arXiv:1210.1649v1 [cs.Al] 5 Oct 2012

Under consideration for publication in Theory and Practimielogic Programming 1

Conflict-driven ASP Solving with External Sources

Thomas Eiter, Michael Fink, Thomas Krennwallner, and Gbpk Redk

Institut fur Informationssysteme, Technische Univatditien
FavoritenstralRe 9-11, A-1040 Vienna, Austria
(e-mail: {eiter, fink, tkren, redl}@kr.tuwien.ac.at)

submitted 1 January 2003; revised 1 January 2003; acceptéhliary 2003

Abstract

Answer Set Programming (ASP) is a well-known problem sa@\approach based on nonmonotonic
logic programs and efficient solvers. To enable access emdtinformationHEX-programs extend
programs withexternal atomswhich allow for a bidirectional communication between thgic
program and external sources of computation (e.g., deggrifpgic reasoners and Web resources).
Current solvers evaluateEx-programs by a translation to ASP itself, in which values xteenal
atoms are guessed and verified after the ordinary answesrsgiutation. This elegant approach does
not scale with the number of external accesses in genegadyfitular in presence of nondeterminism
(which is instrumental for ASP). In this paper, we presenbeeh native algorithm for evaluating
HEX-programs which uses learning techniques. In particularextend conflict-driven ASP solving
techniques, which prevent the solver from running into thme conflict again, from ordinary to
HEX-programs. We show how to gain additional knowledge fronemdl source evaluations and
how to use it in a conflict-driven algorithm. We first targe¢ tininformed case, i.e., when we have
no extra information on external sources, and then extendjgproach to the case where additional
meta-information is available. Experiments show thatieay from external sources can significantly
decrease both the runtime and the number of considereddzdadiompatible sets.

KEYWORDSAnswer Set Programming, Nonmonotonic Reasoning, Cosifiiaten Clause Learn-
ing

1 Introduction

Answer Set Programming (ASP) is a declarative programmgpgaach (Niemela 1999;
Marek and Truszczyhski 1999; Lifschitz 2002), in whichwgains to a problem correspond
to answer sets (Gelfond and Lifschitz 1991) of a logic pragrahich are computed using
an ASP solver. While this approach has turned out, thanksgcessive and efficient sys-
tems likesMODELS(Simons et al. 20021V (Leone et al. 2006), ASSAT (Lin and Zhao
2004), cmodels (Giunchiglia et al. 2006), aodasp (Gebser et al. 2012; Gebser et al.
2011), to be fruitful for a range of applications, cf. (Breavlt al. 2011), current trends in
distributed systems and the World Wide Web, for instancssaled the need for access to
external sources in a program, ranging from light-weighaa@ecess (e.g., XML, RDF, or
data bases) to knowledge-intensive formalisms (e.g. rigigm logics).
To cater for this neediiEX-programs (Eiter et al. 2005) extend ASP with so called

* This research has been supported by the Austrian Scienak(FWF) project P20840, P20841, and P24090,
and by the Vienna Science and Technology Fund (WWTF) pr&&Et08-020.

http://arxiv.org/abs/1210.1649v1

2 Eiter et al.

external atoms, through which the user can couple any edtdatia source with a logic
program. Roughly, such atoms pass information from the narag given by predicates
and constants, to an external source which returns outpugvaf an (abstract) function
that it computes. This extension is convenient and has beabited for applications in
different areas, cf. (Eiter et al. 2011), and it is also vexgressive since recursive data
exchange between the logic program and external sourcessibe. Advanced reasoning
applications like default reasoning over descriptiond¢agitologies (Eiter et al. 2008; Dao-
Tran et al. 2009) or reasoning over Nonmonotonic Multi-@xhiSystems (Brewka and
Eiter 2007; Eiter et al. 2010) take advantage of it.

Current algorithms for evaluatinge x-programs use a translation approach and rewrite
them to ordinary ASP programs. The idea is to guess the traitres of external atoms
(i.e., whether a particular fact is in the “output” of the @xtal source access) in a modified
program; after computing answer sets, a compatibility tésticks whether the guesses
coincide with the actual source behavior. While elegaris, éipproach is a bottleneck in
advanced applications including those mentioned abouegs not scale, as blind guessing
leads to an explosion of candidate answer sets, many of vahight fail the compatibility
test. Furthermore, a blackbox view of external sourceshtisaany pruning of the search
space in the ASP translation, and even if properties woukhlogn, it is sheer impossible
to make use of them in ordinary ASP evaluation on-the-flygistandard solvers.

To overcome this bottleneck, a new evaluation method iserbdd this paper, we thus
present a novel algorithm for evaluatimgXx-programs, described in Section 3, which
avoids the simple ASP translation approach. It has threddaures.

e First, it natively builds model candidates from first pripleis and accesses external
sources already during the model search, which allows togcandidates early.

e Second, itconsiders external sources no longer as bladsbbut exploits meta-knowledge
about their internals.

e And third, it takes up modern SAT and ASP solving techniqueseld orclause learn-
ing (Biere et al. 2009), which led to very efficieabnflict-drivenalgorithms for answer-
set computation (Gebser et al. 2012; Drescher et al. 2008)eatends them to external
sources, which is a major contribution of this work. To thiglewe introduceexternal
behavior learning (EBL)which generates conflict clauses (nogoods) after extemate
evaluation (Section 3). We do this in Section 4, first in theaformed case (Section 4.1),
where no meta-information about the external source idablai except that a certain in-
put generates a certain output. We then exploit meta-irdtion' about external sources
(properties such as monotonicity and functionality) tateeven more effective nogoods
which restrict the search space further (Section 4.2).

We have implemented the new algorithm and incorporatediatthreDLVHEX prototype
systen? It is designed in an extensible fashion, such that the pesflexternal sources
can specify refined learning functions which exploit spedifiowledge about the source.
Our theoretical work is confirmed by experiments that we cmbed with our prototype on
synthetic benchmarks and programs motivated by real-vapjiications (Section 5). In

1 Not to be confused with semantically annotated data, wisictot considered here.
2 http:ivww.kr.tuwien.ac.atresearch/systems/divhex/

Theory and Practice of Logic Programming 3

several cases, significant performance improvements cedpa the previous algorithm
are obtained, which shows the suitability and potentiahefriew approach.

2 Preliminaries

In this section, we introduce syntax and semantiesef-programs and, following (Drescher
et al. 2008), conflict-driven SAT and answer set solving. et svith basic definitions.

A (signed) literal is a positive or a negated ground atBaor Fa, where ground atora
is of formp(cy, . . ., c¢), with predicate and function-symbol free ground terms . . . , ¢y,
abbreviated ap(c). For a literalo = Ta or 0 = Fa, let ¢ denote its negation, i.e.
Ta = Fa andFa = Ta. An assignmenA over a (finite) set of atomd is a consistent set
of signed literalsT'a or Fa, whereTa expresses that € A is true andFa that it is false.

We write AT to refer to the set of elements™ = {a | Ta € A} and AF to refer
to A¥ = {a | Fa € A}. The extension of a predicate symloWwrt. an assignmenA
is defined aszt(q, A) = {c | Tq(c) € A}. Let furtherA|, be the set of all signed
literals over atoms of forng(c) in A. For a listq = ¢i,...,q; of predicates, we let
A|q = A|Q1 U--- UA'%'

A nogood{Ly,...,L,} is a set of (signed) literalg;, 1 < i < n. An assignmenA is
asolutionto a nogood resp. a set of nogoods, iff 6 £ A resp.o £ A forallé € A.

2.1 HEX-Programs

We briefly recalHEX-programs, which have been introduced in Eiter et al. (268%) gen-
eralization of (disjunctive) extended logic programs urttie answer set semantics (Gel-
fond and Lifschitz 1991); for more details and backgrounel refer to Eiter et al. (2005).

Syntax. HEX-programs extend ordinary ASP programsgsyernal atomswhich enable a
bidirectional interaction between a program and exteroaices of computation. External
atoms have a list of input parameters (constants or predianes) and a list of output
parameters. Informally, to evaluate an external atom,e¢heaner passes the constants and
extensions of the predicates in the input tuple to the eatesource associated with the
external atom, which is plugged into the reasoner. The eateource computes an output
tuple, which is matched with the output list. More formalyground external atons of
the form&g[p](c), wherep = p, ..., pi are constant input parameters (predicate names
or object constants), and= ¢y, .. ., ¢; are constant output terms.

GroundHEX-programs are then defined similar to ground ordinary ASBiamms.

Definition 1 (Ground HEX-programs) A groundHEX-program consists of rules of form
a1 V---Vag < by,...,by,not byi1,...,n0t by,

where eachy; for 1 < ¢ < kis a ground atonp(cs, . . ., ¢¢) with constants:;, 1 < j < ¢,
and eachb; for 1 < i < n is either a classical ground atom or a ground external atbm.

Theheadof a ruler is H(r) = {a1,...,ax} and thebodyis B(r) = {b1,...,bm,

3 For simplicity, we do not formally introduce strong negatiout see classical literals of forru as new atoms
together with a constraint which disallows thaand—q are simultaneously true.

4 Eiter et al.

not by41,--.,n0t b, }. We callb or notb in a rule body adefault literat B*(r) =
{b1,...,bn} is thepositive bodyB~(r) = {bym+1,- .., bn} is thenegative body

In Sections 4 and 5 we will also make use of non-ground progratowever, we restrict
our theoretical investigation to ground programs as sléatabfety conditions allow for
application of grounding procedure (Eiter et al. 2006).

Semantics and Evaluation The semantics of a ground external at&mip](c) wrt. an
assignmenfA is given by the value of a+k-+I-ary Boolearnoracle functionfg, that is
defined for all possible values &f, p andc. Thus,&¢[p](c) is true relative taA if and only
ifitholds thatfe, (A, p, c) = 1. Satisfaction of ordinary rules and ASP programs (Gelfond
and Lifschitz 1991) is then extended#@&X-rules and programs in the obvious way, and
the notion of extensionzt(-, A) for external predicate& g with input listsp is naturally
defined byezt(&g[p], A) = {c | feq(A,p,c) =1}.

The answer sets of aex-programll are determined by theLvHEX solver using a
transformation to ordinary ASP programs as follows. Eadereral atom&g|[p](c) in 1T
is replaced by an ordinary groundplacement atonee,, (c) and a rule eg,p(c) Vv
neggpl(c) < is added to the program. The answer sets of the resulfirggsing pro-
gramil are determined by an ordinary ASP solver and projected teraplacement atoms.
However, the resulting assignments are not necessarilglmofll, as the value o& ¢[p]
underfg, can be different from the one ek, (c). Each answer set df is thus acan-
didate compatible sefor model candidatewhich must be checked against the external
sources. If no discrepancy is found, the model candidatecsnapatible sebf II. More
precisely,

Definition 2 (Compatible Set) A compatible sebf a programll is an assignmenA
(i) which is an answer set (Gelfond and Lifschitz 1991) ofghessing prograrfi, and
(i) feg(A,p,c) = 1iff Tegypi(c) € A for all external atoms&g[p](c) in I, i.e. the
guessed values coincide with the actual output under thet iinpm A.

The compatible sets di computed bypLvHEX include (moduloA(IT)) all answer sets

of IT as defined in Eiter et al. (2005) using the FLP reduct (Fabal. &011), which we
refer to as FLP-answer sets; with an additional test on citelianswer setd (which is
easily formulated as compatible set existence for a vadhhli), the FLP-answer sets can
be obtained. By defaulhLvHEX computes compatible sets with smallest true part on the
original atoms; this leads to answer sets as follows.

Definition 3 (Answer Set) An (DLVHEX) answer set ofl is any setS C {Ta | a €
A(ID)} such that (i)S = {Ta | a € A(II)} N A for some compatible sek of IT and
(i) {Ta | a € AID)} N A ¢ S for every compatible sek of II.

The answer sets in Definition 3 include all FLP-answer setd,ia fact often coincide
with them (as in all examples we consider). Computing then{imal) compatible sets is
thus a key problem fornEX-programs on which we focus here.

2.2 Conflict-driven Clause Learning and Nonchronologicale®ktracking

Recall that DPLL-style SAT solvers rely on an alternationldfwing deterministic conse-
guences and guessing the truth value of an atom towards de@ngerpretation. Deter-
ministic consequences are drawn by the basic operationibpropagationi.e., whenever

Theory and Practice of Logic Programming 5

all but one signed literals of a nogood are satisfied, thedastmust be false. The solver
stores an integedecision leveldl, written @Qd/ as postfix to the signed literal. An atom
which is set by unit propagation gets the highest decisival lef all already assigned
atoms, whereas guessing increments the current decisieln le

Most modern SAT solver areonflict-driven i.e., they learn additional nogoods when
current assignment violates a nogood. This prevents tlveisisbm running into the same
conflict again. The learned nogood is determined by injtisditting the conflict nogood to
the violated one. As long as it contains multiple literatenfrthe same decision level, it is
resolved with theeasonof one of these literals, i.e., the nogood which implied it.

Example 1 Consider the nogoods

{Ta, Tb},{Ta, Tc},{Fa, Tz, Ty}, {Fa, Tz, Fy}, {Fa,Fx, Ty}, {Fa,Fz,Fy}
and suppose the assignmentAs= {Fa@1, Tb@2, Tc@3, Tx@4}. Then the third no-
good is unit and implie¥y@4, which violates the fourth nogoofiFa, Tx, Fy}. As it
contains multiple literalsa{ andy) which were set at decision levé] it is resolved with
the reason for setting to false, which is the nogoofFa, Tx, Ty}. This results in the
nogood{Fa, Tz}, which contains the single literalset at decision level, and thus is the
learned nogood.

In standard clause notation, the nogood set corresponds to

(maV =b)A(maV-c)A(aV-zV-y)AaV-axzVy AlaVeV-y AlaVzeVy)
and the violated clause {8 V =z V). Itis resolved with(a V -2 VV —y) and results in the
learned clauséu VvV —z). O

State-of-the-art SAT and ASP solvers backtrack then togbersd-highest decision level
in the learned nogood. In Example 1, this is decision lévalll assignments after decision
level 1 are undoneTbv@2, Tc@3, Tx2@4). Only variableFa@1 remains assigned. This
makes the new nogodda, T} unit and derive®« at decision level.

2.3 Conflict-driven ASP Solving

In this subsection we summarize conflict-driven (disjuretianswer-set solving (Gebser
et al. 2012; Drescher et al. 2008). It corresponds to AlgariteX-CDNL without Part (c),
(cf. Section 3, where we also discuss Part (c)). Subsequemlprovide a summary of the
base algorithm; for details we refer to Gebser et al. (20h@)rescher et al. (2008).

To employ conflict-driven techniques from SAT solving in ARPograms are repre-
sented as sets of nogoods. For a progfartet A(II) be the set of all atoms occurring in
I1, and letBA(II) = {B(r) | » € II} be the set of all rule bodies &1, viewed as fresh
atoms.

We first define the se}(C) = {{FC} U {tl | £ € C}} U {{TC, £t} | £ € C}
of nogoods to encode that a ggtof default literals must be assigné&di or F in terms
of the conjunction of its elements, whet@ota = Fa, ta = Ta, fnota = Ta, and
fa = Fa. That is, the conjunction is true iff each literal is trueaf's completionA; of
a progranil over atomsA(IT) U BA(II) is the set of nogoods

An=J,_,(/(B0) U{{TBr)} U{Falae Hn)}}) .

The body of a rule is true iff each literal is true, and if thedpas true, a head literal must

6 Eiter et al.

also be true. Unless a program is tight (Fages 1994), Claddspletion does not fully
capture the semantics of a program; unfounded sets may,éecusets of atoms which
only cyclically support each other, called@op. Avoidance of unfounded sets requires
additionalloop nogoodsbut as there are exponentially many, they are only intreduc
on-the-fly.

Disjunctive programs require additional concepts. Neglgcdetails, it is common to
use additional nogoods,;, 1) derived from theshifted progransh(II), which encode the
loop formulas of singleton loops; a comprehensive studyélable in Drescher et al.
(2008).

With these concepts we are ready to describe the basic tigoior answer set compu-
tation shown inHEX-CDNL. The algorithm keeps a séir; U O,y of “static” nogoods
(from Clark’s completion and from singular loops), and a Sebf “dynamic” nogoods
which are learned from conflicts and unfounded sets duriegtion. While constructing
the assignmenA, the algorithm stores for each atame A(II) adecision leveldl. The
decision level is initially) and incremented for each choice. Deterministic consegsenc
of a set of assigned values have the same decision level higtiest decision level in this
set.

The main loop iteratively derives deterministic consegu@srusingPropagation trying
to complete the assignment. This includes both unit progpagand unfounded set prop-
agation. Unit propagation derivesif § \ {d} C A for some nogood, i.e. all but one
literal of a nogood are satisfied, therefore the last onesieede falsified. Unfounded set
propagation detects atoms which only cyclically suppocheather and falsifies them.

Part (a) checks if there is a conflict, i.e. a violated nogéod A. If this is the case
we need to backtrack. For this purpose we Asalysis to compute a learned nogoed
and a backtrack decision level The learned nogood is added to the set of dynamic no-
goods, and assignments above decision Iévale undone. Otherwise, Part (b) checks if
the assignment is complete. In this case, a final unfoundecheek is necessary due to
disjunctive heads. If the candidate is founded, it is an anset. Otherwise we select a
violated loop nogood from the set\; (U) of all loop nogoods for an unfounded dét
(for the definition see Drescher et al. 2008), we do confliethgsis and backtrack. If no
more deterministic consequences can be derived and thymaseit is still incomplete, we
need to guess in Part (d) and increment the decision levelfdrttionSelect implements
a variable selection heuristic. In the simplest case it she@n arbitrary yet unassigned
variable, but state-of-the-art heuristics are more saighted. E.g., Goldberg and Novikov
(2007) prefer variables which are involved in recent cotslic

3 Algorithms for Conflict-driven HEx-Program Solving

We present now our new, genuine algorithmsHeax-program evaluation. They are based
on Drescher et al. (2008), but integrate additional novairieng techniques to capture
the semantics of external atoms. The téearningrefers to the process of adding further
nogoods to the nogood set as the search space is exploredaiiéelassically derived
from conflict situations to avoid similar conflicts duringfiuer search, as described above.
We add a second type of learning which captures the behaiotternal sources, called
external behavior learningEBL). Whenever an external atom is evaluated, the algworith

Theory and Practice of Logic Programming 7

Algorithm HEX-Eval Algorithm HEX-CDNL
Input: A HEX-program II Input: A program I1, its guessing program I1, a set of correct
Output: All answer sets of IT nogoods V of IT
II + IT with ext. atoms &g [p](c) replaced by g p) (e) Output: An answer set of IT (candidate for a compatible set
Add guessing rules for all replacement atoms to II of IT) which is a solution to all nogoods d € V, or L
V<0 // set of dynamic nogoods if none exists R R R
L«+9 // set of all compatible sets A0 // over A(II) U BA(II) U BA(sh(II))
while C # L do (a) dl <+ 0 // decision level
C+«+ L while true do
inconsistent « false (A, V) « Propagation(Il, V, A)
while C = L and inconAsistent = false do (b) if 6 C Aforsomed € Ay U @sh(ﬁ) U V then (a)
A +HEX-CDNL(IL,IL V) (© if dl = 0thenreturn L
if A = L theninconsistent < true (e, k) + Analysis(s . v A)
else , Ve VU{c}anddl « k
(;gm;l)lag;i)elfn;aigr;esﬁ [p]inII do (d A A\{o €A [k <dio)}
g | P . . N N
Evaluate & [p] under A else f ATUAF=A(IT)UBA(II)UBA(sh(II)) then)
V + YV UA(8[p], A) © llff ;#Ugfg:l;:edsm(n, A)
&(pl(e) —
Let A =le T%&[p[u]c&)e A let§ € Ay (U) suchthats C A
if 3c: feg(A, p,c) # A¥PI then if {o€8]|0< di(o)} =0thenreturn L
Add A tq v . (€, k) < Analysis(J, 1, v, A)
compatible < false V< VU{clanddl « k
if compatible then C < A A= A\{oc AA |k < di(o)}
L - else return AT N A(IT)

if inconsistent = false then else ifHeuristic decides to evaluaty[p] then ©
// C is a compatible set of II Evaluate & [p] under A and set
V + VU{C}andT +~ T"U {C} V + V UA(&][p],A)
else (d)
o+ Select(ﬁ7 V,A)and dl «+ dl +1
A+ Ao (o)

return C-minimal {{Ta € A | a € A(II)} | A € T'}

might learn from the call. If we have no further informatidvoait the internals of a source,
we may learn only very general input-output-relationshippgre have more information
we can learn more effective nogoods. In general, we can iaés@earning-functiorwith
each external source. For the sake of introducing the etiafualgorithms, however, in
this section we abstractly consider a set of nogoods ledrnetdthe evaluation of some
external predicate with input ligg[p], if evaluated under an assignmeft denoted by
A(&g[p], A). The next section will provide definitions of particular roagls that can be
learned for various types of external sources, i.e., t@mt&teA(-, -). The crucial require-
ment for learned nogoodsdsrrectnesswhich intuitively holds if the nogood can be added
without eliminating compatible sets.

Definition 4 (Correct Nogoods) A nogood is correct wrt. a prograrl, if all compatible
sets oflI are solutions td.

In our subsequent exposition we assume that the progfrasnclear from the context.
The overall approach consists of two parts. Firgtx-CDNL computes model candidates;
it is essentially an ordinary ASP solver, but includes ctdlexternal sources in order to
learn additional nogoods. The external calls in this athamiare not required for correct-
ness of the algorithm, but may influence performance draalgtias discussed in Sec-
tion 5. Second, AlgorithnHEX-Eval uses AlgorithmHEX-CDNL to produce model can-
didates and checks each of them against the external sdfiotiesved by a minimality
check). Here, the external calls are crucial for correctéshe algorithm.

For computing a model candidates X-CDNL basically employs the conflict-driven ap-
proach presented in Drescher et al. (2008) as summarizesgtiios 2, where the main dif-

8 Eiter et al.

ference is the addition of Part (c). Our extension is drivethie following idea: whenever
(unit and unfounded set) propagation does not derive atlyduatoms and the assignment
is still incomplete, the algorithm possibly evaluates exa¢atoms (driven by a heuristic)
instead of simply guessing truth values. This might leachaddition of new nogoods,
which can in turn cause the propagation procedure to deuiktbdr atoms. Guessing of
truth values only becomes necessary if no deterministiclogions can be drawn and the
evaluation of external atoms does not yield further nogpgdsssing also occurs if the
heuristic does not decide to evaluate.

For a more formal treatment, IEtbe the set of all external predicates with input list that
occur inIl, and letD be the set of all signed literals over atoms4(il) U A(IT) U BA(IT).
Then, adearning functiorfor IT is a mapping\ : £ x 27 — 22" We extend our notion of
correct nogoods to correct learning functiok, -), as follows:

Definition 5 A learning functiom\ is correctfor a programll, iff all d € A(&g[p], A) are
correct forTl, for all &[p] in £ andA € 2P,

Restricting to learning functions that are correctlfrthe following results hold.

Proposition 1 If for input IT, IT and V, HEX-CDNL returns (i) an interpretatiomA, then
A is an answer set dfl and a solution tov; (ii) L, thenII has no compatible set that is a
solution toV.

Proof (Sketch) (i) The proof mainly follows (Drescher et al. 2008). In ougatithm we
have potentially more nogoods, which can never produckduenswer sets but only elim-
inate them. Hence, each produced interpretatiois an answer set difl. (i) By com-
pleteness of Drescher et al. (2008) we only need to justdy daddingA (&g[p], A) after
evaluation of& g[p] does not eliminate compatible setsI®fFor this purpose we need to
show that when one of the added nogoods fires, the interfreiatincompatible with the
external sources anyway. But this follows from the correstofA(-, -) and (for derived
nogoods) from the completeness of Drescher et al. (2008). O

The basic idea oHEX-Eval is to compute all compatible sets Gf by the loop at (a)
and checking subset-minimality afterwards. For computimgpatible sets, the loop at (b)
usesHEX-CDNL to compute answer sets Hfin (c), i.e., candidate compatible setsIf
and subsequently checks compatibility for each exterr@han (d). Here the external
calls are crucial for correctness. However, different fithi translation approach, the ex-
ternal source evaluation serves not only for compatibdftgcking, but also for generating
additional dynamic nogoods(&g[p], A) in Part (e). We have the following result.

Proposition 2 HEX-Eval computes all answer sets Hf

Proof (Sketch) We first show that the loop at (b) yields after termination anpatible
setC of II that is a solution o¥/ at the stage of entering the loop iff such a compatible set
does exist, and yield€ = L iff no such compatible set exists.

Suppose tha€ # | after the loop. Thel© was assigned # 1, which was returned
by HEX-CDNL(II, II, V). From Proposition 1 (ii) it follows thaC is an answer set of
IT and a solution tdv. Thus (i) of Definition 2 holds. As:ompatible = true, the for
loop guarantees the compatibility with the external sosiingii) of Definition 2: if some
source output on input frol@ is not compatible with the guess,is rejected (and added as

Theory and Practice of Logic Programming 9

nogood). Otherwis€ coincides with the behavior of the external sources, tsatisfies
(¢3) of Definition 2. ThusC is a compatible set dif wrt. V at call time. As only correct
nogoods are added 1, it is also a compatible set &f wrt. the initial setV.
Otherwise, after the loof = L. Theninconsistent = true, which means that the call
HEX-CDNL(II, II, V) returned.L. By Proposition 1 (i) there is no answer setldfwhich
is a solution toV. As only correct nogoods were added\o there exists also no answer
set of[I which is a solution to the original s&. Thus the loop at (b) operates as desired.
The loop at (a) then enumerates one by one all compatiblasdterminates: the update
of V with C prevents recomputin@, and thus the number of compatible sets decreases.
As by Definition 3 the answer sets bf are the compatible sets with subset-minimal true
part of original literals, the overall algorithm correctiytputs all answer sets of. O

Example 2 Let &empty be an external atom with one (nonmonotonic) predicate ipput
such that its output ig, if the extension ofy is empty andc; otherwise. Consider the
programll, consisting of the rules

p(co). dom(co). dom(cy). dom(cz). p(X) <+ dom(X), &empty[p](X)
Algorithm HEx-Eval transformdl, into the guessing prograhf, :

p(co). dom(co). dom(cy). dom(cz). p(X) < dom(X), egemptyp)(X)-

egempty[p] (X) V Negemptyp (X) < dom(X).

The traditional evaluation strategy without learning wiflen produce?® model candi-
dates iHEX-CDNL, which are subsequently checkediex-Eval. For instance, the guess
{Tne&empty[p] (co); Tegemptyp) (€1), TNegemptyp] (62)} leads to the model Candidaﬁﬁ"ne&empty[p] (co); Tegemptyp) (€1),
(neglecting false atoms and facts). This is also the onlyehodndiate which passes the
compatibility checkp(co) is always true, and thereforg.,,,,«,) (c1) must also be true
due to definition of the external atom. This allows for dertyb(c;) by the first rule of the
program. All other atoms are false due to minimality of ansseds. O

The effects of the additionally learned nogoods will be désed in Section 4 after
having formally specified concrete(&g¢[p], A) for various types of external sources.

4 Nogoods for External Behavior Learning

We now discuss nogoods generated for external behaviaritep(EBL) in detail. EBL is
triggered by external source evaluations instead of casfliche basic idea is to integrate
knowledge about the external source behavior into the prago guide the search. The
program evaluation then starts with an empty set of learogdods and the preprocessor
generates a guessing rule for each ground external atonis@asssled in Section 2. Fur-
ther nogoods are added during the evaluation as more infanmabout external sources
becomes available. This is in contrast to traditional extidun, where external atoms are
assigned arbitrary truth values which are checked only #feeassignment was completed.
We will first show how to construct useful learned nogoodsrafivaluating external
atoms, if we have no further information about the interflsxternal sources, called-
informed learninglIn this case we can only learn simple input/output relagiops. Subse-
guently we consideinformed learning where additional information about properties of
external sources is available. This allows for using moab@lated learning strategies.

10 Eiter et al.

Table 1: Learned Nogoods of Example 3

Guess Learned Nogood

Te&cmpty[p] (60)7 Tne&cmpty[p] (Cl)7
Tne&emptll[l’] (c2) {Tp(eo) Epler) Eplea), Feacmpylz (c1)}
Te&cmpty[p] (60)7 Tne&cmpty[p] (Cl)7 }

{
{ Teaemptyip)(c2), p(c2)
{
{

{Tp(CO)7 Fp(cl)7 Tp(62)7 Fe&cmpty[p] (Cl)}

Te&cmpty[p] (60)7 Te&cmpty [p] (Cl)7
T T F Fegempt:
Tne&empty[p](CQ)yp(cl) { p(00)7 p(01)7 p(02)7 €ge pty[p](cl)}

T e&emptu[p] (00)7 T 6&e7npty [p] (Cl)7
: T T T F empt
Tegempylp) (2), P(c1), p(ca) {Tp(co), Tpler), Tplea), Feg riip) (e}

4.1 Uninformed Learning

We first assume that we do not have information about theriateiand consider external
sources as black boxes. Hence, we can just apply very gendgalfor learning: when-
ever an external predicate with input li&y[p] is evaluated under an assignmentwe
learn that the inpuA|, for p = p1,...,p, to the external ator&g produces the output
ext(&g[p], A). This can be formalized as the following set of nogoods.

Definition 6 The learning function for a general external predicate witput list &g[p]
in programII under assignmem is defined as

Ag(&g[p], A) = {Alp U {Fegypi(c)} | c € ext(&g[p], A)}

In the simplest case, an external atom has no input and theel@@ogoods are unary,
i.e., of the form{Feg (c)}. Thus, itis learned that certain tuples are in the outpuhef t
external source, i.e. they must not be false. For externaktss with input predicates, the
added rules encode the relationship between the outpestapld the provided input.

Example 3 (ctd.) RecallII. from Example 2. Without learning, the algorithms produce
23 model candidates and check them subsequently. It turnéiatEBL allows for falsifi-
cation of some of the guesses without actually evaluatiegettiernal atoms. Suppose the
reasoner first tries the guesses containing lit#@ ..., (co). While they are checked
against the external sources, the described learningifumatiows for adding the exter-
nally learned nogoods shown in Table 1. Observe that the t@tibnTp(cy), Fp(c1), Fp(cz)
will be reconstructed also for different choices of the girgg variables. Ag(c) is a fact,

it is true independent of the choice betwegn, ¢,y (co) andnegepmpiyip) (o). E.Q., the
guesFegempty(p] (€0), Fegemptyip) (1), Fegemptyp) (c2) l€ads to the same extensionof
This allows for reusing the nogood, which is immediatelyailidated without evaluating
the external atoms. Different guesses with the same inpam texternal source allow for
reusing learned nogoods, at the latest when the candidateriplete, but before the ex-
ternal source is called for validation. However, very oftearning allows for discarding
guesses even earlier. For instance, we can d¢i\€co), Fegempty[p (1)} from the no-
goods above in 3 resolution steps. Such derived nogoodb&i#arned after running into
a couple of conflicts. We can derie g, (c1) fromp(co) even before the truth value
of Fegempty[p) (c1) 1S S€L, i.€., €xternal learning guides the search whilertitttonal eval-
uation algorithm considers the behavior of external saiorgy during postprocessing.

Theory and Practice of Logic Programming 11
For the nextresult, Idl be a program which contains an external atom of f&mfip|(-).
Lemma 1 For all assignments\, the nogood3d\,(&g[p], A) (Def. 6) are correct wrtII.

Proof (Sketch) The added nogood for an output tugles ezt(&g[p], A) containsA|p
and the negated replacement atdig,,(c). If the nogood fires, then the guess was
wrong as the replacement atom is guessed false but the(itipie in the output. Hence,
the interpretation is not compatible and cannot be an anseteamnyway. O

4.2 Informed Learning

The learned nogoods of the above form can become quite lartieeq include the whole
input to the external source. However, known propertiesxtér@al sources can be ex-
ploited in order to learn smaller and more general nogoodsekample, if one of the
input parameters of an external source is monotonic, itisiacessary to include informa-
tion about false atoms in its extension, as the output willsheink given larger input.
Properties for informed learning can be stated on the lefveitber predicatesor indi-
vidualexternal atomsThe former means that all usages of the predicate have dpeqy.
To understand this, consider predic&enion which takes two predicate inpugsandq
and computes the set of all elements which are in at least fotte @xtensions of or q.
It will be alwaysmonotonic in both parameters, independently of its usagegdrogram.
While an external source may lack a property in general, it hwdd for particular usages.

Example 4 Consider an external atoddb[ry, ..., r,, query](X) as an interface to an
SQL query processor, which evaluates a given query (givestrawy) over tables (rela-
tions) provided by predicates, ..., r,. In general, the atom will be nonmonotonic, but
for special queries (e.g., simple selection of all tuplésyjll be monotonic.)

Next, we discuss two particular cases of informed learnihglvcustomize the default
learning function for generic external sources by expigifproperties of external sources,
and finally present examples where the learning of user-elfiogoods might be useful.

Monotonic Atoms. A parametep; of an external ator& g is calledmonotonicif fg4(A, p,c) =
1 implies fgq4(A’, p,c) = 1 for all A’ with A’|,, O A|,, andA’|,, = A|, for all other

p’ # p;. The learned nogood&(&g¢[p], A) after evaluating&g[p] are not required to
includeFp;(t1,...,t;) for monotonicp; € p. That is, for an external predicate with in-
put list &¢[p] with monotonic input parametets,, C p and nonmonotonic parameters
Pn = P \ Pm, the set of learned nogoods can be restricted as follows.

Definition 7 The learning function for an external predicafg with input listp in pro-
gramII under assignmem, such that&g is monotonic inp,, C p, is defined as

Aun(&g[pl, A) = {{Ta € Alp,.} UAlp, U {Fegppi(c)} | ¢ € ert(&lpl, A)}

Example 5 Consider the external ato®diff [p, q](X) which computes the set of all el-
ementsX that are in the extension pf but not in the extension gf Suppose it is evaluated
underA, s.t.ezt(p, A) = {Tp(a), Tp(b), Fp(c)} andext(q, A) = {Fq(a), Tq(b),Fq(c)}.
Then the output of the atom isct(&diff [p,], A) = {a} and the (only) naively learned
nogood is{Tp(a), Tp(b), Fp(c), Fq(a), Tq(b), Fq(c), Fegaig(p,q(a) }. However, due to
monotonicity of&diff [p, ¢] in p, it is not necessary to includép(c) in the nogood; the

12 Eiter et al.

output of the external source will not shrink evernpifc) becomes true. Therefore the
(more general) nogoodTp(a), Tp(b), Fq(a), Tq(b), Fq(c), Fegaifp,q(a)} suffices to
correctly describe the input-output behavior. O

Functional Atoms. When evaluating: g[p] with some functionak g under assignmer,
only one output tuple can be containecirt(&g[p], A), formally: for all assignmenta
and alle, if fe,(A,p,c) = 1thenfe,(A, p,c’) = 0forall ¢’ # c. Therefore the follow-
ing nogoods may be added right from the beginning.

Definition 8 The learning function for a functional external predicd&e with input listp
in programII under assignmemA is defined as

Af(&g[p]v A) = {{Te&g[p] (C)v Te&g[p] (C/)} | c # C/}

However, our implementation of this learning rule does nenearate all pairs of output
tuples beforehand. Instead, it memorizes all generatqulibtuplesct, 1 < i < k during
evaluation of external sources. Whenever a new output igleadded, it also adds all
nogoods which force previously derived output tupteto be false.

Example 6 Consider the rules
out(X) + &concat[A, z|(X), strings(A), dom(X)

strings(X) « dom(X), not out(X)
where &concat[a, b](c) is true iff string ¢ is the concatenation of stringsand b, and
observe that the external atom is involved in a cycle througgdption. As the extension
of the domaindom can be large, many ground instances of the external atomearerg
ated. The old evaluation algorithm guesses their truthasabompletely uninformed. E.g.,
€&concat (T, T, xx) (the replacement atom &concat[A, z|(X) with A = z andX = zz,
wheredom(x) and dom(zx) are supposed to be facts) is in each guess set randomly to
true or to false, independent of previous guesses. In csinirgth learning over external
sources, the algorithm learns after the first evaluationdha,,..: (x, z, zz) must be true.
Knowing that&concat is functional, all atomg.oncat (2, z, O) with O # xa must also
be false. O

For the nextresult, I€f be a program which contains an external atom of f&aqhp](-).

Lemma 2 For all assignmentsA, (i) the nogoodsA,,(&g[p], A) (Def. 7) are correct
wrt. II, and (ii) if &g is functional, the nogoods (&g[p], A) (Def. 8) are correct wrtIL.

Proof (Sketch) For monotonic external sources we must show that negatiué literals
over monotonic parameters can be removed from the learngoods without affecting
correctness. For uninformed learning, we argued that fggudduplec € ext(&g[p], A),
the replacement atomy, [, (c) must not be be guessed false if the inpukigp](c) is A,
under assignmerX. However, as the output &g grows monotonically with the extension
of a monotonic parametgre p.,, the same applies for any’ which is “larger” inp, i.e.,
{Ta € A’|,} 2 {Ta € A|,} and consequentifFa € A’|,} C {Fa € A|,}. Hence, the
negative literals are not relevant wrt. output tupland can be removed from the nogood.
For functional&g, we must show that the nogoofi§Te ¢) (), Tegqp)(c')} | € # ¢}
are correct. Due to functionality, the external source careturn more than one output tu-
ple for the same input. Therefore no such guess can be an esaves it is not compatible.
Hence, the nogoods do not eliminate possible answer sets. O

Theory and Practice of Logic Programming 13

User-defined Learning In many cases the developer of an external atom has more in-
formation about the internal behavior. This allows for diefjnmore effective nogoods.

It is therefore beneficial to give the user the possibilityctstomize learning functions.
Currently, user-defined functions need to directly spetlify learned nogoods. The de-
velopment of a user-friendly language for writing learnfogctions is subject to future
work.

Example 7 Consider the program
r(X,Y)Var(X,Y) + d(X),d(Y)
r(V,W) « &tc[r|(V,W),d(V),d(W)
It guesses, for some set of nod#sX), all subgraphs of the complete graph. Suppose
&tc[r] checks if the edge selectiori X, Y) is transitively dosed,; if this is the case, the
output is empty, otherwise the set of missing transitiveesdg returned. For instance, if
the extension of is {(a,b), (b, ¢)}, then the output o&tc will be {(a,c)}, as this edge
is missing in order to make the graph transitively closede $acond rule eliminates all
subgraphs which are not transitively closed. Note &atis nonmonotonic. The guessing
program is
r(X,Y)Var(X,Y) + d(X),d(Y)
r(V,W) egiefr)(V, W), d(V),d(W)
€&tc[r] (‘/7 W) \ Ne&tc[r] (‘/7 W) — d(V), d(W)

n(n
2

The naive implementation guesses fonodes alR — subgraphs and checks the tran-
sitive closure for each of them, which is costly. ConsiderdbmainD = {a,b, ¢, d, ¢, f}.
After checking one selection witl(a, b), r(b, ¢), nr(a, ¢), we know thano selection con-
taining these three literals will be transitively closedhis can be formalized as a user-
defined learning function. Suppose we have just checked mirdiiess-(a, b), r(b, c),
andnr(z,y) for all other(z,y) € D x D. Compared to the nogood learned by the gen-
eral learning function, the nogodd'r(a, b), Tr(b, c), Fr(a, c), Feg.r(a,)} is a more
general description of the conflict reason, containing oelgvant edges. It is immediately
violated and future guesses contain{iBr(a, b), Tr(b, ¢), Fr(a, c)} are avoided. O

Example 8 (Linearity) A useful learning function fo& diff [p, ¢](X) is the following:
whenever an element is inbut not ing, it belongs to the output of the external atom. This
user-defined function works elementwise and produces rdmyaith three literals each.
We call this propertyinearity. In contrast, the naive learning function from the Sectidn 4
includes the complete extensiongadindg in the nogoods, which are less general. O

For user-defined learning, correctness of the learningtimenust be asserted.

5 Implementation and Evaluation

We have integratedLASP into our reasonebLVHEX; previous versions afLVHEX used
justDLV. In order to learn nogoods from external sources we exploiisP's SMT inter-
face, which was previously used for the special case of cansianswer set solving and
implemented in theLINGCON system (Gebser et al. 2009; Ostrowski and Schaub 2012).
We compare three configuratiorms.vHEX with DLV backendpbLvHEX with (conflict-
driven)cLAsP backend but without EBL, andLvHEX with cLASP backend and EBL.

14 Eiter et al.

For our experiments we used variants of the above example®Lt/HEX test suite,
and default reasoning over ontologies. It appeared thatilegghas high potential to re-
duce the number of candidate models. Also the number of vatéble assignments and
backtracks during search decreased drastically in mamgscabis suggests that candidate
rejection often needs only parts of interpretations andisible early in the evaluation.
All benchmarks were carried out on a machine with two 12-&ivib Opteron 6176 SE
CPUs and 128 GB RAM, running Linux and usingAsp 2.0.5 andLv Dec 21 2011 as
solver backends. For each benchmark instance, the avefdigee runs was calculated,
having a timeout of 300 seconds, and a memout of 2 GB for eath/a report runtime
in seconds; gains and speedups are given as a factor.

Set Partitioning. The following program partitions a sétinto two subsets;, 5. C S
such thaS;| < 2. The partitioning criterion is expressed by two rules fgr= S\ S,
andS,; = S\ S;. The implementation is by the use of external ai@diff (cf. Example 5):
dom(cy). -+ dom(cy).
nsel(X) + dom(X), &diff [dom, sel](X).
sel(X) « dom(X), &diff [dom, nsel](X).
— sel(X),sel(Y),sel(Z2), X £Y, X £ Z)Y # Z.
The results in Table 2a compare the run of the reasoner wiigreint configurations for
computing (i) all models resp. (ii) the first model. In bottses, using the conflict-driven
CLASPreasoner instead of..v as backend already improves efficiency. Adding EBL leads
to a further improvement: in case (i), the formerly expatmty growing runtime becomes
almost constant. When computing all answer sets, the rerisirstill exponential as expo-
nentially many subset choices must be considered (due tentb@ding); however, also in
this case many of them can be pruned early by learning, whakesithe runtime appear
linear for the shown range of instance sizes. Moreover, xpeements show that the delay
between the models decreases over time when EBL is usedhimensn the table), while
it is constant without EBL due to the generation of additiovagoods.

Default Reasoning over Description Logic Ontologies We consider now a more re-
alistic scenario using the DL-plugin (Eiter et al. 2008) forvHEX, which integrates
description logics (DL) knowledge bases and nonmonotawiicl programs. The DL-
Plugin allows to access an ontology using the descriptigitlceasoneracerpPro 1.9.0
(nttpivww.racer-systems.com/). For our first experiment, consider the program (shown left
and the terminological part of a DL knowledge base on thetrigh

birds(X) < DL[Bird](X). Flier © —NonFlier

flies(X) + birds(X),not neg_flies(X). Penguin T Bird

neg-flies(X) < birds(X), DL[Flier W flies; ~Flier](X). Penguin C NonFlier

This encoding realizes the classic Tweety bird exampleguBin-atoms (which is an al-
ternative syntax for external atoms in this example andnallto express queries over
description logics in a more accessible way). The ontoldgies thatFlier is disjoint
with NonFlier, and that penguins are birds and do not fly; the rules exgnasbirds fly by
default, i.e., unless the contrary is derived. The programaunts to the?-transformation
of default logic over ontologies to dI-programs (Dao-Traale2009), where the last rule
ensures consistency of the guess with the DL ontology. Ifatbeertional part of the DL
knowledge base containBenguin(tweety), then flies(tweety) is inconsistent with the

Theory and Practice of Logic Programming 15

Table 2: Benchmark Results (runtime in seconds, timeou$)300

(a) Set Partitioning (b) Bird-Penguin
#elements all models first model # individuals
DLV CLASP CLASP DLV CLASP CLASP DLV CLASP CLASP
w/o EBL w EBL w/o EBL w EBL w/o EBL w EBL
1 0.07 0.08 0.07 0.08 0.07 0.07 1 0.50 0.15 0.14
5 0.20 0.16 0.10 0.08 0.08 0.07 5 1.90 1.98 0.59
10 12.98 9.56 0.17 0.56 0.28 0.07 6 4.02 4.28 0.25
11 38.51 21.73 0.19 0.93 0.63 0.08 7 8.32 7.95 0.60
12 89.46 49.51 0.19 1.69 1.13 0.08 8 16.11 16.39 0.29
13 218.49 111.37 0.20 3.53 2.31 0.10 9 33.29 34.35 0.35
14 — 262.67 0.28 8.76 3.69 0.10 10 83.75 94.62 0.42
: _ _ : : : : 11 22920 230.75 4.45
18 — — 045 12879 6258 012 12 - — 110
19 — — 042 — 95.39 0.10 : — — :
20 — — 0.54 — 91.16 0.11 20 — — 2.70
(c) Wine Ontology (d)y MCS
Instance concept completion gain # contexts
CLASP CLASP max avg DLV CLASP CLASP
w/o EBL w EBL w/o EBL w EBL
wine_.0 25 31 33.02 6.93 3 0.07 0.05 0.04
wine_1l 16 25 16.05 5.78 4 1.04 0.68 0.14
wine_2 14 22 11.82 4.27 5 0.23 0.15 0.05
wine_3 4 17 10.09 4.02 6 2.63 1.44 0.12
wine_4 4 17 6.83 2.87 7 871 4.39 0.17
wine.5 4 16 5.22 2.34
wine_6 4 13 2.83 1.52
wine_7 4 12 181 1.14
wine_8 4 4 1.88 1.08

given DL-programfieg_flies(tweety) is derived by monotonicity of DL atoms arftdes (tweety)
loses its support). Note that defaults cannot be encodedridard (monotonic) description
logics, which is achieved here by the cyclic interaction afidles and the DL knowledge
base.

As all individuals appear in the extension of the predigate-, all of them are consid-
ered simultaneously. This requires a guess on the abilifly tior each individual and a
subsequent check, leading to a combinatorial explosiduitively, however, the property
can be determined for each individual independently. Heacguery may be split into
independent subqueries, which is achieved by our learningtion forlinear sourcesn
Example 8. The learned nogoods are smaller and more caaditzdels are eliminated.
Table 2b shows the runtime for different numbers of indialduand evaluation with and
without EBL. The runs with EBL exhibit a significant speedag, they exclude many
model candidates, whereas the performance obttie and thecLAsP backend without
EBL is almost identical (unlike in the first example); herestof the time is spent calling
the description logic reasoner and not for the evaluatidh@fogic program.

The findings carry over to large ontologies (DL knowledgedsasised in real-world
applications. We did similar experiments with a scaled ieersf the wine ontologyHitp:
Kkaon2.semanticweb.org/downloadtest_ontologies.zip). The instances differ in the size of the
ABox (ranging from247 individuals in wine0 to 20007 in wine_8) and in several other

16 Eiter et al.

parameters (e.g., on the number of concept inclusions andepb equivalences; Motik
and Sattler (2006) describe the particular instances winé&/e implemented a number of
default rules using an analogous encoding as above: egeswiot derivable to be dry
are not dry, wines which are not sweet are assumed to be drgsveire white by default
unless they are known to be red. Here, we discuss the reduhe datter scenario. The
experiments classified the wines in thé main concepts of the ontology (the immedi-
ate subconcepts of the concépline, e.g.,Dessert Wine and Italian Wine), which have
varying numbers of known concept memberships (e.g., rgnfjom 0 to 43, and8 on
average, in wind)) and percentiles of red wines among them (fr@#hto 100%, and47%

on average). The results are summarized in Table 2c. Thetrge®for concept comple-
tion state the number of classified concepts. Again, theatm®st no difference between
theDLVv and thecLAsP backend without EBL, but EBL leads to a significant improveime
for most concepts and ontology sizes. E.g., there is a gaittfout of the34 concepts of
the wine0 runs, as EBL can exploit linearity. Furthermore, we obsgthatc additional
instances can be solved within th@0 seconds time limit. If a concept could be classified
both with and without EBL, we could observe a gain of u33a2 (on averag®.93). As
expected, larger categories profit more from EBL as we caserlarned nogoods in these
instances.

Besides(?, Dao-Tran et al. (2009) describe other transformationsefdult rules over
description logics. Experiments with this transformatioevealed that the structure of the
resultingHEX-programs prohibits an effective reuse of learned nogddesce, the overall
picture does not show a significant gain with EBL for theseoelitegs, we could however
still observe a small improvement for some runs.

Multi-Context Systems (MCS). MCS (Brewka and Eiter 2007) is a formalism for inter-
linking multiple knowledge-based systems (the contefggr et al. (2010) definancon-
sistency explanations (IEHpr MCS, and present a system for finding such explanations
on top of DLVHEX. In our benchmarks we computed explanations for inconsistelti-
context systems witB up to7 contexts. For each number we computed the average runtime
over several instances with different topologies (tregzag, diamond), which were ran-
domly created with an available benchmark generator, gnartréhe results in Table 2d.
Unlike in the previous benchmark we could already observpegdup of up td.98
when usingcLASPinstead of th@1.v backend. This is because of two reasons: fasyspP
is more efficient tham1.v for the given problem, and secora,AsPwas tightly integrated
into DLVHEX, whereas usingLV requires interprocess communication. However, the most
important aspect is again EBL, which leads to a further $icgmit speedup with a factor
of up t025.82 compared taeLASP without EBL.

Logic Puzzles Another experiment concerns logic puzzles. We encddiedokuas a
HEX-program, such that the logic program makes a guess of assigs to the fields and
an external atom is used for verifying the answer. In caser@gative verification result,
the external atom indicates by user-defined learning rhkesdason of the inconsistency,
encoded a pair of assignments to fields which contradict btreeainiqueness rules.

As expected, all instances times out without EBL, becausddbic program has no
information about the rules of the puzzle and blindly gussgeassignments, which are
subsequently checked by the external atom. But with EBL Stin@oku instances could be
solved in several seconds.

Theory and Practice of Logic Programming 17

More details on the experiments and links to benchmarks andtimark generators can
be found ahttp:ivww.kr.tuwien.ac.atfresearch/systems/divhex/experiments.html.

6 Discussion and Conclusion

The basic idea of our algorithm is related to constraint ABRisg presented in Geb-
ser et al. (2009), and Ostrowski and Schaub (2012), whichabzed in thecLINGCON
system. External atom evaluation in our algorithm can digiaity be regarded as con-
straint propagation. However, while both,Gebser et al0@)@&nd Ostrowski and Schaub
(2012), consider a particular application, we deal with aerabstract interface to external
sources. An important difference betweanNGcoN and EBL is that the constraint solver
is seen as a black box, whereas we exploit known propertiegtefnal sources. Moreover,
we supporuser-defined learning.e., customization of the default construction of conflic
clauses to incorporate knowledge about the sources, assdist in Section 4. Another dif-
ference is the construction of conflict clauses. ASP with @8 $pecial constraint atoms,
which may be contradictory, e.gl,(X > 10) andT(X = 5). The learned clauses are sets
of constraint literals, which are kept as small as possibl®eur algorithm we have usu-
ally no conflicts between ground external atoms as output atoms asynindependent
of each other (excepting e.g. functional sources). Inste@dhave a strong relationship
between the input and the output. This is reflected by cordliaises which usually con-
sist of (relevant) input atoms and the negation of one owdpar. As in constraint ASP
solving, the key for efficiency is keeping conflict clausesafm

We have extended conflict-driven ASP solving techniquesifoodinary ASP taHEX-
programs, which allow for using external atoms to accessreat sources. Our approach
uses two types of learning. The classical type is confliatetr clause learning, which
derives conflict nogoods from conflict situations while thargh tree is traversed. Adding
such nogoods prevents the algorithm from running into simdbnflicts again.

Our main contribution is a second type of learning which wi eaternal behavior
learning (EBL). Whenever external atoms are evaluated, further adganay be added
which capture parts of the external source behavior. In ittn@lest case these nogoods
encode that a certain input to the source leads to a certapubhis default learning
function can be customized to learn shorter or more genegbads. Customization is
either done explicitly by the user, or learning functionse derived automatically from
known properties of external atoms, which can be stateatrith the level of external
predicates or on the level of atoms. Currently we exploit atonicity and functionality.

Future work includes the identification of further propestivhich allow for automatic
derivation of learning functions. We further plan the depehent of a user-friendly lan-
guage for writing user-defined learning functions. Cutserihey require to specify the
learned nogoods by hand. It may be more convenient to wriés that a certain input to
an external source leads to a certain output, in (a redri@ggant of) ASP or a more con-
venient language. The challenge is that evaluation of iegrmules introduces additional
overhead, hence there is another tradeoff between costisegnadit of EBL. Finally, also
the development of heuristics for lazy evaluation of exaésources is subject to future
work.

18 Eiter et al.
References

BIERE, A., HEULE, M. J. H.,vAN MAAREN, H., AND WALSH, T., Eds. 2009. Handbook of
Satisfiability Frontiers in Artificial Intelligence and Applications, vd85. I0OS Press.

BREWKA, G. AND EITER, T. 2007. Equilibria in Heterogeneous Nonmonotonic Mdtntext
Systems. IPAAAI'07. AAAI Press, 385-390.

BREWKA, G., BITER, T., AND TRUSZCZYNSKI, M. 2011. Answer set programming at a glance.
Commun. ACM 5412, 92-103.

DAO-TRAN, M., EITER, T.,AND KRENNWALLNER, T. 2009. Realizing default logic over descrip-
tion logic knowledge bases. EBCSQARU’09Springer, 602—613.

DRESCHER C., GEBSER M., GROTE, T., KAUFMANN, B., KONIG, A., OSTROWSKI, M., AND
ScHAUB, T. 2008. Conflict-driven disjunctive answer set solving.KR'08. AAAI Press, 422—
432.

EITER, T., AINK, M., IANNI, G., KRENNWALLNER, T.,AND SCHULLER, P. 2011. Pushing efficient
evaluation of HEX programs by modular decompositionLRNMR’11 Springer, 93—-106.

EITER, T., FINK, M., SCHULLER, P.,AND WEINZIERL, A. 2010. Finding explanations of incon-
sistency in multi-context systems. KR'10. AAAI Press, 329-339.

EITER, T., IANNI, G., KRENNWALLNER, T., AND SCHINDLAUER, R. 2008. Exploiting conjunctive
queries in description logic program&nn. Math. Artif. Intell. 531-4, 115-152.

EITER, T., IANNI, G., LUKASIEWICZ, T., SCHINDLAUER, R.,AND TOMPITS, H. 2008. Combining
answer set programming with description logics for the sgtimaveb. Artif. Intell. 172,12-13,
1495-1539.

EITER, T., IANNI, G., SCHINDLAUER, R., AND TOMPITS, H. 2005. A Uniform Integration of
Higher-Order Reasoning and External Evaluations in AnsSatrProgramming. [nJCAI'05.
Professional Book Center, 90-96.

EITER, T., IANNI, G., SCHINDLAUER, R.,AND TOMPITS, H. 2006. Effective Integration of Declar-
ative Rules with External Evaluations for Semantic-Webd®eaing. INESWC'06 Springer, 273—
287.

FABER, W., LEONE, N., AND PFEIFER, G. 2011. Semantics and complexity of recursive aggregates
in answer set programmindrtif. Intell. 175,1, 278—-298.

FAGES, F. 1994. Consistency of clark’s completion and existerfcgable modelsJ. Meth. Logic
Comp. Sci. 151-60.

GEBSER M., KAUFMANN, B., KAMINSKI, R., OSTROWSKI, M., SCHAUB, T., AND SCHNEIDER,
M. T. 2011. Potassco: The Potsdam answer set solving doledl Commun. 242, 107-124.

GEBSER M., KAUFMANN, B., AND SCHAUB, T. 2012. Conflict-driven answer set solving: From
theory to practiceArtif. Intell. 187-188 52—89.

GEBSER M., OSTROWSK], M., AND SCHAUB, T. 2009. Constraint answer set solving/GLP’09.
Springer, 235-249.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical Negation in Logic Programs and Disjiwact
DatabasesNew Generat. Comput. 8-4, 365-386.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based on
propositional satisfiabilityd. Autom. Reason. 38, 345-377.

GOLDBERG, E. AND Novikov, Y. 2007. BerkMin: A fast and robust SAT-solveRiscrete Appl.
Math. 155,12, 1549-1561.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S.,AND SCARCELLO,
F. 2006. The DLV System for Knowledge Representation and&egag. ACM Trans. Compult.
Logic 7,3, 499-562.

LIFSCHITZ, V. 2002. Answer Set Programming and Plan Generatatif. Intell. 138 39-54.

LIN, F. AND ZHAO, Y. 2004. ASSAT: computing answer sets of a logic program By Solvers.
Artif. Intell. 157,1-2, 115-137.

Theory and Practice of Logic Programming 19

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. Stable Models and an Alternative Logic Program-
ming Paradigm. IThe Logic Programming Paradign$pringer, 375-398.

MOTIK, B. AND SATTLER, U. 2006. A comparison of reasoning techniques for querjange
description logic ABoxes. IhPAR’'06 Springer, 227-241.

NIEMELA, I. 1999. Logic Programming with Stable Model Semantics as<fraint Programming
Paradigm.Ann. Math. Artif. Intell. 253-4, 241-273.

OSTROWSKI, M. AND ScHAUB, T. 2012. ASP modulo CSP: The clingcon systefeor. Pract.
Log. Prog., Special Issue 28th Intl. Conf. Logic Programgnifio appear.

SIMONS, P., NEMELA, I., AND SOININEN, T. 2002. Extending and implementing the stable model
semanticsArtif. Intell. 138,1-2, 181-234.

