
ar
X

iv
:1

21
0.

16
53

v1
 [

cs
.L

O
]

5
O

ct
 2

01
2

Under consideration for publication in Theory and Practiceof Logic Programming 1

An Improved Proof-Theoretic Compilation of Logic
Programs

Iliano Cervesato
Department of Computer Science

Carnegie Mellon University
E-mail: iliano@cmu.edu

submitted 1 January 2003; revised 1 January 2003; accepted 1January 2003

Abstract

In prior work, we showed that logic programming compilationcan be given a proof-theoretic jus-
tification for generic abstract logic programming languages, and demonstrated this technique in the
case of hereditary Harrop formulas and their linear variant. Compiled clauses were themselves logic
formulas except for the presence of a second-order abstraction over the atomic goals matching their
head. In this paper, we revisit our previous results into a more detailed and fully logical justifica-
tion that does away with this spurious abstraction. We then refine the resulting technique to support
well-moded programs efficiently.

To appear in Theory and Practice of Logic Programming.

KEYWORDS: Compilation, Abstract Logic Programming, Hereditary Harrop Formulas, Well-Moded
Logic Programs.

1 Introduction

In (Cervesato 1998), we presented a general methodology fordeveloping a compiler and
associated intermediate language for any abstract logic programming language (ALPL)
(Miller et al. 1991) that satisfies some basic proof-theoretic properties. We applied it ab-
stractly to the language of hereditary Harrop formulas and its linear variant, and also based
the concrete implementations of the Twelf (Pfenning and Schürmann 1999) and LLF (Cervesato and Pfenning 2002)
systems directly on it. This methodology identified right sequent rules that behave like the
left rules that can appear in a uniform proof and used the corresponding connectives as the
compilation targets of the constructs in program clauses. The intermediate language was
therefore just another ALPL and its abstract machine reliedon proof-search, like the source
ALPL. Because the transformation was based on the proof-theoretic duality between left
and right rules, proving the correctness of the compilationprocess amounted to a simple
induction. Finally, for Horn clauses the connectives in thetarget ALPL corresponded to
key instructions in the Warren Abstract Machine (WAM) (Warren 1983). The WAM is an
essential component of commercial Prolog systems since many compiled programs run
over an order of magnitude faster than when interpreted.

Up to then, the notoriously procedural instruction set of the WAM was regarded as a
wondrous piece of engineering without any logical status, in sharp contrast with the deep

http://arxiv.org/abs/1210.1653v1

2 I. Cervesato

logical roots of Prolog. In the words of (Börger and Rosenzweig 1995) “[the WAM] re-
sembles an intricate puzzle, whose many pieces fit tightly together in a miraculous way”.
As a result, understanding it was complex in spite of the availability of excellent tutori-
als (Aı̈t-Kaci 1991), proving its correctness was a formidable task (Börger and Rosenzweig 1995;
Russinoff 1992), and adapting it to other logic programminglanguages a major endeavor
— it was done forCLP(R) (Jaffar et al. 1992) andλProlog (Nadathur and Mitchell 1999).
By contrast, the methodology in (Cervesato 1998) is simple,(mostly) logic-based, easily
verifiable, and of general applicability.

The technique in (Cervesato 1998) had however one blemish: it made use of equality
over atomic formulas together with a second-order binder over atomic goals, which lacked
logical status. In this paper, we remedy this drawback by carefully massaging the head of
clauses. This allows us to replace those constructs with term-level equality and regular uni-
versal quantifications over the arguments of a clause head. The result is an improved proof-
theoretic account of compilation for logic programs that sits squarely within logic. It also
opens the doors to specializing the compilation process to well-moded programs, which
brings out the potential of doing away with unification in favor of matching, a more effi-
cient operation in many languages. We present these resultsfor the language of hereditary
Harrop formulas and only at the highest level of abstraction. Just like (Cervesato 1998),
they are however general, both in terms of the source ALPL andof the level of the ab-
straction considered. We are indeed in the process of using them to implement a compiler
for CLF (Watkins et al. 2003; Cervesato et al. 2003), a higher-order concurrent linear logic
programming language that combines backward and forward chaining.

The paper is organized as follows: Section 2 recalls the compilation process of (Cervesato 1998).
In Section 3, we present our improved compilation process. In Section 4, we refine it to
support moded programs. We lay out future developments in Sections 5 and 6.

2 Background and Recap

In this section, we recall the compilation process presented in (Cervesato 1998). For suc-
cinctness, we focus on a smaller source language — it corresponds to the language under-
lying the Twelf system (Pfenning and Schürmann 1999), on which this technique was first
used. We will comment on larger languages, including those examined in (Cervesato 1998),
in Section 5.

2.1 Source Language

We take the language freely generated from atomic propositions (a), intuitionistic impli-
cation (⊃) and universal quantification (∀) as our source language. We expand the open-
ended atomic propositions of (Cervesato 1998), into apredicate symbolp followed by zero
or more termst. A program is a sequence of closed formulas. This language, which we call
Ls, is given by the following grammar:

Formulas: A ::= a | A1 ⊃ A2 | ∀x.A

Atoms: a ::= p | a t

Programs: Γ ::= · | Γ, A

As in (Cervesato 1998), we leave the language of terms open, but require that it be pred-
icative (substituting a term for a variable cannot alter theouter structure of a formula). We

An Improved Proof-Theoretic Compilation of Logic Programs 3

Uniform provability

Γ, A,Γ
′ u
−→ A ≫ a

u atm

Γ, A,Γ′ u
−→ a

Γ, A1

u
−→ A2

u imp

Γ
u

−→ A1 ⊃ A2

c “new” Γ
u

−→ [c/x]A
u all

Γ
u

−→ ∀x.A

Immediate entailment

i atm

Γ
u

−→ a ≫ a

Γ
u

−→ A1 ≫ a Γ
u

−→ A2

i imp

Γ
u

−→ A2 ⊃ A1 ≫ a

Γ
u

−→ [t/x]A ≫ a
i all

Γ
u

−→ ∀x.A ≫ a

Fig. 1. Uniform Deduction System forLs.

will often write an atoma asp t, wherep is its predicate symbol andt is the sequence of
terms it is applied to. We implicitly assume that a predicatesymbol is consistently applied
to the same number of terms throughout a program — its arity. We write [t′/x]t (resp.
[t′/x]A) for the capture-avoiding substitution of termt′ for all free occurrences of variable
x in termt (resp. in formulaA). Simultaneous substitution is denoted[t′/x]t and[t′/x]A.
Ls is an abstract logic programming language (Miller et al. 1991) and, for appropriate

choices of the term language, has indeed the same expressivepower asλProlog (Miller and Nadathur 1986)
or Twelf (Pfenning and Schürmann 1999). It differs from thefirst language discussed in (Cervesato 1998)
for the omission of conjunction and truth (see Section 5).

The operational semantics ofLs is given by the two judgments

Γ
u

−→ A A is uniformly provable fromΓ
Γ

u
−→ A ≫ a a is immediately entailed byA in Γ

Their defining rules, given in Figure 1, produce uniform proofs (Miller et al. 1991): the
uniform provability judgment includes the right sequent rules forLs and, once the goal is
atomic, ruleu atm calls the immediate entailment judgment, which focuses on aprogram
formulaA and decomposes it as prescribed by the left sequent rules. This strategy is com-
plete with respect to the traditional sequent rules of this logic (Miller et al. 1991). From a
logic programming perspective, the connectives appearingin the goal — handled by right
rules — are search directives, while the left rules carry outa run-time preparatory phase.

2.2 Target Language

In (Cervesato 1998), the target language of the compilationprocess distinguished compiled
goals (G) from compiled clauses (C). A compiled goal was either an atomic proposition,
or a hypothetical goal (a goal to be solved in the presence of an additional clause) or a
universal goal (a goal to be solved in the presence of a new constant). A compiled clause
had the formΛα.C, where the second-order variableα stood for the atomic goal to be
resolved against the present clause, whileC could either matchα with the heada of this
clause (a

.
= α), invoke a goal (C ∧ G), or request that a variablex be instantiated with

a term (∃x.C). A compiled programΨ was then a sequence of compiled clauses. The
grammar for the resulting language, which we callLc

0, is as follows:

Goals: G ::= a | (Λα.C) ⊃ G | ∀x.G

Clauses: C ::= a
.
= α | C ∧ G | ∃x.C

Programs: Ψ ::= · | Ψ,Λα.C

The operational semantics of a compiled program, as given bythe above grammar, is

4 I. Cervesato

Goals

Ψ,Λα. C,Ψ
′

c0
−→ [a/α]C

g0 atm

Ψ,Λα.C,Ψ′
c0−→ a

Ψ,Λα.C
c0−→ G

g0 imp

Ψ
c0−→ (Λα. C) ⊃ G

c “new” Ψ
c0
−→ [c/x]G

g0 all

Ψ
c0−→ ∀x.G

Clause instances

r0 eq

Ψ
c0−→ a

.
= a

Ψ
c0−→ C̃ Ψ

c0−→ G
r0 and

Ψ
c0−→ C̃ ∧ G

Ψ
c0
−→ [t/x]C̃

r0 exists

Ψ
c0−→ ∃x. C̃

Fig. 2. Search Semantics ofLc
0.

defined on the basis of the following two judgments:

Ψ
c0−→ G G is uniformly provable fromΨ

Ψ
c0−→ C̃ C̃ is uniformly provable fromΨ

Here, clause instances̃C areC ’s whose variableα has been instantiated with an atomic
formula a′. The operational semantics ofLc

0 is shown in Figure 2. Observe that, with
the partial exception ofg0 atm, it consists solely of right rules. This means that every
connective is seen as a search directive: the dynamic clausepreparations embodied by the
left rules has now been turned into right search rules through a static compilation phase.

2.3 Compilation

Compilation, the process that transforms a logic program inLs into a compiled program
in Lc

0, is expressed by means of the following three judgments:

Γ ≫ Ψ ProgramΓ is compiled toΨ
A ≫ α \C ClauseA with α is compiled toC
A ≫ G GoalA is compiled toG

These judgments are defined by the rules in Figure 3 — see (Cervesato 1998) for details.
As our ongoing example, consider the following two clauses,taken from a type checking

specification for a Church-style simply typedλ-calculus. For clarity, we write program
clauses Prolog-style, using the reverse implication⊂ instead of⊃ in positive formulas.

1.
∀E1.∀E2.∀T1.∀T2.

of (app E1 E2) T2

⊂ of E1 (arr T1 T2)
⊂ of E2 T1

≫

Λα.
∃E1.∃E2.∃T1.∃T2.

(of (app E1 E2) T2)
.

= α

∧ of E1 (arr T1 T2)
∧ of E2 T1

2.
∀E.∀T1.∀T2.

of (lam T1 E) (arr T1 T2)
⊂ (∀x. of x T1

⊃ of (E x) T2)

≫

Λα.
∃E.∃T1.∃T2.

(of (lam T1 E) (arr T1 T2))
.

= α

∧ (∀x. Λβ. ((of x T1)
.

= β)
⊃ of (E x) T2)

The compiled languageLc
0 is sound and complete forLs. See (Cervesato 1998) for the

formal statements. The proof of both directions proceeds bystraightforward induction,
which contrasts greatly with the complex proofs of soundness and correctness previously
devised for the WAM (Börger and Rosenzweig 1995; Russinoff1992).

An Improved Proof-Theoretic Compilation of Logic Programs 5

Programs

p0c empty

· ≫ ·

Γ ≫ Ψ A ≫ α \C
p0c clause

Γ, A ≫ Ψ,Λα.C

Clauses

c0c atm

a ≫ α \ a
.
= α

B ≫ α \C A ≫ G
c0c imp

A ⊃ B ≫ α \C ∧ G

A ≫ α \C
c0c all

∀x.A ≫ α \ ∃x.C

Goals

g0c atm

a ≫ a

A ≫ α \C B ≫ G
g0c imp

A ⊃ B ≫ (Λα.C) ⊃ G

A ≫ C
g0c all

∀x.A ≫ ∀x.C

Fig. 3. Compilation ofLs intoLc
0.

3 Fully Logical Compilation

Because clauses are compiled to expressions of the formΛα.C, the languageLc
0 is not

fully logical. In this section we consider a different compilation target, the languageLc
1,

which lies entirely within logic.
In the previous section, a generic Horn clause of the form

∀y. (p t ⊂ a1 ⊂ . . . ⊂ an) (1)

was compiled intoΛα. ∃y. (p t
.
= α ∧ a1 ∧ . . . ∧ an). During execution, rulec0 atm

reduced the current atomic goala to the clause instance∃y. (p t
.
= a ∧ a1 ∧ . . . ∧ an).

Note thatt may depend ony, buta does not. We will now compile that Horn clause into

∀x. (p x ⊂ ∃y. (x
.
= t ∧ a1 ∧ . . . ∧ an)) (2)

wherex is a sequence of fresh variables, all distinct from each other, and equal in number
to the arity ofp, andx

.
= t stands for a conjunction of equalities between each variable

xi in x and the termti in t in the corresponding position (or⊤ if the arity of p is zero).
Notice that the non-logical second-order binder “Λα.” is gone. At run time, formula (2)
will resolve an atomic goalp t′ into the clausep t′ ⊂ ∃y. (t′

.
= t ∧ a1 ∧ . . . ∧ an), which

immediately reduces to∃y. (t′
.
= t ∧ a1 ∧ . . . ∧ an). Like earlier,t may depend ony,

but t′ does not. The variablesx correspond directly to the “argument registers” (An) of the
WAM (Aı̈t-Kaci 1991), while they’s are closely related to its “permanent variables” (Yn).

Formula (2) can be understood as an uncurried form of (1): outer implications are trans-
formed into conjunctions and universals into existentials. Doing so literally would yield the
formulap t ⊂ ∃y. (a1 ∧ . . . ∧ an), which is incorrect because occurrences of variables
in y within t have escaped their scope. Instead, formula (2) installs fresh variablesx as the
arguments of the head predicatep and adds the equality constraintsx

.
= t in the body.

3.1 Target Language

We now generalize the above intuition to any formula inLs, not just Horn clauses. Our
second target language,Lc

1, is given by the following grammar.

Goals: G ::= a | C ⊃ G | ∀x.G

Clauses: C ::= R ⊃ p x | ∀x.C

Residuals: R ::= x
.
= t | ⊤ | R ∧ G | ∃x.R

Programs: Ψ ::= · | Ψ, C

6 I. Cervesato

Goals

Ψ, C,Ψ′
c1−→ C ≫ a

g1 atm

Ψ, C,Ψ′
c1−→ a

Ψ, C
c1−→ G

g1 imp

Ψ
c1−→ C ⊃ G

c “new” Ψ
c1
−→ [c/x]G

g1 all

Ψ
c1−→ ∀x.G

Clauses

Ψ
c1−→ R̃

c1 imp

Ψ
c1−→ R̃ ⊃ a ≫ a

Ψ
c1
−→ [t/x]C̃ ≫ a

c1 all

Ψ
c1−→ ∀x. C̃ ≫ a

Residuals

r1 eq

Ψ
c1−→ t

.
= t

r1 true

Ψ
c1−→ ⊤

Ψ
c1−→ R̃ Ψ

c1−→ G
r1 and

Ψ
c1−→ R̃ ∧ G

Ψ
c1
−→ [t/x]R̃

r1 exists

Ψ
c1−→ ∃x. R̃

Fig. 4. Search Semantics ofLc
1.

Compiled goals (G) are just like in Section 2.2: atoms, hypothetical goals, oruniversal
goals. Compiled clauses (C) have the form∀x. (R ⊃ p x), i.e., a (possibly empty) outer
layer of universal quantifiers enclosing an implicationR ⊃ p x whose headp x always
consists of a predicate name (p) applied to a (possibly empty) sequence of distinct variables
(x). Its body is aresidual(R). A residual can be either an equality constraint (x

.
= t), the

trivial constraint⊤ (logical truth), or like in Section 2.2 a goal invocation or an instantiation
request. Notice thatC is now the full result of compiling a clause.

The operational semantics ofLc
1 is specified by the following three judgments:

Ψ
c1−→ G G is uniformly provable fromΨ

Ψ
c1−→ C̃ ≫ a a is immediately entailed bỹC in Ψ

Ψ
c1−→ R̃ R̃ is uniformly provable fromΨ

whereC̃ andR̃ differ fromC andR by the instantiation of some variables in a clause head
and on the left-hand side of equalities, respectively.

Their operational semantics is given in Figure 4. Goals are handled exactly in the same
way as uniform provability inLs (top part of Figure 1). The operational reading of com-
piled clauses is an instance of that of immediate entailment: rulec1 imp is a special case
of i imp while c1 all is isomorphic toi all. Note that rulec1 imp reduces immediately
to the residualR if the head of the clause matches the atomic goala being proved. The
rules for residuals correspond closely to the rules for clause instances for our original tar-
get language at the bottom of Figure 2: ruler1 eq requires that the two sides of an equality
be indeed equal and ruler1 true is always satisfied.

The rules in Figure 4 build uniform proofs (Miller et al. 1991), characteristic of abstract
logic programming languages: the operational semantics decomposes a goal to an atomic
formula (top segment of Figure 4), then selects a clause and focuses on it until it finds a
matching head (middle segment) and then decomposes its body(bottom segment), which
may eventually expose some goals, and the cycle repeats. In particular, once an atomic goal
p t has been exposed, a successful derivation will necessarilycontain an instance of rule
g1 atm that picks a clauseC with headp x, as many instances of rulec1 all as the arity
of p, and an instance of rulec1 imp. This necessary sequence of steps is captured by the

An Improved Proof-Theoretic Compilation of Logic Programs 7

following derived “macro-rule” (thebackchainingrule):

Ψ, ∀x. (R ⊃ p x),Ψ′ c1−→ [t/x]R
g1 atm

′

Ψ, ∀x. (R ⊃ p x),Ψ′ c1−→ p t

Replacing rulesg1 atm, c1 all andc1 imp with rule g1 atm′ yields a system that is
equivalent to that in Figure 4. Taking it as primitive amounts to replacing the construction
for compiled clauses,∀x. (R ⊃ px), with a synthetic connective, call itΛpx.R. Therefore,
by accounting for the structure of atomic propositions and proper quantification patterns,
Lc
1 provides a fully logical justification for clause compilation thatLc

0’s Λα.C lacked.

3.2 Compilation

Compilation transforms logic programs inLs into compiled logic programs inLc
1. In order

to define it, the auxiliary notion of pseudo clause will come handy:

Pseudo Clauses:C ::= � ⊃ p x | ∀x. C

A pseudo clause retains the outer structure of a clause, but has a hole (�) in place of the
residualR. In general, a pseudo clauseC has the form∀x.� ⊃ p x′. In a fully compiled
clause, variablesx will coincide withx′.

Pseudo clauses are generated while processing the head of a clause. The hole then needs
to be replaced with the compiled body, a residual. We write this operation, pseudo clause
instantiation, asC[R]. It is formally defined as follows:

{
(� ⊃ p x)[R] = R ⊃ p x

(∀x. C)[R] = ∀x. (C[R])

As is often the case with such contextual operations, pseudoclause instantiation can, and
generally will, lead to variable capture: in(∀x.� ⊃ p x)[R], there may be free occur-
rences of variables inx within R. In the result, these occurrences are bound by the outer
quantifiers.

Compilation is expressed by means of the following four judgments

Γ ≫ Ψ ProgramΓ is compiled toΨ
x ⊢ a ≫ C \E Heada with x is compiled toC andE
A ≫ C \R ClauseA is compiled toC andR
A ≫ G GoalA is compiled toG

and defined by the rules in Figure 5, where we wroteE for conjunctions of equalities.
The judgmentA ≫ C \R compiles anLs clauseA into a pseudo clauseC and a residual
R. They are assembled into anLc

1 clause in rulesp1c clause andg1c imp. Programs
and goals are otherwise compiled just as forLc

0 in Figure 3. Clause heads are handled
differently: rulec1c atm invokes the auxiliary head compilation judgment to compilethe
goalp t into a pseudo clause∀x.� ⊃ p x and the equalitiesx

.
= t, which will form the

seed of the clause’s residual.
Consider the first example clause in Section 2.3. Its head (of (app E1 E2) T2) is com-

piled into the pseudo clause∀x1. ∀x2. (� ⊃ of x1 x2) and the equality constraints⊤ ∧

(x1
.
= app E1 E2) ∧ (x2

.
= T2), wherex1 andx2 are new variables. These core equalities

8 I. Cervesato

Programs

p1c empty

· ≫ ·

Γ ≫ Ψ A ≫ C \R
p1c clause

Γ, A ≫ Ψ, C[R]

Heads

h1c p

x ⊢ p ≫ � ⊃ p x \⊤

x x ⊢ a ≫ C \E x “new”
h1c pt

x ⊢ a t ≫ ∀x.C \E ∧ x
.
= t

Clauses

· ⊢ a ≫ C \E
c1c atm

a ≫ C \E

A ≫ G B ≫ C \R
c1c imp

A ⊃ B ≫ C \R ∧ G

A ≫ C \R
c1c all

∀x.A ≫ C \∃x.R

Goals

g1c atm

a ≫ a

A ≫ C \R B ≫ G
g1c imp

A ⊃ B ≫ C[R] ⊃ G

A ≫ C
g1c all

∀x.A ≫ ∀x.C

Fig. 5. Compilation ofLs intoLc
1.

are then extended with the compiled body of that clause,(of E1 (arr T1 T2))∧ (of E2 T1),
and existential quantifications over the original variables of the clause,E1, E2, T1 andT2,
are finally wrapped around the result before embedding it in the hole of the pseudo clause.
The resultingLc

1 clause is displayed in the top part of Figure 3.2.
The target languageLc

1 is sound and complete with respect toLs. In order to show it,
we need the following auxiliary results. The first statementis proved by induction on the
structure ofa. The second by induction on the given derivation.

Lemma 3.1
• If x ⊢ a ≫ C \E, then for allt of the same length asx and allΨ we haveΨ

c1−→

[t/x](C[E]) ≫ a t.
• If Ψ

c1−→ C[R] ≫ a, thenΨ
c1−→ R.

The statements of soundness and completeness are as follows. For each of them, the
proof proceeds by mutual induction on the first derivation inthe antecedent.

Theorem 3.2(Soundness of the compilation toLc
1)

• If Γ
u

−→ A, Γ ≫ Ψ and A ≫ G, then Ψ
c1−→ G.

• If Γ
u

−→ A ≫ a, Γ ≫ Ψ and A ≫ C \R, then Ψ
c1−→ C[R] ≫ a.

Theorem 3.3(Completeness of the compilation toLc
1)

• If Ψ
c1−→ G, Γ ≫ Ψ and A ≫ G, then Γ

u
−→ A.

• If Ψ
c1−→ C ≫ a, Γ ≫ Ψ, C = C[R] and A ≫ C \R, then Γ

u
−→ A ≫ a.

We conclude this section by showing in Figure 3.2 the output of our compilation proce-
dure for the two examples seen in Section 2.3. We stretch the source clauses (left) to align
corresponding atoms. As can be gleaned from these clauses, there are ample opportunities
for optimizations in our compilation process. In particular, a constraintx

.
= y mentioning

variables on both sides can often be eliminated by replacingthe existential variabley with
the universal variablex in the rest of the clause (and removing the existential quantifier)
— the exception is when there are multiple constraints of this form for the samey. The
leading logical constant⊤ makes for a succinct presentation of the compilation process,
but plays no actual role: it can also be eliminated.

An Improved Proof-Theoretic Compilation of Logic Programs 9

1. ∀E1.∀E2.∀T1.∀T2.

of (app E1 E2) T2

⊂ of E1 (arr T1 T2)
⊂ of E2 T1

≫

∀x1.∀x2.

of x1 x2

⊂ (∃E1.∃E2. ∃T1.∃T2.⊤

∧ x1

.

= app E1 E2

∧ x2

.

= T2

∧ of E1 (arr T1 T2)
∧ of E2 T1)

2. ∀E.∀T1.∀T2.

of (lam T1 E) (arr T1 T2)

⊂ (∀x.

of x T1

⊃ of (E x) T2)

≫

∀x1.∀x2.

of x1 x2

⊂ (∃E.∃T1.∃T2.⊤

∧ x1

.

= lam T1 E

∧ x2

.

= arr T1 T2

∧ (∀x. ∀x′

1.∀x
′

2.⊤

∧ x′

1

.

= x

∧ x′

2

.

= T1

∧ of x′

1 x′

2)
⊃ of (E x) T2)

Fig. 6. Lc
1 Compilation Example

It is interesting to rewrite these clauses using the synthetic connectiveΛp discussed
earlier (we have omitted occurrences of⊤ for readability):

Λof x1 x2. ∃E1. ∃E2. ∃T1. ∃T2.

x1
.
= app E1 E2 ∧ x2

.
= T2

∧ of E1 (arr T1 T2) ∧ of E2 T1

Λof x1 x2. ∃E. ∃T1. ∃T2.

x1
.
= lam T1 E ∧ x2

.
= arr T1 T2

∧ ∀x. (Λof x
′
1 x

′
2. x′

1
.
= x ∧ x′

2
.
= T1) ⊃ of (E x) T2

4 Support for Moded Programs

In this section, we will specialize the compilation processjust outlined to the case where the
source program is well-moded. In a well-model program, the argument positions of each
predicate symbol are designated as either input or output. Input arguments are guaranteed
to be ground terms at the time a goal is called. Dually, outputarguments are guaranteed to
have been made ground by the time the call returns.

There are operational benefits to working with well-moded programs: while an inter-
preter for a generic program must implement term-level unification, well-moded programs
can be executed by relying uniquely on pattern matching and variable instantiation. This is
desirable because matching often behaves better than general unification. For example, it
is more efficient for first-order term languages were it only because it does away with the
occurs-check, and it is decidable for higher-order term languages while general unification
is not (Stirling 2009).

The development in this section is motivated by well-moding, but is sound independently

10 I. Cervesato

of whether a program is well-moded or not. Statically enforcing well-moding brings the
operational advantages just discussed, but the results in this section do not depend on it.

4.1 Source Language

In this section, we assume that each predicate symbol inLs comes with amodewhich
declares each of its arguments as input, written,̌ or output, written̂ . For simplicity of
exposition, we decorate the actual arguments of all atomic propositions with these symbols,
so that a termt in input position in an atomic proposition is writtenť (read “int”). Similarly
t in output position is written̂t (pronounced “outt”). This amounts to revising the grammar
of atomic propositions as follows:

Atoms: a ::= p | a ť | a t̂

Just like we assume that the arity of a predicate symbolp remains constant in a program,
we require that all atomic propositions forp have their input/output marks in the same
positions. This pattern is the mode ofp — an actual language would rely on explicit mode
declarations.

For typographic convenience and without loss of generality, our examples assume that
input positions precede output positions so that an atomic formulaa can be written as
p ť t̂ whereť and t̂ are the (possibly empty) sequences of terms in input (resp. output)
positions forp. To avoid notational proliferation, we use the markersˇandˆboth as mode
designators and as symbol decorations (like primes and subscripts) when working with
generic terms. Therefore,ť andt̂ indicate possibly different terms inp ť t̂, and similarly for
term sequences, as inp ť t̂ above.

At our level of abstraction, the rules in Figure 1 capture theoperational semantics of this
variant ofLs: mode annotations are simply ignored. However, moded execution requires
that two of the operational choices left open by those rules be resolved using some algo-
rithmic strategy: the order in which rulei imp searches for derivations of its two premises,
and the substitution term that rulei all picks. For both, we will assume the same strategy
as Prolog: implement rulei imp left to right and implement rulei all lazily by replacing
each variablex with a “logical variable”X which is instantiated incrementally through
unification. This allows us to view an atomic goal as a (non-deterministic) procedure call.
In a well-moded program (Debray and Warren 1988), terms in input position are seen as
the actual arguments of this procedure, and terms in output position yield return values.

In this section, we will not formalize the notion of well-modedness — see (Debray and Warren 1988)
for Prolog and (Sarnat 2010) for Twelf — nor refine our operational semantics to make goal
evaluation order and unification explicit — see (Pientka 2003). We will instead refine our
compilation process to account for mode information and produce compiled programs that,
if well-moded, can be executed without appealing to unification.

4.2 Target Language

In Lc
1, a (well-moded) Horn clause∀y. p ť t̂ ⊂ a1 ⊂ . . . ⊂ an was compiled into

∀x̌ x̂. (p x̌ x̂ ⊂ ∃y. (x̌
.
= ť ∧ x̂

.
= t̂ ∧ a1 ∧ . . . ∧ an)). Here, the left-to-right exe-

cution order forces us to guess the final values of the output variablesx̂ before the goals

An Improved Proof-Theoretic Compilation of Logic Programs 11

in its body have been fully executed. InLc
2, we will move the equalitŷx

.
= t̂ after the

last goalan. Sincex̂ appear nowhere else in the residual, this equality is no morethan an
assignment of the computed instance oft̂ to x̂. Accordingly, we will write it asx̂ := t̂.
Furthermore, in a well-moded program, this clause will be invoked with ground terms in
input position, so thaťx will be bound to ground terms. Then, the input equalityx̌

.
= ť

will match the variables iňt with appropriate subterms. For this reason, we will write itas
x̌ =: ť. Expanding each goalai into qi ťi t̂i, the above clause will be compiled (almost) as
follows, where the arrows represent the data flow of a well-moded execution (note that it
parallels the control flow):

∀x̌ x̂. (p x̌
��

JJx̂

OO

⊂ (∃y. x̌=: ť
KK

∧ q1 ť1 t̂1 MM∧ . . .
KK

∧ qn ťn t̂n KK∧ x̂
xx

:= t̂))

When executing an atomic goal, it is desirable to separate the call from the verification
that the output terms returned by the caller match the expected output terms in this goal.
We will do so by rewriting any atomic goalq ť t̂ in a compiled clause into the formula
∃z. (q ť z ∧ z =: t̂) for fresh variablesz. This transformation preserves the left-to-right
control and data flow. No special provision needs to be made for the input arguments of
q as variables in it will have been instantiated to ground terms at the moment the call is
made.

Next, we again generalize this intuition to any formula inLs, not just Horn clauses. Our
third target language,Lc

2, is defined by the following grammar.

Goal Matches: M ::= ⊤ | M ∧ z =: t̂

Atomic Goals: F ::= p ť ẑ ∧ M | ∃z. F

Goals: G ::= F | C ⊃ G | ∀x.G

Clauses: C ::= R ⊃ p x̌ x̂ | ∀x.C

Residuals: R ::= x̌ =: t | x̂ := t | ⊤ | R ∧ G | ∃x.R

Programs: Ψ ::= · | Ψ, C

Residuals (R) refine the equality predicatex
.
= t of Lc

1 into a matching predicatex =: t

and an assignment predicatex := t. At our level of abstraction, they behave just like
equality. During well-moded execution, the match predicate will have the formtg =: tv
wheretg is a ground term whiletv may contain variables. It will bind these variables
to ground subterms oftg, thereby realizing matching. However, presented with programs
that are not well-moded, the termstg cannot be assumed to be ground and=: performs
unification. The assignment predicate will be called asx := t wherex is a variable andt a
term — a ground term for well-moded programs. It simply bindsx to t. Compiled clauses
and programs are just like inLc

1.
Following the motivations above, an atomic goalp ť t̂ is not compiled any more to itself

as inLc
1, but to a formulaF of the form∃z. (q ť ẑ ∧ ž =: t̂). In the grammar above, we

isolated the match predicatesž =: t̂ as the non-terminalM .

12 I. Cervesato

Goals Matches

m2 true

c2
−→ ⊤

c2
−→ M

m2 mtch

c2
−→ M ∧ t =: t

Atomic Goals

Ψ, C,Ψ
′

c2
−→ C ≫ p ť t̂

c2
−→ M

a2 atm

Ψ, C,Ψ′
c
2f

−→ p ť t̂ ∧ M

Ψ
c
2f

−→ [t/z]R
a2 exists

Ψ
c
2f

−→ ∃z.R

Goals

Ψ
c
2f

−→ F
g2 f

Ψ
c2−→ F

Ψ, C
c2−→ G

g2 imp

Ψ
c2−→ C ⊃ G

c “new” Ψ
c2
−→ [c/x]G

g2 all

Ψ
c2−→ ∀x.G

Clauses

Ψ
c2
−→ R

c2 imp

Ψ
c2−→ R ⊃ a ≫ a

Ψ
c2−→ [t/x]C ≫ a

c2 all

Ψ
c2−→ ∀x.C ≫ a

Residuals

r2 mtch

Ψ
c2−→ t =: t

r2 assg

Ψ
c2−→ t := t

r2 true

Ψ
c2−→ ⊤

Ψ
c2−→ R Ψ

c2−→ G
r2 and

Ψ
c2−→ R ∧ G

Ψ
c2−→ [t/x]R

r2 exists

Ψ
c2−→ ∃x.R

Fig. 7. Search Semantics ofLc
2.

We specify the operational semantics ofLc
2 by means of the following five judgments:

c2−→ M M is provable

Ψ
c2f
−→ F F is uniformly provable fromΨ

Ψ
c2−→ G G is uniformly provable fromΨ

Ψ
c2−→ C ≫ a a is immediately entailed byC in Ψ

Ψ
c2−→ R R is uniformly provable fromΨ

which parallel the grammar just presented. The resulting operational semantics is shown
in Figure 7. The rules for clauses are unchanged with respectto Lc

1 while that language’s
residual rule for equality has been duplicated into isomorphic rules for matching and as-
signment. The rules for compiled goals have instead proliferated due to our handling of
terms in output position in atomic goals. Observe that rulea2 atm is essentially a combi-
nation of ruleg1 atm in Lc

1 and the rule for conjunction. Rulesa2 exists andm2 true

are just the standard rules for existential quantification and truth. Rulem2 mtch combines
the rules for conjunction and matching.

Just like in the case ofLc
1, the rules in Figure 7 construct proofs that are uniform (Miller et al. 1991),

which makesLc
2 an abstract logic programming language. In a successful derivation, this

operational semantics decomposes a goal to formulas of the formF = ∃z. (p ť ẑ ∧ ž =: t̂)

(rules in the “Goals” segment). Then, rulesa2 exists, m2 mtch andm2 true neces-
sarily reduce it in a few steps into the atomic formulap ť t̂. Similarly toLc

1, the left premise
of rulea2 atm selects a clause and focuses on it until it finds a potentiallymatching head
(“Clauses” segment). It then proceeds to decomposing its body (“Residuals” segment) and
the cycle repeats with whatever goals it finds in there.

An Improved Proof-Theoretic Compilation of Logic Programs 13

As just noticed, any atomic goalF of the form∃ẑ. (pťẑ ∧ ẑ =: t̂) is necessarily reduced
to pť t̂ by as many applications of rulea2 exists as there are variables in̂z, a pass-through
instance ofa2 atm via its right branch, and a similar number of uses of rulesm2 mtch

andm2 true respectively. This entails that the macro-rulea2 atm′, on the left-hand side
of the following display, is derivable:

Ψ
c2−→ p ť t̂

a2 atm
′

Ψ
c2−→ ∃z. (p ť z ∧ z =: t̂)

Ψ, C,Ψ′ c2−→ C ≫ p ť t̂
a2 atm

′′

Ψ, C,Ψ′ c2f
−→ p ť t̂

Having factored rulea2 atm′ out, the work performed bya2 atm degenerates to rule
a2 atm′′ on the right-hand side of the above display, which is akin tou atm. The system
obtained by replacing them2 ∗ anda2 ∗ rules as well asg2 f with rulesa2 atm′ and
a2 atm′′ is indeed equivalent to the rule set in Figure 7.

Rulea2 atm′ entices us to interpret the compiled formula∃z. (p ť z ∧ z =: t̂) for an
atomic goalp ť t̂ as a synthetic operatorcall p ť =: t̂ which invokes a clause forp with its
(ground) input argumentšt and matches the returned values against its termst̂ in output
position.

Having recovered atomic goalsp ť t̂ through rulesa2 atm′ anda2 atm′′, we can carry
out a sequence of reasoning steps similar to what led us to thebackchaining rule forLc

1.
Exposing the trailing assignments, a generic compiled clauseC has the form∀x̌x̂. (∃y.R ∧

x̂ := ŝ) ⊃ p x̌ x̂. In a successful derivation, all rulea2 atm′′ does is to pick such a
clause. Then, applications of rulec2 all will instantiate variablešx x̂ with the termšt t̂,
and next rulec2 imp will invoke the instantiated residual[ť/x̌, t̂/x̂](∃y.R ∧ x̂ := ŝ).
Now, becausêx does not occur inR andx̌ x̂ cannot appear in̂s, this formula reduces to
∃y. ([ť/x̌]R ∧ t̂ := ŝ) by pushing the substitution in. Ruler2 exists will then instantiate
the variablesy with termsu (which cannot mention variablešxx̂). Pushing this substitution
in yields the formula[ť/x̌, u/y]R ∧ t̂ := [u/y]ŝ since variables iny can occur in neitheřt
nor t̂. Finally, by ruler2 assg, t̂ and[u/y]ŝ must be equal in a successful derivation. This
necessary sequence of steps is captured by the following derived backchaining macro-rule,

Ψ, C,Ψ′ c2−→ [ť/x̌, u/y]R
g2 atm

′

Ψ, ∀x̌ x̂. (∃y.R ∧ x̂ := ŝ) ⊃ p x̌ x̂
︸ ︷︷ ︸

C

,Ψ′ c2−→ p ť [u/y]ŝ

where we have carried out the assignmentt̂ := [u/y]ŝ in the conclusion. This rule can be
seen as a refinement ofg1 atm′ in Lc

1 that makes use of the trailing assignment in the
compiled clauses ofLc

2. With this derived inference, rulesa2 atm′′, c2 imp andc2 all

become unnecessary: the system consisting of rulesa2 atm′, g2 atm′, the goal rules
for implication and universal quantification, and the residual rules is equivalent to that in
Figure 7.

Taking ruleg2 atm′ as primitive amounts to replacing compiled clauses with thefol-
lowing synthetic connective, which refinesLc

1’s Λpx.R.

∀x̌ x̂. p x̌ x̂ ⊂
︸ ︷︷ ︸

∃y. (R ∧ x̂ := t̂
︸ ︷︷ ︸

)

Λpx̌. ∃y. (R ; return t̂)

14 I. Cervesato

Programs

p2c empty

· ≫ ·

Γ ≫ Ψ A ≫ C \R 0 O
p2c clause

Γ, A ≫ Ψ, C[R ∧ O]

Heads

h2c p

x ⊢ p ≫ � ⊃ p x % ⊤ 0 ⊤

x x ⊢ a ≫ C % I 0 O x “new”
h2c in

x ⊢ a ť ≫ ∀x.C % I ∧ x =: ť 0 O

x x ⊢ a ≫ C % I 0 O x “new”
h2c ot

x ⊢ a t̂ ≫ ∀x.C % I 0 x := t̂ ∧ O

Clauses

· ⊢ a ≫ C % I 0 O
c2c atm

a ≫ C \ I 0 O

A ≫ G B ≫ C \R 0 O
c2c imp

A ⊃ B ≫ C \R ∧ G 0 O

A ≫ C \R 0 O
c2c all

∀x.A ≫ C \∃x.R 0 O

Atomic goals

a2c p

t ⊢ p ≫ p t ∧ � \⊤

ť t ⊢ a ≫ F \M
a2c in

t ⊢ a ť ≫ F \M

t z ⊢ a ≫ C \M z “new”
a2c ot

t ⊢ a t̂ ≫ ∃z.F \ z =: t̂ ∧ M

Goals

· ⊢ a ≫ F \M
g2c atm

a ≫ F [M]

A ≫ C \R 0 O B ≫ G
g2c imp

A ⊃ B ≫ C[R ∧ O] ⊃ G

A ≫ C
g2c all

∀x.A ≫ ∀x.C

Fig. 8. Compilation ofLs intoLc
2.

The variablesy are then interpreted as local variables for the execution ofthis clause. In
this, they are akin to theYn permanent variables of the WAM (Aı̈t-Kaci 1991).

In a valid proof in this system, an occurrence ofa2 atm′ is always immediately fol-
lowed by an instance ofg2 atm′: the conclusion of the latter must match the premise of
the former. This fact realizes the requirement that, upon returning from a call, the output
terms, here[u/y]ŝ, must be checked against the terms in output position of the caller.

4.3 Compilation

Compilation transforms logic programs inLs to compiled programs inLc
2. The input does

not have to be well-moded at the level of detail considered here, but this would be opera-
tionally advantageous in a refinement of the semantics in Figure 7 that handles quantifiers
lazily. We will make use of two auxiliary notions in this section: pseudo clauses that we
encountered already in Section 3.2 and the analogous notionof pseudo atomic goal. They
are defined as follows:

Pseudo Clauses:C ::= � ⊃ p x | ∀x. C

Pseudo Atomic Goals:F ::= p ť ẑ ∧ � | ∃z.F

Just like pseudo clauses retain the outer structure of a clause replacing the embedded resid-
ual with a hole (�), pseudo atomic goals have a hole in place of their trailing matches. The
general form of pseudo clauses and pseudo atomic formulas, accounting for input and out-
put positions, are∀x̌ x̂.� ⊃ p x̌′ x̂′ and∃ẑ. (p ť ẑ′ ∧ �). In Section 3.2, wroteC[R] for
the replacement of the hole ofC with the residualR and noted that variable capture could
(and generally will) occur. Similarly, we writeF [M] for replacement of the hole ofF with
matchesM .

The compilation process is modeled by the following five judgments, which are reminis-
cent of the compilation judgmentsLc

1. They are more complex because clause compilation

An Improved Proof-Theoretic Compilation of Logic Programs 15

now needs to handle both matching and assignment as opposed to a generic equality. Fur-
thermore, a new judgment is needed to compile atomic goals.

Γ ≫ Ψ ProgramΓ is compiled toΨ
x ⊢ a ≫ C % I 0 O Heada with x is compiled toC, I andO
A ≫ C \R 0 O ClauseA is compiled toC, R andO
t ⊢ a ≫ F \M Atomic goala with t is compiled toF andM
A ≫ G GoalA is compiled toG

We writeI andO for a conjunction of matches (compilation of terms in input position) and
assignments (compilation of output terms), respectively,in the body of a compiled clause.
In compiled atomic goals, we writeM for a conjunction of matches.

The rules for compilation, which define these judgments, areshown in Figure 8. Com-
piling a clauseA, modeled by the judgmentA ≫ C \R 0 O, returns a pseudo clause
C, the residualR (inclusive of input matches) and the output assignmentsO that will fill
its hole. The rules in the “Clauses” segment build up this residual starting with the com-
pilation of its head, which is displayed in the “Heads” segment. The rules therein differ
from the similar inference forLc

1 by the fact that they dispatch terms in input and output
positions in theI andO zones of the judgment as matches and assignments respectively.
Residuals and assignments are plugged in the hole of the pseudo clause once this clause
has been fully compiled, as can be seen in the “Programs” segment and in ruleg2c imp.

The compilation of goals differs fromLc
1 for the treatment of atomic formulas: upon

encountering an atoma, the compilation appeals to the new judgment· ⊢ a ≫ F \M .
It generates a pseudo atomic formulaF and matchesM , which are integrated in rule
g2c atm. The zone to the left of the turnstile serves as an accumulator, very much like
when compiling heads.

Target language,Lc
2, is sound and complete with respect toLs. The following lemma

collects some auxiliary results needed to prove this property. The first two statements are
proved by induction on the structure ofa; the third by induction on the given derivation.

Lemma 4.1
• If x ⊢ a ≫ C % I 0 O, then for any term sequencet of the same length asx and

programΨ we haveΨ
c2−→ [t/x](C[I ∧ O]) ≫ a t.

• If t ⊢ a ≫ F \M , then for allΨ we haveΨ
c2−→ F [M] ≫ a t.

• If Ψ
c2−→ C[R] ≫ a, thenΨ

c1−→ R.

We have the following soundness and completeness theorems forLc
2. In both cases, the

proof proceeds by mutual induction over the first derivationin the antecedent.

Theorem 4.2(Soundness of the compilation toLc
2)

• If Γ
u

−→ A, Γ ≫ Ψ and A ≫ G, then Ψ
c2−→ G.

• If Γ
u

−→ A ≫ a, Γ ≫ Ψ and A ≫ C \R 0 O, then Ψ
c2−→ C[R ∧ O] ≫ a.

Theorem 4.3(Completeness of the compilation toLc
2)

• If Ψ
c2−→ G, Γ ≫ Ψ and A ≫ G, then Γ

u
−→ A.

• If Ψ
c2−→ C ≫ a, Γ ≫ Ψ, C = C[R ∧ O] and A ≫ C \R 0 O, then

Γ
u

−→ A ≫ a.

To conclude this section, we revisit our ongoing examples. Here, we assume that the

16 I. Cervesato

1. ∀E1.∀E2. ∀T1.∀T2.

of (app E1 E2) T2

⊂ of E1 (arr T1 T2)
⊂ of E2 T1

≫

∀x1.∀x2.

of x1 x2

⊂ (∃E1.∃E2.∃T1. ∃T2.⊤

∧ x1 =: app E1 E2

∧ ∃z1. (of E1 z1 ∧ z1 =: arr T1 T2 ∧ ⊤)
∧ ∃z2. (of E2 z2 ∧ z2 =: T1 ∧ ⊤)
∧ x2 := T2 ∧ ⊤)

2. ∀E.∀T1. ∀T2.

of (lam T1 E) (arr T1 T2)

⊂ (∀x.

of x T1

⊃ of (E x) T2)

≫

∀x1.∀x2.

of x1 x2

⊂ (∃E.∃T1.∃T2.⊤

∧ x1 =: lam T1 E

∧ ∃z. ((∀x. (∀x′

1.∀x
′

2.⊤

∧ x′

1 =: x
∧ of x′

1 x′

2

∧ x′

2 := T1 ∧ ⊤)
⊃ of (E x) z)

∧ z =: T2 ∧ ⊤)
∧ x2 := arr T1 T2 ∧ ⊤)

Fig. 9. Lc
2 Compilation Example

mode of the predicateof is of ˇˆ— the first argument is input and the second output. The
result of compiling our two familiar clauses intoLc

2 is shown in Figure 9. As in Section 3.2,
the moded compilation process offers ample opportunities for optimization: matches and
assignments with variables on both side and the corresponding existential quantification
can often be elided, and all occurrences of⊤ can be optimized away.

It is instructive to rewrite these clauses with the two synthetic connectives introduced
earlier forLc

2, again omitting⊤ for readability:

Λof x1. ∃E1. ∃E2. ∃T1. ∃T2. x1 =: app E1 E2

∧ call (of E1) =: (arr T1 T2) ∧ call (of E2) =: T1;

return T2

Λof x1. ∃E. ∃T1. ∃T2. x1 =: lam T1 E

∧ ∀x. (Λof x
′
1. x′

1 =: x ; return T1) ⊃ call (of (E x)) =: T2;

return (arr T1 T2)

5 Larger Source Languages

In (Cervesato 1998), we illustrated our original abstract logical compilation method on the
language of hereditary Harrop formulas. This language differs fromLs for the presence of
conjunction (formulas of the formA∧B) and truth (⊤). While our original treatment could
handle them easily (in a clause position, they were compiledto disjunctions and falsehood
respectively), the approach taken in Sections 3 and 4 does not support them directly. The
problem is that, as soon as we allow these connectives, clauses can have multiple heads (or
even none). Consider for example:

∀x. ∀y. q x y ⊃ (p1 x y ∧ (r x y ⊃ p2 x))

An Improved Proof-Theoretic Compilation of Logic Programs 17

This clause has two heads:p1 x y andp2 x. What should it be compiled to? To ensure
immediacy (embodied in the macro-ruleg1 atm′), our compilation strategy produces a
pseudo clause applied to a residual, thereby exposing the (flattened) head of a compiled
clause as close to the top level as possible. How to achieve this now that there may be more
than one head?

One approach to dealing with this problem is to observe that∧ distributes over (the
antecedent of)⊃ and∀. By doing so to the above example, we obtain the formula

(∀x. ∀y. q x y ⊃ p1 x y) ∧ (∀x. ∀y. q x y ⊃ r x y ⊃ p2 x)

Observe that it is a conjunction ofLs clauses. Each of them can now be compiled as
in Section 3 and the results can be combined by means of a disjunction. This approach
generalizes to the full language of hereditary Harrop formulas. It pushes the conjunctions
to the outside, leaving inner formulas resembling the clauses ofLc

0 (conjunction and truth
in a goal position are left alone as they are not problematic). Clauses with no head (e.g.,
A ⊃ ⊤) are reduced to⊤. These preprocessing steps can be implemented as a source-code
transformation or integrated in the compilation process.

The other abstract logic programming language examined in (Cervesato 1998) is the lan-
guage of linear hereditary Harrop formulas, found at the core of Lolli (Hodas and Miller 1994)
and LLF (Cervesato and Pfenning 2002). The improved compilation process discussed in
this paper extends directly in the presence of linearity. Because linear hereditary Har-
rop formulas feature a form of conjunction and truth, the technical device just outlined
is needed to obtain workable compiled clauses.

6 Future Work

The discussion in Section 4 sets the stage for a nearly functional operational semantics
of well-moded programs. Indeed, given an atomic goal with ground terms in its input po-
sitions, proof search will instantiate its output positions to ground terms, if it succeeds.
Being in a logic programming setting, more than one answer could be returned. Indeed, for
well-moded programs, the clauses for a predicate implementa partial, non-deterministic
function. This observation informed the choice of the notation for the synthetic operators
we exposed:call p ť =: t̂ andΛpx̌. ∃y. (R; return t̂).

Now we believe that, in the case of well-moded programs, a more detailed operational
semantics that exposes variable manipulations using logical variables and explicit substi-
tutions (and restricts the execution order) can bring this functional interpretation to the sur-
face. This would provide a logical justification for the natural impulse to give well-moded
programs a semantics that is typical of functional programming languages, where atomic
predicates carry just input terms and from which the terms inoutput position emerge by a
process of reduction.

In future work, we intend to carry out this program by giving such a detailed operational
semantics toLs as well as well-moding rules. The goal will then be to performlogical
transformations, akin to what we did in this paper, that expose this functional semantics
for well-moded programs. It would also allow us to prove formally that the operator=: of
Section 4 can indeed be implemented as matching rather than general unification.

18 I. Cervesato

Acknowledgments

This work was supported by the Qatar National Research Fund under grant NPRP 09-1107-
1-168. We are grateful to Frank Pfenning, Carsten Schürmann, Robert J. Simmons and
Jorge Sacchini for the many fruitful discussions, as well asto the anonymous reviewers.

References

A ÏT-KACI , H. 1991.Warren’s Abstract Machine: a Tutorial Reconstruction. MIT Press.
BÖRGER, E. AND ROSENZWEIG, D. 1995. The WAM — definition and compiler correctness. In

Logic Programming: Formal Methods and Practical Applications, C. Beierle and L. Pluemer, Eds.
Computer Science and Artificial Intelligence, vol. 11. North-Holland, 21–90.

CERVESATO, I. 1998. Proof-Theoretic Foundation of Compilation in Logic Programming Lan-
guages. In1998 Joint International Conference and Symposium on LogicProgramming — JIC-
SLP’98, J. Jaffar, Ed. MIT Press, Manchester, UK, 115–129.

CERVESATO, I. AND PFENNING, F. 2002. A Linear Logical Framework.Information & Computa-
tion 179,1, 19–75.

CERVESATO, I., PFENNING, F., WALKER , D., AND WATKINS , K. 2003. A Concurrent Logical
Framework II: Examples and Applications. Technical ReportCMU-CS-02-102, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, PA. March 2002, revised May.

DEBRAY, S. K. AND WARREN, D. S. 1988. Automatic mode inference for logic programs.Journal
of Logic Programming 5, 207–229.

HODAS, J. S.AND M ILLER , D. 1994. Logic programming in a fragment of intuitionisticlinear
logic. Information and Computation 110,2, 327–365.

JAFFAR, J., MICHAYLOV, S., STUCKEY, P.,AND YAP, R. 1992. An abstract machine forCLP(R).
In Proceedings of the SIGPLAN’92 Conference on Programming Language Design and Imple-
mentation — PLDI’92. San Francisco, CA.

M ILLER , D. AND NADATHUR , G. 1986. Higher-order logic programming. InProceedings of the
Third International Logic Programming Conference, E. Shapiro, Ed. London, 448–462.

M ILLER , D., NADATHUR , G., PFENNING, F.,AND SCEDROV, A. 1991. Uniform proofs as a foun-
dation for logic programming.Annals of Pure and Applied Logic 51, 125–157.

NADATHUR , G. AND M ITCHELL , D. J. 1999. System description: Teyjus — a compiler and ab-
stract machine based implementation of lambda prolog. InSixteenth Conference on Automated
Deduction (CADE’99), H. Ganzinger, Ed. 287–291.

PFENNING, F. AND SCHÜRMANN , C. 1999. System Description: Twelf — A Meta-Logical Frame-
work for Deductive Systems. InProceedings of the 16th International Conference on Automated
Deduction — CADE-16. Springer-Verlag LNAI 1632, Trento, Italy, 202–206.

PIENTKA , B. 2003. Tabled higher-order logic programming. Ph.D. thesis, Department of Computer
Science, Carnegie Mellon University.

RUSSINOFF, D. M. 1992. A verified Prolog compiler for the Warren abstract machine.Journal of
Logic Programming 13, 367–412.

SARNAT, J. 2010. Syntactic finitism in the metatheory of programming languages. Ph.D. thesis,
Department of Computer Science, Yale University.

STIRLING , C. 2009. Decidability of higher-order matching.Logical Methods in Computer Sci-
ence 5,3.

WARREN, D. H. D. 1983. An abstract Prolog instruction set. Technical Note 309, SRI International,
Menlo Park, CA. Oct.

WATKINS , K., CERVESATO, I., PFENNING, F., AND WALKER , D. 2003. A Concurrent Logical
Framework I: Judgments and Properties. Technical Report CMU-CS-02-101, Department of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA. March 2002, revised May.

	1 Introduction
	2 Background and Recap
	2.1 Source Language
	2.2 Target Language
	2.3 Compilation

	3 Fully Logical Compilation
	3.1 Target Language
	3.2 Compilation

	4 Support for Moded Programs
	4.1 Source Language
	4.2 Target Language
	4.3 Compilation

	5 Larger Source Languages
	6 Future Work
	References

