ASP modulo CSP: The clingcon system

Max Ostrowski

Institut fiir Informatik, Universitdt Potsdam, August-Bebel-Str. 89, D-14482
Potsdam, Germany ostrowsk@cs.uni-potsdam.de

—— Abstract

Answer Set Programming (ASP; [1]) has become a prime paradigm for declarative problem
solving due to its combination of an easy yet expressive modeling language with high-performance
Boolean constraint solving technology. However, certain applications are more naturally modeled
by mixing Boolean with non-Boolean constructs, for instance, accounting for resources, fine
timings, or functions over finite domains. The challenge lies in combining the elaborated solving
capacities of ASP, like backjumping and conflict-driven learning, with advanced techniques from
the area of constraint programming (CP). I therefore developed the solver clingcon, which follows
the approach of modern Satisfiability Modulo Theories (SMT; [2, Chapter 26]). My research shall
contribute to bridging the gap between Boolean and Non-Boolean reasoning, in order to bring
out the best of both worlds.

1998 ACM Subject Classification D.1.6. Logic Programming, 1.2.3 Deduction and Theorem
proving/Logic programming, D.3.2 Language Classifications/Constraint and logic languages

Keywords and phrases Answer Set Programming, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.458

1 Introduction and Motivation

clingcon is a hybrid solver for ASP, combining the simple modeling language and the high
performance Boolean solving capacities of ASP with techniques for using non-Boolean con-
straints from the area of Constraint Programming (CP). Although clingcon’s solving compo-
nents follow the approach of modern Satisfiability Modulo Theories (SMT; [2, Chapter 26])
solvers when combining the ASP solver clasp with the CP solver gecode [3], clingcon fur-
thermore adheres to the tradition of ASP in supporting a corresponding modeling language
by appeal to the ASP grounder gringo. Although in the current implementation the the-
ory solver is instantiated with the CP solver gecode, the principal design of clingcon along
with the corresponding interfaces are conceived in a generic way, aiming at arbitrary theory
solvers.

I will first give a general background over the theory of ASP and CP and will afterwards
describe the architecture of clingcon which follows the approach of SMT. Given this, the
main contribution of my work is a comparison of simple methods to compute minimal
inconsistencies and explanations for any black-box CP system. These minimal conflicts
and reasons can then be used for driving the conflict-driven learning process of the system.
These methods have been implemented in the system clingcon and yield a performance
improvement of an order of magnitude on a broad range of benchmarks.

2 Background
A (normal) logic program over an alphabet A is a finite set of rules of the form

aQ < A1y, Qm, MOt Qmt1, ..., NOL Gy (1)

© Max Ostrowski;
ATl licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 458—463

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.458
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Ostrowski

where a; € A is an atom for 0 < i <n.! A literal is an atom a or its (default) nega-

tion not a. For a rule r as in (1), let head(r) = ag be the head of r and body(r) =
{a1,...,am,not ami1,...,not a,} be the body of r. Given a set B of literals, let BT = {a €
Al a€ B} and B~ ={a € A| not a € B}. Furthermore, given some set B of atoms, define
Blg = (BTN B)U{not a | a € B~ NB}. The set of atoms occurring in a logic program
P is denoted by atom(P). A set X C A is an answer set of a program P over A, if X is
the C-smallest model of the reduct PX = {head(r) < body(r)* | r € P, body(r)” N X = 0}.
An answer set can also be seen as a Boolean assignment satisfying all conditions induced by
program P (cf. [4]).

A constraint satisfaction problem (CSP) is a triple (V, D, C), where V is a set of variables
with respective domains D, and C is a set of constraints. Each variable v € V has an
associated domain dom(v) € D. Following [5], a constraint ¢ is a pair (S, R) consisting of a
k-ary relation R defined on a vector S C V¥ of variables, called the scope of R. That is, for
S = (v1,...,v;), we have R C dom(vy) X -+ x dom(vy). We use S(c) =S and R(c) = R to
access the scope and the relation of ¢ = (S, R). For an assignment A : V — J, .\ dom(v)
and a constraint (S, R) with S = (v1,...,vg), define A(S) = (A(v1),...,A(vg)), and let
satc(A) ={ce C | A(S(¢c)) € R(c)}.

The input language of clingcon extends the one of gringo (cf. [6]) by CP-specific opera-
tors marked with a preceding $ symbol. After grounding, a propositional program is then
composed of regular and constraint atoms, denoted by A and C, respectively. The set of
constraint atoms induces an ordinary constraint satisfaction problem (CSP) (V, D, C). This
CSP is to be addressed by the corresponding CP solver, in our case gecode. As detailed
in [7], the semantics of such constraint logic programs is defined by appeal to a two-step
reduction. For this purpose, we consider a regular Boolean assignment over A UC (in other
words, an interpretation) and an assignment of V' to D (for interpreting the variables V' in
the underlying CSP). In the first step, the constraint logic program is reduced to a regular
logic program by evaluating its constraint atoms. To this end, the constraints in C' asso-
ciated with the program’s constraint atoms C are evaluated w.r.t. the assignment of V to
D. In the second step, the common Gelfond-Lifschitz reduct [8] is performed to determine
whether the Boolean assignment is an answer set of the obtained regular logic program.
If this is the case, the two assignments constitute a (hybrid) constraint answer set of the
original constraint logic program.

In what follows, we rely upon the following terminology. We use signed literals of form
Ta and Fa to express that an atom a is assigned T or F, respectively. That is, Ta and
Fa stand for the Boolean assignments a — T and a — F, respectively. We denote the
complement of such a literal £ by £. That is, Ta = Fa and Fa = Ta. We represent a Boolean
assignment simply by a set of signed literals. Sometimes we restrict such an assignment A
to its regular or constraint atoms by writing A|4 or Alc, respectively. For instance, given
the regular atom ‘person(adam)’ and the constraint atom ‘work(adam) $> 4’, we may form
the Boolean assignment {Tperson(adam), Fwork(adam) $ > 4}.

We identify constraint atoms in C with constraints in (V, D, C) via a function v : C — C.
Provided that each constraint ¢ € C' has a complement ¢ € C, like ‘e =y’ = ‘¢ #y’ or
‘v <y = ‘¢ >y and vice versa, we can extend v to signed constraint atoms over C as

1 The semantics of choice rules and integrity constraints is given through program transformations. For
instance, {a} < is a shorthand for a < not a’ plus @’ < not a and similarly < a for @’ < a,not a’,
for a new atom a’.

459

ICLP’12



460

ASP modulo CSP: The clingcon system

¢ ifl=Tc

(@) { ¢ if¢=Fc
For instance, we get v(Fwork(adam) $ > 4) = work(adam) < 4, where work(adam) € V is
a constraint variable and (work(adam) < 4) € C' is a constraint. An assignment satisfying
the last constraint is {work(adam) — 3}.

Following [4], we represent Boolean constraints issuing from a logic program under ASP
semantics in terms of nogoods [5]. This allows us to view inferences in ASP as unit prop-
agation on nogoods. A nogood is a set {o1,...,0m,} of signed literals, expressing that any
assignment containing oy, ..., o, is unintended. Accordingly, a total assignment A is a so-
lution for a set A of nogoods if § € A for all § € A. Whenever § C A, the nogood § is said
to be conflicting with A. For instance, given atoms a,b, the total assignment {Ta,Fb} is
a solution for the set of nogoods containing {Ta, Tb} and {Fa,Fb}. Likewise, {Fa, Tb} is
another solution. Importantly, nogoods provide us with reasons explaining why entries must
(not) belong to a solution, and lookback techniques can be used to analyze and recombine
inherent reasons for conflicts. We refer the interested reader to [4] for details on how logic
programs are translated into nogoods within ASP.

3 Research Program

My research work started from the question how to combine the advantages of ASP with
Non-Boolean constraint processing techniques. In the process of writing my diploma thesis
I developed the hybrid solver clingcon. 1 discovered that the major difficulties lay within the
conflict-driven learning techniques of ASP. A black-box CSP solver like gecode is not able to
provide any useful evidence for its propagation. Such an evidence is needed in an advanced
learning setting to provide useful reasons and conflicts for the ASP solver. I addressed this
shortcoming by developing mechanisms for extracting minimal reasons and conflicts from
any CP solver. The method of minimizing sets of constraints that we present are similar
to the ones depicted in [9], Our method furthermore take the incremental nature of the CP
solver into account. In contrast to [10], we do not incorporate the learning mechanism into
the CP solver but rather use it for the interaction between the ASP and the CP solver.
Furthermore, we cope with the difficulty having a black-box system as a CP solver.

Clingcon is based on an algorithm for computing constraint answer sets that extends
a previous algorithm to compute standard answer sets [4] by a CP “oracle” The ba-
sic algorithm for finding standard answer sets is called Conflict-Driven Nogood Learning
(CDNL); it includes conflict-driven learning and backjumping according to the First-UIP
scheme [11, 12, 13]. That is, whenever a conflict happens, a conflict nogood containing
a Unique Implication Point (UIP) is identified by iteratively resolving a violated nogood
against a second nogood that is a reason for some literal in it. A basic CDNL algorithm is
depicted in Algorithm 1.

The principal design of clingcon along with the corresponding interfaces are conceived
in a generic way, aiming at arbitrary theory solvers. The first extension concerns the input
language of gringo with theory-specific language constructs. Just as with regular atoms, the
grounding capabilities of gringo can be used for dealing with constraint atoms containing
first-order variables. As regards the current clingcon system, the language extensions allow
for expressing constraints over integer variables. This involves arithmetic constraints as well
as global constraints and optimization statements. These constraints are treated as atoms



M. Ostrowski

Algorithm 1: CDNL-ASPMCSP
input : A program II.
output : A constraint answer set of II.

1 loop

2 Propagation

3 if hasConflict then

4 if decisionLevel = 0 then return no Answer Set
5 Conflict Analysis

6 Backjump

7 else if complete Assignment then

8 Labeling

9 if hasCon flict then
10 ‘ Backjump
11 else
12 L return Constraint Answer Set
13 else
14 L Select

and passed to the ASP solver. Information about these constraints is furthermore directly
shared with the theory propagator and in turn the theory solver, viz. gecode. The theory
propagator is implemented as a post propagator. Theory propagation is done by the theory
solver until a fixpoint is reached. In doing so, decided constraint atoms are transferred to the
theory solver, and conversely constraints whose truth values are determined by the theory
solver are sent back to the ASP solver using a corresponding nogood. Note that theory
propagation is not only invoked when propagating partial assignments but also whenever a
total Boolean assignment is found. Whenever the theory solver detects a conflict, the theory
propagator is in charge of conflict analysis. Apart from reverting the state of the theory
solver upon backjumping, this involves the crucial task of determining a conflict nogood
(which is usually not provided by theory solvers, as in the case of gecode). Similarly, the
theory propagator is in charge of enumerating constraint variable assignments, whenever
needed. Determining a good conflict nogood is the main part of my research that I want to
present.

After doing theory propagation either a conflict occurs or some constraints (boolean
literals in our case) could be evaluated to true or false. In both cases an explanation is
needed, either in form of a conflict or a reason nogood. The simple version of generating
the conflicting nogood N, is just to take the entire assignment of constraint literals. In this
way, all yet decided constraint atoms constitute N = {¢ | £ € A|c}. The corresponding list
of inconsistent constraints is

I=[yO) [l Alc] (2)

In order to reduce this list of inconsistent constraints and to find the real cause of the
conflict, we apply an Irreducible Inconsistent Set (IIS) algorithm. The term IIS was coined
in [14] for describing inconsistent sets of constraints having consistent subsets only. We use
the concept of an IIS to find the minimal cause of a conflict. With this technique, [9]
showed that it is actually possible to drastically reduce such exhaustive sets of inconsistent
constraints as in (2) and to create a much smaller conflict nogood. Similar to the algorithm

461

ICLP’12



462 ASP modulo CSP: The clingcon system

Algorithm 2: FORWARD__FILTERING

input : An inconsistent list of constraints I = [cq, ..., ¢y,
output : An irreducible inconsistent list of constraints I’.

1 I« ]

2 while I’ is consistent do

3 T+ I

4 141

5 while T is consistent do
6 T+ Tog;

7 Liei+1

8 I' —~1T'oc

9 return I’

in [9], we developed a set of algorithms that exploits the features of an incremental CSP
solver even more. I will shortly explain one of these algorithms.  Algorithm 2 is called
Forward Filtering; it is designed to avoid resetting the search space of the CP solver. It
incrementally adds constraints to a testing list 7', starting from the first assigned constraint
to the last one (lines 5 and 6). Remember that incrementally adding constraints is easy for a
CP solver as it can only further restrict the domains. If our test list 7' becomes inconsistent
we add the currently tested constraint to the result I’ (lines 5 and 8). If this result is
inconsistent (Line 2), we have found a minimal list of inconsistent constraints. Otherwise,
we start again, this time adding all yet found constraints I’ to our testing list T (Line 1).
Now we have to create a new constraint space. But by incrementally increasing the testing
list, we already reduced the number of potential candidates that contribute to the IIS, as we
never have to check a constraint behind the last added constraint. We illustrate this again
on a little example. We start Algorithm 2 with T'= I’ = [] and

I =[work(lea) = work(adam), work(john) = 0, work(smith) = 0]
o[work(adam) + work(lea) > 6, work(lea) — work(adam) = 1]

in Line 3. We add work(lea) = work(adam) to T, as this constraint alone is consistent,
we loop and add constraints until 7' = I. As this list is inconsistent, we add the last
constraint work(lea) — work(adam) = 1 to I’ in Line 8. We can do so, as we know that
the last constraint is indispensable for the inconsistency. As I’ is consistent we restart the
whole procedure, but this time setting T = I’ = [work(lea) — work(adam) = 1] in Line
3. Please note that, even if I would contain further constraints, we would never have to
check a constraint behind work(lea) — work(adam) = 1. Our testing list already contained
an inconsistent set of constraints, consequently we can restrict ourself to this subset. Now
we start the loop again, adding work(lea) = work(adam) to T. On their own, those two
constraints are inconsistent, as there exists no valid pair of values for the variables. So we add
work(lea) = work(adam) to I, resulting in I' = [work(lea) —work(adam) = 1, work(lea) =
work(adam)]. With this much smaller conflict we hope to speed up the search process.
But we can do even more. Up to now we only considered reducing an inconsistent
list of constraints to reduce the size of a conflicting nogood. If the CP solver propagates
the literal I, a simple reason nogood is N = {¢{ | £ € Alc} U {l}. If we have for ex-
ample A|lc = {Twork(john)$ == 0, Twork(lea) — work(adam)$ == 1}, the CP solver
propagates the literal Fwork(lea)$ == work(adam). To use the proposed algorithms



M. Ostrowski

to reduce a reason nogood we first have to create an inconsistent list of constraints. As
J = [y(¢) | £ € Alc] implies (1), this inconsistent list is I = J o [y(I)] = [work(john) =
0, work(lea) — work(adam) = 1,work(lea) = work(adam)]. So we can now use these var-
ious filtering methods also to reduce reasons generated by the CP solver. In this case the
reduced reason is
{Twork(lea) —work(adam)$ == 1, Twork(lea)$ == work(adam)}. Smaller reasons reduce
the size of conflicts even more, as they are constructed using unit resolution.

Evaluation on various benchmarks showed that, also filtering conflicts and reasons is a

very time consuming process, it can speed up search by order of magnitudes.

4  Future Work

In my future work I want to focus on these reasons and also on a combination of the so called
lazy approach which is implemented in clingcon with a translational approach. Currently
only the ASP solver profits from the additional knowledge of the CP solver. I want to
strengthen the CP solving capabilities with features from ASP such as dedicated heuristics
like VSIDS and BerkMin and learning.

—— References

1 Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2 Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

3  http://www.gecode.org

4  Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI'07), AAAI Press/The MIT Press (2007) 386-392

5 Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

6  Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A
user’s guide to gringo, clasp, clingo, and iclingo. Available at http://potassco.
sourceforge.net

7  Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In Hill, P., Warren,
D., eds.: Proc. of the 25th International Conference on Logic Programming (ICLP’09).
Volume 5649 of Lecture Notes in Computer Science., Springer-Verlag (2009) 235-249

8  Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365-385

9  Junker, U.: QuickXPlain: Conflict detection for arbitrary constraint propagation algo-
rithms. IJCAT’'01 Workshop on Modelling and Solving problems with constraints (2001)

10 Moore, N.: Improving the Efficiency of Learning CSP Solvers. University of St Andrews
thesis. University of St Andrews (2011)

11 Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers 48(5) (1999) 506-521

12 Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a
Boolean satisfiability solver. In: Proceedings of the International Conference on Computer-
Aided Design (ICCAD’01). (2001) 279285

13 Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science 85 (2005) 112-133

14 van Loon, J.: Irreducible inconsistent systems of linear inequalities. In: European Journal
of Operational Research. Volume 8., Elsevier Science (1981) 283-288

463

ICLP’12


http://www.gecode.org
http://potassco.sourceforge.net
http://potassco.sourceforge.net

	Introduction and Motivation
	Background
	Research Program
	Future Work

