(0.15 seconds), nor a map of size 9 (4.47 seconds). These facts were unknown prior

to BEE. Proving that there is no solution to the DNA word problem with more

than 112 words, not via the two part t-m strategy, is still an open problem.

Model Based Diagnostics (MBD) is an artificial intelligence based approach that

aims to cope with the, so-called, diagnosis problem (e.g. (Reiter 1987)). In (Metodi et al. 2012),

we (with other researchers) focus on a notion of minimal cardinality MBD and apply

BEE to model and solve the instances of a standard MBD benchmark. Experimental

evidence (see (Metodi et al. 2012)), indicates that our approach is superior to all

existing algorithms for minimal cardinality MBD. We determine, for the first time,

minimal cardinality diagnoses for the entire standard benchmark. Prior attempts to

apply SAT for MBD (for example, by Smith et al. (2005) and Feldman et al. (2010)

where a MaxSAT solver is used) indicate that SAT solvers perform poorly on the

standard benchmarks. So, BEE really makes the difference.

2 Personal communication (Gerold Jäger), March 2012.
3 See http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/.
4 See http://www.hakank.org/comet/word_design_dna1.co.

16

http://www.cs.st-andrews.ac.uk/~ianm/CSPLib/
http://www.hakank.org/comet/word_design_dna1.co

10 Conclusion

We introduce BEE, a compiler to encode finite domain constraints to CNF. A key

design point is to apply bit-level techniques, locally as prescribed by the word-level

constraints in a model. Optimizations are based on equi-propagation and partial

evaluation. Implemented in Prolog, compilation times are typically small (measured

in seconds) even for instances which result in several millions of CNF clauses. On the

other hand, the reduction in SAT solving time can be larger in orders of magnitude.

It is well-understood that making a CNF smaller is not the ultimate goal: often

smaller CNF’s are harder to solve. Indeed, one often introduces redundancies to

improve SAT encodings: so removing them is counter productive. Our experience

is that BEE reduces the size of an encoding in a way that is productive for the sub-

sequent SAT solving. In particular, by removing variables that can be determined

“at compile time” to be definitely equal (or definitely different) in any solution.

The simplification rules illustrated in Section 5 apply standard constraint pro-

gramming techniques (i.e. to reduce variable domains). However, equi-propagation

is more powerful. It focuses, in general, in specializing the bit-level representation

of the constraints in view of equations implied by the constraints. In this way it

captures many of the well-known constraint programming preprocessing techniques,

and more.

Future work will investigate: how to strengthen the implementation of equi-

propagation using BDD’s and SAT solving techniques, how to improve the compiler

implementation using better data-structures for the constraint store (for example

applying a CHR based approach for the simplification rules), and how to enhance

the underlying constraint language.

References

Ansótegui, C., del Val, A., Dotú, I., Fernández, C., and Manyà, F. 2004. Modeling
choices in quasigroup completion: SAT vs. CSP. In AAAI, D. L. McGuinness and
G. Ferguson, Eds. AAAI Press / The MIT Press, San Jose, California, USA, 137–142.

Aśın, R., Nieuwenhuis, R., Oliveras, A., and Rodŕıguez-Carbonell, E. 2011. Car-
dinality networks: a theoretical and empirical study. Constraints 16, 2, 195–221.

Bailleux, O. and Boufkhad, Y. 2003. Efficient CNF encoding of Boolean cardinality
constraints. In CP, F. Rossi, Ed. LNCS, vol. 2833. Springer, Kinsale, Ireland, 108–122.

Batcher, K. E. 1968. Sorting networks and their applications. In AFIPS Spring Joint
Computing Conference. AFIPS Conference Proceedings, vol. 32. Thomson Book Com-
pany, Washington D.C., Atlantic City, NJ, USA, 307–314.

Cadoli, M. and Schaerf, A. 2005. Compiling problem specifications into SAT. Artificial
Intelligence 162, 1-2, 89–120.

Chen, J. 2010. A new sat encoding of the at-most-one constraint.
Workshop on Constraint Modeling and Reformulation (ModRef 2010)
http://www.it.uu.se/research/group/astra/ModRef10/programme.html.

Codish, M., Lagoon, V., and Stuckey, P. J. 2008. Logic programming with satisfia-
bility. TPLP 8, 1, 121–128.

Codish, M. and Zazon-Ivry, M. 2010. Pairwise cardinality networks. In LPAR (Dakar),
E. M. Clarke and A. Voronkov, Eds. Lecture Notes in Computer Science, vol. 6355.
Springer, 154–172.

17

http://www.it.uu.se/research/group/astra/ModRef10/programme.html

Crawford, J. M. and Baker, A. B. 1994. Experimental results on the application of
satisfiability algorithms to scheduling problems. In AAAI, B. Hayes-Roth and R. E.
Korf, Eds. Vol. 2. AAAI Press / The MIT Press, Seattle, WA, USA, 1092–1097.

Eén, N. and Sörensson, N. 2003. An extensible SAT-solver. In SAT, E. Giunchiglia and
A. Tacchella, Eds. LNCS, vol. 2919. Springer, Santa Margherita Ligure, Italy, 502–518.

Eén, N. and Sörensson, N. 2006. Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2, 1-4, 1–26.

Feldman, A., Provan, G., de Kleer, J., Robert, S., and van Gemund, A.

2010. Solving model-based diagnosis problems with max-sat solvers and vice versa.
https://www.phmsociety.org/events/workshop/dx/10/proceedings.

Frisch, A. M. and Giannaros, P. A. 2010. SAT encodings of the
at-most-k constraint: Some old, some new, some fast, some slow.
Workshop on Constraint Modeling and Reformulation (ModRef 2010)
http://www.it.uu.se/research/group/astra/ModRef10/programme.html.

Frutos, A. G., Liu, Q., Thiel, A. J., Sanner, A. M. W., Condon, A. E., Smith,
L. M., and Corn, R. M. 1997. Demonstration of a word design strategy for DNA
computing on surfaces. Journal of Nucleic Acids Research 25, 23, 4748–4757.

Gallian, J. A. 2011. A dynamic survey of graph labeling. The Electronic Journal of
Combinatorics 18.

Gavanelli, M. 2007. The log-support encoding of csp into sat. In CP, C. Bessiere, Ed.
LNCS, vol. 4741. Springer, Providence, RI, USA, 815–822.

Gomes, C. P., Selman, B., and Crato, N. 1997. Heavy-tailed distributions in combi-
natorial search. In CP, G. Smolka, Ed. LNCS, vol. 1330. Springer, 121–135.

Jäger, G. 2010. An effective sat encoding for magic labeling. In CTW, U. Faigle,
R. Schrader, and D. Herrmann, Eds. 97–100.

MacDougall, J., Miller, M., Slamin, M., and Wallis, W. 2002. Vertex-magic total
labelings of graphs. Utilitas Mathematica 61, 3–21.

Mancini, T., Micaletto, D., Patrizi, F., and Cadoli, M. 2008. Evaluating ASP and
commercial solvers on the CSPLib. Constraints 13, 4, 407–436.

Metodi, A. 2012. BEE. http://amit.metodi.me/research/bee/.

Metodi, A., Codish, M., Lagoon, V., and Stuckey, P. J. 2011. Boolean equi-
propagation for optimized SAT encoding. In CP, J. H.-M. Lee, Ed. LNCS, vol. 6876.
Springer, 621–636.

Metodi, A., Stern, R., Kalech, M., and Codish, M. 2012. Compiling model-based
diagnosis to boolean satisfaction. Tech. rep., Department of Computer Science, Ben-
Gurion University. www.cs.bgu.ac.il/~mcodish/Papers/Sources/satMBD.pdf.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G.

2007. MiniZinc: Towards a standard CP modelling language. In Principles and Practice
of Constraint Programming, C. Bessiere, Ed. LNCS, vol. 4741. Springer-Verlag, 529–543.

Régin, J.-C. 1994. A filtering algorithm for constraints of difference in csps. In AAAI,
B. Hayes-Roth and R. E. Korf, Eds. AAAI Press / The MIT Press, 362–367.

Reiter, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32, 1,
57–96.

Smith, A., Veneris, A., Ali, M. F., and Viglas, A. 2005. Fault diagnosis and logic
debugging using Boolean satisfiability. IEEE TRANS. ON CAD 24, 1606–1621.

Soos, M. 2010. CryptoMiniSAT, v2.5.1. http://www.msoos.org/cryptominisat2.

Tamura, N., Taga, A., Kitagawa, S., and Banbara, M. 2009. Compiling finite linear
CSP into SAT. Constraints 14, 2, 254–272.

van Hentenryck, P. 1999. The OPL Optimization Programming Language. MIT Press.

18

https://www.phmsociety.org/events/workshop/dx/10/proceedings
http://www.it.uu.se/research/group/astra/ModRef10/programme.html
http://amit.metodi.me/research/bee/
www.cs.bgu.ac.il/~mcodish/Papers/Sources/satMBD.pdf
http://www.msoos.org/cryptominisat2

	1 Introduction
	2 Representing Integers
	3 Constraints in BEE
	4 An Example BEE Application: magic graph labeling
	5 Compiling BEE to CNF
	6 Constraint simplification in the VMTL example
	7 Another Example BEE Application: DNA word problem
	8 Implementation
	9 Experiments
	10 Conclusion
	References

