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Abstract

This paper explores the contributions of Answer Set Programming (ASP) to the study of
an established theory from the field of Second Language Acquisition: Input Processing.
The theory describes default strategies that learners of a second language use in extract-
ing meaning out of a text, based on their knowledge of the second language and their
background knowledge about the world. We formalized this theory in ASP, and as a result
we were able to determine opportunities for refining its natural language description, as
well as directions for future theory development. We applied our model to automating
the prediction of how learners of English would interpret sentences containing the passive
voice. We present a system, PIas, that uses these predictions to assist language instructors
in designing teaching materials. To appear in Theory and Practice of Logic Programming
(TPLP).
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1 Introduction

This paper extends a relatively new line of research that explores the contributions

of Answer Set Programming (ASP) (Gelfond and Lifschitz 1991; Niemelä 1998; Marek and Truszczynski 1999)

to the study and refinement of qualitative scientific theories (Balduccini and Girotto 2010;

Balduccini and Girotto 2011). As pointed out by Balduccini and Girotto (2010),

qualitative theories tend to be formulated in natural language, often in the form of

defaults. Modeling these theories in a precise mathematical language can assist sci-

entists in analyzing their theories, or in designing experiments for testing their pre-

dictions. It was shown that ASP is a suitable tool for this task (Balduccini and Girotto 2010;

Balduccini and Girotto 2011), as it provides means for an elegant and accurate

representation of defaults, dynamic domains, and incomplete information, among

others. In our work, we explore the applicability of ASP to the formalization and

analysis of a theory from the field of Second Language Acquisition — a discipline

that studies the processes by which people learn a second language.1

1 In the field of Second Language Acquisition, the expression “second language” denotes any
language that is acquired after the first one.

http://arxiv.org/abs/1312.2506v1
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Our main goal is to illustrate different ways in which modeling the selected theory

in ASP can benefit the future development of this theory. In particular, we will focus

on contributions to (1) the refinement of this theory; (2) the automated testing of its

statements; and (3) the development of practical applications for language teaching

and testing.

The theory we consider is VanPatten’s Input Processing theory (VanPatten 1984;

VanPatten 2004). We chose it because it is an established theory in the field of

Second Language Acquisition, with important consequences on foreign language

education. It is specified in English in the form of a compact set of principles. Input

Processing (IP) describes the default strategies that second language learners use

to get meaning out of text written or spoken in the second language, during tasks

focused on comprehension, given the learners’ limitations in vocabulary, working

memory, or internalized knowledge of grammatical structures. As a result of apply-

ing these strategies, even learners with limited grammatical expertise can often, but

not always, interpret input sentences correctly. Once grammatical information is in-

ternalized, the default strategies are overridden by the always reliable grammatical

knowledge. Hence, it can be said that IP describes an example of nonmonotonic

reasoning.

IP predicts that beginner learners of English reading the sentence “The cat was

bitten by the dog” would only be able to retrieve the meanings of the words “cat”,

“bitten”, and “dog” and end up with something like the sequence of concepts CAT-

BITE-DOG. Although they may notice the word “was” or the ending “-en” of the

verb “bitten”, they would not be able to process them (i.e., connect them with

the function they serve, which is to indicate passive voice) because of limitations in

processing resources. In this context, the expression processing resources (or simply

resources) refers to the amount of information that a learner can hold and process

in his/her working memory during real time comprehension of input sentences.

Additionally, IP predicts that the sentence above, now mapped into the sequence

of concepts CAT-BITE-DOG, would be incorrectly interpreted by these learners as

“The cat bit the dog” because of a hypothesized strategy of assigning agent status

to the first noun of a sentence.

IP, as described by VanPatten (2004), consists of two principles formulated as

defaults. Each principle contains sub-principles that represent refinements of, or

exceptions to, the original defaults. For example, a sub-principle of IP predicts that

beginner learners of English would correctly interpret the sentence “The shoe was

bitten by the dog” because agent status cannot be assigned to the first noun, as a

shoe cannot bite. This can happen even if the learner has not yet internalized the

structure of the passive voice in English or did not have the resources to process it

in the above sentence. Similarly for the sentence “The man was bitten by the dog”

because it is unlikely for a man to bite a dog. These strategies can also be applied

to stories consisting of several sentences where information from previous sentences

conditions the interpretation of latter ones. For example, the second sentence of the

story: “The cat killed the dog. Then, the dog was pushed by the cat.” would be

interpreted correctly even by beginner learners, because a dead dog cannot push.

IP was shown to be applicable to other grammatical forms (e.g., clitic pronouns,
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subjunctive) and other languages (e.g., Spanish, Italian, German, Chinese), inde-

pendently from the learners’ native language (VanPatten 1984).

ASP is a natural choice for modeling the IP theory, first of all because defaults

and their exceptions can be represented in ASP in an elegant and precise man-

ner. Moreover, IP takes into consideration the learners’ knowledge about the dy-

namics of the world (e.g., people know under what conditions a biting action can

occur); in ASP, there is substantial research on how to represent actions and dy-

namic domains in which change is caused by actions (Gelfond and Lifschitz 1998;

Balduccini and Gelfond 2003). All these features of ASP were useful in creating a

formalization of IP, as shown in Section 2. We demonstrate how the process of mod-

eling IP in ASP allowed us to analyze the theory’s natural language description. As

a result, we were able to notice some areas that need more clarification or could be

further investigated. Next, we used our formalization of IP in making automated

predictions about how learners would interpret simple sentences and paragraphs

containing the passive voice in English. This contribution, described in Section 3,

can facilitate the testing of the statements of IP or the tuning of its parameters.

Based on these predictions, we created a system, PIas , that can assist language

teachers in designing instructional materials, as discussed in Section 4. PIas re-

lies on the guidelines of an established teaching method—Processing Instruction

(VanPatten 1993; VanPatten 2002)—that is based on the principles of Input Pro-

cessing. We end the paper with conclusions and directions for future work.

The current article extends a previous version of our work (Inclezan 2012). In

the remainder of the paper, we assume the reader’s familiarity with ASP.

2 An Analysis of IP Based on Its ASP Model

In this section, we describe our formalization of IP and demonstrate that using the

precise language of ASP for this purpose can highlight opportunities for a future

refinement and improvement of this theory.

2.1 Logic Form Encoding of a Text

The IP theory assumes that a learner is given a text (called input in the enunciation

of IP) — a paragraph with one or more sentences. Our logic form encoding of a

text uses three sorts, words , sentences , and paragraphs , and two relations:

• word of sent(K , S ,W ) – the K th word of sentence S is W ;

• sent of par(K ,P , S ) – the K th sentence of paragraph P is S .

For example, the paragraph “The cat killed the dog. Then, the dog was pushed by

the cat.” in the introduction is encoded as:
sent of par(1, p, s1)·

sent of par(2, p, s2)·

word of sent(1, s1, “the”) · . . . word of sent(5, s1, “dog”)·

word of sent(1, s2, “then”) · . . . word of sent(8, s2, “cat”)·
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2.2 The First Principle of IP

Principle 1 of IP describes how likely it is for words in a sentence to get processed by

a learner engaged in a real time comprehension task, depending on the grammatical

category to which words belong. In other words, given a sentence and a learner’s

knowledge of the second language, Principle 1 predicts a possibly partial mapping

of words of this sentence into cognitive concepts.

Principle 1 makes reference to certain linguistic terms: a lexical item is the basic

unit of the mental vocabulary (e.g., “cat”, “look for”). Content words are those that

carry the meaning of a sentence: nouns, verbs, adjectives, and adverbs. Forms, also

called “grammatical structures”, are inflections, articles, or particles (e.g., the third-

person-singular marker “-s” attached to verbs as in “makes”; the article “the”). It

is assumed that learners that have internalized a form fully also know, implicitly,

whether that form is meaningful, which means that it contributes meaning to the

overall comprehension of a sentence, or not.2 Similarly, they are able to distinguish

between redundant and nonredundant meaningful forms, where a redundant form is

one whose meaning can usually be retrieved from other parts of a sentence. Finally,

the expression “processing resources” refers to resources available in the learner’s

working memory for holding and processing incoming information.

Principle 1 is formulated by VanPatten (2004) as follows:

1. The Primacy of Meaning Principle: Learners process input for meaning before

they process it for form.

1a. The Primacy of Content Words Principle: Learners process content words in

the input before anything else.

1b. The Lexical Preference Principle: Learners will tend to rely on lexical items

as opposed to grammatical form to get meaning when both encode the same

semantic information.

1c. The Preference for Nonredundancy Principle: Learners are more likely to

process nonredundant meaningful grammatical forms before they process re-

dundant meaningful forms.

1d. The Meaning-Before-Nonmeaning Principle: Learners are more likely to pro-

cess meaningful grammatical forms before nonmeaningful forms irrespective

of redundancy.

1e. The Availability of Resources Principle: For learners to process either redun-

dant meaningful grammatical forms or nonmeaningful forms, the processing

of overall sentential meaning must not drain available processing resources.

1f. The Sentence Location Principle: Learners tend to process items in sentence

initial position before those in final position and these latter in turn before

those in medial position (all other processing issues being equal).

2 An example of a nonmeaningful form is grammatical gender inflection in Romance languages,
which manifests itself on words associated with nouns, such as determiners. For instance, in
Spanish, “the moon” is feminine (“la luna”), while “the sun” is masculine (“el sol”). The
form is not meaningful because it does not reflect a “biological difference in the real world”
(VanPatten 2003), i.e., grammatical gender does not equal biological gender.
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Example 1

Let us show what predictions Principle 1 makes about the processing of words from

the sentence:

S1. The cat was bitten by the dog.

According to 1a, content words have the highest chance of getting processed, in this

case: “cat”, “bitten”, and “dog”. Among them, based on 1f, “cat” has the highest

chance as it is in sentence initial position, followed by “dog” in final position, and

then by “bitten” in medial position.

The next chance belongs to meaningful forms, based on 1d, in this case: “the”,

“was”, as well as “cat” as an indicator of third-person singular, and “bitten” (more

precisely the suffix “-en”) as an indicator of passive voice. According to 1c, out of

these forms, the nonredundant ones are more likely to get processed, in particular

the definite article “the” and the word “cat” as an indicator of third-person singular,

both in initial position, followed by “the” in final sentence position, and then by the

forms “was” as an indicator of past tense and “bitten” as an indicator of passive

voice in medial position.

Principle 1e says that the whole sentence has the next chance of getting processed,

followed by the redundant form “by”. Finally, according to 1b, the redundant form

“was” (i.e., the suffix “-s”) as an indicator of third-person singular may or may

not get processed, independently of available resources, because its meaning was

already obtained from the word “cat”. Note that, how many words actually get

processed depends on the resource capacity of a learner.

Encoding a Learner’s Knowledge of the Second Language

The IP theory is supposed to be applicable independently from the mental model

of a second language that is assumed (VanPatten 2004). This allows us to make the

simplification of not considering inflections on a word (e.g., “-s”, “-en”) separately

from the rest of the word. As a result, a word can be viewed as belonging to multiple

categories. For instance, “makes” can be viewed as a content word referring to the

action of making something; it can also be perceived as a form indicating that the

doer is not the speaker nor the addressee and that the action is occurring in the

present (due to the ending “-s”).

Given the categories listed in Principle 1, we divide words into two subclasses,

content words and forms ; forms are divided intom forms (meaningful) and nm forms

(nonmeaningful), while m forms are further divided into r m forms (redundant)

and nr m forms (nonredundant). The leaves of this hierarchy are denoted by a spe-

cial sort, leaf ctg. All nodes of the hierarchy are denoted by the sort category. We

introduce a new sort, concept , denoting language-independent cognitive concepts,

such as entities, actions, or semantic concepts (e.g., the concepts of past tense and

passive voice). Additionally, we specify a learner’s knowledge of the second language

using:

• in(W ,Ctg) – word W belongs to category Ctg;

• meaning(W ,Ctg,C ) – word W interpreted as a member of category Ctg has

the meaning C .
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Our ASP Model of Principle 1

After careful analysis, it is clear that Principle 1 specifies a partial order between

words in a sentence, given the category they belong to and their sentential position.

Greater elements in this ordering have more chances of being processed than lesser

elements. It is important to note that we only realized that a partial order was

described when attempting to formulate Principle 1 in ASP. The fact was not

immediately obvious to us because the sub-principles specifying an order based on

word categories (1a, 1c, 1d) and sentential position (1f) are not grouped together

in the text of the theory.3 Hence, we can say that modeling IP in ASP led us to a

better understanding of the theory.

We start formalizing Principle 1 by looking at its sub-principles 1a, 1c, and 1d,

which describe a partial order on word categories. To model it, we define a relation

is ml ctg on categories, where is ml ctg(Ctg1,Ctg2) says that words from category

Ctg1 are more likely to get processed than words from category Ctg2. Based on

Principles 1a, 1d, and 1c, respectively, we have the facts:

is ml ctg(content words , forms)·

is ml ctg(m forms , nm forms)·

is ml ctg(nr m forms , r m forms)·

Next, we look at Principle 1f, which describes a similar partial order on sentence

positions. To specify the different possible sentence positions, we define a sort

sentence position with three elements: initial , medial , and final . We use a rela-

tion is ml pos(Pos1,Pos2), which says that words in sentence position Pos1 are

more likely to be processed than words in Pos2 (as long as they belong to the same

word category). We encode Principle 1f via the facts:

is ml pos(initial , final)·

is ml pos(final ,medial)·

By ml ctg and ml pos , respectively, we denote the transitive closures of the two

relations above. In addition, we extend the relation ml ctg down to subclasses of

categories, but not upwards to superclasses.

Based on the two relations above, we can now define the partial relation between

words, given their category and position. Our modeling process illuminated the fact

that the IP theory does not say how many words starting from the beginning of

a sentence are part of the “sentence initial position.” This expression needs to be

precisely defined in the future. For the moment, we define initial position as the first

n words of a sentence, where n is a parameter of the encoding. Similarly for final

positions. We use the relation pos(K , S ,Pos) to say that the K th word of sentence S

is in Pos sentence position. We introduce a relation ml wrd(K1, S ,Ctg1,K2,Ctg2),

which says that the K th
1

word of S is more likely to get processed for its interpre-

tation as an element of the category Ctg1 than the K th
2

word of the same sentence

3 Sub-principles 1b and 1e describe constraints that can further limit the chances of a word to
get processed.
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for category Ctg2:

ml wrd(K1, S ,Ctg1,K2,Ctg2) ← leaf ctg(Ctg1), leaf ctg(Ctg2),

word of sent(K1, S ,W1), in(W1,Ctg1),

word of sent(K2, S ,W2), in(W2,Ctg2),

ml ctg(Ctg1,Ctg2)·

ml wrd(K1, S ,Ctg,K2,Ctg) ← leaf ctg(Ctg),

word of sent(K1, S ,W1), in(W1,Ctg),

word of sent(K2, S ,W2), in(W2,Ctg),

pos(K1, S ,Pos1), pos(K2, S ,Pos2),

ml pos(Pos1,Pos2)·

The first rule relates to Principles 1a, 1c, and 1d, as it is based on the ordering

of categories; the second rule is about Principle 1f, as it uses the sentence position

ordering, for a given category of words. The effects of the ordering ml wrd on the

processing of words of a sentence will be seen later.

Next, we specify that, normally, a word will get processed (i.e., be mapped into

a concept) if enough resources are available. We introduce a relation map(K , S ,

Ctg,C ), which says that the K th word of S was processed according to category

Ctg and was mapped into concept C . We encode Principle 1 as:

map(K , S ,Ctg,C ) ← word of sent(K , S ,W ), in(W ,Ctg),

leaf ctg(Ctg), meaning(W ,Ctg,C ),

enough resources available(K , S ,Ctg),

not ab(dmap(K , S ,Ctg,C ))·

(1)

The IP theory does not give any details about the initial resources in working

memory available to a learner for processing a sentence, nor about how learners

at different levels of proficiency consume those resources while attaching meaning

to words. This is another aspect of the theory that needs more careful consider-

ation. To solve this issue, we created a simple model of resources, in which we

assume a fixed resource capacity available per sentence; this capacity decreases by

one unit with each association of meaning to a word. We introduced a predicate

resources consumed(N ,K , S ,Ctg), which says that N resources are consumed in

processing those words that are more likely to get processed than the K th word of

sentence S for category Ctg. The definition of this relation captures the implications

of the ordering ml wrd on the processing of words:

resources consumed(N ,K , S ,Ctg)←

word of sent(K , S ,W ), in(W ,Ctg), leaf ctg(Ctg),

N = #count {ml wrd(K1, S ,Ctg1,K ,Ctg) :

leaf ctg(Ctg1) }·

Although this model does not reflect the complexities of working memory, it is

enough for our purposes, as the IP theory only focuses on the expected end result

of processing a sentence in working memory: certain word-to-concept associations

will be made while others will not. To model Principle 1e, we assume that processing

the whole sentence decreases available resources by one unit.
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The only remaining principle is 1b. Based on its accompanying explanation pro-

vided by VanPatten (2004), its meaning is that a form that is normally redundant

may not be processed at all if it is actually redundant in that sentence (i.e., its

meaning was already extracted from some other word). We encode this knowledge

as a possible weak exception to the default in the rule for predicate map, via a

disjunctive rule:

ab(dmap(K , S ,Ctg,C )) or ¬ab(dmap(K , S ,Ctg,C ))←

word of sent(K , S ,W ),

meaning(W ,Ctg,C ),

word of sent(K1, S ,W1),

K 6= K1, W 6= W1,

map(K1, S ,Ctg1,C )·

(2)

The informal reading of this axiom is that meanings that are actually redundant in

a sentence may or may not be exceptions to the default for relation map.

2.3 The Second Principle of Input Processing

Principle 2 describes the strategies that learners employ to understand the mean-

ing of a sentence. The input of Principle 2 is the output of Principle 1 for a given

sentence (i.e., a mapping of words to concepts), together with the learner’s back-

ground knowledge about the world. Its output is an event denoting the meaning

extracted by the learner from that sentence. When considering a story consisting of

several sentences, the output of Principle 2 is a series of events that correspond to

the sentences in that paragraph. For simplicity, we assume here that each sentence

describes a single event, and that sentences of a story describe events in the order in

which those events happened. Principle 2 is formulated by VanPatten (2004; 2002)

as follows:

2. The First Noun Principle (FNP): Learners tend to process the first noun or

pronoun they encounter in a sentence as the agent.

2a. The Lexical Semantics Principle: Learners may rely on lexical semantics,4

where possible, instead of on word order to interpret sentences.
2b. The Event Probabilities Principle: Learners may rely on event probabilities,

where possible, instead of on word order to interpret sentences.
2c. The Contextual Constraint Principle: Learners may rely less on the First

Noun Principle if preceding context constrains the possible interpretation of

a clause or sentence.
2d. Prior Knowledge: Learners may rely on prior knowledge, where possible, to

interpret sentences.
2e. Grammatical Cues: Learners will adopt other processing strategies for gram-

matical role assignment only after their developing system5 has incorporated

other cues.

4 Lexical semantics refers to the meaning of lexical items.
5 Developing system refers to the representation of grammatical knowledge in the mind of the
second language learner. This representation changes as the learner acquires more knowledge.
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Example 2

We illustrate the predictions made by Principle 2 for several sentences. First, we

consider the case of beginner learners, who have limited resources and vocabulary,

and can only process the content words out of a sentence. Based on Principle 1,

beginners would map the words “cat”, “bitten”, and “dog” in sentence S1 from

Example 1 into the concepts CAT, BITE, and DOG respectively and would not be

able to process any other words. Principle 2 predicts that beginners would assign

agent status to the first noun in S1 and hence interpret S1 incorrectly as “The cat

bit the dog.”

Beginners are expected to correctly interpret the sentence:

S2. The shoe was bitten by the dog.

as a shoe cannot bite a dog (lexical semantics). Based on Principle 2a, lexical

semantics override the assignment of agent status to the first noun. The sentence:

S3. The man was bitten by the dog.

is also supposed to be interpreted correctly by beginners because men normally do

not bite animals (event probabilities and Principle 2b).

Principle 2d predicts the correct interpretation of:

S4. Holyfield was bitten by Tyson.

assuming that learners have the prior knowledge that Tyson bit Holyfield.

Let us now consider some short paragraphs:

P1. (S5.) The cat pushed the dog. (S6.) Then, the dog was bitten by the cat.

Sentence S6 is supposed to be incorrectly interpreted by beginners because none of

the Principles 2a-e applies. Instead, the second sentence of the paragraph:

P2. (S7.) The cat killed the dog. (S8.) Then, the dog was pushed by the cat.

would be interpreted correctly due to lexical semantics in context, as predicted by

Principles 2a and 2c together.

Finally, let us consider advanced learners who possess enough resources and a

large vocabulary, which allow them to map all words of a sentence into concepts.

According to Principle 2e, these learners are expected to interpret all above sen-

tences correctly, as they are able to detect the use of the active or passive voice and

can rely on grammatical cues for sentence interpretation.

Encoding a Learner’s Background Knowledge about the World

Learners are assumed to possess some background knowledge about the world and

its dynamics. Three important types of information are supposed to be derivable

from this knowledge base, and we capture them using the predicates:

• impossible(Ev , I ) – event Ev is physically impossible to occur at step I of the

narrated story;

• unlikely(Ev , I ) – event Ev is unlikely to occur at step I of the narrated story;

• hpd(Ev) – event Ev is known to have happened in reality.

To model the background knowledge base of a learner, we use known methodologies

for representing dynamic domains in ASP (Gelfond and Lifschitz 1998; Balduccini and Gelfond 2003).

As a result, atoms of the type impossible(Ev , I ) are derived from axioms spec-

ifying preconditions for the execution of actions (i.e., executability conditions);
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unlikely(Ev , I ) atoms are obtained from axioms encoding default statements and

their exceptions (Baral and Gelfond 1994); hpd(Ev) atoms are simply stored as a

collection of facts.6 Note that our formalization of the IP theory is independent

from the underlying model of the world and its dynamics. This means that other

models could be easily coupled with our formalization of Principle 2, as long as the

model can derive atoms of the three types mentioned above.

Our ASP Model of Principle 2

We assume that each sentence in the input describes exactly one event, and that

the N th sentence of a paragraph describes the N th occurring event.

We start by introducing some terminology. By the direct (reverse) meaning of

a sentence we mean the action denoted by the verb of the sentence, and whose

agent is the entity denoted by the first (second) noun appearing in the sentence.

For instance the direct meaning of “The dog was bitten by the cat” is the event of

“the dog biting the cat,” while its reverse meaning is the event of “the cat biting

the dog.” We use the predicate dir rev m(Dir ,Rev , S ) to say that Dir is the direct

meaning and Rev is the reverse meaning of sentence S .

Principle 2, also called the First Noun Principle (FNP), is a default statement

and its sub-principles express exceptions to it. To encode Principle 2, we use a

relation extr m(Ev , S , fnp) saying that the learner extracted the meaning Ev from

sentence S by applying FNP:

extr m(Dir , S , fnp) ← not extr m(Rev , S , fnp),

dir rev m(Dir ,Rev , S )·

The rule says that learners applying the FNP will extract the direct meaning from

a sentence, unless they extract the reverse meaning.

We represent Principle 2a using the axiom:

extr m(Rev , S , fnp) ← impossible(Dir , I ),

not impossible(Rev , I ),

dir rev m(Dir ,Rev , S ),

sent of par(I ,P , S )·

Informally, it says that learners will assign the reverse meaning to a sentence if this

is a possible meaning, and the direct meaning is impossible.

6 We considered using probabilistic ASP languages such as P-log (Baral et al. 2009) to model
event probabilities. However, we decided against it because we believe that our naive model
is closer to how humans record information in their minds, and because finding the exact
probability of an event (e.g., how likely it is for a cat to bite a dog) is a complex task in itself.
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The formalization of Principle 2b will be similar:

extr m(Rev , S , fnp) ← not impossible(Dir , I ),

unlikely(Dir , I ),

not hpd(Dir),

not impossible(Rev , I ),

not unlikely(Rev , I ),

dir rev m(Dir ,Rev , S ),

sent of par(I ,P , S )·

I.e., a sentence will be assigned its reverse meaning if the direct meaning is possible,

but unlikely and not known to have actually happened, while the reverse meaning

may hypothetically occur (i.e., it is possible and not unlikely).

Principle 2d is encoded as follows:

extr m(Rev , S , fnp) ← hpd(Rev),

dir rev m(Dir ,Rev , S ),

sent of par(I ,P , S )·

This says that a learner using the FNP will extract the reverse meaning if he knows

that this event actually happened.

The preference for grammatical cues when such cues can be interpreted (Principle

2e) is encoded via the rules:

extr m(Ev , S ) ← extr m(Ev , S , grm cues)·

extr m(Ev , S ) ← extr m(Ev , S , fnp),

not extr m by(S , grm cues)·

extr m by(S ,X ) ← extr m(Ev , S ,X )·

where extr m(Ev , S ) says that Ev is the meaning extracted from S ; extr m(Ev ,

S , grm cues) – the meaning Ev was extracted from S based on grammatical cues

(which vary for different grammatical forms); and extr m by(S ,X ) – the meaning of

S was extracted based on strategy X . The definition of extr m(Ev , S , grm cues),

not shown here, captures the fact that different grammatical forms have differ-

ent grammatical cues. For instance, the cues for passive voice in English are the

past participle (e.g., “bitten”) and the passive voice auxiliary (e.g., “was”). An

extr m(Ev , S , grm cues) atom belongs to an answer set if the learner was able to

map the main grammatical form(s) in the sentence (in the case of passive voice,

the past participle and the passive voice auxiliary) into the corresponding abstract

concept (here, passive voice), and if Ev is the correct interpretation of sentence S .

In our formalization of FNP, Principle 2c was embedded in the representation of

Principles 2a, 2b, and 2d. The one thing left for contextual constraints is to record

the events corresponding to the meaning extracted from previous sentences of the

story, assuming the first time step of the story is 1.

occurs(Ev , I ) ← extr m(Ev , S ),

sent of par(I ,P , S )·

Notice that Principle 2c specifies that preceding sentences in a paragraph con-

strain the interpretation of latter sentences, but does not mention a possible effect
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of succeeding sentences on the re-interpretation of earlier sentences that were ini-

tially processed incorrectly. Also, Principle 2 in general does not address sentences

that describe events which cannot physically take place in the real world, unless

understood metaphorically (e.g., “The dog was bitten by the shoe.”). These are

interesting directions of research that the IP theory could address.

3 Automating the Predictions of IP

We used our model of the IP theory to generate automated predictions about how

sentences like the ones in Examples 1 and 2 would be interpreted by learners of

English. We considered two different types of learners: advanced and beginners.

They both shared the same background knowledge about the world, but had dif-

ferent knowledge about the second language. The advanced learner internalized the

meaning of all content words and forms in our vocabulary, whereas beginners would

only master the meaning of content words, but not forms. For each type of learner,

we created a logic program Π (indexed by either adv or beg) by putting together the

corresponding knowledge of the second language, the background knowledge about

the world, and the formalizations of the two principles. For any text X, by lp(X )

we denote the logic form encoding of X as presented in Section 2.1. The answer

set(s) of the program Π ∪ lp(X ) corresponds to predictions of the IP theory about

how a learner would interpret X .

We first run tests for Principle 1 by using sentence S1, copied here with its words

annotated by their sentential indices for a better understanding of the results:

S1. The1 cat2 was3 bitten4 by5 the6 dog7.

We set the sentence position parameter n to 2, and run experiments for different

resource capacities. A scientist working on a refinement of IP theory could easily

change the values of these parameters and thus use our formalization of IP to

fine-tune them.

The answer sets of the program Πadv ∪ lp(S1), computed using the ASP solver

claspD (Drescher et al. 2008), contained the map facts presented in Table 1. An

atom map(k , s1, ctg, c) in the answer set for capacity m indicates that the k th word

of S1 will get processed by an advanced learner with capacitym, and be mapped into

the cognitive concept c. The atom map(3, s1, r m forms , third person singular) on

the last line of the table is marked with an asterisk because two answer sets are

generated for capacity 11, and this atom is part of one answer set but not the

other. The non-determinism comes from the disjunctive rule (2) that, together with

rule (1), encodes Principle 1b stating that learners tend to extract meaning from

content words rather than from forms when they both encode the same meaning.

Rule (2) specifies that learners may or may not obey this default. In the case of S1,

the form “was” indicates (among other things) that the event is about an entity

other than the speaker and the addressee (i.e., third person singular). However,

this meaning was already extracted by the learner from the content word “cat”

(see atom map(2, s1, nr m forms , third person singular) for capacity 9), hence the

form “was” may or may not be processed for the same meaning. Another thing to
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Table 1. Automated Predictions for Principle 1

Capacity Additional map Facts w.r.t. Answer Sets for Smaller Capacities

0 ∅

1 map(2, s1, content words, cat)

2 map(7, s1, content words, dog)

3 map(4, s1, content words, bite)

9 map(1, s1,nr m forms, definite)
map(2, s1,nr m forms, third person singular)
map(6, s1,nr m forms, definite)
map(3, s1,nr m forms, passive voice)
map(3, s1,nr m forms, past tense)
map(4, s1,nr m forms, past participle)

11 map(5, s1, r m forms, agency)
map(3, s1, r m forms, third person singular)∗

Table 2. Automated Predictions for Principle 2 and Beginner Learners

X Answer Set of Πbeg ∪ lp(X ) contains Is X interpreted correctly?

S1 extr m(ev(bite, cat , dog), s1) NO
extr m by(s1, fnp)

S2 extr m(ev(bite, dog , shoe), s2) YES
impossible(ev(bite, shoe, dog), 1)

S3 extr m(ev(bite, dog ,man), s3) YES
unlikely(ev(bite,man, dog), 1)

S4 extr m(ev(bite, tyson, holyfield), s4) YES
hpd(ev(bite, tyson, holyfield))

P1 extr m(ev(push, cat , dog), s5) NO
extr m(ev(bite, dog , cat), s6)

P2 extr m(ev(kill , cat , dog), s7) YES
extr m(ev(push, cat , dog), s8)
impossible(ev(push, dog , cat), 2)

note is that a beginner learner would not be able to process grammatical forms in

the sentence even if s/he had a capacity exceeding value 11, just because s/he has

not yet internalized forms.

Next, we tested our predictions for Principle 2 for beginners and advanced learn-

ers. In both cases, we set the resource capacity to value 11. The relevant parts of

the answer sets for the texts in Example 2 can be seen in Tables 2 and 3, where

terms like ev(bite, cat , dog) are used to denote events, in this case “a cat biting a

dog”. We do not show all the predictions for advanced learners, because they are

expected to interpret all sentences and paragraphs correctly.
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Table 3. Automated Predictions for Principle 2 and Advanced Learners

X Answer Set of Πadv ∪ lp(X ) contains Is X interpreted correctly?

S1 extr m(ev(bite, dog , cat), s1) YES
extr m by(s1, grm cues)

Our automated predictions matched the ones in Examples 1 and 2, which suggests

that our model of IP is correct.

4 The System PIas

We created a system, PIas , designed to assist instructors in preparing materials

for the passive voice in English. PIas follows the guidelines of a successful teach-

ing method called Processing Instruction (PI) (VanPatten 1993; VanPatten 2002;

VanPatten 2003; Lee and VanPatten 2003), developed based on the principles of

IP. For a sentence to be valuable in this approach, it must lead to an incorrect

interpretation when grammatical cues are not used but the FNP is. In other words,

learners must be made aware that their default strategies can sometimes be counter-

productive, whereas grammatical cues are always reliable. S1 above is an example

of a valuable sentence; S2, S3, and S4 are not.

PIas has two functions. The first one is to specify whether sentences and para-

graphs created by instructors are valuable or not. This is relevant because even

instructors trained in PI happen to create bad materials.7 We define:

valuable(S ) ← extr m(Ev1, S , grm cues),

extr m(Ev2, S , fnp),

Ev1 6= Ev2·

We create a moduleM containing this definition and its extension to paragraphs.

PIas takes as an input a sentence or paragraph X in natural language, encodes it

in its logic form lp(X ), and computes the answer sets of a program consisting of

Πadv , M, and lp(X ). X is valuable if the atom valuable(X ) belongs to all answer

sets of the resulting program.

The second function of PIas is to generate all valuable sentences given a vocab-

ulary and some simple grammar. This is important because PI requires to expose

learners to a large number of valuable sentences.8 We add toM rules for sentence

7 A non-valuable sentence crafted by a researcher from the Second Language Acquisition com-
munity (Qin 2008) is “The ball was pushed by the rabbit.” This sentence is not valuable
(VanPatten et al. 2009) because event probabilities ensure that even beginner learners will in-
terpret this sentence correctly – it is more likely for a rabbit to push a ball than for a ball to
push a rabbit.

8 In their study, VanPatten and Cadierno (1993) used 120 valuable sentences for a single gram-
matical form.
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creation. For instance, one particular type of sentence is generated by:

sentence(s(“The”,N1, “was”,V , “by”, “the”,N2))←

schema(N1,V ,N2)·

word of sent(1, s(“The”,N1, “was”,V , “by”, “the”,N2), “the”)←

schema(N1,V ,N2)·

where schema(N1,V ,N2) is true if N1 and N2 are common nouns and V is a verb

in the past participle form (e.g., “bitten”). Atoms of the type valuable(S ) in the

answer set(s) of the program Πadv ∪M give all the valuable sentences that can be

generated using our grammar and vocabulary.

The PIas system is currently just a proof-of-concept, as it only generates sim-

ple sentences, given a controlled grammar and a small vocabulary. Its evaluation

was done by the author, who was previously trained in the Processing Instruction

teaching method and was involved in research in the field of Second Language Ac-

quisition (VanPatten et al. 2009). In the future, we plan to expand the system in

order to make it capable of creating more complex sentences and stories containing

the passive voice, as well as complete teaching and testing activities that interleave

sentences containing the target grammatical form with sentences that do not con-

tain it. Once PIas is capable of producing such activities, we plan to subject the

system to a more rigorous evaluation.

5 Conclusions and Future Work

This paper has shown three different directions in which modeling an important

theory from the field of Second Language Acquisition can contribute to the devel-

opment of this theory. First of all, we identified aspects in the text of the theory

description that need refinement (i.e., the definition of “sentence initial position”;

the presentation of Principle 1, whose sub-principles could be ordered differently to

facilitate a deeper understanding) and determined opportunities for future theory

development (i.e., How are resources in working memory consumed during compre-

hension tasks? Do succeeding sentences in a narrative constrain the interpretation

of previous sentences? How are non-sense sentences interpreted?) Second, we have

shown how our ASP model can be used to design experiments for testing this theory

and fine-tuning its parameters. Third, we described a system, PIas that assesses the

quality of materials created by language instructors, and creates valuable sentences.

We hope that the application presented here, and its three main contributions,

will help promote ASP as a tool for the study of qualitative theories, in different

fields. To the best of our knowledge, the only other uses of ASP for the refine-

ment of the natural language description of a cognitive theory are the papers of

Balduccini and Girotto (2010; 2011) that inspired the current work. In the field

of Applied Linguistics, we are aware of the use of computer models in simulat-

ing theory predictions (Dijkstra et al. 1998; Dijkstra and Van Heuven 2002). The

mentioned computer models were created using procedural languages. In contrast

to these approaches, our main focus is on facilitating the revision of the description

of a theory by formalizing it in a mathematical language. ASP showed to be par-
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ticularly suitable for this task because it allows for a precise and elegant encoding

of defaults, uncertainty, and evolving domains. For us, the simulation of results

and the automated testing of the theory’s predictions is just a consequence of our

primary goal.

Our principal interest in expanding the work in this paper will be on improving

the capabilities of the PIas system. We want PIas to use the valuable sentences

it generates in creating complete exercises or activities suitable for teaching. We

also intend to make PIas capable of producing valuable paragraphs. One difficult

question to address here will be What makes a collection of sentences a story?
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