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Abstract

This paper presents a detailed analysis of the scalability and parallelization of local search
algorithms for the Satisfiability problem. We propose a framework to estimate the parallel
performance of a given algorithm by analyzing the runtime behavior of its sequential version.
Indeed, by approximating the runtime distribution of the sequential process with statistical
methods, the runtime behavior of the parallel process can be predicted by a model based on
order statistics. We apply this approach to study the parallel performance of two SAT local
search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the
results of an actual experimentation on parallel hardware up to 384 cores. We show that the
model is accurate and predicts performance close to the empirical data. Moreover, as we study
different types of instances (random and crafted), we observe that the local search solvers exhibit
different behaviors and that their runtime distributions can be approximated by two types of
distributions: exponential (shifted and non-shifted) and lognormal.
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1 Introduction

Nowadays, SAT solvers are very effective to solve problems in a wide variety of domains

ranging from software verification to computational biology and automated planning.

Broadly speaking, there are two main categories of SAT solvers: complete and incom-

plete. Complete solvers combine tree-based search with unit propagation, conflict-clause

learning, and intelligent backtracking. Incomplete solvers start with an initial assignment

for the variables (usually random); then the solver iteratively moves in the search space

until a given stopping criteria is met. These solvers are very good at tackling large and

difficult (random) instances.

Research on parallel SAT solvers have been rapidly increasing in the last decade,

thanks to the the development and increasing availability of parallel hardware, such as
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multi-core architectures, GPGPUs, grids, cloud systems, and massively parallel super-

computers. A well-known approach for parallel SAT solving is search-space splitting; it

consists in dividing the problem space into several sub-spaces and exploring them in par-

allel. Another approach consists in building a parallel portfolio solver in which several

algorithms compete and cooperate to solve a given problem instance. Motivated by the

results of the recent SAT competitions, most researchers currently focus their attention

on the development of parallel portfolios for multi-core architectures. The computational

benefit of the parallel portfolio is observed in both capacity solving and speedup factor.

Capacity solving, or Solution Count Ranking (Van Gelder 2011), refers to the ability of

improving the total number of solved instances within a given timelimit, while speedup

refers to the ability of reducing the runtime (w.r.t. the sequential solver) to solve individ-

ual instances. Previous work has been mainly focused on studying the capacity solving

of complete parallel SAT solvers, see (Martins et al. 2012) for a recent survey.

Up to now, most parallel SAT solvers have been designed for multi-core machines

or small clusters with a few tens of processors. A key question is therefore to know if

these approaches could scale up to massively parallel systems, i.e., with thousands or

tens of thousands of cores. To investigate this exiting new field of endeavor, we studied

in this paper the parallel performance of several SAT solvers up to several hundreds of

cores. Moreover, we propose a probabilistic model to estimate the parallel performance of

local search algorithms for SAT, using a simple scheme for parallelization. By analyzing

the sequential runtime, we can predict the parallel behavior and quantify the expected

parallel speedup. More precisely, we first approximate the empirical sequential runtime

distribution by a well-known statistical distribution (e.g. exponential or lognormal) and

then derive the runtime distribution of the parallel version of the solver. Our model is

related to order statistics, a rather new domain of statistics (David and Nagaraja 2003),

which is the statistics of sorted random draws. This makes it possible to predict the

parallel runtime of a given algorithm for any number of cores.

The main contributions of this paper are as follows. First, we present the application of

a statistical model to predict and evaluate the performance of parallel local search algo-

rithms for SAT. Moreover, extensive experimental results (up to 384 cores) using state-

of-the-art local search solvers showed that the predicted execution times and speedups

accurately match the empirical data and performance. Second, we provide an under-

standing of the different speedups of parallel algorithms for SAT from a theoretical and

empirical point of view for two different families of benchmarks.

This paper is organized as follows. After a brief presentation of parallel local search

for SAT in Section 2, Section 3 describes the framework of runtime distributions and

formally defines the probabilistic model used to predict the parallel performance of local

search algorithms. Section 4 details extensive experimental results performed to evaluate

the model. Section 5 presents concluding remarks and future research directions.

2 Parallel Local Search for SAT

Parallel implementation of local search methods for combinatorial problems has been

studied since the early 1990s, when parallel machines started to become widely avail-

able (Pardalos et al. 1995; Verhoeven and Aarts 1995). Apart from domain-decomposition

methods and population-based method (e.g., genetic algorithms), (Verhoeven and Aarts
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1995) distinguishes between single-walk and multi-walk methods for Local Search. Single-

walk methods consist in using parallelism inside a single search process, e.g., for paral-

lelizing the exploration of the neighborhood. Multi-walk methods (parallel execution of

multi-start methods) consist in developing concurrent explorations of the search space,

either independently or cooperatively with some communication between processes.

It is now currently admitted that an easy and effective manner to parallelize local search

solvers consists in executing in parallel multiple copies of a given solvers with or without

cooperation. The non-cooperative approach has been used in the past to solve SAT and

MaxSAT instances. gNovelty+ (Pham and Gretton 2007) executes multiple copies of

gNovelty without cooperation until a solution is obtained or a given timeout is reached;

and (Pardalos et al. 1996) executes multiple copies of GRASP until an assignment which

satisfies a given number of clauses is obtained. Strategies to exploit cooperation between

parallel SAT local search solvers have been studied in (Arbelaez and Hamadi 2011) in the

context of multi-core architectures with shared memory and in (Arbelaez and Codognet

2012) in massively parallel systems with distributed memory.

The analysis proposed in this paper for predicting performance on massively parallel

systems is set in the framework of independent multi-walk parallelism, as it seems to

be the most promising way to deal with large-scale parallelism. Cooperative algorithms

might perform well on shared-memory machines with a few tens of cores, but are difficult

to extend efficiently to distributed hardware.

3 Analysis using runtime distributions

Most papers on the performance of stochastic local search algorithms focus on the average

execution time in order to measure the performance of both sequential and parallel

executions. However, a more detailed analysis of the runtime behavior could be done by

looking at the execution time of the algorithm (e.g., cpu-time or number of iterations)

as a random variable and performing a statistical analysis of its probability distribution.

3.1 Approximating Runtime Behaviors

The notion of runtime distribution has been introduced by (Hoos and Stützle 1998) to

characterize the cumulative distribution function of the execution time of stochastic al-

gorithms. Indeed, Stochastic Local Search (Hoos and Stütze 2005) can be considered in

the larger framework of Las Vegas algorithms, introduced a few decades ago by (Babai

1979), i.e. randomized algorithms whose runtime might vary from one execution to an-

other, even with the same input. It has been applied to study random 3-SAT problems

with the Walk-SAT solver (Hoos and Stützle 1999), combinatorial optimization problems

with the GRASP metaheuristics (Aiex et al. 2002) and path-planning problems with

state-graph search algorithms (e.g., A*) (Munoz et al. 2012). The study of the runtime

behavior of parallel extensions of Las Vegas algorithm in the framework of (independent)

multi-walk processes has been proposed by (Truchet et al. 2013), which presents a model

for predicting the parallel performance of a given Las Vegas algorithm by the statistical

analysis of its sequential version. The runtime distribution has also been used to define

optimal restart strategies in sequential and parallel algorithms in (Shylo et al. 2011) and

to provide bounds on the parallel expectation by (Luby et al. 1993). However, in this
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paper we are using it to predict the parallel speedup in a multi-walk scheme from the

study of the initial sequential problem distribution.

Indeed, since (Verhoeven and Aarts 1995; Verhoeven 1996), it is believed that combina-

torial problems can enjoy a linear speedup when implemented in parallel by independent

multi-walks. However, this has been proven only under the assumption that the proba-

bility of finding a solution in a given time t follows an exponential law, that is, if the

runtime behavior follows a (non-shifted) exponential distribution. This behavior has been

conjectured for SAT local search solvers in (Hoos and Stützle 1999), and confirmed ex-

perimentally for the GRASP metaheuristics solver on some other classical combinatorial

problems (Aiex et al. 2002). The latter authors have also developed, in the context of

combinatorial optimization, a simple tool (tttplot) to study the adequation of a given

runtime behavior with an exponential distribution (Aiex et al. 2007). The classical ex-

planation for an exponential runtime behavior is the fact that the solutions are uniformly

distributed in the search space, (and not regrouped in solution clusters (Maneva and Sin-

clair 2008)) and that the random search algorithm is able to sample the search space in

a uniform manner. However, (Truchet et al. 2013) shows that the runtime distribution

of local search solvers for combinatorial problems can be not only exponential but also

sometimes lognormal or shifted exponential, in which cases the parallel speedup cannot

be linear and is asymptotically bounded. Indeed, not all combinatorial problems show a

perfect exponential behavior, and we will see in this paper how this applies to SAT.

3.2 Min Distribution and Parallel Speed-up

A general statistical model for studying the performance of Las Vegas algorithms and

predicting the parallel performance of their parallel multi-walk extensions has been re-

cently proposed in (Truchet et al. 2013). We will now present a brief summary of this

model, which will be used in the rest of the paper to study the behavior of two local

search solvers on a variety of SAT instances.

Let Y be the runtime of a Local Search algorithm on a given problem instance. It can

be considered as a random variable with values in N (number of iterations), or in Q (cpu-

time). In general, it is more convenient to consider distributions with values in R because

calculations are easier. Y can be studied through its cumulative distribution, which is by

definition, the function FY s.t. FY (x) = Pr(Y ≤ x). By definition, the distribution of Y

is the derivative of FY : fY = F ′
Y . The expectation of Y is defined as E[Y ] =

∫∞
0

tfY (t)dt

Assume that n copies of the base algorithm are running in parallel on n cores. The first

process finding a solution kills all others, and the overall parallel algorithm terminates.

The i-th process corresponds to a draw of a random variable Xi, following the distribu-

tion fY . The variables Xi are thus independent and identically distributed (i.i.d.). The

computation time of the whole parallel process is also a random variable, let Z(n), with

a distribution fZ(n) that depends both on n and on fY . Since all the Xi are i.i.d., the

cumulative distribution FZ(n) and the distribution fZ(n) can be computed as follows:

FZ(n) = Pr(Z(n) ≤ x) = Pr(∃i ∈ {1...n}, Xi ≤ x)

= 1− Pr(∀i ∈ {1...n}, Xi > x) = 1− (1−FY (x))
n

fZ(n) = (1− (1−FY )
n
)′ = nfY (1−FY )

n−1
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Thus, knowing the distribution for the base algorithm Y , one can calculate the dis-

tribution for Z(n). The formula shows that the parallel algorithm favors short runs, by

killing slower processes. Thus, compared to the distribution of Y , the distribution of Z(n)

moves toward the origin and is more peaked.

We can also compute the expectation E[Z(n)] for the parallel process, from which we

derive the expected speed-up Gn of the parallel algorithm versus the sequential one:

E[Z(n)] = n

∫ ∞

0

tfY (t)(1−FY (t))
n−1dt

Gn = E[Y ]/E[Z(n)]

Again, no explicit general formula can be computed and the expression of the speed-up

will depend on the distribution of Y . We will thus study in the following different specific

distributions. This computation of the speed-up is actually related to a field of statis-

tics called order statistics, see (David and Nagaraja 2003) for a detailed presentation.

Order statistics are the statistics of sorted random draws. For instance, the first order

statistics of a distribution is its minimal value. For predicting the speedup, we are indeed

interested in computing the expectation of the distribution of the minimum draw. As

the above formula suggests, this may lead to heavy calculations, but recent studies such

as (Nadarajah 2008) give explicit formulas defining this quantity for several classical

probability distributions.

3.3 Exponential and Lognormal Distributions

Assume that Y has a shifted exponential distribution, as would be the case for an ideal

randomized algorithm. The minimum distribution can be computed by a direct integra-

tion: fY (t)=λe−λ(t−x0) for t> 0; E[Y ]=x0 + 1/λ; and fZ(n)(t)=nλe−nλ(t−x0) for t > 0.

In case of a non-shifted exponential, x0 = 0 and the speed-up is thus equal to the

number of cores n, up to infinity. This case has already been studied by (Verhoeven and

Aarts 1995). However for x0 > 0, the speed-up admits a finite limit, even when n tends

to infinity, which is
x0+

1
λ

x0
= 1 + 1

x0λ
. The closer to zero x0 is, the higher the limit.

Other distributions can be considered, depending on the behavior of the base algo-

rithm. We will study the case of a lognormal distribution, which is the log of a gaussian

distribution, because it will appear in the following experiments for some instances. The

lognormal distribution has two parameters, the mean µ and the standard deviation σ.

Formally, a (non-shifted) lognormal distribution is defined as: fY (t) =
e
− (−µ+log(t))2

2σ2
√
2π(t)σ

The formulas for the distribution of Z(n), its expectation and the theoretical speed-up

are quite complicated to compute, but (Nadarajah 2008) gives an explicit formula for all

the moments of lognormal order statistics with only a numerical integration step, from

which we can derive a computation of the speed-up. As for the shifted exponential, it

can be shown that the speed-up curve of the lognormal distribution admits a finite limit.

4 Experimental Settings and Results

This section describes the benchmark instances used for tests, and we focus our attention

on two well-known problem families: random and crafted instances. Moreover, we consider



6 Alejandro Arbelaez, Charlotte Truchet, Philippe Codognet

the two best local search solvers from the previous SAT competition: CCASAT (Cai et al.

2012) and Sparrow (Balint and Fröhlich 2010). Both solvers were used with their default

parameters and with a timeout of 3 hours for each experiments. All the experiments were

performed on the Grid’5000 platform, the French national grid for research. We used a

44-node cluster with 24 cores (2 AMD Opteron 6164 HE processors at 1.7 Ghz) and 44

GB of RAM per node. We experimented with 10 random instances (6 around the phase

transition) and 10 crafted instances (see the appendix for a complete presentation of the

instances).

In order to obtain the empirical data for the theoretical distribution (predicted by our

model from the sequential runtime distribution), we performed 500 runs of the sequential

algorithm. The Mathematica software (Wolfram 2003), version 8.0, was used to estimate

the parameters of the theoretical distributions and to integrate numerically the formulas

of the lognormal distribution. In order to evaluate the accuracy of the learned statistical

model, we performed 50 runs of the multi-walk parallel algorithms. The empirical speedup

for a given parallel algorithm is calculated against the mean performance of its sequential

version as follows: Speedup = Mean(Solver on 1 core)
Mean(Solver on N cores)

4.1 Experimental results

In this section, we start by presenting the empirical and estimated results for random

and crafted instances; then we present a general analysis of the results.

We start our analysis with Table 1, which presents initial statistics for the sequential

version of Sparrow and CCASAT. We present the minimum, maximum, and mean run-

time values, as well as the outcome of the Kolmogorov-Smirnov (KS) test for two types

of distributions: shifted exponential and lognormal. In the following tables, bold numbers

indicate the distribution chosen to predict the performance of a given solver.

The KS test compares a set of empirical measures to a given theoretical distribution. Its

outcome is a p-value, indicating how likely it is that the measures admits the theoretical

distribution. The classical threshold for the p-value is 0.05. For greater p-values, the

KS test succeeds (more precisely, the null hypothesis is not rejected), and the empirical

distribution can be approximated by the theoretical one with good confidence.

The results presented in this table are consistent with the results of the previous SAT

competition (random category) where CCASAT greatly outperformed Sparrow. For this

set of instances, we choose the shifted exponential distribution in lieu of the exponential

distribution as the Min runtime value for the reference solvers is not negligible compared

to its mean value across 500 executions (about 100 times smaller in the best case).

As can be seen from the table, both solvers report a tendency which indicates that

the empirical data for instances around the phase transition are better approximated

by a lognormal distribution; all these instances pass the KS test with a confidence level

(p-value) above 0.05, except for Sparrow on rand-4.

For instances outside the phase transition, Sparrow reports enough statistical evi-

dence to infer that the shifted exponential distribution fits better the empirical data.

For CCASAT, 3 out of 4 instances outside the phase transition are better characterized

with a lognormal distribution and the remaining instance pass the KS test for the shifted

exponential distribution.

Let’s now look at the parallel performance of the solvers. Table 2 (resp. Table 3) shows
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Instance Alg Min Max Mean
p-value

Shifted exp. dist. Lognormal dist.

Rand-1
Sparrow 98.0 4860.0 793.9 5.6·10−19 0.76
CCASAT 103.6 1340.1 458.5 8.4·10−55 0.96

Rand-2
Sparrow 91.8 5447.0 1007.5 1.8·10−20 0.91
CCASAT 108.8 1652.9 497.9 5.1·10−58 0.71

Rand-3
Sparrow 104.8 3693.7 797.0 2.9·10−26 0.64
CCASAT 126.48 1125.4 359.6 2.3·10−108 0.90

Rand-4
Sparrow 162.4 3037.8 781.5 1.6·10−38 0.03
CCASAT 132.5 980.9 382.0 1.5·10−117 0.92

Rand-5
Sparrow 164.0 7946.3 952.4 1.8·10−31 0.16
CCASAT 158.6 1177.9 403.1 5.1·10−134 0.20

Rand-6
Sparrow 142.0 4955.8 763.5 1.6·10−31 0.64
CCASAT 142.9 890.9 354.1 9.6·10−137 0.46

Rand-7
Sparrow 35.5 10637.4 3464.2 0.01 1.5·10−4

CCASAT 61.6 6419.1 1801.0 1.0·10−5 0.13

Rand-8
Sparrow 23.2 10738.0 3412.9 0.05 4.7·10−4

CCASAT 35.9 10443.7 2007.6 0.50 0.03

Rand-9
Sparrow 6.8 5935.8 1028.2 0.23 3.7·10−3

CCASAT 18.1 2830.4 476.8 7.0·10−3 0.03

Rand-10
Sparrow 19.0 10800.0 1726.3 0.65 0.15
CCASAT 19.8 4854.5 758.4 7.6·10−10 0.18

Table 1. Performance of sequential algorithms on random instances

the empirical and predicted runtime (resp. speedup) for both Sparrow and CCASAT

on all instances using 48, 96, 192, and 384 cores. In Table 3, we observe an important

difference in the speedup factor between the two solvers which suggest that in general

Sparrow scales better than CCASAT.

Figure 1 shows a performance summary of the reference solvers to tackle an instance on

the phase transition (rand-4) and another instance outside the phase transition (rand-7).

The y-axis gives the probability (Pr(Y ≤ x)) of finding a solution in a time less or equal to

x and the x-axis gives the runtime in seconds. From now on, in all figures ‘Emp’ stands

for Empirical distribution, ‘LN’ stands for lognormal distribution, and ‘SExp’ stands

for shifted exponential distribution. As expected CCASAT dominates the performance

on one core. For example to solve rand-4, CCASAT reports Pr(Y ≤ 16-mins) ≈ 1.0,

while Sparrow reports Pr(Y ≤ 16-mins) ≈ 0.75. Figures 1(c) and 1(f) show that for

CCASAT increasing the number of cores does not significantly improve the solving time.

Consequently, Sparrow becomes more effective for a large number of cores. Therefore,

Figures 1(b) and 1(e) show that Sparrow is better than CCASAT when using 384 cores.

Interestingly, the same pattern is observed for other random instances (see Table 2).

To illustrate the power of the predicted model, in Figure 1(c) we present the predicted

and empirical speedup curves for CCASAT and Sparrow. Here it can be observed that in

both cases the predicted curve follows the same shape as the empirical one. Moreover, It
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Instance
Sparrow - Runtime on k cores CCASAT - Runtime on k cores
48 96 192 384 48 96 192 384

Rand-1
Actual 163.8 140.4 125.2 113.7 160.0 143.0 122.8 112.0

Predicted 133.8 110.5 92.7 78.8 137.7 120.6 106.7 95.3

Rand-2
Actual 213.2 191.4 166.2 142.5 186.8 169.3 159.3 142.8

Predicted 183.5 152.8 129.2 110.6 153.4 134.7 119.6 107.1

Rand-3
Actual 175.9 151.2 135.8 123.5 166.7 155.6 143.5 132.2

Predicted 183.5 152.8 129.2 110.6 153.4 134.7 119.6 107.1

Rand-4
Actual 202.3 179.2 159.5 141.8 193.1 176.0 169.4 158.7

Predicted 175.7 149.5 128.9 112.4 170.6 155.9 143.5 132.8

Rand-5
Actual 219.6 201.0 182.5 161.9 212.2 191.3 176.8 165.8

Predicted 185.0 155.3 132.3 114.0 179.8 164.3 151.2 140.0

Rand-6
Actual 185.5 167.1 150.3 137.5 190.9 179.3 168.4 153.4

Predicted 158.3 133.6 114.4 99.1 160.6 147.0 135.4 125.6

Rand-7
Actual 151.2 102.7 63.8 51.1 22.9 33.7 54.3 67.8

Predicted 195.8 143.0 107.3 82.3 182.8 142.6 113.7 92.2

Rand-8
Actual 126.6 81.9 51.1 30.9 131.8 83.9 64.8 39.7

Predicted 93.8 58.5 40.8 32.0 76.9 56.4 46.1 41.0

Rand-9
Actual 33.9 18.4 13.1 9.0 45.0 31.0 22.7 16.3

Predicted 28.1 17.4 12.1 9.4 38.5 29.4 23.0 18.3

Rand-10
Actual 63.4 48.9 40.7 30.9 113.8 94.7 72.9 54.2

Predicted 54.6 36.8 27.9 23.4 105.6 85.3 70.2 58.6

Table 2. Runtimes for random instances up to 384 cores
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Instance
Sparrow - Speedup on k cores CCASAT - Speedup on k cores
48 96 192 384 48 96 192 384

Rand-1
Actual 4.8 5.6 6.3 6.9 2.8 3.2 3.7 4.0

Predicted 5.9 7.1 8.5 10.0 3.3 3.8 4.3 4.8

Rand-2
Actual 4.7 5.2 6.0 7.0 2.6 2.9 3.1 3.4

Predicted 5.4 6.5 7.7 9.0 3.2 3.6 4.1 4.6

Rand-3
Actual 4.5 5.2 5.8 6.4 2.1 2.3 2.5 2.7

Predicted 5.4 6.5 7.7 9.0 3.2 3.6 4.1 4.6

Rand-4
Actual 3.8 4.3 4.8 5.5 1.9 2.1 2.2 2.4

Predicted 4.4 5.1 6.0 6.9 2.2 2.4 2.6 2.8

Rand-5
Actual 4.3 4.7 5.2 5.8 1.9 2.1 2.2 2.4

Predicted 5.0 6.0 7.0 8.1 2.2 2.4 2.6 2.8

Rand-6
Actual 4.1 4.5 5.0 5.5 1.8 1.9 2.1 2.3

Predicted 4.7 5.6 6.6 7.6 2.2 2.4 2.6 2.8

Rand-7
Actual 22.9 33.7 54.3 67.8 9.5 13.7 18.5 22.7

Predicted 32.3 48.5 64.8 77.8 10.5 13.4 16.9 20.8

Rand-8
Actual 26.9 41.7 66.8 110.6 15.2 23.9 30.9 50.5

Predicted 36.3 58.3 83.5 106.5 26.0 35.5 43.4 48.9

Rand-9
Actual 30.3 55.8 78.1 114.2 10.5 15.3 20.9 29.1

Predicted 36.5 58.8 84.6 108.3 13.2 17.3 22.2 27.9

Rand-10
Actual 27.2 35.2 42.3 55.7 6.6 8.0 10.3 13.9

Predicted 31.6 46.8 61.7 73.4 7.3 9.1 11.1 13.3

Table 3. Speedup for random instances up to 384 cores

is also important to note that the speedup factor of the reference solvers for this problem

family is far from linear (ideal), a phenomenon described by the predicted model.

Finally, it can also be observed that random instances around the phase transition

exhibit a lower speedup factor than the remaining random instances. For instance, the

best empirical speedup factor obtained for instances in the phase transition is 7.0 for

Sparrow and 3.4 for CCASAT; and the best speedup factor obtained for instances outside

the phase transition is 114.2 for Sparrow and 50.5 for CCASAT.

Let’s switch our attention now to crafted instances, for which we have to treat dif-

ferently CCASAT and Sparrow. For CCASAT, we were unable to find a theoretical

distribution which fits the empirical data. It should be also noticed that CCASAT has

been mainly designed and tuned to handle random instances. Let us look for instance

at Figure 2(a), which depicts the cumulative runtime distribution of CCASAT to solve

Crafted-1 using the two reference distributions detailed in this paper (lognormal and ex-

ponential) and two extra distributions (Weibull and beta-prime). None of the theoretical

distributions seems to be a good approximation of the empirical data. More precisely,

the KS test reported a p-value of 2.7·10−7 (lognormal); 7.0·10−24 (exponential); 2.4·10−6

(Weibull); and 6.9·10−15 (beta-prime). Therefore, none of the theoretical distributions

pass KS test with a high-enough p-value. We also experimented with other instances and

observed a similar behavior.
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Instance Alg Min Max Mean
p-value

Exp. dist. Lognormal dist.

Crafted-1 Sparrow 9.9 10800.0 3440.3 0.02 1.2·10−4

Crafted-2 Sparrow 1.0 10800.0 2711.2 0.57 1.4·10−4

Crafted-3 Sparrow 8.7 10800.0 3432.7 0.14 1.1·10−3

Crafted-4 Sparrow 2.2 10800.0 2701.6 0.11 9.6·10−3

Crafted-5 Sparrow 4.1 10800.0 1564.1 0.95 9.2·10−4

Crafted-6 Sparrow 2.9 10800.0 3599.6 0.01 1.0·10−5

Crafted-7 Sparrow 4.4 10800.0 3598.7 0.01 7.8·10−6

Crafted-8 Sparrow 3.5 5456.0 972.046 0.67 0.17

Crafted-9 Sparrow 1.9 7876.5 1298.24 0.97 7.0·10−3

Table 4. Sequential performance of Sparrow on crafted instances

For Sparrow on all crafted instances, the KS test shows a much better p-value for the

exponential distribution than for the lognormal one, see Table 4. The confidence level is

quite high for the instances Crafted-2,-3,-4,-5,-8,-9, with p-value up to 0.97, while the p-

value is between 0.01 and 0.02 for Crafted-1,-6,-7. Also, as the minimum runtime is much

smaller than the mean (at least 300 times smaller), we can approximate the empirical

data by a non-shifted exponential distribution (Truchet et al. 2013).

As can be seen in Table 5 the multi-walk parallel approach scales well for Sparrow

on crafted instances as the number of cores increases. Indeed a nearly linear speedup is

obtained for nearly all the instances. As expected, the speedup predicted by our model

is optimal, and this result is consistent with those obtained in (Hoos and Stützle 1999).

Figure 2 shows the empirical and predicted performance of Sparrow to solve the in-

stance Crafted-1. In particular, we would like to point out that the exponential distribu-

tion fits well the empirical data on 384 cores (Figure 2(c)). On the other hand, Figure

2(d) shows, as expected, the predicted (ideal) linear speedup, and the speedup of the em-

pirical data is also linear but with a slightly lower slope. In addition, the same behavior

can be observed for the remaining instances, see Table 5 for complete results.

4.2 Analysis

Several works have been devoted to the experimental study of parallel multi-walk exten-

sions of local search algorithms (Arbelaez and Codognet 2012; Arbelaez and Codognet

2013; Hoos and Stütze 2005), but we presented in this paper the first approach (to our

knowledge) which applies order statistics in order to predict the parallel performance of

local search algorithms for SAT. Although most of the literature on runtime distributions

uses the exponential distribution to estimate the theoretical performance of the parallel

algorithm, results in Section 4.1 show that it is sometimes more suitable to characterize

the empirical runtime distribution by a lognormal or a shifted exponential distribution.

Interestingly, the phase transition point also seems to have important consequences in

the parallel performance of local search algorithms. For Sparrow at least, which is the

solver with an overall better speedup factor, the instances in the phase transition region
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Instance
Runtime on k cores Speedup ok k cores

48 96 192 384 48 96 192 384

Crafted-1
Actual 97.7 43.7 19.1 9.8 35.1 78.6 179.6 349.8

Predicted 71.6 35.8 17.9 8.9 48.0 96.0 192.0 384.0

Crafted-2
Actual 67.8 36.4 17.5 7.2 39.9 74.4 154.7 375.2

Predicted 56.4 28.2 14.1 7.0 48.0 96.0 192.0 384.0

Crafted-3
Actual 94.8 49.3 23.2 11.9 36.1 69.6 147.6 286.1

Predicted 71.5 35.7 17.8 8.9 48.0 96.0 192.0 384.0

Crafted-4
Actual 87.5 42.0 17.3 9.7 30.8 64.2 155.4 277.8

Predicted 56.2 28.1 14.0 7.0 48.0 96.0 192.0 384.0

Crafted-5
Actual 33.7 15.1 7.6 4.2 46.3 103.2 204.1 371.6

Predicted 32.5 16.2 8.1 4.0 48.0 96.0 192.0 384.0

Crafted-6
Actual 130.0 69.8 25.6 12.8 27.6 51.5 140.5 279.5

Predicted 74.9 37.4 18.7 9.3 48.0 96.0 192.0 384.0

Crafted-7
Actual 95.0 51.3 28.4 11.6 37.8 70.0 126.3 308.0

Predicted 74.9 37.4 18.7 9.3 48.0 96.0 192.0 384.0

Crafted-8
Actual 17.2 10.8 5.3 2.6 56.4 89.6 181.1 363.6

Predicted 20.2 10.1 5.0 2.5 48.0 96.0 192.0 384.0

Crafted-9
Actual 27.2 12.1 5.9 3.6 47.5 106.6 217.3 358.0

Predicted 27.0 13.5 6.7 3.3 48.0 96.0 192.0 384.0

Table 5. Parallel performance of Sparrow on crafted instances
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Figure 2. Performance summary on crafted-1

are lognormally distributed, while instances outside the phase transition are shifted-

exponentially distributed. Another interesting aspect is that in theory the probability of

returning a solution in no iterations is non-null because of the (uniform) random initial-

ization. However, in practice a minimum number of steps is in general required to reach
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a solution cf. (Hoos and Stützle 1999; Ribeiro et al. 2012) for the sequential case, and

therefore experimental data may be better approximated by a shifted distribution with

x0 > 0, as it is the case in the random instances. This leads to a non-linear speedup with

a finite limit, even in the case of an exponential distribution. Indeed, the experimental

speedup for both CCASAT and Sparrow on random instances is far from linear. On the

contrary, Sparrow on crafted instances has a linear speedup which could be explained

by the fact that the minimal runtime is negligible w.r.t. the mean time (i.e., 1/λ for an

exponential distribution). Therefore, the statistical test succeed for x0 ≃ 0. This suggests

that, in general, the comparison between the minimal time and the mean time is a key

element for the study of the parallel behavior.

We do not discard that other parameters for the reference solvers would lead to other

theoretical distributions (e.g. exponential distribution for random instances). In (Kroc

et al. 2010) the authors showed that a well-tuned version of WalkSAT is exponentially

distributed for instances in the phase transition region. However, we experimented by

increasing the ps (smoothing probability) parameter of Sparrow and still obtained the

same theoretical distribution. In addition, when ps is too high the solver was unable to

solve the instances within the 3 hour time limit. Unfortunately, CCASAT is only available

in binary form, and it is not possible to experiment with other parameters for the solver.

We expect this work to have significant implications in the area of automatic parameter

tuning to devise scalable local search algorithms. Currently, most parameter tuning tools

(e.g. (Hutter et al. 2009; Ansótegui et al. 2009)) are designed to improve the expected

mean (or median) runtime, however as observed in this paper, unless the algorithms

exhibit a non-shifted exponential distribution, their parallel performance is far from linear

and varies from algorithm to algorithm.

5 Conclusions and Future Work

This paper has presented a model to estimate and evaluate the performance of parallel

local search algorithms for SAT. This model, based on order statistics, predicts the

parallel runtime execution of a given local search algorithm by analyzing the runtime

distribution of its sequential version. Interestingly, we have observed that, for the two

different algorithms and the variety of instances considered in this study, the runtime

distribution can be characterized using two types of distributions: exponential (shifted

and non-shifted) and lognormal.

Extensive experimental results using the best local search solvers from the previous

SAT competition, indicate that the model accurately matches the parallel performance

of the empirical experiments up to 384 cores. Moreover, the theoretical model confirms

the empirical results reported in the literature for local search algorithms (Arbelaez and

Codognet 2013; Shylo et al. 2011) in showing that the best sequential local search solver

is not always the best one in parallel settings.

A natural extension of this work would consist in estimating the parallel performance

of a given algorithm for unseen instances, even without full sequential execution. To this

end, we plan to combine the statistical model presented in this paper with the extensive

literature for predicting the runtime a of a given sequential algorithm (see (Xu et al.

2008)). In addition, we also plan to investigate the application of more (complex) distri-
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butions to characterize the distribution of other local search algorithms (e.g. CCASAT

for crafted instances).
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