
ar
X

iv
:1

21
0.

41
30

v1
  [

cs
.L

O
] 

 1
5 

O
ct

 2
01

2

Under consideration for publication in Theory and Practice of Logic Programming 1

Relational Theories with Null Values

and Non-Herbrand Stable Models

Vladimir Lifschitz, Karl Pichotta, and Fangkai Yang

Department of Computer Science

University of Texas at Austin

{vl,pichotta,fkyang}@cs.utexas.edu

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Generalized relational theories with null values in the sense of Reiter are first-order the-
ories that provide a semantics for relational databases with incomplete information. In
this paper we show that any such theory can be turned into an equivalent logic program,
so that models of the theory can be generated using computational methods of answer
set programming. As a step towards this goal, we develop a general method for calcu-
lating stable models under the domain closure assumption but without the unique name
assumption.

1 Introduction

We re-examine here some of the problems discussed in two important papers on the

semantics of null values that were published many years ago. The first of them is

Ray Reiter’s paper “Towards a logical reconstruction of relational database theory”

(Reiter 1984). Generalized relational theories with null values in the sense of Reiter

are first-order theories that provide a semantics for relational databases with in-

complete information. The incompleteness can be of two kinds. One is represented

by inclusive disjunction; for instance, the formula

ıSUPPLIES (ıFoo, p1) ∨ ıSUPPLIES (ıFoo, p3) (1)

says: ıFoo supplies p1 or p3, maybe both. The other is represented by null values;

by writing

ıSUPPLIER(ω), ıSUPPLIES (ω, p3), (2)

where ω is a null value, we express that some supplier, which may or may not

already be in the database, supplies p3.

The second paper, by Bonnie Traylor and Michael Gelfond, is entitled “Repre-

senting null values in logic programming” (Traylor and Gelfond 1994). The authors

define, among other things, the “logic programming counterpart” of a generalized

relational theory with null values—a logic programwhose meaning under the answer

set semantics is similar to the meaning of the theory under the standard semantics

of first-order logic.

http://arxiv.org/abs/1210.4130v1
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We propose here an alternative approach to turning Reiter’s theories into logic

programs, which represents the meaning of the theory more closely than the trans-

lation from (Traylor and Gelfond 1994). We show also how these logic programs

can be executed using computational methods of answer set programming (ASP)

(Marek and Truszczyński 1999; Niemelä 1999; Lifschitz 2008)—for instance, by run-

ning the answer set solver clingo.1

The difference between null values and other object constants emphasized in

Reiter’s semantics is that null values are exempt from the unique name assump-

tion: a null value may represent an object that has a name in the database, and

two different null values may represent the same object. This fact leads us to the

general problem of using answer set solvers for calculating the stable models that

satisfy the domain closure assumption but may not satisfy the unique name as-

sumption. Such models are allowed in some versions of the stable model semantics

(Ferraris et al. 2007; Ferraris et al. 2011), just as they are allowed in the defini-

tion of circumscription (McCarthy 1980; McCarthy 1986). But existing answer set

solvers do not deal with stable models of this kind directly. To take a simple exam-

ple, the formula

P(a) ∨ P(b) (3)

has minimal models of three kinds: in some of them, P(a) is true, and P(b) is

false; in others, P(a) is false, and P(b) is true; finally, there are minimal models

in which both P(a) and P(b) are true, along with the formula a = b. We will see

how syntactic expressions describing these three possibilities can be generated by

an answer set solver. Our method is applicable, in particular, to logic programs

representing relational theories with null values.

The word “generalized” in Reiter’s terminology indicates the possibility of in-

cluding disjunctive information, and in the rest of the paper it will be omitted.

2 Relational Theories without Null Values

2.1 Review of Reiter’s Semantics of Relational Theories

We begin with a signature that consists of finitely many object and predicate con-

stants. A positive ground clause is a formula of the form A1∨· · ·∨Ar (r ≥ 1), where

each Ai is a ground atomic formula whose predicate is distinct from the equality

symbol. For instance, (1) is a positive ground clause. For any finite set ∆ of positive

ground clauses, the corresponding relational theory T∆ is the set consisting of the

following sentences:

• the domain closure axiom ıDCA:

∀x
∨

a

x = a

where the disjunction extends over all object constants a;

1 http://potassco.sourceforge.net

http://potassco.sourceforge.net
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• the unique name axioms a 6= b for all pairs of distinct object constants a, b;

• the clauses ∆;

• for each predicate constant P , the completion axiom

∀x

[

P(x) →
∨

a∈WP

x = a

]

(4)

where x is a tuple of distinct object variables, and WP is the set of all tuples a

of object constants such that P(a) belongs to a clause from ∆.2

In view of the domain closure axiom ıDCA and the unique name axioms, any

model of T∆ is isomorphic to a Herbrand model.3 Consequently, in the discussion

of models of T∆ we can restrict attention to Herbrand models.

Consider, for instance, Example 4.1 from (Reiter 1984). Its signature includes

the object constants

p1, p2, p3, ıAcme, ıFoo,

the unary predicate constants

ıPART , ıSUPPLIER,

and the binary predicate constants

ıSUPPLIES , ıSUBPART ·

The set ∆ describes the following supplier and parts world:

PART SUPPLIER SUPPLIES SUBPART

p1 ıAcme 〈ıAcme p1〉 〈p1 p2〉

p2 ıFoo 〈ıFoo p2〉

p3

In other words, it includes the corresponding atomic formulas:

ıPART (p1), ıPART (p2), . . . , ıSUBPART(p1, p2) · (5)

In addition, ∆ includes clause (1).

2 The equality between two tuples of terms of the same length, such as x = a, stands for the
conjunction of the equalities between the corresponding members of the tuples. We do not
include equality axioms from (Reiter 1984) because we assume here the version of the semantics
of first-order formulas that treats equality as identity (see, for instance, (Lifschitz et al. 2008,
Section 1.2.2)).

3 Recall that in the absence of function constants of arity > 0 a Herbrand interpretation is an
interpretation such that (i) its universe is the set of all object constants, and (ii) each object
constant is interpreted as itself. A Herbrand interpretation can be identified with the set of all
ground atomic formulas that are true in it and whose predicate is distinct from the equality
symbol.
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The completion axioms in this example are

∀x (ıPART(x ) → x = p1 ∨ x = p2 ∨ x = p3),

∀x (ıSUPPLIER(x ) → x = ıAcme ∨ x = ıFoo),

∀xy(ıSUPPLIES (x , y) → (x = ıAcme ∧ y = p1)

∨ (x = ıFoo ∧ y = p2)

∨ (x = ıFoo ∧ y = p1)

∨ (x = ıFoo ∧ y = p3)),

∀xy(ıSUBPART (x , y) → (x = p1 ∧ y = p2))·

Theory T∆ has 3 Herbrand models:

I1 = I ∪ {ıSUPPLIES (ıFoo, p1)},

I2 = I ∪ {ıSUPPLIES (ıFoo, p3)},

I3 = I ∪ {ıSUPPLIES (ıFoo, p1), ıSUPPLIES (ıFoo, p3)},

where I is the set of atomic formulas (5).

Note that I3 is not a minimal model of T∆: both I1 and I2 are proper subsets

of I3. In the presence of disjunction, Reiter’s completion axioms (4) guarantee only a

weak form of minimality. A similar condition is used in the definition of the possible

model semantics of disjunctive logic programs (Sakama and Inoue 1994).

2.2 Representing Relational Theories by Logic Programs

For any set ∆ of positive ground clauses, by Π∆ we denote the set of rules

1{A1, . . . ,Ar} (6)

for all clauses A1 ∨ · · · ∨ Ar from ∆. Recall that this is an expression in the input

language of clingo4 that allows us to decide arbitrarily whether or not to include

the atomic formulas A1, . . . ,Ar in the answer set as long as at least one of them is

included.

The translation 1{A} of a unit clauseA is strongly equivalent (Lifschitz et al. 2001;

Lifschitz et al. 2007) to the fact A. Using this simplification we can say, for instance,

that the logic program representing the example above consists of the facts (5) and

the rule

1{ıSUPPLIES(ıFoo, p1), ıSUPPLIES (ıFoo, p3)}·

Furthermore, this program can be made more compact using the clingo conven-

tions that allow us to use semicolons to merge a group of facts into one expression:

part(p1;p2;p3).

supplier(acme;foo).

supplies(acme,p1;;foo,p2).

subpart(p1,p2).

1{supplies(foo,p1),supplies(foo,p3)}.

4 Such expressions, “cardinality constraints,” appeared originally as part of the input language
of the grounder lparse (http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz).

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
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Given this input, clingo returns 3 answer sets:

Answer: 1

part(p1) part(p2) part(p3) supplier(acme)

supplier(foo) supplies(foo,p2) supplies(acme,p1)

subpart(p1,p2) supplies(foo,p3)

Answer: 2

part(p1) part(p2) part(p3) supplier(acme)

supplier(foo) supplies(foo,p2) supplies(acme,p1)

subpart(p1,p2) supplies(foo,p1)

Answer: 3

part(p1) part(p2) part(p3) supplier(acme)

supplier(foo)supplies(foo,p2) supplies(acme,p1)

subpart(p1,p2) supplies(foo,p1) supplies(foo,p3)

These answer sets are identical to the Herbrand models of the corresponding rela-

tional theory. This is an instance of a general theorem that expresses the correctness

of our translation:

Theorem 1

For any set ∆ of positive ground clauses, a Herbrand interpretation I is a model

of T∆ iff I is an answer set of Π∆.

Proofs of theorems, including a combined proof of Theorems 1 and 2, can be

found at the end of the paper.

3 Null Values

3.1 Review of Reiter’s Semantics of Null Values

We turn now to a more general framework. As before, the underlying signature is

assumed to consist of finitely many object and predicate constants. We assume that

the object constants are classified into two groups, the database constants and the

null values. About a unique name axiom a 6= b we say that it is required if both a

and b are database constants, and that it is optional otherwise. As before, ∆ stands

for a finite set of positive ground clauses. Let Σ be a set of optional unique name

axioms. The relational theory with null values T∆,Σ is the set of sentences obtained

from T∆ by removing all optional unique name axioms that do not belong to Σ. In

other words, T∆,Σ consists of

• the domain closure axiom ıDCA,

• all required unique name axioms,

• the optional unique name axioms from Σ,

• the clauses ∆;

• the completion axioms (4).

Consider, for instance, the modification of our example in which

• the object constant ω is added to signature as the only null value,
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• clause (1) is replaced in ∆ with clauses (2), and

• Σ = {ω 6= p1, ω 6= p2, ω 6= p3}.

Thus ω is assumed to be a supplier that supplies part p3; it may be identical to

one of the suppliers ıAcme, ıFoo or may be different from both of them, and it is

certainly different from p1, p2, p3. The completion axioms in this example are

∀x (ıPART (x ) → x = p1 ∨ x = p2 ∨ x = p3),

∀x (ıSUPPLIER(x ) → x = ıAcme ∨ x = ıFoo ∨ x = ω),

∀xy(ıSUPPLIES (x , y) → (x = ıAcme ∧ y = p1)

∨ (x = ıFoo ∧ y = p2)

∨ (x = ω ∧ y = p3)),

∀xy(ıSUBPART (x , y) → (x = p1 ∧ y = p2))·

The set of unique name axioms of T∆,Σ includes neither ω 6= ıAcme nor ω 6= ıFoo.

Accordingly, this theory has models of different kinds: some of them satisfy ω = ıAcme;

some satisfy ω = ıFoo; in some models, both equalities are false. We will later return

to this example to give a complete description of its models.

3.2 Representing Theories with Null Values by Logic Programs

In Section 2.2 we saw how Reiter’s semantics of disjunctive databases can be refor-

mulated in terms of stable models. Our next goal is to do the same for databases

with null values.

Since the axiom set T∆,Σ may not include some of the optional unique name

axioms, it may have models that are not isomorphic to any Herbrand model. For

this reason, the problem of relating T∆,Σ to logic programs becomes easier if we

start with a semantics of logic programs that is not restricted to Herbrand models.

A version of the stable model semantics that covers non-Herbrand models is

described in (Ferraris et al. 2011, Section 2).5 That paper deals with models of a

first-order sentence and defines under what conditions such a model is considered

stable relative to a subset p of the predicate constants of the underlying signature.

The predicates from p are called “intensional.” Unless stated otherwise, we will

assume that p consists of all predicate constants of the underlying signature, so that

every predicate constant (other than equality) is considered intensional. When this

definition of a stable model is applied to a logic program, each rule of the program

is viewed as shorthand for a first-order sentence, and the program is identified with

the conjunction of these sentences. For instance, rule (6) can be viewed as shorthand

for the formula
r
∧

i=1

(Ai ∨ ¬Ai) ∧
r
∨

i=1

Ai ·

(The first conjunctive term says, “choose the truth value of each Ai arbitrarily”;

the second term requires that at least one of these atoms be made true.)

5 Other possible approaches to the semantics of logic programs that are not limited to Herbrand
models use program completion (Clark 1978) without Clark’s equality axioms and the logic of
nonmonotone inductive definitions (Denecker and Ternovska 2008).
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The paper referenced above defines a syntactic transformation SMp that turns a

first-order sentence F into a conjunction

F ∧ · · ·

where the dots stand for a second-order sentence (the “stability condition”). The

stable models of F are defined as arbitrary models (in the sense of second-order

logic) of SMp[F ].

From this perspective, Theorem 1 asserts that a Herbrand interpretation is a

model of T∆ iff it is a model of SMp[Π∆], where p is the set of all predicate

constants of the underlying signature.

By Π∆,Σ we denote the conjunction of Π∆ with ıDCA and with all unique name

axioms from T∆,Σ (that is to say, with all unique name axioms except for the

optional axioms that do not belong to Σ). The following theorem expresses the

soundness of this translation:

Theorem 2

For any set ∆ of positive ground clauses and any set Σ of optional unique name

axioms, T∆,Σ is equivalent to SMp[Π∆,Σ], where p is the set of all predicate con-

stants.

In other words, an interpretation I is a model of T∆,Σ iff I is a stable model

of Π∆,Σ.

One useful property of the operator SMp is that

SMp[F ∧G] is equivalent to SMp[F ] ∧G

whenever G does not contain intensional predicates (that is, predicate constants

from p).6 For instance, let Π−

∆,Σ
be the conjunction of Π∆ with the unique name

axioms from T∆,Σ; then Π∆,Σ is Π−

∆,Σ
∧ ıDCA. Since ıDCA does not contain inten-

sional predicates (recall that all atomic parts of ıDCA are equalities), SMp[Π∆,Σ] is

equivalent to SMp[Π
−

∆,Σ
]∧ ıDCA. The assertion of Theorem 2 can be reformulated

as follows: an interpretation I is a model of T∆,Σ iff I is a stable model of Π−

∆,Σ

that satisfies ıDCA.

As we have seen, the translation Π∆ makes it possible to generate models of T∆

using an answer set solver. Unfortunately, the translation Π∆,Σ does not do the

same for relational theories with null values. In the presence of null values we are

interested in non-Herbrand models (for instance, in the models of the theory from

the example above that satisfy ω = ıAcme), but answer set solvers are designed

to generate Herbrand stable models only. There is also a more basic question: a

Herbrand interpretation can be viewed as a set of ground atomic formulas, but how

will we describe non-Herbrand models by syntactic expressions? These questions

are addressed in the next section.

6 See (Ferraris et al. 2011, Section 5.1).
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4 Calculating General Stable Models

4.1 Diagrams

Consider a signature σ consisting of finitely many object and predicate constants.

By ıHBσ we denote the Herbrand base of σ, that is, the set of its ground atomic for-

mulas whose predicate is distinct from the equality symbol. By ıEHBσ (“extended”

Herbrand base) we denote the set of all ground atomic formulas, including equali-

ties between object constants. For any interpretation I of σ satisfying the domain

closure axiom (ıDCA-interpretation, for short), by D(I ) we will denote the set of

the formulas from ıEHBσ that are true in I . This set will be called the diagram

of I .7

If a subset X of ıEHBσ is the diagram of a ıDCA-interpretation then it is clear

that

• the set of equalities in X is closed under reflexivity (it includes a = a for every

object constant a), symmetry (includes b = a whenever it includes a = b),

and transitivity (includes a = c whenever it includes a = b and b = c), and

• X is closed under substitution: it includes P(b1, . . . , bn) whenever it includes

P(a1, . . . , an), a1 = b1, . . . , an = bn .

The converse holds also:

Theorem 3

If a subset X of ıEHBσ is closed under substitution, and the set of equalities in X

is closed under reflexivity, symmetry, and transitivity, then there exists a ıDCA-

interpretation I such that D(I ) = X . Furthermore, this interpretation is unique up

to isomorphism.

Since relational theories with null values include the domain closure assumption,

Theorem 3 shows that their models can be completely characterized by diagrams.

In the example above, the theory has 3 non-isomorphic models J1, J2, J3. The

diagram of J1 consists of the formulas (5), (2), and a = a for all object constants a.

The diagrams of the other two are given by the formulas

J2 = J1 ∪ {ıSUPPLIES (ıAcme, p3), ıSUPPLIES (ω, p1), ω = ıAcme, ıAcme = ω},

J3 = J1 ∪ {ıSUPPLIES (ıFoo, p3), ıSUPPLIES (ω, p2), ω = ıFoo, ıFoo = ω}·

4.2 Reducing Stable DCA-Models to Herbrand Stable Models

The problem that we are interested in can be now stated as follows: Given a first-

order sentence F , we would like to construct a first-order sentence F ′ such that the

diagrams of all ıDCA-interpretations satisfying SMp[F ] can be easily extracted from

the Herbrand interpretations satisfying SMp[F
′]. We say “can be easily extracted

from” rather than “are identical to” because diagrams include equalities between

object constants, and Herbrand models do not; occurrences of equality in F will

7 This is essentially the “positive diagram” of I , as this term is used in model theory
(Robinson 1963, Section 2.1), for the special case of ıDCA-interpretations.
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have to be replaced in F ′ by another symbol. Our goal, in other words, is to define F ′

in such a way that diagrams of the stable ıDCA-models of F will be nearly identical

to Herbrand stable models of F ′.

The examples of F that we are specifically interested in are the formulas Π−

∆,Σ
,

because stable ıDCA-models of that sentence are identical to models of T∆,Σ. As

a simpler example, consider formula (3). It has 3 minimal ıDCA-models, with the

diagrams

K1 = {P(a), a = a, b = b},

K2 = {P(b), a = a, b = b},

K3 = {P(a),P(b), a = a, b = b, a = b, b = a}·

(7)

Our translation F 7→ F ′ will allow us to construct these diagrams using ASP.

The solution described below uses the binary predicate constant ıEq , which is

assumed not to belong to σ. For any first-order formula F of the signature σ, F=
Eq

stands for the formula of the signature σ∪{ıEq} obtained from F by replacing each

subformula of the form t1 = t2 with ıEq(t1, t2). (Here t1, t2 are terms, that is, object

constants or object variables.) The notation X=
Eq , where X is a set of formulas of

the signature σ, is understood in a similar way. By Eσ we denote the conjunction

of the logically valid sentences

∀x (x = x )·

∀xy(x = y → y = x ),

∀xyz (x = y ∧ y = z → x = z ),

and

∀xy(P(x) ∧ x = y → P(y))

for all predicate constants P from σ, where x, y are disjoint tuples of distinct

variables.

In the statement of the theorem below, F is an arbitrary sentence of the signa-

ture σ, and p stands for the set of all predicate constants of σ.

Theorem 4

For any ıDCA-interpretation I of the signature σ that satisfies SMp[F ], the Her-

brand interpretation D(I )=Eq of the signature σ ∪ {ıEq} satisfies

SMp[(F ∧ Eσ)
=

Eq ] · (8)

Conversely, any Herbrandmodel of this formula isD(I )=Eq for some ıDCA-interpreta-

tion I of σ satisfying SMp[F ].

In other words, the transformation I 7→ D(I )=Eq maps the class of stable ıDCA-

models of F onto the set of Herbrand stable models of (F ∧Eσ)
=
Eq . The second part

of Theorem 3 shows that this transformation is one-to-one up to isomorphism.

By Theorem 2 from (Ferraris et al. 2011), formula (8) is equivalent to

SMp,Eq [(F ∧ Eσ)
=

Eq ∧ ∀xy(ıEq(x , y) ∨ ¬ıEq(x , y))] · (9)

The advantage of this reformulation is that it treats all predicate constants of the

signature σ∪{ıEq} as intensional. This is essential for our purposes, because existing
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answer set solvers calculate Herbrand stable models under the assumption that all

predicate constants occurring in the program (except for “predefined predicates”)

are intensional.

For example, the diagrams (7) of the minimal DCA-models of (3) are identical,

modulo replacing = with ıEq , to the Herbrand stable models of the conjunction of

the formulas (3),

∀x ıEq(x , x ),

∀xy(ıEq(x , y) → ıEq(y, x )),

∀xyz (ıEq(x , y) ∧ ıEq(y, z ) → ıEq(x , z )),

(10)

∀xy(P(x ) ∧ ıEq(x , y) → P(y)),

and

∀xy(ıEq(x , y) ∨ ¬ıEq(x , y)) · (11)

In logic programming syntax, this conjunction can be written as

p(a)|p(b).

eq(X,X).

eq(X,Y) :- eq(Y,X).

eq(X,Z) :- eq(X,Y), eq(Y,Z).

p(Y) :- p(X), eq(X,Y).

{eq(X,Y)}.

To make this program safe8 we need to specify that the only possible values of the

variables X and Y are a and b. This can be accomplished by including the lines

u(a;b).

#domain u(X). #domain u(Y).

#hide u/1.

(The auxiliary predicate symbol u describes the “universe” of the program.) Now

the program can be grounded by gringo, and its Herbrand stable models can be

generated by claspD.9 The output

Answer: 1

eq(b,b) eq(a,a) p(b)

Answer: 2

eq(b,b) eq(a,a) p(a)

Answer: 3

eq(b,b) eq(a,a) eq(b,a) eq(a,b) p(a) p(b)

8 Safety is a syntactic condition required for “intelligent instantiation”—part of the process of
generating answer sets. In the program above, the rules eq(X,X) and {eq(X,Y)} are unsafe.

9 gringo and claspD are “relatives” of clingo; see Footnote (1) for a reference. clingo
itself cannot be used in this case because the program is disjunctive. cmodels (http:
//www.cs.utexas.edu/users/tag/cmodels.html) would do as well. Using the solver dlv
(http://www.dlvsystem.com) will become an option too after eliminating choice rules in fa-
vor of disjunctive rules with auxiliary predicates. We are grateful to Yuliya Lierler for helping
us identify the software capable of executing this program.

http://www.dlvsystem.com
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is essentially identical to the list (7) of minimal models, as could be expected on

the basis of Theorem 4.

The Python script nonH.py (for “non-Herbrand”) is a preprocessor that turns

a program F of a signature σ without function symbols of arity > 0, written in the

input language of gringo, into the program

(F ∧ Eσ)
=

Eq ∧ ∀xy(ıEq(x , y) ∨ ¬ıEq(x , y)),

written in the language of gringo also. Thus the Herbrand stable models of the

output of nonH.py are the diagrams of the stable ıDCA-models of the input (with

equality replaced by ıEq). As in the example above, a “universe” predicate is used

to ensure that whenever the input of nonH.py is safe, the output is safe also. The

diagrams of the minimal ıDCA-models of formula (3) can be generated by saving

that formula, in the form

p(a)|p(b).

in a file, say disjunction.lp, and then executing the command

% nonH.py disjunction.lp | gringo | claspD 0

(the claspD option 0 instructs it to generate all answer sets, not one). The script

can be downloaded from http://www.cs.utexas.edu/users/fkyang/nonH/.

4.3 Calculating Models of a Relational Theory with Null Values

The method applied above to the disjunction P(a)∨P(b) can be applied also to the

formula Π−

∆,Σ
. Stable ıDCA-models of this formula can be generated using clingo

with the preprocessor nonH.py. The preprocessor has two options that can be

useful here. The command line

% nonH.py <filename> -una <list of constants>

instructs the preprocessor to conjoin its output with the unique name axioms a 6= b

for all pairs a, b of distinct object constants from the given list. The command line

% nonH.py <filename> -no-una <list of constants>

adds the unique name axioms a 6= b for all pairs a, b of distinct object constants

such that at least one of them does not occur in the given list. The diagrams of

models of our relational theory with null values can be generated by saving the

rules

part(p1;p2;p3).

supplier(acme;foo;omega).

supplies(acme,p1;;foo,p2;;omega,p3).

subpart(p1,p2).

:- omega==p1.

:- omega==p2.

:- omega==p3.

http://www.cs.utexas.edu/users/fkyang/nonH/
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in a file, say db.lp, and then executing the command

% nonH.py db.lp -no-una omega | clingo 0

The following output will be produced:

Answer: 1

part(p1) part(p3) part(p2) supplier(acme) supplier(omega) supplier(foo)

supplies(omega,p3) supplies(foo,p2) supplies(acme,p1) subpart(p1,p2)

eq(omega,omega) eq(foo,foo) eq(acme,acme) eq(p3,p3) eq(p2,p2) eq(p1,p1)

eq(omega,foo) eq(foo,omega) supplies(omega,p2) supplies(foo,p3)

Answer: 2

part(p1) part(p3) part(p2) supplier(acme) supplier(omega) supplier(foo)

supplies(omega,p3) supplies(foo,p2) supplies(acme,p1) subpart(p1,p2)

eq(omega,omega) eq(foo,foo) eq(acme,acme) eq(p3,p3) eq(p2,p2) eq(p1,p1)

Answer: 3

part(p1) part(p3) part(p2) supplier(acme) supplier(omega) supplier(foo)

supplies(omega,p3) supplies(foo,p2) supplies(acme,p1) subpart(p1,p2)

eq(omega,omega) eq(foo,foo) eq(acme,acme) eq(p3,p3) eq(p2,p2) eq(p1,p1)

eq(omega,acme) eq(acme,omega) supplies(acme,p3) supplies(omega,p1)

It is essentially identical to the set of diagrams J1, J2, J3.

4.4 Comparison with the Traylor—Gelfond Translation

The approach to encoding relational theories with null values by logic programs

proposed in (Traylor and Gelfond 1994) does not have the property established

for Π∆,Σ in Theorem 2: generally, there is no 1–1 correspondence between the

models of T∆,Σ and the answer sets of the Traylor—Gelfond translation. For in-

stance, the logic programming counterpart of our main example in the sense of

(Traylor and Gelfond 1994) has 2 answer sets, not 3. It uses strong (classical) nega-

tion (Gelfond and Lifschitz 1991), and its answer sets are incomplete sets of literals.

One of them, for instance, includes ıSUPPLIES (ıFoo, p1) but does not include either

of the two complementary literals ıSUPPLIES (ıFoo, p3), ¬ıSUPPLIES (ıFoo, p3).

This is how the program expresses the possibility of p3 being supplied by ıFoo, along

with p1. The result of (Traylor and Gelfond 1994) describes the relation of T∆,Σ to

the intersection of the answer sets of its logic programming counterpart, not to the

individual answer sets.

Logic programming counterparts in the sense of (Traylor and Gelfond 1994), like

our programs Π∆,Σ, can be turned into executable ASP code. The reason why

that was not done in that paper is simply that the paper was written too early—

the first answer set solver appeared on the scene two years after its publication

(Niemelä and Simons 1996).

5 Proofs of Theorems

5.1 Proofs of Theorems 1 and 2
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Lemma 1

For any finite set ∆ of positive ground clauses, formula SMp[Π∆] is equivalent to

the conjunction of the clauses ∆ and the completion axioms (4).

Proof

Let C be the conjunction of the formulas

P(a) ∨ ¬P(a) (12)

for all atomic formulas P(a) occurring in ∆. It is clear that Π∆ is strongly equiv-

alent10 to the conjunction of C with the formulas

¬

r
∧

i=1

¬Ai (13)

for all clausesA1∨· · ·∨Ar from∆. According to Theorem 3 from (Ferraris et al. 2011),

it follows that SMp[Π∆] is equivalent to the conjunction of SMp[C ] with for-

mulas (13). Furthermore, (12) is strongly equivalent to ¬¬P(a) → P(a). Con-

sequently C is strongly equivalent to the conjunction of the formulas

∀x

[

∨

a∈WP

(¬¬P(x) ∧ x = a) → P(x)

]

for all predicate constants P . By Theorem 11 from (Ferraris et al. 2011), it follows

that SMp[C ] is equivalent to

∀x

[

P(x) ↔
∨

a∈WP

(¬¬P(x) ∧ x = a)

]

· (14)

It remains to observe that (13) is equivalent to A1 ∨ · · · ∨ Ar , and that (14) is

equivalent to (4).

Theorem 1. For any set ∆ of positive ground clauses, a Herbrand interpretation I

is a model of T∆ iff I is an answer set of Π∆.

Proof

A Herbrand interpretation is a model of T∆ iff it satisfies the clauses ∆ and the

completion axioms (4). On the other hand, a Herbrand interpretation is an answer

set of Π∆ iff it satisfies SMp[Π∆]. Consequently the assertion of the theorem follows

from Lemma 1.

Theorem 2. For any set ∆ of positive ground clauses and any set Σ of optional

unique name axioms, T∆,Σ is equivalent to SMp[Π∆,Σ], where p is the set of all

predicate constants.

10 See (Ferraris et al. 2011, Section 5).
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Proof

Recall that Π∆,Σ is Π∆ ∧ ıDCA ∧ U , where U is the conjunction of all unique

name axioms from T∆,Σ. Since neither ıDCA nor U contains intensional predi-

cates, SMp[Π∆,Σ] is equivalent to SMp[Π∆] ∧ ıDCA ∧ U . By Lemma 1, it follows

that SMp[Π∆,Σ] is equivalent to the conjunction of the clauses ∆, the completion

axioms (4), and the formulas ıDCA and U ; that is to say, it is equivalent to T∆,Σ.

5.2 Proof of Theorem 3

Theorem 3. If a subset X of ıEHBσ is closed under substitution, and the set of

equalities in X is closed under reflexivity, symmetry, and transitivity, then there ex-

ists a ıDCA-interpretation I such that D(I ) = X . Furthermore, this interpretation

is unique up to isomorphism.

Proof

The binary relation

a = b is in X (15)

between object constants a, b is an equivalence relation on the set of object con-

stants. For any predicate constant P , the n-ary relation

P(a1, . . . , an) is in X (16)

between object constants a1, . . . , an can be extended to equivalence classes of (15).

Consider the interpretation I such that

• the universe of I is the set of equivalence classes of relation (15),
• I interprets each object constant a as the equivalence class that contains a,
• I interprets each predicate constant P as the extension of the corresponding

relation (16) to equivalence classes.

Interpretation I satisfies ıDCA, and D(I ) = X .

To prove the second claim, consider any ıDCA-interpretation J such that D(J ) =

X . For any object constant a, let f (a) be the element of the universe of J that

represents a. Function f can be extended to equivalence classes of relation (15),

and this extension is an isomorphism between I and J .

5.3 Proof of Theorem 4

The proof of Theorem 4 is based on the fact that a ıDCA-interpretation I satisfies

a first-order sentence F of the signature σ iff the Herbrand interpretation D(I )=Eq

satisfies F=
Eq . This is easy to verify by induction on the size of F . What we need

actually is a similar proposition for second-order sentences, because the formulas

obtained by applying the operator SMp contain predicate variables. The straight-

forward generalization to second-order sentences is invalid, however. For instance,

let F be the formula

∃v(v(a) ∧ ¬v(b)) (17)
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(v is a unary predicate variable). This formula is equivalent to a 6= b. If the universe

of an interpretation I is a singleton then I does not satisfy F . On the other hand,

the result of replacing = with ıEq in F is F itself, because this formula does not

contain equality. It is satisfied by every Herbrand interpretation, including D(I )=Eq .

To overcome this difficulty, we will define the transformation F 7→ F=
Eq for second-

order sentences in such a way that it will involve, in addition to replacing = with ıEq ,

restricting the second-order quantifiers in F .

In this section, a second-order formula is a formula that may involve predicate

variables, either free or existentially quantified, but not function variables. (An

extension to universally quantified predicate variables is straightforward, but it is

not needed for our purposes.) For any predicate variable v , ıSub(v) stands for the

formula

∀x1 · · · xny1 · · · yn(v(x1, . . . , xn) ∧ ıEq(x1, y1) ∧ · · · ∧ ıEq(xn , yn) → v(y1, . . . , yn)),

where n is the arity of v . For any second-order formula F of the signature σ, F=
Eq

stands for the second-order formula of the signature σ ∪ {ıEq} obtained from F by

• replacing each subformula of the form t1 = t2 with ıEq(t1, t2), and

• restricting each second-order quantifier ∃v to ıSub(v).

For instance, is F is (17) then F=
Eq is

∃v(ıSub(v) ∧ v(a) ∧ ¬v(b))·

In application to first-order formulas, the notation F=
Eq has the same meaning as

before.

Lemma 2

A ıDCA-interpretation I satisfies a second-order sentence F of the signature σ iff

the Herbrand interpretation D(I )=Eq satisfies F=
Eq .

The proof of Lemma 2 is given in the online appendix.

In the following lemma, as in the statement of Theorem 4, F is an arbitrary

sentence of the signature σ, and p stands for the set of all predicate constants of σ.

Lemma 3

For any ıDCA-interpretation I of the signature σ,

I |= SMp[F ] iff D(I )=Eq |= SMp[(F ∧ Eσ)
=

Eq ]·

Proof

Recall that SMp[F ] is defined as

F ∧ ¬∃v((v < p) ∧ F ∗(v))

(Ferraris et al. 2011, Section 2.3), so that SMp[(F ∧ Eσ)
=
Eq ] is

F=

Eq ∧ (Eσ)
=

Eq ∧ ¬∃v((v < p) ∧ F ∗(v)=Eq ∧ E∗

σ
(v)=Eq ) · (18)
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From the definitions of Eσ and of the transformation F 7→ F ∗(v) (Ferraris et al. 2011,

Section 2.3) we see that E∗

σ
(v) is the conjunction of Eσ and the formulas

∀xy(v(x) ∧ x = y → v(y))

for all members v of tuple v. Consequently E∗

σ
(v)=Eq is the conjunction of (Eσ)

=
Eq

and the formulas ıSub(v) for all members v of tuple v. It follows that (18) can be

written as

F=

Eq ∧ (Eσ)
=

Eq ∧ ¬∃v

(

(v < p) ∧ F ∗(v)=Eq ∧ (Eσ)
=

Eq ∧
∧

v

ıSub(v)

)

·

This formula is equivalent to

F=

Eq ∧ ¬∃v

(

∧

v

ıSub(v) ∧ ((v < p) ∧ F ∗(v))=Eq

)

∧ (Eσ)
=

Eq ,

which can be written as

SMp[F ]=Eq ∧ (Eσ)
=

Eq ·

The interpretationD(I )=Eq satisfies the second conjunctive term. By Lemma 2, D(I )=Eq

satisfies the first conjunctive term iff I satisfies SMp[F ].

Theorem 4. For any ıDCA-interpretation I of the signature σ that satisfies SMp[F ],

the Herbrand interpretation D(I )=Eq of the signature σ ∪ {ıEq} satisfies

SMp[(F ∧ Eσ)
=

Eq ]·

Conversely, any Herbrand model of this formula is D(I )=Eq for some ıDCA-interpreta-

tion I of σ satisfying SMp[F ].

Proof

The first assertion is identical to the only-if part of Lemma 3. To prove the second

assertion, consider a Herbrand model J of SMp[(F ∧ Eσ)
=
Eq ]. Since this formula

entails (Eσ)
=
Eq , J is a model of (Eσ)

=
Eq as well. It follows that the subset X of

ıEDBσ such that X=
Eq = J is closed under substitution, and the set of equalities

in X is closed under reflexivity, symmetry, and transitivity. By Theorem 3, there

exists a ıDCA-interpretation I such that D(I ) = X , so that D(I )=Eq = J . By the if

part of Lemma 3, I satisfies SMp[F ].

6 Conclusion

This paper contributes to the direction of research on the semantics of null values

started in (Reiter 1984) and (Traylor and Gelfond 1994). More recently, null values

were studied in the framework of the Datalog+/− project (Gottlob et al. 2010).

We have demonstrated a close relationship between Reiter’s semantics of disjunc-

tive databases and cardinality constraints in answer set programming. It shows also

how answer set solvers can be used for computing models of relational theories with

null values.
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On the other hand, this paper improves our understanding of the role of non-

Herbrand stable models. Are they merely a mathematical curiosity, or can they

have serious applications to knowledge representation?We have provided arguments

in favor of the usefulness of this generalization of the stable model semantics by

showing, first, how non-Herbrand stable models can serve for representing null

values, and second, how they can be generated using existing software systems.

The generalization of the stable model semantics proposed in (Ferraris et al. 2011)

extends the original definition of a stable model in two ways: syntactically (it is ap-

plicable to arbitrary first-order formulas) and semantically (a stable model can

be non-Herbrand). The preprocessor f2lp (Lee and Palla 2009) allows us to use

existing answer set solvers for generating stable models of some syntactically com-

plex formulas. On the other hand, the preprocessor nonH.py, described in this

paper, allows us to use answer set solvers for generating some non-Herbrand sta-

ble models—those that satisfy the domain closure assumption but not the unique

name assumption. The two programs can be used together. For instance, the stable

ıDCA-models of the formula

(P(a) ∧ P(b)) ∨ (P(c) ∧ P(d))

(there are 23 of them) can be generated by running f2lp on the file

(p(a) & p(b)) | (p(c) & p(d)).

and then running consecutively nonH.py, gringo, and claspD.
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Lemma 2

A ıDCA-interpretation I satisfies a second-order sentence F of the signature σ iff

the Herbrand interpretation D(I )=Eq satisfies F=
Eq .

Proof

The proof is by induction on the size of F ; size is understood as follows. About

second-order sentences F and G we say that F is smaller than G if

• F has fewer second-order quantifiers than G, or

• F has the same number of second-order quantifiers as G, and the total number

of first-order quantifiers and propositional connectives in F is less than in G.

The induction hypothesis is that the assertion of the lemma holds for all sentences

that are smaller than F . If F is atomic then

I |= F iff F ∈ D(I )

iff F=
Eq ∈ D(I )=Eq

iff D(I )=Eq |= F=
Eq ·

If F is G ∧H then F=
Eq is G=

Eq ∧H=
Eq . Using the induction hypothesis, we calculate:

I |= F iff I |= G and I |= H

iff D(I )=Eq |= G=
Eq and D(I )=Eq |= H=

Eq

iff D(I )=Eq |= F=
Eq ·

For other propositional connectives the reasoning is similar. If F is ∀xG(x ) then

F=
Eq is ∀x

(

G(x )=Eq

)

. Using the induction hypothesis and the fact that I satisfies

ıDCA, we calculate:

I |= F iff for all object constants a, I |= G(a)

iff for all object constants a, D(I )=Eq |= G(a)=Eq

iff D(I )=Eq |= F=
Eq ·

For the first-order existential quantifier the reasoning is similar.

http://arxiv.org/abs/1210.4130v1
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It remains to consider the case when F is ∃vG(v), where v is a predicate variable.

To simplify notation, we will assume that the arity of v is 1. For any set V of object

constants, by ıexpV we denote the lambda-expression1 λx
∨

a∈V (x = a). Since I is

a ıDCA-interpretation, I |= F iff

for some V , I |= G(ıexpV )·

By the induction hypothesis, this is equivalent to the condition

for some V , D(I )=Eq |= H ((ıexpV )=Eq), (1)

where H (v) stands for G(v)=Eq . On the other hand, F=
Eq is ∃v(ıSub(v)∧H (v)). The

Herbrand interpretation D(I )=Eq satisfies this formula iff

for some V , D(I )=Eq |= ıSub(ıexpV ) and D(I )=Eq |= H (ıexpV ) · (2)

We need to show that (2) is equivalent to (1).

Consider first the part

D(I )=Eq |= ıSub(ıexpV ) (3)

of condition (2), that is,

D(I )=Eq |= ∀xy(ıexpV (x ) ∧ ıEq(x , y) → ıexpV (y))·

It is equivalent to

D(I )=Eq |= ∀y(∃x (ıexpV (x ) ∧ ıEq(x , y)) → ıexpV (y))·

Interpretation D(I )=Eq satisfies the inverse of this implication, because it satisfies

∀x ıEq(x , x ). Consequently condition (3) can be equivalently rewritten as

D(I )=Eq |= ∀y(∃x (ıexpV (x ) ∧ ıEq(x , y)) ↔ ıexpV (y))·

The left-hand side of this equivalence can be rewritten as
∨

a∈V ıEq(a, y). It follows

that condition (3) is equivalent to

D(I )=Eq |= ∀y
(
∨

a∈V ıEq(a, y) ↔ ıexpV (y)
)

·

Furthermore, ıEq(a, y) can be replaced here by ıEq(y, a), because D(I )=Eq satisfies

∀xy(ıEq(x , y) ↔ ıEq(y, x )). Hence (3) is equivalent to

D(I )=Eq |= (ıexpV )=Eq = ıexpV ·

It follows that (2) is equivalent to the condition

for some V , D(I )=Eq |= (ıexpV )=Eq = ıexpV and D(I )=Eq |= H ((ıexpV )=Eq) · (4)

It is clear that (4) implies (1).

It remains to check that (1) implies (4). Assume that

D(I )=Eq |= H ((ıexpV )=Eq), (5)

and let V ′ be the set of object constants a such that, for some b ∈ V , I |= a = b.

We will show that V ′ can be taken as V in (4). The argument uses two properties

of the set V ′ that are immediate from its definition:

1 On the use of lambda-expressions in logical formulas, see (?, Section 3.1).
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(a) V ⊆ V ′;

(b) if I |= a = b and a ∈ V ′ then b ∈ V ′.

Consider the first half of (4) with V ′ as V :

D(I )=Eq |= (ıexpV ′)=Eq = ıexpV ′ ·

This condition can be restated as follows: for every object constant a,

D(I )=Eq |=
∨

b∈V ′ ıEq(a, b) iff D(I )=Eq |=
∨

b∈V ′(a = b),

or, equivalently,

I |=
∨

b∈V ′(a = b) iff a ∈ V ′·

The implication left-to-right follows from property (b) of V ′; the implication right-

to-left is obvious (take b to be a).

Consider now the second half of (4) with V ′ as V :

D(I )=Eq |= H ((ıexpV ′)=Eq)·

To derive it from (5), we only need to check that

D(I )=Eq |= (ıexpV ′)=Eq = (ıexpV )=Eq ·

This claim is equivalent to

I |= ıexpV ′ = ıexpV (6)

and can be restated as follows: for every object constant a,

I |=
∨

b∈V ′(a = b) iff I |=
∨

b∈V (a = b)·

The implication left-to-right is immediate from the definition of V ′; the implication

righ-to-left is immediate from property (a).
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