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Abstract

(Maher 2012) introduced an approach for relative expressiveness of defeasible logics, and two notions of

relative expressiveness were investigated. Using the first of these definitions of relative expressiveness, we

show that all the defeasible logics in the DL framework are equally expressive under this formulation of

relative expressiveness. The second formulation of relative expressiveness is stronger than the first. How-

ever, we show that logics incorporating individual defeat are equally expressive as the corresponding logics

with team defeat. Thus the only differences in expressiveness of logics in DL arise from differences in how

ambiguity is handled. This completes the study of relative expressiveness in DL begun in (Maher 2012).

KEYWORDS: defeasible logic, non-monotonic reasoning, relative expressiveness

Introduction

Defeasible logics provide several linguistic features to support the expression of defeasible knowl-

edge. There are also a variety of such logics, supporting different intuitions about reasoning in

a defeasible setting. The DL framework (Antoniou et al. 2000; Billington et al. 2010) provides

logics that allow ambiguity in the “truth” status of a literal to propagate, and logics that block

ambiguity; it has logics that require an individual rule to defeat all competitors, and logics that

allow a “team” of rules to defeat competitors. Given the different inferences supported by the dif-

ferent logics, it is interesting to determine whether these logics are equally powerful or whether,

perhaps, some are more powerful than the others.

In terms of inference strength, (Billington et al. 2010) established the relationship between the

different logics of DL. In terms of computational complexity, the logics of DL are equivalent:

all have linear complexity (Maher 2001; Billington et al. 2010). Relative expressiveness of the

different logics was first investigated in (Maher 2012), which developed a framework, based on

simulation in the presence of additional elements. Two notions of relative expressiveness within

this framework were investigated: polynomial simulation wrt the addition of facts, and simulation

wrt the addition of rules.

In this paper we continue this investigation. We will see that all the logics of DL are equally

expressive, using the first notion of relative expressiveness. Thus we cannot distinguish the logics

based on this notion. We also establish that individual defeat has equal expressiveness to team

defeat in the logics of DL wrt addition of rules. This is somewhat surprising, given the apparent

greater sophistication of the team defeat inference rules. Given results in (Maher 2012), this

completes the study of relative expressiveness for DL.

http://arxiv.org/abs/2102.10532v1
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The next two sections summarize the DL framework of defeasible logics and the notions of

relative expressiveness introduced in (Maher 2012). Then the following two sections together

provide the proof that the logics of DL are of equal expressivity (in terms of simulation wrt ad-

dition of facts). The first shows the simulation of an ambiguity propagating logic by an ambiguity

blocking logic, while the second shows a simulation in the reverse direction. Combined with re-

sults of (Maher 2012), this establishes that the logics in DL all have the same expressiveness in

this formulation.

The following sections investigate relative expressiveness via the second, stronger formulation.

Adapting simulations of (Maher 2012) to the stronger formulation, we establish that individual

defeat has equal expressiveness to team defeat in the logics of DL. Proofs of the results in this

paper are detailed and lengthy. They appear in an appendix.

Defeasible Logic

In this section we can only present an outline of the defeasible logics we investigate. Further de-

tails can be obtained from (Billington et al. 2010) and the references therein. We address propo-

sitional defeasible logics, but the results should extend to a first-order language.

A defeasible theory is built from a language Σ of literals (which we assume is closed under

negation) and a language Λ of labels. A defeasible theory D = (F,R,>) consists of a set of

facts F , a finite set of rules R, each rule with a distinct label from Λ, and an acyclic relation > on

Λ called the superiority relation. This syntax is uniform for all the logics considered here. Facts

are individual literals expressing indisputable truths. Rules relate a set of literals (the body),

via an arrow, to a literal (the head), and are one of three types: a strict rule, with arrow →; a

defeasible rule, with arrow ⇒; or a defeater, with arrow ❀. Strict rules represent inferences that

are unequivocally sound if based on definite knowledge; defeasible rules represent inferences

that are generally sound. Inferences suggested by a defeasible rule may fail, due to the presence

in the theory of other rules. Defeaters do not support inferences, but may impede inferences

suggested by other rules. The superiority relation provides a local priority on rules. Strict or

defeasible rules whose bodies are established defeasibly represent claims for the head of the

rule to be concluded. The superiority relation contributes to the adjudication of these claims

by an inference rule, leading (possibly) to a conclusion. Given a theory D, the corresponding

languages are expressed by Σ(D) and Λ(D).

Defeasible logics derive conclusions that are outside the syntax of the theories. Conclusions

may have the form +dq, which denotes that under the inference rule d the literal q can be con-

cluded, or −dq, which denotes that the logic can establish that under the inference rule d the

literal q cannot be concluded. The syntactic element d is called a tag. In general, neither con-

clusion may be derivable: q cannot be concluded under d, but the logic is unable to establish

that. Tags +∆ and −∆ represent monotonic provability (and unprovability) where inference is

based on facts, strict rules, and modus ponens. We assume these tags and their inference rules

are present in every defeasible logic. What distinguishes a logic is the inference rule for defea-

sible reasoning. The four logics discussed in the Introduction correspond to four different pairs

of inference rules, labelled ∂, δ, ∂∗, and δ∗; they produce conclusions of the form (respectively)

+∂q, −∂q, +δq, −δq, etc. The inference rules δ and δ∗ require auxiliary tags and inference

rules, denoted by σ and σ∗, respectively. For each of the four principal defeasible tags d, the

corresponding logic is denoted by DL(d).

The four principal tags and corresponding inference rules represent different intuitions about
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defeasible reasoning: in ∂ and ∂∗ ambiguity is blocked, while in δ and δ∗ ambiguity is propa-

gated; in ∂ and δ rules for a literal act as a team to overcome competing rules, while in ∂∗ and δ∗

a single rule must overcome all competing rules. A more detailed discussion of ambiguity and

team defeat in the DL framework is given in (Billington et al. 2010) and (Maher 2012).

The inference rules are presented in the appendix in the form of the definition of a function TD
for a given theory D. Given a defeasible theory D, for any set of conclusions E, TD(E) denotes

the set of conclusions inferred from E using D and one application of an inference rule. TD is a

monotonic function on the complete lattice of sets of conclusions ordered by containment. The

least fixedpoint of TD is the set of all conclusions that can be drawn from D. We follow standard

notation in that TD ↑ 0 = ∅ and TD ↑ (n+ 1) = TD(TD ↑ n).

The relative inference strength of the different logics in DL was established in the inclusion

theorem of (Billington et al. 2010). For any tag d, +d(D) denotes the set of conclusions of D of

the form +dq and similarly for −d.

Theorem 1 (Inclusion Theorem (Billington et al. 2010))

Let D be a defeasible theory.

(a) +∆(D) ⊆ +δ∗(D) ⊆ +δ(D) ⊆ +∂(D) ⊆ +σ(D) ⊆ +σ∗(D).

(b) −σ∗(D) ⊆ −σ(D) ⊆ −∂(D) ⊆ −δ(D) ⊆ −δ∗(D) ⊆ −∆(D).

(c) +δ∗(D) ⊆ +∂∗(D) ⊆ +σ∗(D)

(d) −σ∗(D) ⊆ −∂∗(D) ⊆ −δ∗(D)

Parts (a) and (b) are proved in (Billington et al. 2010). Parts (c) and (d) can be established by

similar methods.

Simulating Defeasible Logics

(Maher 2012) introduced a framework for addressing the relative expressiveness of defeasible

logics. The framework identifies the greater (or equal) expressiveness of L2 compared to L1

with the ability to simulate any theory D in a logic L1 by a theory T (D) in the logic L2. Simple

simulation was shown not to be sufficiently discriminating, so simulation was required to hold in

the presence of an addition to the theory.

The addition of a theory A to a theory D is denoted by D + A. Addition is essentially the

union of the theories, but we require Λ(D)∩Λ(A) = ∅, so that the addition of theories preserves

the property that distinct rules have distinct labels. This requirement also has the effect that a

superiority statement in D cannot affect a rule in A, and vice versa. Let D = (F,R,>) and

A = (F ′, R′, >′). Then D + A = (F ∪ F ′, R ∪ R′, > ∪ >′). Λ(D+A) = Λ(D) ∪ Λ(A) and

Σ(D+A) = Σ(D) ∪ Σ(A).

A simulating theory T (D) in general will involve additional literals, rules and labels beyond

those of D. If additions A were permitted to affect these, the notion of simulation would become

trivial, so we restrict additions to have only an indirect effect on T (D), via Σ(D). Given a theory

D and a possible simulating theoryT (D), we say an additionA is modular if Σ(A)∩Σ(T (D)) ⊆

Σ(D), Λ(D) ∩ Λ(A) = ∅, and Λ(T (D)) ∩ Λ(A) = ∅. In general, we will consider a class of

additions but for any D and T (D) only the modular additions in the class will be considered.

Since different logics involve different tags, conclusions from theories in different logics can-

not be identical. For simulation it suffices that conclusions are equal modulo tags. Given logics

L1 and L2, with principal tags d1 and d2, respectively, we say two conclusions α in L1 and β in

L2 are equal modulo tags if α is +d1q and β is +d2q or α is −d1q and β is −d2q.
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Thus we have the following definition of simulation and relative expressiveness. For more

discussion on the motivations for the definitions, see (Maher 2012).

Definition 2

Let C be a class of defeasible theories.

We say D1 in logic L1 is simulated by D2 in L2 with respect to a class C if, for every modular

addition A in C, D1 +A and D2 +A have the same conclusions in Σ(D1 +A), modulo tags.

We say a logic L1 can be simulated by a logic L2 with respect to a class C if every theory in

L1 can be simulated by some theory in L2 with respect to additions from C.

We say L2 is more (or equal) expressive than L1 if L1 can be simulated by L2 with respect C.

Different notions of relative expressiveness arise from different choices for C. There were two

classes of additions investigated in (Maher 2012): the addition of facts (that is, A has the form

(F, ∅, ∅)), and the addition of rules (that is, A has the form (∅, R, ∅)). Simulation with respect

to addition of rules is stronger than simulation with respect to addition of facts because any fact

can equally be expressed as a strict rule with an empty body. We might also consider arbitrary

additions, where A can be any defeasible theory.

The main results of (Maher 2012) are that:

• DL(∂) and DL(∂∗) have equal expressiveness, with respect to addition of facts, as do

DL(δ) and DL(δ∗)

• neither DL(∂) nor DL(∂∗) is more expressive than DL(δ) or DL(δ∗), and vice versa,

with respect to addition of rules

• when arbitrary additions are permitted, of the four defeasible logics under consideration,

none is more expressive than any other

Blocked Ambiguity Simulates Propagated Ambiguity

We now show that every theory over an ambiguity propagating logic can be simulated by a theory

over the corresponding ambiguity blocking logic. To begin, we show that DL(∂∗) can simulate

DL(δ∗). Any defeasible theoryD is transformed into a new theory. The new theory employs new

propositions strict(q) and supp(q), for each literal q, and supp body(r), comp(r), and o(r), for

each rule r. The new theory also introduces labels pd(r), nd(r, s), ps(r), ns(r, s), for each pair

r, s of opposing rules in D. These are families of propositions and labels, not predicates, despite

the notation.

Definition 3

Let D = (F,R,>) be a defeasible theory with language Σ. We define the transformation T of

D to T (D) = (F ′, R′, >′) as follows:

1. The facts of T (D) are the facts of D. That is, F ′ = F .

2. Every strict rule of R is included in R′.

3. For every literal q, R′ contains

str(q) : q → strict(q)

nstr(q) : ⇒ ¬strict(q)

and the superiority relation contains nstr(q) >′ str(q), for every q.
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4. For each literal q in Σ, R′ contains

q ⇒ supp(q)

5. For each strict or defeasible rule r of the form b1, . . . , bn →֒r q in R, R′ contains

supp(b1), . . . , supp(bn) ⇒ supp body(r)

supp body(r),¬o(r) ⇒ supp(q)

and, further, for each rule s = Bs →֒s ∼q for ∼q in R, where s > r, R′ contains

ns(r, s) : Bs ⇒ o(r)

ps(r) : ⇒ ¬o(r)

and the superiority relation contains ns(s, r) >
′ ps(s).

6. For each strict or defeasible rule r = Br →֒r q in R, R′ contains

inf(r) : Br,¬comp(r),¬strict(∼q) ⇒ q

and, further, for each rule s = Bs →֒s ∼q for ∼q in R, where s 6< r, R′ contains

nd(r, s) : supp body(s) ⇒ comp(r)

pd(r) : ⇒ ¬comp(r)

and the superiority relation contains nd(r, s) >
′ pd(r).

Parts 1 and 2 of the transformation preserve all the strict inferences from D. Part 3 allows us to

distinguish strict conclusions from defeasible conclusions. The structure of these rules – where

str(q) is strict, nstr(q) is defeasible, and nstr(q) > str(q) – ensures that strict(q) is inferred

defeasibly iff q is inferred strictly, and strict(q) fails iff strict inference of q fails. A similar

structure of rules was previously used in (Maher 2012) in showing that DL(∂∗) can simulate

DL(∂) wrt addition of facts.

We use the proposition supp(q) to indicate that the literal q is supported (i.e. +σ∗q can be

inferred), while the literal q refers to defeasible provability (wrt δ∗). Part 4 ensures that every

literal that holds defeasibly is also supported. This property is justified by the inclusion theorem

of (Billington et al. 2010). Part 5 encodes the inference rules for support (i.e. σ∗). supp body(r)

indicates that all literals in the body of rule r are supported. The head q of a rule r is supported

if the body of r is supported and r is not overruled (i.e. all rules s that are superior to r fail).

The overruling of r is indicated by o(r). The rules ns(r, s) and ps(r) and the superiority relation

ensure that ¬o(r) is derived defeasibly iff there is no overruling rule s.

Rules inf(r) in part 6 encode the inference rules for δ∗. q holds defeasibly iff the body of a

rule r for q holds defeasibly and r has no competing rules (i.e. all rules for ∼q not inferior to r

have a body that fails wrt σ∗). The rules nd(r, s) and pd(r) and the superiority relation ensure

that ¬comp(r) is derived defeasibly iff there is no competing rule.

In this translation, the superiority relation in D is not directly represented by the superiority

relation in T (D). Instead, the superiority relation in D is used to restrict the instantiation of rules

in the transformation, while the superiority relation in T (D) is used to ensure that o(r) and ¬o(r)

do not both fail, and similarly for comp(r).

Example 4

To see the operation of this transformation, consider the following theory D, which demonstrates

the difference between ambiguity propagation and blocking logics.
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r1 : ⇒ p r3 : ¬p ⇒ ¬q

r2 : ⇒ ¬p r4 : ⇒ q

In DL(∂∗) from D we conclude −∂∗p and −∂∗¬p, +∂∗q and −∂∗¬q. In DL(δ∗) from D we

conclude −δ∗p and −δ∗¬p, −δ∗q and −δ∗¬q. We also conclude +σ∗p and +σ∗¬p, +σ∗q and

+σ∗¬q.

T (D) contains the following rules.

⇒ supp body(r1) supp body(r1),¬o(r1) ⇒ supp(p)

⇒ supp body(r2) supp body(r2),¬o(r2) ⇒ supp(¬p)

supp(¬p) ⇒ supp body(r3) supp body(r3),¬o(r3) ⇒ supp(¬q)

⇒ supp body(r4) supp body(r4),¬o(r4) ⇒ supp(q)

p ⇒ supp(p) ps(r1) : ⇒ ¬o(r1)

¬p ⇒ supp(¬p) ps(r2) : ⇒ ¬o(r2)

q ⇒ supp(q) ps(r3) : ⇒ ¬o(r3)

¬q ⇒ supp(¬q) ps(r4) : ⇒ ¬o(r4)

inf(r1) : ¬comp(r1),¬strict(¬p) ⇒ p

inf(r2) : ¬comp(r2),¬strict(p) ⇒ ¬p

inf(r3) : ¬p,¬comp(r3),¬strict(q) ⇒ ¬q

inf(r4) : ¬comp(r4),¬strict(¬q) ⇒ q

pd(r1) : ⇒ ¬comp(r1) nd(r1, r2) : supp body(r2) ⇒ comp(r1)

pd(r2) : ⇒ ¬comp(r2) nd(r2, r1) : supp body(r1) ⇒ comp(r2)

pd(r3) : ⇒ ¬comp(r3) nd(r3, r4) : supp body(r4) ⇒ comp(r3)

pd(r4) : ⇒ ¬comp(r4) nd(r4, r3) : supp body(r3) ⇒ comp(r4)

T (D) also contains the following superiority statements.

nstr(p) >′ str(p) nd(r1, r2) >
′ pd(r1)

nstr(¬p) >′ str(¬p) nd(r2, r1) >
′ pd(r2)

nstr(q) >′ str(q) nd(r3, r4) >
′ pd(r3)

nstr(¬q) >′ str(¬q) nd(r4, r3) >
′ pd(r4)

There are some points to highlight in this example. Rules for strict and ¬strict are omitted

from the listing above because they are not of interest (D has no strict rules or facts); we will

have conclusions +∂∗¬strict(l) and −∂∗strict(l), for every literal l. There are no rules ns(r, s)

in T (D) because they only occur when s > r, and the superiority relation in D is empty. Con-

sequently, there are no superiority statements of the form ns(r, s) >
′ ps(r). It also follows that

+∂∗¬o(r) is concluded, for each rule r, and hence we can infer +∂∗supp(l), for each literal l

except ¬q, reflecting the fact that these literals are supported in D, and +∂∗supp body(r), for

each rule r. We can then infer also +∂∗supp(¬q). It then follows that −∂∗¬comp(r) is con-

cluded, for each r, using the superiority relation. Then, as a consequence of the rules inf(r), we
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find that all literals l fail to be inferred (i.e. we conclude −∂∗l, for each literal l). This expresses

the ambiguity propagating behaviour of DL(δ∗) from within DL(∂∗).

Theorem 5

The ambiguity blocking logics (DL(∂) and DL(∂∗)) can simulate the ambiguity propagating

logics (DL(δ) and DL(δ∗)) with respect to addition of facts.

Propagated Ambiguity Simulates Blocked Ambiguity

We now show that every theory over an ambiguity blocking logic can be simulated by a theory

over the corresponding ambiguity propagating logic. To begin, we simulate DL(∂∗) by DL(δ∗).

Any defeasible theory D is transformed into a new theory T (D). The new theory employs new

propositions strict(q) and undefeated(q) for each literal q in Σ, and employs labels str(q) and

nstr(q) for each literal q in Σ, and nd(r, s) and pd(r) for each pair of opposing rules r, s in R.

Definition 6

Let D = (F,R,>) be a defeasible theory with language Σ. We define the transformation T of

D to T (D) = (F ′, R′, >′) as follows:

1. The facts of T (D) are the facts of D. That is, F ′ = F .

2. Every strict rule of R is included in R′.

3. For every literal q, R′ contains

str(q) : q → strict(q)

nstr(q) : ⇒ ¬strict(q)

t(q) : strict(q) ⇒ true(q)

nt(q) : ⇒ ¬true(q)

and the superiority relation contains nstr(q) >′ str(q) and t(q) >′ nt(q), for every q.

4. For each literal q, R′ contains

undefeated(q) ⇒ q

For each strict or defeasible rule r = Br →֒r q for q in R, R′ contains

pd(r) : Br,¬true(∼q) ⇒ undefeated(q)

and, further, for each rule s = Bs →֒s ∼q for ∼q in R, where r 6> s, R′ contains

nd(r, s) : Bs ⇒ ¬undefeated(q)

and the superiority relation contains nd(r, s) >
′ pd(r).

Parts 1 and 2 preserve all the strict inferences from D. Part 3 allows us to distinguish strict

conclusions from defeasible conclusions. For this transformation – compared to the transforma-

tion in the previous section – extra rules t and nt are needed. These rules ensure that δ∗ and σ∗

agree on the literals true(q), that is, from T (D)+A we conclude +δ∗true(q) iff we conclude

+σ∗true(q) iff D+A ⊢ +∆q. (See Lemma 18 in the appendix.) In comparison, we never infer

−σ∗¬strict(q) and always infer +σ∗¬strict(q), independent of D.1

1 This also demonstrates a flaw in (Maher 2012). In that paper, the transformation used to simulate DL(δ) with DL(δ∗)
fails to use these extra rules, and thus is incorrect. Definition 13 has a corrected transformation.
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Part 4 encodes the inference rules for ∂∗: q holds defeasibly if the body of a rule r for q holds

defeasibly, ∼q is not established strictly, and r is not defeated (i.e. all rules not inferior to r have

a body that fails wrt ∂∗). The requirement that r is not defeated is expressed through the use of

rules nd(r, s) opposing pd(r) for each rule s in D not inferior to r. The rules nd(r, s) are superior

to pd(r) in T (D), thus ensuring that undefeated(q) is inferred iff r is not defeated.

Example 7

To see the operation of this transformation, consider (again) the following theory D, which

demonstrates the difference between ambiguity propagation and blocking logics.

r1 : ⇒ p r3 : ¬p ⇒ ¬q

r2 : ⇒ ¬p r4 : ⇒ q

In DL(∂∗) from D we conclude −∂∗p and −∂∗¬p, +∂∗q and −∂∗¬q. In DL(δ∗) from D we

conclude −δ∗p and −δ∗¬p, −δ∗q and −δ∗¬q. We also conclude +σ∗p and +σ∗¬p, +σ∗q and

+σ∗¬q.

T (D) contains the following rules and superiority relation.

nd(r1, r2) : ⇒ ¬undefeated(p) pd(r1) : ¬true(¬p) ⇒ undefeated(p)

nd(r2, r1) : ⇒ ¬undefeated(¬p) pd(r2) : ¬true(p) ⇒ undefeated(¬p)

nd(r3, r4) : ⇒ ¬undefeated(¬q) pd(r3) : ¬p,¬true(¬q) ⇒ undefeated(¬q)

nd(r4, r3) : ¬p ⇒ ¬undefeated(q) pd(r4) : ¬true(q) ⇒ undefeated(q)

undefeated(p) ⇒ p

undefeated(¬p) ⇒ ¬p

undefeated(q) ⇒ q

undefeated(¬q) ⇒ ¬q

nd(r1, r2) >
′ pd(r1) nstr(p) >′ str(p)

nd(r2, r1) >
′ pd(r2) nstr(¬p) >′ str(¬p)

nd(r3, r4) >
′ pd(r3) nstr(q) >′ str(q)

nd(r4, r3) >
′ pd(r4) nstr(¬q) >′ str(¬q)

The rules concerning strict and true have been omitted. Because there are no facts or strict

rules in D we will infer −δ∗strict(s), and hence +δ∗¬true(s) and +σ∗¬true(s) for each

literal s ∈ Σ. However, because of the superiority of nd over pd, we infer −σ∗undefeated(¬p)

and −δ∗undefeated(¬p) and hence −σ∗¬p and −δ∗¬p (and similarly for p). Hence, the body

of pd(r3) fails, and we infer −δ∗¬q. Similarly, the body of nd(r4, r3) fails, and hence we infer

+δ∗q. This reflects the ambiguity blocking behaviour of DL(∂∗) from within the ambiguity

propagating logic DL(δ∗).

The proof of correctness of this simulation is complicated by the fact that inference rules for

δ∗ and σ∗ are defined mutually recursively, while the inference rules for ∂∗ are directly recursive.

This difference in structure makes a direct inductive proof difficult. The problem is resolved by

a “tight” simulating transformation that is able to simulate DL(∂∗) (wrt addition of facts) in any

of the DL logics.
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Theorem 8

For d ∈ {δ, δ∗, ∂}, DL(d) can simulate DL(∂∗) with respect to addition of facts

Combining Theorems 5 and 8 with results from (Maher 2012), we see that all logics of the

DL framework are equally expressive in terms of simulation wrt addition of facts.

Simulation of Individual Defeat wrt Addition of Rules

The following definition defining D′ = (F ′, R′, <′) from D is repeated from (Maher 2012).

Definition 9

We add the following rules

1. The facts of D′ are the facts of D. That is, F ′ = F .

2. For each rule r = B →֒r q in R, R′ contains

p(r) : B →֒r h(r)

s(r) : h(r) → q

and, further, for each rule r′ = B′ →֒r′ ∼q for ∼q in R, R′ contains

n(r, r′) : B′ →֒r′ ¬h(r)

3. For every r > r′ in D, where r and r′ are rules for opposite literals, D′ contains p(r) >′

n(r, r′) and n(r′, r) >′ p(r′).

It was shown in (Maher 2012) that, using this transformation, DL(∂) simulates DL(∂∗) and

DL(δ) simulates DL(δ∗), wrt addition of facts.

On the surface, it might appear that this result extends readily to addition wrt rules: since the

added rules do not participate in the superiority relation of the combined theory, it might be

expected that the difference between team defeat and individual defeat is irrelevant. However,

that expectation is misleading. The following example shows that this transformation does not

provide a simulation of DL(∂∗) by DL(∂) wrt addition of rules.

Example 10

Let D consist of the rules

r1 : ⇒ p

r2 : ⇒ ¬p

Then T (D) consists of the following rules

p(r1) : ⇒ h(r1)

n(r1, r2) : ⇒ ¬h(r1)

p(r2) : ⇒ h(r2)

n(r2, r1) : ⇒ ¬h(r2)

s(r1) : h(r1) ⇒ p

s(r2) : h(r2) ⇒ ¬p

Now, let A be the rule

⇒ p
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Clearly, D+A ⊢ −∂∗p (and D+A ⊢ −∂∗¬p), since r2 cannot be overruled. However, T (D)+

A ⊢ −∂h(r2), since n(r2, r1) cannot be overruled, and hence s(r2) fails. This leaves the rule for

p in A without competition, and so T (D) +A ⊢ +∂p.

A similar but more complex example (given in the appendix) shows the transformation also

does not provide a simulation of DL(δ∗) by DL(δ) wrt addition of rules. These problems arise

because if a rule body succeeds in D for each of q and ∼q, and the rules are not overruled, the

simulation D′ has all bodies for q and ∼q failing. An applicable rule for q (or ∼q) in A thus has

a competitor in D, but not in D′. In this way D′ differs from D, and the examples show that

addition of rules can make this difference observable.

To avoid these problems, we add extra rules to those in Definition 9.

Definition 11

We define T (D) as the theory (F ′, R′, >′) consisting of the facts, rules and superiority statements

from D′ in Definition 9, and the following.

4. For each literal q, R′ contains

o(q) : one(q) ❀ q

5. For each rule r = Br →֒r q in R, R′ contains

Br ⇒ one(q)

6. For every rule r for q, >′ contains s(r) >′ o(∼q).

Parts 4 and 5 of this definition introduce an additional rule for each literal ∼q which, however,

is subordinate to the methods to derive q in the original transformation in the sense that a deriva-

tion of q in the original transformation will overrule (part 6) a derivation of ∼q using part 4. The

rules in part 4 are defeaters, so they cannot be used to derive any conclusions.

The effect of the extended definition on Example 10 is to add the following to the transformed

theory:

⇒ one(p) o(p) : one(p) ❀ p

⇒ one(¬p) o(¬p) : one(¬p) ❀ ¬p

s(r1) > o(¬p) s(r2) > o(p)

We now have T (D) + A ⊢ −∂p, since the rule o(¬p) provides a non-failed competitor to the

rule in A. More generally, we find that, through the extended transformation, team defeat logics

can simulate the corresponding individual defeat logics with respect to addition of rules.

Theorem 12

The logic DL(∂) can simulate DL(∂∗) with respect to addition of rules.

The logic DL(δ) can simulate DL(δ∗) with respect to addition of rules.

Simulation of Team Defeat wrt Addition of Rules

The same theory D and addition A as in Example 10 demonstrates that the simulation of DL(∂)

by DL(∂∗) wrt addition of facts exhibited in (Maher 2012) does not extend to addition of rules.

The transformation below modifies the one of (Maher 2012) by treating strict rules differently
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(following Definition 6), adding a competitor for each literal q (following Definition 11), and

employing separate defeasible rules to accommodate differences between the δ and σ inference

rules. We use a construction to restrict one class of defeasible rules to use only in simulating σ

inference; it is not necessary to restrict the other class because δ ⊆ σ, by the inclusion theorem.

Definition 13

We define the transformation T of D to T (D) = (F ′, R′, >′) as follows:

1. The facts of T (D) are the facts of D. That is, F ′ = F .

2. Every strict rule of R is included in R′.

3. For every literal q, R′ contains

str(q) : q → strict(q)

nstr(q) : ⇒ ¬strict(q)

t(q) : strict(q) ⇒ true(q)

nt(q) : ⇒ ¬true(q)

and the superiority relation contains nstr(q) >′ str(q) and t(q) >′ nt(q), for every q.

4. For each ordered pair of opposing rules ri = (Bi →֒i ∼q) and rj = (Bj →֒j q) in R, where

rj is not a defeater, R′ contains

R1ij : Bi →֒i ¬ d(ri, rj)

R2ij : Bj ⇒ d(ri, rj)

R3ij : true(q) ⇒ d(ri, rj)

d(ri, rj) ⇒ d(ri)

fail(ri) ⇒ d(ri)

NFi : Bi ⇒ ¬ fail(ri)

Fi : ⇒ fail(ri)

and R2ij >
′ R1ij iff rj > ri, R3ij >

′ R1ij for every i and j, and NFi > Fi for every i.

If there is no strict or defeasible rule rj for q in D then only the last three rules appear in R′, for

each i.
5. For each literal q, and each strict or defeasible rule r = (Br →֒r q) in R, R′ contains

Br ⇒ one(q)

6. For each literal q, R′ contains

s(q) : one(q),¬true(∼q), d(s1), . . . , d(sk) ⇒ q

where s1, . . . , sk are the rules for ∼q
7. For each literal q and for each strict or defeasible rule r for q, R′ contains

supp(q) : Br, dσ(s1, r), . . . , dσ(sk, r), g,¬g ⇒ q

where Br is the body of r, s1, . . . , sk are the rules for ∼q, and for every strict or defeasible rule

r and opposing rule s, R′ contains

a(s, r) : Bs ⇒ ¬dσ(s, r)

b(s, r) : Br ⇒ dσ(s, r)

The superiority relation contains a(s, r) > b(s, r) iff s > r. R′ also contains the rules

⇒ g

⇒ ¬g
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δ ⇐⇒ δ∗

<> <>

∂ ⇐⇒ ∂∗

Fig. 1. Relative expressiveness of logics in DL using simulation wrt addition of rules

8. For each rule r = Br →֒r q in R, R′ contains

Br ⇒ o(q)

9. For each literal q, R′ contains

o(q) : o(q) ❀ q

and >′ contains s(q) >′ o(∼q).

Parts 1–3 allow us to characterize strict conclusions. Part 4 expresses whether a rule is defeated

or not, while part 6 expresses that q can be concluded if there is an applicable strict or defeasible

rule for q, all attempts to strictly derive ∼q fail finitely, and all opposing rules are defeated.

While this expresses properly the inference rules for ∂ and δ, the inference rule for σ omits the

condition on strict derivation of ∼q and has a slightly different form of defeat. We need part 7 to

express inference (and defeat) for σ. g and ¬g are used to restrict the applicability of this rule to

σ∗; we have T (D)+A ⊢ +σ∗g, but T (D)+A ⊢ −∂∗g and T (D)+A ⊢ −δ∗g (and the same for

¬g). Parts 8 and 9 redress the lack of a competitor in the same way as in Definition 11.

Theorem 14

The logic DL(∂∗) can simulate DL(∂) with respect to addition of rules.

The logic DL(δ∗) can simulate DL(δ) with respect to addition of rules.

Conclusions

We have shown that the logics of the DL framework are equally expressive when relative expres-

siveness is formulated as ability to simulate in the presence of additional facts. This involved the

introduction of two new transformations simulating, respectively, a logic that blocks ambiguity

and a logic that propagates ambiguity.

We also completed the study of relative expressiveness wrt addition of rules. Figure 1 shows

this relation on the logics in DL, where an arrow from d1 to d2 expresses that DL(d1) can be

simulated by DL(d2) with respect to the addition of rules. <> between tags expresses that the

two corresponding logics have incomparable expressiveness. It is clear that DL breaks into two

classes of logics of different expressiveness.

While the issue of relative expressiveness within the framework DL is now largely resolved,

this same approach can be applied to relate these logics to other logics. We can expect the same

results for the WFDL logics (Maher and Governatori 1999; Maher et al. 2011), because of their

similarity toDL, but their relation to the defeasible logics of Nute and Maier (Maier and Nute 2006;

Maier and Nute 2010) will be of interest. Even more interesting will be to address other systems

of defeasible reasoning, such as argumentation (Dung 1995; Rahwan and Simari 2009).

Acknowledgements: The author thanks the referees for their comments, and UNSW, Canberra

for a grant supporting this work.
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Appendix

This appendix contains the inference rules for the logics in DL, proofs of results in the body of

the paper, and some examples. Theorems, Lemmas, or Examples numbered 1–14 refer to items

in the body of the paper. Larger numbers refer to items in this appendix.

Inference Rules for DL

For every inference rule +d there is a closely related inference rule −d allowing to infer that

some literals q cannot be consequences of D via +d. The relationship between +d and −d is

described as the Principle of Strong Negation (Antoniou et al. 2000). These inference rules are

placed adjacently to emphasize this relationship.

Some notation in the inference rules requires explanation. Given a literal q, its complement

∼q is defined as follows: if q is a proposition then ∼q is ¬q; if q has form ¬p then ∼q is p. We

say q and ∼q (and the rules with these literals in the head) oppose each other. Rs (Rsd) denotes

the set of strict rules (strict or defeasible rules) in R. R[q] (Rs[q], etc) denotes the set of rules

(respectively, strict rules) of R with head q. Given a rule r, A(r) denotes the set of literals in the

body (or antecedent) of r.

+∆) +∆q ∈ TD(E) iff either

.1) q ∈ F ; or

.2) ∃r ∈ Rs[q] such that

.1) ∀a ∈ A(r),+∆a ∈ E

−∆) −∆q ∈ TD(E) iff

.1) q /∈ F , and

.2) ∀r ∈ Rs[q]
.1) ∃a ∈ A(r),−∆a ∈ E
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+∂) +∂q ∈ TD(E) iff either

.1) +∆q ∈ E; or

.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+∂a ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either

.1) ∃a ∈ A(s),−∂a ∈ E; or

.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+∂a ∈ E, and

.2) t > s.

−∂) −∂q ∈ TD(E) iff

.1) −∆q ∈ E, and

.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−∂a ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that

.1) ∀a ∈ A(s),+∂a ∈ E, and

.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−∂a ∈ E; or

.2) not(t > s).

+∂∗) +∂∗q ∈ TD(E) iff either

.1) +∆q ∈ E; or

.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+∂∗a ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either

.1) ∃a ∈ A(s),−∂∗a ∈ E; or

.2) r > s.

−∂∗) −∂∗q ∈ TD(E) iff

.1) −∆q ∈ E, and

.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−∂∗a ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that

.1) ∀a ∈ A(s),+∂∗a ∈ E, and

.2) not(r > s).

+δ) +δq ∈ TD(E) iff either

.1) +∆q ∈ E; or

.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+δa ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either

.1) ∃a ∈ A(s),−σa ∈ E; or

.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+δa ∈ E, and

.2) t > s.

−δ) −δq ∈ TD(E) iff

.1) −∆q ∈ E, and

.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−δa ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that

.1) ∀a ∈ A(s),+σa ∈ E, and

.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−δa ∈ E; or

.2) not(t > s).

+σ) +σq ∈ TD(E) iff either

.1) +∆q ∈ E; or

.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+σa ∈ E, and

.2) ∀s ∈ R[∼q] either

.1) ∃a ∈ A(s),−δa ∈ E; or

.2) not(s > r).

−σ) −σq ∈ TD(E) iff

.1) −∆q ∈ E, and

.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−σa ∈ E; or

.2) ∃s ∈ R[∼q] such that

.1) ∀a ∈ A(s),+δa ∈ E, and

.2) s > r.

+δ∗) +δ∗q ∈ TD(E) iff either

.1) +∆q ∈ E; or

.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+δ∗a ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either

.1) ∃a ∈ A(s),−σ∗a ∈ E; or

.2) r > s.

−δ∗) −δ∗q ∈ TD(E) iff

.1) −∆q ∈ E, and

.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−δ∗a ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that

.1) ∀a ∈ A(s),+σ∗a ∈ E, and

.2) not(r > s).
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+σ∗) +σ∗q ∈ TD(E) iff either

.1) +∆q ∈ E; or

.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+σ∗a ∈ E, and

.2) ∀s ∈ R[∼q] either

.1) ∃a ∈ A(s),−δ∗a ∈ E; or

.2) not(s > r).

−σ∗) −σ∗q ∈ TD(E) iff

.1) −∆q ∈ E, and

.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−σ∗a ∈ E; or

.2) ∃s ∈ R[∼q] such that

.1) ∀a ∈ A(s),+δ∗a ∈ E, and

.2) s > r.

Proofs of results

We now turn to proofs of results in the body of the paper, and some examples. This part of the

appendix has the same structure as the paper itself, to make access easier.

All simulation proofs (of DL(d1) by DL(d2), say) have two parts: first we show every conse-

quence of D+A in DL(d1) has a corresponding consequence of T (D)+A in DL(d2), and then

we show that every consequence of T (D)+A in DL(d2) in the language of D+A has a corre-

sponding consequence of D+A in DL(d1). In both cases the proof is by induction on the level

n of T ↑ n where T combines the functions in the inference rules for ±d1 and ±∆ for D+A

in the first part, and combines the functions in the inference rules for ±d2 and ±∆ for T (D)+A

in the second part. The induction hypothesis for the first part is: for k ≤ n, if α ∈ TD+A ↑ n

then T (D)+A ⊢ α′, where α′ is the counterpart, in DL(d2), of α. For the second part it is: for

k ≤ n, if α ∈ Σ and α ∈ TT (D)+A ↑ n then D+A ⊢ α′, where α′ is the counterpart, in DL(d1),

of α. Since TP ↑ 0 = ∅ the induction hypothesis is always valid for n = 0.

Throughout this appendix, if r is a rule then Br refers to the body of that rule. For brevity, we

write +dB, where B is a set of literals, to mean {+dq | q ∈ B}.

Blocked Ambiguity Simulates Propagated Ambiguity

The facts and strict rules of D+A and T (D)+A are the same, except for rules for strict(q) in

T (D)+A. However strict(q) is not used in any other strict rule. Consequently, for any addi-

tion A, D+A and T (D)+A draw the same strict conclusions in Σ(D+A). Furthermore, these

conclusions are reflected in the defeasible conclusions of strict(q).

Lemma 15

Let A be any defeasible theory, and let Σ be the language of D+A. Then, for every q ∈ Σ,

• D+A ⊢ +∆q iff T (D)+A ⊢ +∆q

iff T (D)+A ⊢ +∂∗strict(q) iff T (D)+A ⊢ −∂∗¬strict(q)

• D+A ⊢ −∆q iff T (D)+A ⊢ −∆q

iff T (D)+A ⊢ −∂∗strict(q) iff T (D)+A ⊢ +∂∗¬strict(q)

Proof

The proof of D+A ⊢ ±∆q iff T (D)+A ⊢ ±∆q is straightforward, by induction on length of

proofs.

In the inference rule for +∂∗strict(q), clause .2.3 must be false, by the structure of the rules

in part 3 of the transformation. Consequently, we infer +∂∗strict(q) iff we infer +∆strict(q),

which happens iff we infer +∆q since there is only the one rule for strict(q). Similarly, clause

.2.3 of the inference rule for−∂∗strict(q) is true, so we infer−∂∗strict(q) iff we infer−∆strict(q),

which happens iff we infer −∆q since there is only the one rule for strict(q).
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In the inference rule for −∂∗¬strict(q), clause .2.1 is false because the body of nstr(q) is

empty, and clause .2.3 is false because nstr(q) >′ str(q). Thus we infer −∂∗¬strict(q) iff we

infer +∆strict(q). Finally, in the inference rule for +∂∗¬strict(q), clause .1 is false, because

there is no fact or strict rule for ¬strict(q). and clauses .2.1 and .2.3 are true (the latter because

nstr(q) >′ str(q)). Thus, we can infer +∂∗¬strict(q) iff we can infer −∆strict(q).

This lemma establishes that strict provability (±∆) from D+A in DL(δ∗) is captured in

DL(∂∗) by the transformation defined above, no matter what the addition A. We now show that

DL(∂∗) can simulate the behaviour of both δ∗ and σ∗ with respect to addition of facts.

Lemma 16

Let D be a defeasible theory, T (D) be the transformed defeasible theory as described in Def-

inition 3, and let A be a modular set of facts. Let Σ be the language of D+A and let q ∈ Σ.

Then

• D+A ⊢ +σ∗q iff T (D)+A ⊢ +∂∗supp(q)

• D+A ⊢ −σ∗q iff T (D)+A ⊢ −∂∗supp(q)

• D+A ⊢ +δ∗q iff T (D)+A ⊢ +∂∗q

• D+A ⊢ −δ∗q iff T (D)+A ⊢ −∂∗q

Proof

Suppose +σ∗q ∈ TD+A ↑ (n+1). Then, by the +σ∗ inference rule, there is a strict or defeasible

rule r in D with head q and bodyBr such that +σ∗Br ⊆ TD+A ↑ n, and for every rule s in D for

∼q either there is a literal b in the body of s such that −δ∗b ∈ TD+A ↑ n or s 6> r. Hence, by the

induction hypothesis, there is a strict or defeasible rule r in D with head q and body Br such that

T (D)+A ⊢ +∂∗supp(b) for each b ∈ Br and for every rule s in D for ∼q either there is a literal

b in the body of s such that T (D)+A ⊢ −∂∗b or s 6> r. Then T (D)+A ⊢ +∂∗supp body(r)

and for for every rule s in D for ∼q with s > r T (D)+A ⊢ −∂∗Bs, and hence T (D)+A ⊢

+∂∗¬o(r). Combining these two conclusions, and given that there is no rule for ¬supp(q), we

have T (D)+A ⊢ +∂∗supp(q).

Suppose +δ∗q ∈ TD+A ↑ (n+1). Then, by the +δ∗ inference rule, there is a strict or defeasi-

ble rule r in D with head q and body Br such that +δ∗Br ⊆ TD+A ↑ n, −∆∼q ∈ TD+A ↑ n,

and for every rule s in D for ∼q where r 6> s, there is a literal b in the body of s such that

−σ∗b ∈ TD+A ↑ n. Hence, by the induction hypothesis, there is a strict or defeasible rule

r in D with head q and body Br such that T (D)+A ⊢ +∂∗Br, T (D)+A ⊢ −∆∼q, and

for every rule s in D for ∼q where r 6> s, there is a literal b in the body of s such that

T (D)+A ⊢ −∂∗supp(b). By Lemma 15, T (D)+A ⊢ −∂∗¬strict(∼q). By repeated appli-

cation of the −∂∗ inference rule we have T (D)+A ⊢ −∂∗supp body(s) for each s, and then

T (D)+A ⊢ +∂∗¬comp(r). Thus the body of the rule inf(r) in T (D) holds defeasibly. On

the other hand, for every rule s for ∼q in D where r 6> s there is a literal b in the body of s

such that T (D)+A ⊢ −∂∗supp(b) so, using the inference rule for −∂∗ and the rule from part

4 we must have T (D)+A ⊢ −∂∗b. T (D)+A ⊢ +∂∗Br so, using the rules in part 4 and part 5,

T (D)+A ⊢ +∂∗supp body(r). Hence, for the rules for ∼q where r > s, the rules nd(s, r) can

be applied and T (D)+A ⊢ −∂∗¬comp(s). Consequently, all rules inf(s) for ∼q fail. From this

fact and the fact that body of rule inf(r) is proved defeasibly we conclude T (D)+A ⊢ +∂∗q.

Suppose −σ∗q ∈ TD+A ↑ (n+1). Then, by the −σ∗ inference rule, −∆q ∈ TD+A ↑ n and,

for every strict or defeasible rule r in D with head q and body Br, either −σ∗b ∈ TD+A ↑ n for
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some b ∈ Br, or there is a rule s in D for ∼q with body Bs such that +δ∗Bs ⊆ TD+A ↑ n and

s > r. Hence, by the induction hypothesis, T (D)+A ⊢ −∆q and for every strict or defeasible

rule r in D with head q either T (D)+A ⊢ −∂∗supp(b) for some b ∈ Br, or there is a rule s in

D for ∼q with s > r and T (D)+A ⊢ +∂∗Bs. Hence, either T (D)+A ⊢ −∂∗supp body(r) or

T (D)+A ⊢ −∂∗¬o(r). In either case, we have T (D)+A ⊢ −∂∗supp(q).

Suppose −δ∗q ∈ TD+A ↑ (n + 1). Then, by the −δ∗ inference rule, −∆q ∈ TD+A ↑ n or,

for every strict or defeasible rule r in D with head q and body Br, either −δ∗b ∈ TD+A ↑ n

for some b ∈ Br, +∆∼q ∈ TD+A ↑ n, or there is a rule s in D for ∼q with body Bs such

that +σ∗Bs ⊆ TD+A ↑ n and r 6> s. Hence, by the induction hypothesis, T (D)+A ⊢ −∆q

and for every strict or defeasible rule r in D with head q either (1) T (D)+A ⊢ −∂∗b for some

b ∈ Br, (2) T (D)+A ⊢ +∆∼q, or (3) there is a rule s in D for ∼q with r 6> s and T (D)+A ⊢

+∂∗supp(b′) for every b′ ∈ Bs. We consider these three cases in turn. In the first case, the rule

inf(r) fails. In the second case, using part 3, we can conclude T (D)+A ⊢ +∆strict(∼q) and

T (D)+A ⊢ −∂∗¬strict(∼q), and hence the rule inf(r) fails. In the third case, we can conclude

T (D)+A ⊢ +∂∗supp body(s) and hence, using part 6, T (D)+A ⊢ −∂∗¬comp(r). Thus, the

rule inf(r) fails. In each case, the rule inf(r) fails. Thus we can derive T (D)+A ⊢ −∂∗q.

Suppose +∂∗supp(q) ∈ TT (D)+A ↑ (n+1). Then, by the +∂∗ inference rule, either +∂∗q ∈

TT (D)+A ↑ n, or there is a strict or defeasible rule r in D with head q and body Br such that

+∂∗supp body(r) ∈ TT (D)+A ↑ n and+∂∗¬o(r) ∈ TT (D)+A ↑ n. Consequently,+∂∗supp(b) ∈

TT (D)+A ↑ n, for each b ∈ Br for every rule s in D for ∼q where s > r, there is b in the body of

s such that −∂∗b ∈ TT (D)+A ↑ n. In the first case, by the induction hypothesis, D+A ⊢ +δ∗q

and then, by the inclusion theorem, D+A ⊢ +σ∗q. In the second case, by the induction hypoth-

esis, D+A ⊢ +σ∗Br for every rule s in D for ∼q where s > r, there is b in the body of s such

that D+A ⊢ −δ∗b. Applying the inference rule for +σ∗, D+A ⊢ +σ∗q.

Suppose −∂∗supp(q) ∈ TT (D)+A ↑ (n + 1). Then, by the −∂∗ inference rule, −∂∗q ∈

TT (D)+A ↑ n, and for every strict or defeasible rule r in D for q either −∂∗supp body(r) ∈

TT (D)+A ↑ n or −∂∗¬o(r) ∈ TT (D)+A ↑ n. In the former case we must have −∂∗supp(b) ∈

TT (D)+A ↑ n for some b in the body Br of r. In the latter case we must have that for some rule

s in D with body Bs, s > r and +∂∗Bs ⊆ TT (D)+A ↑ n. By the induction hypothesis, we have

D+A ⊢ −δ∗q (and hence D+A ⊢ −∆q) and, for each r either D+A ⊢ −σ∗b for some b ∈ Br

or there is an opposing rule s with s > r and D+A ⊢ +δ∗Bs. Applying the inference rule for

−σ∗ we conclude D+A ⊢ −σ∗q.

Suppose+∂∗q ∈ TT (D)+A ↑ (n+1). Then, by the+∂∗ inference rule, there is a strict or defea-

sible rule r in D with head q and bodyBr such that +∂∗Br ⊆ TT (D)+A ↑ n, +∂∗¬strict(∼q) ∈

TT (D)+A ↑ n, and +∂∗¬comp(r) ∈ TT (D)+A ↑ n. By Lemma 15, D+A ⊢ −∆∼q. Using the

structure of T (D) and the +∂∗ inference rule, for every rule s in D for ∼q where r 6> s we must

have −∂∗supp body(s) ∈ TT (D)+A ↑ n, and hence −∂∗supp(b) ∈ TT (D)+A ↑ n, for some

b in the body of s. By the induction hypothesis, D+A ⊢ +δ∗Br and for every rule s in D for

∼q where r 6> s, there is b in the body of s such that D+A ⊢ −σ∗b. Now, applying the +δ∗

inference rule, we have D+A ⊢ +δ∗q.

Suppose −∂∗q ∈ TT (D)+A ↑ (n+1). Then, by the −∂∗ inference rule, −∆q ∈ TT (D)+A ↑ n

and, for every strict or defeasible rule r for q in D with body Br, either (1) −∂∗b ∈ TT (D)+A ↑ n

for some b ∈ Br, (2) −∂∗¬comp(r) ∈ TT (D)+A ↑ n, (3) −∂∗¬strict(∼q) ∈ TT (D)+A ↑ n, or,

(4) for some rule s for ∼q in D, +∂∗Bs ⊆ TT (D)+A ↑ n, +∂∗¬comp(s) ∈ TT (D)+A ↑ n, and

+∂∗¬strict(q) ∈ TT (D)+A ↑ n.

Hence, using the structure of T (D) and Lemma 15, −∆q ∈ TT (D)+A ↑ n and, for every rule
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r for q in D with body Br, either (1) −∂∗b ∈ TT (D)+A ↑ n for some b ∈ Br, (2) for some rule s′

for ∼q in D we have +∂∗supp(b) ∈ TT (D)+A ↑ n for each b ∈ Bs′ , (3)+∆∼q ∈ TT (D)+A ↑ n,

or, (4) for some rule s for ∼q in D, +∂∗Bs ⊆ TT (D)+A ↑ n, for every rule r′ for q, there is b′ in

its body such that −∂∗supp(b′) ∈ TT (D)+A ↑ n, and −∆q ∈ TT (D)+A ↑ n.

By the induction hypothesis, D+A ⊢ −∆q and, for every strict or defeasible rule r for q in

D with body Br, either (1) D+A ⊢ −δb for some b ∈ Br, (2) for some rule s for ∼q in D

we have D+A ⊢ +σ∗b for each b ∈ Bs, (3) D+A ⊢ +∆∼q, or (4) for some rule s for ∼q

in D, D+A ⊢ +δ∗Bs, for every rule r′ for q, there is b′ in its body such that D+A ⊢ −σ∗b′,

and D+A ⊢ −∆q. For each disjunct, applying the inference rule for −δ∗, we can conclude

D+A ⊢ −δ∗q.

This result concerns only addition of facts. It was established in (Maher 2012) that it cannot

be extended to addition of rules.

Given that the ambiguity blocking logics can simulate each other, as can the ambiguity prop-

agating logics (see (Maher 2012)) we have

Theorem 17

The ambiguity blocking logics (DL(∂) and DL(∂∗)) can simulate the ambiguity propagating

logics (DL(δ) and DL(δ∗)) with respect to addition of facts.

This is Theorem 5 from the body of the paper.

Propagated Ambiguity Simulates Blocked Ambiguity

As with the previous simulation, the facts and strict rules of D and T (D) are the same, except for

rules for strict(q) in T (D). Thus, again, for any addition A, D+A and T (D)+A draw the same

strict conclusions in Σ(D+A). Furthermore, these conclusions are reflected in the defeasible

conclusions of strict(q), true(q) and ¬true(q), and also in support conclusions.

Lemma 18

Let D be a defeasible theory, T (D) be the transformed defeasible theory as described in Defini-

tion 6, and let A be a modular defeasible theory. Let Σ be the language of D+A and let q ∈ Σ.

Then

• D+A ⊢ +∆q iff T (D)+A ⊢ +∆q iff T (D)+A ⊢ +δ∗strict(q)

iff T (D)+A ⊢ +δ∗true(q) iff T (D)+A ⊢ +σ∗true(q)

iff T (D)+A ⊢ −δ∗¬true(q) iff T (D)+A ⊢ −σ∗¬true(q)

• D+A ⊢ −∆q iff T (D)+A ⊢ −∆q iff T (D)+A ⊢ −δ∗strict(q)

iff T (D)+A ⊢ −δ∗true(q) iff T (D)+A ⊢ −σ∗true(q)

iff T (D)+A ⊢ +δ∗¬true(q) iff T (D)+A ⊢ +σ∗¬true(q)

Proof

The proof of D+A ⊢ ±∆q iff T (D)+A ⊢ ±∆q is straightforward, by induction on length of

proofs.

In the inference rule for +δ∗strict(q), clause .2.3 must be false, by the structure of the rules

in part 3 of the transformation. Consequently, we infer +δ∗strict(q) iff we infer +∆strict(q),



Relative Expressiveness of Defeasible Logics II 19

which happens iff we infer +∆q since there is only the one rule for strict(q). Similarly, clause

.2.3 of the inference rule for−δ∗strict(q) is true, so we infer−δ∗strict(q) iff we infer−∆strict(q),

which happens iff we infer −∆q since there is only the one rule for strict(q).

Note that −∆true(q) and −∆¬true(q) are consequences of T (D)+A because there are no

strict rules for such literals in T (D)+A. Using this fact, the two rules t(q) and nt(q) and the

superiority t(q) > nt(q), using the inference rule for +δ∗, we can infer +δ∗¬true(q) iff we can

infer −σ∗strict(q), because .1 of the inference rule is false, .2.1 and .2.2 are true, and .2.3.2

is false. Similarly, using the inference rule for +σ∗, we can infer +σ∗¬true(q) iff we can infer

−δ∗strict(q). Using the inference rules for −δ∗ and −σ∗, we can infer −δ∗¬true(q) iff we can

infer +σ∗strict(q), and we can infer −σ∗¬true(q) iff we can infer +δ∗strict(q).

We need this more detailed characterization of strict consequence, compared to Lemma 15,

because both δ∗ and σ∗ intermediate conclusions influence δ∗ conclusions.

The next lemma is a key part of the proof. It shows that the structure of T (D)+A tightly con-

strains the inferences that can be made in the sense that, for the literals of interest, the inference

rules δ∗ and σ∗ draw the same conclusions.

Lemma 19

Let D be a defeasible theory, T (D) be the transformed defeasible theory as described in Defini-

tion 6, and let A be a modular set of facts. Let Σ be the language of D+A extended with literals

of the forms undefeated(p), ¬undefeated(p) and ¬true(p), for p ∈ Σ(D).

Then, for any q ∈ Σ,

• T (D)+A ⊢ +δ∗q iff T (D)+A ⊢ +σ∗q

• T (D)+A ⊢ −δ∗q iff T (D)+A ⊢ −σ∗q

Proof

Two parts of the proof follow immediately from the inclusion theorem. These are the forward

direction of the first statement and the backward direction of the second statement. Furthermore,

it is immediate from Lemma 18 that the result holds for literals involving true and for literals

that are proved strictly. The remaining parts are proved by induction.

Recall that T (D)+A ⊢ s iff there is an integer n such that s ∈ TT (D)+A ↑ n. Note that the

result holds in TT (D)+A ↑ 0, since it is empty. Suppose the result holds for conclusions s with

s ∈ TT (D)+A ↑ n. We show that it also holds for conclusions in TT (D)+A ↑ (n+ 1).

(1) If +σ∗q ∈ TT (D)+A ↑ (n + 1) then +σ∗undefeated(q) ∈ TT (D)+A ↑ n, because there

is only one rule for q and it cannot be overruled. Further, if +σ∗undefeated(q) ∈ TT (D)+A ↑ n

then for some rule r of D we must have +σ∗Br ⊆ TT (D)+A ↑ n and +σ∗¬true(∼q) ∈

TT (D)+A ↑ n and, for every rule s in D for ∼q with r 6> s, there is p ∈ Bs with −δ∗p ∈

TT (D)+A ↑ n, because clause .2.2.2 must be false, since nd(r, s) > pd(r) for every such s.

By the induction hypothesis, +δ∗Br ⊆ TT (D)+A ↑ n, and for each s there is p ∈ Bs with

−σ∗p ∈ TT (D)+A ↑ n and, by Lemma 18, +δ∗¬true(∼q) and −∆∼q are consequences of

T (D)+A. Applying the +δ∗ inference rule, T (D)+A ⊢ +δ∗undefeated(q) and, applying the

−σ∗ inference rule, T (D)+A ⊢ −σ∗undefeated(∼q) since every rule pd(s) contains a p with

−σ∗p ∈ TT (D)+A ↑ n. Hence, applying the +δ∗ inference rule, T (D)+A ⊢ +δ∗q.

If +σ∗¬undefeated(q) ∈ TT (D)+A ↑ (n + 1) then, for some rule s for ∼q in D, +σ∗Bs ⊆

TT (D)+A ↑ n. By the induction hypothesis,+δ∗Bs ⊆ TT (D)+A ↑ n. Applying the +δ∗ inference

rule, noting that there is no fact or strict rule for undefeated(q) and that nd(r, s) > pd(r), we

have T (D)+A ⊢ +δ∗¬undefeated(q).
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(2) If −δ∗q ∈ TT (D)+A ↑ (n + 1) then, using the −δ∗ inference rule and the structure of

T (D)+A, −∆q ∈ TT (D)+A ↑ n and either −δ∗undefeated(q) ∈ TT (D)+A ↑ n or +∆∼q ∈

TT (D)+A ↑ n or +σ∗undefeated(∼q) ∈ TT (D)+A ↑ n.

If −δ∗undefeated(q) ∈ TT (D)+A ↑ (n+1) then either for every rule pd(r), for some p ∈ Br,

−δ∗p ∈ TT (D)+A ↑ n or −δ∗¬true(∼q) ∈ TT (D)+A ↑ n, or, for some rule nd(r, s), +σ∗Bs. By

the induction hypothesis, either for each pd(r) there is a p in its body where T (D)+A ⊢ −σ∗p,

or T (D)+A ⊢ +δ∗Bs for some s. Applying the −σ∗, we have T (D)+A ⊢ −σ∗undefeated(q).

If +∆∼q ∈ TT (D)+A ↑ n then, by Lemma 18, T (D)+A ⊢ −σ∗¬true(∼q). Hence we must

have T (D)+A ⊢ −σ∗undefeated(q), since ¬true(∼q) appears in each rule for undefeated(q).

If +σ∗undefeated(∼q) ∈ TT (D)+A ↑ n then there is a rule pd(s) for undefeated(∼q) where

T (D)+A ⊢ +σ∗Bs and T (D)+A ⊢ +σ∗¬true(q) and, for every rule nd(s, r), T (D)+A ⊢

−δ∗Br. By the induction hypothesis, T (D)+A ⊢ +δ∗Bs and, for every rule nd(s, r) (where

we must have s 6> r in D), T (D)+A ⊢ −δ∗Br. Hence, for every r for q in D where r > s

we have T (D)+A ⊢ −σ∗Br. For every other r for q in D there is nd(r, s) where T (D)+A ⊢

+δ∗Bs. Hence, applying the −σ∗ inference rule for undefeated(q), we must have T (D)+A ⊢

−σ∗undefeated(q).

Thus, in every case we have T (D)+A ⊢ −σ∗undefeated(q) and consequently T (D)+A ⊢

−σ∗q.

If −δ∗¬undefeated(q) ∈ TT (D)+A ↑ (n+1) then for every rule pd(r), for some p in its body,

−δ∗p ∈ TT (D)+A ↑ n. By the induction hypothesis, for every rule pd(r), for some p in its body,

T (D)+A ⊢ −σ∗p. Applying the −σ∗ inference rule, T (D)+A ⊢ −σ∗¬undefeated(q).

As a consequence of the inclusion theorem and the previous lemma, any inference rule between

σ∗ and δ∗ (that is, any inference rule except for ∆ and δ) behaves the same way on Σ-literals in

T (D)+A. In particular, it applies to ∂∗.

Corollary 20

Let Σ be the language of D, Σ′ be as defined in the previous lemma. Let A be any set of facts.

Then if q ∈ Σ′

• T (D)+A ⊢ +δ∗q iff T (D)+A ⊢ +∂∗q

• T (D)+A ⊢ −δ∗q iff T (D)+A ⊢ −∂∗q

Now we show that the transformation preserves the ∂∗ consequences of D+A.

Theorem 21

Let D be a defeasible theory, T (D) be the transformed defeasible theory as described in Def-

inition 6, and let A be a modular set of facts. Let Σ be the language of D+A and let q ∈ Σ.

Then

• D+A ⊢ +∂∗q iff T (D)+A ⊢ +∂∗q

• D+A ⊢ −∂∗q iff T (D)+A ⊢ −∂∗q

Proof

Suppose +∂∗q ∈ TD+A ↑ (n+1). Then, by the +∂∗ inference rule, either +∆q ∈ TD+A ↑ n

(in which case, we must have T (D) + A ⊢ +δ∗) or +∆q /∈ TD+A ↑ n and there is a strict

or defeasible rule r in D with head q and body Br such that +∂∗Br ⊆ TD+A ↑ n, −∆∼q ∈

TD+A ↑ n, and for every rule s in D for ∼q either there is a literal b in the body of s such that
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−∂∗b ∈ TD+A ↑ n or r > s. Hence, in the latter case, by the induction hypothesis, there is

a strict or defeasible rule r in D+A with head q and body Br such that T (D)+A ⊢ +∂∗Br,

T (D)+A ⊢ −∆∼q, and for every rule s in D+A for ∼q either T (D)+A ⊢ −∂∗Bs or r > s.

From this statement we derive several facts. (1) By Lemma 18 and the inclusion theorem,

T (D)+A ⊢ +∂∗¬true(∼q). (2) Thus, T (D)+A ⊢ +∂∗(Br,¬true(∼q)) and, for every rule

nd(r, s) in T (D), T (D)+A ⊢ − − ∂∗Bs (since rules s where r > s do not give rise to a rule

nd(r, s)). Hence,T (D)+A ⊢ +∂∗undefeated(q). (3) Conversely,T (D)+A ⊢ −∂∗undefeated(∼q)

because, for every rule pd(s) for undefeated(∼q), either T (D)+A ⊢ −∂∗Bs or there is a rule

nd(s, r) superior to pd(s) with T (D)+A ⊢ +∂∗Br. Consequently, since the only rule in T (D)

for q has body undefeated(q) (and similarly for ∼q), applying the +∂∗ inference rule, we have

T (D)+A ⊢ +∂∗q.

Suppose −∂∗q ∈ TD+A ↑ (n + 1). Then, by the −∂∗ inference rule, −∆q ∈ TD+A ↑ n and,

for every strict or defeasible rule r in D with head q and body Br, either −∂∗b ⊆ TD+A ↑ n

for some b ∈ Br, +∆∼q ∈ TD+A ↑ n, or there is a rule s in D for ∼q with body Bs such

that +∂Bs ⊆ TD+A ↑ n and r 6> s. Hence, by the induction hypothesis, T (D)+A ⊢ −∆q

and for every strict or defeasible rule r in D with head q either T (D)+A ⊢ −∂∗b for some

b ∈ Br, T (D)+A ⊢ +∆∼q, or there is a rule s in D for ∼q where T (D)+A ⊢ +∂∗Bs

andr 6> s. Hence, for every rule pd(r) in T (D) for undefeated(q) either T (D)+A ⊢ −δ∗b

for some b ∈ Br, or T (D)+A ⊢ −δ∗¬strict(∼q) (by Lemma 18), or there is a rule nd(r, s)

where T (D)+A ⊢ +σ∗Bs. Applying the inference rule for −δ∗undefeated(q), we conclude

T (D)+A ⊢ −δ∗undefeated(q) and, hence, T (D)+A ⊢ −δ∗q.

Suppose +∂∗q ∈ TT (D)+A ↑ (n+1). Then, by the +∂∗ inference rule and using the structure

of T (D), either +∆q ∈ TT (D)+A ↑ n, or +∂∗undefeated(q) ∈ TT (D)+A ↑ n, −∆∼q ∈

TT (D)+A ↑ n, and −∂∗undefeated(∼q) ∈ TD+A ↑ n. In the first case we have D+A ⊢ +∆q

and thus D+A ⊢ +∂∗q, Alternatively, there is a strict or defeasible rule r in D with head q and

body Br such that +∂∗Br ⊆ TT (D)+A ↑ n, +∂∗¬true(∼q) ∈ TT (D)+A ↑ n, and for every rule

s in D for ∼q where r 6> s there is a literal b in the body Bs of s such that −∂∗b ∈ TT (D)+A ↑ n.

By the induction hypothesis and Lemma 18, D+A ⊢ +∂∗Br, D+A ⊢ −∆∼q, and for every

rule s in D for ∼q where r 6> s there is b in the body of s such that D+A ⊢ −∂b. Applying the

+∂ inference rule, we conclude D+A ⊢ +∂∗q.

Suppose −∂∗q ∈ TT (D)+A ↑ (n+1). Then, by the −∂∗ inference rule and using the struc-

ture of T (D), −∆q ∈ TT (D)+A ↑ n and either (1) −∂undefeated(q) ∈ TT (D)+A ↑ n. or

(2) +∆∼q ∈ TT (D)+A ↑ n, or (3) +∂undefeated(∼q) ∈ TT (D)+A ↑ n. By Lemma 18 and

Corollary 20 we have D+A ⊢ −∆q and D+A ⊢ +∂∗¬true(q).

In the first case, for each rule r for q in D either there is a literal p ∈ Br and −∂p ∈ TT (D)+A ↑

n or −∂∗¬true(∼q) ∈ TT (D)+A ↑ n or for some rule s for ∼q in D where r 6> s, +∂∗Bs ⊆

TT (D)+A ↑ n. By the induction hypothesis (and Lemma 18 and Corollary 20), for each rule r for

q in D either there is a literal p ∈ Br and D+A ⊢ −∂∗p, or D+A ⊢ +∆∼q, or for some rule s

for ∼q in D where r 6> s, D+A ⊢ +∂∗Bs. Applying the −∂ inference rule, D+A ⊢ −∂∗q.

In the second case, by Lemma 18 and Corollary 20, D+A ⊢ +∆∼q. Consequently, applying

the −∂ inference rule, D+A ⊢ −∂∗q. In the third case, for some rule s for ∼q in D, +∂∗Bs ⊆

TT (D)+A ↑ n and, for all rules r for q in D where s 6> r, for some p ∈ Br, −∂∗p ∈ TT (D)+A ↑

n. By the induction hypothesis, for every rule r for q in D where r > s, for some p ∈ Br,

D+A ⊢ −∂∗p, and D+A ⊢ +∂∗Bs. Applying the −∂ inference rule, D+A ⊢ −∂∗q.
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Combining Theorem 21 with Lemma 19 and the inclusion theorem, we see that DL(∂∗) can

be simulated by DL(δ∗) and DL(δ).

Theorem 22

For d ∈ {δ, δ∗, ∂}, DL(d) can simulate DL(∂∗) with respect to addition of facts

Proof

D+A ⊢ +∂∗q iff T (D)+A ⊢ +∂∗q (by Theorem 21) iff T (D)+A ⊢ +δ∗q (by Corollary 20)

iff T (D)+A ⊢ +dq (by Lemma 19 and the inclusion theorem). The proof is similar for −∂∗q.

This is Theorem 8 from the body of the paper.

Simulation of Individual Defeat wrt Addition of Rules

Example 10 does not apply to DL(δ) and DL(δ∗). We have T (D) +A ⊢ +σh(r2) and, conse-

quently, T (D) + A ⊢ −δp, in agreement with D under DL(δ∗). The weaker inference strength

of ambiguity propagation masks the distinction that is present for blocked ambiguity reasoning.

However, the next example shows that the transformation does not provide a simulation wrt rules

for the propagating ambiguity logics.

Example 23

Let D consist of the rules

r1 : ⇒ p

r2 : ⇒ ¬p

r3 : ⇒ p

r4 : ⇒ ¬p

with r1 > r2 and r3 > r4.

Then T (D) consists of the following rules

p(r1) : ⇒ h(r1) n(r1, r2) : ⇒ ¬h(r1)

n(r1, r4) : ⇒ ¬h(r1)

p(r2) : ⇒ h(r2) n(r2, r1) : ⇒ ¬h(r2)

n(r2, r3) : ⇒ ¬h(r2)

p(r3) : ⇒ h(r1) n(r3, r2) : ⇒ ¬h(r3)

n(r3, r4) : ⇒ ¬h(r3)

p(r4) : ⇒ h(r4) n(r4, r1) : ⇒ ¬h(r4)

n(r4, r3) : ⇒ ¬h(r4)

s(r1) : h(r1) ⇒ p

s(r2) : h(r2) ⇒ ¬p

s(r3) : h(r3) ⇒ p

s(r4) : h(r4) ⇒ ¬p

with p(r1) > n(r1, r2), n(r2, r1) > p(r2), p(r3) > n(r3, r4), and n(r4, r3) > p(r4).

Now, let A be the rule

⇒ p
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Then D + A ⊢ −δ∗p, because for every rule r for p, there is a rule for ¬p that is not overruled

by r (r1 does not overrule r4, r3 does not overrule r2 and A overrules neither).

However, considering the transformed theory, T (D) + A ⊢ −σh(r2), because n(r2, r1) >

p(r2) and, similarly, T (D) +A ⊢ −σh(r4). Consequently, both rules for ¬p in T (D) + A fail.

This leaves the rules for p without competition, and so T (D) + A ⊢ +δp, conflicting with the

behaviour of D+A.

Following essentially the same argument, this example also applies to DL(∂∗) and DL(∂).

We show that the transformation defined in Definition 11 (and Definition 9 ) allows the team-

defeat logics to simulate their individual-defeat counterparts. We treat the two cases separately,

but first we address the effect of the transformation on strict inference.

Lemma 24

Consider the transformation T from Definition 11. For any D and A

• D+A ⊢ +∆q iff T (D)+A ⊢ +∆q

• D+A ⊢ −∆q iff T (D)+A ⊢ −∆q

The proof is a straightforward induction.

Theorem 25

The logic DL(∂∗) can be simulated by DL(∂) with respect to addition of rules.

Proof

We consider the transformation T (D) of a defeasible theory D as defined in Definition 11 (and

Definition 9) and show that this transformation provides a simulation of each defeasible theory

D in DL(∂∗) from within DL(∂).

Fix any D and any A that satisfies the language separation condition. Let Σ = Σ(D) ∪Σ(A).

[1] If +∂∗q ∈ TD+A↑(n+1) then either +∆q ∈ TD+A↑n (in which case T (D)+A ⊢ +∂q)

or +∂∗Br ⊆ TD+A↑n, where Br is the body of some strict or defeasible rule r in D+A. In

the latter case, TD+A↑n also contains −∆∼q and for every rule s for ∼q in D+A either r > s

or −∂∗p ∈ TD+A↑n for some literal p in the body of s. Then, by the induction hypothesis,

T (D)+A ⊢ +∂Br, T (D)+A ⊢ −∆∼q and, if r ∈ D, for every rule n(r, s) for ¬h(r) in T (D),

either p(r) >′ n(r, s) or T (D)+A ⊢ −∂p where p occurs in the body of n(r, s). Thus, using the

inference rule for +∂, if r ∈ D then T (D)+A ⊢ +∂h(r). If r ∈ A then T (D)+A ⊢ +∂Br so,

whether r ∈ D or r ∈ A, there is a rule for q in T (D)+A with body B and T (D)+A ⊢ +∂B.

Applying the inference rule for −∂ multiple times, for each strict or defeasible rule s for ∼q

in D we have T (D)+A ⊢ −∂h(s). Furthermore, as noted above, for every rule s ∈ A for ∼q,

since r 6> s, −∂∗p ∈ TD+A↑n for some literal p in the body of s. Thus, every rule for ∼q in

T (D)+A fails. Now, again applying the inference rule for +∂, we have T (D)+A ⊢ +∂q.

[2] If −∂∗q ∈ TD+A↑(n+1) then −∆q ∈ TD+A↑n and either +∆∼q ∈ TD+A↑n (in which

case T (D)+A ⊢ −∂q) or, for every strict or defeasible rule r for q in D+A, either −∂∗p ∈

TD+A↑n for some p in the body of r or there exists a rule s for ∼q with body B, +∂∗B ⊆

TD+A↑n and r 6> s. Then, for every strict or defeasible rule p(r) in T (D), either −∂∗p ∈

TD+A↑n for some p in the body of p(r) or there is a rule n(r, s) with bodyB and p(r) 6>′ n(r, s),

by the structure of T (D). By the induction hypothesis, for every strict or defeasible rule p(r) in

T (D), either T (D)+A ⊢ −∂p for some p in the body of p(r) or there is a rule n(r, r′) with

body B where T (D)+A ⊢ +∂B and p(r) 6>′ n(r, r′). Since there is only one rule for h(r),
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application of the inference rule for −∂ gives us T (D)+A ⊢ −∂h(r) for each strict or defeasible

rule r ∈ D for q. Also by the induction hypothesis, for every strict or defeasible rule r for q in

A, T (D)+A ⊢ −∂p for some p in the body of r. Hence T (D)+A ⊢ −∂q.

[3] If q ∈ Σ and +∂q ∈ TT (D)+A↑(n+1) then either (1) +∆q ∈ TT (D)+A↑n (in which case

D+A ⊢ +∂∗q), or else (2) +∂h(r) ∈ TT (D)+A↑n for some strict or defeasible rule r for q in

D, or else (3) +∂Br ⊆ TT (D)+A↑n for some strict or defeasible rule r for q in A with body

Br. In case (3), by the induction hypothesis, D+A ⊢ +∂Br. In case (2) we must also have that

every rule for ∼q in T (D)+A fails (except for o(∼q), which is overruled); that is, for every rule

s for ∼q in D, −∂h(s) ∈ TT (D)+A↑n and, for every rule for ∼q in A with body B, for some

literal p in B −∂p ∈ TT (D)+A↑n. In case (3) we must also have that one(∼q) fails, so that

every rule for ∼q in D with body B, for some literal p in B −∂p ∈ TT (D)+A↑n. Hence, by the

induction hypothesis, in case (3), for every rule for ∼q in D+A with body B, for some literal p

in B D+A ⊢ −∂∗p. In both cases (2) and (3), −∆∼q ∈ TT (D)+A↑n and hence D+A ⊢ −∆∼q.

Applying the +∂∗ inference rule in case (3), D+A ⊢ +∂∗q.

In case (2), if +∂h(r) ∈ TT (D)+A↑n then p(r) is not a defeater, +∂Br ⊆ TT (D)+A↑n where

Br is the body of r and for every rule n(r, s) with body B′ either for some literal p in B′ −∂p ∈

TT (D)+A↑n or for some rule t for h(r), its body is proved with respect to ∂ and t > s. There is

only one rule for h(r), so this last disjunct reduces to p(r) > n(r, s). Using the construction of

T (D), r is not a defeater,+∂Br ⊆ TT (D)+A↑n where Br is the body of r and for every rule s for

∼q in D with body B′ either for some literal p in B′, −∂p ∈ TT (D)+A↑n or r > s. Furthermore,

from the previous paragraph, for every rule for ∼q in A with body B, for some literal p in B

−∂p ∈ TT (D)+A↑n. Using the induction hypothesis, D+A ⊢ +∂∗Br, and for every rule for ∼q

in D+A either for some literal p in the body D+A ⊢ −∂∗p or r > s. Applying the inference

rule for +∂∗, we obtain D+A ⊢ +∂∗q.

[4] If q ∈ Σ and−∂q ∈ TT (D)+A↑(n+1) then, using the −∂ inference rule and the structure of

T (D), −∆q ∈ TT (D)+A↑n and either (0) +∆∼q ∈ TT (D)+A↑n (in which case D+A ⊢ −∂∗q),

or else (1) −∂h(r) ∈ TT (D)+A↑n for every rule r for q in D, while for every rule r in A there

is a literal p in the body of r with −∂p ∈ TT (D)+A↑n, and −∂one(q) ∈ TT (D)+A↑n; or (2)

+∂h(s) ∈ TT (D)+A↑n for some rule s for ∼q in D; or (3) +∂one(∼q) ∈ TT (D)+A↑n, in which

case there is a rule s for ∼q in D where +∂Bs ⊆ TT (D)+A↑n, and −∂h(r) ∈ TT (D)+A↑n for

every rule r for q in D (so that o(∼q) is not overruled); or (4) there is a rule s for ∼q in A where

+∂Bs ⊆ TT (D)+A↑n. In any case, using the induction hypothesis, we have D+A ⊢ −∆q.

In case (1), since −∂one(q) ∈ TT (D)+A↑n, for every rule r in D for q there is a literal p in Br

with −∂p ∈ TT (D)+A↑n. Thus all rules for q in D+A fail, and hence D+A ⊢ −∂∗q. In case (2),

we must have, for every rule r in D for q, either s > r (so that p(s) > n(s, r) or there is a literal

p in Br with −∂p ∈ TT (D)+A↑n. By the induction hypothesis, we then have D+A ⊢ −∂∗p, for

each such p. Furthermore, no rule in A can overrule s. Hence, applying the −∂∗ inference rule,

D+A ⊢ −∂∗q.

In case (3), since −∂h(r) ∈ TT (D)+A↑n, either there is a literal p in Br with −∂p ∈

TT (D)+A↑n or there is a rule s in D for ∼q with +∂Bs ⊆ TT (D)+A↑n and r 6> s (so that

p(r) 6> n(s, r)). By the induction hypothesis, for every rule r for q in D either there is a literal

p in Br with D+A ⊢ −∂∗p or there is a rule s in D for ∼q with D+A ⊢ +∂∗Bs and r 6> s.

Furthermore, from +∂one(∼q) we know there is an s in D with (using the induction hypothesis)

D+A ⊢ +∂∗Bs, and this s cannot be overruled by any rule r in A. Consequently, applying the

−∂∗ inference rule, D+A ⊢ −∂∗q.

In case (4), by the induction hypothesis, we have there is a rule s for ∼q in A where D+A ⊢
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+∂∗Bs and, since s cannot be inferior to any rule, applying the −∂∗ inference rule we have

D+A ⊢ −∂∗q.

This concludes the proof that DL(∂) can simulate DL(∂∗) with respect to addition of rules.

We now turn to the corresponding proof for DL(δ) and DL(δ∗).

Theorem 26

The logic DL(δ∗) can be simulated by DL(δ) with respect to addition of rules.

Proof

Let A be any set of rules. Let Σ be the language of D+A and let q ∈ Σ. Let T (D) be the

transformed defeasible theory as described in Definition 11. Then we claim

• D+A ⊢ +σ∗q iff T (D)+A ⊢ +σq

• D+A ⊢ −σ∗q iff T (D)+A ⊢ −σq

• D+A ⊢ +δ∗q iff T (D)+A ⊢ +δq

• D+A ⊢ −δ∗q iff T (D)+A ⊢ −δq

If +δ∗q ∈ TD+A↑(n+1) then either +∆q ∈ TD+A↑n (in which case T (D)+A ⊢ +δq) or

else +δ∗Br ⊆ TD+A↑n, where Br is the body of some strict or defeasible rule r in D+A. In

the latter case, TD+A↑n also contains −∆∼q and for every rule s for ∼q in D+A either r > s

or −σ∗p ∈ TD+A↑n for some literal p in the body of s. Then, by the induction hypothesis,

T (D)+A ⊢ +δBr, T (D)+A ⊢ −∆∼q and, if r and s are in D, for every rule n(r, s) for ¬h(r)

in T (D), either p(r) >′ n(r, s) or T (D)+A ⊢ −σp where p occurs in the body of n(r, s) and,

similarly, the rule p(s) for h(s) in T (D), either p(s) <′ n(s, r) or T (D)+A ⊢ −σp where

p occurs in the body of p(s). If s is in A then r > s cannot occur (since the rules of A do

not participate in the superiority relation) and T (D)+A ⊢ −σp where p occurs in the body of

s. If r is in A and s is in D then, again, r > s cannot occur and T (D)+A ⊢ −σp where p

occurs in the body of p(s). Thus, using the inference rules for +δ and −σ, if r is in D then

T (D)+A ⊢ +δh(r) and if s is in D then T (D)+A ⊢ −σh(s). Now, applying the inference rule

for +δ, we conclude T (D)+A ⊢ +δq.

If −δ∗q ∈ TD+A↑(n+1) then −∆q ∈ TD+A↑n (and, hence, T (D)+A ⊢ −∆q) and either

+∆∼q ∈ TD+A↑n (in which case T (D)+A ⊢ −δq) or, for every strict or defeasible rule r

for q in D+A, either −δ∗p ∈ TD+A↑n for some p in the body of r or there exists a rule s for

∼q with body Bs, where +σ∗Bs ⊆ TD+A↑n and r 6> s. Now, if, for some s for ∼q in A,

+σ∗Bs ⊆ TD+A↑n then, by the induction hypothesis, T (D)+A ⊢ +σBs and, applying the

inference rule for −δ (and noting that no rule is superior to s), we have T (D)+A ⊢ −δq.

Otherwise, for every strict or defeasible rule p(r) in T (D), either −δ∗p ∈ TD+A↑n for some

p in the body of p(r) or there is a rule n(r, s) with body Bs and p(r) 6>′ n(r, s), by the structure

of T (D). By the induction hypothesis, for every strict or defeasible rule p(r) in T (D), either

T (D)+A ⊢ −δp for some p in the body of p(r) or there is a rule n(r, s) with body Bs where

T (D)+A ⊢ +σBs and p(r) 6>′ n(r, s). In both cases, since there is only one rule for h(r),

application of the inference rule for −δ gives us T (D)+A ⊢ −δh(r) for each strict or defeasible

rule r for q in D. Hence, no rule s(r) can overrule o(∼q). Now, if every rule r for q in A has

p ∈ Br with −δ∗p ∈ TD+A↑n then, by the induction hypothesis, T (D)+A ⊢ −δp for every

such rule an hence, by application of the −δ inference rule, T (D)+A ⊢ −δq. Otherwise, there

is s for ∼q in D with T (D)+A ⊢ +σBs. By the +σ inference rule T (D)+A ⊢ +σone(∼q).

Consequently, since o(∼q) cannot be overruled, T (D)+A ⊢ −δq.
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Hence, in every case, T (D)+A ⊢ −δq.

If q ∈ Σ and +δq ∈ TT (D)+A↑(n+1) then either +∆q ∈ TT (D)+A↑n (in which case

D+A ⊢ +δ∗q), or +δh(r) ∈ TT (D)+A↑n for some strict or defeasible rule r for q in D.

or +δB ⊆ TT (D)+A↑n for some strict or defeasible rule for q in A with body B. In the lat-

ter cases, TT (D)+A↑n also contains −∆∼q; hence D+A ⊢ −∆∼q. In these cases we must

also have, for each rule for ∼q in A, for some p in its body −σp ∈ TT (D)+A↑n. Hence, by

the induction hypothesis, for each rule for ∼q in A, for some p in its body D+A ⊢ −σ∗p. If

+δh(r) ∈ TT (D)+A↑n then p(r) is not a defeater, +δBr ⊆ TT (D)+A↑n where Br is the body

of r and for every rule n(r, s) with body Bs either for some literal p in Bs −σp ∈ TT (D)+A↑n

or for some rule t for h(r), its body is proved with respect to δ and t > s. There is only one

rule for h(r), so this last disjunct reduces to p(r) > n(r, s). Using the construction of T (D), r

is not a defeater, +δBr ⊆ TT (D)+A↑n and for every rule s for ∼q in D either for some literal p

in Bs, −σp ∈ TT (D)+A↑n or r > s. Using the induction hypothesis, D+A ⊢ +δ∗Br, and for

every rule for ∼q in D either for some literal p in the body D+A ⊢ −σ∗p or r > s. Applying

the inference rule for +δ∗ to this statement, and given we have shown that all rules for ∼q in A

fail, we obtain D+A ⊢ +δ∗q.

If q ∈ Σ and −δq ∈ TT (D)+A↑(n+1) then −∆q ∈ TT (D)+A↑n and either (1) +∆∼q ∈

TT (D)+A↑n (in which case D+A ⊢ −δ∗q), or (2) −δh(r) ∈ TT (D)+A↑n for every rule r for

q in D and every rule for q in A has a literal p in its body with −δq ∈ TT (D)+A↑n, or (3)

there is a rule s for ∼q in D where +σh(s) ∈ TT (D)+A↑n, or (4) there is a rule for ∼q in A

with body B and +σB ⊆ TT (D)+A↑n. (Some conditions are simpler than the inference rule for

−δ might suggest because the superiority relation in T (D)+A does not involve the rules for q

and ∼q.) Consequently, D+A ⊢ −∆q. In the first case, using the induction hypothesis, we have

D+A ⊢ −∆q and D+A ⊢ +∆∼q; hence, D+A ⊢ −δ∗q. In the second case, for each r, either r

is a defeater, or there is a literal p in the body of r such that −δp ∈ TT (D)+A↑n, or there is a rule

s for ∼q in D (corresponding to rule n(r, s) in T (D)) with body Bs where +σBs ⊆ TT (D)+A↑n

and r 6> s. By the induction hypothesis, either r is a defeater, or there is a literal p in the body of

r such that D+A ⊢ −δ∗p, or there is a rule s for ∼q in D with body Bs where D+A ⊢ +σ∗Bs

and r 6> s. Similarly, using the induction hypothesis, every rule for q in A has a literal p in its

body with D+A ⊢ −δ∗p. Applying the inference rule for −δ∗, we obtain D+A ⊢ −δ∗q.

In the third case, either +∆h(s) ∈ TT (D)+A↑n, or +σB ⊆ TT (D)+A↑n, where Bs is the

body of s, and, for every rule r for q in D, either −δp ∈ TT (D)+A↑n for some literal p in the

body of r or r 6> s. If +∆h(s) ∈ TT (D)+A↑n then +∆B ⊆ TT (D)+A↑n and s is strict. Using

the induction hypothesis, D+A ⊢ +∆B and, hence, D+A ⊢ +∆∼q and, like case (1) above,

D+A ⊢ −δ∗q. In the other case, by the induction hypothesis, D+A ⊢ +σ∗Bs and, for every

rule r for q in D, either D+A ⊢ −δ∗p for some literal p in the body of r or r 6> s. Applying the

inference rule for −δ∗ we conclude D+A ⊢ −δ∗q.

In the fourth case, using the induction hypothesis, there is a rule for ∼q in A with body B and

D+A ⊢ +σ∗B. Applying the inference rule for −δ∗ we conclude D+A ⊢ −δ∗q.

If +σ∗q ∈ TD+A↑(n+1) then either +∆q ∈ TD+A↑n (in which case T (D)+A ⊢ +σq) or

+σ∗Br ⊆ TD+A↑n, where Br is the body of some strict or defeasible rule r in D+A. In the

latter case, for every rule s for ∼q in D+A either s 6> r or −δ∗p ∈ TD+A↑n for some literal

p in the body of s. If r ∈ A then r is not inferior to any rule. So, by the induction hypothesis,

T (D)+A ⊢ +σBr , and, by the +σ inference rule T (D)+A ⊢ +σq. If r ∈ D, by the induction

hypothesis, T (D)+A ⊢ +σBr, for every rule n(r, s) for ¬h(r) in T (D), either n(r, s) 6>′ p(r)

or T (D)+A ⊢ −δp where p occurs in the body of n(r, s). Thus, using the inference rule for
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+σ, T (D)+A ⊢ +σh(r). Applying the inference rule for −δ multiple times, for each strict or

defeasible rule s for ∼q in D we have T (D)+A ⊢ −δh(s). Now, applying the inference rule for

+σ, we have T (D)+A ⊢ +σq.

If −σ∗q ∈ TD+A↑(n+1) then −∆q ∈ TD+A↑n and for every strict or defeasible rule r for q

in D+A, either −σ∗p ∈ TD+A↑n for some p in the body of r or there exists a rule s for ∼q in

D+A with body Bs, +δ∗Bs ⊆ TD+A↑n and s > r. If r ∈ A then −σ∗p ∈ TD+A↑n for some

p in the body of r and hence, by the induction hypothesis, T (D)+A ⊢ −σp. If r ∈ D then, for

every strict or defeasible rule p(r) in T (D), either −σ∗p ∈ TD+A↑n for some p in the body of

p(r) or there is a rule n(r, s) with body Bs with +δ∗Bs ⊆ TD+A↑n and n(r, s) >′ p(r), by the

structure of T (D). By the induction hypothesis, for every strict or defeasible rule p(r) in T (D),

either T (D)+A ⊢ −σp for some p in the body of p(r) or there is a rule n(r, s) with body Bs

where T (D)+A ⊢ +δB and n(r, s) >′ p(r). Application of the inference rule for −σ gives us

T (D)+A ⊢ −σh(r) for each strict or defeasible rule r for q in D. Rules in A for q also fail, as

mentioned above. Hence T (D)+A ⊢ −σq.

If q ∈ Σ and +σq ∈ TT (D)+A↑(n+1) then either +∆q ∈ TT (D)+A↑n (in which case D+A ⊢

+σ∗q), or +σB ⊆ TT (D)+A↑n for some strict or defeasible rule for q in A with body B, or

+σh(r) ∈ TT (D)+A↑n for some strict or defeasible rule r for q in D. In the second case, by

the induction hypothesis, D+A ⊢ +σ∗B and, applying the +σ∗ inference rule, D+A ⊢ +σ∗q.

In the third case, if +σh(r) ∈ TT (D)+A↑n then p(r) is not a defeater, +σBr ⊆ TT (D)+A↑n

where Br is the body of r and for every rule n(r, s) with body Bs either for some literal p in

Bs, −δp ∈ TT (D)+A↑n or n(r, s) 6> p(r). Using the construction of T (D), r is not a defeater,

+σBr ⊆ TT (D)+A↑n where Br is the body of r and for every rule s for ∼q with body Bs in

D either for some literal p in B′, −δp ∈ TT (D)+A↑n or s 6> r. Using the induction hypothesis,

D+A ⊢ +σ∗B, and for every rule for∼q in D either for some literal p in the bodyD+A ⊢ −δ∗p

or s 6> r. Note also that no rule s for ∼q in A can be superior to r. Applying the inference rule

for +σ∗ to this statement, we obtain D+A ⊢ +σ∗q.

If q ∈ Σ and −σq ∈ TT (D)+A↑(n+1) then −∆q ∈ TT (D)+A↑n (and, consequently, D+A ⊢

−∆q) and for every strict or defeasible rule r for q in A with body B there is p in B with

−σp ∈ TT (D)+A↑n, and, for every rule r for q in D, −σh(r) ∈ TT (D)+A↑n. From −σh(r)

either r is a defeater, or there is a literal p in the body of r such that −σp ∈ TT (D)+A↑n,

or there is a rule s for ∼q in D (corresponding to rule n(r, s) in T (D)) with body Bs where

+δBs ⊆ TT (D)+A↑n and s > r. By the induction hypothesis, either r is a defeater, or there

is a literal p in the body of r such that D+A ⊢ −σ∗p, or there is a rule s for ∼q in D with

body Bs where D+A ⊢ +δ∗Bs and s > r. Applying the inference rule for −σ∗, we obtain

D+A ⊢ −σ∗q.

Combining Theorems 25 and 26 we have Theorem 12.

Simulation of Team Defeat wrt Addition of Rules

The same theory D and addition A as in Example 10 demonstrates that the simulation of DL(∂)

by DL(∂∗) wrt addition of facts exhibited in (Maher 2012) does not extend to addition of rules.

Example 27
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Let D consist of the rules

r1 : ⇒ p

r2 : ⇒ ¬p

and let A be the rule

⇒ p

Then D +A ⊢ −∂p.

The transformation presented in (Maher 2012) simulates D wrt addition of facts with the fol-

lowing theory D′:

R112 : ⇒ ¬d(r1, r2) R121 : ⇒ ¬d(r2, r1)

R212 : ⇒ d(r1, r2) R221 : ⇒ d(r2, r1)

NF1 : ⇒ ¬fail(r1) NF2 : ⇒ ¬fail(r2)

F1 : ⇒ fail(r1) F2 : ⇒ fail(r2)

d(r1, r2) ⇒ d(r1) d(r2, r1) ⇒ d(r2)

fail(r1) ⇒ d(r1) fail(r2) ⇒ d(r2)

⇒ one(p) one(p), d(r2) ⇒ p

⇒ one(¬p) one(¬p), d(r1) ⇒ ¬p

with NF1 > F1 and NF2 > F2. (Rules R3ij have been omitted because there are no strict rules

in D.)

Then consequences of D′ (and D′+A) include −∂∗d(r1, r2) and −∂∗fail(r1), and hence

also −∂∗d(r1). Consequently, the only rule for ¬p in D′+A fails and hence, using the rule in A,

we can conclude +∂∗p.

Thus D′ does not simulate D wrt addition of rules. The weakness of the transformation in the

previous section is also evident here.

Lemma 28

Let D be a defeasible theory, T (D) be the transformed defeasible theory as described in Defini-

tion 13, and let A be a modular defeasible theory. Let Σ be the language of D+A and let q ∈ Σ.

Then

• D+A ⊢ +∆q iff T (D)+A ⊢ +∆q iff T (D)+A ⊢ +∂∗strict(q)

iff T (D)+A ⊢ +∂∗true(q) iff T (D)+A ⊢ −∂∗¬true(q)

• D+A ⊢ −∆q iff T (D)+A ⊢ −∆q iff T (D)+A ⊢ −∂∗strict(q)

iff T (D)+A ⊢ −∂∗true(q) iff T (D)+A ⊢ +∂∗¬true(q)

Proof

This result follows immediately from Lemma 18 and the inclusion theorem, since δ∗ ⊆ ∂∗ ⊆ σ∗.

We say a rule r fails in D if, for some literal p in the body of r, D ⊢ −∂∗p. Similarly, r fails

in T ↑ n if −∂∗p ∈ T ↑ n for some literal p in the body of r.
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Theorem 29

The logic DL(∂) can be simulated by DL(∂∗) with respect to addition of rules.

Proof

Let Σ be the language of D+A. Note, that, employing Lemma 18, T (D)+A ⊢ +∂∗¬true(q) iff

T (D)+A ⊢ −∆q iff D+A ⊢ −∆q. Because T (D)+A ⊢ −∂∗g, we can essentially ignore the

rules supp(q), which are only included for the simulation of DL(δ) by DL(δ∗).

Suppose +∂q ∈ TD+A ↑ (n+1). Then either +∆q ∈ TD+A ↑ n (in which case T (D) +A ⊢

+∂∗q), or −∆∼q ∈ TD+A ↑ n and there is a non-empty team of strict or defeasible rules for q

such that +∂Br ⊆ TD+A ↑ n for each body Br of each rule r and every rule s for ∼q either has a

body that fails in TD+A ↑ n or s < t for some rule t in the team. t /∈ A because rules in A do not

participate in the superiority relation. Then, by the induction hypothesis, T (D) + A ⊢ −∆∼q,

T (D) + A ⊢ +∂∗Br for each rule r in the team, and for every rule s for ∼q either its body

fails in T (D) + A or there is a rule t in the team and t > s. If s ∈ A then its body Bs fails

in T (D) + A. If s ∈ D then either T (D) + A ⊢ +∂∗fail(s) or T (D) + A ⊢ +∂∗d(s, t); in

either case, T (D) + A ⊢ +∂∗d(s). Considering T (D) and the inference rule for +∂∗, we have

T (D)+A ⊢ +∂∗one(q). By Lemma 28, T (D)+A ⊢ +∂∗¬true(∼q). Hence, the body of s(q)

is proved. Because > is acyclic, there is a rule in the team for q that is not inferior to any rule

in the team for ∼q. Hence this rule r′ is not defeated, so d(r′) fails, and hence the rule s(∼q)

in T (D) (from point 6) fails. Hence all rules for ∼q fail, with the possible exception of o(∼q).

However s(q) > o(∼q) and hence, applying the +∂∗ inference rule, T (D) +A ⊢ +∂∗q.

Suppose −∂q ∈ TD+A ↑ (n + 1). Then −∆q ∈ TD+A ↑ n (and hence T (D) + A ⊢ −∆q)

and either (1) +∆∼q ∈ TD+A ↑ n (in which case T (D) + A ⊢ −∂∗q), or (2) every rule r for q

fails, or (3) there is a rule s for ∼q with body Bs such that +∂Bs ⊆ TD+A ↑ n and, for every

strict or defeasible rule t for q, either t fails in TD+A ↑ n, or t 6> s. In case (2), the rules r in A

for q fail and, by the induction hypothesis and the inference rule for −∂∗, the rules r in A for q

fail and, T (D) + A ⊢ −∂∗one(q) and hence T (D) + A ⊢ −∂∗q. In case (3), by the induction

hypothesis, there is a rule s for ∼q with body Bs such that T (D) + A ⊢ +∂∗Bs and for every

strict or defeasible rule t for q, either t fails in T (D)+A, or t 6> s. If s ∈ A then t 6> s, for every

t, and hence T (D) +A ⊢ −∂∗q. If s ∈ D then T (D) + A ⊢ −∂∗d(s, t) (since, via Lemma 28,

we also have T (D) + A ⊢ −∂∗true(q)). Using the −∂∗ inference rule, T (D) + A ⊢ −∂∗d(s)

and hence T (D) +A ⊢ −∂∗q.

Suppose q ∈ Σ and +∂∗q ∈ TT (D)+A ↑ (n + 1). Then either (1) +∆q ∈ TT (D)+A ↑ n

(in which case D + A ⊢ +∂q), or −∆∼q ∈ TT (D)+A ↑ n (and hence D + A ⊢ −∆∼q) and

either (2) for some r in A for q, Br ⊆ TT (D)+A ↑ n, or (3) +∂∗one(q) ∈ TT (D)+A ↑ n,

+∂∗¬true(∼q) ∈ TT (D)+A ↑ n, and +∂∗d(r) occurs in TT (D)+A ↑ n, for each rule r for ∼q in

D. In both cases (2) and (3) we must have, for any rule s for ∼q in A, for some p in the body Bs

of s, −∂∗p ∈ TT (D)+A ↑ n. By the induction hypothesis, D +A ⊢ −∂p for each such p.

In case (2), by the induction hypothesis, D + A ⊢ Br. Also, in case (2), the rule o(∼q) must

fail. Consequently, every rule s for ∼q in D fails in TT (D)+A ↑ n. By the induction hypothesis,

every rule s for ∼q in D fails in D+A. Now, applying the inference rule for +∂, D+A ⊢ +∂q.

In case (3) there must be a strict or defeasible rule r for q in D with body Br such that

+∂∗Br ⊆ TT (D)+A ↑ n and, using the rules for d(s) and d(s, t), for every rule s for ∼q,

either the body Bs of s fails or there is a strict or defeasible rule t for q with body Bt such that

+∂∗Bt ⊆ TT (D)+A ↑ n and t > s. By the induction hypothesis, D+A ⊢ +∂Br, and, for every

rule s for ∼q in D, either D +A ⊢ −∂Bs or there is a strict or defeasible rule t for q with body
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Bt such that D + A ⊢ +∂Bt and t > s. As noted above, for any rule s for ∼q in A, Bs fails in

D +A. Hence, by the inference rule for +∂, D +A ⊢ +∂q.

If q ∈ Σ and −∂∗q ∈ TT (D)+A ↑ (n + 1) then, using the inference rule for −∂∗ and the

structure of T (D), −∆q ∈ TT (D)+A ↑ n and either (a) +∆∼q ∈ TT (D)+A ↑ n (in which case

D + A ⊢ −∂∗q), or (b) −∂∗one(q) ∈ TT (D)+A ↑ n, or (c) −∂∗d(s) ∈ TT (D)+A ↑ n for some

rule s for ∼q in D, or (d) +∂∗one(∼q) ∈ TT (D)+A ↑ n and +∂∗d(r) ∈ TT (D)+A ↑ n for every

rule r for q in D, or (e) for some s for ∼q in A, +∂∗Bs ⊆ TT (D)+A ↑ n.

If (b) −∂∗one(q) ∈ TT (D)+A ↑ n then for every strict or defeasible rule for q in D fails.

Applying the induction hypothesis and the inference rule for −∂, we have D + A ⊢ −∂q. If c)

−∂∗d(s) ∈ TT (D)+A ↑ n for some rule s for ∼q in D, then there is no strict or defeasible rule

r2 for q that defeats s. If (d) then there is a rule s for ∼q with body Bs such that +∂∗Bs ⊆

TT (D)+A ↑ n and every rule r for q in D is defeated by a strict or defeasible rule for ∼q. In

both cases (c) and (d), applying the induction hypothesis and the inference rule for −∂, we have

D+A ⊢ −∂q. If (e) then, by the induction hypothesis, D+A ⊢ +∂Bs and hence, applying the

inference rule for −∂, D +A ⊢ −∂q.

Theorem 30

The logic DL(δ) can be simulated by DL(δ∗) with respect to addition of rules.

Proof

Let Σ be the language of D+A. Note that, for any q ∈ Σ(D), T (D)+A ⊢ +σ∗¬true(q)

and, employing Lemma 18, T (D)+A ⊢ +δ∗¬true(q) iff T (D)+A ⊢ −∆q iff D+A ⊢ −∆q.

Also note that T (D)+A ⊢ −δ∗g, T (D)+A ⊢ +σ∗g, and T (D)+A ⊢ +σ∗¬g, where g is the

proposition used in part 7 of Definition 13.

Suppose +δq ∈ TD+A ↑ (n + 1). Then either +∆q ∈ TD+A ↑ n, or −∆∼q ∈ TD+A ↑ n

and there is a non-empty team of strict or defeasible rules for q such that +δBr ⊆ TD+A ↑ n for

each body Br of each rule r and every rule s for ∼q either has a body that fails in TD+A ↑ n or

s < t for some rule t in the team. Then, by the induction hypothesis, either T (D) + A ⊢ +∆q

(in which case T (D) + A ⊢ +δ∗q), or T (D) + A ⊢ −∆∼q, T (D) + A ⊢ +δ∗Br for each

rule r in the team, and for every rule s for ∼q with body Bs either T (D) +A ⊢ −σBs or there

is a rule t in the team and t > s. If s ∈ A then T (D) + A ⊢ −σBs. If s ∈ D then either

T (D) + A ⊢ +δ∗fail(s) or T (D) + A ⊢ +δ∗d(s, t); in either case, T (D) + A ⊢ +δ∗d(s).

Considering T (D), and the inference rule for +δ∗ we have T (D)+A ⊢ +δ∗one(q). By Lemma

18, T (D) +A ⊢ +

delta∗¬true(∼q). Hence, the body of s(q) is proved. Because > is acyclic, there is a rule in the

team for q that is not inferior to any rule in the team for ∼q. Hence this rule r′ is not defeated,

so d(r′) fails, and hence the rule for ∼q in T (D) from point 6 fails. Similarly, dσ(r
′, s) fails,

and hence the rules for ∼q in T (D) from point 7 fail. Hence all rules for ∼q fail, with the

possible exception of o(∼q). However s(q) > o(∼q) and hence, applying the +δ∗ inference

rule, T (D) +A ⊢ +δ∗q.

Suppose −δq ∈ TD+A ↑ (n + 1). Then −∆q ∈ TD+A ↑ n (and hence T (D) + A ⊢ −∆q)

and either (1) +∆∼q ∈ TD+A ↑ n (in which case T (D) + A ⊢ −δ∗q), or (2) every rule r for q

contains a body literal p with −δp ∈ TD+A ↑ n, or (3) there is a rule s for ∼q with body Bs such

that +σBs ⊆ TD+A ↑ n and, for every strict or defeasible rule t for q, either t fails in TD+A ↑ n,

or t 6> s. In case (2), the rules r in A for q fail and, by the induction hypothesis and the inference
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rule for −δ∗, the rules r in A for q fail in T (D) + A, so T (D) + A ⊢ −δ∗one(q) and hence

T (D) + A ⊢ −δ∗q. In case (3), by the induction hypothesis, there is a rule s for ∼q with body

Bs such that T (D) + A ⊢ +σ∗Bs and for every strict or defeasible rule t for q, either t fails in

T (D) + A, or t 6> s. If s ∈ A then t 6> s, for every t, and hence T (D) + A ⊢ −δ∗q. If s ∈ D

then T (D) + A ⊢ −δ∗d(s, t) (since, via Lemma 18, we also have T (D) + A ⊢ −δ∗true(q)).

Using the −δ∗ inference rule, T (D) + A ⊢ −δ∗d(s). The bodies of rules from point 7 of the

transformation also fail (wrt δ∗), because of the presence of g. Hence T (D) +A ⊢ −δ∗q.

Suppose q ∈ Σ and +δ∗q ∈ TT (D)+A ↑ (n + 1). Then either (1) +∆q ∈ TT (D)+A ↑ n (in

which case D + A ⊢ +δq), or else −∆∼q ∈ TT (D)+A ↑ n and either (2) there is a strict or

defeasible rule r for q in A where +δ∗Br ⊆ TT (D)+A ↑ n and for all rules for ∼q in T (D)+A,

the body of the rule contains a literal p with −σ∗p ∈ TT (D)+A ↑ n, or (3) each of +δ∗one(q),

+δ∗¬true(∼q), and +δ∗d(s) occurs in TT (D)+A ↑ n, for each rule s for ∼q in D.

Hence, in case (3), there is a strict or defeasible rule r for q with body Br such that +δ∗Br ⊆

TT (D)+A ↑ n and, for every rule s for ∼q, either −σ∗p ∈ TT (D)+A ↑ n, for some p in the body

Bs of s, or there exists t in D for q with +δ∗Bt ⊆ TT (D)+A ↑ n and t > s. By the induction

hypothesis,D+A ⊢ −∆∼q, D+A ⊢ +δBr, and, for every rule s for ∼q, either D+A ⊢ −σBs

or D +A ⊢ +δBt and t > s. By the inference rule for +δ, D +A ⊢ +δq.

In case (2), using the structure of T (D), for the rules supp(∼q), originating from some rule

s for ∼q in D, either for some p in Bs, −σ∗p ∈ TT (D)+A ↑ n or, for some t, −σ∗dσ(t, s) ∈

TT (D)+A ↑ n (and, hence, +δ∗Bt ⊆ TT (D)+A ↑ n and t > s). Now, by the induction hypothesis,

D+A ⊢ +δBr; D+A ⊢ −∆∼q; for all rules for ∼q in A, the body of the rule contains a literal

p with D+A ⊢ −σ∗p; and for all rules for ∼q in D, either the body of the rule contains a literal

p with D + A ⊢ −σ∗p or there is a rule t for q in D with t > s and D + A ⊢ +δBt. Applying

the inference rule for +δ, D +A ⊢ +δq.

If q ∈ Σ and −δ∗q ∈ TT (D)+A ↑ (n + 1) then, using the inference rule for −δ∗ and the

structure of T (D)+A, −∆q ∈ TT (D)+A ↑ n (and, hence, D + A ⊢ −∆q) and either +∆∼q ∈

TT (D)+A ↑ n (in which case D+A ⊢ −δq), or else for every rule r for q in A, there is a literal p

in Br such that −δ∗p ∈ TT (D)+A ↑ n and either (1) −δ∗¬true(∼q) ∈ TT (D)+A ↑ n (in which

case D + A ⊢ +∆∼q and hence D + A ⊢ −δq), or (2) −δ∗one(q) ∈ TT (D)+A ↑ n, or (3)

−δ∗d(s) ∈ TT (D)+A ↑ n for some rule s for ∼q in D. Or (4) +σ∗one(∼q) ∈ TT (D)+A ↑ n and

+σ∗d(r) ∈ TT (D)+A ↑ n for every rule r for q in D, or (5) there is a rule s for ∼q in A and

+σ∗Bs ⊆ TT (D)+A ↑ n. Or (6) the body of a rule supp(∼q, s) is supported for some rule s for

∼q (that is, +σ∗Bs ⊆ TT (D)+A ↑ n and, for each rule r for q, +σ∗dσ(r, s) ∈ TT (D)+A ↑ n).

For (2) and (3), by the induction hypothesis, for every rule r for q in A, there is a literal p in

Br such that D + A ⊢ −δp. If (2) −δ∗one(q) ∈ TT (D)+A ↑ n then every strict or defeasible

rule for q in D fails. Applying the induction hypothesis and the inference rule for −δ, we have

D + A ⊢ −δq. If (3) −δ∗d(s) ∈ TT (D)+A ↑ n for some rule s for ∼q in D, then +σ∗Bs ⊆

TT (D)+A ↑ n, where Bs is the body of s, and for every strict or defeasible rule r for q with body

B either −δ∗Br ∈ TT (D)+A ↑ n or +σ∗Bs ⊆ TT (D)+A ↑ n, where Bs is the body of s, and

r 6> s. Applying the induction hypothesis,D+A ⊢ +σBs and, for every r for q, D+A ⊢ −δBr

or D +A ⊢ +σBs and r 6> s. Hence, by the inference rule for −δ, D +A ⊢ −δq.

If (4) then there is a rule s for ∼q with body Bs such that +σ∗Bs ⊆ TT (D)+A ↑ n and for

every rule r for q in D either there is a literal p in the body of r such that −δ∗p ∈ TT (D)+A ↑ n

or there is a rule s′ for ∼q with body B′ such that +σ∗B′ ⊆ TT (D)+A ↑ n and s′ > r. Applying

the induction hypothesis, for every rule r for q in D either there is a literal p in the body of r
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such that D +A ⊢ −δp or there is a rule s′ for ∼q with body B′ such that D + A ⊢ +σB′ and

s′ > r. t follows, by the inference rule for −δ, that D +A ⊢ −δq.

If (5) then, by the induction hypothesis, D+A ⊢ +σBs and, since s is not inferior to any rule,

the inference rule for −δ gives us D +A ⊢ −δq.

In case (6), since +σ∗dσ(r, s) ∈ TT (D)+A ↑ n, we must have +σ∗Bs ⊆ TT (D)+A ↑ n and

either there is a literal p in Br such that −δ∗p ∈ TT (D)+A ↑ n or r 6> s. By the induction

hypothesis, D+A ⊢ +σ∗Bs and, for every rule r for q in D either there is a literal p in Br such

that D +A ⊢ −δ∗p or r 6> s. By the −δ inference rule, D +A ⊢ −δq.

Suppose +σq ∈ TD+A ↑ (n + 1). Then either +∆q ∈ TD+A ↑ n, or there is a strict or

defeasible rule r for q such that +σBr ⊆ TD+A ↑ n where Br is the body of r and every rule s

for ∼q has a body with a literal p such that −δp ∈ TD+A ↑ n or s 6> r. Then, by the induction

hypothesis, either T (D)+A ⊢ +∆q (in which case T (D)+A ⊢ +σ∗q), or T (D)+A ⊢ +σ∗Br,

and every rule s for ∼q has a body with a literal p such that −δ∗p ∈ TD+A ↑ n or s 6> r. If

r ∈ A then r is not inferior to any rule and, by the inference rule for +σ∗, T (D) + A ⊢ +σ∗q.

If r ∈ D then, by the +σ∗ inference rule, T (D) +A ⊢ +σ∗Br. Furthermore, again by the +σ∗

inference rule, for every s for ∼q in D, T (D) + A ⊢ +σ∗dσ(s, r), since a(s, r) 6> b(s, r) iff

s 6> r. Note that there is no superiority relation between the rules in T (D) for q and ∼q. Hence,

applying the inference rule for +σ∗, T (D) +A ⊢ +σ∗q.

Suppose −σq ∈ TD+A ↑ (n + 1). Then −∆q ∈ TD+A ↑ n and either every rule r for q

contains a body literal p and −σp ∈ TD+A ↑ n, or there is a rule s for ∼q with body Bs such

that +δBs ⊆ TD+A ↑ n and s > r. (Note that, for r ∈ A, only the first possibility can apply.)

Then, by the induction hypothesis, T (D) + A ⊢ −∆q and either every rule r for q contains a

body literal p such that T (D) + A ⊢ −σ∗p, or there is a rule s for ∼q with body Bs such that

T (D) + A ⊢ +δ∗Bs and s > r. (In particular, every rule for q in A contains a body literal p

with T (D) + A ⊢ −σ∗p.) If all rules for q in D fall in the former case, we have −σ∗one(q),

and all rules supp(q) fail. Otherwise, there is an s that is not inferior to any rule for q and hence

T (D) + A ⊢ −σ∗d(s, r) and T (D) + A ⊢ −σ∗d(s). Similarly, T (D) + A ⊢ −σ∗dσ(s, r). In

either case, all rules for q fail, and hence T (D) +A ⊢ −σ∗q.

Suppose q ∈ Σ and +σ∗q ∈ TT (D)+A ↑ (n + 1). Then either (1) +∆q ∈ TT (D)+A ↑ n (in

which case D+A ⊢ +σq), or else either (2) for some rule r for q in A, +σ∗Br ⊆ TT (D)+A ↑ n,

or (3) +σ∗one(q) ∈ TT (D)+A ↑ n, and +σ∗d(s) occurs in TT (D)+A ↑ n, for each rule s for

∼q in D, or (4) for some strict or defeasible rule r for q in D, +σ∗Br ⊆ TT (D)+A ↑ n and

+σ∗dσ(s, r) occurs in TT (D)+A ↑ n, for each rule s for ∼q in D.

In case (2), by the induction hypothesis, D+A ⊢ +σBr and hence, by the inference rule for

σ, D+A ⊢ +σq.

In case (3), there is a strict or defeasible rule r for q with body Br such that +σ∗Br ⊆

TT (D)+A ↑ n and, for every rule s for ∼q in D, either −δ∗p ∈ TT (D)+A ↑ n, for some p in the

body Bs of s or there is a rule t for q with body Bt such that +σ∗Bt ∈ TT (D)+A ↑ n. and s 6> t.

By the induction hypothesis, D+A ⊢ +σBr, and, for every rule s for ∼q, either D+A ⊢ −δBs

or there is a rule t for q with body Bt such that D+A ⊢ +σ∗Bt and s 6> t. Because ¿ is acyclic,

there is a rule t for q such that D+A ⊢ +σBt and, for every rule s for ∼q either D+A ⊢ −δBs

or s 6> t. By the inference rule for +σ, D +A ⊢ +σq.

In case (4), there is a strict or defeasible rule r for q with body Br such that +σ∗Br ⊆

TT (D)+A ↑ n and, for each rule s for ∼q in D, either −δ∗p ∈ TT (D)+A ↑ n, for some p in the

body Bs of s, or s 6> r. By the induction hypothesis, D + A ⊢ +σBr, and, for each s, either

D +A ⊢ −δp or s 6> r. By the +σ inference rule, D +A ⊢ +σq.
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If q ∈ Σ and −σ∗q ∈ TT (D)+A ↑ (n + 1) then, using the inference rule for −σ∗ and the

structure of T (D), −∆q ∈ TT (D)+A ↑ n (and hence D + A ⊢ −∆q), and either (1) +∆∼q ∈

TT (D)+A ↑ n (in which case D + A ⊢ −σ∗q), or (2) for each strict or defeasible rule r for q in

A, there is a literal p in Br such that −σ∗p ∈ TT (D)+A ↑ n and for each strict or defeasible rule

r for q in D, either there is a literal p in Br such that −σ∗p ∈ TT (D)+A ↑ n, or there is a rule s

for ∼q in D such that +δ∗Bs ⊆ TT (D)+A ↑ n and s > r. By the induction hypothesis, in case

(2), D + A ⊢ −σBr for the rules r in A and, for rules r in D, either D + A ⊢ −σBr or there

is a rule s for ∼q in D such that D + A ⊢ +δ∗Bs and s > r. Applying the −σ inference rule,

D +A ⊢ −σq.

Combining Theorems 29 and 30, we have Theorem 14.
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