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Abstract

This paper introduces a new constraint domain for reasoningabout data with uncertainty. It extends convex
modeling with the notion of p-box to gain additional quantifiable information on the data whereabouts.
Unlike existing approaches, the p-box envelops an unknown probability instead of approximating its repre-
sentation. The p-box bounds are uniform cumulative distribution functions (cdf) in order to employ linear
computations in the probabilistic domain. The reasoning bymeans of p-boxcdf-intervals is an interval
computation which is exerted on the real domain then it is projected onto thecdf domain. This operation
conveys additional knowledge represented by the obtained probabilistic bounds. The empirical evaluation
of our implementation shows that, with minimal overhead, the output solution set realizes a full enclosure
of the data along with tighter bounds on its probabilistic distributions.

KEYWORDS: convex structures, reliable constraint reasoning, probability box, cdf interval, constraint sat-
isfaction problem, constraint programming, constraint reasoning, uncertainty

1 Introduction

In this paper, we propose a novel constraint domain for reasoning about data with uncertainty.
Our work was driven by the practical usage of reliable approaches in Constraint Programming
(CP). These approaches tackle large scale constraint optimization (LSCO) problems associated
with data uncertainty in an intuitive and tractable manner.Yet they have a lack of knowledge
when the data whereabouts are to be considered. These whereabouts often indicate the data like-
lihood or chance of occurence, which in turn, can be ill-defined or have a fluctuating nature. It
is important to know the source and type of the data whereabouts in order to reason about them.
The purpose of our framework is to intuitively describe datacoupled with uncertainty or fol-
lowing unknown distributions without losing any knowledgegiven in the problem definition. We
extend thecdf-intervals approach (Saad et al. 2010) with a p-box structure (Ferson et al. 2003)
to obtain a safe enclosure. This enclosure envelops the dataalong with its whereabouts with
two distinct quantile values, each is located on acdf-uniform distribution (Saad et al. 2012). This
paper contains the following contributions: (1) a new uncertain data representation specified by
p-boxcdf-intervals, (2) a constraint reasoning framework that is used to prune variable domains
in a p-boxcdf-interval constraint relation to ensure their local consistency, (3) an experimental
evaluation, using an inventory management problem, to support our argument by comparing the
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novel framework with existing approaches in terms of expressiveness and tractability. The ex-
pressiveness, in our comparison, measures the ability to model the uncertainty provided in the
original problem, and the impact of this representation on the solution set realized. On the other
hand, the tractability measures the system time performance and scalability. The experimental
work shows how this novel domain representation yields moreinformed results, while remain-
ing computationally effective and competitive with previous work.

2 Preliminaries

Models tackling uncertainty are classified under the set of plausibility measures (Halpern 2003).
They are categorized as: possibilistic and probabilistic.Convex models, found in the world of
fuzzyand interval/robust programming, are favored when ignorance takes place. They are adopted
in the CP paradigm infuzzyConstraint Satisfaction Problems (CSPs) (Dubois et al. 1996), soft
CSPs (Bistarelli et al. 2002), numerical CSPs (Benhamou andOlder 1997) and uncertain CSPs
(UCSPs) (Yorke-Smith and Gervet 2009). Probabilistic models are best adopted when the data
has a fluctuating nature. They are the heart of the probabilistic CP modeling found in val-
ued CSP (Schiex et al. 1995), semirings (Bistarelli et al. 1999), stochastic CSPs (Walsh 2002),
scenario-based CSPs (Tarim et al. 2006), mixed CSPs (Fargier et al. 1996) and dynamic CSPs
(Climent et al. 2014). Techniques adopting convex modelingare characterized to be more con-
servative. They can often consider many unnecessary outcomes along with important ones. Due
to this conservative property, operations exerted on convex models are tractable and scalable be-
cause they are exerted on the convex bounds only. On the otherhand, probabilistic approaches
add a quantitative information that expresses the likelihood, yet these approaches impose as-
sumptions on the distribution shape in order to conceptually deal with it in a mathematical man-
ner. Moreover, probabilistic mathematical computations are very expensive because they often
depend on the non-linear probability shape.

Our objective is to introduce a novel framework (the p-boxcdf-intervals) that combines tech-
niques from the convex models, to take advantage of their tractability, with approaches revealing
quantifiable information from the probabilistic and stochastic world, to take advantage of their
expressiveness. Our framework is based on CP concepts (Jaffar and Lassez 1987) because they
proved to have a considerable flexibility in formulating real-world combinatorial problems. In
the CP paradigm, we aim at building descriptive algebraic structures which are easily embedded
into declarative programming languages. These structuresare heavily used in the problem solv-
ing environment by specifying conditions that need to be satisfied and allow the solver to search
for feasible solutions. Next we demonstrate how to intuively represent the uncertainty already
given in the problem definition in order to reason about it by means of the p-boxcdf-intervals.
We also compare our novel representation of the data uncertainty with existing possibilistic and
probabilistic approaches in order to demonstrate the modelexpressiveness. This representation
is input to the solver with a new domain specification. We consequently define how to reason
about this new specification and show how reasoning by means of p-boxcdf-intervals proved to
be tractable. Accordingly, we can claim that combining reasoning techniques from convex mod-
els with quantifiable information from probabilistic models yields a novel model that is together
tractable and expressive.

3 Input Data Representation

Quantifiable information is often available during the datacollection process, but lost during
the reasoning because it is not accounted for in the representation of the uncertain data. This
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information however is crucial to the reasoning process, and the lack of its interpretation yields
erroneous reasoning because of its absence in the produced solution set. It is always necessary
to quantify uncertainty that is naturally given in the problem definition in order to obtain robust
and reliable solutions. In this section, we show how to compute the confidence interval in the
modeling approaches of the convex, possibilistic and probabilistic worlds, then we compare them
with the input representation of thecdf-intervals and the p-boxcdf-intervals. Given a data set of
n distinct values, the generic construction of the confidencepossibilistic/probabilistic interval, in
a measurement process of a populationm, m 6= n, follows the steps below:

1. Data is collected andn quantiles (data values) are distinguished, each is represented byxi .
2. The probability distribution function (pdf) of the genuine observations is derived from

(xiFreqi)

∑n
1 xiFreqi

, where Freqi is the number of timesxi is observed.

3. The average value of the observations, ¯x =
x1Freq1+...+xnFreqn

∑n
1 xiFreqi

and their standard devia-

tion, σ =
√

1
n ∑n

1(xi − x̄)2 are computed.
4. The probabilistic/ possibilistic distributions are derived from the average and the standard

deviation values. Based on the (Gum 1995) any probability distribution (parametric/non-
parametric) is typically approximated to the nearest Normal distribution.

5. Computation and reasoning are based on the derived distributions since pointwise opera-
tions are computationally expensive.

(a) (b) (c)

Fig. 1: Varying cost of the steel stud item and its probability histogram:
(a) genuine observations (b) Normal distribution (c)fuzzydistribution

Example 3.1. Consider, as a running example, the varying cost observations of a steel stud
manufacturing item. Fig. 1(a) illustrates the cost variations along with their corresponding fre-
quencies of occurrence. For instance, the point(5.17,4) is the amount of the cost/item, equal to
5.17, and observed 4 times during the past 2 years (corresponding to a populationm= 40). Nine
is the number of distinct measured quantiles. The minimum and the maximum observed values,
in this example, are 5.17 and 6.36 respectively.

Computing the probabilistic/ possibilistic distribution. The genuinepdf of the observed data,
and its corresponding Normal distribution as well as its approximated possibilistic distribution
are computed using the average and standard deviation. Recall from Example 3.1, the point

(5.17,4) has a probability
(xiFreqi)

∑n
1xiFreqi

= 0.1. The calculated average and standard deviation of the

observed population are 5.6 and 0.28 respectively. From the two calculated values, we can derive
the nearest Normal probability distribution and thefuzzymembership function as shown in Fig.
1 (b) and (c).
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Derived probabilities andcdfdistributions of the steel stud item varying cost

Projecting the distributions onto the cdf-domain.By definition, thecdf keeps the probabilistic
information in an aggregated manner. Information obtainedfrom the measurement process is
often discrete and incomplete, hence, when it is projected onto thecdf-domain, it forms a stair-
case shape (Smith and La Poutre 1992). This is depicted in ourrunning example by the dotted
staircase shape in Figure 2. Normal andfuzzy cdfdistributions are shown by the continuous red
curves in Fig. 2 (b) and (c). Each is based on an approximationthat lacks precise point fitting
of the original data whereabouts. Similarly, thecdf-interval, in Fig. 2 (d), approximates the data
whereabouts by means of a line connecting the two bounding data values. The convex model
representation however shapes a rectangle, illustrated inFig. 2 (e). This rectangle includes all
values in thecdf range[0,1]. The convex representation treats data values lying withinthe in-
terval bounds equally, i.e. it lacks the probabilistic information. The p-boxcdf-interval enforces
tighter bounds on the probabilities in thecdf domain when compared to convex models as de-
picted in Fig. 2 (f).

3.1 Constructing the p-box cdf-intervals

Algorithm 3 shows the p-boxcdf-interval construction steps. Two parameters are taken into con-
sideration: Arr[n] is an array ofn distinct observed and sorted quantile values; whereas the second
parameter,cdf[n], is the set of their computedcdfvalues. The two arrays, together, form the stair-
case function shape with quantiles stored in Arr[] andcdfvalues stored incdf[]. Note that a stair-
case function defines as set of constant valuescdf[i] over a set of intervals[Arr[i],Arr[i+1]] ∀i < n
(Smith and La Poutre 1992). Accordingly, the set of upper andlower bounding points forming
the staircase function are{[Arr[i],cdf[i]]} ∀i,1≤ i ≤ n and{[Arr[i +1],cdf[i]]} ∀i,1≤ i < n re-
spectively. The aim of the algorithm is to envelop those observed points with the highest and
lowest possible average probabilistic step increase from the first quantile interval of the staircase
function. Issuing the slopes from this specific interval is sufficient to compute the bounds due
to thecdf monotonic property. Acdf slope, by definition, is the average step value that indicates
how the probability distribution increases. Algorithm in Fig. 3 starts by computing 2n slopes
issued from the 2 points, specified as (Arr[1],cdf[1]) and (Arr[2],cdf[1]), and destined to all other
points in thecdf-domain. This is to calculate the list of possible average step values between the
observed staircase bounding points. Slopes are then sortedto extract the steepest line and the
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procedure ConstructPBOXCDFIntervalBounds(Arr[n], cdf[n])

// compute the list of slopes between the observed points in the {\em cdf}-domain

1: j <- 0

2: for i = 2 to n do

3: slopeslb[j] <- (cdf[i] - cdf[1]) / (Arr[i] - Arr[1])

4: slopesub[j] <- (cdf[i-1] - cdf[1]) / (Arr[i] - Arr[2])

// find the most increasing lower bound slope O(nlog(n)) \\

5: Sxl <- getmax(slopeslb)

// find the least increasing upper bound slope O(nlog(n)) \\

6: Sxu <- getmin(slopesub)

// get the lower bound point \\

7: a <- Arr[1], Fa <-cdf[1], Sa <- Sxl

// get the upper bound point by projecting the maximum observed quantile \\

// onto the upper bound slope \\

8: b <-Arr[n], Fb <-Sxu(Arr[n]-Arr[2]) + cdf[1], Sb <- Sxu

// return the p-box {\em cdf}-interval \\

9: [(a, Fa, Sa),(b, Fb, Sb)]

Fig. 3: Data interval bounds construction

flatest line. The geometric area under the line, computed by the integral, determines the domi-
nated (dominating)cdfdistribution with maximum (minimum) area as indicated by the stochastic
dominance property that is used to order probabilities. Accordingly, the lower bound in thecdf
domain is the fastest increasing line slope and issued from the 1st quantile observation, and vise
versa the upper bound is the least increasing line slope and issued from the maximum quantile
value having the minimum observedcdf value. This is to guarantee the full encapsulation of all
the measured data between the two bounding distributions, each is shaping a line, and together
they are ordered by means of the probabilistic stochastic ordering. Algorithm in Fig. 3 is correct
with time complexityO(nlog(n)). The proof is omitted for space reason.

The red box in Fig. 2 (f) illustrates the p-boxcdf-interval, as opposed to the red line repre-
senting thecdf-interval, constructed for the same set of observations using the ‘ConstrucInterval-
Bounds‘ algorithm proposed in (Saad et al. 2010). Thecdf-interval of the same running example
is bounded by the points(5.17,0.1) and (6.25,0.98), while the p-boxcdf-interval representa-
tion is bounded by the points(5.17,0.1) and(6.36,0.7), each lying on a boundingcdf uniform
distribution with slopes 1.2 and 0.57 respectively.

3.2 Interpretation of the confidence intervalI

We formally describe the p-boxcdf-interval structure which is bounding the observed data as
shown in Algorithm 3. The theoretical algebraic representation of an interval of points is specified
by I = [pa, pb], wherepa and pb are the extreme points which bound the p-boxcdf-interval.
Throughout this paper, we assume that data takes its value inthe set of real numbersR, denoted
by a,b,c. Data points are denoted byp,q,r, possibly subscripted by a data value (quantile).

The p-box cdf-intervalI =[pa,qb]. One can see that this interval approach does not aim at ap-
proximating the curve but rather enclosing it in a reliable manner. The complete envelopment is
exerted by means of the uniformcdf-bounds, which are depicted by the red curves in Fig. 2 (f).



6 A. SAAD, T. FR̈UHWIRTH and C. GERVET

It is impossible to find a point that exists outside the formedinterval bounds. Thecdfbounds are
chosen to have a uniform distribution due to its linear computational complexity. Each is repre-
sented by a line with a slope (Sp

a,Sq
b) issued from one of the extreme quantiles (a,b). Storing the

full information of each bound is sufficient to restore the designated interval assignment. Bounds
are denoted by triplet points, in the 2D space, to guarantee the full information on: the extreme
quantile values observed (a,b); the cdf-value of each quantile projected onto its corresponding
bounding distribution (F p

a ,Fq
b ); and the degree of steepness formed by the uniform distributions

(Sp
a,Sq

b). The uniformcdf-distribution has a line shape with a slope indicating how the proba-
bilistic values accumulate for successive quantiles. Accordingly, the p-boxcdf-interval bounding
points representation:pa = (a,F p

a ,S
p
a) andqb = (b,Fq

b ,S
q
b). The p-boxcdf-intervals triplet points

are ordered inU , whereU is a partial order set defined overR× [0,1]×R
+ with an ordering

operator4U .

Definition 3.1. Sp
x is the slope of a given cdf-distribution; it signifies the average step proba-

bilistic value. For a given uniform cdf-distribution

Sp
x =

Fb−Fa

b−a
,∀a≤ x≤ b (1)

The average step value, denoted as Sp
x , derives the probabilistic values of consequent quantiles

on the real domain.

Plotting a pointpx within the p-boxcdf-interval deduces bounds on its possible chances of
occurrence.

Definition 3.2. F I
x is the interval of cdf values obtained when px is projected onto thep-boxcdf

bounds. For a point px ∈ I denoted as px = (x,F p
x ,S

p
x) and pa 4U px 4U qb

a< x< b, and Fq‘
b ≥ F I

x ≥ F p‘
a and Sp

a ≥ Sp
x ≥ Sq

b (2)

F p‘
a andFq‘

b are the possible maximum and minimumcdf valuespx can take; both are com-
puted by projecting the pointpx onto thecdf distributions passing through real pointsa andb
respectively. They are derived using the following linear projections, computed inO(1) com-
plexity:

F p‘
a = min(Sp

a(x−a)+Fp
a ,1) and F p‘

b = max(F p
b −Sp

b(b− x),0) (3)

Equation 3 guarantees the probabilistic feature of thecdf-function by restricting its aggregated
value from exceeding the value 1 and having negative values below 0.

Example 3.2. I= [(5.17,0.1,1.2),(6.36,0.7,0.57)] is the p-boxcdf-interval of the cost/item
in Example 3.1. Suppose thatxi = 5.5, its cdf-bound valuesF I

x = [0.2,0.5]. This means that
the possible chance of the value to be at most 5.5 is between 20% and 50%, with an average
step probabilistic value between 0.57 and 1.2. Note that this interval is opposed to only one
approximated valueFx = 0.37 in thecdf-intervals representation proposed in (Saad et al. 2010),
the fuzzy cdfvalueFx = 0.31 and its Normalcdf value isFx = 0.42. Note that convex models do
not enforce any probabilistic bounds, accordingly,xi = 5.5 has acdf FI

x ∈ [0,1].

4 Constraint reasoning

In the CP paradigm, relations between variables are specified as constraints. A set of rules and al-
gebraic semantics, defined over the list of constraints, formalize the reasoning about the problem.
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As a fundamental language component in the Constraint LogicProgramming (CLP), these set of
rules, with a syntax of definite clauses, form the language scheme (Jaffar and Lassez 1987). The
constraint solving scheme is intuitively and efficiently utilized in the reasoning over the compu-
tation domain. The scheme formally attempts at assigning tovariables a suitable domain of dis-
course equipped with an equality theory together with a least and a greatest model of fix-point se-
mantics. Starting from an initial state the reasoning scheme follows a local consistency technique
which attempts at constraining each variable over the p-boxcdf-interval domain while excluding
values which do not belong to the feasible solution. An implementation of the constraint sys-
tem was established as a separate module in the ECLiPSe constraint programming environment
(ECRC 1994). ECLiPSe provides two major components to build the solver: an attributed vari-
able data structure and a suspension handling mechanism. Fundamentally, attributed variables
are specific data structures which attach more than one data type. Together they permit for a new
definition of unification which extends the well-known Prolog unification (Le Huitouze 1990;
Holzbaur 1992). A p-boxcdf-interval point is implemented in an attributed variable data struc-
ture with three main components: quantile,cdf value and slope. Whilst constraints suspension
handling is a highly flexible mechanism that aims at controlling user defined atomic goals. This
is achieved by waiting for user-defined conditions to trigger specific goals.

Implemented rules in our solver infer the local consistencyin the p-boxcdf-interval domains
of the binary equality and ordering constraints{=,4U }, and that of the ternary arithmetic con-
straints{+U ,−U ,×U ,÷U }. Operations, in the solver, are exerted first as real interval compu-
tations, and then they are projected onto thecdf domain using a linear computation, as shown
in Definition 3.2. In this section we demonstrate how the ordering and the ternary addition con-
straints infer the local consistency over the variable domains of X, Y, andZ assuming that their
initial bindings areI = [pa, pb], J = [qc,qd] andK = [re, r f ] respectively. The ternary multiplica-
tion, subtraction and division constraints are implemented in the same way.

Ordering constraint X4U Y . To infer the local consistency of the binary ordering constraint, we
extend the lowercdf-bound ofX and contract the uppercdf-bound ofY. The ordering constraint
is defined by the following rule:

pb
′ = glb(pb,qd),qc

′ = lub(pa,qc)

{X ∈ I ,Y ∈ J,X 4U Y} 7−→ {X ∈ [pa, pb
′],Y ∈ [qc

′,qd],X 4U Y}

To achieve the local consistency, the ordering constraint4U updates the upper bound of the
variableX domain toglb(pb,qd), which is the greatest lower bound of the two points, i.e. the
point preceeding the two on the partially ordered set latticeU . And vice versa, the lower bound
of Y is updated tolub(pa,qc) (the least upper bound of the two points).

Example 4.1.Let I andJ be two p-boxcdf-interval domains.I = [(10,0.14,0.016),(80,0.49,0.06)]
andJ = [(20,0.06,0.025),(90,0.9,0.014)]. The effect of applying the set of constraintsX <U I
andX 4U J, prunes the domain ofX. As a result, the variableX is bounded by the lower bound
of I and by the upper bound ofJ: X ∈ [(10,0.14,0.016),(90,0.9,0.014)] as shown in Fig. 4 (a).
Clearly the obtained domain ofX, in this example, preserves the convex property of the p-box
cdf-intervals. LetY be subject to the domain pruning using the set of constraints: Y 4U I and
Y <U J. As a result,Y should be bounded by the lower bound ofJ and the upper bound of
I . However, in this case, at lower quantiles≤ 23, the upper bound distribution ofI preceeds the
lower bound ofJ. The fact that conflicts the stochastic dominance property of a p-boxcdf-interval



8 A. SAAD, T. FR̈UHWIRTH and C. GERVET

domain. In order to resolve this conflict, the real bounds ofY are further pruned to the point of
the probability intersection= 23.

(a) (b)

(c) (d)

Fig. 4: Ordering constraint execution

Ternary addition constraints X+U Y = Z . The addition operation is implemented by summing
up pair of points, defined in the 2D space and located within the p-boxcdf-interval bounds which
enclose the domain ranges ofX andY. This addition operation is linear. It is convex and can be
computed from the end points of the domains involved in the addition. The p-boxcdf-domain of
Z is updated to envelop all points defined in that range. To infer about thecdf ternary addition
constraint we use the following rule:

r f
′ = (ub+,F I+J

ub+
,SI+J

ub+
), re

′ = (lb+,F I+J
lb+

,SI+J
lb+

)

{X ∈ I ,Y ∈ J,Z ∈ K ,Z = X+U Y} 7−→ {X ∈ I ,Y ∈ J,Z ∈ [re
′, r f

′],Z = X+U Y}
(4)

pb
′ = (ub−,FK−J

ub−
,SK−J

ub−
), pa

′ = (lb−,FK−J
lb−

,SK−J
lb−

)

{X ∈ I ,Y ∈ J,Z ∈ K ,X = Z−U Y} 7−→ {X ∈ [pa
′, pb

′],Y ∈ J,Z ∈ K ,Z = Z−U Y}
(5)

The projection onto theY domain is symmetrical. The p-boxcdf ternary addition inference rule is
exerted on the variable domains involved in the relationZ=X+U Y. The domain ofZ is updated
with the addition of the two interval domainsI andJ which yields a lower bound(lb+,F

I+J
lb+

,SI+J
lb+

)

and an upper bound(ub+,F
I+J
ub+

,SI+J
ub+

). lb+ andub+ are the bounds of the arithmetic addition

exerted on the real domainR. (F I+J
lb+

,SI+J
lb+

) and(F I+J
ub+

,SI+J
ub+

) are the boundingcdf distributions,
each is obtained by means of a linear equation that is proposed in (Saad et al. 2012), and which
is derived using the approach in (Glen et al. 2004). The domain of Z is pruned by intersection the
new bounding points[re

′, r f
′], resulting from the p-boxcdf-intervals addition operation, with the

initial binding ofZ. Since three variables are involves in the ternary addition, domains ofX andY
are pruned using rule 5. The p-boxcdf-interval subtraction is exerted linearly over the bounding
points of K − J and K − I . (lb−,F

K−J
lb−

,SK−J
lb−

) and (ub−,F
K−J
ub−

,SK−J
ub−

) are the resuting bounds
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defined overU and they are intersected with the initial binding ofX. Similarly the domain ofY
is pruned. This operation is exerted multiple times until the constraint is stabilized, i.e. no further
pruning is taking place and the system of constraint is preserving its local consistency.

The ternary addition constraint exerted on p-boxcdf-interval domains is a simple addition
computation since it adopts the real-interval arithmeticswhich are then projected linearly onto
thecdfdomain. This operation is opposed to thefuzzyextended addition operation adopted in the
constraint reasoning utilized in the possibilistic domain(Dutta et al. 2005; Petrović et al. 1996),
and to the Normal probabilistic addition which has a high computation complexity that is due to
the Normal distribution shape (Glen et al. 2004).

5 Empirical evaluation

We use, as a case study, an inventory management problem. We adopt in our evaluation the model
proposed by (Tarim and Kingsman 2004). The key idea is to schedule ahead replenishement pe-
riods and find the optimal order sizes which achieve a minimumtotal manufacturing cost. A
reorder pointδt with order sizeXt should meet customer demandsdt up to the next point of
replenishment with an adequate inventory levelIt .

Definition 5.1. An inventory management model defined over a time horizon of Ncycles is

minimize TC=
N

∑
t=1

(aδt +hIt + vXt)

subject to δt =

{

1 if Xt > 0
0 otherwise

}

It = I0+Σt
i=1(Xi −di)

Xt , It > 0, t = 0,1, ...,N (6)

The problem is an optimization problem that seeks the minimization of the total costTCwhich
constitutes of three components: the cost of replenishmentwhich is defined by the ordering cost
a multiplied by the number of times a replenishment takes place∑N

t=1 δt ; the holding cost which
depends on the depreciation costh and the level of the inventory observed in a given cycleIt ;
and the purchase cost which is the reorder quantityXt multiplied by the varying cost/itemv. The
model is studied over a time horizon ofN cycles.δt is 1, when an order is issued and 0 otherwise.
The inventory levelIt for a given cycle is the difference between the ordered itemsXt and those
which are consumeddt . I0 is the initial inventory level. From this model, one can observe that
all cost components depend totally on fluctuating and unpredictable variables especially in the
real-life version of the problem. This is due to the unpredictability of customer demands and
the variability of the cost/item. Accordingly, this model perfectly fits our evaluation criteria:
comparing the behavior of the models when the environment isuncertain.

Information realized in the solution set.We test the model for a randomly distributed monthly
demands. Table 1 shows the average demand per cycle for a timehorizonN = 10 cycles. We
build a p-boxcdf-interval for each average demand value since it is given from a list of cus-
tomer demand observations over the years. The constructionof the p-boxcdf-interval repre-
sentation follows Algorithm 3. Clearly,fuzzyand probabilistic models are based on the listed
average values. The two models set assumptions on the shape of the probability distribution
adopted, as pointed out in Section 3. We then develop the intervals of the cost components.
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Averagedt 26 36 23 28 32 30 29 37 25 34
Lower bounddt 25.6 34.7 22.5 27.1 31.7 29.6 28.6 36.2 24 33.2
Upper bounddt 26.9 36.8 23.9 28.4 33 31.5 29.9 37.9 25.4 34.5

Probabilisticδt 1 1 1 0 1 0 1 0 1 0
PBOXδt [1,1] [0,0] [0,0] [0,1] [0,0] [0,1] [0,1] [0,0] [0,0] [0,1]

Table 1:dt andδt over a time horizon of 10 cycles

Example 3.1 demonstrates how to deduce the input varying cost/item observed for 12 months.
We implement the model defined in Equation 6. The input customer demands and cost com-
ponents are represented as p-boxcdf-intervals. We start the problem with an empty initial in-
ventory. The set of addition and equality constraints are employed in the p-boxcdf-interval
domain. Constraints are triggered until stabilized and consistency is reached by means of the
inference rules defined in Section 4. The solver suggests 2 to5 replenishment periods, with a to-
tal holding cost[(8.5,0.83,4.4E−04),(137.98,0.039,7.5e−5)] and a total manufacturing cost
[(2739.6,0.8,3.3E−04),(6483.2,0.03,6.2e−5)]. This output is opposed to 6 replenishment pe-
riods realized by thefuzzyand the probabilistic models, as shown in Table 1, with a total holding
cost $53.5 and $52.05 and a total manufacturing cost $3868.5 and $3828.93 respectively. We

Fig. 5: Output solutions for holding cost

have successfully added more value to the solution set obtained due to the propagation tech-
niques applied in the p-boxcdf-intervals domain. Fig. 5 illustrates a comparison betweenthe
output holding cost obtained from the models under consideration. The p-boxcdf-interval graph-
ical representation of the cost is depicted by the shaded region and their bounds in the convex
models are illustrated by the dotted rectangles. Clearly, the solution set obtained from the p-box
cdf-intervals model, when compared with the outcome of the convex model, realized an addi-
tional knowledge (i.e. tighter bounds in thecdf domain). This solution set is opposed to a one
value proposed as $53.5 by thefuzzyand as $52.05 by the probabilistic models. Output solution
point suggested by the latter models can, sometime, misleador deviate the decision making. This
is because their distributions are built, from the begining, on approximating the actual observed
distribution.

Model tractability. We adopt the data corpus introduced by (Tarim et al. 2006). They generated
4 types of randomly distributed demand data sets. Customer demands are varied over the time
horizon (t is the cycle number) using the following equations:

• P1 set (general trend): demand distribution mean value per cycle is
50(1+ sin(πt/6))



The P-Box CDF-Intervals 11

time horizon t = 30 t = 32 t = 34 t = 36 t = 38 t = 40 t = 42 t = 44 t = 46

P1 set

Stochastic 4599.65 5442.04 6355.23
Probabilistic 1882.5 1710.91 2207.96 6557.76
Fuzzy 1138.5 1228.8 1479.68 1697.76 1869.98 2129.6 2328.48 5265.93
CDF 1244.6 865.78 642.75 891.5 1130 1351.67 2289.59 2340.78
PBOX 675.77 586.81 874.12 1110.59 1256.86 1955.72 2119.47
Convex 1111.26 432.88 553.48 778.28 961.24 1088.4 1800.23 1844.06 1828

P2 set

Stochastic 4650.8 5502.57 6425.92
Probabilistic 1422 3242.4 5248.25
Fuzzy 1620 2088.96 2653.02 3311.28 3869.92 5136 6615
CDF 1465.45 775.08 538.88 854.55 1285.74 1922.06 2102.92
PBOX 1376.66 669.89 520.13 813.36 1211.82 1663.99 1985.7
Convex 1238.79 440.33 468.82 693.04 1095.12 1371.14 1814.8

P3 set

Stochastic 4590.34 5431.04 6342.38
Probabilistic 1773.75 2444.8 4722.27 6156
Fuzzy 1696.5 2216.96 3034.5 3777.85 4194.83 5192 7003.09
CDF 1195.14 888.15 622.29 1073.09 1372.47 1775.58 2435.39
PBOX 1047.68 840.45 532.45 920 1172.04 1567.14 2147.39
Convex 897.83 743.92 529.05 848.64 1144.34 1548.07 2091.32

P4 set

Stochastic 4604.29 5447.54 6361.65
Probabilistic 2259 2672.64 4404.36
Fuzzy 1831.5 2319.36 3063.4 3531.6 4534.16 4534.16 6368.04
CDF 1357.18 800.11 605.21 922.54 1127.69 1379.99 1990.82 2051.26
PBOX 1156.04 664.42 601.99 813.17 1010.49 1186.99 1698.63 1684.34
Convex 1155.23 442.47 519.8 697.55 968.99 1177.76 1570.67 1449.6 1669

Table 2: Real-time taken to solve instances for the demand sets: P1, P2, P3 & P4

• P2 set (positive trend): demand distribution mean value percycle is
50(1+ sin(πt/6))+ t

• P3 set (negative trend): demand distribution mean value percycle is
50(1+ sin(πt/6))+ (52− t)

• P4 set (life-cycle trend): demand distribution mean value per cycle is
50(1+ sin(πt/6))+min(t,52− t)

We run the different models for high values oft (t ≥ 30). Table 2 shows the time taken in seconds
by each model to reach a solution for the varying demands in a given time horizon. Timeout is
set to 2 hours. Empty cells in the table demonstrate the failure of the model to solve the problem
within the 2 hours interval. As shown in rows (3,10,17 and 24), stochastic models time-out after
a time horizont = 34. Clearly they have the most expensive computations because they work on
the probability distribution in a pointwise manner. Observing each column in Table 2, one can
notice the speed of each model to reach a solution for the given problem. Evidently, convex mod-
els outperfrom the rest of the models in terms of speed; p-boxcdf-intervals have a closer speed,
followed by fuzzymodels, then the probabilistic models. In summary, the p-box cdf-intervals
speed performance is closer to that of the convex models. This means that, the new framework,



12 A. SAAD, T. FR̈UHWIRTH and C. GERVET

with minimal overhead, adds up a quantifiable information byimposing tighter bounds on the
probability distribution, in a safe and a tractable manner.We claim that applied computations are
tractable because they are exerted on the interval bounds, using interval computations, then re-
sults are further projected, linearly, onto thecdfdomain. Last but not least, empirical evaluations
which we used to test the scalability of the framework support our argument.

6 Conclusion and future research direction

In this paper, we propose a novel constraint domain to reasonabout data with uncertainty. The
key idea is to extend convex models with the notion of p-boxesin order to realize aditional
quantifiable information on the data whereabouts. To the best of our knowledge, p-boxes have
never been implemented in the CP paradigm, yet they are very good candidates to deal with
and reason about uncertainty in the probabilistic paradigm, especially when the data is shaping
an unknown distribution. The concept of p-boxes relies on the probabilistic approach that ranks
probability distributions based on their stochastic dominance. It is a safe envelopment of the data
whereabouts especially when it follows an unknown distribution. Thecdf was selected due to
its aggregated nature which enables the propagation of the information to the interval bounds in
addition to its capability of easily ranking probability distributions within a p-box domain.

In Section 3, we have demonstrated that the p-boxcdf-interval algebraic structure adds up
quantitative information to real intervals which are adopted by convex models. We have also
shown that the novel interval domain prevents probabilistic approximations which are carried on
by models adopting possibilistic and probabilitic approaches. In Section 4, we have shown that
p-boxcdf-interval operations adopt real-interval computations which are then projected linearly
in thecdf domain. These operations guarrantee the envelopment of tuple computations exerted
by each and every probability pair distributions lying within the intervals in the constraint re-
lation. Moreover, the violation of thecdf ordering property shrinks the interval domain. Hence
the realized solution space can be further pruned from the domain of real quantiles. The added
value provided by the p-boxcdf-intervals algebraic structure is a safe enclosure that bounds the
data along with its whereabouts. This envelopment achievestighter bounds on the output solu-
tion sets as opposed to those realized by convex models. In Section 5, we have evaluated the
different modeling approaches, in terms of expressivenessand tractability, on a case study: an
inventory management problem. We have shown how the p-boxcdf-intervals intuitively envelop
the uncertain data found in different modeling aspects withminimum overhead.

In practice and based on our findings, stochastic CPs and probabilistic models are the slowest.
Fuzzy models proved to have a better time performance and their output solutions are charac-
terized to be reliable, i.e. they seek the satisfaction of all possible realizations. Convex models
and the p-boxcdf-intervals encapsulate all possible distributions of the solution set in a convex
representation. The p-boxcdf-intervals framework provides a range of quantities to order and a
range of costs for each decision along with bounds on their data whereabouts.

The introduction of a novel framework to reason about data coupled with uncertainty due to
ignorance or based on variability, paves the way to many fruitful research directions. We can
list many in: studying models having variables following dependent probability distributions,
exploring different search techniques, revisiting the framework within a dynamically changing
environment, generalizing the framework to deal with all types of uncertainty by considering
together vagueness and dynamicity, and last but not least applying the model to a variety of large
scale optimization problems which target real-life engineering and management applications.



The P-Box CDF-Intervals 13

References

BENHAMOU, F. AND OLDER, W. J. 1997. Applying interval arithmetic to real, integer,and boolean
constraints.The Journal of Logic Programming 32,1, 1–24.
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