arXiv:1210.1653v1 [cs.LO] 5 Oct 2012

Under consideration for publication in Theory and Practimielogic Programming 1

An Improved Proof-Theoretic Compilation of Logic
Programs

lliano Cervesato

Department of Computer Science
Carnegie Mellon University
E-mail: iliano@cmu.edu

submitted 1 January 2003; revised 1 January 2003; acceptéhiary 2003

Abstract

In prior work, we showed that logic programming compilatican be given a proof-theoretic jus-
tification for generic abstract logic programming languagnd demonstrated this technique in the
case of hereditary Harrop formulas and their linear vari@ompiled clauses were themselves logic
formulas except for the presence of a second-order alistnamter the atomic goals matching their
head. In this paper, we revisit our previous results into aenttetailed and fully logical justifica-
tion that does away with this spurious abstraction. We tleéine the resulting technique to support
well-moded programs efficiently.

To appear in Theory and Practice of Logic Programming.

KEYWORDSCompilation, Abstract Logic Programming, Hereditary grFormulas, Well-Moded
Logic Programs.

1 Introduction

In (Cervesato 1998), we presented a general methodologiefaloping a compiler and
associated intermediate language for any abstract logigramming language (ALPL)
(Miller et al. 7991) that satisfies some basic proof-theorgtoperties. We applied it ab-
stractly to the language of hereditary Harrop formulas #&nlinear variant, and also based
the concrete implementations of the Twglf (Pfenning andi@olann 19909) and LLF (Cervesato and Pfenning 2002)
systems directly on it. This methodology identified righfisent rules that behave like the
left rules that can appear in a uniform proof and used theesponding connectives as the
compilation targets of the constructs in program clausés. ilitermediate language was
therefore just another ALPL and its abstract machine reiegroof-search, like the source
ALPL. Because the transformation was based on the proaf-#tie duality between left
and right rules, proving the correctness of the compilagiootess amounted to a simple
induction. Finally, for Horn clauses the connectives in tieget ALPL corresponded to
key instructions in the Warren Abstract Machine (WAM) (Warr1983). The WAM is an
essential component of commercial Prolog systems since/ mampiled programs run
over an order of magnitude faster than when interpreted.

Up to then, the notoriously procedural instruction set & YWAM was regarded as a
wondrous piece of engineering without any logical statasharp contrast with the deep

http://arxiv.org/abs/1210.1653v1

2 |. Cervesato

logical roots of Prolog. In the words of (Bérger and Roseaemynd 995) “[the WAM] re-
sembles an intricate puzzle, whose many pieces fit tightjgtteer in a miraculous way”.

As a result, understanding it was complex in spite of thelalidity of excellent tutori-

als [Ait-Kaci 1991), proving its correctness was a fornviedask|(Borger and Rosenzweig 1995;
[Russinoff 199R), and adapting it to other logic programnianyguages a major endeavor

— itwas done folCLP(R) (Jaffar et al. 1992) andProlog (Nadathur and Mitchell 1999).

By contrast, the methodology ih (Cervesato 1998) is simpmstly) logic-based, easily
verifiable, and of general applicability.

The technique in[{Cervesato 1998) had however one blentighade use of equality
over atomic formulas together with a second-order binder atomic goals, which lacked
logical status. In this paper, we remedy this drawback bgfodly massaging the head of
clauses. This allows us to replace those constructs with-tevel equality and regular uni-
versal quantifications over the arguments of a clause hdereBult is an improved proof-
theoretic account of compilation for logic programs th&t sguarely within logic. It also
opens the doors to specializing the compilation processeibmoded programs, which
brings out the potential of doing away with unification in da\of matching, a more effi-
cient operation in many languages. We present these résutte language of hereditary
Harrop formulas and only at the highest level of abstractiust like [Cervesato 1908),
they are however general, both in terms of the source ALPLainte level of the ab-
straction considered. We are indeed in the process of ulserg to implement a compiler
for CLF (Watkins et al. 2003; Cervesato et al. 2003), a higireler concurrentlinear logic
programming language that combines backward and forwaihicty.

The paper is organized as follows: Secfibn 2 recalls the datign process of (Cervesato 1998).
In Section 8, we present our improved compilation procasSdctior 4, we refine it to
support moded programs. We lay out future developmentsétice(% andl6.

2 Background and Recap

In this section, we recall the compilation process presktim¢Cervesato 1998). For suc-
cinctness, we focus on a smaller source language — it camelsto the language under-
lying the Twelf system (Pfenning and Schiirmann 1999), oithwthis technique was first

used. We will commenton larger languages, including theaenined in[(Cervesato 1998),
in Sectior{®.

2.1 Source Language

We take the language freely generated from atomic propaositf:), intuitionistic impli-
cation (©) and universal quantificatiory) as our source language. We expand the open-
ended atomic propositions 6f (Cervesato 1998), intceglicate symbas followed by zero

or more termg. A program is a sequence of closed formulas. This langualgiehwve call

L?, is given by the following grammar:

Formulas: A == a | A1 DAy | V2. A Programs: ' == - | T, A
Atoms: a == p | at

As in (Cervesato 1998), we leave the language of terms opgmehuire that it be pred-

icative (substituting a term for a variable cannot alterdheer structure of a formula). We

An Improved Proof-Theoretic Compilation of Logic Programs 3

Uniform provability
LA %5 A>a A, = Ag c'new’ T % [c/xz]A
—————————————————————— uatm —— u.imp u.all
AT % a I % A D A, I = V. A
Immediate entailment
I % A >a I' % A r % [t/z]A > a
—— iatm i-imp — i.all
% a>a I 2 A D A1 > a I % V. A > a

Fig. 1. Uniform Deduction System fag®.

will often write an atonu asp t, wherep is its predicate symbol andis the sequence of
terms it is applied to. We implicitly assume that a predicgtabol is consistently applied
to the same number of terms throughout a program — its arigyvidite [t /x|t (resp.
[t /z] A) for the capture-avoiding substitution of tetfifor all free occurrences of variable
x in termt (resp. in formulad). Simultaneous substitution is denofed |t and[t’ /x] A.
L2 is an abstract logic programming language (Miller et al.T)%nd, for appropriate
choices of the term language, has indeed the same exprpesiee as\Prolog (Miller and Nadathur 1986)
or Twelf (Pfenning and Schiirmann 1999). It differs fromfingt language discussed in (Cervesato 1998)
for the omission of conjunction and truth (see Sedfibn 5).
The operational semantics 6f is given by the two judgments

= A A is uniformly provable front’
I %5 A > a aisimmediately entailed byt in T’
Their defining rules, given in Figuid 1, produce uniform geo@iller et al. 1991): the

uniform provability judgment includes the right sequeriesufor £° and, once the goal is
atomic, ruleu_atm calls the immediate entailment judgment, which focuses pmgram

formula A and decomposes it as prescribed by the left sequent rulessfrategy is com-
plete with respect to the traditional sequent rules of thigd (Miller et al. 1991). From a
logic programming perspective, the connectives appeanitite goal — handled by right
rules — are search directives, while the left rules carrysoutn-time preparatory phase.

2.2 Target Language

In (Cervesato 1998), the target language of the compilgtioness distinguished compiled
goals (&) from compiled clauseg(). A compiled goal was either an atomic proposition,
or a hypothetical goal (a goal to be solved in the presence @ldaitional clause) or a
universal goal (a goal to be solved in the presence of a newstaot). A compiled clause
had the formAa. C, where the second-order variaklestood for the atomic goal to be
resolved against the present clause, whileould either matcla with the head: of this
clause ¢ = «), invoke a goal' A G), or request that a variablebe instantiated with

a term @z. C). A compiled programl’ was then a sequence of compiled clauses. The
grammar for the resulting language, which we @ is as follows:

Goals: G == a | (Aa.C) DG | V2.G Programs: ¥ == - | U, Aa.C
Clauses: C' = a=a | C AG | Jz.C

The operational semantics of a compiled program, as givethé&wabove grammar, is

4 |. Cervesato

Goals
T, Aa. O, 2% [a/a]C ¥, Aa. C % G cnew’ W % [¢/2]G
g0.atm _ gO0.imp g0_all
U, Aa. C, 0 2 g v % (Aa.C)D G v 2% v G
Clause instances
RN RNy, =5 [t/a]C
rO_.eq —— rO.and ———— rO._exists
v % a=a v % cAG v =% 32,0

Fig. 2. Search Semantics 6f.

defined on the basis of the following two judgments:

U 2 @ G is uniformly provable fromp
¥ % C (s uniformly provable fromp

Here, clause instances are C's whose variablex has been instantiated with an atomic
formulaa’. The operational semantics df; is shown in Figurd]2. Observe that, with
the partial exception og0_atm, it consists solely of right rules. This means that every
connective is seen as a search directive: the dynamic ctagparations embodied by the
left rules has now been turned into right search rules thi@ustatic compilation phase.

2.3 Compilation

Compilation, the process that transforms a logic prograi‘iinto a compiled program
in £§, is expressed by means of the following three judgments:

'>v ProgramI" is compiled to¥
A > o\ C ClauseA with « is compiled taC'
A>CG Goal A is compiled toG

These judgments are defined by the rules in Fifiire 3 — seeé€aliy1998) for details.
As our ongoing example, consider the following two clausseen from a type checking

specification for a Church-style simply typedcalculus. For clarity, we write program

clauses Prolog-style, using the reverse implicatioinstead of> in positive formulas.

1. Aa.
VE1.VE NT1. VT, 3E1. 3. 3T 31>,
of (app E1 E2) 1> (of (app E1 E2) T2) = «
C of Ey (arr T1 T) > A of Ey (arr Th Tb)
C of Ex Ty A of Ex Ty
2. Aa.
VE.NT.VT5. 3E. 3T, . 3T>.
of (lam T1 E) (arr Ty T2) (of (lamT1 E) (arr T1 T2)) = «
C (Vz.of zTy AN (Yz. AB.((of x T1) =)
Dof (Fx)T?) Dof (Ez)Ty)

The compiled languagég; is sound and complete fdt*. See[(Cervesato 1998) for the
formal statements. The proof of both directions proceedsttgightforward induction,
which contrasts greatly with the complex proofs of soundreexl correctness previously
devised for the WAM|(Borger and Rosenzweig 1 §

An Improved Proof-Theoretic Compilation of Logic Programs 5

Programs
I'>Uv A> a\C
pOc_empty pOc._clause
> rA> ¥, Aa.C
Clauses
B> a\C A>G A> a\C
— cOc.atm cOc.imp —— cOc.all
a> a\a=a«a ADB > a\CAG Vz.A > a\3Iz.C
Goals
A> a\C B>G A> C
g0c.atm gO0c_.imp — gO0Oc.all
a > a ADB > (Aa.C) DG V. A > Vz.C

Fig. 3. Compilation ofZ® into L§.

3 Fully Logical Compilation

Because clauses are compiled to expressions of the fernt’, the languagec§ is not
fully logical. In this section we consider a different coagpion target, the languagé;,
which lies entirely within logic.

In the previous section, a generic Horn clause of the form

Vy.(ptCai C...Cap) (1)

was compiled into\a. Jy. (p£ = « A a1 A ... A ay). During execution, rule0_atm
reduced the current atomic goato the clause instancgy. (pt =a A ax A ... A an).
Note thatt may depend op, buta does not. We will now compile that Horn clause into

Vz.(pz CIy.(x=t Nai A ... A\ ay)) (2)

wherez is a sequence of fresh variables, all distinct from eachrpéimel equal in number
to the arity ofp, andxz = ¢ stands for a conjunction of equalities between each variabl
x; in z and the ternt; in ¢ in the corresponding position (ar if the arity of p is zero).
Notice that the non-logical second-order bindar” is gone. At run time, formula{2)
will resolve an atomic goal ¢’ into the clause t’ C Jy. (' =t A a1 A ... A ay), which
immediately reduces t8y. (£’ =t A ax A ... A anj. Like earlier,t may depend om,
butt’ does not. The variabla_scorrespond directly to the “argument registesh] of the
WAM (Ait-Kaci 1997), while they’s are closely related to its “permanent variablest).
Formula(2) can be understood as an uncurried forlof (1grontplications are trans-
formed into conjunctions and universals into existentiatsing so literally would yield the
formulap t C Jy. (a1 A ... A a,), which is incorrect because occurrences of variables
in y within ¢ have escaped their scope. Instead, fornidla (2) instali& frariableg: as the
arg}uments of the head predicatand adds the equality constraints- ¢ in the body.

3.1 Target Language

We now generalize the above intuition to any formulalify not just Horn clauses. Our
second target languagés, is given by the following grammar.

Goals: G :=a | CDG | Va.G Programs: ¥ == - | U, C

Clauses: C := RD>pz | Vz.C
Residuals: R :=z=¢ | T | RAG | 2. R

6 |. Cervesato
Goals
v,C, ¥ L ¢ > oa v,c-L @ cinew’ ¥ L [c/z]G
gl.atm gl.imp gl_all
v, C, v L oa v ooa v L vr G

Clauses

v R

v Roa > a

cl.imp

¥ L [t/2]C > a

cl.all

\111>Vm.6~‘>>a

Residuals

c1 = c1 c1 5
v R vh @ v — [t/z]R

rl.eq rl.true —— — rl.and ——— rl._exists
D N YL RAG v L 32 R

Fig. 4. Search Semantics 6f.

Compiled goals @) are just like in Sectioi 212: atoms, hypothetical goalsyuiversal
goals. Compiled clause€’'] have the fornvz. (R O p z), i.e., a (possibly empty) outer
layer of universal quantifiers enclosing an implicatiBn> p z whose heag = always
consists of a predicate namg épplied to a (possibly empty) sequence of distinct vaesbl
(x). Its body is aresidual(R). A residual can be either an equality constraint{ t), the
trivial constraintT (logical truth), or like in Sectiof 212 a goal invocation eriastantiation
request. Notice that’ is now the full result of compiling a clause.
The operational semantics 6f is specified by the following three judgments:

C1

v — G G is uniformly provable fromV
U C > a aisimmediately entailed by in ¥
v R R is uniformly provable fromp

whereC andR differ from C' andR by the instantiation of some variables in a clause head
and on the left-hand side of equalities, respectively.

Their operational semantics is given in Figlite 4. Goals aralted exactly in the same
way as uniform provability inC* (top part of Figurél). The operational reading of com-
piled clauses is an instance of that of immediate entailnralgcl1_imp is a special case
of i_imp while c1_all is isomorphic td_all. Note that rulec1_imp reduces immediately
to the residualR if the head of the clause matches the atomic goléing proved. The
rules for residuals correspond closely to the rules forsganstances for our original tar-
get language at the bottom of Figlite 2: rileeq requires that the two sides of an equality
be indeed equal and rutd _true is always satisfied.

The rules in Figurgl4 build uniform proofs (Miller et al. I99&haracteristic of abstract
logic programming languages: the operational semanticerdposes a goal to an atomic
formula (top segment of Figufg 4), then selects a clause @rukés on it until it finds a
matching head (middle segment) and then decomposes its(bottgm segment), which
may eventually expose some goals, and the cycle repeatsttlaydar, once an atomic goal
p t has been exposed, a successful derivation will necessariltain an instance of rule
gl_atm that picks a claus€’ with headp z, as many instances of rutd _all as the arity
of p, and an instance of rukel _imp. This necessary sequence of steps is captured by the

An Improved Proof-Theoretic Compilation of Logic Programs 7

following derived “macro-rule” (théackchainingule):

U,Vz. (RO pa), ¥V -2 [t/z]R
gl._atm’

U,Vz. (RO pz), ¥V -5 pt

Replacing rulegl_atm, c1_all andcl_imp with rule gl_atm’ yields a system that is
equivalent to that in Figulld 4. Taking it as primitive amauttt replacing the construction
for compiled clause&jz. (R D pz), with a synthetic connective, callit,z. R. Therefore,
by accounting for the structure of atomic propositions arappr quantification patterns,
L provides a fully logical justification for clause compilatithatL5's A«. C' lacked.

3.2 Compilation

Compilation transforms logic programs/lf into compiled logic programs ig§. In order
to define it, the auxiliary notion of pseudo clause will conaamdiy:

Pseudo Clauses:C ::= O D pz | Va.C

A pseudo clause retains the outer structure of a clause,asua tmole(J) in place of the
residualR. In general, a pseudo clau§ehas the formvz. [0 D p 2. In a fully compiled
clause, variables will coincide with 2’.

Pseudo clauses are generated while processing the heathaofa.cThe hole then needs
to be replaced with the compiled body, a residual. We writg dperation, pseudo clause
instantiation, ag[R]. It is formally defined as follows:

{(DDpz)[R] = Ropz
Vz.C)[R] = Ve (CIR)

As is often the case with such contextual operations, pseladise instantiation can, and
generally will, lead to variable capture: {iva.0 D p x)[R], there may be free occur-
rences of variables im within R. In the result, these occurrences are bound by the outer
quantifiers.

Compilation is expressed by means of the following four juégts

'>vw ProgramI" is compiled to¥

zFa > C\E Headawithzis compiled teC andE
A>C\R ClauseA is compiled taC and R
A>G Goal A is compiled to7

and defined by the rules in Figuré 5, where we wratdéor conjunctions of equalities.
The judgmentd > C\ R compiles anC® clauseA into a pseudo clauggand a residual
R. They are assembled into &f clause in ruleplc_clause andglc_imp. Programs
and goals are otherwise compiled just as fi§rin Figure[3. Clause heads are handled
differently: rulec1c_atm invokes the auxiliary head compilation judgment to comffike
goalp t into a pseudo clausér. [D p z and the equalities = ¢, which will form the
seed of the clause’s residual.

Consider the first example clause in Secfion 2.3. Its hedapp E; F») T3) is com-
piled into the pseudo clausé:; . Vao. (O D of x; x2) and the equality constrain®® A
(1 = app E1 E2) A (z2 = T3), wherex; andz, are new variables. These core equalities

8 |. Cervesato

Programs

>0 A>C\R
plc.empty plc_clause

> . I',A > ¥, C[R]

Heads
zzta>C\E z“new’

hilc.p hilc.pt
zEp>0ODpz\T zhat > Ve.C\E ANz=t
Clauses
‘Fa>C\E A>G B> C\R A> C\R
—————— clc.atm clc.imp ——— clc.all
a> C\E ADB > C\RAG Vz.A > C\3z. R
Goals
A>C\R B> G A>C
glc.atm glc.imp —_ glc.all
a > a ADB > C[R|DG V. A > Vz.C

Fig. 5. Compilation ofZ® into L.

are then extended with the compiled body of that cla(esfeF; (arr Th 1)) A (of Ey TY),
and existential quantifications over the original variatdéthe clauseE, F,, 71 andTs,
are finally wrapped around the result before embedding fiérhible of the pseudo clause.
The resultingZs clause is displayed in the top part of Figlrel 3.2.

The target languag&s is sound and complete with respectdé. In order to show it,
we need the following auxiliary results. The first statemengroved by induction on the
structure ofa. The second by induction on the given derivation.

Lemma 3.1
e If z+a > C\ E, then for allt of the same length asand all¥ we have¥ N
[t/z](C[E]) > at.
o If U % C[R] > a,then¥ - R.

The statements of soundness and completeness are as fdlomwsach of them, the
proof proceeds by mutual induction on the first derivatiothim antecedent.

Theorem 3.ZSoundness of the compilation£§)
eIf T A, T > T¥andA > G, thent % G.
elf T 5 A>q, I > ¥ andA > C\R, then¥ - C[R] > a.

Theorem 3.3Completeness of the compilation£6)
o If W5 G, T'>> ¥ and A > G, thenT - A
e lf V25 C > a, I'> VU, C=C[Rl and A > C\R, thenT % A > a.

We conclude this section by showing in Figlirel 3.2 the outpoto compilation proce-
dure for the two examples seen in Secfiod 2.3. We stretchotines clauses (left) to align
corresponding atoms. As can be gleaned from these clabses,are ample opportunities
for optimizations in our compilation process. In partiguconstraint: = y mentioning
variables on both sides can often be eliminated by replabiagxistential variablg with
the universal variable in the rest of the clause (and removing the existential dfient
— the exception is when there are multiple constraints af tbim for the same. The
leading logical constant makes for a succinct presentation of the compilation pmces
but plays no actual role: it can also be eliminated.

An Improved Proof-Theoretic Compilation of Logic Programs 9

1. VEl.VEQ.VTl.VTQ. V:El.Vl’Q.
of (app E1 Ez) T2 of Tr1 T2
C (3E1. JFE>. 377.3T5. T
A x1 = app E1 E»

> N xo =To
C of B4 (arr T T2) A of E1 (arr Ty Tz)
C of Ex T A of Eq Th)
2. VE.VT1.VT2. le.Vazg.
of (Iam T1 E) (arr T1 T2) of Tr1 T2

C (E|E. 7. 315. T
AN xi=lamT) E
A x2 =arr 11 1o

c (V. > A (Vz. Vzi.Vah T
ANzl =z

A xh =T

of x Ty A of x| x5)

Dof (Ex)T») Dof (Ex) T»)

Fig. 6. £{ Compilation Example

It is interesting to rewrite these clauses using the symtteennectiveA,, discussed
earlier (we have omitted occurrencesiofor readability):

Aof Xr1 T2. E|E1 ElEQ 3T1 ElTQ
T = app E1 EQ N T2 = T2
A of E1 (arr T1 TQ) A of E2 Tl

Aof T To. dE. ETlﬂTg
z1=lamTi E N x9 =arrTi Ts
AN Vo (Aos 2y zh. 2y =2 N 2y =Ty) D of (Ez) Ty

4 Support for Moded Programs

In this section, we will specialize the compilation process outlined to the case where the
source program is well-moded. In a well-model program, tlgeii@ent positions of each
predicate symbol are designated as either input or outppititlarguments are guaranteed
to be ground terms at the time a goal is called. Dually, oudpgtiments are guaranteed to
have been made ground by the time the call returns.

There are operational benefits to working with well-modedgpams: while an inter-
preter for a generic program must implement term-level caifon, well-moded programs
can be executed by relying uniquely on pattern matching anidlie instantiation. This is
desirable because matching often behaves better thanagendication. For example, it
is more efficient for first-order term languages were it ordgduse it does away with the
occurs-check, and it is decidable for higher-order terngleages while general unification
is not [Stirling 2009).

The developmentin this section is motivated by well-moding is sound independently

10 |. Cervesato

of whether a program is well-moded or not. Statically enfegavell-moding brings the
operational advantages just discussed, but the resulissiséction do not depend on it.

4.1 Source Language

In this section, we assume that each predicate symbgFicomes with anodewhich
declares each of its arguments as input, writteor output, written”. For simplicity of
exposition, we decorate the actual arguments of all atonojegsitions with these symbols,
so that a terna in input position in an atomic proposition is writtégread “int”). Similarly

t in output position is written (pronounced “out”). This amounts to revising the grammar
of atomic propositions as follows:

Atoms: a == p | af | at

Just like we assume that the arity of a predicate symbelmains constant in a program,
we require that all atomic propositions fprhave their input/output marks in the same
positions. This pattern is the modepf— an actual language would rely on explicit mode
declarations.

For typographic convenience and without loss of generality examples assume that
input positions precede output positions so that an atoorimdlac can be written as
p t t wherei andt are the (possibly empty) sequences of terms in input (resipub)
positions forp. To avoid notational proliferation, we use the markeasd" both as mode
designators and as symbol decorations (like primes anccspts when working with
generic terms. Thereforéand¢ indicate possibly different terms jn¢ ¢, and similarly for
term sequences, as;irt £ above.

At our level of abstraction, the rules in Figlife 1 capturedperational semantics of this
variant of £°: mode annotations are simply ignored. However, moded dixgctequires
that two of the operational choices left open by those ruiesssolved using some algo-
rithmic strategy: the order in which ruleimp searches for derivations of its two premises,
and the substitution term that ruileall picks. For both, we will assume the same strategy
as Prolog: implement ruleimp left to right and implement rulé all lazily by replacing
each variabler with a “logical variable” X which is instantiated incrementally through
unification. This allows us to view an atomic goal as a (notedrinistic) procedure call.
In a well-moded program (Debray and Warren 1988), terms putiposition are seen as
the actual arguments of this procedure, and terms in outggitipn yield return values.

In this section, we will not formalize the notion of well-medhess — se& (Debray and Warren 1988)
for Prolog and(Sarnat 2011.0) for Twelf — nor refine our operadil semantics to make goal
evaluation order and unification explicit — sée (Pientka3)0@Ve will instead refine our
compilation process to account for mode information andlpee compiled programs that,
if well-moded, can be executed without appealing to unifcat

4.2 Target Language

In £, a (well-moded) Horn clausla‘g.pii C ap C ... C a, was compiled into
Vi 2. (pid C Iy (@ =LANZL=1NAa A...A ay)). Here, the left-to-right exe-
cution order forces us to guess the final values of the outpuables: before the goals

An Improved Proof-Theoretic Compilation of Logic Programs 11

in its body have been fully executed. I, we will move the equality: = { after the
last goala,,. Sincei appear nowhere else in the residual, this equality is no Ithame an
assignment of the computed instancef ¢6 2. Accordingly, we will write it asz := £.
Furthermore, in a well-moded program, this clause will heked with ground terms in
input position, so that will be bound to ground terms. Then, the input equality= £
will match the variables i with appropriate subterms. For this reason, we will writesit

Z =: t. Expanding each goal into ¢; £, {,, the above clause will be compiled (almost) as
follows, where the arrows represent the data flow of a weltletbexecution (note that it
parallels the control flow):

C By z=1i aht A gl t, AT E:=1))
u N A UL A,

When executing an atomic goal, it is desirable to separatedh from the verification
that the output terms returned by the caller match the erdemtitput terms in this goal.
We will do so by rewriting any atomic goali ¢ in a compiled clause into the formula
2. (qiz N z = i) for fresh variableg. This transformation preserves the left-to-right
control and data flow. No special provision needs to be madé&input arguments of
q as variables in it will have been instantiated to ground teainthe moment the call is
made.

>

<C
&3¢
|€~3>
|&< ~<
S3

Next, we again generalize this intuition to any formulait not just Horn clauses. Our
third target language;$, is defined by the following grammar.

Goal Matches: M == T | M A z=:1 Programs: ¥ = - | U, C
Atomic Goals: F == pt2 A M | 32. F
Goals: G == F | CDG | Va.G
Clauses: C == RDpiz | Va.C
Residuals: R = @ =:1 | t| T|RAG| 3z R

Residuals R) refine the equality predicate = ¢ of £§ into a matching predicate =: ¢
and an assignment predicate:= t. At our level of abstraction, they behave just like
equality. During well-moded execution, the match predicatill have the form¢, =: ¢,
wheret, is a ground term whilg, may contain variables. It will bind these variables
to ground subterms af,, thereby realizing matching. However, presented with pog
that are not well-moded, the termg cannot be assumed to be ground aadperforms
unification. The assignment predicate will be called:as- ¢t wherex is a variable and a
term — a ground term for well-moded programs. It simply binds ¢t. Compiled clauses
and programs are just like ifi{.

Following the motivations above, an atomic gpdlt is not compiled any more to itself
as inLs, but to a formulaF of the form3z. (¢ 2 A z =: 1). In the grammar above, we
isolated the match predicates=: { as the non-terminal/.

12

|. Cervesato

Goals Matches

m2_true

.
=207

c2
— M

m2.mtch

c2
—— M ANt=:t

Atomic Goals

2% R>a > a

v, 00 2 0> pit B M v 24 (t/2R
a2_atm —————— a2_exists
v, C, 0 2 piiA M v 24 3, R
Goals
v 2L op v,Cc -2 G c'new’ W 22 e/z]G
g2.f g2.imp g2.all
v 2R v ooa v 2 vo. G
Clauses
w2 R v 2 [t/2]C > a

c2.imp c2._all

U2 Vz.C > a

Residuals
r2.mtch

U2 =it

2 RAG

v R U3 G

r2_assg

_— r2_true
T2 =g v 22T
T 2 [t/z]R

r2.and r2_exists

v 2, 2. R

Fig. 7. Search Semantics 6f.

We specify the operational

M
v 2
[E=Ne
V-2 C>a
U -2y R

semanticsfby means of the following five judgments:

M is provable

Fis uniformly provable fromb

G is uniformly provable fromp

a is immediately entailed b¢/ in ¥
R is uniformly provable fromP

which parallel the grammar just presented. The resultirgratmpnal semantics is shown
in Figure[T. The rules for clauses are unchanged with regpet¢ while that language’s

residual rule for equality has

been duplicated into isorharpules for matching and as-

signment. The rules for compiled goals have instead praliéel due to our handling of

terms in output position in ato

mic goals. Observe that aleatm is essentially a combi-

nation of rulegl_atm in £{ and the rule for conjunction. Rule2_exists andm2_true
are just the standard rules for existential quantificatrahtauth. Rulen2_mtch combines
the rules for conjunction and matching.

Just like in the case di$, the
which makesZ$ an abstract lo
operational semantics decom

rules in Figurgl7 construct proofs that are uniform [@i€t al. 1991),

gic programming language. In a successfidadien, this
poses a goal to formulas obthef = 3z. (pf2 A 2 =: 1)

(rules in the “Goals” segment). Then, rule®_exists, m2_mtch andm2_true neces-

sarily reduce it in a few steps i

nto the atomic formpifa. Similarly to £§, the left premise

of rulea2_atm selects a clause and focuses on it until it finds a potentiadi{ching head

(“Clauses” segment). It then p

roceeds to decomposing dyg Bi&Residuals” segment) and

the cycle repeats with whatever goals it finds in there.

An Improved Proof-Theoretic Compilation of Logic Programs 13

As just noticed, any atomic godl of the form32. (pi2 A 2 =: t) is necessarily reduced
to ptt by as many applications of ruie_exists as there are variables ina pass-through
instance of2_atm via its right branch, and a similar number of uses of rutes mtch
andm2_true respectively. This entails that the macro-rafzatm’, on the left-hand side
of the following display, is derivable:

U2 pit U000 2 O o> pii
a2_atm’ - a2_atm’”
U2 3z (piz A z=:1) U,C0 2 pii

Having factored rulea2_atm’ out, the work performed bu2_atm degenerates to rule
a2_atm” on the right-hand side of the above display, which is akintatm. The system
obtained by replacing thm2_x anda2_x rules as well ag2_f with rulesa2_atm’ and
a2_atm” is indeed equivalent to the rule set in Figlle 7.

Rulea2_atm’ entices us to interpret the compiled formdla (p£z A z =: t) for an
atomic goalp ¢ as a synthetic operatosll p £ =: ¢ which invokes a clause fgrwith its
(ground) input argumentsand matches the returned values against its térimmsoutput
position.

Having recovered atomic gogig ¢ through rulem2_atm’ anda2_atm”, we can carry
out a sequence of reasoning steps similar to what led us toatiechaining rule forC§.
Exposing the trailing assignments, a generic compiledselathas the fornviz. (Jy. R A
Z = §) D p & Z. In a successful derivation, all rul2_atm” does is to pick such a
clause. Then, applications of rut@_all will instantiate variableg i with the termsf £,
and next rulec2_imp will invoke the instantiated residudl/z,/2](3y. R A & := 3).
Now, becausé does not occur iR andz & cannot appear i, this formula reduces to
Jy. ([{/Z]R A £ := 3) by pushing the substitution in. Rul®_exists will then instantiate
the variableg with termsu (which cannot mention variablgst). Pushing this substitution
in y|elds the formuld/z, u/y]R A 1 := [u/y]s since variables iy can occur in neithef
nort. Finally, by ruler2_assg, and[u/y]s must be equal in a successful derivation. This
necessary sequence of steps is captured by the followingddyackchaining macro-rule,

U, C, 0 2 [i/i,u/y|R

g2_atm’
U,Viz. 3y.RAL:=38)Dpiz,V = pilu/yls

c

where we have carried out the assignment [u/y]3 in the conclusion. This rule can be
seen as a refinement gii_atm’ in £§ that makes use of the trailing assignment in the
compiled clauses of§. With this derived inference, rule2_atm”, c2_imp andc2_all
become unnecessary: the system consisting of mfestm’, g2_atm’, the goal rules
for implication and universal quantification, and the residrules is equivalent to that in
FigureT.

Taking ruleg2_atm’ as primitive amounts to replacing compiled clauses withftthe
lowing synthetic connective, which refin€§’s A, z. R.

v,

=
|82
S
|8¢
18>

C (R AN Z:=1)

=
3
|8¢
LLI
IS
—~
=
=
0]
o+
c
=
=}
g
S~—

14 |. Cervesato

Programs
' >V A>C\R\O
pP2c.empty p2c.clause
S>> . I'A > V,C[R A O]
Heads
h2c.p
zkFp > 0ODpaz\ TAT
zaxhkFa>C\NINO z"'new” zaxkFa>C\NINO z"'new”
h2c.in h2c.ot
zhFat>Ve.C\I ANx=1\O zhat > Ve.C\INz:=%tAO
Clauses
Fa>C\NINO A>G B> C\R\O A> C\R\O
———————————————————— c2c.atm c2c.imp c2c.all
a>C\I\O ADB>C\RAGA\O V. A > C\3Jx. R\ O
Atomic goals -
ttkFa > F\M tzka > C\M z“new’
a2c.p a2c.in a2c.ot
tEp > pt AO\T that > F\M that > 32 F\z=t A M
Goals
‘Fa> F\M A> C\R\NO B> G ASC
—_ g2c.atm g2c.imp _ g2c.all
a > F[M] ADB > CRAODG Vo, A > Va.C

Fig. 8. Compilation ofZ® into £5.

The variablesg; are then interpreted as local variables for the executighiefclause. In
this, they are akin to then permanent variables of the WANI (ATt-Kaci 1991).

In a valid proof in this system, an occurrencea® atm’ is always immediately fol-
lowed by an instance gf2_atm’: the conclusion of the latter must match the premise of
the former. This fact realizes the requirement that, upturméng from a call, the output
terms, heréu/y]s, must be checked against the terms in output position ofaherc

4.3 Compilation

Compilation transforms logic programs i to compiled programs if§. The input does
not have to be well-moded at the level of detail considered,Haut this would be opera-
tionally advantageous in a refinement of the semantics inreig that handles quantifiers
lazily. We will make use of two auxiliary notions in this sixt: pseudo clauses that we
encountered already in Section]3.2 and the analogous naitigseudo atomic goal. They
are defined as follows:

Pseudo Clauses:C = OD>pz | Va.C
Pseudo Atomic Goals:.F == ptz A 0O | 32. F

Just like pseudo clauses retain the outer structure of ael@placing the embedded resid-
ual with a hole [J), pseudo atomic goals have a hole in place of their trailiagaimes. The
general form of pseudo clauses and pseudo atomic formuesyating for input and out-
put positions, ar& . (0 D p 2/ 2/ and3z. (pfi A 0O). In Sectior 3.P, wrot€|R] for
the replacement of the hole 6fwith the residual? and noted that variable capture could
(and generally will) occur. Similarly, we writ&[M] for replacement of the hole & with
matches\/.

The compilation process is modeled by the following five jondgts, which are reminis-
cent of the compilation judgment¥ . They are more complex because clause compilation

An Improved Proof-Theoretic Compilation of Logic Programs 15

now needs to handle both matching and assignment as opmoaagkheric equality. Fur-
thermore, a new judgment is needed to compile atomic goals.

I'>v ProgramI” is compiled to¥

zhka > C\ INO Headawithxis compiled teC, I andO
A>C\R\O ClauseA is compiled ta”, R andO
tka> F\M Atomic goala with ¢ is compiled taF and M
A>G Goal A is compiled to#

We write I andO for a conjunction of matches (compilation of terms in inposition) and
assignments (compilation of output terms), respectivelihe body of a compiled clause.
In compiled atomic goals, we writ&/ for a conjunction of matches.

The rules for compilation, which define these judgmentsshmvn in Figuré 8. Com-
piling a clause4, modeled by the judgmemt > C\ R \ O, returns a pseudo clause
C, the residualr® (inclusive of input matches) and the output assignménthat will fill
its hole. The rules in the “Clauses” segment build up thigdresd starting with the com-
pilation of its head, which is displayed in the “Heads” segmé&he rules therein differ
from the similar inference fo£§ by the fact that they dispatch terms in input and output
positions in thel andO zones of the judgment as matches and assignments respective
Residuals and assignments are plugged in the hole of thelpsdause once this clause
has been fully compiled, as can be seen in the “Programs”eegamd in rulez2c_imp.

The compilation of goals differs fromd§ for the treatment of atomic formulas: upon
encountering an atom, the compilation appeals to the new judgmehta > F\ M.

It generates a pseudo atomic formutaand matches\/, which are integrated in rule
g2c_atm. The zone to the left of the turnstile serves as an accunmulsoy much like
when compiling heads.

Target language(s, is sound and complete with respectdé. The following lemma
collects some auxiliary results needed to prove this ptgp€he first two statements are
proved by induction on the structure @fthe third by induction on the given derivation.

Lemma4.1
elfzka > C\ IN\ O,then for any term sequen¢®f the same length as and
program¥ we havel -2 [t/z](C[I A O]) > at.
e Ifta > F\ M,then for alll we havel -2 F[M] > at.
o If U % C[R] > a,then¥ % R.

We have the following soundness and completeness theoweni$.fin both cases, the
proof proceeds by mutual induction over the first derivatiothe antecedent.

Theorem 4.ZSoundness of the compilation£§)
eIf T A, T > ¥andA > G, then? = G.
elf T A>q I' > TandA > C\R\O, then¥ 25 C[R A O] > a.

Theorem 4.3Completeness of the compilation£§)
oIf U 2 G, T'> VU andA > G, thenT % A,
olf U 2 C > 0q I' > U, C=CRAO] and A > C\R X\ O, then
% A>a.
To conclude this section, we revisit our ongoing example=elHwe assume that the

16 |. Cervesato

1. VEl.VEQ.VTl.VTQ. V:El.Vl’Q.
of (app E1 Ez) T2 of Tr1 T2
C (3E1. dF>.377.3T5. T
A z1 =: app E1 E»

C of Ej (arr T T2) > A Jz1. (Of Fi121 N z1=:arr Ty Ty A T)
C of B> T A Jzo. (Of FEo zo N zo0 =:T1 A T)
N x9: =T A T)
2. VE. VTl.VTQ. V£C1.V$2.
of (Iam T1 E) (arr T1 Tz) of Tr1 T2

C (E|E. a7 315. T
AN x1=:lamT1 FE

c (Va. A Jz. (V. (Vo .V, T
/ —_
> N x7 = xl
of © T A of z] x5
ANxh:=Ty ANT)
Dof (Ez) 1) Dof (Ex) z)

Nz=:To ANT)
ANxo:=arrTy To ANT)

Fig. 9. £5 Compilation Example

mode of the predicatef is of ~~ — the first argument is input and the second output. The
result of compiling our two familiar clauses intts; is shown in Figur€l9. As in Sectién 3.2,
the moded compilation process offers ample opportunitesptimization: matches and
assignments with variables on both side and the correspgradistential quantification
can often be elided, and all occurrenceSofan be optimized away.

It is instructive to rewrite these clauses with the two setithconnectives introduced
earlier for£$, again omittingT for readability:

Aof xX. 3E1 3E2 3T1 3T2 T =:app El E2
A call (of Ey) =: (arr Ty To) A call (of Ey) =: Ti;
return 1o
Aof xI1. JE. HTl ETQ T, =: lam T1 FE
A Vo (Ao 2. o) =z ;returnTh) D call (of (E x)) =: Th;
return (arr Ty T3)

5 Larger Source L anguages

In (Cervesato 1998), we illustrated our original abstragtdal compilation method on the
language of hereditary Harrop formulas. This languagediffrom£? for the presence of
conjunction (formulas of the forrd A B) and truth {T'). While our original treatment could
handle them easily (in a clause position, they were compdetisjunctions and falsehood
respectively), the approach taken in Sectighs 3[dnd 4 daesupport them directly. The
problem s that, as soon as we allow these connectives gdaas have multiple heads (or
even none). Consider for example:

Ve Vy.qrzy D (praxy A (rxy Dpax))

An Improved Proof-Theoretic Compilation of Logic Programs 17

This clause has two heads; x y andp, 2. What should it be compiled to? To ensure
immediacy (embodied in the macro-rydd _atm’), our compilation strategy produces a
pseudo clause applied to a residual, thereby exposing titee(fed) head of a compiled
clause as close to the top level as possible. How to achievadlwv that there may be more
than one head?

One approach to dealing with this problem is to observe thdistributes over (the
antecedent ofp andV. By doing so to the above example, we obtain the formula

Ve Vy.qezyDdpray) N Ve.Vy.qey Drxy D ps x)

Observe that it is a conjunction @#® clauses. Each of them can now be compiled as
in Section 8 and the results can be combined by means of andi&jn. This approach
generalizes to the full language of hereditary Harrop fdaswut pushes the conjunctions
to the outside, leaving inner formulas resembling the daws L (conjunction and truth

in a goal position are left alone as they are not problemaiiguses with no head (e.g.,
A D T)arereducedtd . These preprocessing steps can be implemented as a soaee-c
transformation or integrated in the compilation process.

The other abstract logic programming language examinédemesato 1998) is the lan-
guage of linear hereditary Harrop formulas, found at the obt_olli (Hodas and Miller 1994)
and LLF [Cervesato and Pfenning 2002). The improved cotiilgprocess discussed in
this paper extends directly in the presence of linearitycaBise linear hereditary Har-
rop formulas feature a form of conjunction and truth, thehtecal device just outlined
is needed to obtain workable compiled clauses.

6 Future Work

The discussion in Sectidd 4 sets the stage for a nearly famaitioperational semantics
of well-moded programs. Indeed, given an atomic goal wittugd terms in its input po-
sitions, proof search will instantiate its output posidn ground terms, if it succeeds.
Being in a logic programming setting, more than one answelddee returned. Indeed, for
well-moded programs, the clauses for a predicate implemégartial, non-deterministic
function. This observation informed the choice of the riotafor the synthetic operators
we exposedeall p £ =: £ andA,z. Jy. (R; return £).

Now we believe that, in the case of well-moded programs, sendetailed operational
semantics that exposes variable manipulations usingdbgariables and explicit substi-
tutions (and restricts the execution order) can bring timefional interpretation to the sur-
face. This would provide a logical justification for the naimpulse to give well-moded
programs a semantics that is typical of functional programgntanguages, where atomic
predicates carry just input terms and from which the ternwuitput position emerge by a
process of reduction.

In future work, we intend to carry out this program by givingh a detailed operational
semantics taZ® as well as well-moding rules. The goal will then be to perfdogical
transformations, akin to what we did in this paper, that eepitis functional semantics
for well-moded programs. It would also allow us to prove fatiythat the operato: of
Sectior % can indeed be implemented as matching rather thaara unification.

18 |. Cervesato

Acknowledgments

This work was supported by the Qatar National Research Fadengrant NPRP 09-1107-
1-168. We are grateful to Frank Pfenning, Carsten SchiummBobert J. Simmons and
Jorge Sacchini for the many fruitful discussions, as wetbate anonymous reviewers.

References

AIT-KACI, H. 1991.Warren’s Abstract Machine: a Tutorial ReconstructidvlIT Press.

BORGER E.AND ROSENZWEIG D. 1995. The WAM — definition and compiler correctness. In
Logic Programming: Formal Methods and Practical Applicats C. Beierle and L. Pluemer, Eds.
Computer Science and Artificial Intelligence, vol. 11. NeHolland, 21-90.

CERVESATO, |. 1998. Proof-Theoretic Foundation of Compilation in iodrogramming Lan-
guages. M998 Joint International Conference and Symposium on LBgigramming — JIC-
SLP’98 J. Jaffar, Ed. MIT Press, Manchester, UK, 115-129.

CERVESATO, |. AND PFENNING, F. 2002. A Linear Logical Frameworknformation & Computa-
tion 179,1, 19-75.

CERVESATO, |., PFENNING, F., WALKER, D., AND WATKINS, K. 2003. A Concurrent Logical
Framework 1l: Examples and Applications. Technical Re@mU-CS-02-102, Department of
Computer Science, Carnegie Mellon University, PittsbuRf March 2002, revised May.

DEBRAY, S. K.AND WARREN, D. S. 1988. Automatic mode inference for logic progradwirnal
of Logic Programming 5207—229.

HODAS, J. S.AND MILLER, D. 1994. Logic programming in a fragment of intuitionisticear
logic. Information and Computation 11Q, 327—-365.

JAFFAR, J., MICHAYLOV, S., STUCKEY, P.,AND YAP, R. 1992. An abstract machine fGLP(R).

In Proceedings of the SIGPLAN’92 Conference on Programmingguage Design and Imple-
mentation — PLDI'92San Francisco, CA.

MILLER, D. AND NADATHUR, G. 1986. Higher-order logic programming. Broceedings of the
Third International Logic Programming Conferende. Shapiro, Ed. London, 448—462.

MILLER, D., NADATHUR, G., FFENNING, F.,AND SCEDROV, A. 1991. Uniform proofs as a foun-
dation for logic programmingAnnals of Pure and Applied Logic 5125-157.

NADATHUR, G. AND MITCHELL, D. J. 1999. System description: Teyjus — a compiler and ab-
stract machine based implementation of lambda prologSixteenth Conference on Automated
Deduction (CADE’'99)H. Ganzinger, Ed. 287-291.

PFENNING, F. AND SCHURMANN, C. 1999. System Description: Twelf — A Meta-Logical Frame-
work for Deductive Systems. IRroceedings of the 16th International Conference on Autetha
Deduction — CADE-16Springer-Verlag LNAI 1632, Trento, Italy, 202—206.

PIENTKA, B. 2003. Tabled higher-order logic programming. Ph.DsitheDepartment of Computer
Science, Carnegie Mellon University.

RussINOFF, D. M. 1992. A verified Prolog compiler for the Warren abstnaachine.Journal of
Logic Programming 13367-412.

SARNAT, J. 2010. Syntactic finitism in the metatheory of programgrienguages. Ph.D. thesis,
Department of Computer Science, Yale University.

STIRLING, C. 2009. Decidability of higher-order matchind.ogical Methods in Computer Sci-
ence 53.

WARREN, D. H. D. 1983. An abstract Prolog instruction set. Techiitte 309, SRI International,
Menlo Park, CA. Oct.

WATKINS, K., CERVESATO, |., PFENNING, F., AND WALKER, D. 2003. A Concurrent Logical
Framework I: Judgments and Properties. Technical Repok @\8-02-101, Department of Com-
puter Science, Carnegie Mellon University, Pittsburgh, March 2002, revised May.

	1 Introduction
	2 Background and Recap
	2.1 Source Language
	2.2 Target Language
	2.3 Compilation

	3 Fully Logical Compilation
	3.1 Target Language
	3.2 Compilation

	4 Support for Moded Programs
	4.1 Source Language
	4.2 Target Language
	4.3 Compilation

	5 Larger Source Languages
	6 Future Work
	References

