
Lightweight compilation of (C)LP to JavaScript

Jose F . Morales1 , Remy Haemmerle2 ,

Manuel Carro1'2, and Manuel V. Hermenegildo1'2

1 IMDEA Software Institute, Madrid (Spain)
2 School of Computer Science, Technical University of Madrid (UPM), (Spain)

(e-mail: {josef .morales,manuel .carro,manuel.hermenegildoJSimdea.org)
(e-mail: remySclip.dia.fi.upm.es, {mcarro,hermeJSfi.upm.es)

A b s t r a c t

We present and evaluate a compiler from Prolog (and extensions) to JavaScript which
makes it possible to use (constraint) logic programming to develop the client side of web
applications while being compliant with current industry standards. Targeting JavaScript
makes (C)LP programs executable in virtually every modern computing device with no
additional software requirements from the point of view of the user. In turn, the use of
a very high-level language facilitates the development of high-quality, complex software.
The compiler is a back end of the Ciao system and supports most of its features, including
its module system and its rich language extension mechanism based on packages. We
present an overview of the compilation process and a detailed description of the run-time
system, including the support for modular compilation into separate JavaScript code.
We demonstrate the maturity of the compiler by testing it with complex code such as
a CLP(FD) library written in Prolog with attributed variables. Finally, we validate our
proposal by measuring the performance of some LP and CLP(FD) benchmarks running
on top of major JavaScript engines.

KEYWORDS: Prolog; Ciao; Logic Programming System; Implementation of Prolog; Mod­
ules; JavaScript; Web

1 Introduction

The Web has evolved from a network of hypertext documents into one of the most

widely used OS-neutral environments for running rich applications —the so-called

Web-2.0—, where computations are carried both locally at the browser and re­

motely on a server. A key factor in the success of the Web has been the devel­

opment of open standards backed up by mature implementations. One of these is

JavaScript (ECMA International 2009), which was initially designed as a simple

dynamic language embedded in HTML documents in order to offer basic dynamic

* The research leading to these results has received funding from the Madrid Regional Govern­
ment under CM project P2009/TIC/1465 (PROMETIDOS), and from the Spanish Ministry of
Economy and Competitiveness under project TIN-2008-05624 DOVES. The research by Remy
Haemmerle has also been supported by PICD, the Programme for Attracting Talent / young
PHDs of the Montegancedo Campus of International Excellence.

http://manuel.hermenegildoJSimdea.org
http://remySclip.dia.fi.upm.es
http://hermeJSfi.upm.es

content. Factors such as openness, simplicity, flexibility, full browser integration,
and attention to the security and privacy concerns that naturally arise in the exe­
cution of untrusted code, have helped the language gain very significant popularity
despite its initial low efficiency. Performance was initially not competitive with
plug-in based technology like Java-based applets (Lindholm and Yellin 1996), but
current JavaScript engines in major browsers use JIT compilation to optimize the
hot spots in the program using type or trace information (Google ; Gal et al. 2009).
While still not optimal for computationally intensive tasks, performance is good
enough in many cases, specially those requiring mostly just graphical user interac­
tion. The language has also raised significant interest in the research community,
as witnessed for example by recent work studying the formalization of the full core
language (Maffeis et al. 2008). Overall it is enabling a disruptive paradigm shift that
is gradually replacing OS-dependent application development with fully portable
Web applications which can run in a variety of devices.

While all this represents significant advances in the technology for developing
Web applications, it is suboptimal to rely on a single language to solve all problems.
While the whole spectrum of programming languages is normally available on the
server side, server-side execution is not always appropriate: for example, the client
side may not be allowed to transmit sensitive data outside the client, and there are
always constraints on network capacity or usage (e.g., local search on a large set of
personal data). Also, server-side execution requires computing power and storage
on the server dedicated hardware, which can have an unacceptable cost and/or be
a bottleneck for large numbers of clients.

While large applications have been written directly in JavaScript (despite the
lack of analysis tools or a module system), targeting it as a back end language for
cross-compilation is nowadays a popular option1 in order to execute existing code in
web browsers (since manual rewriting is costly for large projects) or to use libraries
and features available in other languages.

At the same time, there has been interest and significant activity almost since
the start of the Web in programming web applications in Prolog and other (con­
straint) logic programming dialects and/or using the Web as a portable graphical
interface for (C)LP programs (including, e.g., complex tools such as analyzers or
theorem provers). The major Prolog implementations have focused to date on
server-side execution. One of the first popular frameworks for developing Web ap­
plications in Prolog is PiLLoW (Cabeza and Hermenegildo 2001), where a server
running Prolog code communicates with browsers using HTTP server mechanisms
(CGIs) or the HTTP protocol. This same approach was also taken and extended
by SWI-Prolog (Wielemaker et al. 2008). For client-side execution, most systems
have targeted Java or the Java VM. Some of the most notable systems, Jinni and
more recently Lean Prolog, are derived from BinProlog (Tarau 2011a). However,
in most cases such systems are developed from scratch and present at least moder­
ate incompatibilities with server-side systems. Moreover, as technology shifts from

See https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS.

https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS

Java towards JavaScript as client-side language, those systems may suffer from ob-
solesce. There has been one attempt that we are aware of at implementing Prolog
in JavaScript, JScriptLog (h t t p : / / j l o g i c . s o u r c e f o r g e . n e t /) , but it is an inter­
preter and is meant to be just a demonstrator, supporting only a subset of Prolog.

Our ambitious objective is to enable client-side execution of full-fledged (C)LP
programs by means of their compilation to JavaScript, i.e., to support essentially
the full language available on the server side. Our starting point is the Ciao sys­
tem (Hermenegildo et al. 2012), which implements a multi-paradigm Prolog dialect
with numerous extensions through a sophisticated module and program expansion
system (packages). Such packages facilitate syntactic and semantic language exten­
sions, all of which are also to be supported in our approach. The module system also
offers a precise distinction between static and dynamic parts, which is quite useful
in the translation process. Other approaches often put emphasis on the feasibility
of the translation or on performance on small programs, while ours is focused on
completeness and integration:

• We share the language front end and implement the translation by redefin­
ing the (complex) last compilation phases of an existing system. In return
we support a full module system including packages, as well as the existing
analysis and program transformation tools.

• We provide a minimal but scalable runtime system (including built-ins) and
a compilation scheme based on the WAM (Ait-Kaci 1991; Warren 1983) that
can be progressively extended and enhanced as required.

• We offer both high-level and low-level foreign language interfaces with Java­
Script to simplify the tasks of writing libraries and integrating with existing
code.

This allows us to read and compile (mostly) unmodified Prolog programs (as well
as all the Ciao extensions such as different flavors of (C)LP or functional notation
and higher-order, to name a few), run real benchmarks, and, in summary, be able to
develop full applications, where interaction with JavaScript or HTML is performed
via Prolog libraries and client-side execution in the browser does not require man­
ual recoding. To the extent of our knowledge, ours is the first approach and full
implementation which can achieve these goals.

The paper is organized as follows. In Section 2 we provide an overview of the
JavaScript language and introduce our solution for generating code in a modular
way. In Section 3 we describe the cross-compilation process. In Section 4 we show the
language interface with JavaScript. We present experimental results in Section 5.
Finally, Section 6 presents our conclusions.

2 Making JavaScript a target for modular compilation

JavaScript is a simple, lexically scoped, imperative language. Its syntax is close to
that of C or Java but internally it is closer to Scheme or Self. Data objects can be na­
tive (numbers, strings, booleans, etc.), records (mutable maps from primitive data
to values), or closures (anonymous functions). Records contain a distinguished field
called prototype that is the basis for object-oriented programming in JavaScript.

http://jlogic.sourceforge.net/

When a field is not found in a record, it is searched recursively following the pro­
totype field. This allows records to share fields (e.g., to implement a class with
methods shared by all its instances). Functions act also as object constructors and
are records themselves, with a special prototype field. Given a function ctor, new
ctor(args) creates a new empty object whose prototype will be ctor .prototype,
and then executes the function ctor with th i s bound to the object. Prototypes
may form a chain, which is useful for implementing inheritance. The internal pro­
totype field of a record cannot be accessed directly and the only valid operation on
it is x instanceof C, which is true if C is found in the prototype chain of x.

One of the main drawbacks of JavaScript for developing scalable and reusable
code is the lack of proper namespaces or module system, where all symbols appar­
ently live in a single common global namespace. For that reason, some proposals
for adding modularity to JavaScript programs exist (e.g., Prototype, CommonJS).
However, we found them either too complex or not complete enough for our pur­
poses. Nevertheless, closures, the scoping rules, and records can be used to manually
achieve effective symbol hiding. We use this mechanism to implement the necessary
symbol tables for encoding modular Prolog programs, as described below.

Runtime for Symbol Tables. Inspired by the implementation of Prolog pred­
icate tables, we defined a thin runtime layer (Fig. I) to implement a symbol table
which associates symbol names (strings) to their definitions. For each symbol we
also store associated information, like export tables, used to implement modules.
Additionally, we allow the definition of symbols associated with JavaScript classes
(coordinating initialization of base classes and prototype chains). We will use them
to implement the data type hierarchy for terms and to avoid tagging. We will later
(Section 3) populate tables with actual definitions (modules, predicates, functors,
JavaScript closures, etc.).

Symbols. Fig. I illustrates our approach for representing symbols as JavaScript
objects. The most important components are the status, which stores the ini­
tialization state of the symbol, an exports table which associates names (strings)
with values, and a nested table for associated nested symbols. Symbols are ini­
tially created (constructor in Line 2) with an UNDEFINED status. Initially we create
a single root symbol (named $r) in the global scope. The m.query(n) method
(Line 11) obtains the symbol associated with the name n in the nested table of m.
If it does not exist, it is created. Symbol objects behave as pointers or references to
definitions. Keeping track of nested symbols will later be useful to ensure correct
initialization, as well as providing a simple way to store tables for modular pro­
grams (e.g., $r .queryC'l ists") . query ("append/3"), assuming that the symbol
is associated with the predicate l ists:append/3).

Denning and Registering Symbols. In order to support complex dependen­
cies, symbol definitions are completed in two different passes. First, symbols are
registered in the nested table of another symbol. The r .def (n,c) method (Line 6)
queries the symbol n in r, changes the symbol state from undefined to N0T_READY,
and executes the closure c. Fig. 2 presents a schematic view of a symbol definition,
where we provide the structure of the definition closure. The closure effectively

1 v a r UNDEFINED=0, N0T_READY=1, PREPARING=2, READY=3;
2 f u n c t i o n $s(name) { / / Symbol constructor
3 t h i s . name=name ; t h i s . e x p o r t s = { } ; th is .s ta tus=UNDEFINED;
4 t h i s . n e s t e d = { } ; t h i s . l i n k = n u l l ; t h i s . m l i n k = n u l l ;

5 }
6 $ s . p r o t o t y p e . d e f = f u n c t i o n (n a m e , de f) { //Define a symbol
7 v a r m = t h i s . q u e r y (n a m e) ;
8 m. status=NOT_READY; / / mark the symbol as not ready
9 d e f (m) ; r e t u r n m;

10 }
11 $ s . p r o t o t y p e . q u e r y = f u n c t i o n (n a m e) { // Query a (sub)symbol
12 v a r m = t h i s . n e s t e d [n a m e] ;
13 i f (m === u n d e f i n e d) { m=new $ s (n a m e) ; t h i s . n e s t e d [n a m e] = m ; }
14 r e t u r n m;
15 }
16 $ s . p r o t o t y p e . p r e p a r e = f u n c t i o n () { //Prepare the symbol

17 i f (t h i s . s t a t u s !== N0T_READY) r e t u r n t h i s ;
18 th i s . s ta tus=PREPARING; //preparing the symbol (not ready)

19 i f (t h i s . c t o r !== u n d e f i n e d) { // the symbol defines a class

20 i f (t h i s . b a s e !== n u l l) {
21 t h i s . b a s e . p r e p a r e () ; //prepare base symbol, s t a t u s is READY
22 $ e x t e n d s (t h i s . c t o r , t h i s . b a s e , c t o r) ; // setup prototype chain

23 }
24 i f (t h i s . m l i n k !== n u l l) t h i s . m l i n k (t h i s . c t o r) ; // instance methods

25 }
26 i f (t h i s , l i n k !== n u l l) t h i s . l i n k O ; / / link local from imported symbols
27 th i s . s t a tu s=READY; / / mark the symbol as ready

28 / / prepare nested symbols

29 f o r (v a r k i n t h i s . n e s t e d) i f (t h i s . n e s t e d [k]) t h i s , n e s t e d [k] . p r e p a r e O ;
30 r e t u r n t h i s ;

31 }
32 f u n c t i o n $ e x t e n d s (c , b a s e) { // (auxiliary for subclassing)
33 / / copy class methods from b a s e to c
34 f o r (v a r k i n b a s e) i f (b a s e . h a s O w n P r o p e r t y (k)) c [k] = b a s e [k] ;
35 / / ensure that the object c . p r o t o t y p e has the prototype b a s e . p r o t o t y p e
36 f u n c t i o n c t o r () { } ; c t o r . p r o t o t y p e = b a s e . p r o t o t y p e ; c . p r o t o t y p e = n e w c t o r ;
37 c . p r o t o t y p e . c o n s t r u c t o r = c ;
38 }

Fig. 1. Minimal runtime code for modular symbol tables in JavaScript.

hides all local variable and function names from outer scopes. It receives the sym­
bol object as parameter m to fill its definition. Then, other nested symbols can be
defined (Line 3), and entries in the export table filled (Line 4) to selectively make
inner definitions available (both closures or data). When the symbol has an associ­
ated class, we connect ctor with the class constructor and, optionally, base with
the symbol containing the base class (Line 5). The rest of the definition is delayed
in other closures, that will be invoked by preparing the symbol (explained below).
Definitions of class methods, which must be delayed until the constructor is ready,
are delayed in the mlink closure (Line 6). On the other hand, values of exported

r. def (.name, function(m) {
var u, . . .;
m. def {name1, . . .) ; . . .
m.exports.k = . . . ; . . .
m.ctor = . . . ; m.base = ..

placeholders for imported symbols
nested symbols
exported symbols
(constructor and base, optional)

m.mlink = function(c) { c.prototype. m = . . . ; . . . };
m.link = functionO { p.prepareO; u = p. exported, k;

}) ;
} ;

Fig. 2. Structure of a definition closure.

entries of imported symbols, which are available once the symbol is prepared, are
filled in the l ink closure (Line 7).

Preparing Symbols. The prepare method (Fig. 1-Line 16) changes the state
of N0T_READY symbols to READY. First, it prepares the base and fixes the prototype
chain of the constructor (Line 32), and fills the methods invoking mlink. Then, val­
ues of imported symbols are filled invoking link. We assume that each l ink closure
calls the prepare method of the required symbols. Finally, all nested symbols are
prepared.

3 Compiler and system architecture for cross-compilation

We base our compiler on two design decisions. First, we share a common front end
with the bytecode back end of Ciao. Second, we reuse most of the WAM compilation
algorithm, and a significant part of the WAM emulator. A global view of this
architecture is shown in Fig. 3. We will elaborate on both points below.

Sharing the Ciao front end clearly simplifies maintenance of the system, and
avoids undesired or unexpected language incompatibilities. More importantly, it
reuses the Ciao package mechanism for language extensions. As mentioned before,
such packages provide a collection of syntactic additions (or restrictions) to the
input language, translation rules for code generation to support new semantics, and
the necessary run-time code. Packages are separated into compile-time and run-time
parts. The compile-time parts (termed compilation modules) are invoked during

Input modules
(Prolog/Ciao)

Using '

Packages

Ciao Front end
(including expansions)

Middle level
•*• (normalized

plain Prolog)

Compilation^
modules

Ciao Back ends
-Bytecode
-JavaScript

Bytecode D C JS code

Fig. 3. Overview of the Multi Back End Architecture for Ciao.

compilation, and are not necessary during execution. On the other hand, the run­
time parts are only required for execution. This phase distinction has a number of
practical advantages, such as reducing executable size. Another important objective
achieved is a stratified separation of modules that makes the code more amenable
to static analysis. In this way, compilation modules are dynamically loaded by the
compiler and invoked during compilation, but not subject to analysis, and the source
modules can be determined statically. Interestingly, in our context this separation
between compile-time expansion code and run-time code provided by the design of
the packages system also enables cross-compilation without sacrificing extensibility.
Thanks to this, rather than bootstrapping the full system in JavaScript, we can use
the full-fledged compiler, which we have parameterized to use different back ends
as needed during the same compilation. In this way, compilation modules can be
compiled and loaded with the bytecode back end, while the source modules can be
compiled independently in the back end selected for target executables.

As mentioned before, our back end is partially based on the WAM. The combina­
tion of a WAM-based engine and compiler is one of the most efficient approaches to
implementing Prolog. Such engines and compilers are carefully crafted to optimize
code execution and data movements, which makes them relevant and applicable
even when the target of the compilation is a high-level language and the back end
a highly optimized compiler. Although it has been shown that a basic WAM can
be refined from more abstract specifications (Borger and Rosenzweig 1990), the
mechanization of such process is not trivial. For that reason, it is currently unre­
alistic to expect that such kinds of optimizations can be introduced automatically
from a high-level compiler. Thus, our approach reuses parts of the WAM design
and compiler in order to implement relevant optimization opportunities.

Fig. 4 shows an overview of our back end, highlighting the points where it differs
from the WAM code generation performed for the C-based engine. The first step
consists of the normalization of (already expanded) Prolog code into simple Horn
clauses, and the generation of symbolic WAM code. It is at this split point that
separate schemes for register assignment, data representation, code generation, etc.
are selected, as well as a separate runtime system. This process is described in the
following sections.

3.1 Representing terms and modules

Our translation departs from the WAM in that, instead of defining an explicit heap
and using tagged words, we use JavaScript objects to implement terms. Some ad­
vantages of this choice (discussed further in Section 5) are that garbage collection is
then performed by the JavaScript engine and that interoperability with JavaScript
code (Section 4) is simplified. However, we maintain many of the WAM concepts
within these JavaScript objects. We use subclassing to build a hierarchy of term con­
structors. In the following we write t < u if t is a subclass of u. We define term_base
as the base class for all terms, and two other base classes for variables (var_base
< term_base), and non-variables (nonvar_base < term_base). The instanceof
operator can check if a given object belongs to any particular class, which would al-

Pre-WAM (no regs, no mem)

WAM (X,Y) } c WAM (args, temp, Y)

(

r

Bytecode

"
Emulator (C)

Runtime (C)
Terms, Heap (with

Local frames, Choice
GC)
points

^

>

(JavaScript Code

' •

Runtime (JS)
Terms (as objects)

Local frames, Choice points

JavaScript Libraries

JavaScript engine (with GC)

)

)

)

)

[Operating System & Libraries]

Fig. 4. Comparison of the bytecode and JavaScript WAM-based back ends

1 $m.def ("term_base" , function($m) { // Base for terras
2 function term_base() { } ; $m.ctor = term_base;
3 } ;
4 $m.def("var_base", function($m) { // Base for variables
5 function var_base() { } ; $m.ctor = var_base; $m.base = $r.query("term_base
6 } ;
7 $m.def ("nonvar_base", function($m) { // Base for non—variables
8 function nonvar_base() { }
9 $m.ctor = nonvar_base;

10 $m.base = $r.query("term_base");

11 $m.mlink = function($c) {

12 $c.prototype.unify = function(w, aO) {

13 return a0.unify_nonvar(w, this);

14 };
15 $c.prototype .deref = functionO { return this; };

16 } ;
17 } ;

Fig. 5. Base classes for var and nonvar terms.

ready provide the conditional code necessary to implement all operations on terms,
like unification. However, looking for a particular base class is definitively slower
than fast switch on tag operations. In this back end we redefine most operations on
terms using dynamic dispatching to simulate switch on tag operations. Fig. 5 shows
an implementation of these classes. Some methods in this code require a reference
to the state of the worker (the set of control stacks containing trail entries, choice-
points, and frames — see Section 3.2) denoted as w. From that base hierarchy, we
define the rest of the elements of the domain of terms as follows.
Variables (and Unification). Variables are defined in Fig. 6. Since some WAM
optimizations (e.g., conditional trailing) require comparing the relative age of vari­
ables and there is no such order for JavaScript objects, we define a global timestamp.
Variables are therefore tuples (ref, timestamp). Each time a variable is created, the

1 $ m . d e f (" t _ v a r " , func t ion ($m) { //Variables

2 f u n c t i o n v () { t h i s . r e f = t h i s ; t h i s . t i m e s t a m p = t imes tamp++; }
3 $ m . c t o r = v ;
4 $m.base = $ r . q u e r y (" v a r _ b a s e ") ;
5 $m.mlink = f u n c t i o n ($ c) {
6 $ c . p r o t o t y p e . d e r e f = f u n c t i o n O { //Dereference

7 i f O t h i s . i s _ u n b o u n d O) r e t u r n t h i s . r e f . d e r e f () ;
8 r e t u r n t h i s ;

9 } ;
10 $ c . p r o t o t y p e . i s_unbound = f u n c t i o n O { r e t u r n t h i s . r e f === t h i s ; } ;
11 $ c . p r o t o t y p e . u n i f y _ n o n v a r = f u n c t i o n (w , aO) { // Unify with nonvar
12 i f (! t h i s . i s _ u n b o u n d ()) r e t u r n t h i s . r e f . u n i f y _ n o n v a r (w , aO) ;
13 r e t u r n t h i s . u n i f y (w , aO) ;
14 } ;
15 $ c . p r o t o t y p e . u n i f y = f u n c t i o n (w , aO) { / / Unify

16 i f (! t h i s . i s _ u n b o u n d ()) r e t u r n t h i s . r e f . u n i f y (w , aO);
17 aO = a O . d e r e f () ;
18 if (aO instanceof v) {
19 if (this.timestamp > aO.timestamp) {
20 this.ref = aO; w.trail(this);
21 } else {
22 aO.ref = this; w.trail(aO);
23 }
24 } else { this.ref = aO; w.trail(this); }
25 r e t u r n t r u e ;
26 } ;
27 $ c . p r o t o t y p e .unb ind = f u n c t i o n O { t h i s . r e f = t h i s ; } ; / / Unbind

28 } ;
29 }) ;

Fig. 6. Variable definition and methods.

timestamp is incremented.2 Given a variable x, x. deref () Line 6 obtains the deref­
erenced value. It does so by invoking deref until the variable is unbound. If the
variable points to a nonvar object, it simply returns that object, as specified by the
deref of nonvars. Dynamic dispatching is used in a similar way to implement uni­
fication. The process includes two cases. First x.unify(w, y) (Line 15) unifies x
and y, and returns a boolean indicating whether the unification succeeded and up­
dates the state w accordingly. The other case is x.unify_nonvar(w, y) (Line 11).
It assumes that y is dereferenced to a nonvar. For nonvar objects, x.unify(w, y)
is defined as y .unify_nonvar(w, x) , which is implemented by each of the derived
classes.

Functor, Predicate Symbols, and Modules. They represent atoms and struc­
tures (<nonvar_base). A constructor contains as many arguments as its arity,
copying them to aO, al, fields. Additionally it contains static (i.e., shared by all
the objects in the class) entries for the name and arity. Symbols for predicates

2 Timestamps on variables are necessary also to implement lexical comparisons of terms, such as
compare/3.

1 $r.def (" t_ s t r i ng" , function($m) { // String primitive
2 function s(aO) { th i s .aO = aO; }
3 $m.ctor = s;
4 $m.base = $r .query(" t_nonvar") ;
5 $m.mlink = function($c) {
6 $c. prototype .unbox = funct ionO { r e tu rn t h i s . aO; } ; //Unbox
7 $c.prototype .unify_nonvar = function(w, other) { // Unify with nonvar
8 if (! (other instanceof s)) r e tu rn f a l s e ; //not a string, fail
9 re tu rn th i s . aO === other.aO; //proceed if the strings are the same

10 };
11 > ;

12 }) ;

Fig. 7. Primitive term definition for t_string.

include an additional execute method containing the compiled body. The body
compilation process will be described in Section 3.2. During compilation, we gener­
ate a new class per predicate or functor symbol (e.g., append/3, . / 2 , []/0), nested
within their corresponding module (usually, user for functor symbols). Atoms are
a special case of functor symbols with arity 0. In the same way that we associate
the body of a predicate with the head functor definition, we associate the content
of a module with its atom. We do so by storing nested symbols for predicates and
functors inside them.

Primitive Terms. These are the terms that implement term wrappers for primi­
tive values or arbitrary JavaScript objects. They are defined as t < nonvar_base.
Numbers (whose class is called t_num) and native strings (t_string) are two ex­
amples. An example definition for native strings, plugged into the runtime layer,
is shown in Fig. 7. Code using strings can import the string constructor with
var s=$r. query ("t_string"). ctor (only once in its context). Then, it can be
used anywhere with new s (". . . ") . Note that primitive data creation acts as a
boxing operation, while a method unbox is sometimes necessary or convenient.

3.2 Control stacks and code generation

In order to implement backtracking, we adapt some of the registers and stacks of
the WAM, with some modifications. Our machine state is defined in a worker, that
contains:

• goal: the goal being resolved (a term).
• undo: a stack that implements the trail. Each entry in the trail is a variable.

Trailing pushes a variable onto the stack, untrailing pops entries up to a
certain point, and undoes variable changes by invoking the unbind method
on each of them.

• choice: the current choice point, which contains the failure continuation and
a copy of all the worker registers (including a reference to goal).

• frame: the current local frame, which contains Y frame variables, saved frame,
and the success continuation.

The combination of choice, frame, and goal are similar to the frame structure
in B-Prolog (Cs and Zhou 2007) (and also to the original DeclO-Prolog abstract

machine): there are no X registers and argument registers (arguments of goal) and
local JavaScript variables (for temporaries) are used instead. The code is generated
and executed in a similar way to (Morales et al. 2004). The WAM code is split
into chunks of consecutive instructions separated by predicate calls. Each chunk is
compiled as a closure, which after execution returns the next closure to be executed.
Before each predicate call, we set a success continuation that points to the next
chunk. When there are no more chunks, we return the next continuation saved in the
worker. As usual, choice points are created when executing nondeterministic code.
Failure is implemented by untrailing, restoring the worker registers, and jumping
to the failure continuation. The main changes are that the timestamp is also saved
and restored.

3.3 Attributed variables

Most current Prolog systems offer (at least some primitive handling of) attribute
variables in order to be able to extend unification (and also to allow more flexible
control of execution). Attributed variables, as introduced by Huitouze (1990), are
special variables that can be associated to a term called an attribute. Classical built-
ins view attributed variables as normal variables. However the unification of such
a variable with an instantiated term or another attributed variable is redefined ac­
cording to a user-defined predicate. This mechanism is very powerful and allows the
efficient implementation of coroutines (Holzbaur 1992), constraint solvers (Holzbaur
1995), and other high-level language extensions (Holzbaur and Fruhwirth 1999) di­
rectly in Prolog. To implement such extensions, a number of Ciao packages make
extensive use of attributed variables.

In the back end we implement attributed variables obeying the Ciao interface.
They are enabled by the attr package, which follows the proposal by Demoen (2002)
for hProlog. The interface is based on get_attr /3 (that gets the attribute of a vari­
able), put_attr/3 (that sets the attribute of a variable), and
attr_unify_hook/2 (which is invoked when two attributed variables are unified,
or an attributed variable is unified with a nonvar term). The runtime code included
by the back end for attributed variables provides a definition for the built-ins, as
well as a new class of terms for attributed variables.

Once this interface is in place and supported at the JavaScript level (including a
number of additional support predicates) the system can exploit all the attribute
variable-based extensions present in Ciao, including constraint solvers, extended
control, etc. The coroutining freeze/2 predicate and the Ciao CLP(FD) solver
are examples of such extensions which will be used extensively in the experimental
evaluation.

4 Interfacing with JavaScript code

We have focused so far on the runtime and code generation. In practice, these are
useless without a process to make the source and target layers interoperable. For
this reason, we require a foreign interface between JavaScript and Prolog. This
interface is the basis for both embedding Prolog into existing JavaScript code and
implementing the standard set of libraries interfacing with the O.S. (in this case,
through the browser).

A JavaScript to Prolog interface is straightforward if we follow the compilation
algorithm, which already defines how terms are built and unified, and how goals
are resolved. Since terms are represented by JavaScript objects and since memory
is reclaimed automatically, there are no major complications. Only an API which
abstracts implementation details is necessary.

Accessing JavaScript data and code from the Prolog side is more involved. Any ex­
ternal object can be seen as an atomic type (so that two terms bound to JavaScript
objects unify iff they are actually bounded to the same object). In many cases we
want to read or modify object fields or invoke some of its methods. In (Wielemaker
and Anjewierden 2002), a single set of predicates is used to perform those opera­
tions (new/2, send/2, get /3) . In our approach, we follow (Pineda and Bueno 2002)
where objects are seen as modules and methods as predicates of those modules. In
practice, this allows using the same syntax and similar semantics as when specifying
interfaces with formal properties (Ciao-style assertions (Hermenegildo et al. 2005))
and as in other Ciao foreign interfaces (e.g., for C). Consider for example:

:- pred document(-element) + js:foreign("returnudocument;").

:- js:foreign_class element {

:- pred body(-element) + js:foreign("returnuthis.body;").

:- pred set_innerHtml(+X) :: string + js:foreign("this.innerHtml=X;")

}.

where each predicate assertion indicates (among
other possible properties) the expected types
and modes of the arguments and the compu­
tational properties of the code (+ field at end
of the assertion). Foreign code in JavaScript is
specified with the j s r fo re ign property. Such
foreign code is assumed to be deterministic
(Ciao is_det property) unless otherwise noted.
In the example, modes (+ and -) are used in
the usual way to express input and output ar-
guments (Ciao isomodes library), and types/- F i § - 8 ' G r a P h i c a l representation
classes (element, s t r ing) are specified in the f o r a s o l u t i o n o f Q u e e n s " 8 -
modes or in a : : field. The assertions inside the f oreign_class block specify the
internal methods associated with objects that are elements. Each f oreign_class
defines a term wrapper for foreign data that includes the required glue code pred­
icates. Given the previous interface, the following is a simple, html-oriented hello
•world program:

main :- document(D), D:body(B), B:set_innerHtml("Hello World").

It queries the document body and replaces its text with the given string. Using the
same idea we have easily created more complex code like that generating Fig. 8.3

3 The on-line version of this program is available at h t t p : / / c l i p l a b . o r g / ~ j f r a n / p t o j s / q u e e n s _
ui/queens_ui .html and can be tested on, e.g., a smart phone (a QR code is provided for
convenience).

http://cliplab.org/~jfran/ptojs/queens_

5 Experimental evaluation

We have measured experimentally the performance of the compiler back end and
the system runtime and libraries by compiling a collection of unmodified, small and
medium-sized benchmarks to JavaScript and comparing their execution time (under
the V8 engine and Chrome 17 (Google)) with that of the Ciao virtual machine.
Although raw performance is currently not our main goal, this gives us an initial
indication of the size of problem that is amenable to client-side execution with the
current implementation. We have chosen a) the following classical benchmarks:

qsort
tak
fft
primes
nreverse
deriv
poly
boyer
crypt
guardians
jugs
knights
11-queens
query

Implementation of Quicksort.
Computation of the Takeuchi function.
Fast Fourier transform.
Sieve of Eratosthenes.
Naive reversal of a list using append/3.
Symbolic derivation of polynomials.
Raises symbolically the expression 1+x+y+z to the n th power.
Simplified Boyer-Moore theorem prover kernel.
Cryptoarithmetic puzzle involving multiplication.
Prison guards playing game.
Jugs problem.
Chess knight tour, visiting only once every board cell.
JV-Queens with N = 11.
Makes a natural language query to a knowledge database with
information about country names, population, and area.

as well as b) the following collection of more complex problems:

A collection of CLP(FD) programs. We use a CLP(FD) library based on in-
dexicals (Codognet and Diaz 1996) written in Prolog using attributed variables
(plus syntactic extensions, etc.). We tested the classical SEND+M0RE=M0NEY, a
sudoku solver, the bridge optimization problem, and the first solution to N-
Queens with N = 50.

sat-freeze A benchmark based on an implementation of the DPLL algo­
rithm for solving the Boolean satisfiability problem (SAT) (Howe and King 2010).
The solver implements watched literals using freeze/2 for delayed control.

We ran on a MacBook Pro, Intel Core 2 Duo (2.66 GHz and 3MB L2 cache). The
execution times and the slowdown ratios are shown in Fig. 9 and Table 1.

Since the target is a dynamic language where we do not have precise control of
data sizes, placement, memory movements, or assembler instructions (unlike, e.g.,
in a translation to C or a bytecode engine written in C), the gap between the
source code and what is finally executed is large and slowdowns are to be expected.
Indeed, the geometric mean of the slowdown for all the benchmarks is 10.00. Also,
in our experience the actual performance is highly dependent on the engine which
executes the JavaScript code (see later for details).

A more careful study splits the benchmarks into several groups. The first group
(from qsort to primes) requires fast management of control and backtracking, but

Benchmark Ciao to (ms) JS (V8) t\ (ms) Ratio i i / io

Group 1

Group 2

Group 3

Group 4

qsort (xlOOO)

tak (xlO)

fft

primes (xlOO)

crypt (xlO)
guardians

jugs (xlO)

knights

11-queens
query (xlOO)

nreverse

deriv (xlOOO)

poly (xlO)

boyer

sendmore-fd

sudoku-fd

bridge-fd

50-queens-fd
sat-freeze (xlO)

28.39

55.70

13.60

4.21

6.60

6.63

17.80

371.00

286.00

17.30

4.02

6.42

22.50

27.20

20.40

110.00

2322.00

151.00

376.00

267.00

149.00

74.00

27.00

44.00

79.00

89.00

1636.00

1672.00

524.00

95.00

118.00

295.00

1281.00

217.00

1310.00

22857.00

2123.00

2969.00

9.43

2.67

5.44

6.41

6.67

11.91

5.00

4.40

5.84

30.28

23.63

18.38

13.05

47.09

10.63

11.90

9.84

14.05

7.89

Table 1. Performance comparison of the bytecode and JavaScript back ends.

does not create complex data, and exhibits the best performance results. The second
group (from nreverse to boyer) heavily depends on data creation and unification
and performs worse. In particular, we tracked down this difference to a concrete
issue in the state of our compilation scheme: we currently perform less indexing
than what the WAM can do. To validate this assumption, we disabled indexing in
the bytecode version of boyer. This yielded code which is 7.68 slower, which made
the JavaScript / bytecode speed ratio to be in the ballpark of the first group. The
performance of the benchmarks in the third (search problems) and fourth groups
(constraints) can be explained in a similar way by their internal dependency on
complex data manipulation (e.g., internal data structures for FD implementation)
or indexing (e.g., query).

Practicality. We believe that the absolute performance achieved is sufficient for
a large range of interactive, web-bound, non computationally-intensive tasks. And
even for the case of more computationally-intensive tasks, if they are, however, not
straighforward to program in a traditional language (e.g., they involve constraint
solving, reasoning, etc.) we believe that our technology can be very useful. As just a

20 40 60 0 20 40 60

qsort

tak

fft
primes

crypto
guardians

jugs
knights

11-queens
query

I I
1=19.43
• 2.67

• 5.44

I I

• 23.63

• 18.38

• 13.05

1
1=1 6.67
i i 11 01
• 5
• 4.4
• 5.84

i
30.28

• 47.09

nreverse

deriv

poly

boyer

sendmore-fd

sudoku-fd

bridge-fd

50-queens-fd

sat-freeze

Fig. 9. Slowdown comparison of the different groups of benchmarks.

simple example, rule-based form validations with non-trivial, interdependent rules
can be complex enough to be much more natural to program in a constraint/logic-
based language. When confronted with the dilemma of server-side vs. client-side
execution, data transmission delays4 may make client-side execution be preferable
even if client-side execution is slower than on the server side. And, as mentioned
before, there are also other issues such as privacy or the cost of server-side compu­
tation and storage, which favor client-side execution irrespective of performance.

As stated before, our first goal has been the construction of a framework that
is as complete as possible and easy to maintain, and which offers a high degree of
compatibility for existing code. We believe our results show that our system allows
non-trivial code (such as that implementing CLP(FD) or the SAT solver example,
just to give two examples of code foundations which can be interesting to execute
in a browser) to be easily run in browsers practically unmodified, alongside with
other JavaScript code.

Nevertheless, we expect to obtain further performance improvements using more
sophisticated compilation techniques (e.g., applying indexing and other WAM op­
timizations more aggressively and eventually program analysis). At the same time,
the approach will obviously benefit from future improvements in the JavaScript
platforms (which we have seen to improve significantly during our work).
Further Details on the Performance Results. One source of overhead iden­
tified is the cost of term representation. 32-bit WAM implementations typically
require only (1 + n) words to represent an f/n structure constructor, and 1 word
for simpler objects like variables and constants. Objects in JavaScript are in prin­
ciple much more complex, as values are records (dictionaries or hash tables) with
an arbitrary number of fields. One key optimization in V8 are hidden classes and
inline caching (brought in from efficient implementations of Self (Chambers et al.

4 Note that the lower bounds to latency times (ping) are limited by the speed of light transmission
over optical lines: 6.7 ms / 1000 km, and, in fact, much higher in practice.

1989)) to represent records efficiently and optimize property access. Even with those
optimizations the system still requires 3 words plus data per object.

In (Morales et al. 2008) we observed that simply doubling the space required
for tagged words, leaving the rest of the engine unaltered, can significantly affect
performance in WAM-based machines. Marking some distinguished elements in the
type lattice with tag bits is a clever optimization, hard to reproduce without a spe­
cialized heap representation. Moreover, we need additional data such as timestamps
that is not required in the WAM, where the age of terms can be compared directly
by their pointer addresses.

Alternatively, an explicit management of the heap as an array could improve term
encoding (by making it closer to that of the WAM). This approach has been used in
the compilation from C to JavaScript (as done in EMScripten (Zakai 2011), which
has a 2.4-8.4 slowdown w.r.t. native code) or systems compiling to Java like Lean
Prolog (Tarau 2011b). However, by adopting this approach we would lose some
advantages of using a native JavaScript representation, including getting garbage
collection for free. Additionally, larger and more complex runtime code would be
required. The impact of this change is difficult to evaluate a priori and is left as
future work.

Performance on Other Browsers. We tested the performance of our com­
pilation on other major browsers (SpiderMonkey, Firefox 11; Nitro, Safari 5.1.2),
and observed a slowdown of between 2.1-e- and 11.5-e- w.r.t. Google's V8. We have
verified in synthetic benchmarks that, despite these virtual machines being as good
as V8 for usual JavaScript programs (including a handcoded version of tak), they
are less efficient in the creation and manipulation of many small objects. One rea­
son is that objects in V8 are significantly smaller than in other engines, which
makes SpiderMonkey and Nitro less convenient for our current translation scheme.
We conjecture that V8 implements optimizations related to frequent, small object
creation, as one of the benchmarks in the V8 suite is the compilation of the Ear-
leyBoyer classic Scheme benchmarks using sch2js, which later evolved to be part
of Hop (Loitsch and Serrano 2007). Nevertheless, for benchmarks which do not
create large numbers of objects, the engines of the major browsers offer similar
performance. It would also be interesting to explore whether with an explicit heap
smaller performance gaps might be observed across engines.

6 Conclusions and future work

We believe our system makes a significant contribution towards the practical feasi­
bility of client-side Web applications based (fully or partially) on (constraint) logic
programming, while relying exclusively on Web standards. This reliance makes it
possible to execute code on a variety of devices without any need for installation of
additional plug-ins or proprietary code. We believe this is an important advantage,
specially since a good number of the currently popular portable devices make such
installation hard or impossible.

We made a strong effort to preserve source compatibility with existing Prolog
code, and declaring special libraries and dialectic changes explicitly. For all this,

the module and package system of Ciao was of great help. The current implemen­

tat ion represents a promising scaffolding on top of which a truly full-fledged system

can be built. Our future work will be focused on several parallel lines. First, devel­

oping automatic methods for distributing code across browsers and servers, using

AJAX or WebSockets for communication. Second, improving the compilation tech­

nology, specially using more WAM-level optimizations, analysis information, and

the combination of such optimizations with J IT compilation, which has already

been shown to significantly improve the execution of Prolog interpreters (Bolz et al.

2010). Third, gradually extending the current implementation of the Ciao libraries

and language features, which would allow client-side execution of more and more

complex programs.

The system is integrated in the Ciao repository and will be included in upcom­

ing Ciao distributions. Examples and benchmark programs (including the Queens

program of 8) are publicly available from h t t p : / / c l i p l a b . o r g / ~ j f r a n / p t o j s .

References

A I T - K A C I , H. 1991. Warren's Abstract Machine, A Tutorial Reconstruction. MIT Press.

BOLZ, C. F. , LEUSCHEL, M., AND SCHNEIDER, D. 2010. Towards a jitting VM for
prolog execution. In PPDP'10 - Proc. of the 12th Int'l. ACM S'IGPLAN Symposium on
Principles and Practice of Declarative Programming. ACM, Hagenberg, Austria.

BORGER, E. AND ROSENZWEIG, D. 1990. From prolog algebras towards warn - a mathe­
matical study of implementation. In CS'L'90. Springer LNCS.

CABEZA, D. AND HERMENEGILDO, M. 2001. Distributed WWW Programming using
(Ciao) Prolog and the PiLLoW Library. Theory and Practice of Logic Programming 1, 3
(May), 251-282.

CHAMBERS, C , UNGAR, D., AND LEE, E. 1989. An efficient implementation of self a
dynamically-typed object-oriented language based on prototypes. S'IGPLAN Not. 24, 10
(Sept.), 49-70.

CODOGNET, P . AND DIAZ, D. 1996. Compiling constraints in clp(fd). J. Log. Pro­
gram. 27, 3, 185-226.

Cs, C. AND ZHOU, N.-F. 2007. A Register-Free Abstract Prolog Machine with Jumbo
Instructions. In International Conference on Logic Programming.

DEMOEN, B. 2002. Dynamic attributes, their hProlog implementation, and a first eval­
uation. Tech. Rep. CW 350, Department of Computer Science, K.U.Leuven, Leuven,
Belgium. October.

ECMA INTERNATIONAL. 2009. ECMAScript Language Specification, Standard ECMA-
262, Edition 5. Tech. rep. September. Available at h t t p : / /w ik i . ecmasc r ip t . o rg .

GAL, A., EICH, B., SHAVER, M., ANDERSON, D., MANDELIN, D., HAGHIGHAT, M. R.,

KAPLAN, B., HOARE, C , ZBARSKY, B., ORENDORFF, J., RUDERMAN, J., SMITH,

E. W., REITMAIER, R., BEBENITA, M., CHANG, M., AND FRANZ, M. 2009. Trace-

based just-in-time type specialization for dynamic languages. In Proceedings of the
2009 ACM S'IGPLAN conference on Programming language design and implementation.
PLD1 '09. ACM, New York, NY, USA, 465-478.

GOOGLE. V8 Javascript Engine, h t tps : / /developers .google .com/v8/des ign.

HERMENEGILDO, M., PUEBLA, G., BUENO, F. , AND GARCIA, P . L. 2005. Integrated

Program Debugging, Verification, and Optimization Using Abstract Interpretation (and
The Ciao System Preprocessor). Science of Comp. Progr. 58, 1-2.

http://cliplab.org/~jfran/ptojs
http://wiki.ecmascript.org
https://developers.google.com/v8/design

HERMENEGILDO, M. V., BUENO, F. , CARRO, M., LOPEZ, P. , MERA, E., MORALES, J.,

AND PUEBLA, G. 2012. An Overview of Ciao and its Design Philosophy. TPLP 12, 1-2,
219-252. http://arxiv.org/abs/1102.5497.

HOLZBAUR, C. 1992. Metastructures vs. Attributed Variables in the Context of Extensible
Unification. In 1992 International Symposium on Programming Language Implementa­
tion and Logic Programming. LNCS 631, Springer Verlag, 260-268.

HOLZBAUR, C. 1995. OFAI clp(q,r) manual, edition 1.3.3. Tech. Rep. TR-95-09, Austrian
Research Institute for Artificial Intelligence, Vienna.

HOLZBAUR, C. AND FRUHWIRTH, T. W. 1999. Compiling constraint handling rules into
prolog with attributed variables. In International Conference of Principles and Practice
of Declarative Programming, PPDP'99. Lecture Notes in Computer Science, vol. 1702.
Springer, 117-133.

HOWE, J. M. AND KING, A. 2010. A pearl on sat solving in prolog. In FLOPS. 165-174.

HUITOUZE, S. L. 1990. A New Data Structure for Implementing Extensions to Prolog. In
Proceedings of Programming Language Implementation and Logic Programming, P. De-
ransart and J. Maluszyiiski, Eds. Number 456 in Lecture Notes in Computer Science.
Springer, 136-150.

LINDHOLM, T. AND YELLIN, F . 1996. The Java Virtual Machine Specification. Addison-
Wesley.

LOITSCH, F . AND SERRANO, M. 2007. Hop client-side compilation. In TFP 2007: Draft
Proceedings of the 8th Symposium on Trends in Functional Programming.

MAFFEIS, S., MITCHELL, J., AND TALY, A. 2008. An operational semantics for JavaScript.
In Proc. of APLAS'08. LNCS, vol. 5356. 307-325. See also: Dep. of Computing, Imperial
College London, Technical Report DTR08-13, 2008.

MORALES, J., CARRO, M., AND HERMENEGILDO, M. 2004. Improving the Compilation
of Prolog to C Using Moded Types and Determinism Information. In Proceedings of the
Sixth International Symposium on Practical Aspects of Declarative Languages. Lecture
Notes in Computer Science, vol. 3057. Springer-Verlag, Heidelberg, Germany, 86-103.

MORALES, J., CARRO, M., AND HERMENEGILDO, M. 2008. Comparing Tag Scheme Vari­
ations Using an Abstract Machine Generator. In 10th Int'l. ACM SIC PLAN Symposium
on Principles and Practice of Declarative Programming (PPDP'08). ACM Press, 32-43.

PINEDA, A. AND BUENO, F. 2002. The O'Ciao Approach to Object Oriented Logic
Programming. In Colloquium on Implementation of Constraint and LOgic Programming
Systems (ICLP associated workshop). Copenhagen.

TARAU, P . 2011a. The binprolog experience: Architecture and implementation choices for
continuation passing prolog and first-class logic engines. CoRR abs/1102.1178.

TARAU, P . 2011b. Integrated symbol table, engine and heap memory management in
multi-engine prolog. SIGPLAN Not. 46, 11 (June), 129-138.

WARREN, D. 1983. An Abstract Prolog Instruction Set. Technical Report 309, Artificial
Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025.

WIELEMAKER, J. AND ANJEWIERDEN, A. 2002. An architecture for making object-
oriented systems available from prolog. In WLPE. 97-110.

WIELEMAKER, J., HUANG, Z., AND VAN DER M E I J , L. 2008. Swi-prolog and the web.
Theory and Practice of Logic Programming 8, 3, 363-392.

ZAKAI, A. 2011. Emscripten: an Uvm-to-javascript compiler. In Proceedings of the ACM
international conference companion on Object oriented programming systems languages
and applications companion. SPLASH '11. ACM, New York, NY, USA, 301-312.

http://arxiv.org/abs/1102.5497

