
ar
X

iv
:1

21
0.

16
49

v1
  [

cs
.A

I] 
 5

 O
ct

 2
01

2

Under consideration for publication in Theory and Practiceof Logic Programming 1

Conflict-driven ASP Solving with External Sources

Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl∗
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
(e-mail: {eiter,fink,tkren,redl}@kr.tuwien.ac.at)

submitted 1 January 2003; revised 1 January 2003; accepted 1January 2003

Abstract

Answer Set Programming (ASP) is a well-known problem solving approach based on nonmonotonic
logic programs and efficient solvers. To enable access to external information,HEX-programs extend
programs withexternal atoms, which allow for a bidirectional communication between thelogic
program and external sources of computation (e.g., description logic reasoners and Web resources).
Current solvers evaluateHEX-programs by a translation to ASP itself, in which values of external
atoms are guessed and verified after the ordinary answer set computation. This elegant approach does
not scale with the number of external accesses in general, inparticular in presence of nondeterminism
(which is instrumental for ASP). In this paper, we present a novel, native algorithm for evaluating
HEX-programs which uses learning techniques. In particular, we extend conflict-driven ASP solving
techniques, which prevent the solver from running into the same conflict again, from ordinary to
HEX-programs. We show how to gain additional knowledge from external source evaluations and
how to use it in a conflict-driven algorithm. We first target the uninformed case, i.e., when we have
no extra information on external sources, and then extend our approach to the case where additional
meta-information is available. Experiments show that learning from external sources can significantly
decrease both the runtime and the number of considered candidate compatible sets.

KEYWORDS: Answer Set Programming, Nonmonotonic Reasoning, Conflict-Driven Clause Learn-
ing

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach (Niemelä 1999;
Marek and Truszczyński 1999; Lifschitz 2002), in which solutions to a problem correspond
to answer sets (Gelfond and Lifschitz 1991) of a logic program, which are computed using
an ASP solver. While this approach has turned out, thanks to expressive and efficient sys-
tems likeSMODELS(Simons et al. 2002),DLV (Leone et al. 2006), ASSAT (Lin and Zhao
2004), cmodels (Giunchiglia et al. 2006), andCLASP (Gebser et al. 2012; Gebser et al.
2011), to be fruitful for a range of applications, cf. (Brewka et al. 2011), current trends in
distributed systems and the World Wide Web, for instance, revealed the need for access to
external sources in a program, ranging from light-weight data access (e.g., XML, RDF, or
data bases) to knowledge-intensive formalisms (e.g., description logics).

To cater for this need,HEX-programs (Eiter et al. 2005) extend ASP with so called
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external atoms, through which the user can couple any external data source with a logic
program. Roughly, such atoms pass information from the program, given by predicates
and constants, to an external source which returns output values of an (abstract) function
that it computes. This extension is convenient and has been exploited for applications in
different areas, cf. (Eiter et al. 2011), and it is also very expressive since recursive data
exchange between the logic program and external sources is possible. Advanced reasoning
applications like default reasoning over description logic ontologies (Eiter et al. 2008; Dao-
Tran et al. 2009) or reasoning over Nonmonotonic Multi-Context Systems (Brewka and
Eiter 2007; Eiter et al. 2010) take advantage of it.

Current algorithms for evaluatingHEX-programs use a translation approach and rewrite
them to ordinary ASP programs. The idea is to guess the truth values of external atoms
(i.e., whether a particular fact is in the “output” of the external source access) in a modified
program; after computing answer sets, a compatibility testchecks whether the guesses
coincide with the actual source behavior. While elegant, this approach is a bottleneck in
advanced applications including those mentioned above. Itdoes not scale, as blind guessing
leads to an explosion of candidate answer sets, many of whichmight fail the compatibility
test. Furthermore, a blackbox view of external sources disables any pruning of the search
space in the ASP translation, and even if properties would beknown, it is sheer impossible
to make use of them in ordinary ASP evaluation on-the-fly using standard solvers.

To overcome this bottleneck, a new evaluation method is needed. In this paper, we thus
present a novel algorithm for evaluatingHEX-programs, described in Section 3, which
avoids the simple ASP translation approach. It has three keyfeatures.
• First, it natively builds model candidates from first principles and accesses external
sources already during the model search, which allows to prune candidates early.

• Second, it considers external sources no longer as black boxes, but exploits meta-knowledge
about their internals.

• And third, it takes up modern SAT and ASP solving techniques based onclause learn-
ing (Biere et al. 2009), which led to very efficientconflict-drivenalgorithms for answer-
set computation (Gebser et al. 2012; Drescher et al. 2008), and extends them to external
sources, which is a major contribution of this work. To this end, we introduceexternal
behavior learning (EBL), which generates conflict clauses (nogoods) after externalsource
evaluation (Section 3). We do this in Section 4, first in the uninformed case (Section 4.1),
where no meta-information about the external source is available, except that a certain in-
put generates a certain output. We then exploit meta-information1 about external sources
(properties such as monotonicity and functionality) to learn even more effective nogoods
which restrict the search space further (Section 4.2).

We have implemented the new algorithm and incorporated it into theDLVHEX prototype
system.2 It is designed in an extensible fashion, such that the provider of external sources
can specify refined learning functions which exploit specific knowledge about the source.
Our theoretical work is confirmed by experiments that we conducted with our prototype on
synthetic benchmarks and programs motivated by real-worldapplications (Section 5). In

1 Not to be confused with semantically annotated data, which is not considered here.
2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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several cases, significant performance improvements compared to the previous algorithm
are obtained, which shows the suitability and potential of the new approach.

2 Preliminaries

In this section, we introduce syntax and semantics ofHEX-programs and, following (Drescher
et al. 2008), conflict-driven SAT and answer set solving. We start with basic definitions.

A (signed) literal is a positive or a negated ground atomTa orFa, where ground atoma
is of formp(c1, . . . , cℓ), with predicatep and function-symbol free ground termsc1, . . . , cℓ,
abbreviated asp(c). For a literalσ = Ta or σ = Fa, let σ denote its negation, i.e.
Ta = Fa andFa = Ta. An assignmentA over a (finite) set of atomsA is a consistent set
of signed literalsTa orFa, whereTa expresses thata ∈ A is true andFa that it is false.

We writeAT to refer to the set of elementsAT = {a | Ta ∈ A} andAF to refer
to AF = {a | Fa ∈ A}. The extension of a predicate symbolq wrt. an assignmentA
is defined asext(q,A) = {c | Tq(c) ∈ A}. Let furtherA|q be the set of all signed
literals over atoms of formq(c) in A. For a listq = q1, . . . , qk of predicates, we let
A|q = A|q1 ∪ · · · ∪A|qk .

A nogood{L1, . . . , Ln} is a set of (signed) literalsLi, 1 ≤ i ≤ n. An assignmentA is
asolutionto a nogoodδ resp. a set of nogoods∆, iff δ 6⊆ A resp.δ 6⊆ A for all δ ∈ ∆.

2.1 HEX-Programs

We briefly recallHEX-programs, which have been introduced in Eiter et al. (2005)as a gen-
eralization of (disjunctive) extended logic programs under the answer set semantics (Gel-
fond and Lifschitz 1991); for more details and background, we refer to Eiter et al. (2005).

Syntax. HEX-programs extend ordinary ASP programs byexternal atoms, which enable a
bidirectional interaction between a program and external sources of computation. External
atoms have a list of input parameters (constants or predicate names) and a list of output
parameters. Informally, to evaluate an external atom, the reasoner passes the constants and
extensions of the predicates in the input tuple to the external source associated with the
external atom, which is plugged into the reasoner. The external source computes an output
tuple, which is matched with the output list. More formally,a ground external atomis of
the form&g[p](c), wherep = p1, . . . , pk are constant input parameters (predicate names
or object constants), andc = c1, . . . , cl are constant output terms.

GroundHEX-programs are then defined similar to ground ordinary ASP programs.

Definition 1 (Ground HEX-programs) A groundHEX-program consists of rules of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn ,

where eachai for 1 ≤ i ≤ k is a ground atomp(c1, . . . , cℓ) with constantscj , 1 ≤ j ≤ ℓ,
and eachbi for 1 ≤ i ≤ n is either a classical ground atom or a ground external atom.3

The headof a ruler is H(r) = {a1, . . . , ak} and thebody is B(r) = {b1, . . . , bm,

3 For simplicity, we do not formally introduce strong negation but see classical literals of form¬a as new atoms
together with a constraint which disallows thata and¬a are simultaneously true.
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not bm+1, . . . , not bn}. We call b or not b in a rule body adefault literal; B+(r) =

{b1, . . . , bm} is thepositive body, B−(r) = {bm+1, . . . , bn} is thenegative body.
In Sections 4 and 5 we will also make use of non-ground programs. However, we restrict

our theoretical investigation to ground programs as suitable safety conditions allow for
application of grounding procedure (Eiter et al. 2006).

Semantics and Evaluation. The semantics of a ground external atom&g[p](c) wrt. an
assignmentA is given by the value of a1+k+l-ary Booleanoracle functionf&g that is
defined for all possible values ofA,p andc. Thus,&g[p](c) is true relative toA if and only
if it holds thatf&g(A,p, c) = 1. Satisfaction of ordinary rules and ASP programs (Gelfond
and Lifschitz 1991) is then extended toHEX-rules and programs in the obvious way, and
the notion of extensionext(·,A) for external predicates&g with input listsp is naturally
defined byext(&g[p],A) = {c | f&g(A,p, c) = 1}.

The answer sets of aHEX-programΠ are determined by theDLVHEX solver using a
transformation to ordinary ASP programs as follows. Each external atom&g[p](c) in Π

is replaced by an ordinary groundreplacement atome&g[p](c) and a rule e&g[p](c) ∨

ne&g[p](c) ← is added to the program. The answer sets of the resultingguessing pro-

gramΠ̂ are determined by an ordinary ASP solver and projected to non-replacement atoms.
However, the resulting assignments are not necessarily models ofΠ, as the value of&g[p]

underf&g can be different from the one ofe&g[p](c). Each answer set of̂Π is thus acan-
didate compatible set(or model candidate) which must be checked against the external
sources. If no discrepancy is found, the model candidate is acompatible setof Π. More
precisely,

Definition 2 (Compatible Set) A compatible setof a programΠ is an assignmentA
(i) which is an answer set (Gelfond and Lifschitz 1991) of theguessing program̂Π, and

(ii) f&g(A,p, c) = 1 iff Te&g[p](c) ∈ A for all external atoms&g[p](c) in Π, i.e. the
guessed values coincide with the actual output under the input fromA.

The compatible sets ofΠ computed byDLVHEX include (moduloA(Π)) all answer sets
of Π as defined in Eiter et al. (2005) using the FLP reduct (Faber etal. 2011), which we
refer to as FLP-answer sets; with an additional test on candidate answer setsA (which is
easily formulated as compatible set existence for a variantof Π), the FLP-answer sets can
be obtained. By default,DLVHEX computes compatible sets with smallest true part on the
original atoms; this leads to answer sets as follows.

Definition 3 (Answer Set) An (DLVHEX ) answer set ofΠ is any setS ⊆ {Ta | a ∈

A(Π)} such that (i)S = {Ta | a ∈ A(Π)} ∩ A for some compatible setA of Π and
(ii) {Ta | a ∈ A(Π)} ∩A 6⊂ S for every compatible setA ofΠ.

The answer sets in Definition 3 include all FLP-answer sets, and in fact often coincide
with them (as in all examples we consider). Computing the (minimal) compatible sets is
thus a key problem forHEX-programs on which we focus here.

2.2 Conflict-driven Clause Learning and Nonchronological Backtracking

Recall that DPLL-style SAT solvers rely on an alternation ofdrawing deterministic conse-
quences and guessing the truth value of an atom towards a complete interpretation. Deter-
ministic consequences are drawn by the basic operation ofunit propagation, i.e., whenever
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all but one signed literals of a nogood are satisfied, the lastone must be false. The solver
stores an integerdecision leveldl , written@dl as postfix to the signed literal. An atom
which is set by unit propagation gets the highest decision level of all already assigned
atoms, whereas guessing increments the current decision level.

Most modern SAT solver areconflict-driven, i.e., they learn additional nogoods when
current assignment violates a nogood. This prevents the solver from running into the same
conflict again. The learned nogood is determined by initially setting the conflict nogood to
the violated one. As long as it contains multiple literals from the same decision level, it is
resolved with thereasonof one of these literals, i.e., the nogood which implied it.

Example 1 Consider the nogoods

{Ta,Tb}, {Ta,Tc}, {Fa,Tx,Ty}, {Fa,Tx,Fy}, {Fa,Fx,Ty}, {Fa,Fx,Fy}

and suppose the assignment isA = {Fa@1,Tb@2,Tc@3,Tx@4}. Then the third no-
good is unit and impliesFy@4, which violates the fourth nogood{Fa,Tx,Fy}. As it
contains multiple literals (x andy) which were set at decision level4, it is resolved with
the reason for settingy to false, which is the nogood{Fa,Tx,Ty}. This results in the
nogood{Fa,Tx}, which contains the single literalx set at decision level4, and thus is the
learned nogood.

In standard clause notation, the nogood set corresponds to

(¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (a ∨ ¬x ∨ ¬y) ∧ (a ∨ ¬x ∨ y) ∧ (a ∨ x ∨ ¬y) ∧ (a ∨ x ∨ y)

and the violated clause is(a∨¬x∨ y). It is resolved with(a∨¬x∨¬y) and results in the
learned clause(a ∨ ¬x). ✷

State-of-the-art SAT and ASP solvers backtrack then to the second-highest decision level
in the learned nogood. In Example 1, this is decision level1. All assignments after decision
level 1 are undone (Tb@2, Tc@3, Tx@4). Only variableFa@1 remains assigned. This
makes the new nogood{Fa,Tx} unit and derivesFx at decision level1.

2.3 Conflict-driven ASP Solving

In this subsection we summarize conflict-driven (disjunctive) answer-set solving (Gebser
et al. 2012; Drescher et al. 2008). It corresponds to AlgorithmHEX-CDNL without Part (c),
(cf. Section 3, where we also discuss Part (c)). Subsequently, we provide a summary of the
base algorithm; for details we refer to Gebser et al. (2012) and Drescher et al. (2008).

To employ conflict-driven techniques from SAT solving in ASP, programs are repre-
sented as sets of nogoods. For a programΠ, let A(Π) be the set of all atoms occurring in
Π, and letBA(Π) = {B(r) | r ∈ Π} be the set of all rule bodies ofΠ, viewed as fresh
atoms.

We first define the setγ(C) = {{FC} ∪ {tℓ | ℓ ∈ C}} ∪ {{TC, fℓ} | ℓ ∈ C}

of nogoods to encode that a setC of default literals must be assignedT or F in terms
of the conjunction of its elements, wheret nota = Fa, ta = Ta, f nota = Ta, and
fa = Fa. That is, the conjunction is true iff each literal is true. Clark’s completion∆Π of
a programΠ over atomsA(Π) ∪ BA(Π) is the set of nogoods

∆Π =
⋃

r∈Π
(γ(B(r)) ∪ {{TB(r)} ∪ {Fa | a ∈ H(r)}}) .

The body of a rule is true iff each literal is true, and if the body is true, a head literal must
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also be true. Unless a program is tight (Fages 1994), Clark’scompletion does not fully
capture the semantics of a program; unfounded sets may occur, i.e., sets of atoms which
only cyclically support each other, called aloop. Avoidance of unfounded sets requires
additional loop nogoods, but as there are exponentially many, they are only introduced
on-the-fly.

Disjunctive programs require additional concepts. Neglecting details, it is common to
use additional nogoodsΘsh(Π) derived from theshifted programsh(Π), which encode the
loop formulas of singleton loops; a comprehensive study is available in Drescher et al.
(2008).

With these concepts we are ready to describe the basic algorithm for answer set compu-
tation shown inHEX-CDNL. The algorithm keeps a set∆Π ∪ Θsh(Π) of “static” nogoods
(from Clark’s completion and from singular loops), and a set∇ of “dynamic” nogoods
which are learned from conflicts and unfounded sets during execution. While constructing
the assignmentA, the algorithm stores for each atoma ∈ A(Π) a decision leveldl . The
decision level is initially0 and incremented for each choice. Deterministic consequences
of a set of assigned values have the same decision level as thehighest decision level in this
set.

The main loop iteratively derives deterministic consequences usingPropagation trying
to complete the assignment. This includes both unit propagation and unfounded set prop-
agation. Unit propagation derivesd if δ \ {d} ⊆ A for some nogoodδ, i.e. all but one
literal of a nogood are satisfied, therefore the last one needs to be falsified. Unfounded set
propagation detects atoms which only cyclically support each other and falsifies them.

Part (a) checks if there is a conflict, i.e. a violated nogoodδ ⊆ A. If this is the case
we need to backtrack. For this purpose we useAnalysis to compute a learned nogoodǫ
and a backtrack decision levelk. The learned nogood is added to the set of dynamic no-
goods, and assignments above decision levelk are undone. Otherwise, Part (b) checks if
the assignment is complete. In this case, a final unfounded set check is necessary due to
disjunctive heads. If the candidate is founded, it is an answer set. Otherwise we select a
violated loop nogoodδ from the setλΠ̂(U) of all loop nogoods for an unfounded setU

(for the definition see Drescher et al. 2008), we do conflict analysis and backtrack. If no
more deterministic consequences can be derived and the assignment is still incomplete, we
need to guess in Part (d) and increment the decision level. The functionSelect implements
a variable selection heuristic. In the simplest case it chooses an arbitrary yet unassigned
variable, but state-of-the-art heuristics are more sophisticated. E.g., Goldberg and Novikov
(2007) prefer variables which are involved in recent conflicts.

3 Algorithms for Conflict-driven HEX-Program Solving

We present now our new, genuine algorithms forHEX-program evaluation. They are based
on Drescher et al. (2008), but integrate additional novel learning techniques to capture
the semantics of external atoms. The termlearningrefers to the process of adding further
nogoods to the nogood set as the search space is explored. They are classically derived
from conflict situations to avoid similar conflicts during further search, as described above.

We add a second type of learning which captures the behavior of external sources, called
external behavior learning(EBL). Whenever an external atom is evaluated, the algorithm
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Algorithm HEX-Eval
Input : A HEX-program Π
Output : All answer sets of Π
Π̂← Π with ext. atoms &g[p](c) replaced by e&g[p](c)

Add guessing rules for all replacement atoms to Π̂
∇ ← ∅ // set of dynamic nogoods

Γ← ∅ // set of all compatible sets

(a)while C 6= ⊥ do
C← ⊥
inconsistent ← false

(b)while C = ⊥ andinconsistent = false do
(c)A←HEX-CDNL(Π,Π̂,∇)

if A = ⊥ then inconsistent ← true

else
compatible ← true

(d)for all external atoms&g[p] in Π do
Evaluate &g[p] under A

(e)∇ ← ∇ ∪ Λ(&g[p],A)

Let A&g[p](c) =1⇔ Te&g[p](c) ∈ A

if ∃c : f&g(A,p, c) 6= A&g[p](c) then
Add A to∇
compatible ← false

if compatible then C← A

if inconsistent = false then
// C is a compatible set of Π

∇ ← ∇∪ {C} and Γ← Γ ∪ {C}

return ⊆-minimal {{Ta ∈ A | a ∈ A(Π)} | A ∈ Γ}

Algorithm HEX-CDNL
Input : A program Π, its guessing program Π̂, a set of correct

nogoods∇ofΠ
Output : An answer set of Π̂ (candidate for a compatible set

of Π) which is a solution to all nogoods d ∈ ∇, or ⊥
if none exists

A← ∅ // over A(Π̂)∪BA(Π̂)∪BA(sh(Π̂))
dl ← 0 // decision level

while true do
(A,∇)← Propagation(Π̂,∇,A)

(a)if δ ⊆ A for someδ ∈ ∆Π̂ ∪ Θsh(Π̂) ∪∇ then
if dl = 0 then return ⊥
(ǫ, k) ← Analysis(δ, Π̂,∇,A)
∇ ← ∇ ∪ {ǫ} and dl ← k
A← A \ {σ ∈ A | k < dl(σ)}

(b)else ifAT∪AF=A(Π̂)∪BA(Π̂)∪BA(sh(Π̂)) then
U ← UnfoundedSet(Π̂,A)
if U 6= ∅ then

let δ ∈ λΠ̂(U) such that δ ⊆ A

if {σ ∈ δ | 0 < dl(σ)} = ∅ then return ⊥
(ǫ, k) ← Analysis(δ, Π̂,∇,A)
∇ ← ∇ ∪ {ǫ} and dl ← k

A← A \ {σ ∈ A | k < dl(σ)}

else returnAT ∩ A(Π̂)

(c)else ifHeuristic decides to evaluate&g[p] then
Evaluate &g[p] under A and set
∇ ← ∇ ∪ Λ(&g[p],A)

(d)else
σ ← Select(Π̂,∇,A) and dl ← dl + 1
A← A ◦ (σ)

might learn from the call. If we have no further information about the internals of a source,
we may learn only very general input-output-relationships, if we have more information
we can learn more effective nogoods. In general, we can associate alearning-functionwith
each external source. For the sake of introducing the evaluation algorithms, however, in
this section we abstractly consider a set of nogoods learnedfrom the evaluation of some
external predicate with input list&g[p], if evaluated under an assignmentA, denoted by
Λ(&g[p],A). The next section will provide definitions of particular nogoods that can be
learned for various types of external sources, i.e., to instantiateΛ(·, ·). The crucial require-
ment for learned nogoods iscorrectness, which intuitively holds if the nogood can be added
without eliminating compatible sets.

Definition 4 (Correct Nogoods) A nogoodδ is correct wrt. a programΠ, if all compatible
sets ofΠ are solutions toδ.

In our subsequent exposition we assume that the programΠ is clear from the context.
The overall approach consists of two parts. First,HEX-CDNL computes model candidates;
it is essentially an ordinary ASP solver, but includes callsto external sources in order to
learn additional nogoods. The external calls in this algorithm are not required for correct-
ness of the algorithm, but may influence performance dramatically as discussed in Sec-
tion 5. Second, AlgorithmHEX-Eval uses AlgorithmHEX-CDNL to produce model can-
didates and checks each of them against the external sources(followed by a minimality
check). Here, the external calls are crucial for correctness of the algorithm.

For computing a model candidate,HEX-CDNL basically employs the conflict-driven ap-
proach presented in Drescher et al. (2008) as summarized in Section 2, where the main dif-
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ference is the addition of Part (c). Our extension is driven by the following idea: whenever
(unit and unfounded set) propagation does not derive any further atoms and the assignment
is still incomplete, the algorithm possibly evaluates external atoms (driven by a heuristic)
instead of simply guessing truth values. This might lead to the addition of new nogoods,
which can in turn cause the propagation procedure to derive further atoms. Guessing of
truth values only becomes necessary if no deterministic conclusions can be drawn and the
evaluation of external atoms does not yield further nogoods; guessing also occurs if the
heuristic does not decide to evaluate.

For a more formal treatment, letE be the set of all external predicates with input list that
occur inΠ, and letD be the set of all signed literals over atoms inA(Π)∪A(Π̂)∪BA(Π̂).
Then, alearning functionfor Π is a mappingΛ : E × 2D 7→ 22

D

. We extend our notion of
correct nogoods to correct learning functionsΛ(·, ·), as follows:

Definition 5 A learning functionΛ is correctfor a programΠ, iff all d ∈ Λ(&g[p],A) are
correct forΠ, for all &g[p] in E andA ∈ 2D.

Restricting to learning functions that are correct forΠ, the following results hold.

Proposition 1 If for input Π, Π̂ and∇, HEX-CDNL returns (i) an interpretationA, then
A is an answer set of̂Π and a solution to∇; (ii) ⊥, thenΠ has no compatible set that is a
solution to∇.

Proof (Sketch).(i) The proof mainly follows (Drescher et al. 2008). In our algorithm we
have potentially more nogoods, which can never produce further answer sets but only elim-
inate them. Hence, each produced interpretationA is an answer set of̂Π. (ii) By com-
pleteness of Drescher et al. (2008) we only need to justify that addingΛ(&g[p],A) after
evaluation of&g[p] does not eliminate compatible sets ofΠ. For this purpose we need to
show that when one of the added nogoods fires, the interpretation is incompatible with the
external sources anyway. But this follows from the correctness ofΛ(·, ·) and (for derived
nogoods) from the completeness of Drescher et al. (2008). ✷

The basic idea ofHEX-Eval is to compute all compatible sets ofΠ by the loop at (a)
and checking subset-minimality afterwards. For computingcompatible sets, the loop at (b)
usesHEX-CDNL to compute answer sets ofΠ̂ in (c), i.e., candidate compatible sets ofΠ,
and subsequently checks compatibility for each external atom in (d). Here the external
calls are crucial for correctness. However, different fromthe translation approach, the ex-
ternal source evaluation serves not only for compatibilitychecking, but also for generating
additional dynamic nogoodsΛ(&g[p],A) in Part (e). We have the following result.

Proposition 2 HEX-Eval computes all answer sets ofΠ.

Proof (Sketch).We first show that the loop at (b) yields after termination a compatible
setC of Π that is a solution of∇ at the stage of entering the loop iff such a compatible set
does exist, and yieldsC = ⊥ iff no such compatible set exists.

Suppose thatC 6= ⊥ after the loop. ThenC was assignedA 6= ⊥, which was returned
by HEX-CDNL(Π, Π̂, ∇). From Proposition 1 (ii) it follows thatC is an answer set of
Π̂ and a solution to∇. Thus (i) of Definition 2 holds. Ascompatible = true, the for
loop guarantees the compatibility with the external sources in (ii) of Definition 2: if some
source output on input fromC is not compatible with the guess,C is rejected (and added as
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nogood). OtherwiseC coincides with the behavior of the external sources, i.e., it satisfies
(ii) of Definition 2. Thus,C is a compatible set ofΠ wrt. ∇ at call time. As only correct
nogoods are added to∇, it is also a compatible set ofΠ wrt. the initial set∇.

Otherwise, after the loopC = ⊥. Theninconsistent = true, which means that the call
HEX-CDNL(Π, Π̂,∇) returned⊥. By Proposition 1 (ii) there is no answer set ofΠ̂ which
is a solution to∇. As only correct nogoods were added to∇, there exists also no answer
set ofΠ̂ which is a solution to the original set∇. Thus the loop at (b) operates as desired.

The loop at (a) then enumerates one by one all compatible setsand terminates: the update
of ∇ with C prevents recomputingC, and thus the number of compatible sets decreases.
As by Definition 3 the answer sets ofΠ are the compatible sets with subset-minimal true
part of original literals, the overall algorithm correctlyoutputs all answer sets ofΠ. ✷

Example 2 Let &empty be an external atom with one (nonmonotonic) predicate inputp,
such that its output isc0 if the extension ofp is empty andc1 otherwise. Consider the
programΠe consisting of the rules

p(c0). dom(c0). dom(c1). dom(c2). p(X)← dom(X),&empty [p](X)

Algorithm HEX-Eval transformsΠe into the guessing program̂Πe:

p(c0). dom(c0). dom(c1). dom(c2). p(X)← dom(X), e&empty[p](X).

e&empty[p](X) ∨ ne&empty[p](X)← dom(X).

The traditional evaluation strategy without learning willthen produce23 model candi-
dates inHEX-CDNL, which are subsequently checked inHEX-Eval. For instance, the guess
{

Tne&empty[p](c0),Te&empty[p](c1),Tne&empty[p](c2)
}

leads to the model candidate
{

Tne&empty[p](c0),Te&empty[p](c1),Tne&empty[p](c2),Tp(c1)
}

(neglecting false atoms and facts). This is also the only model candiate which passes the
compatibility check:p(c0) is always true, and thereforee&empty[p](c1) must also be true
due to definition of the external atom. This allows for derivingp(c1) by the first rule of the
program. All other atoms are false due to minimality of answer sets. ✷

The effects of the additionally learned nogoods will be discussed in Section 4 after
having formally specified concreteΛ(&g[p],A) for various types of external sources.

4 Nogoods for External Behavior Learning

We now discuss nogoods generated for external behavior learning (EBL) in detail. EBL is
triggered by external source evaluations instead of conflicts. The basic idea is to integrate
knowledge about the external source behavior into the program to guide the search. The
program evaluation then starts with an empty set of learned nogoods and the preprocessor
generates a guessing rule for each ground external atom, as discussed in Section 2. Fur-
ther nogoods are added during the evaluation as more information about external sources
becomes available. This is in contrast to traditional evaluation, where external atoms are
assigned arbitrary truth values which are checked only after the assignment was completed.

We will first show how to construct useful learned nogoods after evaluating external
atoms, if we have no further information about the internalsof external sources, calledun-
informed learning. In this case we can only learn simple input/output relationships. Subse-
quently we considerinformed learning, where additional information about properties of
external sources is available. This allows for using more elaborated learning strategies.
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Table 1: Learned Nogoods of Example 3

Guess Learned Nogood
{

Te&empty[p](c0),Tne&empty[p](c1),
Tne&empty[p](c2)

}

{Tp(c0),Fp(c1),Fp(c2),Fe&empty[p](c1)}

{

Te&empty[p](c0),Tne&empty[p](c1),
Te&empty[p](c2), p(c2)

}

{Tp(c0),Fp(c1),Tp(c2),Fe&empty[p](c1)}

{

Te&empty[p](c0),Te&empty[p](c1),
Tne&empty[p](c2), p(c1)

}

{Tp(c0),Tp(c1),Fp(c2),Fe&empty[p](c1)}

{

Te&empty[p](c0),Te&empty[p](c1),
Te&empty[p](c2), p(c1), p(c2)

}

{Tp(c0),Tp(c1),Tp(c2),Fe&empty[p](c1)}

4.1 Uninformed Learning

We first assume that we do not have information about the internals and consider external
sources as black boxes. Hence, we can just apply very generalrules for learning: when-
ever an external predicate with input list&g[p] is evaluated under an assignmentA, we
learn that the inputA|p for p = p1, . . . , pn to the external atom&g produces the output
ext(&g[p],A). This can be formalized as the following set of nogoods.

Definition 6 The learning function for a general external predicate withinput list &g[p]
in programΠ under assignmentA is defined as

Λg(&g[p],A) =
{

A|p ∪ {Fe&g[p](c)} | c ∈ ext(&g[p],A)
}

.

In the simplest case, an external atom has no input and the learned nogoods are unary,
i.e., of the form{Fe&g[](c)}. Thus, it is learned that certain tuples are in the output of the
external source, i.e. they must not be false. For external sources with input predicates, the
added rules encode the relationship between the output tuples and the provided input.

Example 3 (ctd.) RecallΠe from Example 2. Without learning, the algorithms produce
23 model candidates and check them subsequently. It turns out that EBL allows for falsifi-
cation of some of the guesses without actually evaluating the external atoms. Suppose the
reasoner first tries the guesses containing literalTe&empty[p](c0). While they are checked
against the external sources, the described learning function allows for adding the exter-
nally learned nogoods shown in Table 1. Observe that the combinationTp(c0),Fp(c1),Fp(c2)

will be reconstructed also for different choices of the guessing variables. Asp(c0) is a fact,
it is true independent of the choice betweene&empty[p](c0) andne&empty[p](c0). E.g., the
guessFe&empty[p](c0), Fe&empty[p](c1), Fe&empty[p](c2) leads to the same extension ofp.
This allows for reusing the nogood, which is immediately invalidated without evaluating
the external atoms. Different guesses with the same input toan external source allow for
reusing learned nogoods, at the latest when the candidate iscomplete, but before the ex-
ternal source is called for validation. However, very oftenlearning allows for discarding
guesses even earlier. For instance, we can derive{Tp(c0),Fe&empty[p](c1)} from the no-
goods above in 3 resolution steps. Such derived nogoods willbe learned after running into
a couple of conflicts. We can deriveTe&empty[p](c1) fromp(c0) even before the truth value
of Fe&empty[p](c1) is set, i.e., external learning guides the search while the traditional eval-
uation algorithm considers the behavior of external sources only during postprocessing.✷
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For the next result, letΠ be a program which contains an external atom of form&g[p](·).

Lemma 1 For all assignmentsA, the nogoodsΛg(&g[p],A) (Def. 6) are correct wrt.Π.

Proof (Sketch).The added nogood for an output tuplec ∈ ext(&g[p],A) containsA|p
and the negated replacement atomFe&g[p](c). If the nogood fires, then the guess was
wrong as the replacement atom is guessed false but the tuple(c) is in the output. Hence,
the interpretation is not compatible and cannot be an answerset anyway. ✷

4.2 Informed Learning

The learned nogoods of the above form can become quite large as they include the whole
input to the external source. However, known properties of external sources can be ex-
ploited in order to learn smaller and more general nogoods. For example, if one of the
input parameters of an external source is monotonic, it is not necessary to include informa-
tion about false atoms in its extension, as the output will not shrink given larger input.

Properties for informed learning can be stated on the level of eitherpredicatesor indi-
vidualexternal atoms. The former means that all usages of the predicate have the property.
To understand this, consider predicate&union which takes two predicate inputsp andq
and computes the set of all elements which are in at least one of the extensions ofp or q.
It will be alwaysmonotonic in both parameters, independently of its usage ina program.
While an external source may lack a property in general, it may hold for particular usages.

Example 4 Consider an external atom&db[r1, . . . , rn, query ](X) as an interface to an
SQL query processor, which evaluates a given query (given asstring) over tables (rela-
tions) provided by predicatesr1, . . . , rn. In general, the atom will be nonmonotonic, but
for special queries (e.g., simple selection of all tuples),it will be monotonic. ✷

Next, we discuss two particular cases of informed learning which customize the default
learning function for generic external sources by exploiting properties of external sources,
and finally present examples where the learning of user-defined nogoods might be useful.

Monotonic Atoms. A parameterpi of an external atom&g is calledmonotonic, if f&g(A,p, c) =

1 impliesf&g(A
′,p, c) = 1 for all A′ with A′|pi

⊇ A|pi
andA′|p′ = A|p′ for all other

p′ 6= pi. The learned nogoodsΛ(&g[p],A) after evaluating&g[p] are not required to
includeFpi(t1, . . . , tℓ) for monotonicpi ∈ p. That is, for an external predicate with in-
put list &g[p] with monotonic input parameterspm ⊆ p and nonmonotonic parameters
pn = p \ pm, the set of learned nogoods can be restricted as follows.

Definition 7 The learning function for an external predicate&g with input listp in pro-
gramΠ under assignmentA, such that&g is monotonic inpm ⊆ p, is defined as

Λm(&g[p],A) =
{

{Ta ∈ A|pm
} ∪A|pn

∪ {Fe&g[p](c)} | c ∈ ext(&g[p],A)
}

.

Example 5 Consider the external atom&diff [p, q](X) which computes the set of all el-
ementsX that are in the extension ofp, but not in the extension ofq. Suppose it is evaluated
underA, s.t.ext(p,A) = {Tp(a),Tp(b),Fp(c)} andext(q,A) = {Fq(a),Tq(b),Fq(c)}.
Then the output of the atom isext(&diff [p, q],A) = {a} and the (only) naively learned
nogood is{Tp(a),Tp(b),Fp(c),Fq(a),Tq(b),Fq(c),Fe&diff [p,q](a)}. However, due to
monotonicity of&diff [p, q] in p, it is not necessary to includeFp(c) in the nogood; the
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output of the external source will not shrink even ifp(c) becomes true. Therefore the
(more general) nogood{Tp(a),Tp(b),Fq(a),Tq(b),Fq(c),Fe&diff [p,q](a)} suffices to
correctly describe the input-output behavior. ✷

Functional Atoms. When evaluating&g[p]with some functional&g under assignmentA,
only one output tuple can be contained inext(&g[p],A), formally: for all assignmentsA
and allc, if f&g(A,p, c) = 1 thenf&g(A,p, c′) = 0 for all c′ 6= c. Therefore the follow-
ing nogoods may be added right from the beginning.

Definition 8 The learning function for a functional external predicate&g with input listp
in programΠ under assignmentA is defined as

Λf (&g[p],A) =
{

{Te&g[p](c),Te&g[p](c
′)} | c 6= c′

}

.

However, our implementation of this learning rule does not generate all pairs of output
tuples beforehand. Instead, it memorizes all generated output tuplesci, 1 ≤ i ≤ k during
evaluation of external sources. Whenever a new output tuplec′ is added, it also adds all
nogoods which force previously derived output tuplesci to be false.

Example 6 Consider the rules

out(X)← &concat [A, x](X), strings(A), dom(X)
strings(X)← dom(X), not out(X)

where&concat [a, b](c) is true iff string c is the concatenation of stringsa and b, and
observe that the external atom is involved in a cycle throughnegation. As the extension
of the domaindom can be large, many ground instances of the external atom are gener-
ated. The old evaluation algorithm guesses their truth values completely uninformed. E.g.,
e&concat(x, x, xx) (the replacement atom of&concat [A, x](X) with A = x andX = xx,
wheredom(x) anddom(xx) are supposed to be facts) is in each guess set randomly to
true or to false, independent of previous guesses. In contrast, with learning over external
sources, the algorithm learns after the first evaluation that e&concat(x, x, xx) must be true.
Knowing that&concat is functional, all atomse&concat(x, x,O) with O 6=xx must also
be false. ✷

For the next result, letΠ be a program which contains an external atom of form&g[p](·).

Lemma 2 For all assignmentsA, (i) the nogoodsΛm(&g[p],A) (Def. 7) are correct
wrt. Π, and (ii) if &g is functional, the nogoodsΛf (&g[p],A) (Def. 8) are correct wrt.Π.

Proof (Sketch).For monotonic external sources we must show that negative input literals
over monotonic parameters can be removed from the learned nogoods without affecting
correctness. For uninformed learning, we argued that for output tuplec ∈ ext(&g[p],A),
the replacement atome&g[p](c) must not be be guessed false if the input to&g[p](c) isA|p
under assignmentA. However, as the output of&g grows monotonically with the extension
of a monotonic parameterp ∈ pm, the same applies for anyA′ which is “larger” inp, i.e.,
{Ta ∈ A′|p} ⊇ {Ta ∈ A|p} and consequently{Fa ∈ A′|p} ⊆ {Fa ∈ A|p}. Hence, the
negative literals are not relevant wrt. output tuplec and can be removed from the nogood.

For functional&g, we must show that the nogoods
{

{Te&g[p](c),Te&g[p](c
′)} | c 6= c′

}

are correct. Due to functionality, the external source cannot return more than one output tu-
ple for the same input. Therefore no such guess can be an answer set as it is not compatible.
Hence, the nogoods do not eliminate possible answer sets. ✷
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User-defined Learning. In many cases the developer of an external atom has more in-
formation about the internal behavior. This allows for defining more effective nogoods.
It is therefore beneficial to give the user the possibility tocustomize learning functions.
Currently, user-defined functions need to directly specifythe learned nogoods. The de-
velopment of a user-friendly language for writing learningfunctions is subject to future
work.

Example 7 Consider the program

r(X,Y ) ∨ nr(X,Y )← d(X), d(Y )

r(V,W )← &tc[r](V,W ), d(V ), d(W )

It guesses, for some set of nodesd(X), all subgraphs of the complete graph. Suppose
&tc[r] checks if the edge selectionr(X,Y ) is transitively closed; if this is the case, the
output is empty, otherwise the set of missing transitive edges is returned. For instance, if
the extension ofr is {(a, b), (b, c)}, then the output of&tc will be {(a, c)}, as this edge
is missing in order to make the graph transitively closed. The second rule eliminates all
subgraphs which are not transitively closed. Note that&tc is nonmonotonic. The guessing
program is

r(X,Y ) ∨ nr(X,Y )← d(X), d(Y )

r(V,W )← e&tc[r](V,W ), d(V ), d(W )

e&tc[r](V,W ) ∨ ne&tc[r](V,W )← d(V ), d(W )

The naive implementation guesses forn nodes all2
n(n−1)

2 subgraphs and checks the tran-
sitive closure for each of them, which is costly. Consider the domainD = {a, b, c, d, e, f}.
After checking one selection withr(a, b), r(b, c), nr (a, c), we know thatnoselection con-
taining these three literals will be transitively closed. This can be formalized as a user-
defined learning function. Suppose we have just checked our first guessr(a, b), r(b, c),
andnr(x, y) for all other(x, y) ∈ D × D. Compared to the nogood learned by the gen-
eral learning function, the nogood{Tr(a, b),Tr(b, c),Fr(a, c),Fe&tc[r](a, c)} is a more
general description of the conflict reason, containing onlyrelevant edges. It is immediately
violated and future guesses containing{Tr(a, b),Tr(b, c),Fr(a, c)} are avoided. ✷

Example 8 (Linearity) A useful learning function for&diff [p, q](X) is the following:
whenever an element is inp but not inq, it belongs to the output of the external atom. This
user-defined function works elementwise and produces nogoods with three literals each.
We call this propertylinearity. In contrast, the naive learning function from the Section 4.1
includes the complete extensions ofp andq in the nogoods, which are less general. ✷

For user-defined learning, correctness of the learning function must be asserted.

5 Implementation and Evaluation

We have integratedCLASP into our reasonerDLVHEX ; previous versions ofDLVHEX used
justDLV. In order to learn nogoods from external sources we exploitCLASP’s SMT inter-
face, which was previously used for the special case of constraint answer set solving and
implemented in theCLINGCON system (Gebser et al. 2009; Ostrowski and Schaub 2012).
We compare three configurations:DLVHEX with DLV backend,DLVHEX with (conflict-
driven)CLASP backend but without EBL, andDLVHEX with CLASP backend and EBL.
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For our experiments we used variants of the above examples, the DLVHEX test suite,
and default reasoning over ontologies. It appeared that learning has high potential to re-
duce the number of candidate models. Also the number of totalvariable assignments and
backtracks during search decreased drastically in many cases. This suggests that candidate
rejection often needs only parts of interpretations and is possible early in the evaluation.
All benchmarks were carried out on a machine with two 12-coreAMD Opteron 6176 SE
CPUs and 128 GB RAM, running Linux and usingCLASP 2.0.5 andDLV Dec 21 2011 as
solver backends. For each benchmark instance, the average of three runs was calculated,
having a timeout of 300 seconds, and a memout of 2 GB for each run. We report runtime
in seconds; gains and speedups are given as a factor.

Set Partitioning. The following program partitions a setS into two subsetsS1, S2 ⊆ S

such that|S1| ≤ 2. The partitioning criterion is expressed by two rules forS1 = S \ S2

andS2 = S\S1. The implementation is by the use of external atom&diff (cf. Example 5):

dom(c1). · · · dom(cn).

nsel(X)← dom(X),&diff [dom , sel ](X).

sel(X)← dom(X),&diff [dom , nsel ](X).

← sel(X), sel(Y ), sel(Z), X 6= Y,X 6= Z, Y 6= Z.

The results in Table 2a compare the run of the reasoner with different configurations for
computing (i) all models resp. (ii) the first model. In both cases, using the conflict-driven
CLASP reasoner instead ofDLV as backend already improves efficiency. Adding EBL leads
to a further improvement: in case (ii), the formerly exponentially growing runtime becomes
almost constant. When computing all answer sets, the runtime is still exponential as expo-
nentially many subset choices must be considered (due to theencoding); however, also in
this case many of them can be pruned early by learning, which makes the runtime appear
linear for the shown range of instance sizes. Moreover, our experiments show that the delay
between the models decreases over time when EBL is used (not shown in the table), while
it is constant without EBL due to the generation of additional nogoods.

Default Reasoning over Description Logic Ontologies. We consider now a more re-
alistic scenario using the DL-plugin (Eiter et al. 2008) forDLVHEX , which integrates
description logics (DL) knowledge bases and nonmonotonic logic programs. The DL-
Plugin allows to access an ontology using the description logic reasonerRacerPro 1.9.0

(http://www.racer-systems.com/). For our first experiment, consider the program (shown left)
and the terminological part of a DL knowledge base on the right:

birds(X)← DL[Bird ](X). Flier ⊑ ¬NonFlier

flies(X)← birds(X), notneg flies(X). Penguin ⊑ Bird

neg flies(X)← birds(X),DL[Flier ⊎ flies ;¬Flier ](X). Penguin ⊑ NonFlier

This encoding realizes the classic Tweety bird example using DL-atoms (which is an al-
ternative syntax for external atoms in this example and allows to express queries over
description logics in a more accessible way). The ontology states thatFlier is disjoint
with NonFlier , and that penguins are birds and do not fly; the rules express that birds fly by
default, i.e., unless the contrary is derived. The program amounts to theΩ-transformation
of default logic over ontologies to dl-programs (Dao-Tran et al. 2009), where the last rule
ensures consistency of the guess with the DL ontology. If theassertional part of the DL
knowledge base containsPenguin(tweety), thenflies(tweety) is inconsistent with the



Theory and Practice of Logic Programming 15

Table 2: Benchmark Results (runtime in seconds, timeout 300s)

(a) Set Partitioning

# elements all models first model
DLV CLASP CLASP DLV CLASP CLASP

w/o EBL w EBL w/o EBL w EBL

1 0.07 0.08 0.07 0.08 0.07 0.07
5 0.20 0.16 0.10 0.08 0.08 0.07

10 12.98 9.56 0.17 0.56 0.28 0.07
11 38.51 21.73 0.19 0.93 0.63 0.08
12 89.46 49.51 0.19 1.69 1.13 0.08
13 218.49 111.37 0.20 3.53 2.31 0.10
14 — 262.67 0.28 8.76 3.69 0.10
.
.
. — —

.

.

.

.

.

.

.

.

.

.

.

.

18 — — 0.45 128.79 62.58 0.12
19 — — 0.42 — 95.39 0.10
20 — — 0.54 — 91.16 0.11

(b) Bird-Penguin

# individuals
DLV CLASP CLASP

w/o EBL w EBL

1 0.50 0.15 0.14
5 1.90 1.98 0.59
6 4.02 4.28 0.25
7 8.32 7.95 0.60
8 16.11 16.39 0.29
9 33.29 34.35 0.35

10 83.75 94.62 0.42
11 229.20 230.75 4.45
12 — — 1.10
.
.
. — —

.

.

.

20 — — 2.70

(c) Wine Ontology

Instance concept completion gain
CLASP CLASP max avg

w/o EBL w EBL

wine 0 25 31 33.02 6.93
wine 1 16 25 16.05 5.78
wine 2 14 22 11.82 4.27
wine 3 4 17 10.09 4.02
wine 4 4 17 6.83 2.87
wine 5 4 16 5.22 2.34
wine 6 4 13 2.83 1.52
wine 7 4 12 1.81 1.14
wine 8 4 4 1.88 1.08

(d) MCS

# contexts
DLV CLASP CLASP

w/o EBL w EBL

3 0.07 0.05 0.04
4 1.04 0.68 0.14
5 0.23 0.15 0.05
6 2.63 1.44 0.12
7 8.71 4.39 0.17

given DL-program (neg flies(tweety) is derived by monotonicity of DL atoms andflies(tweety)
loses its support). Note that defaults cannot be encoded in standard (monotonic) description
logics, which is achieved here by the cyclic interaction of DL-rules and the DL knowledge
base.

As all individuals appear in the extension of the predicateflier , all of them are consid-
ered simultaneously. This requires a guess on the ability tofly for each individual and a
subsequent check, leading to a combinatorial explosion. Intuitively, however, the property
can be determined for each individual independently. Hence, a query may be split into
independent subqueries, which is achieved by our learning function for linear sourcesin
Example 8. The learned nogoods are smaller and more candidate models are eliminated.
Table 2b shows the runtime for different numbers of individuals and evaluation with and
without EBL. The runs with EBL exhibit a significant speedup,as they exclude many
model candidates, whereas the performance of theDLV and theCLASP backend without
EBL is almost identical (unlike in the first example); here, most of the time is spent calling
the description logic reasoner and not for the evaluation ofthe logic program.

The findings carry over to large ontologies (DL knowledge bases) used in real-world
applications. We did similar experiments with a scaled version of the wine ontology (http:

//kaon2.semanticweb.org/download/test ontologies.zip). The instances differ in the size of the
ABox (ranging from247 individuals in wine0 to 20007 in wine 8) and in several other



16 Eiter et al.

parameters (e.g., on the number of concept inclusions and concept equivalences; Motik
and Sattler (2006) describe the particular instances winei). We implemented a number of
default rules using an analogous encoding as above: e.g., wines not derivable to be dry
are not dry, wines which are not sweet are assumed to be dry, wines are white by default
unless they are known to be red. Here, we discuss the results of the latter scenario. The
experiments classified the wines in the34 main concepts of the ontology (the immedi-
ate subconcepts of the conceptWine, e.g.,DessertWine andItalianWine), which have
varying numbers of known concept memberships (e.g., ranging from 0 to 43, and8 on
average, in wine0) and percentiles of red wines among them (from0% to 100%, and47%
on average). The results are summarized in Table 2c. There, entries for concept comple-
tion state the number of classified concepts. Again, there isalmost no difference between
theDLV and theCLASPbackend without EBL, but EBL leads to a significant improvement
for most concepts and ontology sizes. E.g., there is a gain for 16 out of the34 concepts of
the wine0 runs, as EBL can exploit linearity. Furthermore, we observed that6 additional
instances can be solved within the300 seconds time limit. If a concept could be classified
both with and without EBL, we could observe a gain of up to33.02 (on average6.93). As
expected, larger categories profit more from EBL as we can reuse learned nogoods in these
instances.

BesidesΩ, Dao-Tran et al. (2009) describe other transformations of default rules over
description logics. Experiments with this transformations revealed that the structure of the
resultingHEX-programs prohibits an effective reuse of learned nogoods.Hence, the overall
picture does not show a significant gain with EBL for these encodings, we could however
still observe a small improvement for some runs.

Multi-Context Systems (MCS). MCS (Brewka and Eiter 2007) is a formalism for inter-
linking multiple knowledge-based systems (the contexts).Eiter et al. (2010) defineincon-
sistency explanations (IE)for MCS, and present a system for finding such explanations
on top ofDLVHEX . In our benchmarks we computed explanations for inconsistent multi-
context systems with3 up to7 contexts. For each number we computed the average runtime
over several instances with different topologies (tree, zigzag, diamond), which were ran-
domly created with an available benchmark generator, and report the results in Table 2d.

Unlike in the previous benchmark we could already observe a speedup of up to1.98
when usingCLASP instead of theDLV backend. This is because of two reasons: first,CLASP

is more efficient thanDLV for the given problem, and second,CLASPwas tightly integrated
into DLVHEX , whereas usingDLV requires interprocess communication. However, the most
important aspect is again EBL, which leads to a further significant speedup with a factor
of up to25.82 compared toCLASP without EBL.

Logic Puzzles. Another experiment concerns logic puzzles. We encodedSudokuas a
HEX-program, such that the logic program makes a guess of assignments to the fields and
an external atom is used for verifying the answer. In case of anegative verification result,
the external atom indicates by user-defined learning rules the reason of the inconsistency,
encoded a pair of assignments to fields which contradict one of the uniqueness rules.

As expected, all instances times out without EBL, because the logic program has no
information about the rules of the puzzle and blindly guesses all assignments, which are
subsequently checked by the external atom. But with EBL, theSudoku instances could be
solved in several seconds.
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More details on the experiments and links to benchmarks and benchmark generators can
be found athttp://www.kr.tuwien.ac.at/research/systems/dlvhex/experiments.html.

6 Discussion and Conclusion

The basic idea of our algorithm is related to constraint ASP solving presented in Geb-
ser et al. (2009), and Ostrowski and Schaub (2012), which is realized in theCLINGCON

system. External atom evaluation in our algorithm can superficially be regarded as con-
straint propagation. However, while both,Gebser et al. (2009) and Ostrowski and Schaub
(2012), consider a particular application, we deal with a more abstract interface to external
sources. An important difference betweenCLINGCON and EBL is that the constraint solver
is seen as a black box, whereas we exploit known properties ofexternal sources. Moreover,
we supportuser-defined learning, i.e., customization of the default construction of conflict
clauses to incorporate knowledge about the sources, as discussed in Section 4. Another dif-
ference is the construction of conflict clauses. ASP with CP has special constraint atoms,
which may be contradictory, e.g.,T(X > 10) andT(X = 5). The learned clauses are sets
of constraint literals, which are kept as small as possible.In our algorithm we have usu-
ally no conflicts between ground external atoms as output atoms are mostly independent
of each other (excepting e.g. functional sources). Instead, we have a strong relationship
between the input and the output. This is reflected by conflictclauses which usually con-
sist of (relevant) input atoms and the negation of one outputatom. As in constraint ASP
solving, the key for efficiency is keeping conflict clauses small.

We have extended conflict-driven ASP solving techniques from ordinary ASP toHEX-
programs, which allow for using external atoms to access external sources. Our approach
uses two types of learning. The classical type is conflict-driven clause learning, which
derives conflict nogoods from conflict situations while the search tree is traversed. Adding
such nogoods prevents the algorithm from running into similar conflicts again.

Our main contribution is a second type of learning which we call external behavior
learning (EBL). Whenever external atoms are evaluated, further nogoods may be added
which capture parts of the external source behavior. In the simplest case these nogoods
encode that a certain input to the source leads to a certain output. This default learning
function can be customized to learn shorter or more general nogoods. Customization is
either done explicitly by the user, or learning functions are derived automatically from
known properties of external atoms, which can be stated either on the level of external
predicates or on the level of atoms. Currently we exploit monotonicity and functionality.

Future work includes the identification of further properties which allow for automatic
derivation of learning functions. We further plan the development of a user-friendly lan-
guage for writing user-defined learning functions. Currently, they require to specify the
learned nogoods by hand. It may be more convenient to write rules that a certain input to
an external source leads to a certain output, in (a restricted variant of) ASP or a more con-
venient language. The challenge is that evaluation of learning rules introduces additional
overhead, hence there is another tradeoff between costs andbenefit of EBL. Finally, also
the development of heuristics for lazy evaluation of external sources is subject to future
work.
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